xref: /freebsd/sys/vm/vm_object.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/vnode.h>
81 #include <sys/vmmeter.h>
82 #include <sys/sx.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_reserv.h>
96 #include <vm/uma.h>
97 
98 #define EASY_SCAN_FACTOR       8
99 
100 #define MSYNC_FLUSH_HARDSEQ	0x01
101 #define MSYNC_FLUSH_SOFTSEQ	0x02
102 
103 /*
104  * msync / VM object flushing optimizations
105  */
106 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
107 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
108         CTLFLAG_RW, &msync_flush_flags, 0, "");
109 
110 static int old_msync;
111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
112     "Use old (insecure) msync behavior");
113 
114 static void	vm_object_qcollapse(vm_object_t object);
115 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
116 static void	vm_object_vndeallocate(vm_object_t object);
117 
118 /*
119  *	Virtual memory objects maintain the actual data
120  *	associated with allocated virtual memory.  A given
121  *	page of memory exists within exactly one object.
122  *
123  *	An object is only deallocated when all "references"
124  *	are given up.  Only one "reference" to a given
125  *	region of an object should be writeable.
126  *
127  *	Associated with each object is a list of all resident
128  *	memory pages belonging to that object; this list is
129  *	maintained by the "vm_page" module, and locked by the object's
130  *	lock.
131  *
132  *	Each object also records a "pager" routine which is
133  *	used to retrieve (and store) pages to the proper backing
134  *	storage.  In addition, objects may be backed by other
135  *	objects from which they were virtual-copied.
136  *
137  *	The only items within the object structure which are
138  *	modified after time of creation are:
139  *		reference count		locked by object's lock
140  *		pager routine		locked by object's lock
141  *
142  */
143 
144 struct object_q vm_object_list;
145 struct mtx vm_object_list_mtx;	/* lock for object list and count */
146 
147 struct vm_object kernel_object_store;
148 struct vm_object kmem_object_store;
149 
150 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
151 
152 static long object_collapses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
154     &object_collapses, 0, "VM object collapses");
155 
156 static long object_bypasses;
157 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
158     &object_bypasses, 0, "VM object bypasses");
159 
160 static uma_zone_t obj_zone;
161 
162 static int vm_object_zinit(void *mem, int size, int flags);
163 
164 #ifdef INVARIANTS
165 static void vm_object_zdtor(void *mem, int size, void *arg);
166 
167 static void
168 vm_object_zdtor(void *mem, int size, void *arg)
169 {
170 	vm_object_t object;
171 
172 	object = (vm_object_t)mem;
173 	KASSERT(TAILQ_EMPTY(&object->memq),
174 	    ("object %p has resident pages",
175 	    object));
176 #if VM_NRESERVLEVEL > 0
177 	KASSERT(LIST_EMPTY(&object->rvq),
178 	    ("object %p has reservations",
179 	    object));
180 #endif
181 	KASSERT(object->cache == NULL,
182 	    ("object %p has cached pages",
183 	    object));
184 	KASSERT(object->paging_in_progress == 0,
185 	    ("object %p paging_in_progress = %d",
186 	    object, object->paging_in_progress));
187 	KASSERT(object->resident_page_count == 0,
188 	    ("object %p resident_page_count = %d",
189 	    object, object->resident_page_count));
190 	KASSERT(object->shadow_count == 0,
191 	    ("object %p shadow_count = %d",
192 	    object, object->shadow_count));
193 }
194 #endif
195 
196 static int
197 vm_object_zinit(void *mem, int size, int flags)
198 {
199 	vm_object_t object;
200 
201 	object = (vm_object_t)mem;
202 	bzero(&object->mtx, sizeof(object->mtx));
203 	VM_OBJECT_LOCK_INIT(object, "standard object");
204 
205 	/* These are true for any object that has been freed */
206 	object->paging_in_progress = 0;
207 	object->resident_page_count = 0;
208 	object->shadow_count = 0;
209 	return (0);
210 }
211 
212 void
213 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
214 {
215 
216 	TAILQ_INIT(&object->memq);
217 	LIST_INIT(&object->shadow_head);
218 
219 	object->root = NULL;
220 	object->type = type;
221 	object->size = size;
222 	object->generation = 1;
223 	object->ref_count = 1;
224 	object->flags = 0;
225 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
226 		object->flags = OBJ_ONEMAPPING;
227 	object->pg_color = 0;
228 	object->handle = NULL;
229 	object->backing_object = NULL;
230 	object->backing_object_offset = (vm_ooffset_t) 0;
231 #if VM_NRESERVLEVEL > 0
232 	LIST_INIT(&object->rvq);
233 #endif
234 	object->cache = NULL;
235 
236 	mtx_lock(&vm_object_list_mtx);
237 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
238 	mtx_unlock(&vm_object_list_mtx);
239 }
240 
241 /*
242  *	vm_object_init:
243  *
244  *	Initialize the VM objects module.
245  */
246 void
247 vm_object_init(void)
248 {
249 	TAILQ_INIT(&vm_object_list);
250 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
251 
252 	VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
253 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
254 	    kernel_object);
255 #if VM_NRESERVLEVEL > 0
256 	kernel_object->flags |= OBJ_COLORED;
257 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
258 #endif
259 
260 	VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
261 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
262 	    kmem_object);
263 #if VM_NRESERVLEVEL > 0
264 	kmem_object->flags |= OBJ_COLORED;
265 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
266 #endif
267 
268 	/*
269 	 * The lock portion of struct vm_object must be type stable due
270 	 * to vm_pageout_fallback_object_lock locking a vm object
271 	 * without holding any references to it.
272 	 */
273 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
274 #ifdef INVARIANTS
275 	    vm_object_zdtor,
276 #else
277 	    NULL,
278 #endif
279 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
280 }
281 
282 void
283 vm_object_clear_flag(vm_object_t object, u_short bits)
284 {
285 
286 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
287 	object->flags &= ~bits;
288 }
289 
290 void
291 vm_object_pip_add(vm_object_t object, short i)
292 {
293 
294 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
295 	object->paging_in_progress += i;
296 }
297 
298 void
299 vm_object_pip_subtract(vm_object_t object, short i)
300 {
301 
302 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
303 	object->paging_in_progress -= i;
304 }
305 
306 void
307 vm_object_pip_wakeup(vm_object_t object)
308 {
309 
310 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
311 	object->paging_in_progress--;
312 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
313 		vm_object_clear_flag(object, OBJ_PIPWNT);
314 		wakeup(object);
315 	}
316 }
317 
318 void
319 vm_object_pip_wakeupn(vm_object_t object, short i)
320 {
321 
322 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
323 	if (i)
324 		object->paging_in_progress -= i;
325 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
326 		vm_object_clear_flag(object, OBJ_PIPWNT);
327 		wakeup(object);
328 	}
329 }
330 
331 void
332 vm_object_pip_wait(vm_object_t object, char *waitid)
333 {
334 
335 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
336 	while (object->paging_in_progress) {
337 		object->flags |= OBJ_PIPWNT;
338 		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
339 	}
340 }
341 
342 /*
343  *	vm_object_allocate:
344  *
345  *	Returns a new object with the given size.
346  */
347 vm_object_t
348 vm_object_allocate(objtype_t type, vm_pindex_t size)
349 {
350 	vm_object_t object;
351 
352 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
353 	_vm_object_allocate(type, size, object);
354 	return (object);
355 }
356 
357 
358 /*
359  *	vm_object_reference:
360  *
361  *	Gets another reference to the given object.  Note: OBJ_DEAD
362  *	objects can be referenced during final cleaning.
363  */
364 void
365 vm_object_reference(vm_object_t object)
366 {
367 	struct vnode *vp;
368 
369 	if (object == NULL)
370 		return;
371 	VM_OBJECT_LOCK(object);
372 	object->ref_count++;
373 	if (object->type == OBJT_VNODE) {
374 		int vfslocked;
375 
376 		vp = object->handle;
377 		VM_OBJECT_UNLOCK(object);
378 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
379 		vget(vp, LK_RETRY, curthread);
380 		VFS_UNLOCK_GIANT(vfslocked);
381 	} else
382 		VM_OBJECT_UNLOCK(object);
383 }
384 
385 /*
386  *	vm_object_reference_locked:
387  *
388  *	Gets another reference to the given object.
389  *
390  *	The object must be locked.
391  */
392 void
393 vm_object_reference_locked(vm_object_t object)
394 {
395 	struct vnode *vp;
396 
397 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
398 	KASSERT((object->flags & OBJ_DEAD) == 0,
399 	    ("vm_object_reference_locked: dead object referenced"));
400 	object->ref_count++;
401 	if (object->type == OBJT_VNODE) {
402 		vp = object->handle;
403 		vref(vp);
404 	}
405 }
406 
407 /*
408  * Handle deallocating an object of type OBJT_VNODE.
409  */
410 static void
411 vm_object_vndeallocate(vm_object_t object)
412 {
413 	struct vnode *vp = (struct vnode *) object->handle;
414 
415 	VFS_ASSERT_GIANT(vp->v_mount);
416 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
417 	KASSERT(object->type == OBJT_VNODE,
418 	    ("vm_object_vndeallocate: not a vnode object"));
419 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
420 #ifdef INVARIANTS
421 	if (object->ref_count == 0) {
422 		vprint("vm_object_vndeallocate", vp);
423 		panic("vm_object_vndeallocate: bad object reference count");
424 	}
425 #endif
426 
427 	object->ref_count--;
428 	if (object->ref_count == 0) {
429 		mp_fixme("Unlocked vflag access.");
430 		vp->v_vflag &= ~VV_TEXT;
431 	}
432 	VM_OBJECT_UNLOCK(object);
433 	/*
434 	 * vrele may need a vop lock
435 	 */
436 	vrele(vp);
437 }
438 
439 /*
440  *	vm_object_deallocate:
441  *
442  *	Release a reference to the specified object,
443  *	gained either through a vm_object_allocate
444  *	or a vm_object_reference call.  When all references
445  *	are gone, storage associated with this object
446  *	may be relinquished.
447  *
448  *	No object may be locked.
449  */
450 void
451 vm_object_deallocate(vm_object_t object)
452 {
453 	vm_object_t temp;
454 
455 	while (object != NULL) {
456 		int vfslocked;
457 
458 		vfslocked = 0;
459 	restart:
460 		VM_OBJECT_LOCK(object);
461 		if (object->type == OBJT_VNODE) {
462 			struct vnode *vp = (struct vnode *) object->handle;
463 
464 			/*
465 			 * Conditionally acquire Giant for a vnode-backed
466 			 * object.  We have to be careful since the type of
467 			 * a vnode object can change while the object is
468 			 * unlocked.
469 			 */
470 			if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
471 				vfslocked = 1;
472 				if (!mtx_trylock(&Giant)) {
473 					VM_OBJECT_UNLOCK(object);
474 					mtx_lock(&Giant);
475 					goto restart;
476 				}
477 			}
478 			vm_object_vndeallocate(object);
479 			VFS_UNLOCK_GIANT(vfslocked);
480 			return;
481 		} else
482 			/*
483 			 * This is to handle the case that the object
484 			 * changed type while we dropped its lock to
485 			 * obtain Giant.
486 			 */
487 			VFS_UNLOCK_GIANT(vfslocked);
488 
489 		KASSERT(object->ref_count != 0,
490 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
491 
492 		/*
493 		 * If the reference count goes to 0 we start calling
494 		 * vm_object_terminate() on the object chain.
495 		 * A ref count of 1 may be a special case depending on the
496 		 * shadow count being 0 or 1.
497 		 */
498 		object->ref_count--;
499 		if (object->ref_count > 1) {
500 			VM_OBJECT_UNLOCK(object);
501 			return;
502 		} else if (object->ref_count == 1) {
503 			if (object->shadow_count == 0) {
504 				vm_object_set_flag(object, OBJ_ONEMAPPING);
505 			} else if ((object->shadow_count == 1) &&
506 			    (object->handle == NULL) &&
507 			    (object->type == OBJT_DEFAULT ||
508 			     object->type == OBJT_SWAP)) {
509 				vm_object_t robject;
510 
511 				robject = LIST_FIRST(&object->shadow_head);
512 				KASSERT(robject != NULL,
513 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
514 					 object->ref_count,
515 					 object->shadow_count));
516 				if (!VM_OBJECT_TRYLOCK(robject)) {
517 					/*
518 					 * Avoid a potential deadlock.
519 					 */
520 					object->ref_count++;
521 					VM_OBJECT_UNLOCK(object);
522 					/*
523 					 * More likely than not the thread
524 					 * holding robject's lock has lower
525 					 * priority than the current thread.
526 					 * Let the lower priority thread run.
527 					 */
528 					pause("vmo_de", 1);
529 					continue;
530 				}
531 				/*
532 				 * Collapse object into its shadow unless its
533 				 * shadow is dead.  In that case, object will
534 				 * be deallocated by the thread that is
535 				 * deallocating its shadow.
536 				 */
537 				if ((robject->flags & OBJ_DEAD) == 0 &&
538 				    (robject->handle == NULL) &&
539 				    (robject->type == OBJT_DEFAULT ||
540 				     robject->type == OBJT_SWAP)) {
541 
542 					robject->ref_count++;
543 retry:
544 					if (robject->paging_in_progress) {
545 						VM_OBJECT_UNLOCK(object);
546 						vm_object_pip_wait(robject,
547 						    "objde1");
548 						temp = robject->backing_object;
549 						if (object == temp) {
550 							VM_OBJECT_LOCK(object);
551 							goto retry;
552 						}
553 					} else if (object->paging_in_progress) {
554 						VM_OBJECT_UNLOCK(robject);
555 						object->flags |= OBJ_PIPWNT;
556 						msleep(object,
557 						    VM_OBJECT_MTX(object),
558 						    PDROP | PVM, "objde2", 0);
559 						VM_OBJECT_LOCK(robject);
560 						temp = robject->backing_object;
561 						if (object == temp) {
562 							VM_OBJECT_LOCK(object);
563 							goto retry;
564 						}
565 					} else
566 						VM_OBJECT_UNLOCK(object);
567 
568 					if (robject->ref_count == 1) {
569 						robject->ref_count--;
570 						object = robject;
571 						goto doterm;
572 					}
573 					object = robject;
574 					vm_object_collapse(object);
575 					VM_OBJECT_UNLOCK(object);
576 					continue;
577 				}
578 				VM_OBJECT_UNLOCK(robject);
579 			}
580 			VM_OBJECT_UNLOCK(object);
581 			return;
582 		}
583 doterm:
584 		temp = object->backing_object;
585 		if (temp != NULL) {
586 			VM_OBJECT_LOCK(temp);
587 			LIST_REMOVE(object, shadow_list);
588 			temp->shadow_count--;
589 			temp->generation++;
590 			VM_OBJECT_UNLOCK(temp);
591 			object->backing_object = NULL;
592 		}
593 		/*
594 		 * Don't double-terminate, we could be in a termination
595 		 * recursion due to the terminate having to sync data
596 		 * to disk.
597 		 */
598 		if ((object->flags & OBJ_DEAD) == 0)
599 			vm_object_terminate(object);
600 		else
601 			VM_OBJECT_UNLOCK(object);
602 		object = temp;
603 	}
604 }
605 
606 /*
607  *	vm_object_terminate actually destroys the specified object, freeing
608  *	up all previously used resources.
609  *
610  *	The object must be locked.
611  *	This routine may block.
612  */
613 void
614 vm_object_terminate(vm_object_t object)
615 {
616 	vm_page_t p;
617 
618 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
619 
620 	/*
621 	 * Make sure no one uses us.
622 	 */
623 	vm_object_set_flag(object, OBJ_DEAD);
624 
625 	/*
626 	 * wait for the pageout daemon to be done with the object
627 	 */
628 	vm_object_pip_wait(object, "objtrm");
629 
630 	KASSERT(!object->paging_in_progress,
631 		("vm_object_terminate: pageout in progress"));
632 
633 	/*
634 	 * Clean and free the pages, as appropriate. All references to the
635 	 * object are gone, so we don't need to lock it.
636 	 */
637 	if (object->type == OBJT_VNODE) {
638 		struct vnode *vp = (struct vnode *)object->handle;
639 
640 		/*
641 		 * Clean pages and flush buffers.
642 		 */
643 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
644 		VM_OBJECT_UNLOCK(object);
645 
646 		vinvalbuf(vp, V_SAVE, NULL, 0, 0);
647 
648 		VM_OBJECT_LOCK(object);
649 	}
650 
651 	KASSERT(object->ref_count == 0,
652 		("vm_object_terminate: object with references, ref_count=%d",
653 		object->ref_count));
654 
655 	/*
656 	 * Now free any remaining pages. For internal objects, this also
657 	 * removes them from paging queues. Don't free wired pages, just
658 	 * remove them from the object.
659 	 */
660 	vm_page_lock_queues();
661 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
662 		KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
663 			("vm_object_terminate: freeing busy page %p "
664 			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
665 		if (p->wire_count == 0) {
666 			vm_page_free(p);
667 			cnt.v_pfree++;
668 		} else {
669 			vm_page_remove(p);
670 		}
671 	}
672 	vm_page_unlock_queues();
673 
674 #if VM_NRESERVLEVEL > 0
675 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
676 		vm_reserv_break_all(object);
677 #endif
678 	if (__predict_false(object->cache != NULL))
679 		vm_page_cache_free(object, 0, 0);
680 
681 	/*
682 	 * Let the pager know object is dead.
683 	 */
684 	vm_pager_deallocate(object);
685 	VM_OBJECT_UNLOCK(object);
686 
687 	/*
688 	 * Remove the object from the global object list.
689 	 */
690 	mtx_lock(&vm_object_list_mtx);
691 	TAILQ_REMOVE(&vm_object_list, object, object_list);
692 	mtx_unlock(&vm_object_list_mtx);
693 
694 	/*
695 	 * Free the space for the object.
696 	 */
697 	uma_zfree(obj_zone, object);
698 }
699 
700 /*
701  *	vm_object_page_clean
702  *
703  *	Clean all dirty pages in the specified range of object.  Leaves page
704  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
705  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
706  *	leaving the object dirty.
707  *
708  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
709  *	synchronous clustering mode implementation.
710  *
711  *	Odd semantics: if start == end, we clean everything.
712  *
713  *	The object must be locked.
714  */
715 void
716 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
717 {
718 	vm_page_t p, np;
719 	vm_pindex_t tstart, tend;
720 	vm_pindex_t pi;
721 	int clearobjflags;
722 	int pagerflags;
723 	int curgeneration;
724 
725 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
726 	if (object->type != OBJT_VNODE ||
727 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
728 		return;
729 
730 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
731 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
732 
733 	vm_object_set_flag(object, OBJ_CLEANING);
734 
735 	tstart = start;
736 	if (end == 0) {
737 		tend = object->size;
738 	} else {
739 		tend = end;
740 	}
741 
742 	vm_page_lock_queues();
743 	/*
744 	 * If the caller is smart and only msync()s a range he knows is
745 	 * dirty, we may be able to avoid an object scan.  This results in
746 	 * a phenominal improvement in performance.  We cannot do this
747 	 * as a matter of course because the object may be huge - e.g.
748 	 * the size might be in the gigabytes or terrabytes.
749 	 */
750 	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
751 		vm_pindex_t tscan;
752 		int scanlimit;
753 		int scanreset;
754 
755 		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
756 		if (scanreset < 16)
757 			scanreset = 16;
758 		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
759 
760 		scanlimit = scanreset;
761 		tscan = tstart;
762 		while (tscan < tend) {
763 			curgeneration = object->generation;
764 			p = vm_page_lookup(object, tscan);
765 			if (p == NULL || p->valid == 0) {
766 				if (--scanlimit == 0)
767 					break;
768 				++tscan;
769 				continue;
770 			}
771 			vm_page_test_dirty(p);
772 			if ((p->dirty & p->valid) == 0) {
773 				if (--scanlimit == 0)
774 					break;
775 				++tscan;
776 				continue;
777 			}
778 			/*
779 			 * If we have been asked to skip nosync pages and
780 			 * this is a nosync page, we can't continue.
781 			 */
782 			if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
783 				if (--scanlimit == 0)
784 					break;
785 				++tscan;
786 				continue;
787 			}
788 			scanlimit = scanreset;
789 
790 			/*
791 			 * This returns 0 if it was unable to busy the first
792 			 * page (i.e. had to sleep).
793 			 */
794 			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
795 		}
796 
797 		/*
798 		 * If everything was dirty and we flushed it successfully,
799 		 * and the requested range is not the entire object, we
800 		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
801 		 * return immediately.
802 		 */
803 		if (tscan >= tend && (tstart || tend < object->size)) {
804 			vm_page_unlock_queues();
805 			vm_object_clear_flag(object, OBJ_CLEANING);
806 			return;
807 		}
808 		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
809 	}
810 
811 	/*
812 	 * Generally set CLEANCHK interlock and make the page read-only so
813 	 * we can then clear the object flags.
814 	 *
815 	 * However, if this is a nosync mmap then the object is likely to
816 	 * stay dirty so do not mess with the page and do not clear the
817 	 * object flags.
818 	 */
819 	clearobjflags = 1;
820 	TAILQ_FOREACH(p, &object->memq, listq) {
821 		p->oflags |= VPO_CLEANCHK;
822 		if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC))
823 			clearobjflags = 0;
824 		else
825 			pmap_remove_write(p);
826 	}
827 
828 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
829 		struct vnode *vp;
830 
831 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
832 		if (object->type == OBJT_VNODE &&
833 		    (vp = (struct vnode *)object->handle) != NULL) {
834 			VI_LOCK(vp);
835 			if (vp->v_iflag & VI_OBJDIRTY)
836 				vp->v_iflag &= ~VI_OBJDIRTY;
837 			VI_UNLOCK(vp);
838 		}
839 	}
840 
841 rescan:
842 	curgeneration = object->generation;
843 
844 	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
845 		int n;
846 
847 		np = TAILQ_NEXT(p, listq);
848 
849 again:
850 		pi = p->pindex;
851 		if ((p->oflags & VPO_CLEANCHK) == 0 ||
852 			(pi < tstart) || (pi >= tend) ||
853 		    p->valid == 0) {
854 			p->oflags &= ~VPO_CLEANCHK;
855 			continue;
856 		}
857 
858 		vm_page_test_dirty(p);
859 		if ((p->dirty & p->valid) == 0) {
860 			p->oflags &= ~VPO_CLEANCHK;
861 			continue;
862 		}
863 
864 		/*
865 		 * If we have been asked to skip nosync pages and this is a
866 		 * nosync page, skip it.  Note that the object flags were
867 		 * not cleared in this case so we do not have to set them.
868 		 */
869 		if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
870 			p->oflags &= ~VPO_CLEANCHK;
871 			continue;
872 		}
873 
874 		n = vm_object_page_collect_flush(object, p,
875 			curgeneration, pagerflags);
876 		if (n == 0)
877 			goto rescan;
878 
879 		if (object->generation != curgeneration)
880 			goto rescan;
881 
882 		/*
883 		 * Try to optimize the next page.  If we can't we pick up
884 		 * our (random) scan where we left off.
885 		 */
886 		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
887 			if ((p = vm_page_lookup(object, pi + n)) != NULL)
888 				goto again;
889 		}
890 	}
891 	vm_page_unlock_queues();
892 #if 0
893 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
894 #endif
895 
896 	vm_object_clear_flag(object, OBJ_CLEANING);
897 	return;
898 }
899 
900 static int
901 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
902 {
903 	int runlen;
904 	int maxf;
905 	int chkb;
906 	int maxb;
907 	int i;
908 	vm_pindex_t pi;
909 	vm_page_t maf[vm_pageout_page_count];
910 	vm_page_t mab[vm_pageout_page_count];
911 	vm_page_t ma[vm_pageout_page_count];
912 
913 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
914 	pi = p->pindex;
915 	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
916 		vm_page_lock_queues();
917 		if (object->generation != curgeneration) {
918 			return(0);
919 		}
920 	}
921 	maxf = 0;
922 	for(i = 1; i < vm_pageout_page_count; i++) {
923 		vm_page_t tp;
924 
925 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
926 			if ((tp->oflags & VPO_BUSY) ||
927 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
928 				 (tp->oflags & VPO_CLEANCHK) == 0) ||
929 				(tp->busy != 0))
930 				break;
931 			vm_page_test_dirty(tp);
932 			if ((tp->dirty & tp->valid) == 0) {
933 				tp->oflags &= ~VPO_CLEANCHK;
934 				break;
935 			}
936 			maf[ i - 1 ] = tp;
937 			maxf++;
938 			continue;
939 		}
940 		break;
941 	}
942 
943 	maxb = 0;
944 	chkb = vm_pageout_page_count -  maxf;
945 	if (chkb) {
946 		for(i = 1; i < chkb;i++) {
947 			vm_page_t tp;
948 
949 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
950 				if ((tp->oflags & VPO_BUSY) ||
951 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
952 					 (tp->oflags & VPO_CLEANCHK) == 0) ||
953 					(tp->busy != 0))
954 					break;
955 				vm_page_test_dirty(tp);
956 				if ((tp->dirty & tp->valid) == 0) {
957 					tp->oflags &= ~VPO_CLEANCHK;
958 					break;
959 				}
960 				mab[ i - 1 ] = tp;
961 				maxb++;
962 				continue;
963 			}
964 			break;
965 		}
966 	}
967 
968 	for(i = 0; i < maxb; i++) {
969 		int index = (maxb - i) - 1;
970 		ma[index] = mab[i];
971 		ma[index]->oflags &= ~VPO_CLEANCHK;
972 	}
973 	p->oflags &= ~VPO_CLEANCHK;
974 	ma[maxb] = p;
975 	for(i = 0; i < maxf; i++) {
976 		int index = (maxb + i) + 1;
977 		ma[index] = maf[i];
978 		ma[index]->oflags &= ~VPO_CLEANCHK;
979 	}
980 	runlen = maxb + maxf + 1;
981 
982 	vm_pageout_flush(ma, runlen, pagerflags);
983 	for (i = 0; i < runlen; i++) {
984 		if (ma[i]->valid & ma[i]->dirty) {
985 			pmap_remove_write(ma[i]);
986 			ma[i]->oflags |= VPO_CLEANCHK;
987 
988 			/*
989 			 * maxf will end up being the actual number of pages
990 			 * we wrote out contiguously, non-inclusive of the
991 			 * first page.  We do not count look-behind pages.
992 			 */
993 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
994 				maxf = i - maxb - 1;
995 		}
996 	}
997 	return(maxf + 1);
998 }
999 
1000 /*
1001  * Note that there is absolutely no sense in writing out
1002  * anonymous objects, so we track down the vnode object
1003  * to write out.
1004  * We invalidate (remove) all pages from the address space
1005  * for semantic correctness.
1006  *
1007  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1008  * may start out with a NULL object.
1009  */
1010 void
1011 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1012     boolean_t syncio, boolean_t invalidate)
1013 {
1014 	vm_object_t backing_object;
1015 	struct vnode *vp;
1016 	struct mount *mp;
1017 	int flags;
1018 
1019 	if (object == NULL)
1020 		return;
1021 	VM_OBJECT_LOCK(object);
1022 	while ((backing_object = object->backing_object) != NULL) {
1023 		VM_OBJECT_LOCK(backing_object);
1024 		offset += object->backing_object_offset;
1025 		VM_OBJECT_UNLOCK(object);
1026 		object = backing_object;
1027 		if (object->size < OFF_TO_IDX(offset + size))
1028 			size = IDX_TO_OFF(object->size) - offset;
1029 	}
1030 	/*
1031 	 * Flush pages if writing is allowed, invalidate them
1032 	 * if invalidation requested.  Pages undergoing I/O
1033 	 * will be ignored by vm_object_page_remove().
1034 	 *
1035 	 * We cannot lock the vnode and then wait for paging
1036 	 * to complete without deadlocking against vm_fault.
1037 	 * Instead we simply call vm_object_page_remove() and
1038 	 * allow it to block internally on a page-by-page
1039 	 * basis when it encounters pages undergoing async
1040 	 * I/O.
1041 	 */
1042 	if (object->type == OBJT_VNODE &&
1043 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1044 		int vfslocked;
1045 		vp = object->handle;
1046 		VM_OBJECT_UNLOCK(object);
1047 		(void) vn_start_write(vp, &mp, V_WAIT);
1048 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1049 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1050 		flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1051 		flags |= invalidate ? OBJPC_INVAL : 0;
1052 		VM_OBJECT_LOCK(object);
1053 		vm_object_page_clean(object,
1054 		    OFF_TO_IDX(offset),
1055 		    OFF_TO_IDX(offset + size + PAGE_MASK),
1056 		    flags);
1057 		VM_OBJECT_UNLOCK(object);
1058 		VOP_UNLOCK(vp, 0);
1059 		VFS_UNLOCK_GIANT(vfslocked);
1060 		vn_finished_write(mp);
1061 		VM_OBJECT_LOCK(object);
1062 	}
1063 	if ((object->type == OBJT_VNODE ||
1064 	     object->type == OBJT_DEVICE) && invalidate) {
1065 		boolean_t purge;
1066 		purge = old_msync || (object->type == OBJT_DEVICE);
1067 		vm_object_page_remove(object,
1068 		    OFF_TO_IDX(offset),
1069 		    OFF_TO_IDX(offset + size + PAGE_MASK),
1070 		    purge ? FALSE : TRUE);
1071 	}
1072 	VM_OBJECT_UNLOCK(object);
1073 }
1074 
1075 /*
1076  *	vm_object_madvise:
1077  *
1078  *	Implements the madvise function at the object/page level.
1079  *
1080  *	MADV_WILLNEED	(any object)
1081  *
1082  *	    Activate the specified pages if they are resident.
1083  *
1084  *	MADV_DONTNEED	(any object)
1085  *
1086  *	    Deactivate the specified pages if they are resident.
1087  *
1088  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1089  *			 OBJ_ONEMAPPING only)
1090  *
1091  *	    Deactivate and clean the specified pages if they are
1092  *	    resident.  This permits the process to reuse the pages
1093  *	    without faulting or the kernel to reclaim the pages
1094  *	    without I/O.
1095  */
1096 void
1097 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1098 {
1099 	vm_pindex_t end, tpindex;
1100 	vm_object_t backing_object, tobject;
1101 	vm_page_t m;
1102 
1103 	if (object == NULL)
1104 		return;
1105 	VM_OBJECT_LOCK(object);
1106 	end = pindex + count;
1107 	/*
1108 	 * Locate and adjust resident pages
1109 	 */
1110 	for (; pindex < end; pindex += 1) {
1111 relookup:
1112 		tobject = object;
1113 		tpindex = pindex;
1114 shadowlookup:
1115 		/*
1116 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1117 		 * and those pages must be OBJ_ONEMAPPING.
1118 		 */
1119 		if (advise == MADV_FREE) {
1120 			if ((tobject->type != OBJT_DEFAULT &&
1121 			     tobject->type != OBJT_SWAP) ||
1122 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1123 				goto unlock_tobject;
1124 			}
1125 		}
1126 		m = vm_page_lookup(tobject, tpindex);
1127 		if (m == NULL && advise == MADV_WILLNEED) {
1128 			/*
1129 			 * If the page is cached, reactivate it.
1130 			 */
1131 			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1132 			    VM_ALLOC_NOBUSY);
1133 		}
1134 		if (m == NULL) {
1135 			/*
1136 			 * There may be swap even if there is no backing page
1137 			 */
1138 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1139 				swap_pager_freespace(tobject, tpindex, 1);
1140 			/*
1141 			 * next object
1142 			 */
1143 			backing_object = tobject->backing_object;
1144 			if (backing_object == NULL)
1145 				goto unlock_tobject;
1146 			VM_OBJECT_LOCK(backing_object);
1147 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1148 			if (tobject != object)
1149 				VM_OBJECT_UNLOCK(tobject);
1150 			tobject = backing_object;
1151 			goto shadowlookup;
1152 		}
1153 		/*
1154 		 * If the page is busy or not in a normal active state,
1155 		 * we skip it.  If the page is not managed there are no
1156 		 * page queues to mess with.  Things can break if we mess
1157 		 * with pages in any of the below states.
1158 		 */
1159 		vm_page_lock_queues();
1160 		if (m->hold_count ||
1161 		    m->wire_count ||
1162 		    (m->flags & PG_UNMANAGED) ||
1163 		    m->valid != VM_PAGE_BITS_ALL) {
1164 			vm_page_unlock_queues();
1165 			goto unlock_tobject;
1166 		}
1167 		if ((m->oflags & VPO_BUSY) || m->busy) {
1168 			vm_page_flag_set(m, PG_REFERENCED);
1169 			vm_page_unlock_queues();
1170 			if (object != tobject)
1171 				VM_OBJECT_UNLOCK(object);
1172 			m->oflags |= VPO_WANTED;
1173 			msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 0);
1174 			VM_OBJECT_LOCK(object);
1175   			goto relookup;
1176 		}
1177 		if (advise == MADV_WILLNEED) {
1178 			vm_page_activate(m);
1179 		} else if (advise == MADV_DONTNEED) {
1180 			vm_page_dontneed(m);
1181 		} else if (advise == MADV_FREE) {
1182 			/*
1183 			 * Mark the page clean.  This will allow the page
1184 			 * to be freed up by the system.  However, such pages
1185 			 * are often reused quickly by malloc()/free()
1186 			 * so we do not do anything that would cause
1187 			 * a page fault if we can help it.
1188 			 *
1189 			 * Specifically, we do not try to actually free
1190 			 * the page now nor do we try to put it in the
1191 			 * cache (which would cause a page fault on reuse).
1192 			 *
1193 			 * But we do make the page is freeable as we
1194 			 * can without actually taking the step of unmapping
1195 			 * it.
1196 			 */
1197 			pmap_clear_modify(m);
1198 			m->dirty = 0;
1199 			m->act_count = 0;
1200 			vm_page_dontneed(m);
1201 		}
1202 		vm_page_unlock_queues();
1203 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1204 			swap_pager_freespace(tobject, tpindex, 1);
1205 unlock_tobject:
1206 		if (tobject != object)
1207 			VM_OBJECT_UNLOCK(tobject);
1208 	}
1209 	VM_OBJECT_UNLOCK(object);
1210 }
1211 
1212 /*
1213  *	vm_object_shadow:
1214  *
1215  *	Create a new object which is backed by the
1216  *	specified existing object range.  The source
1217  *	object reference is deallocated.
1218  *
1219  *	The new object and offset into that object
1220  *	are returned in the source parameters.
1221  */
1222 void
1223 vm_object_shadow(
1224 	vm_object_t *object,	/* IN/OUT */
1225 	vm_ooffset_t *offset,	/* IN/OUT */
1226 	vm_size_t length)
1227 {
1228 	vm_object_t source;
1229 	vm_object_t result;
1230 
1231 	source = *object;
1232 
1233 	/*
1234 	 * Don't create the new object if the old object isn't shared.
1235 	 */
1236 	if (source != NULL) {
1237 		VM_OBJECT_LOCK(source);
1238 		if (source->ref_count == 1 &&
1239 		    source->handle == NULL &&
1240 		    (source->type == OBJT_DEFAULT ||
1241 		     source->type == OBJT_SWAP)) {
1242 			VM_OBJECT_UNLOCK(source);
1243 			return;
1244 		}
1245 		VM_OBJECT_UNLOCK(source);
1246 	}
1247 
1248 	/*
1249 	 * Allocate a new object with the given length.
1250 	 */
1251 	result = vm_object_allocate(OBJT_DEFAULT, length);
1252 
1253 	/*
1254 	 * The new object shadows the source object, adding a reference to it.
1255 	 * Our caller changes his reference to point to the new object,
1256 	 * removing a reference to the source object.  Net result: no change
1257 	 * of reference count.
1258 	 *
1259 	 * Try to optimize the result object's page color when shadowing
1260 	 * in order to maintain page coloring consistency in the combined
1261 	 * shadowed object.
1262 	 */
1263 	result->backing_object = source;
1264 	/*
1265 	 * Store the offset into the source object, and fix up the offset into
1266 	 * the new object.
1267 	 */
1268 	result->backing_object_offset = *offset;
1269 	if (source != NULL) {
1270 		VM_OBJECT_LOCK(source);
1271 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1272 		source->shadow_count++;
1273 		source->generation++;
1274 #if VM_NRESERVLEVEL > 0
1275 		result->flags |= source->flags & (OBJ_NEEDGIANT | OBJ_COLORED);
1276 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1277 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1278 #else
1279 		result->flags |= source->flags & OBJ_NEEDGIANT;
1280 #endif
1281 		VM_OBJECT_UNLOCK(source);
1282 	}
1283 
1284 
1285 	/*
1286 	 * Return the new things
1287 	 */
1288 	*offset = 0;
1289 	*object = result;
1290 }
1291 
1292 /*
1293  *	vm_object_split:
1294  *
1295  * Split the pages in a map entry into a new object.  This affords
1296  * easier removal of unused pages, and keeps object inheritance from
1297  * being a negative impact on memory usage.
1298  */
1299 void
1300 vm_object_split(vm_map_entry_t entry)
1301 {
1302 	vm_page_t m, m_next;
1303 	vm_object_t orig_object, new_object, source;
1304 	vm_pindex_t idx, offidxstart;
1305 	vm_size_t size;
1306 
1307 	orig_object = entry->object.vm_object;
1308 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1309 		return;
1310 	if (orig_object->ref_count <= 1)
1311 		return;
1312 	VM_OBJECT_UNLOCK(orig_object);
1313 
1314 	offidxstart = OFF_TO_IDX(entry->offset);
1315 	size = atop(entry->end - entry->start);
1316 
1317 	/*
1318 	 * If swap_pager_copy() is later called, it will convert new_object
1319 	 * into a swap object.
1320 	 */
1321 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1322 
1323 	/*
1324 	 * At this point, the new object is still private, so the order in
1325 	 * which the original and new objects are locked does not matter.
1326 	 */
1327 	VM_OBJECT_LOCK(new_object);
1328 	VM_OBJECT_LOCK(orig_object);
1329 	source = orig_object->backing_object;
1330 	if (source != NULL) {
1331 		VM_OBJECT_LOCK(source);
1332 		if ((source->flags & OBJ_DEAD) != 0) {
1333 			VM_OBJECT_UNLOCK(source);
1334 			VM_OBJECT_UNLOCK(orig_object);
1335 			VM_OBJECT_UNLOCK(new_object);
1336 			vm_object_deallocate(new_object);
1337 			VM_OBJECT_LOCK(orig_object);
1338 			return;
1339 		}
1340 		LIST_INSERT_HEAD(&source->shadow_head,
1341 				  new_object, shadow_list);
1342 		source->shadow_count++;
1343 		source->generation++;
1344 		vm_object_reference_locked(source);	/* for new_object */
1345 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1346 		VM_OBJECT_UNLOCK(source);
1347 		new_object->backing_object_offset =
1348 			orig_object->backing_object_offset + entry->offset;
1349 		new_object->backing_object = source;
1350 	}
1351 	new_object->flags |= orig_object->flags & OBJ_NEEDGIANT;
1352 retry:
1353 	if ((m = TAILQ_FIRST(&orig_object->memq)) != NULL) {
1354 		if (m->pindex < offidxstart) {
1355 			m = vm_page_splay(offidxstart, orig_object->root);
1356 			if ((orig_object->root = m)->pindex < offidxstart)
1357 				m = TAILQ_NEXT(m, listq);
1358 		}
1359 	}
1360 	vm_page_lock_queues();
1361 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1362 	    m = m_next) {
1363 		m_next = TAILQ_NEXT(m, listq);
1364 
1365 		/*
1366 		 * We must wait for pending I/O to complete before we can
1367 		 * rename the page.
1368 		 *
1369 		 * We do not have to VM_PROT_NONE the page as mappings should
1370 		 * not be changed by this operation.
1371 		 */
1372 		if ((m->oflags & VPO_BUSY) || m->busy) {
1373 			vm_page_flag_set(m, PG_REFERENCED);
1374 			vm_page_unlock_queues();
1375 			VM_OBJECT_UNLOCK(new_object);
1376 			m->oflags |= VPO_WANTED;
1377 			msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1378 			VM_OBJECT_LOCK(new_object);
1379 			goto retry;
1380 		}
1381 		vm_page_rename(m, new_object, idx);
1382 		/* page automatically made dirty by rename and cache handled */
1383 		vm_page_busy(m);
1384 	}
1385 	vm_page_unlock_queues();
1386 	if (orig_object->type == OBJT_SWAP) {
1387 		/*
1388 		 * swap_pager_copy() can sleep, in which case the orig_object's
1389 		 * and new_object's locks are released and reacquired.
1390 		 */
1391 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1392 
1393 		/*
1394 		 * Transfer any cached pages from orig_object to new_object.
1395 		 */
1396 		if (__predict_false(orig_object->cache != NULL))
1397 			vm_page_cache_transfer(orig_object, offidxstart,
1398 			    new_object);
1399 	}
1400 	VM_OBJECT_UNLOCK(orig_object);
1401 	TAILQ_FOREACH(m, &new_object->memq, listq)
1402 		vm_page_wakeup(m);
1403 	VM_OBJECT_UNLOCK(new_object);
1404 	entry->object.vm_object = new_object;
1405 	entry->offset = 0LL;
1406 	vm_object_deallocate(orig_object);
1407 	VM_OBJECT_LOCK(new_object);
1408 }
1409 
1410 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1411 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1412 #define	OBSC_COLLAPSE_WAIT	0x0004
1413 
1414 static int
1415 vm_object_backing_scan(vm_object_t object, int op)
1416 {
1417 	int r = 1;
1418 	vm_page_t p;
1419 	vm_object_t backing_object;
1420 	vm_pindex_t backing_offset_index;
1421 
1422 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1423 	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1424 
1425 	backing_object = object->backing_object;
1426 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1427 
1428 	/*
1429 	 * Initial conditions
1430 	 */
1431 	if (op & OBSC_TEST_ALL_SHADOWED) {
1432 		/*
1433 		 * We do not want to have to test for the existence of cache
1434 		 * or swap pages in the backing object.  XXX but with the
1435 		 * new swapper this would be pretty easy to do.
1436 		 *
1437 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1438 		 * been ZFOD faulted yet?  If we do not test for this, the
1439 		 * shadow test may succeed! XXX
1440 		 */
1441 		if (backing_object->type != OBJT_DEFAULT) {
1442 			return (0);
1443 		}
1444 	}
1445 	if (op & OBSC_COLLAPSE_WAIT) {
1446 		vm_object_set_flag(backing_object, OBJ_DEAD);
1447 	}
1448 
1449 	/*
1450 	 * Our scan
1451 	 */
1452 	p = TAILQ_FIRST(&backing_object->memq);
1453 	while (p) {
1454 		vm_page_t next = TAILQ_NEXT(p, listq);
1455 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1456 
1457 		if (op & OBSC_TEST_ALL_SHADOWED) {
1458 			vm_page_t pp;
1459 
1460 			/*
1461 			 * Ignore pages outside the parent object's range
1462 			 * and outside the parent object's mapping of the
1463 			 * backing object.
1464 			 *
1465 			 * note that we do not busy the backing object's
1466 			 * page.
1467 			 */
1468 			if (
1469 			    p->pindex < backing_offset_index ||
1470 			    new_pindex >= object->size
1471 			) {
1472 				p = next;
1473 				continue;
1474 			}
1475 
1476 			/*
1477 			 * See if the parent has the page or if the parent's
1478 			 * object pager has the page.  If the parent has the
1479 			 * page but the page is not valid, the parent's
1480 			 * object pager must have the page.
1481 			 *
1482 			 * If this fails, the parent does not completely shadow
1483 			 * the object and we might as well give up now.
1484 			 */
1485 
1486 			pp = vm_page_lookup(object, new_pindex);
1487 			if (
1488 			    (pp == NULL || pp->valid == 0) &&
1489 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1490 			) {
1491 				r = 0;
1492 				break;
1493 			}
1494 		}
1495 
1496 		/*
1497 		 * Check for busy page
1498 		 */
1499 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1500 			vm_page_t pp;
1501 
1502 			if (op & OBSC_COLLAPSE_NOWAIT) {
1503 				if ((p->oflags & VPO_BUSY) ||
1504 				    !p->valid ||
1505 				    p->busy) {
1506 					p = next;
1507 					continue;
1508 				}
1509 			} else if (op & OBSC_COLLAPSE_WAIT) {
1510 				if ((p->oflags & VPO_BUSY) || p->busy) {
1511 					vm_page_lock_queues();
1512 					vm_page_flag_set(p, PG_REFERENCED);
1513 					vm_page_unlock_queues();
1514 					VM_OBJECT_UNLOCK(object);
1515 					p->oflags |= VPO_WANTED;
1516 					msleep(p, VM_OBJECT_MTX(backing_object),
1517 					    PDROP | PVM, "vmocol", 0);
1518 					VM_OBJECT_LOCK(object);
1519 					VM_OBJECT_LOCK(backing_object);
1520 					/*
1521 					 * If we slept, anything could have
1522 					 * happened.  Since the object is
1523 					 * marked dead, the backing offset
1524 					 * should not have changed so we
1525 					 * just restart our scan.
1526 					 */
1527 					p = TAILQ_FIRST(&backing_object->memq);
1528 					continue;
1529 				}
1530 			}
1531 
1532 			KASSERT(
1533 			    p->object == backing_object,
1534 			    ("vm_object_backing_scan: object mismatch")
1535 			);
1536 
1537 			/*
1538 			 * Destroy any associated swap
1539 			 */
1540 			if (backing_object->type == OBJT_SWAP) {
1541 				swap_pager_freespace(
1542 				    backing_object,
1543 				    p->pindex,
1544 				    1
1545 				);
1546 			}
1547 
1548 			if (
1549 			    p->pindex < backing_offset_index ||
1550 			    new_pindex >= object->size
1551 			) {
1552 				/*
1553 				 * Page is out of the parent object's range, we
1554 				 * can simply destroy it.
1555 				 */
1556 				vm_page_lock_queues();
1557 				KASSERT(!pmap_page_is_mapped(p),
1558 				    ("freeing mapped page %p", p));
1559 				if (p->wire_count == 0)
1560 					vm_page_free(p);
1561 				else
1562 					vm_page_remove(p);
1563 				vm_page_unlock_queues();
1564 				p = next;
1565 				continue;
1566 			}
1567 
1568 			pp = vm_page_lookup(object, new_pindex);
1569 			if (
1570 			    pp != NULL ||
1571 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1572 			) {
1573 				/*
1574 				 * page already exists in parent OR swap exists
1575 				 * for this location in the parent.  Destroy
1576 				 * the original page from the backing object.
1577 				 *
1578 				 * Leave the parent's page alone
1579 				 */
1580 				vm_page_lock_queues();
1581 				KASSERT(!pmap_page_is_mapped(p),
1582 				    ("freeing mapped page %p", p));
1583 				if (p->wire_count == 0)
1584 					vm_page_free(p);
1585 				else
1586 					vm_page_remove(p);
1587 				vm_page_unlock_queues();
1588 				p = next;
1589 				continue;
1590 			}
1591 
1592 #if VM_NRESERVLEVEL > 0
1593 			/*
1594 			 * Rename the reservation.
1595 			 */
1596 			vm_reserv_rename(p, object, backing_object,
1597 			    backing_offset_index);
1598 #endif
1599 
1600 			/*
1601 			 * Page does not exist in parent, rename the
1602 			 * page from the backing object to the main object.
1603 			 *
1604 			 * If the page was mapped to a process, it can remain
1605 			 * mapped through the rename.
1606 			 */
1607 			vm_page_lock_queues();
1608 			vm_page_rename(p, object, new_pindex);
1609 			vm_page_unlock_queues();
1610 			/* page automatically made dirty by rename */
1611 		}
1612 		p = next;
1613 	}
1614 	return (r);
1615 }
1616 
1617 
1618 /*
1619  * this version of collapse allows the operation to occur earlier and
1620  * when paging_in_progress is true for an object...  This is not a complete
1621  * operation, but should plug 99.9% of the rest of the leaks.
1622  */
1623 static void
1624 vm_object_qcollapse(vm_object_t object)
1625 {
1626 	vm_object_t backing_object = object->backing_object;
1627 
1628 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1629 	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1630 
1631 	if (backing_object->ref_count != 1)
1632 		return;
1633 
1634 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1635 }
1636 
1637 /*
1638  *	vm_object_collapse:
1639  *
1640  *	Collapse an object with the object backing it.
1641  *	Pages in the backing object are moved into the
1642  *	parent, and the backing object is deallocated.
1643  */
1644 void
1645 vm_object_collapse(vm_object_t object)
1646 {
1647 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1648 
1649 	while (TRUE) {
1650 		vm_object_t backing_object;
1651 
1652 		/*
1653 		 * Verify that the conditions are right for collapse:
1654 		 *
1655 		 * The object exists and the backing object exists.
1656 		 */
1657 		if ((backing_object = object->backing_object) == NULL)
1658 			break;
1659 
1660 		/*
1661 		 * we check the backing object first, because it is most likely
1662 		 * not collapsable.
1663 		 */
1664 		VM_OBJECT_LOCK(backing_object);
1665 		if (backing_object->handle != NULL ||
1666 		    (backing_object->type != OBJT_DEFAULT &&
1667 		     backing_object->type != OBJT_SWAP) ||
1668 		    (backing_object->flags & OBJ_DEAD) ||
1669 		    object->handle != NULL ||
1670 		    (object->type != OBJT_DEFAULT &&
1671 		     object->type != OBJT_SWAP) ||
1672 		    (object->flags & OBJ_DEAD)) {
1673 			VM_OBJECT_UNLOCK(backing_object);
1674 			break;
1675 		}
1676 
1677 		if (
1678 		    object->paging_in_progress != 0 ||
1679 		    backing_object->paging_in_progress != 0
1680 		) {
1681 			vm_object_qcollapse(object);
1682 			VM_OBJECT_UNLOCK(backing_object);
1683 			break;
1684 		}
1685 		/*
1686 		 * We know that we can either collapse the backing object (if
1687 		 * the parent is the only reference to it) or (perhaps) have
1688 		 * the parent bypass the object if the parent happens to shadow
1689 		 * all the resident pages in the entire backing object.
1690 		 *
1691 		 * This is ignoring pager-backed pages such as swap pages.
1692 		 * vm_object_backing_scan fails the shadowing test in this
1693 		 * case.
1694 		 */
1695 		if (backing_object->ref_count == 1) {
1696 			/*
1697 			 * If there is exactly one reference to the backing
1698 			 * object, we can collapse it into the parent.
1699 			 */
1700 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1701 
1702 #if VM_NRESERVLEVEL > 0
1703 			/*
1704 			 * Break any reservations from backing_object.
1705 			 */
1706 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1707 				vm_reserv_break_all(backing_object);
1708 #endif
1709 
1710 			/*
1711 			 * Move the pager from backing_object to object.
1712 			 */
1713 			if (backing_object->type == OBJT_SWAP) {
1714 				/*
1715 				 * swap_pager_copy() can sleep, in which case
1716 				 * the backing_object's and object's locks are
1717 				 * released and reacquired.
1718 				 */
1719 				swap_pager_copy(
1720 				    backing_object,
1721 				    object,
1722 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1723 
1724 				/*
1725 				 * Free any cached pages from backing_object.
1726 				 */
1727 				if (__predict_false(backing_object->cache != NULL))
1728 					vm_page_cache_free(backing_object, 0, 0);
1729 			}
1730 			/*
1731 			 * Object now shadows whatever backing_object did.
1732 			 * Note that the reference to
1733 			 * backing_object->backing_object moves from within
1734 			 * backing_object to within object.
1735 			 */
1736 			LIST_REMOVE(object, shadow_list);
1737 			backing_object->shadow_count--;
1738 			backing_object->generation++;
1739 			if (backing_object->backing_object) {
1740 				VM_OBJECT_LOCK(backing_object->backing_object);
1741 				LIST_REMOVE(backing_object, shadow_list);
1742 				LIST_INSERT_HEAD(
1743 				    &backing_object->backing_object->shadow_head,
1744 				    object, shadow_list);
1745 				/*
1746 				 * The shadow_count has not changed.
1747 				 */
1748 				backing_object->backing_object->generation++;
1749 				VM_OBJECT_UNLOCK(backing_object->backing_object);
1750 			}
1751 			object->backing_object = backing_object->backing_object;
1752 			object->backing_object_offset +=
1753 			    backing_object->backing_object_offset;
1754 
1755 			/*
1756 			 * Discard backing_object.
1757 			 *
1758 			 * Since the backing object has no pages, no pager left,
1759 			 * and no object references within it, all that is
1760 			 * necessary is to dispose of it.
1761 			 */
1762 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1763 			VM_OBJECT_UNLOCK(backing_object);
1764 
1765 			mtx_lock(&vm_object_list_mtx);
1766 			TAILQ_REMOVE(
1767 			    &vm_object_list,
1768 			    backing_object,
1769 			    object_list
1770 			);
1771 			mtx_unlock(&vm_object_list_mtx);
1772 
1773 			uma_zfree(obj_zone, backing_object);
1774 
1775 			object_collapses++;
1776 		} else {
1777 			vm_object_t new_backing_object;
1778 
1779 			/*
1780 			 * If we do not entirely shadow the backing object,
1781 			 * there is nothing we can do so we give up.
1782 			 */
1783 			if (object->resident_page_count != object->size &&
1784 			    vm_object_backing_scan(object,
1785 			    OBSC_TEST_ALL_SHADOWED) == 0) {
1786 				VM_OBJECT_UNLOCK(backing_object);
1787 				break;
1788 			}
1789 
1790 			/*
1791 			 * Make the parent shadow the next object in the
1792 			 * chain.  Deallocating backing_object will not remove
1793 			 * it, since its reference count is at least 2.
1794 			 */
1795 			LIST_REMOVE(object, shadow_list);
1796 			backing_object->shadow_count--;
1797 			backing_object->generation++;
1798 
1799 			new_backing_object = backing_object->backing_object;
1800 			if ((object->backing_object = new_backing_object) != NULL) {
1801 				VM_OBJECT_LOCK(new_backing_object);
1802 				LIST_INSERT_HEAD(
1803 				    &new_backing_object->shadow_head,
1804 				    object,
1805 				    shadow_list
1806 				);
1807 				new_backing_object->shadow_count++;
1808 				new_backing_object->generation++;
1809 				vm_object_reference_locked(new_backing_object);
1810 				VM_OBJECT_UNLOCK(new_backing_object);
1811 				object->backing_object_offset +=
1812 					backing_object->backing_object_offset;
1813 			}
1814 
1815 			/*
1816 			 * Drop the reference count on backing_object. Since
1817 			 * its ref_count was at least 2, it will not vanish.
1818 			 */
1819 			backing_object->ref_count--;
1820 			VM_OBJECT_UNLOCK(backing_object);
1821 			object_bypasses++;
1822 		}
1823 
1824 		/*
1825 		 * Try again with this object's new backing object.
1826 		 */
1827 	}
1828 }
1829 
1830 /*
1831  *	vm_object_page_remove:
1832  *
1833  *	Removes all physical pages in the given range from the
1834  *	object's list of pages.  If the range's end is zero, all
1835  *	physical pages from the range's start to the end of the object
1836  *	are deleted.
1837  *
1838  *	The object must be locked.
1839  */
1840 void
1841 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1842     boolean_t clean_only)
1843 {
1844 	vm_page_t p, next;
1845 	int wirings;
1846 
1847 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1848 	if (object->resident_page_count == 0)
1849 		goto skipmemq;
1850 
1851 	/*
1852 	 * Since physically-backed objects do not use managed pages, we can't
1853 	 * remove pages from the object (we must instead remove the page
1854 	 * references, and then destroy the object).
1855 	 */
1856 	KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1857 	    object == kmem_object,
1858 	    ("attempt to remove pages from a physical object"));
1859 
1860 	vm_object_pip_add(object, 1);
1861 again:
1862 	vm_page_lock_queues();
1863 	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1864 		if (p->pindex < start) {
1865 			p = vm_page_splay(start, object->root);
1866 			if ((object->root = p)->pindex < start)
1867 				p = TAILQ_NEXT(p, listq);
1868 		}
1869 	}
1870 	/*
1871 	 * Assert: the variable p is either (1) the page with the
1872 	 * least pindex greater than or equal to the parameter pindex
1873 	 * or (2) NULL.
1874 	 */
1875 	for (;
1876 	     p != NULL && (p->pindex < end || end == 0);
1877 	     p = next) {
1878 		next = TAILQ_NEXT(p, listq);
1879 
1880 		/*
1881 		 * If the page is wired for any reason besides the
1882 		 * existence of managed, wired mappings, then it cannot
1883 		 * be freed.
1884 		 */
1885 		if ((wirings = p->wire_count) != 0 &&
1886 		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1887 			pmap_remove_all(p);
1888 			/* Account for removal of managed, wired mappings. */
1889 			p->wire_count -= wirings;
1890 			if (!clean_only)
1891 				p->valid = 0;
1892 			continue;
1893 		}
1894 		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1895 			goto again;
1896 		if (clean_only && p->valid) {
1897 			pmap_remove_write(p);
1898 			if (p->valid & p->dirty)
1899 				continue;
1900 		}
1901 		pmap_remove_all(p);
1902 		/* Account for removal of managed, wired mappings. */
1903 		if (wirings != 0)
1904 			p->wire_count -= wirings;
1905 		vm_page_free(p);
1906 	}
1907 	vm_page_unlock_queues();
1908 	vm_object_pip_wakeup(object);
1909 skipmemq:
1910 	if (__predict_false(object->cache != NULL))
1911 		vm_page_cache_free(object, start, end);
1912 }
1913 
1914 /*
1915  *	Routine:	vm_object_coalesce
1916  *	Function:	Coalesces two objects backing up adjoining
1917  *			regions of memory into a single object.
1918  *
1919  *	returns TRUE if objects were combined.
1920  *
1921  *	NOTE:	Only works at the moment if the second object is NULL -
1922  *		if it's not, which object do we lock first?
1923  *
1924  *	Parameters:
1925  *		prev_object	First object to coalesce
1926  *		prev_offset	Offset into prev_object
1927  *		prev_size	Size of reference to prev_object
1928  *		next_size	Size of reference to the second object
1929  *
1930  *	Conditions:
1931  *	The object must *not* be locked.
1932  */
1933 boolean_t
1934 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1935 	vm_size_t prev_size, vm_size_t next_size)
1936 {
1937 	vm_pindex_t next_pindex;
1938 
1939 	if (prev_object == NULL)
1940 		return (TRUE);
1941 	VM_OBJECT_LOCK(prev_object);
1942 	if (prev_object->type != OBJT_DEFAULT &&
1943 	    prev_object->type != OBJT_SWAP) {
1944 		VM_OBJECT_UNLOCK(prev_object);
1945 		return (FALSE);
1946 	}
1947 
1948 	/*
1949 	 * Try to collapse the object first
1950 	 */
1951 	vm_object_collapse(prev_object);
1952 
1953 	/*
1954 	 * Can't coalesce if: . more than one reference . paged out . shadows
1955 	 * another object . has a copy elsewhere (any of which mean that the
1956 	 * pages not mapped to prev_entry may be in use anyway)
1957 	 */
1958 	if (prev_object->backing_object != NULL) {
1959 		VM_OBJECT_UNLOCK(prev_object);
1960 		return (FALSE);
1961 	}
1962 
1963 	prev_size >>= PAGE_SHIFT;
1964 	next_size >>= PAGE_SHIFT;
1965 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1966 
1967 	if ((prev_object->ref_count > 1) &&
1968 	    (prev_object->size != next_pindex)) {
1969 		VM_OBJECT_UNLOCK(prev_object);
1970 		return (FALSE);
1971 	}
1972 
1973 	/*
1974 	 * Remove any pages that may still be in the object from a previous
1975 	 * deallocation.
1976 	 */
1977 	if (next_pindex < prev_object->size) {
1978 		vm_object_page_remove(prev_object,
1979 				      next_pindex,
1980 				      next_pindex + next_size, FALSE);
1981 		if (prev_object->type == OBJT_SWAP)
1982 			swap_pager_freespace(prev_object,
1983 					     next_pindex, next_size);
1984 	}
1985 
1986 	/*
1987 	 * Extend the object if necessary.
1988 	 */
1989 	if (next_pindex + next_size > prev_object->size)
1990 		prev_object->size = next_pindex + next_size;
1991 
1992 	VM_OBJECT_UNLOCK(prev_object);
1993 	return (TRUE);
1994 }
1995 
1996 void
1997 vm_object_set_writeable_dirty(vm_object_t object)
1998 {
1999 	struct vnode *vp;
2000 
2001 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2002 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2003 		return;
2004 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2005 	if (object->type == OBJT_VNODE &&
2006 	    (vp = (struct vnode *)object->handle) != NULL) {
2007 		VI_LOCK(vp);
2008 		vp->v_iflag |= VI_OBJDIRTY;
2009 		VI_UNLOCK(vp);
2010 	}
2011 }
2012 
2013 #include "opt_ddb.h"
2014 #ifdef DDB
2015 #include <sys/kernel.h>
2016 
2017 #include <sys/cons.h>
2018 
2019 #include <ddb/ddb.h>
2020 
2021 static int
2022 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2023 {
2024 	vm_map_t tmpm;
2025 	vm_map_entry_t tmpe;
2026 	vm_object_t obj;
2027 	int entcount;
2028 
2029 	if (map == 0)
2030 		return 0;
2031 
2032 	if (entry == 0) {
2033 		tmpe = map->header.next;
2034 		entcount = map->nentries;
2035 		while (entcount-- && (tmpe != &map->header)) {
2036 			if (_vm_object_in_map(map, object, tmpe)) {
2037 				return 1;
2038 			}
2039 			tmpe = tmpe->next;
2040 		}
2041 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2042 		tmpm = entry->object.sub_map;
2043 		tmpe = tmpm->header.next;
2044 		entcount = tmpm->nentries;
2045 		while (entcount-- && tmpe != &tmpm->header) {
2046 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2047 				return 1;
2048 			}
2049 			tmpe = tmpe->next;
2050 		}
2051 	} else if ((obj = entry->object.vm_object) != NULL) {
2052 		for (; obj; obj = obj->backing_object)
2053 			if (obj == object) {
2054 				return 1;
2055 			}
2056 	}
2057 	return 0;
2058 }
2059 
2060 static int
2061 vm_object_in_map(vm_object_t object)
2062 {
2063 	struct proc *p;
2064 
2065 	/* sx_slock(&allproc_lock); */
2066 	FOREACH_PROC_IN_SYSTEM(p) {
2067 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2068 			continue;
2069 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2070 			/* sx_sunlock(&allproc_lock); */
2071 			return 1;
2072 		}
2073 	}
2074 	/* sx_sunlock(&allproc_lock); */
2075 	if (_vm_object_in_map(kernel_map, object, 0))
2076 		return 1;
2077 	if (_vm_object_in_map(kmem_map, object, 0))
2078 		return 1;
2079 	if (_vm_object_in_map(pager_map, object, 0))
2080 		return 1;
2081 	if (_vm_object_in_map(buffer_map, object, 0))
2082 		return 1;
2083 	return 0;
2084 }
2085 
2086 DB_SHOW_COMMAND(vmochk, vm_object_check)
2087 {
2088 	vm_object_t object;
2089 
2090 	/*
2091 	 * make sure that internal objs are in a map somewhere
2092 	 * and none have zero ref counts.
2093 	 */
2094 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2095 		if (object->handle == NULL &&
2096 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2097 			if (object->ref_count == 0) {
2098 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2099 					(long)object->size);
2100 			}
2101 			if (!vm_object_in_map(object)) {
2102 				db_printf(
2103 			"vmochk: internal obj is not in a map: "
2104 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2105 				    object->ref_count, (u_long)object->size,
2106 				    (u_long)object->size,
2107 				    (void *)object->backing_object);
2108 			}
2109 		}
2110 	}
2111 }
2112 
2113 /*
2114  *	vm_object_print:	[ debug ]
2115  */
2116 DB_SHOW_COMMAND(object, vm_object_print_static)
2117 {
2118 	/* XXX convert args. */
2119 	vm_object_t object = (vm_object_t)addr;
2120 	boolean_t full = have_addr;
2121 
2122 	vm_page_t p;
2123 
2124 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2125 #define	count	was_count
2126 
2127 	int count;
2128 
2129 	if (object == NULL)
2130 		return;
2131 
2132 	db_iprintf(
2133 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2134 	    object, (int)object->type, (uintmax_t)object->size,
2135 	    object->resident_page_count, object->ref_count, object->flags);
2136 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2137 	    object->shadow_count,
2138 	    object->backing_object ? object->backing_object->ref_count : 0,
2139 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2140 
2141 	if (!full)
2142 		return;
2143 
2144 	db_indent += 2;
2145 	count = 0;
2146 	TAILQ_FOREACH(p, &object->memq, listq) {
2147 		if (count == 0)
2148 			db_iprintf("memory:=");
2149 		else if (count == 6) {
2150 			db_printf("\n");
2151 			db_iprintf(" ...");
2152 			count = 0;
2153 		} else
2154 			db_printf(",");
2155 		count++;
2156 
2157 		db_printf("(off=0x%jx,page=0x%jx)",
2158 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2159 	}
2160 	if (count != 0)
2161 		db_printf("\n");
2162 	db_indent -= 2;
2163 }
2164 
2165 /* XXX. */
2166 #undef count
2167 
2168 /* XXX need this non-static entry for calling from vm_map_print. */
2169 void
2170 vm_object_print(
2171         /* db_expr_t */ long addr,
2172 	boolean_t have_addr,
2173 	/* db_expr_t */ long count,
2174 	char *modif)
2175 {
2176 	vm_object_print_static(addr, have_addr, count, modif);
2177 }
2178 
2179 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2180 {
2181 	vm_object_t object;
2182 	int nl = 0;
2183 	int c;
2184 
2185 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2186 		vm_pindex_t idx, fidx;
2187 		vm_pindex_t osize;
2188 		vm_paddr_t pa = -1;
2189 		int rcount;
2190 		vm_page_t m;
2191 
2192 		db_printf("new object: %p\n", (void *)object);
2193 		if (nl > 18) {
2194 			c = cngetc();
2195 			if (c != ' ')
2196 				return;
2197 			nl = 0;
2198 		}
2199 		nl++;
2200 		rcount = 0;
2201 		fidx = 0;
2202 		osize = object->size;
2203 		if (osize > 128)
2204 			osize = 128;
2205 		for (idx = 0; idx < osize; idx++) {
2206 			m = vm_page_lookup(object, idx);
2207 			if (m == NULL) {
2208 				if (rcount) {
2209 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2210 						(long)fidx, rcount, (long)pa);
2211 					if (nl > 18) {
2212 						c = cngetc();
2213 						if (c != ' ')
2214 							return;
2215 						nl = 0;
2216 					}
2217 					nl++;
2218 					rcount = 0;
2219 				}
2220 				continue;
2221 			}
2222 
2223 
2224 			if (rcount &&
2225 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2226 				++rcount;
2227 				continue;
2228 			}
2229 			if (rcount) {
2230 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2231 					(long)fidx, rcount, (long)pa);
2232 				if (nl > 18) {
2233 					c = cngetc();
2234 					if (c != ' ')
2235 						return;
2236 					nl = 0;
2237 				}
2238 				nl++;
2239 			}
2240 			fidx = idx;
2241 			pa = VM_PAGE_TO_PHYS(m);
2242 			rcount = 1;
2243 		}
2244 		if (rcount) {
2245 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2246 				(long)fidx, rcount, (long)pa);
2247 			if (nl > 18) {
2248 				c = cngetc();
2249 				if (c != ' ')
2250 					return;
2251 				nl = 0;
2252 			}
2253 			nl++;
2254 		}
2255 	}
2256 }
2257 #endif /* DDB */
2258