xref: /freebsd/sys/vm/vm_object.c (revision 1a2cdef4962b47be5057809ce730a733b7f3c27c)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Virtual memory object module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/proc.h>		/* for curproc, pageproc */
74 #include <sys/vnode.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/mutex.h>
79 #include <sys/sx.h>
80 
81 #include <vm/vm.h>
82 #include <vm/vm_param.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_zone.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 
94 static void	vm_object_qcollapse __P((vm_object_t object));
95 
96 /*
97  *	Virtual memory objects maintain the actual data
98  *	associated with allocated virtual memory.  A given
99  *	page of memory exists within exactly one object.
100  *
101  *	An object is only deallocated when all "references"
102  *	are given up.  Only one "reference" to a given
103  *	region of an object should be writeable.
104  *
105  *	Associated with each object is a list of all resident
106  *	memory pages belonging to that object; this list is
107  *	maintained by the "vm_page" module, and locked by the object's
108  *	lock.
109  *
110  *	Each object also records a "pager" routine which is
111  *	used to retrieve (and store) pages to the proper backing
112  *	storage.  In addition, objects may be backed by other
113  *	objects from which they were virtual-copied.
114  *
115  *	The only items within the object structure which are
116  *	modified after time of creation are:
117  *		reference count		locked by object's lock
118  *		pager routine		locked by object's lock
119  *
120  */
121 
122 struct object_q vm_object_list;
123 static struct mtx vm_object_list_mtx;	/* lock for object list and count */
124 static long vm_object_count;		/* count of all objects */
125 vm_object_t kernel_object;
126 vm_object_t kmem_object;
127 static struct vm_object kernel_object_store;
128 static struct vm_object kmem_object_store;
129 extern int vm_pageout_page_count;
130 
131 static long object_collapses;
132 static long object_bypasses;
133 static int next_index;
134 static vm_zone_t obj_zone;
135 static struct vm_zone obj_zone_store;
136 static int object_hash_rand;
137 #define VM_OBJECTS_INIT 256
138 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
139 
140 void
141 _vm_object_allocate(type, size, object)
142 	objtype_t type;
143 	vm_size_t size;
144 	vm_object_t object;
145 {
146 	int incr;
147 	TAILQ_INIT(&object->memq);
148 	TAILQ_INIT(&object->shadow_head);
149 
150 	object->type = type;
151 	object->size = size;
152 	object->ref_count = 1;
153 	object->flags = 0;
154 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
155 		vm_object_set_flag(object, OBJ_ONEMAPPING);
156 	object->paging_in_progress = 0;
157 	object->resident_page_count = 0;
158 	object->shadow_count = 0;
159 	object->pg_color = next_index;
160 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
161 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
162 	else
163 		incr = size;
164 	next_index = (next_index + incr) & PQ_L2_MASK;
165 	object->handle = NULL;
166 	object->backing_object = NULL;
167 	object->backing_object_offset = (vm_ooffset_t) 0;
168 	/*
169 	 * Try to generate a number that will spread objects out in the
170 	 * hash table.  We 'wipe' new objects across the hash in 128 page
171 	 * increments plus 1 more to offset it a little more by the time
172 	 * it wraps around.
173 	 */
174 	object->hash_rand = object_hash_rand - 129;
175 
176 	object->generation++;
177 
178 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
179 	vm_object_count++;
180 	object_hash_rand = object->hash_rand;
181 }
182 
183 /*
184  *	vm_object_init:
185  *
186  *	Initialize the VM objects module.
187  */
188 void
189 vm_object_init()
190 {
191 	TAILQ_INIT(&vm_object_list);
192 	mtx_init(&vm_object_list_mtx, "vm object_list", MTX_DEF);
193 	vm_object_count = 0;
194 
195 	kernel_object = &kernel_object_store;
196 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
197 	    kernel_object);
198 
199 	kmem_object = &kmem_object_store;
200 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
201 	    kmem_object);
202 
203 	obj_zone = &obj_zone_store;
204 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
205 		vm_objects_init, VM_OBJECTS_INIT);
206 }
207 
208 void
209 vm_object_init2() {
210 	zinitna(obj_zone, NULL, NULL, 0, 0, 0, 1);
211 }
212 
213 /*
214  *	vm_object_allocate:
215  *
216  *	Returns a new object with the given size.
217  */
218 
219 vm_object_t
220 vm_object_allocate(type, size)
221 	objtype_t type;
222 	vm_size_t size;
223 {
224 	vm_object_t result;
225 
226 	result = (vm_object_t) zalloc(obj_zone);
227 
228 	_vm_object_allocate(type, size, result);
229 
230 	return (result);
231 }
232 
233 
234 /*
235  *	vm_object_reference:
236  *
237  *	Gets another reference to the given object.
238  */
239 void
240 vm_object_reference(object)
241 	vm_object_t object;
242 {
243 	if (object == NULL)
244 		return;
245 
246 	KASSERT(!(object->flags & OBJ_DEAD),
247 	    ("vm_object_reference: attempting to reference dead obj"));
248 
249 	object->ref_count++;
250 	if (object->type == OBJT_VNODE) {
251 		while (vget((struct vnode *) object->handle, LK_RETRY|LK_NOOBJ, curproc)) {
252 			printf("vm_object_reference: delay in getting object\n");
253 		}
254 	}
255 }
256 
257 void
258 vm_object_vndeallocate(object)
259 	vm_object_t object;
260 {
261 	struct vnode *vp = (struct vnode *) object->handle;
262 
263 	KASSERT(object->type == OBJT_VNODE,
264 	    ("vm_object_vndeallocate: not a vnode object"));
265 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
266 #ifdef INVARIANTS
267 	if (object->ref_count == 0) {
268 		vprint("vm_object_vndeallocate", vp);
269 		panic("vm_object_vndeallocate: bad object reference count");
270 	}
271 #endif
272 
273 	object->ref_count--;
274 	if (object->ref_count == 0) {
275 		vp->v_flag &= ~VTEXT;
276 		vm_object_clear_flag(object, OBJ_OPT);
277 	}
278 	vrele(vp);
279 }
280 
281 /*
282  *	vm_object_deallocate:
283  *
284  *	Release a reference to the specified object,
285  *	gained either through a vm_object_allocate
286  *	or a vm_object_reference call.  When all references
287  *	are gone, storage associated with this object
288  *	may be relinquished.
289  *
290  *	No object may be locked.
291  */
292 void
293 vm_object_deallocate(object)
294 	vm_object_t object;
295 {
296 	vm_object_t temp;
297 
298 	while (object != NULL) {
299 
300 		if (object->type == OBJT_VNODE) {
301 			vm_object_vndeallocate(object);
302 			return;
303 		}
304 
305 		KASSERT(object->ref_count != 0,
306 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
307 
308 		/*
309 		 * If the reference count goes to 0 we start calling
310 		 * vm_object_terminate() on the object chain.
311 		 * A ref count of 1 may be a special case depending on the
312 		 * shadow count being 0 or 1.
313 		 */
314 		object->ref_count--;
315 		if (object->ref_count > 1) {
316 			return;
317 		} else if (object->ref_count == 1) {
318 			if (object->shadow_count == 0) {
319 				vm_object_set_flag(object, OBJ_ONEMAPPING);
320 			} else if ((object->shadow_count == 1) &&
321 			    (object->handle == NULL) &&
322 			    (object->type == OBJT_DEFAULT ||
323 			     object->type == OBJT_SWAP)) {
324 				vm_object_t robject;
325 
326 				robject = TAILQ_FIRST(&object->shadow_head);
327 				KASSERT(robject != NULL,
328 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
329 					 object->ref_count,
330 					 object->shadow_count));
331 				if ((robject->handle == NULL) &&
332 				    (robject->type == OBJT_DEFAULT ||
333 				     robject->type == OBJT_SWAP)) {
334 
335 					robject->ref_count++;
336 
337 					while (
338 						robject->paging_in_progress ||
339 						object->paging_in_progress
340 					) {
341 						vm_object_pip_sleep(robject, "objde1");
342 						vm_object_pip_sleep(object, "objde2");
343 					}
344 
345 					if (robject->ref_count == 1) {
346 						robject->ref_count--;
347 						object = robject;
348 						goto doterm;
349 					}
350 
351 					object = robject;
352 					vm_object_collapse(object);
353 					continue;
354 				}
355 			}
356 
357 			return;
358 
359 		}
360 
361 doterm:
362 
363 		temp = object->backing_object;
364 		if (temp) {
365 			TAILQ_REMOVE(&temp->shadow_head, object, shadow_list);
366 			temp->shadow_count--;
367 			if (temp->ref_count == 0)
368 				vm_object_clear_flag(temp, OBJ_OPT);
369 			temp->generation++;
370 			object->backing_object = NULL;
371 		}
372 		vm_object_terminate(object);
373 		/* unlocks and deallocates object */
374 		object = temp;
375 	}
376 }
377 
378 /*
379  *	vm_object_terminate actually destroys the specified object, freeing
380  *	up all previously used resources.
381  *
382  *	The object must be locked.
383  *	This routine may block.
384  */
385 void
386 vm_object_terminate(object)
387 	vm_object_t object;
388 {
389 	vm_page_t p;
390 	int s;
391 
392 	/*
393 	 * Make sure no one uses us.
394 	 */
395 	vm_object_set_flag(object, OBJ_DEAD);
396 
397 	/*
398 	 * wait for the pageout daemon to be done with the object
399 	 */
400 	vm_object_pip_wait(object, "objtrm");
401 
402 	KASSERT(!object->paging_in_progress,
403 		("vm_object_terminate: pageout in progress"));
404 
405 	/*
406 	 * Clean and free the pages, as appropriate. All references to the
407 	 * object are gone, so we don't need to lock it.
408 	 */
409 	if (object->type == OBJT_VNODE) {
410 		struct vnode *vp;
411 
412 		/*
413 		 * Freeze optimized copies.
414 		 */
415 		vm_freeze_copyopts(object, 0, object->size);
416 
417 		/*
418 		 * Clean pages and flush buffers.
419 		 */
420 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
421 
422 		vp = (struct vnode *) object->handle;
423 		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
424 	}
425 
426 	KASSERT(object->ref_count == 0,
427 		("vm_object_terminate: object with references, ref_count=%d",
428 		object->ref_count));
429 
430 	/*
431 	 * Now free any remaining pages. For internal objects, this also
432 	 * removes them from paging queues. Don't free wired pages, just
433 	 * remove them from the object.
434 	 */
435 	s = splvm();
436 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
437 		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
438 			("vm_object_terminate: freeing busy page %p "
439 			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
440 		if (p->wire_count == 0) {
441 			vm_page_busy(p);
442 			vm_page_free(p);
443 			cnt.v_pfree++;
444 		} else {
445 			vm_page_busy(p);
446 			vm_page_remove(p);
447 		}
448 	}
449 	splx(s);
450 
451 	/*
452 	 * Let the pager know object is dead.
453 	 */
454 	vm_pager_deallocate(object);
455 
456 	/*
457 	 * Remove the object from the global object list.
458 	 */
459 	mtx_lock(&vm_object_list_mtx);
460 	TAILQ_REMOVE(&vm_object_list, object, object_list);
461 	mtx_unlock(&vm_object_list_mtx);
462 
463 	wakeup(object);
464 
465 	/*
466 	 * Free the space for the object.
467 	 */
468 	zfree(obj_zone, object);
469 }
470 
471 /*
472  *	vm_object_page_clean
473  *
474  *	Clean all dirty pages in the specified range of object.  Leaves page
475  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
476  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
477  *	leaving the object dirty.
478  *
479  *	Odd semantics: if start == end, we clean everything.
480  *
481  *	The object must be locked.
482  */
483 
484 void
485 vm_object_page_clean(object, start, end, flags)
486 	vm_object_t object;
487 	vm_pindex_t start;
488 	vm_pindex_t end;
489 	int flags;
490 {
491 	vm_page_t p, np, tp;
492 	vm_offset_t tstart, tend;
493 	vm_pindex_t pi;
494 	int s;
495 	struct vnode *vp;
496 	int runlen;
497 	int maxf;
498 	int chkb;
499 	int maxb;
500 	int i;
501 	int clearobjflags;
502 	int pagerflags;
503 	vm_page_t maf[vm_pageout_page_count];
504 	vm_page_t mab[vm_pageout_page_count];
505 	vm_page_t ma[vm_pageout_page_count];
506 	int curgeneration;
507 
508 	if (object->type != OBJT_VNODE ||
509 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
510 		return;
511 
512 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : 0;
513 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
514 
515 	vp = object->handle;
516 
517 	vm_object_set_flag(object, OBJ_CLEANING);
518 
519 	tstart = start;
520 	if (end == 0) {
521 		tend = object->size;
522 	} else {
523 		tend = end;
524 	}
525 
526 	/*
527 	 * Generally set CLEANCHK interlock and make the page read-only so
528 	 * we can then clear the object flags.
529 	 *
530 	 * However, if this is a nosync mmap then the object is likely to
531 	 * stay dirty so do not mess with the page and do not clear the
532 	 * object flags.
533 	 */
534 
535 	clearobjflags = 1;
536 
537 	TAILQ_FOREACH(p, &object->memq, listq) {
538 		vm_page_flag_set(p, PG_CLEANCHK);
539 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
540 			clearobjflags = 0;
541 		else
542 			vm_page_protect(p, VM_PROT_READ);
543 	}
544 
545 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
546 		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
547 	}
548 
549 rescan:
550 	curgeneration = object->generation;
551 
552 	for(p = TAILQ_FIRST(&object->memq); p; p = np) {
553 		np = TAILQ_NEXT(p, listq);
554 
555 		pi = p->pindex;
556 		if (((p->flags & PG_CLEANCHK) == 0) ||
557 			(pi < tstart) || (pi >= tend) ||
558 			(p->valid == 0) ||
559 			((p->queue - p->pc) == PQ_CACHE)) {
560 			vm_page_flag_clear(p, PG_CLEANCHK);
561 			continue;
562 		}
563 
564 		vm_page_test_dirty(p);
565 		if ((p->dirty & p->valid) == 0) {
566 			vm_page_flag_clear(p, PG_CLEANCHK);
567 			continue;
568 		}
569 
570 		/*
571 		 * If we have been asked to skip nosync pages and this is a
572 		 * nosync page, skip it.  Note that the object flags were
573 		 * not cleared in this case so we do not have to set them.
574 		 */
575 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
576 			vm_page_flag_clear(p, PG_CLEANCHK);
577 			continue;
578 		}
579 
580 		s = splvm();
581 		while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
582 			if (object->generation != curgeneration) {
583 				splx(s);
584 				goto rescan;
585 			}
586 		}
587 
588 		maxf = 0;
589 		for(i=1;i<vm_pageout_page_count;i++) {
590 			if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
591 				if ((tp->flags & PG_BUSY) ||
592 					(tp->flags & PG_CLEANCHK) == 0 ||
593 					(tp->busy != 0))
594 					break;
595 				if((tp->queue - tp->pc) == PQ_CACHE) {
596 					vm_page_flag_clear(tp, PG_CLEANCHK);
597 					break;
598 				}
599 				vm_page_test_dirty(tp);
600 				if ((tp->dirty & tp->valid) == 0) {
601 					vm_page_flag_clear(tp, PG_CLEANCHK);
602 					break;
603 				}
604 				maf[ i - 1 ] = tp;
605 				maxf++;
606 				continue;
607 			}
608 			break;
609 		}
610 
611 		maxb = 0;
612 		chkb = vm_pageout_page_count -  maxf;
613 		if (chkb) {
614 			for(i = 1; i < chkb;i++) {
615 				if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
616 					if ((tp->flags & PG_BUSY) ||
617 						(tp->flags & PG_CLEANCHK) == 0 ||
618 						(tp->busy != 0))
619 						break;
620 					if((tp->queue - tp->pc) == PQ_CACHE) {
621 						vm_page_flag_clear(tp, PG_CLEANCHK);
622 						break;
623 					}
624 					vm_page_test_dirty(tp);
625 					if ((tp->dirty & tp->valid) == 0) {
626 						vm_page_flag_clear(tp, PG_CLEANCHK);
627 						break;
628 					}
629 					mab[ i - 1 ] = tp;
630 					maxb++;
631 					continue;
632 				}
633 				break;
634 			}
635 		}
636 
637 		for(i=0;i<maxb;i++) {
638 			int index = (maxb - i) - 1;
639 			ma[index] = mab[i];
640 			vm_page_flag_clear(ma[index], PG_CLEANCHK);
641 		}
642 		vm_page_flag_clear(p, PG_CLEANCHK);
643 		ma[maxb] = p;
644 		for(i=0;i<maxf;i++) {
645 			int index = (maxb + i) + 1;
646 			ma[index] = maf[i];
647 			vm_page_flag_clear(ma[index], PG_CLEANCHK);
648 		}
649 		runlen = maxb + maxf + 1;
650 
651 		splx(s);
652 		vm_pageout_flush(ma, runlen, pagerflags);
653 		for (i = 0; i<runlen; i++) {
654 			if (ma[i]->valid & ma[i]->dirty) {
655 				vm_page_protect(ma[i], VM_PROT_READ);
656 				vm_page_flag_set(ma[i], PG_CLEANCHK);
657 			}
658 		}
659 		if (object->generation != curgeneration)
660 			goto rescan;
661 	}
662 
663 #if 0
664 	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
665 #endif
666 
667 	vm_object_clear_flag(object, OBJ_CLEANING);
668 	return;
669 }
670 
671 #ifdef not_used
672 /* XXX I cannot tell if this should be an exported symbol */
673 /*
674  *	vm_object_deactivate_pages
675  *
676  *	Deactivate all pages in the specified object.  (Keep its pages
677  *	in memory even though it is no longer referenced.)
678  *
679  *	The object must be locked.
680  */
681 static void
682 vm_object_deactivate_pages(object)
683 	vm_object_t object;
684 {
685 	vm_page_t p, next;
686 
687 	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
688 		next = TAILQ_NEXT(p, listq);
689 		vm_page_deactivate(p);
690 	}
691 }
692 #endif
693 
694 /*
695  * Same as vm_object_pmap_copy, except range checking really
696  * works, and is meant for small sections of an object.
697  *
698  * This code protects resident pages by making them read-only
699  * and is typically called on a fork or split when a page
700  * is converted to copy-on-write.
701  *
702  * NOTE: If the page is already at VM_PROT_NONE, calling
703  * vm_page_protect will have no effect.
704  */
705 
706 void
707 vm_object_pmap_copy_1(object, start, end)
708 	vm_object_t object;
709 	vm_pindex_t start;
710 	vm_pindex_t end;
711 {
712 	vm_pindex_t idx;
713 	vm_page_t p;
714 
715 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
716 		return;
717 
718 	for (idx = start; idx < end; idx++) {
719 		p = vm_page_lookup(object, idx);
720 		if (p == NULL)
721 			continue;
722 		vm_page_protect(p, VM_PROT_READ);
723 	}
724 }
725 
726 /*
727  *	vm_object_pmap_remove:
728  *
729  *	Removes all physical pages in the specified
730  *	object range from all physical maps.
731  *
732  *	The object must *not* be locked.
733  */
734 void
735 vm_object_pmap_remove(object, start, end)
736 	vm_object_t object;
737 	vm_pindex_t start;
738 	vm_pindex_t end;
739 {
740 	vm_page_t p;
741 
742 	if (object == NULL)
743 		return;
744 	TAILQ_FOREACH(p, &object->memq, listq) {
745 		if (p->pindex >= start && p->pindex < end)
746 			vm_page_protect(p, VM_PROT_NONE);
747 	}
748 	if ((start == 0) && (object->size == end))
749 		vm_object_clear_flag(object, OBJ_WRITEABLE);
750 }
751 
752 /*
753  *	vm_object_madvise:
754  *
755  *	Implements the madvise function at the object/page level.
756  *
757  *	MADV_WILLNEED	(any object)
758  *
759  *	    Activate the specified pages if they are resident.
760  *
761  *	MADV_DONTNEED	(any object)
762  *
763  *	    Deactivate the specified pages if they are resident.
764  *
765  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
766  *			 OBJ_ONEMAPPING only)
767  *
768  *	    Deactivate and clean the specified pages if they are
769  *	    resident.  This permits the process to reuse the pages
770  *	    without faulting or the kernel to reclaim the pages
771  *	    without I/O.
772  */
773 void
774 vm_object_madvise(object, pindex, count, advise)
775 	vm_object_t object;
776 	vm_pindex_t pindex;
777 	int count;
778 	int advise;
779 {
780 	vm_pindex_t end, tpindex;
781 	vm_object_t tobject;
782 	vm_page_t m;
783 
784 	if (object == NULL)
785 		return;
786 
787 	end = pindex + count;
788 
789 	/*
790 	 * Locate and adjust resident pages
791 	 */
792 
793 	for (; pindex < end; pindex += 1) {
794 relookup:
795 		tobject = object;
796 		tpindex = pindex;
797 shadowlookup:
798 		/*
799 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
800 		 * and those pages must be OBJ_ONEMAPPING.
801 		 */
802 		if (advise == MADV_FREE) {
803 			if ((tobject->type != OBJT_DEFAULT &&
804 			     tobject->type != OBJT_SWAP) ||
805 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
806 				continue;
807 			}
808 		}
809 
810 		m = vm_page_lookup(tobject, tpindex);
811 
812 		if (m == NULL) {
813 			/*
814 			 * There may be swap even if there is no backing page
815 			 */
816 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
817 				swap_pager_freespace(tobject, tpindex, 1);
818 
819 			/*
820 			 * next object
821 			 */
822 			tobject = tobject->backing_object;
823 			if (tobject == NULL)
824 				continue;
825 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
826 			goto shadowlookup;
827 		}
828 
829 		/*
830 		 * If the page is busy or not in a normal active state,
831 		 * we skip it.  If the page is not managed there are no
832 		 * page queues to mess with.  Things can break if we mess
833 		 * with pages in any of the below states.
834 		 */
835 		if (
836 		    m->hold_count ||
837 		    m->wire_count ||
838 		    (m->flags & PG_UNMANAGED) ||
839 		    m->valid != VM_PAGE_BITS_ALL
840 		) {
841 			continue;
842 		}
843 
844  		if (vm_page_sleep_busy(m, TRUE, "madvpo"))
845   			goto relookup;
846 
847 		if (advise == MADV_WILLNEED) {
848 			vm_page_activate(m);
849 		} else if (advise == MADV_DONTNEED) {
850 			vm_page_dontneed(m);
851 		} else if (advise == MADV_FREE) {
852 			/*
853 			 * Mark the page clean.  This will allow the page
854 			 * to be freed up by the system.  However, such pages
855 			 * are often reused quickly by malloc()/free()
856 			 * so we do not do anything that would cause
857 			 * a page fault if we can help it.
858 			 *
859 			 * Specifically, we do not try to actually free
860 			 * the page now nor do we try to put it in the
861 			 * cache (which would cause a page fault on reuse).
862 			 *
863 			 * But we do make the page is freeable as we
864 			 * can without actually taking the step of unmapping
865 			 * it.
866 			 */
867 			pmap_clear_modify(m);
868 			m->dirty = 0;
869 			m->act_count = 0;
870 			vm_page_dontneed(m);
871 			if (tobject->type == OBJT_SWAP)
872 				swap_pager_freespace(tobject, tpindex, 1);
873 		}
874 	}
875 }
876 
877 /*
878  *	vm_object_shadow:
879  *
880  *	Create a new object which is backed by the
881  *	specified existing object range.  The source
882  *	object reference is deallocated.
883  *
884  *	The new object and offset into that object
885  *	are returned in the source parameters.
886  */
887 
888 void
889 vm_object_shadow(object, offset, length)
890 	vm_object_t *object;	/* IN/OUT */
891 	vm_ooffset_t *offset;	/* IN/OUT */
892 	vm_size_t length;
893 {
894 	vm_object_t source;
895 	vm_object_t result;
896 
897 	source = *object;
898 
899 	/*
900 	 * Don't create the new object if the old object isn't shared.
901 	 */
902 
903 	if (source != NULL &&
904 	    source->ref_count == 1 &&
905 	    source->handle == NULL &&
906 	    (source->type == OBJT_DEFAULT ||
907 	     source->type == OBJT_SWAP))
908 		return;
909 
910 	/*
911 	 * Allocate a new object with the given length
912 	 */
913 	result = vm_object_allocate(OBJT_DEFAULT, length);
914 	KASSERT(result != NULL, ("vm_object_shadow: no object for shadowing"));
915 
916 	/*
917 	 * The new object shadows the source object, adding a reference to it.
918 	 * Our caller changes his reference to point to the new object,
919 	 * removing a reference to the source object.  Net result: no change
920 	 * of reference count.
921 	 *
922 	 * Try to optimize the result object's page color when shadowing
923 	 * in order to maintain page coloring consistency in the combined
924 	 * shadowed object.
925 	 */
926 	result->backing_object = source;
927 	if (source) {
928 		TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list);
929 		source->shadow_count++;
930 		source->generation++;
931 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
932 	}
933 
934 	/*
935 	 * Store the offset into the source object, and fix up the offset into
936 	 * the new object.
937 	 */
938 
939 	result->backing_object_offset = *offset;
940 
941 	/*
942 	 * Return the new things
943 	 */
944 
945 	*offset = 0;
946 	*object = result;
947 }
948 
949 #define	OBSC_TEST_ALL_SHADOWED	0x0001
950 #define	OBSC_COLLAPSE_NOWAIT	0x0002
951 #define	OBSC_COLLAPSE_WAIT	0x0004
952 
953 static __inline int
954 vm_object_backing_scan(vm_object_t object, int op)
955 {
956 	int s;
957 	int r = 1;
958 	vm_page_t p;
959 	vm_object_t backing_object;
960 	vm_pindex_t backing_offset_index;
961 
962 	s = splvm();
963 
964 	backing_object = object->backing_object;
965 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
966 
967 	/*
968 	 * Initial conditions
969 	 */
970 
971 	if (op & OBSC_TEST_ALL_SHADOWED) {
972 		/*
973 		 * We do not want to have to test for the existence of
974 		 * swap pages in the backing object.  XXX but with the
975 		 * new swapper this would be pretty easy to do.
976 		 *
977 		 * XXX what about anonymous MAP_SHARED memory that hasn't
978 		 * been ZFOD faulted yet?  If we do not test for this, the
979 		 * shadow test may succeed! XXX
980 		 */
981 		if (backing_object->type != OBJT_DEFAULT) {
982 			splx(s);
983 			return(0);
984 		}
985 	}
986 	if (op & OBSC_COLLAPSE_WAIT) {
987 		vm_object_set_flag(backing_object, OBJ_DEAD);
988 	}
989 
990 	/*
991 	 * Our scan
992 	 */
993 
994 	p = TAILQ_FIRST(&backing_object->memq);
995 	while (p) {
996 		vm_page_t next = TAILQ_NEXT(p, listq);
997 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
998 
999 		if (op & OBSC_TEST_ALL_SHADOWED) {
1000 			vm_page_t pp;
1001 
1002 			/*
1003 			 * Ignore pages outside the parent object's range
1004 			 * and outside the parent object's mapping of the
1005 			 * backing object.
1006 			 *
1007 			 * note that we do not busy the backing object's
1008 			 * page.
1009 			 */
1010 
1011 			if (
1012 			    p->pindex < backing_offset_index ||
1013 			    new_pindex >= object->size
1014 			) {
1015 				p = next;
1016 				continue;
1017 			}
1018 
1019 			/*
1020 			 * See if the parent has the page or if the parent's
1021 			 * object pager has the page.  If the parent has the
1022 			 * page but the page is not valid, the parent's
1023 			 * object pager must have the page.
1024 			 *
1025 			 * If this fails, the parent does not completely shadow
1026 			 * the object and we might as well give up now.
1027 			 */
1028 
1029 			pp = vm_page_lookup(object, new_pindex);
1030 			if (
1031 			    (pp == NULL || pp->valid == 0) &&
1032 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1033 			) {
1034 				r = 0;
1035 				break;
1036 			}
1037 		}
1038 
1039 		/*
1040 		 * Check for busy page
1041 		 */
1042 
1043 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1044 			vm_page_t pp;
1045 
1046 			if (op & OBSC_COLLAPSE_NOWAIT) {
1047 				if (
1048 				    (p->flags & PG_BUSY) ||
1049 				    !p->valid ||
1050 				    p->hold_count ||
1051 				    p->wire_count ||
1052 				    p->busy
1053 				) {
1054 					p = next;
1055 					continue;
1056 				}
1057 			} else if (op & OBSC_COLLAPSE_WAIT) {
1058 				if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1059 					/*
1060 					 * If we slept, anything could have
1061 					 * happened.  Since the object is
1062 					 * marked dead, the backing offset
1063 					 * should not have changed so we
1064 					 * just restart our scan.
1065 					 */
1066 					p = TAILQ_FIRST(&backing_object->memq);
1067 					continue;
1068 				}
1069 			}
1070 
1071 			/*
1072 			 * Busy the page
1073 			 */
1074 			vm_page_busy(p);
1075 
1076 			KASSERT(
1077 			    p->object == backing_object,
1078 			    ("vm_object_qcollapse(): object mismatch")
1079 			);
1080 
1081 			/*
1082 			 * Destroy any associated swap
1083 			 */
1084 			if (backing_object->type == OBJT_SWAP) {
1085 				swap_pager_freespace(
1086 				    backing_object,
1087 				    p->pindex,
1088 				    1
1089 				);
1090 			}
1091 
1092 			if (
1093 			    p->pindex < backing_offset_index ||
1094 			    new_pindex >= object->size
1095 			) {
1096 				/*
1097 				 * Page is out of the parent object's range, we
1098 				 * can simply destroy it.
1099 				 */
1100 				vm_page_protect(p, VM_PROT_NONE);
1101 				vm_page_free(p);
1102 				p = next;
1103 				continue;
1104 			}
1105 
1106 			pp = vm_page_lookup(object, new_pindex);
1107 			if (
1108 			    pp != NULL ||
1109 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1110 			) {
1111 				/*
1112 				 * page already exists in parent OR swap exists
1113 				 * for this location in the parent.  Destroy
1114 				 * the original page from the backing object.
1115 				 *
1116 				 * Leave the parent's page alone
1117 				 */
1118 				vm_page_protect(p, VM_PROT_NONE);
1119 				vm_page_free(p);
1120 				p = next;
1121 				continue;
1122 			}
1123 
1124 			/*
1125 			 * Page does not exist in parent, rename the
1126 			 * page from the backing object to the main object.
1127 			 *
1128 			 * If the page was mapped to a process, it can remain
1129 			 * mapped through the rename.
1130 			 */
1131 			if ((p->queue - p->pc) == PQ_CACHE)
1132 				vm_page_deactivate(p);
1133 
1134 			vm_page_rename(p, object, new_pindex);
1135 			/* page automatically made dirty by rename */
1136 		}
1137 		p = next;
1138 	}
1139 	splx(s);
1140 	return(r);
1141 }
1142 
1143 
1144 /*
1145  * this version of collapse allows the operation to occur earlier and
1146  * when paging_in_progress is true for an object...  This is not a complete
1147  * operation, but should plug 99.9% of the rest of the leaks.
1148  */
1149 static void
1150 vm_object_qcollapse(object)
1151 	vm_object_t object;
1152 {
1153 	vm_object_t backing_object = object->backing_object;
1154 
1155 	if (backing_object->ref_count != 1)
1156 		return;
1157 
1158 	backing_object->ref_count += 2;
1159 
1160 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1161 
1162 	backing_object->ref_count -= 2;
1163 }
1164 
1165 /*
1166  *	vm_object_collapse:
1167  *
1168  *	Collapse an object with the object backing it.
1169  *	Pages in the backing object are moved into the
1170  *	parent, and the backing object is deallocated.
1171  */
1172 void
1173 vm_object_collapse(object)
1174 	vm_object_t object;
1175 {
1176 	while (TRUE) {
1177 		vm_object_t backing_object;
1178 
1179 		/*
1180 		 * Verify that the conditions are right for collapse:
1181 		 *
1182 		 * The object exists and the backing object exists.
1183 		 */
1184 		if (object == NULL)
1185 			break;
1186 
1187 		if ((backing_object = object->backing_object) == NULL)
1188 			break;
1189 
1190 		/*
1191 		 * we check the backing object first, because it is most likely
1192 		 * not collapsable.
1193 		 */
1194 		if (backing_object->handle != NULL ||
1195 		    (backing_object->type != OBJT_DEFAULT &&
1196 		     backing_object->type != OBJT_SWAP) ||
1197 		    (backing_object->flags & OBJ_DEAD) ||
1198 		    object->handle != NULL ||
1199 		    (object->type != OBJT_DEFAULT &&
1200 		     object->type != OBJT_SWAP) ||
1201 		    (object->flags & OBJ_DEAD)) {
1202 			break;
1203 		}
1204 
1205 		if (
1206 		    object->paging_in_progress != 0 ||
1207 		    backing_object->paging_in_progress != 0
1208 		) {
1209 			vm_object_qcollapse(object);
1210 			break;
1211 		}
1212 
1213 		/*
1214 		 * We know that we can either collapse the backing object (if
1215 		 * the parent is the only reference to it) or (perhaps) have
1216 		 * the parent bypass the object if the parent happens to shadow
1217 		 * all the resident pages in the entire backing object.
1218 		 *
1219 		 * This is ignoring pager-backed pages such as swap pages.
1220 		 * vm_object_backing_scan fails the shadowing test in this
1221 		 * case.
1222 		 */
1223 
1224 		if (backing_object->ref_count == 1) {
1225 			/*
1226 			 * If there is exactly one reference to the backing
1227 			 * object, we can collapse it into the parent.
1228 			 */
1229 
1230 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1231 
1232 			/*
1233 			 * Move the pager from backing_object to object.
1234 			 */
1235 
1236 			if (backing_object->type == OBJT_SWAP) {
1237 				vm_object_pip_add(backing_object, 1);
1238 
1239 				/*
1240 				 * scrap the paging_offset junk and do a
1241 				 * discrete copy.  This also removes major
1242 				 * assumptions about how the swap-pager
1243 				 * works from where it doesn't belong.  The
1244 				 * new swapper is able to optimize the
1245 				 * destroy-source case.
1246 				 */
1247 
1248 				vm_object_pip_add(object, 1);
1249 				swap_pager_copy(
1250 				    backing_object,
1251 				    object,
1252 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1253 				vm_object_pip_wakeup(object);
1254 
1255 				vm_object_pip_wakeup(backing_object);
1256 			}
1257 			/*
1258 			 * Object now shadows whatever backing_object did.
1259 			 * Note that the reference to
1260 			 * backing_object->backing_object moves from within
1261 			 * backing_object to within object.
1262 			 */
1263 
1264 			TAILQ_REMOVE(
1265 			    &object->backing_object->shadow_head,
1266 			    object,
1267 			    shadow_list
1268 			);
1269 			object->backing_object->shadow_count--;
1270 			object->backing_object->generation++;
1271 			if (backing_object->backing_object) {
1272 				TAILQ_REMOVE(
1273 				    &backing_object->backing_object->shadow_head,
1274 				    backing_object,
1275 				    shadow_list
1276 				);
1277 				backing_object->backing_object->shadow_count--;
1278 				backing_object->backing_object->generation++;
1279 			}
1280 			object->backing_object = backing_object->backing_object;
1281 			if (object->backing_object) {
1282 				TAILQ_INSERT_TAIL(
1283 				    &object->backing_object->shadow_head,
1284 				    object,
1285 				    shadow_list
1286 				);
1287 				object->backing_object->shadow_count++;
1288 				object->backing_object->generation++;
1289 			}
1290 
1291 			object->backing_object_offset +=
1292 			    backing_object->backing_object_offset;
1293 
1294 			/*
1295 			 * Discard backing_object.
1296 			 *
1297 			 * Since the backing object has no pages, no pager left,
1298 			 * and no object references within it, all that is
1299 			 * necessary is to dispose of it.
1300 			 */
1301 
1302 			TAILQ_REMOVE(
1303 			    &vm_object_list,
1304 			    backing_object,
1305 			    object_list
1306 			);
1307 			vm_object_count--;
1308 
1309 			zfree(obj_zone, backing_object);
1310 
1311 			object_collapses++;
1312 		} else {
1313 			vm_object_t new_backing_object;
1314 
1315 			/*
1316 			 * If we do not entirely shadow the backing object,
1317 			 * there is nothing we can do so we give up.
1318 			 */
1319 
1320 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1321 				break;
1322 			}
1323 
1324 			/*
1325 			 * Make the parent shadow the next object in the
1326 			 * chain.  Deallocating backing_object will not remove
1327 			 * it, since its reference count is at least 2.
1328 			 */
1329 
1330 			TAILQ_REMOVE(
1331 			    &backing_object->shadow_head,
1332 			    object,
1333 			    shadow_list
1334 			);
1335 			backing_object->shadow_count--;
1336 			backing_object->generation++;
1337 
1338 			new_backing_object = backing_object->backing_object;
1339 			if ((object->backing_object = new_backing_object) != NULL) {
1340 				vm_object_reference(new_backing_object);
1341 				TAILQ_INSERT_TAIL(
1342 				    &new_backing_object->shadow_head,
1343 				    object,
1344 				    shadow_list
1345 				);
1346 				new_backing_object->shadow_count++;
1347 				new_backing_object->generation++;
1348 				object->backing_object_offset +=
1349 					backing_object->backing_object_offset;
1350 			}
1351 
1352 			/*
1353 			 * Drop the reference count on backing_object. Since
1354 			 * its ref_count was at least 2, it will not vanish;
1355 			 * so we don't need to call vm_object_deallocate, but
1356 			 * we do anyway.
1357 			 */
1358 			vm_object_deallocate(backing_object);
1359 			object_bypasses++;
1360 		}
1361 
1362 		/*
1363 		 * Try again with this object's new backing object.
1364 		 */
1365 	}
1366 }
1367 
1368 /*
1369  *	vm_object_page_remove: [internal]
1370  *
1371  *	Removes all physical pages in the specified
1372  *	object range from the object's list of pages.
1373  *
1374  *	The object must be locked.
1375  */
1376 void
1377 vm_object_page_remove(object, start, end, clean_only)
1378 	vm_object_t object;
1379 	vm_pindex_t start;
1380 	vm_pindex_t end;
1381 	boolean_t clean_only;
1382 {
1383 	vm_page_t p, next;
1384 	unsigned int size;
1385 	int all;
1386 
1387 	if (object == NULL ||
1388 	    object->resident_page_count == 0)
1389 		return;
1390 
1391 	all = ((end == 0) && (start == 0));
1392 
1393 	/*
1394 	 * Since physically-backed objects do not use managed pages, we can't
1395 	 * remove pages from the object (we must instead remove the page
1396 	 * references, and then destroy the object).
1397 	 */
1398 	KASSERT(object->type != OBJT_PHYS, ("attempt to remove pages from a physical object"));
1399 
1400 	vm_object_pip_add(object, 1);
1401 again:
1402 	size = end - start;
1403 	if (all || size > object->resident_page_count / 4) {
1404 		for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1405 			next = TAILQ_NEXT(p, listq);
1406 			if (all || ((start <= p->pindex) && (p->pindex < end))) {
1407 				if (p->wire_count != 0) {
1408 					vm_page_protect(p, VM_PROT_NONE);
1409 					if (!clean_only)
1410 						p->valid = 0;
1411 					continue;
1412 				}
1413 
1414 				/*
1415 				 * The busy flags are only cleared at
1416 				 * interrupt -- minimize the spl transitions
1417 				 */
1418 
1419  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1420  					goto again;
1421 
1422 				if (clean_only && p->valid) {
1423 					vm_page_test_dirty(p);
1424 					if (p->valid & p->dirty)
1425 						continue;
1426 				}
1427 
1428 				vm_page_busy(p);
1429 				vm_page_protect(p, VM_PROT_NONE);
1430 				vm_page_free(p);
1431 			}
1432 		}
1433 	} else {
1434 		while (size > 0) {
1435 			if ((p = vm_page_lookup(object, start)) != 0) {
1436 
1437 				if (p->wire_count != 0) {
1438 					vm_page_protect(p, VM_PROT_NONE);
1439 					if (!clean_only)
1440 						p->valid = 0;
1441 					start += 1;
1442 					size -= 1;
1443 					continue;
1444 				}
1445 
1446 				/*
1447 				 * The busy flags are only cleared at
1448 				 * interrupt -- minimize the spl transitions
1449 				 */
1450  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1451 					goto again;
1452 
1453 				if (clean_only && p->valid) {
1454 					vm_page_test_dirty(p);
1455 					if (p->valid & p->dirty) {
1456 						start += 1;
1457 						size -= 1;
1458 						continue;
1459 					}
1460 				}
1461 
1462 				vm_page_busy(p);
1463 				vm_page_protect(p, VM_PROT_NONE);
1464 				vm_page_free(p);
1465 			}
1466 			start += 1;
1467 			size -= 1;
1468 		}
1469 	}
1470 	vm_object_pip_wakeup(object);
1471 }
1472 
1473 /*
1474  *	Routine:	vm_object_coalesce
1475  *	Function:	Coalesces two objects backing up adjoining
1476  *			regions of memory into a single object.
1477  *
1478  *	returns TRUE if objects were combined.
1479  *
1480  *	NOTE:	Only works at the moment if the second object is NULL -
1481  *		if it's not, which object do we lock first?
1482  *
1483  *	Parameters:
1484  *		prev_object	First object to coalesce
1485  *		prev_offset	Offset into prev_object
1486  *		next_object	Second object into coalesce
1487  *		next_offset	Offset into next_object
1488  *
1489  *		prev_size	Size of reference to prev_object
1490  *		next_size	Size of reference to next_object
1491  *
1492  *	Conditions:
1493  *	The object must *not* be locked.
1494  */
1495 boolean_t
1496 vm_object_coalesce(prev_object, prev_pindex, prev_size, next_size)
1497 	vm_object_t prev_object;
1498 	vm_pindex_t prev_pindex;
1499 	vm_size_t prev_size, next_size;
1500 {
1501 	vm_pindex_t next_pindex;
1502 
1503 	if (prev_object == NULL) {
1504 		return (TRUE);
1505 	}
1506 
1507 	if (prev_object->type != OBJT_DEFAULT &&
1508 	    prev_object->type != OBJT_SWAP) {
1509 		return (FALSE);
1510 	}
1511 
1512 	/*
1513 	 * Try to collapse the object first
1514 	 */
1515 	vm_object_collapse(prev_object);
1516 
1517 	/*
1518 	 * Can't coalesce if: . more than one reference . paged out . shadows
1519 	 * another object . has a copy elsewhere (any of which mean that the
1520 	 * pages not mapped to prev_entry may be in use anyway)
1521 	 */
1522 
1523 	if (prev_object->backing_object != NULL) {
1524 		return (FALSE);
1525 	}
1526 
1527 	prev_size >>= PAGE_SHIFT;
1528 	next_size >>= PAGE_SHIFT;
1529 	next_pindex = prev_pindex + prev_size;
1530 
1531 	if ((prev_object->ref_count > 1) &&
1532 	    (prev_object->size != next_pindex)) {
1533 		return (FALSE);
1534 	}
1535 
1536 	/*
1537 	 * Remove any pages that may still be in the object from a previous
1538 	 * deallocation.
1539 	 */
1540 	if (next_pindex < prev_object->size) {
1541 		vm_object_page_remove(prev_object,
1542 				      next_pindex,
1543 				      next_pindex + next_size, FALSE);
1544 		if (prev_object->type == OBJT_SWAP)
1545 			swap_pager_freespace(prev_object,
1546 					     next_pindex, next_size);
1547 	}
1548 
1549 	/*
1550 	 * Extend the object if necessary.
1551 	 */
1552 	if (next_pindex + next_size > prev_object->size)
1553 		prev_object->size = next_pindex + next_size;
1554 
1555 	return (TRUE);
1556 }
1557 
1558 #include "opt_ddb.h"
1559 #ifdef DDB
1560 #include <sys/kernel.h>
1561 
1562 #include <sys/cons.h>
1563 
1564 #include <ddb/ddb.h>
1565 
1566 static int	_vm_object_in_map __P((vm_map_t map, vm_object_t object,
1567 				       vm_map_entry_t entry));
1568 static int	vm_object_in_map __P((vm_object_t object));
1569 
1570 static int
1571 _vm_object_in_map(map, object, entry)
1572 	vm_map_t map;
1573 	vm_object_t object;
1574 	vm_map_entry_t entry;
1575 {
1576 	vm_map_t tmpm;
1577 	vm_map_entry_t tmpe;
1578 	vm_object_t obj;
1579 	int entcount;
1580 
1581 	if (map == 0)
1582 		return 0;
1583 
1584 	if (entry == 0) {
1585 		tmpe = map->header.next;
1586 		entcount = map->nentries;
1587 		while (entcount-- && (tmpe != &map->header)) {
1588 			if( _vm_object_in_map(map, object, tmpe)) {
1589 				return 1;
1590 			}
1591 			tmpe = tmpe->next;
1592 		}
1593 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1594 		tmpm = entry->object.sub_map;
1595 		tmpe = tmpm->header.next;
1596 		entcount = tmpm->nentries;
1597 		while (entcount-- && tmpe != &tmpm->header) {
1598 			if( _vm_object_in_map(tmpm, object, tmpe)) {
1599 				return 1;
1600 			}
1601 			tmpe = tmpe->next;
1602 		}
1603 	} else if ((obj = entry->object.vm_object) != NULL) {
1604 		for(; obj; obj=obj->backing_object)
1605 			if( obj == object) {
1606 				return 1;
1607 			}
1608 	}
1609 	return 0;
1610 }
1611 
1612 static int
1613 vm_object_in_map( object)
1614 	vm_object_t object;
1615 {
1616 	struct proc *p;
1617 
1618 	sx_slock(&allproc_lock);
1619 	LIST_FOREACH(p, &allproc, p_list) {
1620 		if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1621 			continue;
1622 		if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1623 			sx_sunlock(&allproc_lock);
1624 			return 1;
1625 		}
1626 	}
1627 	sx_sunlock(&allproc_lock);
1628 	if( _vm_object_in_map( kernel_map, object, 0))
1629 		return 1;
1630 	if( _vm_object_in_map( kmem_map, object, 0))
1631 		return 1;
1632 	if( _vm_object_in_map( pager_map, object, 0))
1633 		return 1;
1634 	if( _vm_object_in_map( buffer_map, object, 0))
1635 		return 1;
1636 	if( _vm_object_in_map( mb_map, object, 0))
1637 		return 1;
1638 	return 0;
1639 }
1640 
1641 DB_SHOW_COMMAND(vmochk, vm_object_check)
1642 {
1643 	vm_object_t object;
1644 
1645 	/*
1646 	 * make sure that internal objs are in a map somewhere
1647 	 * and none have zero ref counts.
1648 	 */
1649 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1650 		if (object->handle == NULL &&
1651 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1652 			if (object->ref_count == 0) {
1653 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1654 					(long)object->size);
1655 			}
1656 			if (!vm_object_in_map(object)) {
1657 				db_printf(
1658 			"vmochk: internal obj is not in a map: "
1659 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1660 				    object->ref_count, (u_long)object->size,
1661 				    (u_long)object->size,
1662 				    (void *)object->backing_object);
1663 			}
1664 		}
1665 	}
1666 }
1667 
1668 /*
1669  *	vm_object_print:	[ debug ]
1670  */
1671 DB_SHOW_COMMAND(object, vm_object_print_static)
1672 {
1673 	/* XXX convert args. */
1674 	vm_object_t object = (vm_object_t)addr;
1675 	boolean_t full = have_addr;
1676 
1677 	vm_page_t p;
1678 
1679 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1680 #define	count	was_count
1681 
1682 	int count;
1683 
1684 	if (object == NULL)
1685 		return;
1686 
1687 	db_iprintf(
1688 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1689 	    object, (int)object->type, (u_long)object->size,
1690 	    object->resident_page_count, object->ref_count, object->flags);
1691 	/*
1692 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1693 	 */
1694 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1695 	    object->shadow_count,
1696 	    object->backing_object ? object->backing_object->ref_count : 0,
1697 	    object->backing_object, (long)object->backing_object_offset);
1698 
1699 	if (!full)
1700 		return;
1701 
1702 	db_indent += 2;
1703 	count = 0;
1704 	TAILQ_FOREACH(p, &object->memq, listq) {
1705 		if (count == 0)
1706 			db_iprintf("memory:=");
1707 		else if (count == 6) {
1708 			db_printf("\n");
1709 			db_iprintf(" ...");
1710 			count = 0;
1711 		} else
1712 			db_printf(",");
1713 		count++;
1714 
1715 		db_printf("(off=0x%lx,page=0x%lx)",
1716 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1717 	}
1718 	if (count != 0)
1719 		db_printf("\n");
1720 	db_indent -= 2;
1721 }
1722 
1723 /* XXX. */
1724 #undef count
1725 
1726 /* XXX need this non-static entry for calling from vm_map_print. */
1727 void
1728 vm_object_print(addr, have_addr, count, modif)
1729         /* db_expr_t */ long addr;
1730 	boolean_t have_addr;
1731 	/* db_expr_t */ long count;
1732 	char *modif;
1733 {
1734 	vm_object_print_static(addr, have_addr, count, modif);
1735 }
1736 
1737 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1738 {
1739 	vm_object_t object;
1740 	int nl = 0;
1741 	int c;
1742 
1743 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1744 		vm_pindex_t idx, fidx;
1745 		vm_pindex_t osize;
1746 		vm_offset_t pa = -1, padiff;
1747 		int rcount;
1748 		vm_page_t m;
1749 
1750 		db_printf("new object: %p\n", (void *)object);
1751 		if ( nl > 18) {
1752 			c = cngetc();
1753 			if (c != ' ')
1754 				return;
1755 			nl = 0;
1756 		}
1757 		nl++;
1758 		rcount = 0;
1759 		fidx = 0;
1760 		osize = object->size;
1761 		if (osize > 128)
1762 			osize = 128;
1763 		for(idx=0;idx<osize;idx++) {
1764 			m = vm_page_lookup(object, idx);
1765 			if (m == NULL) {
1766 				if (rcount) {
1767 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1768 						(long)fidx, rcount, (long)pa);
1769 					if ( nl > 18) {
1770 						c = cngetc();
1771 						if (c != ' ')
1772 							return;
1773 						nl = 0;
1774 					}
1775 					nl++;
1776 					rcount = 0;
1777 				}
1778 				continue;
1779 			}
1780 
1781 
1782 			if (rcount &&
1783 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1784 				++rcount;
1785 				continue;
1786 			}
1787 			if (rcount) {
1788 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1789 				padiff >>= PAGE_SHIFT;
1790 				padiff &= PQ_L2_MASK;
1791 				if (padiff == 0) {
1792 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1793 					++rcount;
1794 					continue;
1795 				}
1796 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
1797 					(long)fidx, rcount, (long)pa);
1798 				db_printf("pd(%ld)\n", (long)padiff);
1799 				if ( nl > 18) {
1800 					c = cngetc();
1801 					if (c != ' ')
1802 						return;
1803 					nl = 0;
1804 				}
1805 				nl++;
1806 			}
1807 			fidx = idx;
1808 			pa = VM_PAGE_TO_PHYS(m);
1809 			rcount = 1;
1810 		}
1811 		if (rcount) {
1812 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1813 				(long)fidx, rcount, (long)pa);
1814 			if ( nl > 18) {
1815 				c = cngetc();
1816 				if (c != ' ')
1817 					return;
1818 				nl = 0;
1819 			}
1820 			nl++;
1821 		}
1822 	}
1823 }
1824 #endif /* DDB */
1825