xref: /freebsd/sys/vm/vm_object.c (revision 137a344c6341d1469432e9deb3a25593f96672ad)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include "opt_vm.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>		/* for curproc, pageproc */
83 #include <sys/socket.h>
84 #include <sys/resourcevar.h>
85 #include <sys/rwlock.h>
86 #include <sys/user.h>
87 #include <sys/vnode.h>
88 #include <sys/vmmeter.h>
89 #include <sys/sx.h>
90 
91 #include <vm/vm.h>
92 #include <vm/vm_param.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_pageout.h>
98 #include <vm/vm_pager.h>
99 #include <vm/swap_pager.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_extern.h>
102 #include <vm/vm_radix.h>
103 #include <vm/vm_reserv.h>
104 #include <vm/uma.h>
105 
106 static int old_msync;
107 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
108     "Use old (insecure) msync behavior");
109 
110 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
111 		    int pagerflags, int flags, boolean_t *clearobjflags,
112 		    boolean_t *eio);
113 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
114 		    boolean_t *clearobjflags);
115 static void	vm_object_qcollapse(vm_object_t object);
116 static void	vm_object_vndeallocate(vm_object_t object);
117 
118 /*
119  *	Virtual memory objects maintain the actual data
120  *	associated with allocated virtual memory.  A given
121  *	page of memory exists within exactly one object.
122  *
123  *	An object is only deallocated when all "references"
124  *	are given up.  Only one "reference" to a given
125  *	region of an object should be writeable.
126  *
127  *	Associated with each object is a list of all resident
128  *	memory pages belonging to that object; this list is
129  *	maintained by the "vm_page" module, and locked by the object's
130  *	lock.
131  *
132  *	Each object also records a "pager" routine which is
133  *	used to retrieve (and store) pages to the proper backing
134  *	storage.  In addition, objects may be backed by other
135  *	objects from which they were virtual-copied.
136  *
137  *	The only items within the object structure which are
138  *	modified after time of creation are:
139  *		reference count		locked by object's lock
140  *		pager routine		locked by object's lock
141  *
142  */
143 
144 struct object_q vm_object_list;
145 struct mtx vm_object_list_mtx;	/* lock for object list and count */
146 
147 struct vm_object kernel_object_store;
148 
149 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
150     "VM object stats");
151 
152 static counter_u64_t object_collapses = EARLY_COUNTER;
153 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
154     &object_collapses,
155     "VM object collapses");
156 
157 static counter_u64_t object_bypasses = EARLY_COUNTER;
158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
159     &object_bypasses,
160     "VM object bypasses");
161 
162 static void
163 counter_startup(void)
164 {
165 
166 	object_collapses = counter_u64_alloc(M_WAITOK);
167 	object_bypasses = counter_u64_alloc(M_WAITOK);
168 }
169 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
170 
171 static uma_zone_t obj_zone;
172 
173 static int vm_object_zinit(void *mem, int size, int flags);
174 
175 #ifdef INVARIANTS
176 static void vm_object_zdtor(void *mem, int size, void *arg);
177 
178 static void
179 vm_object_zdtor(void *mem, int size, void *arg)
180 {
181 	vm_object_t object;
182 
183 	object = (vm_object_t)mem;
184 	KASSERT(object->ref_count == 0,
185 	    ("object %p ref_count = %d", object, object->ref_count));
186 	KASSERT(TAILQ_EMPTY(&object->memq),
187 	    ("object %p has resident pages in its memq", object));
188 	KASSERT(vm_radix_is_empty(&object->rtree),
189 	    ("object %p has resident pages in its trie", object));
190 #if VM_NRESERVLEVEL > 0
191 	KASSERT(LIST_EMPTY(&object->rvq),
192 	    ("object %p has reservations",
193 	    object));
194 #endif
195 	KASSERT(object->paging_in_progress == 0,
196 	    ("object %p paging_in_progress = %d",
197 	    object, object->paging_in_progress));
198 	KASSERT(object->resident_page_count == 0,
199 	    ("object %p resident_page_count = %d",
200 	    object, object->resident_page_count));
201 	KASSERT(object->shadow_count == 0,
202 	    ("object %p shadow_count = %d",
203 	    object, object->shadow_count));
204 	KASSERT(object->type == OBJT_DEAD,
205 	    ("object %p has non-dead type %d",
206 	    object, object->type));
207 }
208 #endif
209 
210 static int
211 vm_object_zinit(void *mem, int size, int flags)
212 {
213 	vm_object_t object;
214 
215 	object = (vm_object_t)mem;
216 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
217 
218 	/* These are true for any object that has been freed */
219 	object->type = OBJT_DEAD;
220 	object->ref_count = 0;
221 	vm_radix_init(&object->rtree);
222 	object->paging_in_progress = 0;
223 	object->resident_page_count = 0;
224 	object->shadow_count = 0;
225 	object->flags = OBJ_DEAD;
226 
227 	mtx_lock(&vm_object_list_mtx);
228 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
229 	mtx_unlock(&vm_object_list_mtx);
230 	return (0);
231 }
232 
233 static void
234 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
235 {
236 
237 	TAILQ_INIT(&object->memq);
238 	LIST_INIT(&object->shadow_head);
239 
240 	object->type = type;
241 	if (type == OBJT_SWAP)
242 		pctrie_init(&object->un_pager.swp.swp_blks);
243 
244 	/*
245 	 * Ensure that swap_pager_swapoff() iteration over object_list
246 	 * sees up to date type and pctrie head if it observed
247 	 * non-dead object.
248 	 */
249 	atomic_thread_fence_rel();
250 
251 	switch (type) {
252 	case OBJT_DEAD:
253 		panic("_vm_object_allocate: can't create OBJT_DEAD");
254 	case OBJT_DEFAULT:
255 	case OBJT_SWAP:
256 		object->flags = OBJ_ONEMAPPING;
257 		break;
258 	case OBJT_DEVICE:
259 	case OBJT_SG:
260 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
261 		break;
262 	case OBJT_MGTDEVICE:
263 		object->flags = OBJ_FICTITIOUS;
264 		break;
265 	case OBJT_PHYS:
266 		object->flags = OBJ_UNMANAGED;
267 		break;
268 	case OBJT_VNODE:
269 		object->flags = 0;
270 		break;
271 	default:
272 		panic("_vm_object_allocate: type %d is undefined", type);
273 	}
274 	object->size = size;
275 	object->generation = 1;
276 	object->ref_count = 1;
277 	object->memattr = VM_MEMATTR_DEFAULT;
278 	object->cred = NULL;
279 	object->charge = 0;
280 	object->handle = NULL;
281 	object->backing_object = NULL;
282 	object->backing_object_offset = (vm_ooffset_t) 0;
283 #if VM_NRESERVLEVEL > 0
284 	LIST_INIT(&object->rvq);
285 #endif
286 	umtx_shm_object_init(object);
287 }
288 
289 /*
290  *	vm_object_init:
291  *
292  *	Initialize the VM objects module.
293  */
294 void
295 vm_object_init(void)
296 {
297 	TAILQ_INIT(&vm_object_list);
298 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
299 
300 	rw_init(&kernel_object->lock, "kernel vm object");
301 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
302 	    VM_MIN_KERNEL_ADDRESS), kernel_object);
303 #if VM_NRESERVLEVEL > 0
304 	kernel_object->flags |= OBJ_COLORED;
305 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
306 #endif
307 
308 	/*
309 	 * The lock portion of struct vm_object must be type stable due
310 	 * to vm_pageout_fallback_object_lock locking a vm object
311 	 * without holding any references to it.
312 	 */
313 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
314 #ifdef INVARIANTS
315 	    vm_object_zdtor,
316 #else
317 	    NULL,
318 #endif
319 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
320 
321 	vm_radix_zinit();
322 }
323 
324 void
325 vm_object_clear_flag(vm_object_t object, u_short bits)
326 {
327 
328 	VM_OBJECT_ASSERT_WLOCKED(object);
329 	object->flags &= ~bits;
330 }
331 
332 /*
333  *	Sets the default memory attribute for the specified object.  Pages
334  *	that are allocated to this object are by default assigned this memory
335  *	attribute.
336  *
337  *	Presently, this function must be called before any pages are allocated
338  *	to the object.  In the future, this requirement may be relaxed for
339  *	"default" and "swap" objects.
340  */
341 int
342 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
343 {
344 
345 	VM_OBJECT_ASSERT_WLOCKED(object);
346 	switch (object->type) {
347 	case OBJT_DEFAULT:
348 	case OBJT_DEVICE:
349 	case OBJT_MGTDEVICE:
350 	case OBJT_PHYS:
351 	case OBJT_SG:
352 	case OBJT_SWAP:
353 	case OBJT_VNODE:
354 		if (!TAILQ_EMPTY(&object->memq))
355 			return (KERN_FAILURE);
356 		break;
357 	case OBJT_DEAD:
358 		return (KERN_INVALID_ARGUMENT);
359 	default:
360 		panic("vm_object_set_memattr: object %p is of undefined type",
361 		    object);
362 	}
363 	object->memattr = memattr;
364 	return (KERN_SUCCESS);
365 }
366 
367 void
368 vm_object_pip_add(vm_object_t object, short i)
369 {
370 
371 	VM_OBJECT_ASSERT_WLOCKED(object);
372 	object->paging_in_progress += i;
373 }
374 
375 void
376 vm_object_pip_subtract(vm_object_t object, short i)
377 {
378 
379 	VM_OBJECT_ASSERT_WLOCKED(object);
380 	object->paging_in_progress -= i;
381 }
382 
383 void
384 vm_object_pip_wakeup(vm_object_t object)
385 {
386 
387 	VM_OBJECT_ASSERT_WLOCKED(object);
388 	object->paging_in_progress--;
389 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
390 		vm_object_clear_flag(object, OBJ_PIPWNT);
391 		wakeup(object);
392 	}
393 }
394 
395 void
396 vm_object_pip_wakeupn(vm_object_t object, short i)
397 {
398 
399 	VM_OBJECT_ASSERT_WLOCKED(object);
400 	if (i)
401 		object->paging_in_progress -= i;
402 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
403 		vm_object_clear_flag(object, OBJ_PIPWNT);
404 		wakeup(object);
405 	}
406 }
407 
408 void
409 vm_object_pip_wait(vm_object_t object, char *waitid)
410 {
411 
412 	VM_OBJECT_ASSERT_WLOCKED(object);
413 	while (object->paging_in_progress) {
414 		object->flags |= OBJ_PIPWNT;
415 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
416 	}
417 }
418 
419 /*
420  *	vm_object_allocate:
421  *
422  *	Returns a new object with the given size.
423  */
424 vm_object_t
425 vm_object_allocate(objtype_t type, vm_pindex_t size)
426 {
427 	vm_object_t object;
428 
429 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
430 	_vm_object_allocate(type, size, object);
431 	return (object);
432 }
433 
434 
435 /*
436  *	vm_object_reference:
437  *
438  *	Gets another reference to the given object.  Note: OBJ_DEAD
439  *	objects can be referenced during final cleaning.
440  */
441 void
442 vm_object_reference(vm_object_t object)
443 {
444 	if (object == NULL)
445 		return;
446 	VM_OBJECT_WLOCK(object);
447 	vm_object_reference_locked(object);
448 	VM_OBJECT_WUNLOCK(object);
449 }
450 
451 /*
452  *	vm_object_reference_locked:
453  *
454  *	Gets another reference to the given object.
455  *
456  *	The object must be locked.
457  */
458 void
459 vm_object_reference_locked(vm_object_t object)
460 {
461 	struct vnode *vp;
462 
463 	VM_OBJECT_ASSERT_WLOCKED(object);
464 	object->ref_count++;
465 	if (object->type == OBJT_VNODE) {
466 		vp = object->handle;
467 		vref(vp);
468 	}
469 }
470 
471 /*
472  * Handle deallocating an object of type OBJT_VNODE.
473  */
474 static void
475 vm_object_vndeallocate(vm_object_t object)
476 {
477 	struct vnode *vp = (struct vnode *) object->handle;
478 
479 	VM_OBJECT_ASSERT_WLOCKED(object);
480 	KASSERT(object->type == OBJT_VNODE,
481 	    ("vm_object_vndeallocate: not a vnode object"));
482 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
483 #ifdef INVARIANTS
484 	if (object->ref_count == 0) {
485 		vn_printf(vp, "vm_object_vndeallocate ");
486 		panic("vm_object_vndeallocate: bad object reference count");
487 	}
488 #endif
489 
490 	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
491 		umtx_shm_object_terminated(object);
492 
493 	/*
494 	 * The test for text of vp vnode does not need a bypass to
495 	 * reach right VV_TEXT there, since it is obtained from
496 	 * object->handle.
497 	 */
498 	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
499 		object->ref_count--;
500 		VM_OBJECT_WUNLOCK(object);
501 		/* vrele may need the vnode lock. */
502 		vrele(vp);
503 	} else {
504 		vhold(vp);
505 		VM_OBJECT_WUNLOCK(object);
506 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
507 		vdrop(vp);
508 		VM_OBJECT_WLOCK(object);
509 		object->ref_count--;
510 		if (object->type == OBJT_DEAD) {
511 			VM_OBJECT_WUNLOCK(object);
512 			VOP_UNLOCK(vp, 0);
513 		} else {
514 			if (object->ref_count == 0)
515 				VOP_UNSET_TEXT(vp);
516 			VM_OBJECT_WUNLOCK(object);
517 			vput(vp);
518 		}
519 	}
520 }
521 
522 /*
523  *	vm_object_deallocate:
524  *
525  *	Release a reference to the specified object,
526  *	gained either through a vm_object_allocate
527  *	or a vm_object_reference call.  When all references
528  *	are gone, storage associated with this object
529  *	may be relinquished.
530  *
531  *	No object may be locked.
532  */
533 void
534 vm_object_deallocate(vm_object_t object)
535 {
536 	vm_object_t temp;
537 	struct vnode *vp;
538 
539 	while (object != NULL) {
540 		VM_OBJECT_WLOCK(object);
541 		if (object->type == OBJT_VNODE) {
542 			vm_object_vndeallocate(object);
543 			return;
544 		}
545 
546 		KASSERT(object->ref_count != 0,
547 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
548 
549 		/*
550 		 * If the reference count goes to 0 we start calling
551 		 * vm_object_terminate() on the object chain.
552 		 * A ref count of 1 may be a special case depending on the
553 		 * shadow count being 0 or 1.
554 		 */
555 		object->ref_count--;
556 		if (object->ref_count > 1) {
557 			VM_OBJECT_WUNLOCK(object);
558 			return;
559 		} else if (object->ref_count == 1) {
560 			if (object->type == OBJT_SWAP &&
561 			    (object->flags & OBJ_TMPFS) != 0) {
562 				vp = object->un_pager.swp.swp_tmpfs;
563 				vhold(vp);
564 				VM_OBJECT_WUNLOCK(object);
565 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
566 				VM_OBJECT_WLOCK(object);
567 				if (object->type == OBJT_DEAD ||
568 				    object->ref_count != 1) {
569 					VM_OBJECT_WUNLOCK(object);
570 					VOP_UNLOCK(vp, 0);
571 					vdrop(vp);
572 					return;
573 				}
574 				if ((object->flags & OBJ_TMPFS) != 0)
575 					VOP_UNSET_TEXT(vp);
576 				VOP_UNLOCK(vp, 0);
577 				vdrop(vp);
578 			}
579 			if (object->shadow_count == 0 &&
580 			    object->handle == NULL &&
581 			    (object->type == OBJT_DEFAULT ||
582 			    (object->type == OBJT_SWAP &&
583 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
584 				vm_object_set_flag(object, OBJ_ONEMAPPING);
585 			} else if ((object->shadow_count == 1) &&
586 			    (object->handle == NULL) &&
587 			    (object->type == OBJT_DEFAULT ||
588 			     object->type == OBJT_SWAP)) {
589 				vm_object_t robject;
590 
591 				robject = LIST_FIRST(&object->shadow_head);
592 				KASSERT(robject != NULL,
593 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
594 					 object->ref_count,
595 					 object->shadow_count));
596 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
597 				    ("shadowed tmpfs v_object %p", object));
598 				if (!VM_OBJECT_TRYWLOCK(robject)) {
599 					/*
600 					 * Avoid a potential deadlock.
601 					 */
602 					object->ref_count++;
603 					VM_OBJECT_WUNLOCK(object);
604 					/*
605 					 * More likely than not the thread
606 					 * holding robject's lock has lower
607 					 * priority than the current thread.
608 					 * Let the lower priority thread run.
609 					 */
610 					pause("vmo_de", 1);
611 					continue;
612 				}
613 				/*
614 				 * Collapse object into its shadow unless its
615 				 * shadow is dead.  In that case, object will
616 				 * be deallocated by the thread that is
617 				 * deallocating its shadow.
618 				 */
619 				if ((robject->flags & OBJ_DEAD) == 0 &&
620 				    (robject->handle == NULL) &&
621 				    (robject->type == OBJT_DEFAULT ||
622 				     robject->type == OBJT_SWAP)) {
623 
624 					robject->ref_count++;
625 retry:
626 					if (robject->paging_in_progress) {
627 						VM_OBJECT_WUNLOCK(object);
628 						vm_object_pip_wait(robject,
629 						    "objde1");
630 						temp = robject->backing_object;
631 						if (object == temp) {
632 							VM_OBJECT_WLOCK(object);
633 							goto retry;
634 						}
635 					} else if (object->paging_in_progress) {
636 						VM_OBJECT_WUNLOCK(robject);
637 						object->flags |= OBJ_PIPWNT;
638 						VM_OBJECT_SLEEP(object, object,
639 						    PDROP | PVM, "objde2", 0);
640 						VM_OBJECT_WLOCK(robject);
641 						temp = robject->backing_object;
642 						if (object == temp) {
643 							VM_OBJECT_WLOCK(object);
644 							goto retry;
645 						}
646 					} else
647 						VM_OBJECT_WUNLOCK(object);
648 
649 					if (robject->ref_count == 1) {
650 						robject->ref_count--;
651 						object = robject;
652 						goto doterm;
653 					}
654 					object = robject;
655 					vm_object_collapse(object);
656 					VM_OBJECT_WUNLOCK(object);
657 					continue;
658 				}
659 				VM_OBJECT_WUNLOCK(robject);
660 			}
661 			VM_OBJECT_WUNLOCK(object);
662 			return;
663 		}
664 doterm:
665 		umtx_shm_object_terminated(object);
666 		temp = object->backing_object;
667 		if (temp != NULL) {
668 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
669 			    ("shadowed tmpfs v_object 2 %p", object));
670 			VM_OBJECT_WLOCK(temp);
671 			LIST_REMOVE(object, shadow_list);
672 			temp->shadow_count--;
673 			VM_OBJECT_WUNLOCK(temp);
674 			object->backing_object = NULL;
675 		}
676 		/*
677 		 * Don't double-terminate, we could be in a termination
678 		 * recursion due to the terminate having to sync data
679 		 * to disk.
680 		 */
681 		if ((object->flags & OBJ_DEAD) == 0)
682 			vm_object_terminate(object);
683 		else
684 			VM_OBJECT_WUNLOCK(object);
685 		object = temp;
686 	}
687 }
688 
689 /*
690  *	vm_object_destroy removes the object from the global object list
691  *      and frees the space for the object.
692  */
693 void
694 vm_object_destroy(vm_object_t object)
695 {
696 
697 	/*
698 	 * Release the allocation charge.
699 	 */
700 	if (object->cred != NULL) {
701 		swap_release_by_cred(object->charge, object->cred);
702 		object->charge = 0;
703 		crfree(object->cred);
704 		object->cred = NULL;
705 	}
706 
707 	/*
708 	 * Free the space for the object.
709 	 */
710 	uma_zfree(obj_zone, object);
711 }
712 
713 /*
714  *	vm_object_terminate_pages removes any remaining pageable pages
715  *	from the object and resets the object to an empty state.
716  */
717 static void
718 vm_object_terminate_pages(vm_object_t object)
719 {
720 	vm_page_t p, p_next;
721 	struct mtx *mtx, *mtx1;
722 	struct vm_pagequeue *pq, *pq1;
723 	int dequeued;
724 
725 	VM_OBJECT_ASSERT_WLOCKED(object);
726 
727 	mtx = NULL;
728 	pq = NULL;
729 
730 	/*
731 	 * Free any remaining pageable pages.  This also removes them from the
732 	 * paging queues.  However, don't free wired pages, just remove them
733 	 * from the object.  Rather than incrementally removing each page from
734 	 * the object, the page and object are reset to any empty state.
735 	 */
736 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
737 		vm_page_assert_unbusied(p);
738 		if ((object->flags & OBJ_UNMANAGED) == 0) {
739 			/*
740 			 * vm_page_free_prep() only needs the page
741 			 * lock for managed pages.
742 			 */
743 			mtx1 = vm_page_lockptr(p);
744 			if (mtx1 != mtx) {
745 				if (mtx != NULL)
746 					mtx_unlock(mtx);
747 				if (pq != NULL) {
748 					vm_pagequeue_cnt_add(pq, dequeued);
749 					vm_pagequeue_unlock(pq);
750 					pq = NULL;
751 				}
752 				mtx = mtx1;
753 				mtx_lock(mtx);
754 			}
755 		}
756 		p->object = NULL;
757 		if (p->wire_count != 0)
758 			goto unlist;
759 		VM_CNT_INC(v_pfree);
760 		p->flags &= ~PG_ZERO;
761 		if (p->queue != PQ_NONE) {
762 			KASSERT(p->queue < PQ_COUNT, ("vm_object_terminate: "
763 			    "page %p is not queued", p));
764 			pq1 = vm_page_pagequeue(p);
765 			if (pq != pq1) {
766 				if (pq != NULL) {
767 					vm_pagequeue_cnt_add(pq, dequeued);
768 					vm_pagequeue_unlock(pq);
769 				}
770 				pq = pq1;
771 				vm_pagequeue_lock(pq);
772 				dequeued = 0;
773 			}
774 			p->queue = PQ_NONE;
775 			TAILQ_REMOVE(&pq->pq_pl, p, plinks.q);
776 			dequeued--;
777 		}
778 		if (vm_page_free_prep(p, true))
779 			continue;
780 unlist:
781 		TAILQ_REMOVE(&object->memq, p, listq);
782 	}
783 	if (pq != NULL) {
784 		vm_pagequeue_cnt_add(pq, dequeued);
785 		vm_pagequeue_unlock(pq);
786 	}
787 	if (mtx != NULL)
788 		mtx_unlock(mtx);
789 
790 	vm_page_free_phys_pglist(&object->memq);
791 
792 	/*
793 	 * If the object contained any pages, then reset it to an empty state.
794 	 * None of the object's fields, including "resident_page_count", were
795 	 * modified by the preceding loop.
796 	 */
797 	if (object->resident_page_count != 0) {
798 		vm_radix_reclaim_allnodes(&object->rtree);
799 		TAILQ_INIT(&object->memq);
800 		object->resident_page_count = 0;
801 		if (object->type == OBJT_VNODE)
802 			vdrop(object->handle);
803 	}
804 }
805 
806 /*
807  *	vm_object_terminate actually destroys the specified object, freeing
808  *	up all previously used resources.
809  *
810  *	The object must be locked.
811  *	This routine may block.
812  */
813 void
814 vm_object_terminate(vm_object_t object)
815 {
816 
817 	VM_OBJECT_ASSERT_WLOCKED(object);
818 
819 	/*
820 	 * Make sure no one uses us.
821 	 */
822 	vm_object_set_flag(object, OBJ_DEAD);
823 
824 	/*
825 	 * wait for the pageout daemon to be done with the object
826 	 */
827 	vm_object_pip_wait(object, "objtrm");
828 
829 	KASSERT(!object->paging_in_progress,
830 		("vm_object_terminate: pageout in progress"));
831 
832 	/*
833 	 * Clean and free the pages, as appropriate. All references to the
834 	 * object are gone, so we don't need to lock it.
835 	 */
836 	if (object->type == OBJT_VNODE) {
837 		struct vnode *vp = (struct vnode *)object->handle;
838 
839 		/*
840 		 * Clean pages and flush buffers.
841 		 */
842 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
843 		VM_OBJECT_WUNLOCK(object);
844 
845 		vinvalbuf(vp, V_SAVE, 0, 0);
846 
847 		BO_LOCK(&vp->v_bufobj);
848 		vp->v_bufobj.bo_flag |= BO_DEAD;
849 		BO_UNLOCK(&vp->v_bufobj);
850 
851 		VM_OBJECT_WLOCK(object);
852 	}
853 
854 	KASSERT(object->ref_count == 0,
855 		("vm_object_terminate: object with references, ref_count=%d",
856 		object->ref_count));
857 
858 	if ((object->flags & OBJ_PG_DTOR) == 0)
859 		vm_object_terminate_pages(object);
860 
861 #if VM_NRESERVLEVEL > 0
862 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
863 		vm_reserv_break_all(object);
864 #endif
865 
866 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
867 	    object->type == OBJT_SWAP,
868 	    ("%s: non-swap obj %p has cred", __func__, object));
869 
870 	/*
871 	 * Let the pager know object is dead.
872 	 */
873 	vm_pager_deallocate(object);
874 	VM_OBJECT_WUNLOCK(object);
875 
876 	vm_object_destroy(object);
877 }
878 
879 /*
880  * Make the page read-only so that we can clear the object flags.  However, if
881  * this is a nosync mmap then the object is likely to stay dirty so do not
882  * mess with the page and do not clear the object flags.  Returns TRUE if the
883  * page should be flushed, and FALSE otherwise.
884  */
885 static boolean_t
886 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
887 {
888 
889 	/*
890 	 * If we have been asked to skip nosync pages and this is a
891 	 * nosync page, skip it.  Note that the object flags were not
892 	 * cleared in this case so we do not have to set them.
893 	 */
894 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
895 		*clearobjflags = FALSE;
896 		return (FALSE);
897 	} else {
898 		pmap_remove_write(p);
899 		return (p->dirty != 0);
900 	}
901 }
902 
903 /*
904  *	vm_object_page_clean
905  *
906  *	Clean all dirty pages in the specified range of object.  Leaves page
907  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
908  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
909  *	leaving the object dirty.
910  *
911  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
912  *	synchronous clustering mode implementation.
913  *
914  *	Odd semantics: if start == end, we clean everything.
915  *
916  *	The object must be locked.
917  *
918  *	Returns FALSE if some page from the range was not written, as
919  *	reported by the pager, and TRUE otherwise.
920  */
921 boolean_t
922 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
923     int flags)
924 {
925 	vm_page_t np, p;
926 	vm_pindex_t pi, tend, tstart;
927 	int curgeneration, n, pagerflags;
928 	boolean_t clearobjflags, eio, res;
929 
930 	VM_OBJECT_ASSERT_WLOCKED(object);
931 
932 	/*
933 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
934 	 * objects.  The check below prevents the function from
935 	 * operating on non-vnode objects.
936 	 */
937 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
938 	    object->resident_page_count == 0)
939 		return (TRUE);
940 
941 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
942 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
943 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
944 
945 	tstart = OFF_TO_IDX(start);
946 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
947 	clearobjflags = tstart == 0 && tend >= object->size;
948 	res = TRUE;
949 
950 rescan:
951 	curgeneration = object->generation;
952 
953 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
954 		pi = p->pindex;
955 		if (pi >= tend)
956 			break;
957 		np = TAILQ_NEXT(p, listq);
958 		if (p->valid == 0)
959 			continue;
960 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
961 			if (object->generation != curgeneration) {
962 				if ((flags & OBJPC_SYNC) != 0)
963 					goto rescan;
964 				else
965 					clearobjflags = FALSE;
966 			}
967 			np = vm_page_find_least(object, pi);
968 			continue;
969 		}
970 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
971 			continue;
972 
973 		n = vm_object_page_collect_flush(object, p, pagerflags,
974 		    flags, &clearobjflags, &eio);
975 		if (eio) {
976 			res = FALSE;
977 			clearobjflags = FALSE;
978 		}
979 		if (object->generation != curgeneration) {
980 			if ((flags & OBJPC_SYNC) != 0)
981 				goto rescan;
982 			else
983 				clearobjflags = FALSE;
984 		}
985 
986 		/*
987 		 * If the VOP_PUTPAGES() did a truncated write, so
988 		 * that even the first page of the run is not fully
989 		 * written, vm_pageout_flush() returns 0 as the run
990 		 * length.  Since the condition that caused truncated
991 		 * write may be permanent, e.g. exhausted free space,
992 		 * accepting n == 0 would cause an infinite loop.
993 		 *
994 		 * Forwarding the iterator leaves the unwritten page
995 		 * behind, but there is not much we can do there if
996 		 * filesystem refuses to write it.
997 		 */
998 		if (n == 0) {
999 			n = 1;
1000 			clearobjflags = FALSE;
1001 		}
1002 		np = vm_page_find_least(object, pi + n);
1003 	}
1004 #if 0
1005 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1006 #endif
1007 
1008 	if (clearobjflags)
1009 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
1010 	return (res);
1011 }
1012 
1013 static int
1014 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1015     int flags, boolean_t *clearobjflags, boolean_t *eio)
1016 {
1017 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
1018 	int count, i, mreq, runlen;
1019 
1020 	vm_page_lock_assert(p, MA_NOTOWNED);
1021 	VM_OBJECT_ASSERT_WLOCKED(object);
1022 
1023 	count = 1;
1024 	mreq = 0;
1025 
1026 	for (tp = p; count < vm_pageout_page_count; count++) {
1027 		tp = vm_page_next(tp);
1028 		if (tp == NULL || vm_page_busied(tp))
1029 			break;
1030 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1031 			break;
1032 	}
1033 
1034 	for (p_first = p; count < vm_pageout_page_count; count++) {
1035 		tp = vm_page_prev(p_first);
1036 		if (tp == NULL || vm_page_busied(tp))
1037 			break;
1038 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1039 			break;
1040 		p_first = tp;
1041 		mreq++;
1042 	}
1043 
1044 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1045 		ma[i] = tp;
1046 
1047 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1048 	return (runlen);
1049 }
1050 
1051 /*
1052  * Note that there is absolutely no sense in writing out
1053  * anonymous objects, so we track down the vnode object
1054  * to write out.
1055  * We invalidate (remove) all pages from the address space
1056  * for semantic correctness.
1057  *
1058  * If the backing object is a device object with unmanaged pages, then any
1059  * mappings to the specified range of pages must be removed before this
1060  * function is called.
1061  *
1062  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1063  * may start out with a NULL object.
1064  */
1065 boolean_t
1066 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1067     boolean_t syncio, boolean_t invalidate)
1068 {
1069 	vm_object_t backing_object;
1070 	struct vnode *vp;
1071 	struct mount *mp;
1072 	int error, flags, fsync_after;
1073 	boolean_t res;
1074 
1075 	if (object == NULL)
1076 		return (TRUE);
1077 	res = TRUE;
1078 	error = 0;
1079 	VM_OBJECT_WLOCK(object);
1080 	while ((backing_object = object->backing_object) != NULL) {
1081 		VM_OBJECT_WLOCK(backing_object);
1082 		offset += object->backing_object_offset;
1083 		VM_OBJECT_WUNLOCK(object);
1084 		object = backing_object;
1085 		if (object->size < OFF_TO_IDX(offset + size))
1086 			size = IDX_TO_OFF(object->size) - offset;
1087 	}
1088 	/*
1089 	 * Flush pages if writing is allowed, invalidate them
1090 	 * if invalidation requested.  Pages undergoing I/O
1091 	 * will be ignored by vm_object_page_remove().
1092 	 *
1093 	 * We cannot lock the vnode and then wait for paging
1094 	 * to complete without deadlocking against vm_fault.
1095 	 * Instead we simply call vm_object_page_remove() and
1096 	 * allow it to block internally on a page-by-page
1097 	 * basis when it encounters pages undergoing async
1098 	 * I/O.
1099 	 */
1100 	if (object->type == OBJT_VNODE &&
1101 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1102 	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1103 		VM_OBJECT_WUNLOCK(object);
1104 		(void) vn_start_write(vp, &mp, V_WAIT);
1105 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1106 		if (syncio && !invalidate && offset == 0 &&
1107 		    atop(size) == object->size) {
1108 			/*
1109 			 * If syncing the whole mapping of the file,
1110 			 * it is faster to schedule all the writes in
1111 			 * async mode, also allowing the clustering,
1112 			 * and then wait for i/o to complete.
1113 			 */
1114 			flags = 0;
1115 			fsync_after = TRUE;
1116 		} else {
1117 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1118 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1119 			fsync_after = FALSE;
1120 		}
1121 		VM_OBJECT_WLOCK(object);
1122 		res = vm_object_page_clean(object, offset, offset + size,
1123 		    flags);
1124 		VM_OBJECT_WUNLOCK(object);
1125 		if (fsync_after)
1126 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1127 		VOP_UNLOCK(vp, 0);
1128 		vn_finished_write(mp);
1129 		if (error != 0)
1130 			res = FALSE;
1131 		VM_OBJECT_WLOCK(object);
1132 	}
1133 	if ((object->type == OBJT_VNODE ||
1134 	     object->type == OBJT_DEVICE) && invalidate) {
1135 		if (object->type == OBJT_DEVICE)
1136 			/*
1137 			 * The option OBJPR_NOTMAPPED must be passed here
1138 			 * because vm_object_page_remove() cannot remove
1139 			 * unmanaged mappings.
1140 			 */
1141 			flags = OBJPR_NOTMAPPED;
1142 		else if (old_msync)
1143 			flags = 0;
1144 		else
1145 			flags = OBJPR_CLEANONLY;
1146 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1147 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1148 	}
1149 	VM_OBJECT_WUNLOCK(object);
1150 	return (res);
1151 }
1152 
1153 /*
1154  * Determine whether the given advice can be applied to the object.  Advice is
1155  * not applied to unmanaged pages since they never belong to page queues, and
1156  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1157  * have been mapped at most once.
1158  */
1159 static bool
1160 vm_object_advice_applies(vm_object_t object, int advice)
1161 {
1162 
1163 	if ((object->flags & OBJ_UNMANAGED) != 0)
1164 		return (false);
1165 	if (advice != MADV_FREE)
1166 		return (true);
1167 	return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1168 	    (object->flags & OBJ_ONEMAPPING) != 0);
1169 }
1170 
1171 static void
1172 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1173     vm_size_t size)
1174 {
1175 
1176 	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1177 		swap_pager_freespace(object, pindex, size);
1178 }
1179 
1180 /*
1181  *	vm_object_madvise:
1182  *
1183  *	Implements the madvise function at the object/page level.
1184  *
1185  *	MADV_WILLNEED	(any object)
1186  *
1187  *	    Activate the specified pages if they are resident.
1188  *
1189  *	MADV_DONTNEED	(any object)
1190  *
1191  *	    Deactivate the specified pages if they are resident.
1192  *
1193  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1194  *			 OBJ_ONEMAPPING only)
1195  *
1196  *	    Deactivate and clean the specified pages if they are
1197  *	    resident.  This permits the process to reuse the pages
1198  *	    without faulting or the kernel to reclaim the pages
1199  *	    without I/O.
1200  */
1201 void
1202 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1203     int advice)
1204 {
1205 	vm_pindex_t tpindex;
1206 	vm_object_t backing_object, tobject;
1207 	vm_page_t m, tm;
1208 
1209 	if (object == NULL)
1210 		return;
1211 
1212 relookup:
1213 	VM_OBJECT_WLOCK(object);
1214 	if (!vm_object_advice_applies(object, advice)) {
1215 		VM_OBJECT_WUNLOCK(object);
1216 		return;
1217 	}
1218 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1219 		tobject = object;
1220 
1221 		/*
1222 		 * If the next page isn't resident in the top-level object, we
1223 		 * need to search the shadow chain.  When applying MADV_FREE, we
1224 		 * take care to release any swap space used to store
1225 		 * non-resident pages.
1226 		 */
1227 		if (m == NULL || pindex < m->pindex) {
1228 			/*
1229 			 * Optimize a common case: if the top-level object has
1230 			 * no backing object, we can skip over the non-resident
1231 			 * range in constant time.
1232 			 */
1233 			if (object->backing_object == NULL) {
1234 				tpindex = (m != NULL && m->pindex < end) ?
1235 				    m->pindex : end;
1236 				vm_object_madvise_freespace(object, advice,
1237 				    pindex, tpindex - pindex);
1238 				if ((pindex = tpindex) == end)
1239 					break;
1240 				goto next_page;
1241 			}
1242 
1243 			tpindex = pindex;
1244 			do {
1245 				vm_object_madvise_freespace(tobject, advice,
1246 				    tpindex, 1);
1247 				/*
1248 				 * Prepare to search the next object in the
1249 				 * chain.
1250 				 */
1251 				backing_object = tobject->backing_object;
1252 				if (backing_object == NULL)
1253 					goto next_pindex;
1254 				VM_OBJECT_WLOCK(backing_object);
1255 				tpindex +=
1256 				    OFF_TO_IDX(tobject->backing_object_offset);
1257 				if (tobject != object)
1258 					VM_OBJECT_WUNLOCK(tobject);
1259 				tobject = backing_object;
1260 				if (!vm_object_advice_applies(tobject, advice))
1261 					goto next_pindex;
1262 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1263 			    NULL);
1264 		} else {
1265 next_page:
1266 			tm = m;
1267 			m = TAILQ_NEXT(m, listq);
1268 		}
1269 
1270 		/*
1271 		 * If the page is not in a normal state, skip it.
1272 		 */
1273 		if (tm->valid != VM_PAGE_BITS_ALL)
1274 			goto next_pindex;
1275 		vm_page_lock(tm);
1276 		if (tm->hold_count != 0 || tm->wire_count != 0) {
1277 			vm_page_unlock(tm);
1278 			goto next_pindex;
1279 		}
1280 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1281 		    ("vm_object_madvise: page %p is fictitious", tm));
1282 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1283 		    ("vm_object_madvise: page %p is not managed", tm));
1284 		if (vm_page_busied(tm)) {
1285 			if (object != tobject)
1286 				VM_OBJECT_WUNLOCK(tobject);
1287 			VM_OBJECT_WUNLOCK(object);
1288 			if (advice == MADV_WILLNEED) {
1289 				/*
1290 				 * Reference the page before unlocking and
1291 				 * sleeping so that the page daemon is less
1292 				 * likely to reclaim it.
1293 				 */
1294 				vm_page_aflag_set(tm, PGA_REFERENCED);
1295 			}
1296 			vm_page_busy_sleep(tm, "madvpo", false);
1297   			goto relookup;
1298 		}
1299 		vm_page_advise(tm, advice);
1300 		vm_page_unlock(tm);
1301 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1302 next_pindex:
1303 		if (tobject != object)
1304 			VM_OBJECT_WUNLOCK(tobject);
1305 	}
1306 	VM_OBJECT_WUNLOCK(object);
1307 }
1308 
1309 /*
1310  *	vm_object_shadow:
1311  *
1312  *	Create a new object which is backed by the
1313  *	specified existing object range.  The source
1314  *	object reference is deallocated.
1315  *
1316  *	The new object and offset into that object
1317  *	are returned in the source parameters.
1318  */
1319 void
1320 vm_object_shadow(
1321 	vm_object_t *object,	/* IN/OUT */
1322 	vm_ooffset_t *offset,	/* IN/OUT */
1323 	vm_size_t length)
1324 {
1325 	vm_object_t source;
1326 	vm_object_t result;
1327 
1328 	source = *object;
1329 
1330 	/*
1331 	 * Don't create the new object if the old object isn't shared.
1332 	 */
1333 	if (source != NULL) {
1334 		VM_OBJECT_WLOCK(source);
1335 		if (source->ref_count == 1 &&
1336 		    source->handle == NULL &&
1337 		    (source->type == OBJT_DEFAULT ||
1338 		     source->type == OBJT_SWAP)) {
1339 			VM_OBJECT_WUNLOCK(source);
1340 			return;
1341 		}
1342 		VM_OBJECT_WUNLOCK(source);
1343 	}
1344 
1345 	/*
1346 	 * Allocate a new object with the given length.
1347 	 */
1348 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1349 
1350 	/*
1351 	 * The new object shadows the source object, adding a reference to it.
1352 	 * Our caller changes his reference to point to the new object,
1353 	 * removing a reference to the source object.  Net result: no change
1354 	 * of reference count.
1355 	 *
1356 	 * Try to optimize the result object's page color when shadowing
1357 	 * in order to maintain page coloring consistency in the combined
1358 	 * shadowed object.
1359 	 */
1360 	result->backing_object = source;
1361 	/*
1362 	 * Store the offset into the source object, and fix up the offset into
1363 	 * the new object.
1364 	 */
1365 	result->backing_object_offset = *offset;
1366 	if (source != NULL) {
1367 		VM_OBJECT_WLOCK(source);
1368 		result->domain = source->domain;
1369 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1370 		source->shadow_count++;
1371 #if VM_NRESERVLEVEL > 0
1372 		result->flags |= source->flags & OBJ_COLORED;
1373 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1374 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1375 #endif
1376 		VM_OBJECT_WUNLOCK(source);
1377 	}
1378 
1379 
1380 	/*
1381 	 * Return the new things
1382 	 */
1383 	*offset = 0;
1384 	*object = result;
1385 }
1386 
1387 /*
1388  *	vm_object_split:
1389  *
1390  * Split the pages in a map entry into a new object.  This affords
1391  * easier removal of unused pages, and keeps object inheritance from
1392  * being a negative impact on memory usage.
1393  */
1394 void
1395 vm_object_split(vm_map_entry_t entry)
1396 {
1397 	vm_page_t m, m_next;
1398 	vm_object_t orig_object, new_object, source;
1399 	vm_pindex_t idx, offidxstart;
1400 	vm_size_t size;
1401 
1402 	orig_object = entry->object.vm_object;
1403 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1404 		return;
1405 	if (orig_object->ref_count <= 1)
1406 		return;
1407 	VM_OBJECT_WUNLOCK(orig_object);
1408 
1409 	offidxstart = OFF_TO_IDX(entry->offset);
1410 	size = atop(entry->end - entry->start);
1411 
1412 	/*
1413 	 * If swap_pager_copy() is later called, it will convert new_object
1414 	 * into a swap object.
1415 	 */
1416 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1417 
1418 	/*
1419 	 * At this point, the new object is still private, so the order in
1420 	 * which the original and new objects are locked does not matter.
1421 	 */
1422 	VM_OBJECT_WLOCK(new_object);
1423 	VM_OBJECT_WLOCK(orig_object);
1424 	new_object->domain = orig_object->domain;
1425 	source = orig_object->backing_object;
1426 	if (source != NULL) {
1427 		VM_OBJECT_WLOCK(source);
1428 		if ((source->flags & OBJ_DEAD) != 0) {
1429 			VM_OBJECT_WUNLOCK(source);
1430 			VM_OBJECT_WUNLOCK(orig_object);
1431 			VM_OBJECT_WUNLOCK(new_object);
1432 			vm_object_deallocate(new_object);
1433 			VM_OBJECT_WLOCK(orig_object);
1434 			return;
1435 		}
1436 		LIST_INSERT_HEAD(&source->shadow_head,
1437 				  new_object, shadow_list);
1438 		source->shadow_count++;
1439 		vm_object_reference_locked(source);	/* for new_object */
1440 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1441 		VM_OBJECT_WUNLOCK(source);
1442 		new_object->backing_object_offset =
1443 			orig_object->backing_object_offset + entry->offset;
1444 		new_object->backing_object = source;
1445 	}
1446 	if (orig_object->cred != NULL) {
1447 		new_object->cred = orig_object->cred;
1448 		crhold(orig_object->cred);
1449 		new_object->charge = ptoa(size);
1450 		KASSERT(orig_object->charge >= ptoa(size),
1451 		    ("orig_object->charge < 0"));
1452 		orig_object->charge -= ptoa(size);
1453 	}
1454 retry:
1455 	m = vm_page_find_least(orig_object, offidxstart);
1456 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1457 	    m = m_next) {
1458 		m_next = TAILQ_NEXT(m, listq);
1459 
1460 		/*
1461 		 * We must wait for pending I/O to complete before we can
1462 		 * rename the page.
1463 		 *
1464 		 * We do not have to VM_PROT_NONE the page as mappings should
1465 		 * not be changed by this operation.
1466 		 */
1467 		if (vm_page_busied(m)) {
1468 			VM_OBJECT_WUNLOCK(new_object);
1469 			vm_page_lock(m);
1470 			VM_OBJECT_WUNLOCK(orig_object);
1471 			vm_page_busy_sleep(m, "spltwt", false);
1472 			VM_OBJECT_WLOCK(orig_object);
1473 			VM_OBJECT_WLOCK(new_object);
1474 			goto retry;
1475 		}
1476 
1477 		/* vm_page_rename() will dirty the page. */
1478 		if (vm_page_rename(m, new_object, idx)) {
1479 			VM_OBJECT_WUNLOCK(new_object);
1480 			VM_OBJECT_WUNLOCK(orig_object);
1481 			vm_radix_wait();
1482 			VM_OBJECT_WLOCK(orig_object);
1483 			VM_OBJECT_WLOCK(new_object);
1484 			goto retry;
1485 		}
1486 #if VM_NRESERVLEVEL > 0
1487 		/*
1488 		 * If some of the reservation's allocated pages remain with
1489 		 * the original object, then transferring the reservation to
1490 		 * the new object is neither particularly beneficial nor
1491 		 * particularly harmful as compared to leaving the reservation
1492 		 * with the original object.  If, however, all of the
1493 		 * reservation's allocated pages are transferred to the new
1494 		 * object, then transferring the reservation is typically
1495 		 * beneficial.  Determining which of these two cases applies
1496 		 * would be more costly than unconditionally renaming the
1497 		 * reservation.
1498 		 */
1499 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1500 #endif
1501 		if (orig_object->type == OBJT_SWAP)
1502 			vm_page_xbusy(m);
1503 	}
1504 	if (orig_object->type == OBJT_SWAP) {
1505 		/*
1506 		 * swap_pager_copy() can sleep, in which case the orig_object's
1507 		 * and new_object's locks are released and reacquired.
1508 		 */
1509 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1510 		TAILQ_FOREACH(m, &new_object->memq, listq)
1511 			vm_page_xunbusy(m);
1512 	}
1513 	VM_OBJECT_WUNLOCK(orig_object);
1514 	VM_OBJECT_WUNLOCK(new_object);
1515 	entry->object.vm_object = new_object;
1516 	entry->offset = 0LL;
1517 	vm_object_deallocate(orig_object);
1518 	VM_OBJECT_WLOCK(new_object);
1519 }
1520 
1521 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1522 #define	OBSC_COLLAPSE_WAIT	0x0004
1523 
1524 static vm_page_t
1525 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1526     int op)
1527 {
1528 	vm_object_t backing_object;
1529 
1530 	VM_OBJECT_ASSERT_WLOCKED(object);
1531 	backing_object = object->backing_object;
1532 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1533 
1534 	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1535 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1536 	    ("invalid ownership %p %p %p", p, object, backing_object));
1537 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1538 		return (next);
1539 	if (p != NULL)
1540 		vm_page_lock(p);
1541 	VM_OBJECT_WUNLOCK(object);
1542 	VM_OBJECT_WUNLOCK(backing_object);
1543 	/* The page is only NULL when rename fails. */
1544 	if (p == NULL)
1545 		vm_radix_wait();
1546 	else
1547 		vm_page_busy_sleep(p, "vmocol", false);
1548 	VM_OBJECT_WLOCK(object);
1549 	VM_OBJECT_WLOCK(backing_object);
1550 	return (TAILQ_FIRST(&backing_object->memq));
1551 }
1552 
1553 static bool
1554 vm_object_scan_all_shadowed(vm_object_t object)
1555 {
1556 	vm_object_t backing_object;
1557 	vm_page_t p, pp;
1558 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1559 
1560 	VM_OBJECT_ASSERT_WLOCKED(object);
1561 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1562 
1563 	backing_object = object->backing_object;
1564 
1565 	if (backing_object->type != OBJT_DEFAULT &&
1566 	    backing_object->type != OBJT_SWAP)
1567 		return (false);
1568 
1569 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1570 	p = vm_page_find_least(backing_object, pi);
1571 	ps = swap_pager_find_least(backing_object, pi);
1572 
1573 	/*
1574 	 * Only check pages inside the parent object's range and
1575 	 * inside the parent object's mapping of the backing object.
1576 	 */
1577 	for (;; pi++) {
1578 		if (p != NULL && p->pindex < pi)
1579 			p = TAILQ_NEXT(p, listq);
1580 		if (ps < pi)
1581 			ps = swap_pager_find_least(backing_object, pi);
1582 		if (p == NULL && ps >= backing_object->size)
1583 			break;
1584 		else if (p == NULL)
1585 			pi = ps;
1586 		else
1587 			pi = MIN(p->pindex, ps);
1588 
1589 		new_pindex = pi - backing_offset_index;
1590 		if (new_pindex >= object->size)
1591 			break;
1592 
1593 		/*
1594 		 * See if the parent has the page or if the parent's object
1595 		 * pager has the page.  If the parent has the page but the page
1596 		 * is not valid, the parent's object pager must have the page.
1597 		 *
1598 		 * If this fails, the parent does not completely shadow the
1599 		 * object and we might as well give up now.
1600 		 */
1601 		pp = vm_page_lookup(object, new_pindex);
1602 		if ((pp == NULL || pp->valid == 0) &&
1603 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1604 			return (false);
1605 	}
1606 	return (true);
1607 }
1608 
1609 static bool
1610 vm_object_collapse_scan(vm_object_t object, int op)
1611 {
1612 	vm_object_t backing_object;
1613 	vm_page_t next, p, pp;
1614 	vm_pindex_t backing_offset_index, new_pindex;
1615 
1616 	VM_OBJECT_ASSERT_WLOCKED(object);
1617 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1618 
1619 	backing_object = object->backing_object;
1620 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1621 
1622 	/*
1623 	 * Initial conditions
1624 	 */
1625 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1626 		vm_object_set_flag(backing_object, OBJ_DEAD);
1627 
1628 	/*
1629 	 * Our scan
1630 	 */
1631 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1632 		next = TAILQ_NEXT(p, listq);
1633 		new_pindex = p->pindex - backing_offset_index;
1634 
1635 		/*
1636 		 * Check for busy page
1637 		 */
1638 		if (vm_page_busied(p)) {
1639 			next = vm_object_collapse_scan_wait(object, p, next, op);
1640 			continue;
1641 		}
1642 
1643 		KASSERT(p->object == backing_object,
1644 		    ("vm_object_collapse_scan: object mismatch"));
1645 
1646 		if (p->pindex < backing_offset_index ||
1647 		    new_pindex >= object->size) {
1648 			if (backing_object->type == OBJT_SWAP)
1649 				swap_pager_freespace(backing_object, p->pindex,
1650 				    1);
1651 
1652 			/*
1653 			 * Page is out of the parent object's range, we can
1654 			 * simply destroy it.
1655 			 */
1656 			vm_page_lock(p);
1657 			KASSERT(!pmap_page_is_mapped(p),
1658 			    ("freeing mapped page %p", p));
1659 			if (p->wire_count == 0)
1660 				vm_page_free(p);
1661 			else
1662 				vm_page_remove(p);
1663 			vm_page_unlock(p);
1664 			continue;
1665 		}
1666 
1667 		pp = vm_page_lookup(object, new_pindex);
1668 		if (pp != NULL && vm_page_busied(pp)) {
1669 			/*
1670 			 * The page in the parent is busy and possibly not
1671 			 * (yet) valid.  Until its state is finalized by the
1672 			 * busy bit owner, we can't tell whether it shadows the
1673 			 * original page.  Therefore, we must either skip it
1674 			 * and the original (backing_object) page or wait for
1675 			 * its state to be finalized.
1676 			 *
1677 			 * This is due to a race with vm_fault() where we must
1678 			 * unbusy the original (backing_obj) page before we can
1679 			 * (re)lock the parent.  Hence we can get here.
1680 			 */
1681 			next = vm_object_collapse_scan_wait(object, pp, next,
1682 			    op);
1683 			continue;
1684 		}
1685 
1686 		KASSERT(pp == NULL || pp->valid != 0,
1687 		    ("unbusy invalid page %p", pp));
1688 
1689 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1690 			NULL)) {
1691 			/*
1692 			 * The page already exists in the parent OR swap exists
1693 			 * for this location in the parent.  Leave the parent's
1694 			 * page alone.  Destroy the original page from the
1695 			 * backing object.
1696 			 */
1697 			if (backing_object->type == OBJT_SWAP)
1698 				swap_pager_freespace(backing_object, p->pindex,
1699 				    1);
1700 			vm_page_lock(p);
1701 			KASSERT(!pmap_page_is_mapped(p),
1702 			    ("freeing mapped page %p", p));
1703 			if (p->wire_count == 0)
1704 				vm_page_free(p);
1705 			else
1706 				vm_page_remove(p);
1707 			vm_page_unlock(p);
1708 			continue;
1709 		}
1710 
1711 		/*
1712 		 * Page does not exist in parent, rename the page from the
1713 		 * backing object to the main object.
1714 		 *
1715 		 * If the page was mapped to a process, it can remain mapped
1716 		 * through the rename.  vm_page_rename() will dirty the page.
1717 		 */
1718 		if (vm_page_rename(p, object, new_pindex)) {
1719 			next = vm_object_collapse_scan_wait(object, NULL, next,
1720 			    op);
1721 			continue;
1722 		}
1723 
1724 		/* Use the old pindex to free the right page. */
1725 		if (backing_object->type == OBJT_SWAP)
1726 			swap_pager_freespace(backing_object,
1727 			    new_pindex + backing_offset_index, 1);
1728 
1729 #if VM_NRESERVLEVEL > 0
1730 		/*
1731 		 * Rename the reservation.
1732 		 */
1733 		vm_reserv_rename(p, object, backing_object,
1734 		    backing_offset_index);
1735 #endif
1736 	}
1737 	return (true);
1738 }
1739 
1740 
1741 /*
1742  * this version of collapse allows the operation to occur earlier and
1743  * when paging_in_progress is true for an object...  This is not a complete
1744  * operation, but should plug 99.9% of the rest of the leaks.
1745  */
1746 static void
1747 vm_object_qcollapse(vm_object_t object)
1748 {
1749 	vm_object_t backing_object = object->backing_object;
1750 
1751 	VM_OBJECT_ASSERT_WLOCKED(object);
1752 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1753 
1754 	if (backing_object->ref_count != 1)
1755 		return;
1756 
1757 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1758 }
1759 
1760 /*
1761  *	vm_object_collapse:
1762  *
1763  *	Collapse an object with the object backing it.
1764  *	Pages in the backing object are moved into the
1765  *	parent, and the backing object is deallocated.
1766  */
1767 void
1768 vm_object_collapse(vm_object_t object)
1769 {
1770 	vm_object_t backing_object, new_backing_object;
1771 
1772 	VM_OBJECT_ASSERT_WLOCKED(object);
1773 
1774 	while (TRUE) {
1775 		/*
1776 		 * Verify that the conditions are right for collapse:
1777 		 *
1778 		 * The object exists and the backing object exists.
1779 		 */
1780 		if ((backing_object = object->backing_object) == NULL)
1781 			break;
1782 
1783 		/*
1784 		 * we check the backing object first, because it is most likely
1785 		 * not collapsable.
1786 		 */
1787 		VM_OBJECT_WLOCK(backing_object);
1788 		if (backing_object->handle != NULL ||
1789 		    (backing_object->type != OBJT_DEFAULT &&
1790 		     backing_object->type != OBJT_SWAP) ||
1791 		    (backing_object->flags & OBJ_DEAD) ||
1792 		    object->handle != NULL ||
1793 		    (object->type != OBJT_DEFAULT &&
1794 		     object->type != OBJT_SWAP) ||
1795 		    (object->flags & OBJ_DEAD)) {
1796 			VM_OBJECT_WUNLOCK(backing_object);
1797 			break;
1798 		}
1799 
1800 		if (object->paging_in_progress != 0 ||
1801 		    backing_object->paging_in_progress != 0) {
1802 			vm_object_qcollapse(object);
1803 			VM_OBJECT_WUNLOCK(backing_object);
1804 			break;
1805 		}
1806 
1807 		/*
1808 		 * We know that we can either collapse the backing object (if
1809 		 * the parent is the only reference to it) or (perhaps) have
1810 		 * the parent bypass the object if the parent happens to shadow
1811 		 * all the resident pages in the entire backing object.
1812 		 *
1813 		 * This is ignoring pager-backed pages such as swap pages.
1814 		 * vm_object_collapse_scan fails the shadowing test in this
1815 		 * case.
1816 		 */
1817 		if (backing_object->ref_count == 1) {
1818 			vm_object_pip_add(object, 1);
1819 			vm_object_pip_add(backing_object, 1);
1820 
1821 			/*
1822 			 * If there is exactly one reference to the backing
1823 			 * object, we can collapse it into the parent.
1824 			 */
1825 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1826 
1827 #if VM_NRESERVLEVEL > 0
1828 			/*
1829 			 * Break any reservations from backing_object.
1830 			 */
1831 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1832 				vm_reserv_break_all(backing_object);
1833 #endif
1834 
1835 			/*
1836 			 * Move the pager from backing_object to object.
1837 			 */
1838 			if (backing_object->type == OBJT_SWAP) {
1839 				/*
1840 				 * swap_pager_copy() can sleep, in which case
1841 				 * the backing_object's and object's locks are
1842 				 * released and reacquired.
1843 				 * Since swap_pager_copy() is being asked to
1844 				 * destroy the source, it will change the
1845 				 * backing_object's type to OBJT_DEFAULT.
1846 				 */
1847 				swap_pager_copy(
1848 				    backing_object,
1849 				    object,
1850 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1851 			}
1852 			/*
1853 			 * Object now shadows whatever backing_object did.
1854 			 * Note that the reference to
1855 			 * backing_object->backing_object moves from within
1856 			 * backing_object to within object.
1857 			 */
1858 			LIST_REMOVE(object, shadow_list);
1859 			backing_object->shadow_count--;
1860 			if (backing_object->backing_object) {
1861 				VM_OBJECT_WLOCK(backing_object->backing_object);
1862 				LIST_REMOVE(backing_object, shadow_list);
1863 				LIST_INSERT_HEAD(
1864 				    &backing_object->backing_object->shadow_head,
1865 				    object, shadow_list);
1866 				/*
1867 				 * The shadow_count has not changed.
1868 				 */
1869 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1870 			}
1871 			object->backing_object = backing_object->backing_object;
1872 			object->backing_object_offset +=
1873 			    backing_object->backing_object_offset;
1874 
1875 			/*
1876 			 * Discard backing_object.
1877 			 *
1878 			 * Since the backing object has no pages, no pager left,
1879 			 * and no object references within it, all that is
1880 			 * necessary is to dispose of it.
1881 			 */
1882 			KASSERT(backing_object->ref_count == 1, (
1883 "backing_object %p was somehow re-referenced during collapse!",
1884 			    backing_object));
1885 			vm_object_pip_wakeup(backing_object);
1886 			backing_object->type = OBJT_DEAD;
1887 			backing_object->ref_count = 0;
1888 			VM_OBJECT_WUNLOCK(backing_object);
1889 			vm_object_destroy(backing_object);
1890 
1891 			vm_object_pip_wakeup(object);
1892 			counter_u64_add(object_collapses, 1);
1893 		} else {
1894 			/*
1895 			 * If we do not entirely shadow the backing object,
1896 			 * there is nothing we can do so we give up.
1897 			 */
1898 			if (object->resident_page_count != object->size &&
1899 			    !vm_object_scan_all_shadowed(object)) {
1900 				VM_OBJECT_WUNLOCK(backing_object);
1901 				break;
1902 			}
1903 
1904 			/*
1905 			 * Make the parent shadow the next object in the
1906 			 * chain.  Deallocating backing_object will not remove
1907 			 * it, since its reference count is at least 2.
1908 			 */
1909 			LIST_REMOVE(object, shadow_list);
1910 			backing_object->shadow_count--;
1911 
1912 			new_backing_object = backing_object->backing_object;
1913 			if ((object->backing_object = new_backing_object) != NULL) {
1914 				VM_OBJECT_WLOCK(new_backing_object);
1915 				LIST_INSERT_HEAD(
1916 				    &new_backing_object->shadow_head,
1917 				    object,
1918 				    shadow_list
1919 				);
1920 				new_backing_object->shadow_count++;
1921 				vm_object_reference_locked(new_backing_object);
1922 				VM_OBJECT_WUNLOCK(new_backing_object);
1923 				object->backing_object_offset +=
1924 					backing_object->backing_object_offset;
1925 			}
1926 
1927 			/*
1928 			 * Drop the reference count on backing_object. Since
1929 			 * its ref_count was at least 2, it will not vanish.
1930 			 */
1931 			backing_object->ref_count--;
1932 			VM_OBJECT_WUNLOCK(backing_object);
1933 			counter_u64_add(object_bypasses, 1);
1934 		}
1935 
1936 		/*
1937 		 * Try again with this object's new backing object.
1938 		 */
1939 	}
1940 }
1941 
1942 /*
1943  *	vm_object_page_remove:
1944  *
1945  *	For the given object, either frees or invalidates each of the
1946  *	specified pages.  In general, a page is freed.  However, if a page is
1947  *	wired for any reason other than the existence of a managed, wired
1948  *	mapping, then it may be invalidated but not removed from the object.
1949  *	Pages are specified by the given range ["start", "end") and the option
1950  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1951  *	extends from "start" to the end of the object.  If the option
1952  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1953  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1954  *	specified, then the pages within the specified range must have no
1955  *	mappings.  Otherwise, if this option is not specified, any mappings to
1956  *	the specified pages are removed before the pages are freed or
1957  *	invalidated.
1958  *
1959  *	In general, this operation should only be performed on objects that
1960  *	contain managed pages.  There are, however, two exceptions.  First, it
1961  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1962  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1963  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1964  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1965  *
1966  *	The object must be locked.
1967  */
1968 void
1969 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1970     int options)
1971 {
1972 	vm_page_t p, next;
1973 	struct mtx *mtx;
1974 	struct pglist pgl;
1975 
1976 	VM_OBJECT_ASSERT_WLOCKED(object);
1977 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1978 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1979 	    ("vm_object_page_remove: illegal options for object %p", object));
1980 	if (object->resident_page_count == 0)
1981 		return;
1982 	vm_object_pip_add(object, 1);
1983 	TAILQ_INIT(&pgl);
1984 again:
1985 	p = vm_page_find_least(object, start);
1986 	mtx = NULL;
1987 
1988 	/*
1989 	 * Here, the variable "p" is either (1) the page with the least pindex
1990 	 * greater than or equal to the parameter "start" or (2) NULL.
1991 	 */
1992 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1993 		next = TAILQ_NEXT(p, listq);
1994 
1995 		/*
1996 		 * If the page is wired for any reason besides the existence
1997 		 * of managed, wired mappings, then it cannot be freed.  For
1998 		 * example, fictitious pages, which represent device memory,
1999 		 * are inherently wired and cannot be freed.  They can,
2000 		 * however, be invalidated if the option OBJPR_CLEANONLY is
2001 		 * not specified.
2002 		 */
2003 		vm_page_change_lock(p, &mtx);
2004 		if (vm_page_xbusied(p)) {
2005 			VM_OBJECT_WUNLOCK(object);
2006 			vm_page_busy_sleep(p, "vmopax", true);
2007 			VM_OBJECT_WLOCK(object);
2008 			goto again;
2009 		}
2010 		if (p->wire_count != 0) {
2011 			if ((options & OBJPR_NOTMAPPED) == 0 &&
2012 			    object->ref_count != 0)
2013 				pmap_remove_all(p);
2014 			if ((options & OBJPR_CLEANONLY) == 0) {
2015 				p->valid = 0;
2016 				vm_page_undirty(p);
2017 			}
2018 			continue;
2019 		}
2020 		if (vm_page_busied(p)) {
2021 			VM_OBJECT_WUNLOCK(object);
2022 			vm_page_busy_sleep(p, "vmopar", false);
2023 			VM_OBJECT_WLOCK(object);
2024 			goto again;
2025 		}
2026 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
2027 		    ("vm_object_page_remove: page %p is fictitious", p));
2028 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
2029 			if ((options & OBJPR_NOTMAPPED) == 0 &&
2030 			    object->ref_count != 0)
2031 				pmap_remove_write(p);
2032 			if (p->dirty != 0)
2033 				continue;
2034 		}
2035 		if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
2036 			pmap_remove_all(p);
2037 		p->flags &= ~PG_ZERO;
2038 		if (vm_page_free_prep(p, false))
2039 			TAILQ_INSERT_TAIL(&pgl, p, listq);
2040 	}
2041 	if (mtx != NULL)
2042 		mtx_unlock(mtx);
2043 	vm_page_free_phys_pglist(&pgl);
2044 	vm_object_pip_wakeup(object);
2045 }
2046 
2047 /*
2048  *	vm_object_page_noreuse:
2049  *
2050  *	For the given object, attempt to move the specified pages to
2051  *	the head of the inactive queue.  This bypasses regular LRU
2052  *	operation and allows the pages to be reused quickly under memory
2053  *	pressure.  If a page is wired for any reason, then it will not
2054  *	be queued.  Pages are specified by the range ["start", "end").
2055  *	As a special case, if "end" is zero, then the range extends from
2056  *	"start" to the end of the object.
2057  *
2058  *	This operation should only be performed on objects that
2059  *	contain non-fictitious, managed pages.
2060  *
2061  *	The object must be locked.
2062  */
2063 void
2064 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2065 {
2066 	struct mtx *mtx;
2067 	vm_page_t p, next;
2068 
2069 	VM_OBJECT_ASSERT_LOCKED(object);
2070 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2071 	    ("vm_object_page_noreuse: illegal object %p", object));
2072 	if (object->resident_page_count == 0)
2073 		return;
2074 	p = vm_page_find_least(object, start);
2075 
2076 	/*
2077 	 * Here, the variable "p" is either (1) the page with the least pindex
2078 	 * greater than or equal to the parameter "start" or (2) NULL.
2079 	 */
2080 	mtx = NULL;
2081 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2082 		next = TAILQ_NEXT(p, listq);
2083 		vm_page_change_lock(p, &mtx);
2084 		vm_page_deactivate_noreuse(p);
2085 	}
2086 	if (mtx != NULL)
2087 		mtx_unlock(mtx);
2088 }
2089 
2090 /*
2091  *	Populate the specified range of the object with valid pages.  Returns
2092  *	TRUE if the range is successfully populated and FALSE otherwise.
2093  *
2094  *	Note: This function should be optimized to pass a larger array of
2095  *	pages to vm_pager_get_pages() before it is applied to a non-
2096  *	OBJT_DEVICE object.
2097  *
2098  *	The object must be locked.
2099  */
2100 boolean_t
2101 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2102 {
2103 	vm_page_t m;
2104 	vm_pindex_t pindex;
2105 	int rv;
2106 
2107 	VM_OBJECT_ASSERT_WLOCKED(object);
2108 	for (pindex = start; pindex < end; pindex++) {
2109 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2110 		if (m->valid != VM_PAGE_BITS_ALL) {
2111 			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2112 			if (rv != VM_PAGER_OK) {
2113 				vm_page_lock(m);
2114 				vm_page_free(m);
2115 				vm_page_unlock(m);
2116 				break;
2117 			}
2118 		}
2119 		/*
2120 		 * Keep "m" busy because a subsequent iteration may unlock
2121 		 * the object.
2122 		 */
2123 	}
2124 	if (pindex > start) {
2125 		m = vm_page_lookup(object, start);
2126 		while (m != NULL && m->pindex < pindex) {
2127 			vm_page_xunbusy(m);
2128 			m = TAILQ_NEXT(m, listq);
2129 		}
2130 	}
2131 	return (pindex == end);
2132 }
2133 
2134 /*
2135  *	Routine:	vm_object_coalesce
2136  *	Function:	Coalesces two objects backing up adjoining
2137  *			regions of memory into a single object.
2138  *
2139  *	returns TRUE if objects were combined.
2140  *
2141  *	NOTE:	Only works at the moment if the second object is NULL -
2142  *		if it's not, which object do we lock first?
2143  *
2144  *	Parameters:
2145  *		prev_object	First object to coalesce
2146  *		prev_offset	Offset into prev_object
2147  *		prev_size	Size of reference to prev_object
2148  *		next_size	Size of reference to the second object
2149  *		reserved	Indicator that extension region has
2150  *				swap accounted for
2151  *
2152  *	Conditions:
2153  *	The object must *not* be locked.
2154  */
2155 boolean_t
2156 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2157     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2158 {
2159 	vm_pindex_t next_pindex;
2160 
2161 	if (prev_object == NULL)
2162 		return (TRUE);
2163 	VM_OBJECT_WLOCK(prev_object);
2164 	if ((prev_object->type != OBJT_DEFAULT &&
2165 	    prev_object->type != OBJT_SWAP) ||
2166 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2167 		VM_OBJECT_WUNLOCK(prev_object);
2168 		return (FALSE);
2169 	}
2170 
2171 	/*
2172 	 * Try to collapse the object first
2173 	 */
2174 	vm_object_collapse(prev_object);
2175 
2176 	/*
2177 	 * Can't coalesce if: . more than one reference . paged out . shadows
2178 	 * another object . has a copy elsewhere (any of which mean that the
2179 	 * pages not mapped to prev_entry may be in use anyway)
2180 	 */
2181 	if (prev_object->backing_object != NULL) {
2182 		VM_OBJECT_WUNLOCK(prev_object);
2183 		return (FALSE);
2184 	}
2185 
2186 	prev_size >>= PAGE_SHIFT;
2187 	next_size >>= PAGE_SHIFT;
2188 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2189 
2190 	if ((prev_object->ref_count > 1) &&
2191 	    (prev_object->size != next_pindex)) {
2192 		VM_OBJECT_WUNLOCK(prev_object);
2193 		return (FALSE);
2194 	}
2195 
2196 	/*
2197 	 * Account for the charge.
2198 	 */
2199 	if (prev_object->cred != NULL) {
2200 
2201 		/*
2202 		 * If prev_object was charged, then this mapping,
2203 		 * although not charged now, may become writable
2204 		 * later. Non-NULL cred in the object would prevent
2205 		 * swap reservation during enabling of the write
2206 		 * access, so reserve swap now. Failed reservation
2207 		 * cause allocation of the separate object for the map
2208 		 * entry, and swap reservation for this entry is
2209 		 * managed in appropriate time.
2210 		 */
2211 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2212 		    prev_object->cred)) {
2213 			VM_OBJECT_WUNLOCK(prev_object);
2214 			return (FALSE);
2215 		}
2216 		prev_object->charge += ptoa(next_size);
2217 	}
2218 
2219 	/*
2220 	 * Remove any pages that may still be in the object from a previous
2221 	 * deallocation.
2222 	 */
2223 	if (next_pindex < prev_object->size) {
2224 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2225 		    next_size, 0);
2226 		if (prev_object->type == OBJT_SWAP)
2227 			swap_pager_freespace(prev_object,
2228 					     next_pindex, next_size);
2229 #if 0
2230 		if (prev_object->cred != NULL) {
2231 			KASSERT(prev_object->charge >=
2232 			    ptoa(prev_object->size - next_pindex),
2233 			    ("object %p overcharged 1 %jx %jx", prev_object,
2234 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2235 			prev_object->charge -= ptoa(prev_object->size -
2236 			    next_pindex);
2237 		}
2238 #endif
2239 	}
2240 
2241 	/*
2242 	 * Extend the object if necessary.
2243 	 */
2244 	if (next_pindex + next_size > prev_object->size)
2245 		prev_object->size = next_pindex + next_size;
2246 
2247 	VM_OBJECT_WUNLOCK(prev_object);
2248 	return (TRUE);
2249 }
2250 
2251 void
2252 vm_object_set_writeable_dirty(vm_object_t object)
2253 {
2254 
2255 	VM_OBJECT_ASSERT_WLOCKED(object);
2256 	if (object->type != OBJT_VNODE) {
2257 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2258 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2259 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2260 		}
2261 		return;
2262 	}
2263 	object->generation++;
2264 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2265 		return;
2266 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2267 }
2268 
2269 /*
2270  *	vm_object_unwire:
2271  *
2272  *	For each page offset within the specified range of the given object,
2273  *	find the highest-level page in the shadow chain and unwire it.  A page
2274  *	must exist at every page offset, and the highest-level page must be
2275  *	wired.
2276  */
2277 void
2278 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2279     uint8_t queue)
2280 {
2281 	vm_object_t tobject;
2282 	vm_page_t m, tm;
2283 	vm_pindex_t end_pindex, pindex, tpindex;
2284 	int depth, locked_depth;
2285 
2286 	KASSERT((offset & PAGE_MASK) == 0,
2287 	    ("vm_object_unwire: offset is not page aligned"));
2288 	KASSERT((length & PAGE_MASK) == 0,
2289 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2290 	/* The wired count of a fictitious page never changes. */
2291 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2292 		return;
2293 	pindex = OFF_TO_IDX(offset);
2294 	end_pindex = pindex + atop(length);
2295 	locked_depth = 1;
2296 	VM_OBJECT_RLOCK(object);
2297 	m = vm_page_find_least(object, pindex);
2298 	while (pindex < end_pindex) {
2299 		if (m == NULL || pindex < m->pindex) {
2300 			/*
2301 			 * The first object in the shadow chain doesn't
2302 			 * contain a page at the current index.  Therefore,
2303 			 * the page must exist in a backing object.
2304 			 */
2305 			tobject = object;
2306 			tpindex = pindex;
2307 			depth = 0;
2308 			do {
2309 				tpindex +=
2310 				    OFF_TO_IDX(tobject->backing_object_offset);
2311 				tobject = tobject->backing_object;
2312 				KASSERT(tobject != NULL,
2313 				    ("vm_object_unwire: missing page"));
2314 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2315 					goto next_page;
2316 				depth++;
2317 				if (depth == locked_depth) {
2318 					locked_depth++;
2319 					VM_OBJECT_RLOCK(tobject);
2320 				}
2321 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2322 			    NULL);
2323 		} else {
2324 			tm = m;
2325 			m = TAILQ_NEXT(m, listq);
2326 		}
2327 		vm_page_lock(tm);
2328 		vm_page_unwire(tm, queue);
2329 		vm_page_unlock(tm);
2330 next_page:
2331 		pindex++;
2332 	}
2333 	/* Release the accumulated object locks. */
2334 	for (depth = 0; depth < locked_depth; depth++) {
2335 		tobject = object->backing_object;
2336 		VM_OBJECT_RUNLOCK(object);
2337 		object = tobject;
2338 	}
2339 }
2340 
2341 struct vnode *
2342 vm_object_vnode(vm_object_t object)
2343 {
2344 
2345 	VM_OBJECT_ASSERT_LOCKED(object);
2346 	if (object->type == OBJT_VNODE)
2347 		return (object->handle);
2348 	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2349 		return (object->un_pager.swp.swp_tmpfs);
2350 	return (NULL);
2351 }
2352 
2353 static int
2354 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2355 {
2356 	struct kinfo_vmobject *kvo;
2357 	char *fullpath, *freepath;
2358 	struct vnode *vp;
2359 	struct vattr va;
2360 	vm_object_t obj;
2361 	vm_page_t m;
2362 	int count, error;
2363 
2364 	if (req->oldptr == NULL) {
2365 		/*
2366 		 * If an old buffer has not been provided, generate an
2367 		 * estimate of the space needed for a subsequent call.
2368 		 */
2369 		mtx_lock(&vm_object_list_mtx);
2370 		count = 0;
2371 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2372 			if (obj->type == OBJT_DEAD)
2373 				continue;
2374 			count++;
2375 		}
2376 		mtx_unlock(&vm_object_list_mtx);
2377 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2378 		    count * 11 / 10));
2379 	}
2380 
2381 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2382 	error = 0;
2383 
2384 	/*
2385 	 * VM objects are type stable and are never removed from the
2386 	 * list once added.  This allows us to safely read obj->object_list
2387 	 * after reacquiring the VM object lock.
2388 	 */
2389 	mtx_lock(&vm_object_list_mtx);
2390 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2391 		if (obj->type == OBJT_DEAD)
2392 			continue;
2393 		VM_OBJECT_RLOCK(obj);
2394 		if (obj->type == OBJT_DEAD) {
2395 			VM_OBJECT_RUNLOCK(obj);
2396 			continue;
2397 		}
2398 		mtx_unlock(&vm_object_list_mtx);
2399 		kvo->kvo_size = ptoa(obj->size);
2400 		kvo->kvo_resident = obj->resident_page_count;
2401 		kvo->kvo_ref_count = obj->ref_count;
2402 		kvo->kvo_shadow_count = obj->shadow_count;
2403 		kvo->kvo_memattr = obj->memattr;
2404 		kvo->kvo_active = 0;
2405 		kvo->kvo_inactive = 0;
2406 		TAILQ_FOREACH(m, &obj->memq, listq) {
2407 			/*
2408 			 * A page may belong to the object but be
2409 			 * dequeued and set to PQ_NONE while the
2410 			 * object lock is not held.  This makes the
2411 			 * reads of m->queue below racy, and we do not
2412 			 * count pages set to PQ_NONE.  However, this
2413 			 * sysctl is only meant to give an
2414 			 * approximation of the system anyway.
2415 			 */
2416 			if (vm_page_active(m))
2417 				kvo->kvo_active++;
2418 			else if (vm_page_inactive(m))
2419 				kvo->kvo_inactive++;
2420 		}
2421 
2422 		kvo->kvo_vn_fileid = 0;
2423 		kvo->kvo_vn_fsid = 0;
2424 		kvo->kvo_vn_fsid_freebsd11 = 0;
2425 		freepath = NULL;
2426 		fullpath = "";
2427 		vp = NULL;
2428 		switch (obj->type) {
2429 		case OBJT_DEFAULT:
2430 			kvo->kvo_type = KVME_TYPE_DEFAULT;
2431 			break;
2432 		case OBJT_VNODE:
2433 			kvo->kvo_type = KVME_TYPE_VNODE;
2434 			vp = obj->handle;
2435 			vref(vp);
2436 			break;
2437 		case OBJT_SWAP:
2438 			kvo->kvo_type = KVME_TYPE_SWAP;
2439 			break;
2440 		case OBJT_DEVICE:
2441 			kvo->kvo_type = KVME_TYPE_DEVICE;
2442 			break;
2443 		case OBJT_PHYS:
2444 			kvo->kvo_type = KVME_TYPE_PHYS;
2445 			break;
2446 		case OBJT_DEAD:
2447 			kvo->kvo_type = KVME_TYPE_DEAD;
2448 			break;
2449 		case OBJT_SG:
2450 			kvo->kvo_type = KVME_TYPE_SG;
2451 			break;
2452 		case OBJT_MGTDEVICE:
2453 			kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2454 			break;
2455 		default:
2456 			kvo->kvo_type = KVME_TYPE_UNKNOWN;
2457 			break;
2458 		}
2459 		VM_OBJECT_RUNLOCK(obj);
2460 		if (vp != NULL) {
2461 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2462 			vn_lock(vp, LK_SHARED | LK_RETRY);
2463 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2464 				kvo->kvo_vn_fileid = va.va_fileid;
2465 				kvo->kvo_vn_fsid = va.va_fsid;
2466 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2467 								/* truncate */
2468 			}
2469 			vput(vp);
2470 		}
2471 
2472 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2473 		if (freepath != NULL)
2474 			free(freepath, M_TEMP);
2475 
2476 		/* Pack record size down */
2477 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2478 		    + strlen(kvo->kvo_path) + 1;
2479 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2480 		    sizeof(uint64_t));
2481 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2482 		mtx_lock(&vm_object_list_mtx);
2483 		if (error)
2484 			break;
2485 	}
2486 	mtx_unlock(&vm_object_list_mtx);
2487 	free(kvo, M_TEMP);
2488 	return (error);
2489 }
2490 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2491     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2492     "List of VM objects");
2493 
2494 #include "opt_ddb.h"
2495 #ifdef DDB
2496 #include <sys/kernel.h>
2497 
2498 #include <sys/cons.h>
2499 
2500 #include <ddb/ddb.h>
2501 
2502 static int
2503 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2504 {
2505 	vm_map_t tmpm;
2506 	vm_map_entry_t tmpe;
2507 	vm_object_t obj;
2508 	int entcount;
2509 
2510 	if (map == 0)
2511 		return 0;
2512 
2513 	if (entry == 0) {
2514 		tmpe = map->header.next;
2515 		entcount = map->nentries;
2516 		while (entcount-- && (tmpe != &map->header)) {
2517 			if (_vm_object_in_map(map, object, tmpe)) {
2518 				return 1;
2519 			}
2520 			tmpe = tmpe->next;
2521 		}
2522 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2523 		tmpm = entry->object.sub_map;
2524 		tmpe = tmpm->header.next;
2525 		entcount = tmpm->nentries;
2526 		while (entcount-- && tmpe != &tmpm->header) {
2527 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2528 				return 1;
2529 			}
2530 			tmpe = tmpe->next;
2531 		}
2532 	} else if ((obj = entry->object.vm_object) != NULL) {
2533 		for (; obj; obj = obj->backing_object)
2534 			if (obj == object) {
2535 				return 1;
2536 			}
2537 	}
2538 	return 0;
2539 }
2540 
2541 static int
2542 vm_object_in_map(vm_object_t object)
2543 {
2544 	struct proc *p;
2545 
2546 	/* sx_slock(&allproc_lock); */
2547 	FOREACH_PROC_IN_SYSTEM(p) {
2548 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2549 			continue;
2550 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2551 			/* sx_sunlock(&allproc_lock); */
2552 			return 1;
2553 		}
2554 	}
2555 	/* sx_sunlock(&allproc_lock); */
2556 	if (_vm_object_in_map(kernel_map, object, 0))
2557 		return 1;
2558 	return 0;
2559 }
2560 
2561 DB_SHOW_COMMAND(vmochk, vm_object_check)
2562 {
2563 	vm_object_t object;
2564 
2565 	/*
2566 	 * make sure that internal objs are in a map somewhere
2567 	 * and none have zero ref counts.
2568 	 */
2569 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2570 		if (object->handle == NULL &&
2571 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2572 			if (object->ref_count == 0) {
2573 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2574 					(long)object->size);
2575 			}
2576 			if (!vm_object_in_map(object)) {
2577 				db_printf(
2578 			"vmochk: internal obj is not in a map: "
2579 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2580 				    object->ref_count, (u_long)object->size,
2581 				    (u_long)object->size,
2582 				    (void *)object->backing_object);
2583 			}
2584 		}
2585 	}
2586 }
2587 
2588 /*
2589  *	vm_object_print:	[ debug ]
2590  */
2591 DB_SHOW_COMMAND(object, vm_object_print_static)
2592 {
2593 	/* XXX convert args. */
2594 	vm_object_t object = (vm_object_t)addr;
2595 	boolean_t full = have_addr;
2596 
2597 	vm_page_t p;
2598 
2599 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2600 #define	count	was_count
2601 
2602 	int count;
2603 
2604 	if (object == NULL)
2605 		return;
2606 
2607 	db_iprintf(
2608 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2609 	    object, (int)object->type, (uintmax_t)object->size,
2610 	    object->resident_page_count, object->ref_count, object->flags,
2611 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2612 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2613 	    object->shadow_count,
2614 	    object->backing_object ? object->backing_object->ref_count : 0,
2615 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2616 
2617 	if (!full)
2618 		return;
2619 
2620 	db_indent += 2;
2621 	count = 0;
2622 	TAILQ_FOREACH(p, &object->memq, listq) {
2623 		if (count == 0)
2624 			db_iprintf("memory:=");
2625 		else if (count == 6) {
2626 			db_printf("\n");
2627 			db_iprintf(" ...");
2628 			count = 0;
2629 		} else
2630 			db_printf(",");
2631 		count++;
2632 
2633 		db_printf("(off=0x%jx,page=0x%jx)",
2634 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2635 	}
2636 	if (count != 0)
2637 		db_printf("\n");
2638 	db_indent -= 2;
2639 }
2640 
2641 /* XXX. */
2642 #undef count
2643 
2644 /* XXX need this non-static entry for calling from vm_map_print. */
2645 void
2646 vm_object_print(
2647         /* db_expr_t */ long addr,
2648 	boolean_t have_addr,
2649 	/* db_expr_t */ long count,
2650 	char *modif)
2651 {
2652 	vm_object_print_static(addr, have_addr, count, modif);
2653 }
2654 
2655 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2656 {
2657 	vm_object_t object;
2658 	vm_pindex_t fidx;
2659 	vm_paddr_t pa;
2660 	vm_page_t m, prev_m;
2661 	int rcount, nl, c;
2662 
2663 	nl = 0;
2664 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2665 		db_printf("new object: %p\n", (void *)object);
2666 		if (nl > 18) {
2667 			c = cngetc();
2668 			if (c != ' ')
2669 				return;
2670 			nl = 0;
2671 		}
2672 		nl++;
2673 		rcount = 0;
2674 		fidx = 0;
2675 		pa = -1;
2676 		TAILQ_FOREACH(m, &object->memq, listq) {
2677 			if (m->pindex > 128)
2678 				break;
2679 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2680 			    prev_m->pindex + 1 != m->pindex) {
2681 				if (rcount) {
2682 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2683 						(long)fidx, rcount, (long)pa);
2684 					if (nl > 18) {
2685 						c = cngetc();
2686 						if (c != ' ')
2687 							return;
2688 						nl = 0;
2689 					}
2690 					nl++;
2691 					rcount = 0;
2692 				}
2693 			}
2694 			if (rcount &&
2695 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2696 				++rcount;
2697 				continue;
2698 			}
2699 			if (rcount) {
2700 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2701 					(long)fidx, rcount, (long)pa);
2702 				if (nl > 18) {
2703 					c = cngetc();
2704 					if (c != ' ')
2705 						return;
2706 					nl = 0;
2707 				}
2708 				nl++;
2709 			}
2710 			fidx = m->pindex;
2711 			pa = VM_PAGE_TO_PHYS(m);
2712 			rcount = 1;
2713 		}
2714 		if (rcount) {
2715 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2716 				(long)fidx, rcount, (long)pa);
2717 			if (nl > 18) {
2718 				c = cngetc();
2719 				if (c != ' ')
2720 					return;
2721 				nl = 0;
2722 			}
2723 			nl++;
2724 		}
2725 	}
2726 }
2727 #endif /* DDB */
2728