xref: /freebsd/sys/vm/vm_object.c (revision 1251590741d28695f233a1798cfc8428e78ff991)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/vmmeter.h>
85 #include <sys/sx.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_radix.h>
99 #include <vm/vm_reserv.h>
100 #include <vm/uma.h>
101 
102 static int old_msync;
103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104     "Use old (insecure) msync behavior");
105 
106 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107 		    int pagerflags, int flags, boolean_t *clearobjflags,
108 		    boolean_t *eio);
109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110 		    boolean_t *clearobjflags);
111 static void	vm_object_qcollapse(vm_object_t object);
112 static void	vm_object_vndeallocate(vm_object_t object);
113 
114 /*
115  *	Virtual memory objects maintain the actual data
116  *	associated with allocated virtual memory.  A given
117  *	page of memory exists within exactly one object.
118  *
119  *	An object is only deallocated when all "references"
120  *	are given up.  Only one "reference" to a given
121  *	region of an object should be writeable.
122  *
123  *	Associated with each object is a list of all resident
124  *	memory pages belonging to that object; this list is
125  *	maintained by the "vm_page" module, and locked by the object's
126  *	lock.
127  *
128  *	Each object also records a "pager" routine which is
129  *	used to retrieve (and store) pages to the proper backing
130  *	storage.  In addition, objects may be backed by other
131  *	objects from which they were virtual-copied.
132  *
133  *	The only items within the object structure which are
134  *	modified after time of creation are:
135  *		reference count		locked by object's lock
136  *		pager routine		locked by object's lock
137  *
138  */
139 
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;	/* lock for object list and count */
142 
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145 
146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147     "VM object stats");
148 
149 static long object_collapses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151     &object_collapses, 0, "VM object collapses");
152 
153 static long object_bypasses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155     &object_bypasses, 0, "VM object bypasses");
156 
157 static uma_zone_t obj_zone;
158 
159 static int vm_object_zinit(void *mem, int size, int flags);
160 
161 #ifdef INVARIANTS
162 static void vm_object_zdtor(void *mem, int size, void *arg);
163 
164 static void
165 vm_object_zdtor(void *mem, int size, void *arg)
166 {
167 	vm_object_t object;
168 
169 	object = (vm_object_t)mem;
170 	KASSERT(object->ref_count == 0,
171 	    ("object %p ref_count = %d", object, object->ref_count));
172 	KASSERT(TAILQ_EMPTY(&object->memq),
173 	    ("object %p has resident pages in its memq", object));
174 	KASSERT(vm_radix_is_empty(&object->rtree),
175 	    ("object %p has resident pages in its trie", object));
176 #if VM_NRESERVLEVEL > 0
177 	KASSERT(LIST_EMPTY(&object->rvq),
178 	    ("object %p has reservations",
179 	    object));
180 #endif
181 	KASSERT(object->paging_in_progress == 0,
182 	    ("object %p paging_in_progress = %d",
183 	    object, object->paging_in_progress));
184 	KASSERT(object->resident_page_count == 0,
185 	    ("object %p resident_page_count = %d",
186 	    object, object->resident_page_count));
187 	KASSERT(object->shadow_count == 0,
188 	    ("object %p shadow_count = %d",
189 	    object, object->shadow_count));
190 	KASSERT(object->type == OBJT_DEAD,
191 	    ("object %p has non-dead type %d",
192 	    object, object->type));
193 }
194 #endif
195 
196 static int
197 vm_object_zinit(void *mem, int size, int flags)
198 {
199 	vm_object_t object;
200 
201 	object = (vm_object_t)mem;
202 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
203 
204 	/* These are true for any object that has been freed */
205 	object->type = OBJT_DEAD;
206 	object->ref_count = 0;
207 	vm_radix_init(&object->rtree);
208 	object->paging_in_progress = 0;
209 	object->resident_page_count = 0;
210 	object->shadow_count = 0;
211 
212 	mtx_lock(&vm_object_list_mtx);
213 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
214 	mtx_unlock(&vm_object_list_mtx);
215 	return (0);
216 }
217 
218 static void
219 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
220 {
221 
222 	TAILQ_INIT(&object->memq);
223 	LIST_INIT(&object->shadow_head);
224 
225 	object->type = type;
226 	switch (type) {
227 	case OBJT_DEAD:
228 		panic("_vm_object_allocate: can't create OBJT_DEAD");
229 	case OBJT_DEFAULT:
230 	case OBJT_SWAP:
231 		object->flags = OBJ_ONEMAPPING;
232 		break;
233 	case OBJT_DEVICE:
234 	case OBJT_SG:
235 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
236 		break;
237 	case OBJT_MGTDEVICE:
238 		object->flags = OBJ_FICTITIOUS;
239 		break;
240 	case OBJT_PHYS:
241 		object->flags = OBJ_UNMANAGED;
242 		break;
243 	case OBJT_VNODE:
244 		object->flags = 0;
245 		break;
246 	default:
247 		panic("_vm_object_allocate: type %d is undefined", type);
248 	}
249 	object->size = size;
250 	object->generation = 1;
251 	object->ref_count = 1;
252 	object->memattr = VM_MEMATTR_DEFAULT;
253 	object->cred = NULL;
254 	object->charge = 0;
255 	object->handle = NULL;
256 	object->backing_object = NULL;
257 	object->backing_object_offset = (vm_ooffset_t) 0;
258 #if VM_NRESERVLEVEL > 0
259 	LIST_INIT(&object->rvq);
260 #endif
261 	umtx_shm_object_init(object);
262 }
263 
264 /*
265  *	vm_object_init:
266  *
267  *	Initialize the VM objects module.
268  */
269 void
270 vm_object_init(void)
271 {
272 	TAILQ_INIT(&vm_object_list);
273 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
274 
275 	rw_init(&kernel_object->lock, "kernel vm object");
276 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
277 	    VM_MIN_KERNEL_ADDRESS), kernel_object);
278 #if VM_NRESERVLEVEL > 0
279 	kernel_object->flags |= OBJ_COLORED;
280 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
281 #endif
282 
283 	rw_init(&kmem_object->lock, "kmem vm object");
284 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
285 	    VM_MIN_KERNEL_ADDRESS), kmem_object);
286 #if VM_NRESERVLEVEL > 0
287 	kmem_object->flags |= OBJ_COLORED;
288 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
289 #endif
290 
291 	/*
292 	 * The lock portion of struct vm_object must be type stable due
293 	 * to vm_pageout_fallback_object_lock locking a vm object
294 	 * without holding any references to it.
295 	 */
296 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
297 #ifdef INVARIANTS
298 	    vm_object_zdtor,
299 #else
300 	    NULL,
301 #endif
302 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
303 
304 	vm_radix_zinit();
305 }
306 
307 void
308 vm_object_clear_flag(vm_object_t object, u_short bits)
309 {
310 
311 	VM_OBJECT_ASSERT_WLOCKED(object);
312 	object->flags &= ~bits;
313 }
314 
315 /*
316  *	Sets the default memory attribute for the specified object.  Pages
317  *	that are allocated to this object are by default assigned this memory
318  *	attribute.
319  *
320  *	Presently, this function must be called before any pages are allocated
321  *	to the object.  In the future, this requirement may be relaxed for
322  *	"default" and "swap" objects.
323  */
324 int
325 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
326 {
327 
328 	VM_OBJECT_ASSERT_WLOCKED(object);
329 	switch (object->type) {
330 	case OBJT_DEFAULT:
331 	case OBJT_DEVICE:
332 	case OBJT_MGTDEVICE:
333 	case OBJT_PHYS:
334 	case OBJT_SG:
335 	case OBJT_SWAP:
336 	case OBJT_VNODE:
337 		if (!TAILQ_EMPTY(&object->memq))
338 			return (KERN_FAILURE);
339 		break;
340 	case OBJT_DEAD:
341 		return (KERN_INVALID_ARGUMENT);
342 	default:
343 		panic("vm_object_set_memattr: object %p is of undefined type",
344 		    object);
345 	}
346 	object->memattr = memattr;
347 	return (KERN_SUCCESS);
348 }
349 
350 void
351 vm_object_pip_add(vm_object_t object, short i)
352 {
353 
354 	VM_OBJECT_ASSERT_WLOCKED(object);
355 	object->paging_in_progress += i;
356 }
357 
358 void
359 vm_object_pip_subtract(vm_object_t object, short i)
360 {
361 
362 	VM_OBJECT_ASSERT_WLOCKED(object);
363 	object->paging_in_progress -= i;
364 }
365 
366 void
367 vm_object_pip_wakeup(vm_object_t object)
368 {
369 
370 	VM_OBJECT_ASSERT_WLOCKED(object);
371 	object->paging_in_progress--;
372 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
373 		vm_object_clear_flag(object, OBJ_PIPWNT);
374 		wakeup(object);
375 	}
376 }
377 
378 void
379 vm_object_pip_wakeupn(vm_object_t object, short i)
380 {
381 
382 	VM_OBJECT_ASSERT_WLOCKED(object);
383 	if (i)
384 		object->paging_in_progress -= i;
385 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
386 		vm_object_clear_flag(object, OBJ_PIPWNT);
387 		wakeup(object);
388 	}
389 }
390 
391 void
392 vm_object_pip_wait(vm_object_t object, char *waitid)
393 {
394 
395 	VM_OBJECT_ASSERT_WLOCKED(object);
396 	while (object->paging_in_progress) {
397 		object->flags |= OBJ_PIPWNT;
398 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
399 	}
400 }
401 
402 /*
403  *	vm_object_allocate:
404  *
405  *	Returns a new object with the given size.
406  */
407 vm_object_t
408 vm_object_allocate(objtype_t type, vm_pindex_t size)
409 {
410 	vm_object_t object;
411 
412 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
413 	_vm_object_allocate(type, size, object);
414 	return (object);
415 }
416 
417 
418 /*
419  *	vm_object_reference:
420  *
421  *	Gets another reference to the given object.  Note: OBJ_DEAD
422  *	objects can be referenced during final cleaning.
423  */
424 void
425 vm_object_reference(vm_object_t object)
426 {
427 	if (object == NULL)
428 		return;
429 	VM_OBJECT_WLOCK(object);
430 	vm_object_reference_locked(object);
431 	VM_OBJECT_WUNLOCK(object);
432 }
433 
434 /*
435  *	vm_object_reference_locked:
436  *
437  *	Gets another reference to the given object.
438  *
439  *	The object must be locked.
440  */
441 void
442 vm_object_reference_locked(vm_object_t object)
443 {
444 	struct vnode *vp;
445 
446 	VM_OBJECT_ASSERT_WLOCKED(object);
447 	object->ref_count++;
448 	if (object->type == OBJT_VNODE) {
449 		vp = object->handle;
450 		vref(vp);
451 	}
452 }
453 
454 /*
455  * Handle deallocating an object of type OBJT_VNODE.
456  */
457 static void
458 vm_object_vndeallocate(vm_object_t object)
459 {
460 	struct vnode *vp = (struct vnode *) object->handle;
461 
462 	VM_OBJECT_ASSERT_WLOCKED(object);
463 	KASSERT(object->type == OBJT_VNODE,
464 	    ("vm_object_vndeallocate: not a vnode object"));
465 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
466 #ifdef INVARIANTS
467 	if (object->ref_count == 0) {
468 		vn_printf(vp, "vm_object_vndeallocate ");
469 		panic("vm_object_vndeallocate: bad object reference count");
470 	}
471 #endif
472 
473 	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
474 		umtx_shm_object_terminated(object);
475 
476 	/*
477 	 * The test for text of vp vnode does not need a bypass to
478 	 * reach right VV_TEXT there, since it is obtained from
479 	 * object->handle.
480 	 */
481 	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
482 		object->ref_count--;
483 		VM_OBJECT_WUNLOCK(object);
484 		/* vrele may need the vnode lock. */
485 		vrele(vp);
486 	} else {
487 		vhold(vp);
488 		VM_OBJECT_WUNLOCK(object);
489 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
490 		vdrop(vp);
491 		VM_OBJECT_WLOCK(object);
492 		object->ref_count--;
493 		if (object->type == OBJT_DEAD) {
494 			VM_OBJECT_WUNLOCK(object);
495 			VOP_UNLOCK(vp, 0);
496 		} else {
497 			if (object->ref_count == 0)
498 				VOP_UNSET_TEXT(vp);
499 			VM_OBJECT_WUNLOCK(object);
500 			vput(vp);
501 		}
502 	}
503 }
504 
505 /*
506  *	vm_object_deallocate:
507  *
508  *	Release a reference to the specified object,
509  *	gained either through a vm_object_allocate
510  *	or a vm_object_reference call.  When all references
511  *	are gone, storage associated with this object
512  *	may be relinquished.
513  *
514  *	No object may be locked.
515  */
516 void
517 vm_object_deallocate(vm_object_t object)
518 {
519 	vm_object_t temp;
520 	struct vnode *vp;
521 
522 	while (object != NULL) {
523 		VM_OBJECT_WLOCK(object);
524 		if (object->type == OBJT_VNODE) {
525 			vm_object_vndeallocate(object);
526 			return;
527 		}
528 
529 		KASSERT(object->ref_count != 0,
530 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
531 
532 		/*
533 		 * If the reference count goes to 0 we start calling
534 		 * vm_object_terminate() on the object chain.
535 		 * A ref count of 1 may be a special case depending on the
536 		 * shadow count being 0 or 1.
537 		 */
538 		object->ref_count--;
539 		if (object->ref_count > 1) {
540 			VM_OBJECT_WUNLOCK(object);
541 			return;
542 		} else if (object->ref_count == 1) {
543 			if (object->type == OBJT_SWAP &&
544 			    (object->flags & OBJ_TMPFS) != 0) {
545 				vp = object->un_pager.swp.swp_tmpfs;
546 				vhold(vp);
547 				VM_OBJECT_WUNLOCK(object);
548 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
549 				VM_OBJECT_WLOCK(object);
550 				if (object->type == OBJT_DEAD ||
551 				    object->ref_count != 1) {
552 					VM_OBJECT_WUNLOCK(object);
553 					VOP_UNLOCK(vp, 0);
554 					vdrop(vp);
555 					return;
556 				}
557 				if ((object->flags & OBJ_TMPFS) != 0)
558 					VOP_UNSET_TEXT(vp);
559 				VOP_UNLOCK(vp, 0);
560 				vdrop(vp);
561 			}
562 			if (object->shadow_count == 0 &&
563 			    object->handle == NULL &&
564 			    (object->type == OBJT_DEFAULT ||
565 			    (object->type == OBJT_SWAP &&
566 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
567 				vm_object_set_flag(object, OBJ_ONEMAPPING);
568 			} else if ((object->shadow_count == 1) &&
569 			    (object->handle == NULL) &&
570 			    (object->type == OBJT_DEFAULT ||
571 			     object->type == OBJT_SWAP)) {
572 				vm_object_t robject;
573 
574 				robject = LIST_FIRST(&object->shadow_head);
575 				KASSERT(robject != NULL,
576 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
577 					 object->ref_count,
578 					 object->shadow_count));
579 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
580 				    ("shadowed tmpfs v_object %p", object));
581 				if (!VM_OBJECT_TRYWLOCK(robject)) {
582 					/*
583 					 * Avoid a potential deadlock.
584 					 */
585 					object->ref_count++;
586 					VM_OBJECT_WUNLOCK(object);
587 					/*
588 					 * More likely than not the thread
589 					 * holding robject's lock has lower
590 					 * priority than the current thread.
591 					 * Let the lower priority thread run.
592 					 */
593 					pause("vmo_de", 1);
594 					continue;
595 				}
596 				/*
597 				 * Collapse object into its shadow unless its
598 				 * shadow is dead.  In that case, object will
599 				 * be deallocated by the thread that is
600 				 * deallocating its shadow.
601 				 */
602 				if ((robject->flags & OBJ_DEAD) == 0 &&
603 				    (robject->handle == NULL) &&
604 				    (robject->type == OBJT_DEFAULT ||
605 				     robject->type == OBJT_SWAP)) {
606 
607 					robject->ref_count++;
608 retry:
609 					if (robject->paging_in_progress) {
610 						VM_OBJECT_WUNLOCK(object);
611 						vm_object_pip_wait(robject,
612 						    "objde1");
613 						temp = robject->backing_object;
614 						if (object == temp) {
615 							VM_OBJECT_WLOCK(object);
616 							goto retry;
617 						}
618 					} else if (object->paging_in_progress) {
619 						VM_OBJECT_WUNLOCK(robject);
620 						object->flags |= OBJ_PIPWNT;
621 						VM_OBJECT_SLEEP(object, object,
622 						    PDROP | PVM, "objde2", 0);
623 						VM_OBJECT_WLOCK(robject);
624 						temp = robject->backing_object;
625 						if (object == temp) {
626 							VM_OBJECT_WLOCK(object);
627 							goto retry;
628 						}
629 					} else
630 						VM_OBJECT_WUNLOCK(object);
631 
632 					if (robject->ref_count == 1) {
633 						robject->ref_count--;
634 						object = robject;
635 						goto doterm;
636 					}
637 					object = robject;
638 					vm_object_collapse(object);
639 					VM_OBJECT_WUNLOCK(object);
640 					continue;
641 				}
642 				VM_OBJECT_WUNLOCK(robject);
643 			}
644 			VM_OBJECT_WUNLOCK(object);
645 			return;
646 		}
647 doterm:
648 		umtx_shm_object_terminated(object);
649 		temp = object->backing_object;
650 		if (temp != NULL) {
651 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
652 			    ("shadowed tmpfs v_object 2 %p", object));
653 			VM_OBJECT_WLOCK(temp);
654 			LIST_REMOVE(object, shadow_list);
655 			temp->shadow_count--;
656 			VM_OBJECT_WUNLOCK(temp);
657 			object->backing_object = NULL;
658 		}
659 		/*
660 		 * Don't double-terminate, we could be in a termination
661 		 * recursion due to the terminate having to sync data
662 		 * to disk.
663 		 */
664 		if ((object->flags & OBJ_DEAD) == 0)
665 			vm_object_terminate(object);
666 		else
667 			VM_OBJECT_WUNLOCK(object);
668 		object = temp;
669 	}
670 }
671 
672 /*
673  *	vm_object_destroy removes the object from the global object list
674  *      and frees the space for the object.
675  */
676 void
677 vm_object_destroy(vm_object_t object)
678 {
679 
680 	/*
681 	 * Release the allocation charge.
682 	 */
683 	if (object->cred != NULL) {
684 		swap_release_by_cred(object->charge, object->cred);
685 		object->charge = 0;
686 		crfree(object->cred);
687 		object->cred = NULL;
688 	}
689 
690 	/*
691 	 * Free the space for the object.
692 	 */
693 	uma_zfree(obj_zone, object);
694 }
695 
696 /*
697  *	vm_object_terminate_pages removes any remaining pageable pages
698  *	from the object and resets the object to an empty state.
699  */
700 static void
701 vm_object_terminate_pages(vm_object_t object)
702 {
703 	vm_page_t p, p_next;
704 
705 	VM_OBJECT_ASSERT_WLOCKED(object);
706 
707 	/*
708 	 * Free any remaining pageable pages.  This also removes them from the
709 	 * paging queues.  However, don't free wired pages, just remove them
710 	 * from the object.  Rather than incrementally removing each page from
711 	 * the object, the page and object are reset to any empty state.
712 	 */
713 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
714 		vm_page_assert_unbusied(p);
715 		vm_page_lock(p);
716 		/*
717 		 * Optimize the page's removal from the object by resetting
718 		 * its "object" field.  Specifically, if the page is not
719 		 * wired, then the effect of this assignment is that
720 		 * vm_page_free()'s call to vm_page_remove() will return
721 		 * immediately without modifying the page or the object.
722 		 */
723 		p->object = NULL;
724 		if (p->wire_count == 0) {
725 			vm_page_free(p);
726 			VM_CNT_INC(v_pfree);
727 		}
728 		vm_page_unlock(p);
729 	}
730 	/*
731 	 * If the object contained any pages, then reset it to an empty state.
732 	 * None of the object's fields, including "resident_page_count", were
733 	 * modified by the preceding loop.
734 	 */
735 	if (object->resident_page_count != 0) {
736 		vm_radix_reclaim_allnodes(&object->rtree);
737 		TAILQ_INIT(&object->memq);
738 		object->resident_page_count = 0;
739 		if (object->type == OBJT_VNODE)
740 			vdrop(object->handle);
741 	}
742 }
743 
744 /*
745  *	vm_object_terminate actually destroys the specified object, freeing
746  *	up all previously used resources.
747  *
748  *	The object must be locked.
749  *	This routine may block.
750  */
751 void
752 vm_object_terminate(vm_object_t object)
753 {
754 
755 	VM_OBJECT_ASSERT_WLOCKED(object);
756 
757 	/*
758 	 * Make sure no one uses us.
759 	 */
760 	vm_object_set_flag(object, OBJ_DEAD);
761 
762 	/*
763 	 * wait for the pageout daemon to be done with the object
764 	 */
765 	vm_object_pip_wait(object, "objtrm");
766 
767 	KASSERT(!object->paging_in_progress,
768 		("vm_object_terminate: pageout in progress"));
769 
770 	/*
771 	 * Clean and free the pages, as appropriate. All references to the
772 	 * object are gone, so we don't need to lock it.
773 	 */
774 	if (object->type == OBJT_VNODE) {
775 		struct vnode *vp = (struct vnode *)object->handle;
776 
777 		/*
778 		 * Clean pages and flush buffers.
779 		 */
780 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
781 		VM_OBJECT_WUNLOCK(object);
782 
783 		vinvalbuf(vp, V_SAVE, 0, 0);
784 
785 		BO_LOCK(&vp->v_bufobj);
786 		vp->v_bufobj.bo_flag |= BO_DEAD;
787 		BO_UNLOCK(&vp->v_bufobj);
788 
789 		VM_OBJECT_WLOCK(object);
790 	}
791 
792 	KASSERT(object->ref_count == 0,
793 		("vm_object_terminate: object with references, ref_count=%d",
794 		object->ref_count));
795 
796 	if ((object->flags & OBJ_PG_DTOR) == 0)
797 		vm_object_terminate_pages(object);
798 
799 #if VM_NRESERVLEVEL > 0
800 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
801 		vm_reserv_break_all(object);
802 #endif
803 
804 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
805 	    object->type == OBJT_SWAP,
806 	    ("%s: non-swap obj %p has cred", __func__, object));
807 
808 	/*
809 	 * Let the pager know object is dead.
810 	 */
811 	vm_pager_deallocate(object);
812 	VM_OBJECT_WUNLOCK(object);
813 
814 	vm_object_destroy(object);
815 }
816 
817 /*
818  * Make the page read-only so that we can clear the object flags.  However, if
819  * this is a nosync mmap then the object is likely to stay dirty so do not
820  * mess with the page and do not clear the object flags.  Returns TRUE if the
821  * page should be flushed, and FALSE otherwise.
822  */
823 static boolean_t
824 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
825 {
826 
827 	/*
828 	 * If we have been asked to skip nosync pages and this is a
829 	 * nosync page, skip it.  Note that the object flags were not
830 	 * cleared in this case so we do not have to set them.
831 	 */
832 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
833 		*clearobjflags = FALSE;
834 		return (FALSE);
835 	} else {
836 		pmap_remove_write(p);
837 		return (p->dirty != 0);
838 	}
839 }
840 
841 /*
842  *	vm_object_page_clean
843  *
844  *	Clean all dirty pages in the specified range of object.  Leaves page
845  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
846  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
847  *	leaving the object dirty.
848  *
849  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
850  *	synchronous clustering mode implementation.
851  *
852  *	Odd semantics: if start == end, we clean everything.
853  *
854  *	The object must be locked.
855  *
856  *	Returns FALSE if some page from the range was not written, as
857  *	reported by the pager, and TRUE otherwise.
858  */
859 boolean_t
860 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
861     int flags)
862 {
863 	vm_page_t np, p;
864 	vm_pindex_t pi, tend, tstart;
865 	int curgeneration, n, pagerflags;
866 	boolean_t clearobjflags, eio, res;
867 
868 	VM_OBJECT_ASSERT_WLOCKED(object);
869 
870 	/*
871 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
872 	 * objects.  The check below prevents the function from
873 	 * operating on non-vnode objects.
874 	 */
875 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
876 	    object->resident_page_count == 0)
877 		return (TRUE);
878 
879 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
880 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
881 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
882 
883 	tstart = OFF_TO_IDX(start);
884 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
885 	clearobjflags = tstart == 0 && tend >= object->size;
886 	res = TRUE;
887 
888 rescan:
889 	curgeneration = object->generation;
890 
891 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
892 		pi = p->pindex;
893 		if (pi >= tend)
894 			break;
895 		np = TAILQ_NEXT(p, listq);
896 		if (p->valid == 0)
897 			continue;
898 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
899 			if (object->generation != curgeneration) {
900 				if ((flags & OBJPC_SYNC) != 0)
901 					goto rescan;
902 				else
903 					clearobjflags = FALSE;
904 			}
905 			np = vm_page_find_least(object, pi);
906 			continue;
907 		}
908 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
909 			continue;
910 
911 		n = vm_object_page_collect_flush(object, p, pagerflags,
912 		    flags, &clearobjflags, &eio);
913 		if (eio) {
914 			res = FALSE;
915 			clearobjflags = FALSE;
916 		}
917 		if (object->generation != curgeneration) {
918 			if ((flags & OBJPC_SYNC) != 0)
919 				goto rescan;
920 			else
921 				clearobjflags = FALSE;
922 		}
923 
924 		/*
925 		 * If the VOP_PUTPAGES() did a truncated write, so
926 		 * that even the first page of the run is not fully
927 		 * written, vm_pageout_flush() returns 0 as the run
928 		 * length.  Since the condition that caused truncated
929 		 * write may be permanent, e.g. exhausted free space,
930 		 * accepting n == 0 would cause an infinite loop.
931 		 *
932 		 * Forwarding the iterator leaves the unwritten page
933 		 * behind, but there is not much we can do there if
934 		 * filesystem refuses to write it.
935 		 */
936 		if (n == 0) {
937 			n = 1;
938 			clearobjflags = FALSE;
939 		}
940 		np = vm_page_find_least(object, pi + n);
941 	}
942 #if 0
943 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
944 #endif
945 
946 	if (clearobjflags)
947 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
948 	return (res);
949 }
950 
951 static int
952 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
953     int flags, boolean_t *clearobjflags, boolean_t *eio)
954 {
955 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
956 	int count, i, mreq, runlen;
957 
958 	vm_page_lock_assert(p, MA_NOTOWNED);
959 	VM_OBJECT_ASSERT_WLOCKED(object);
960 
961 	count = 1;
962 	mreq = 0;
963 
964 	for (tp = p; count < vm_pageout_page_count; count++) {
965 		tp = vm_page_next(tp);
966 		if (tp == NULL || vm_page_busied(tp))
967 			break;
968 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
969 			break;
970 	}
971 
972 	for (p_first = p; count < vm_pageout_page_count; count++) {
973 		tp = vm_page_prev(p_first);
974 		if (tp == NULL || vm_page_busied(tp))
975 			break;
976 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
977 			break;
978 		p_first = tp;
979 		mreq++;
980 	}
981 
982 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
983 		ma[i] = tp;
984 
985 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
986 	return (runlen);
987 }
988 
989 /*
990  * Note that there is absolutely no sense in writing out
991  * anonymous objects, so we track down the vnode object
992  * to write out.
993  * We invalidate (remove) all pages from the address space
994  * for semantic correctness.
995  *
996  * If the backing object is a device object with unmanaged pages, then any
997  * mappings to the specified range of pages must be removed before this
998  * function is called.
999  *
1000  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1001  * may start out with a NULL object.
1002  */
1003 boolean_t
1004 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1005     boolean_t syncio, boolean_t invalidate)
1006 {
1007 	vm_object_t backing_object;
1008 	struct vnode *vp;
1009 	struct mount *mp;
1010 	int error, flags, fsync_after;
1011 	boolean_t res;
1012 
1013 	if (object == NULL)
1014 		return (TRUE);
1015 	res = TRUE;
1016 	error = 0;
1017 	VM_OBJECT_WLOCK(object);
1018 	while ((backing_object = object->backing_object) != NULL) {
1019 		VM_OBJECT_WLOCK(backing_object);
1020 		offset += object->backing_object_offset;
1021 		VM_OBJECT_WUNLOCK(object);
1022 		object = backing_object;
1023 		if (object->size < OFF_TO_IDX(offset + size))
1024 			size = IDX_TO_OFF(object->size) - offset;
1025 	}
1026 	/*
1027 	 * Flush pages if writing is allowed, invalidate them
1028 	 * if invalidation requested.  Pages undergoing I/O
1029 	 * will be ignored by vm_object_page_remove().
1030 	 *
1031 	 * We cannot lock the vnode and then wait for paging
1032 	 * to complete without deadlocking against vm_fault.
1033 	 * Instead we simply call vm_object_page_remove() and
1034 	 * allow it to block internally on a page-by-page
1035 	 * basis when it encounters pages undergoing async
1036 	 * I/O.
1037 	 */
1038 	if (object->type == OBJT_VNODE &&
1039 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1040 		vp = object->handle;
1041 		VM_OBJECT_WUNLOCK(object);
1042 		(void) vn_start_write(vp, &mp, V_WAIT);
1043 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1044 		if (syncio && !invalidate && offset == 0 &&
1045 		    atop(size) == object->size) {
1046 			/*
1047 			 * If syncing the whole mapping of the file,
1048 			 * it is faster to schedule all the writes in
1049 			 * async mode, also allowing the clustering,
1050 			 * and then wait for i/o to complete.
1051 			 */
1052 			flags = 0;
1053 			fsync_after = TRUE;
1054 		} else {
1055 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1056 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1057 			fsync_after = FALSE;
1058 		}
1059 		VM_OBJECT_WLOCK(object);
1060 		res = vm_object_page_clean(object, offset, offset + size,
1061 		    flags);
1062 		VM_OBJECT_WUNLOCK(object);
1063 		if (fsync_after)
1064 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1065 		VOP_UNLOCK(vp, 0);
1066 		vn_finished_write(mp);
1067 		if (error != 0)
1068 			res = FALSE;
1069 		VM_OBJECT_WLOCK(object);
1070 	}
1071 	if ((object->type == OBJT_VNODE ||
1072 	     object->type == OBJT_DEVICE) && invalidate) {
1073 		if (object->type == OBJT_DEVICE)
1074 			/*
1075 			 * The option OBJPR_NOTMAPPED must be passed here
1076 			 * because vm_object_page_remove() cannot remove
1077 			 * unmanaged mappings.
1078 			 */
1079 			flags = OBJPR_NOTMAPPED;
1080 		else if (old_msync)
1081 			flags = 0;
1082 		else
1083 			flags = OBJPR_CLEANONLY;
1084 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1085 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1086 	}
1087 	VM_OBJECT_WUNLOCK(object);
1088 	return (res);
1089 }
1090 
1091 /*
1092  * Determine whether the given advice can be applied to the object.  Advice is
1093  * not applied to unmanaged pages since they never belong to page queues, and
1094  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1095  * have been mapped at most once.
1096  */
1097 static bool
1098 vm_object_advice_applies(vm_object_t object, int advice)
1099 {
1100 
1101 	if ((object->flags & OBJ_UNMANAGED) != 0)
1102 		return (false);
1103 	if (advice != MADV_FREE)
1104 		return (true);
1105 	return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1106 	    (object->flags & OBJ_ONEMAPPING) != 0);
1107 }
1108 
1109 static void
1110 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1111     vm_size_t size)
1112 {
1113 
1114 	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1115 		swap_pager_freespace(object, pindex, size);
1116 }
1117 
1118 /*
1119  *	vm_object_madvise:
1120  *
1121  *	Implements the madvise function at the object/page level.
1122  *
1123  *	MADV_WILLNEED	(any object)
1124  *
1125  *	    Activate the specified pages if they are resident.
1126  *
1127  *	MADV_DONTNEED	(any object)
1128  *
1129  *	    Deactivate the specified pages if they are resident.
1130  *
1131  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1132  *			 OBJ_ONEMAPPING only)
1133  *
1134  *	    Deactivate and clean the specified pages if they are
1135  *	    resident.  This permits the process to reuse the pages
1136  *	    without faulting or the kernel to reclaim the pages
1137  *	    without I/O.
1138  */
1139 void
1140 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1141     int advice)
1142 {
1143 	vm_pindex_t tpindex;
1144 	vm_object_t backing_object, tobject;
1145 	vm_page_t m, tm;
1146 
1147 	if (object == NULL)
1148 		return;
1149 
1150 relookup:
1151 	VM_OBJECT_WLOCK(object);
1152 	if (!vm_object_advice_applies(object, advice)) {
1153 		VM_OBJECT_WUNLOCK(object);
1154 		return;
1155 	}
1156 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1157 		tobject = object;
1158 
1159 		/*
1160 		 * If the next page isn't resident in the top-level object, we
1161 		 * need to search the shadow chain.  When applying MADV_FREE, we
1162 		 * take care to release any swap space used to store
1163 		 * non-resident pages.
1164 		 */
1165 		if (m == NULL || pindex < m->pindex) {
1166 			/*
1167 			 * Optimize a common case: if the top-level object has
1168 			 * no backing object, we can skip over the non-resident
1169 			 * range in constant time.
1170 			 */
1171 			if (object->backing_object == NULL) {
1172 				tpindex = (m != NULL && m->pindex < end) ?
1173 				    m->pindex : end;
1174 				vm_object_madvise_freespace(object, advice,
1175 				    pindex, tpindex - pindex);
1176 				if ((pindex = tpindex) == end)
1177 					break;
1178 				goto next_page;
1179 			}
1180 
1181 			tpindex = pindex;
1182 			do {
1183 				vm_object_madvise_freespace(tobject, advice,
1184 				    tpindex, 1);
1185 				/*
1186 				 * Prepare to search the next object in the
1187 				 * chain.
1188 				 */
1189 				backing_object = tobject->backing_object;
1190 				if (backing_object == NULL)
1191 					goto next_pindex;
1192 				VM_OBJECT_WLOCK(backing_object);
1193 				tpindex +=
1194 				    OFF_TO_IDX(tobject->backing_object_offset);
1195 				if (tobject != object)
1196 					VM_OBJECT_WUNLOCK(tobject);
1197 				tobject = backing_object;
1198 				if (!vm_object_advice_applies(tobject, advice))
1199 					goto next_pindex;
1200 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1201 			    NULL);
1202 		} else {
1203 next_page:
1204 			tm = m;
1205 			m = TAILQ_NEXT(m, listq);
1206 		}
1207 
1208 		/*
1209 		 * If the page is not in a normal state, skip it.
1210 		 */
1211 		if (tm->valid != VM_PAGE_BITS_ALL)
1212 			goto next_pindex;
1213 		vm_page_lock(tm);
1214 		if (tm->hold_count != 0 || tm->wire_count != 0) {
1215 			vm_page_unlock(tm);
1216 			goto next_pindex;
1217 		}
1218 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1219 		    ("vm_object_madvise: page %p is fictitious", tm));
1220 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1221 		    ("vm_object_madvise: page %p is not managed", tm));
1222 		if (vm_page_busied(tm)) {
1223 			if (object != tobject)
1224 				VM_OBJECT_WUNLOCK(tobject);
1225 			VM_OBJECT_WUNLOCK(object);
1226 			if (advice == MADV_WILLNEED) {
1227 				/*
1228 				 * Reference the page before unlocking and
1229 				 * sleeping so that the page daemon is less
1230 				 * likely to reclaim it.
1231 				 */
1232 				vm_page_aflag_set(tm, PGA_REFERENCED);
1233 			}
1234 			vm_page_busy_sleep(tm, "madvpo", false);
1235   			goto relookup;
1236 		}
1237 		vm_page_advise(tm, advice);
1238 		vm_page_unlock(tm);
1239 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1240 next_pindex:
1241 		if (tobject != object)
1242 			VM_OBJECT_WUNLOCK(tobject);
1243 	}
1244 	VM_OBJECT_WUNLOCK(object);
1245 }
1246 
1247 /*
1248  *	vm_object_shadow:
1249  *
1250  *	Create a new object which is backed by the
1251  *	specified existing object range.  The source
1252  *	object reference is deallocated.
1253  *
1254  *	The new object and offset into that object
1255  *	are returned in the source parameters.
1256  */
1257 void
1258 vm_object_shadow(
1259 	vm_object_t *object,	/* IN/OUT */
1260 	vm_ooffset_t *offset,	/* IN/OUT */
1261 	vm_size_t length)
1262 {
1263 	vm_object_t source;
1264 	vm_object_t result;
1265 
1266 	source = *object;
1267 
1268 	/*
1269 	 * Don't create the new object if the old object isn't shared.
1270 	 */
1271 	if (source != NULL) {
1272 		VM_OBJECT_WLOCK(source);
1273 		if (source->ref_count == 1 &&
1274 		    source->handle == NULL &&
1275 		    (source->type == OBJT_DEFAULT ||
1276 		     source->type == OBJT_SWAP)) {
1277 			VM_OBJECT_WUNLOCK(source);
1278 			return;
1279 		}
1280 		VM_OBJECT_WUNLOCK(source);
1281 	}
1282 
1283 	/*
1284 	 * Allocate a new object with the given length.
1285 	 */
1286 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1287 
1288 	/*
1289 	 * The new object shadows the source object, adding a reference to it.
1290 	 * Our caller changes his reference to point to the new object,
1291 	 * removing a reference to the source object.  Net result: no change
1292 	 * of reference count.
1293 	 *
1294 	 * Try to optimize the result object's page color when shadowing
1295 	 * in order to maintain page coloring consistency in the combined
1296 	 * shadowed object.
1297 	 */
1298 	result->backing_object = source;
1299 	/*
1300 	 * Store the offset into the source object, and fix up the offset into
1301 	 * the new object.
1302 	 */
1303 	result->backing_object_offset = *offset;
1304 	if (source != NULL) {
1305 		VM_OBJECT_WLOCK(source);
1306 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1307 		source->shadow_count++;
1308 #if VM_NRESERVLEVEL > 0
1309 		result->flags |= source->flags & OBJ_COLORED;
1310 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1311 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1312 #endif
1313 		VM_OBJECT_WUNLOCK(source);
1314 	}
1315 
1316 
1317 	/*
1318 	 * Return the new things
1319 	 */
1320 	*offset = 0;
1321 	*object = result;
1322 }
1323 
1324 /*
1325  *	vm_object_split:
1326  *
1327  * Split the pages in a map entry into a new object.  This affords
1328  * easier removal of unused pages, and keeps object inheritance from
1329  * being a negative impact on memory usage.
1330  */
1331 void
1332 vm_object_split(vm_map_entry_t entry)
1333 {
1334 	vm_page_t m, m_next;
1335 	vm_object_t orig_object, new_object, source;
1336 	vm_pindex_t idx, offidxstart;
1337 	vm_size_t size;
1338 
1339 	orig_object = entry->object.vm_object;
1340 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1341 		return;
1342 	if (orig_object->ref_count <= 1)
1343 		return;
1344 	VM_OBJECT_WUNLOCK(orig_object);
1345 
1346 	offidxstart = OFF_TO_IDX(entry->offset);
1347 	size = atop(entry->end - entry->start);
1348 
1349 	/*
1350 	 * If swap_pager_copy() is later called, it will convert new_object
1351 	 * into a swap object.
1352 	 */
1353 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1354 
1355 	/*
1356 	 * At this point, the new object is still private, so the order in
1357 	 * which the original and new objects are locked does not matter.
1358 	 */
1359 	VM_OBJECT_WLOCK(new_object);
1360 	VM_OBJECT_WLOCK(orig_object);
1361 	source = orig_object->backing_object;
1362 	if (source != NULL) {
1363 		VM_OBJECT_WLOCK(source);
1364 		if ((source->flags & OBJ_DEAD) != 0) {
1365 			VM_OBJECT_WUNLOCK(source);
1366 			VM_OBJECT_WUNLOCK(orig_object);
1367 			VM_OBJECT_WUNLOCK(new_object);
1368 			vm_object_deallocate(new_object);
1369 			VM_OBJECT_WLOCK(orig_object);
1370 			return;
1371 		}
1372 		LIST_INSERT_HEAD(&source->shadow_head,
1373 				  new_object, shadow_list);
1374 		source->shadow_count++;
1375 		vm_object_reference_locked(source);	/* for new_object */
1376 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1377 		VM_OBJECT_WUNLOCK(source);
1378 		new_object->backing_object_offset =
1379 			orig_object->backing_object_offset + entry->offset;
1380 		new_object->backing_object = source;
1381 	}
1382 	if (orig_object->cred != NULL) {
1383 		new_object->cred = orig_object->cred;
1384 		crhold(orig_object->cred);
1385 		new_object->charge = ptoa(size);
1386 		KASSERT(orig_object->charge >= ptoa(size),
1387 		    ("orig_object->charge < 0"));
1388 		orig_object->charge -= ptoa(size);
1389 	}
1390 retry:
1391 	m = vm_page_find_least(orig_object, offidxstart);
1392 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1393 	    m = m_next) {
1394 		m_next = TAILQ_NEXT(m, listq);
1395 
1396 		/*
1397 		 * We must wait for pending I/O to complete before we can
1398 		 * rename the page.
1399 		 *
1400 		 * We do not have to VM_PROT_NONE the page as mappings should
1401 		 * not be changed by this operation.
1402 		 */
1403 		if (vm_page_busied(m)) {
1404 			VM_OBJECT_WUNLOCK(new_object);
1405 			vm_page_lock(m);
1406 			VM_OBJECT_WUNLOCK(orig_object);
1407 			vm_page_busy_sleep(m, "spltwt", false);
1408 			VM_OBJECT_WLOCK(orig_object);
1409 			VM_OBJECT_WLOCK(new_object);
1410 			goto retry;
1411 		}
1412 
1413 		/* vm_page_rename() will dirty the page. */
1414 		if (vm_page_rename(m, new_object, idx)) {
1415 			VM_OBJECT_WUNLOCK(new_object);
1416 			VM_OBJECT_WUNLOCK(orig_object);
1417 			VM_WAIT;
1418 			VM_OBJECT_WLOCK(orig_object);
1419 			VM_OBJECT_WLOCK(new_object);
1420 			goto retry;
1421 		}
1422 #if VM_NRESERVLEVEL > 0
1423 		/*
1424 		 * If some of the reservation's allocated pages remain with
1425 		 * the original object, then transferring the reservation to
1426 		 * the new object is neither particularly beneficial nor
1427 		 * particularly harmful as compared to leaving the reservation
1428 		 * with the original object.  If, however, all of the
1429 		 * reservation's allocated pages are transferred to the new
1430 		 * object, then transferring the reservation is typically
1431 		 * beneficial.  Determining which of these two cases applies
1432 		 * would be more costly than unconditionally renaming the
1433 		 * reservation.
1434 		 */
1435 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1436 #endif
1437 		if (orig_object->type == OBJT_SWAP)
1438 			vm_page_xbusy(m);
1439 	}
1440 	if (orig_object->type == OBJT_SWAP) {
1441 		/*
1442 		 * swap_pager_copy() can sleep, in which case the orig_object's
1443 		 * and new_object's locks are released and reacquired.
1444 		 */
1445 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1446 		TAILQ_FOREACH(m, &new_object->memq, listq)
1447 			vm_page_xunbusy(m);
1448 	}
1449 	VM_OBJECT_WUNLOCK(orig_object);
1450 	VM_OBJECT_WUNLOCK(new_object);
1451 	entry->object.vm_object = new_object;
1452 	entry->offset = 0LL;
1453 	vm_object_deallocate(orig_object);
1454 	VM_OBJECT_WLOCK(new_object);
1455 }
1456 
1457 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1458 #define	OBSC_COLLAPSE_WAIT	0x0004
1459 
1460 static vm_page_t
1461 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1462     int op)
1463 {
1464 	vm_object_t backing_object;
1465 
1466 	VM_OBJECT_ASSERT_WLOCKED(object);
1467 	backing_object = object->backing_object;
1468 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1469 
1470 	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1471 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1472 	    ("invalid ownership %p %p %p", p, object, backing_object));
1473 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1474 		return (next);
1475 	if (p != NULL)
1476 		vm_page_lock(p);
1477 	VM_OBJECT_WUNLOCK(object);
1478 	VM_OBJECT_WUNLOCK(backing_object);
1479 	if (p == NULL)
1480 		VM_WAIT;
1481 	else
1482 		vm_page_busy_sleep(p, "vmocol", false);
1483 	VM_OBJECT_WLOCK(object);
1484 	VM_OBJECT_WLOCK(backing_object);
1485 	return (TAILQ_FIRST(&backing_object->memq));
1486 }
1487 
1488 static bool
1489 vm_object_scan_all_shadowed(vm_object_t object)
1490 {
1491 	vm_object_t backing_object;
1492 	vm_page_t p, pp;
1493 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1494 
1495 	VM_OBJECT_ASSERT_WLOCKED(object);
1496 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1497 
1498 	backing_object = object->backing_object;
1499 
1500 	if (backing_object->type != OBJT_DEFAULT &&
1501 	    backing_object->type != OBJT_SWAP)
1502 		return (false);
1503 
1504 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1505 	p = vm_page_find_least(backing_object, pi);
1506 	ps = swap_pager_find_least(backing_object, pi);
1507 
1508 	/*
1509 	 * Only check pages inside the parent object's range and
1510 	 * inside the parent object's mapping of the backing object.
1511 	 */
1512 	for (;; pi++) {
1513 		if (p != NULL && p->pindex < pi)
1514 			p = TAILQ_NEXT(p, listq);
1515 		if (ps < pi)
1516 			ps = swap_pager_find_least(backing_object, pi);
1517 		if (p == NULL && ps >= backing_object->size)
1518 			break;
1519 		else if (p == NULL)
1520 			pi = ps;
1521 		else
1522 			pi = MIN(p->pindex, ps);
1523 
1524 		new_pindex = pi - backing_offset_index;
1525 		if (new_pindex >= object->size)
1526 			break;
1527 
1528 		/*
1529 		 * See if the parent has the page or if the parent's object
1530 		 * pager has the page.  If the parent has the page but the page
1531 		 * is not valid, the parent's object pager must have the page.
1532 		 *
1533 		 * If this fails, the parent does not completely shadow the
1534 		 * object and we might as well give up now.
1535 		 */
1536 		pp = vm_page_lookup(object, new_pindex);
1537 		if ((pp == NULL || pp->valid == 0) &&
1538 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1539 			return (false);
1540 	}
1541 	return (true);
1542 }
1543 
1544 static bool
1545 vm_object_collapse_scan(vm_object_t object, int op)
1546 {
1547 	vm_object_t backing_object;
1548 	vm_page_t next, p, pp;
1549 	vm_pindex_t backing_offset_index, new_pindex;
1550 
1551 	VM_OBJECT_ASSERT_WLOCKED(object);
1552 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1553 
1554 	backing_object = object->backing_object;
1555 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1556 
1557 	/*
1558 	 * Initial conditions
1559 	 */
1560 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1561 		vm_object_set_flag(backing_object, OBJ_DEAD);
1562 
1563 	/*
1564 	 * Our scan
1565 	 */
1566 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1567 		next = TAILQ_NEXT(p, listq);
1568 		new_pindex = p->pindex - backing_offset_index;
1569 
1570 		/*
1571 		 * Check for busy page
1572 		 */
1573 		if (vm_page_busied(p)) {
1574 			next = vm_object_collapse_scan_wait(object, p, next, op);
1575 			continue;
1576 		}
1577 
1578 		KASSERT(p->object == backing_object,
1579 		    ("vm_object_collapse_scan: object mismatch"));
1580 
1581 		if (p->pindex < backing_offset_index ||
1582 		    new_pindex >= object->size) {
1583 			if (backing_object->type == OBJT_SWAP)
1584 				swap_pager_freespace(backing_object, p->pindex,
1585 				    1);
1586 
1587 			/*
1588 			 * Page is out of the parent object's range, we can
1589 			 * simply destroy it.
1590 			 */
1591 			vm_page_lock(p);
1592 			KASSERT(!pmap_page_is_mapped(p),
1593 			    ("freeing mapped page %p", p));
1594 			if (p->wire_count == 0)
1595 				vm_page_free(p);
1596 			else
1597 				vm_page_remove(p);
1598 			vm_page_unlock(p);
1599 			continue;
1600 		}
1601 
1602 		pp = vm_page_lookup(object, new_pindex);
1603 		if (pp != NULL && vm_page_busied(pp)) {
1604 			/*
1605 			 * The page in the parent is busy and possibly not
1606 			 * (yet) valid.  Until its state is finalized by the
1607 			 * busy bit owner, we can't tell whether it shadows the
1608 			 * original page.  Therefore, we must either skip it
1609 			 * and the original (backing_object) page or wait for
1610 			 * its state to be finalized.
1611 			 *
1612 			 * This is due to a race with vm_fault() where we must
1613 			 * unbusy the original (backing_obj) page before we can
1614 			 * (re)lock the parent.  Hence we can get here.
1615 			 */
1616 			next = vm_object_collapse_scan_wait(object, pp, next,
1617 			    op);
1618 			continue;
1619 		}
1620 
1621 		KASSERT(pp == NULL || pp->valid != 0,
1622 		    ("unbusy invalid page %p", pp));
1623 
1624 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1625 			NULL)) {
1626 			/*
1627 			 * The page already exists in the parent OR swap exists
1628 			 * for this location in the parent.  Leave the parent's
1629 			 * page alone.  Destroy the original page from the
1630 			 * backing object.
1631 			 */
1632 			if (backing_object->type == OBJT_SWAP)
1633 				swap_pager_freespace(backing_object, p->pindex,
1634 				    1);
1635 			vm_page_lock(p);
1636 			KASSERT(!pmap_page_is_mapped(p),
1637 			    ("freeing mapped page %p", p));
1638 			if (p->wire_count == 0)
1639 				vm_page_free(p);
1640 			else
1641 				vm_page_remove(p);
1642 			vm_page_unlock(p);
1643 			continue;
1644 		}
1645 
1646 		/*
1647 		 * Page does not exist in parent, rename the page from the
1648 		 * backing object to the main object.
1649 		 *
1650 		 * If the page was mapped to a process, it can remain mapped
1651 		 * through the rename.  vm_page_rename() will dirty the page.
1652 		 */
1653 		if (vm_page_rename(p, object, new_pindex)) {
1654 			next = vm_object_collapse_scan_wait(object, NULL, next,
1655 			    op);
1656 			continue;
1657 		}
1658 
1659 		/* Use the old pindex to free the right page. */
1660 		if (backing_object->type == OBJT_SWAP)
1661 			swap_pager_freespace(backing_object,
1662 			    new_pindex + backing_offset_index, 1);
1663 
1664 #if VM_NRESERVLEVEL > 0
1665 		/*
1666 		 * Rename the reservation.
1667 		 */
1668 		vm_reserv_rename(p, object, backing_object,
1669 		    backing_offset_index);
1670 #endif
1671 	}
1672 	return (true);
1673 }
1674 
1675 
1676 /*
1677  * this version of collapse allows the operation to occur earlier and
1678  * when paging_in_progress is true for an object...  This is not a complete
1679  * operation, but should plug 99.9% of the rest of the leaks.
1680  */
1681 static void
1682 vm_object_qcollapse(vm_object_t object)
1683 {
1684 	vm_object_t backing_object = object->backing_object;
1685 
1686 	VM_OBJECT_ASSERT_WLOCKED(object);
1687 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1688 
1689 	if (backing_object->ref_count != 1)
1690 		return;
1691 
1692 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1693 }
1694 
1695 /*
1696  *	vm_object_collapse:
1697  *
1698  *	Collapse an object with the object backing it.
1699  *	Pages in the backing object are moved into the
1700  *	parent, and the backing object is deallocated.
1701  */
1702 void
1703 vm_object_collapse(vm_object_t object)
1704 {
1705 	vm_object_t backing_object, new_backing_object;
1706 
1707 	VM_OBJECT_ASSERT_WLOCKED(object);
1708 
1709 	while (TRUE) {
1710 		/*
1711 		 * Verify that the conditions are right for collapse:
1712 		 *
1713 		 * The object exists and the backing object exists.
1714 		 */
1715 		if ((backing_object = object->backing_object) == NULL)
1716 			break;
1717 
1718 		/*
1719 		 * we check the backing object first, because it is most likely
1720 		 * not collapsable.
1721 		 */
1722 		VM_OBJECT_WLOCK(backing_object);
1723 		if (backing_object->handle != NULL ||
1724 		    (backing_object->type != OBJT_DEFAULT &&
1725 		     backing_object->type != OBJT_SWAP) ||
1726 		    (backing_object->flags & OBJ_DEAD) ||
1727 		    object->handle != NULL ||
1728 		    (object->type != OBJT_DEFAULT &&
1729 		     object->type != OBJT_SWAP) ||
1730 		    (object->flags & OBJ_DEAD)) {
1731 			VM_OBJECT_WUNLOCK(backing_object);
1732 			break;
1733 		}
1734 
1735 		if (object->paging_in_progress != 0 ||
1736 		    backing_object->paging_in_progress != 0) {
1737 			vm_object_qcollapse(object);
1738 			VM_OBJECT_WUNLOCK(backing_object);
1739 			break;
1740 		}
1741 
1742 		/*
1743 		 * We know that we can either collapse the backing object (if
1744 		 * the parent is the only reference to it) or (perhaps) have
1745 		 * the parent bypass the object if the parent happens to shadow
1746 		 * all the resident pages in the entire backing object.
1747 		 *
1748 		 * This is ignoring pager-backed pages such as swap pages.
1749 		 * vm_object_collapse_scan fails the shadowing test in this
1750 		 * case.
1751 		 */
1752 		if (backing_object->ref_count == 1) {
1753 			vm_object_pip_add(object, 1);
1754 			vm_object_pip_add(backing_object, 1);
1755 
1756 			/*
1757 			 * If there is exactly one reference to the backing
1758 			 * object, we can collapse it into the parent.
1759 			 */
1760 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1761 
1762 #if VM_NRESERVLEVEL > 0
1763 			/*
1764 			 * Break any reservations from backing_object.
1765 			 */
1766 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1767 				vm_reserv_break_all(backing_object);
1768 #endif
1769 
1770 			/*
1771 			 * Move the pager from backing_object to object.
1772 			 */
1773 			if (backing_object->type == OBJT_SWAP) {
1774 				/*
1775 				 * swap_pager_copy() can sleep, in which case
1776 				 * the backing_object's and object's locks are
1777 				 * released and reacquired.
1778 				 * Since swap_pager_copy() is being asked to
1779 				 * destroy the source, it will change the
1780 				 * backing_object's type to OBJT_DEFAULT.
1781 				 */
1782 				swap_pager_copy(
1783 				    backing_object,
1784 				    object,
1785 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1786 			}
1787 			/*
1788 			 * Object now shadows whatever backing_object did.
1789 			 * Note that the reference to
1790 			 * backing_object->backing_object moves from within
1791 			 * backing_object to within object.
1792 			 */
1793 			LIST_REMOVE(object, shadow_list);
1794 			backing_object->shadow_count--;
1795 			if (backing_object->backing_object) {
1796 				VM_OBJECT_WLOCK(backing_object->backing_object);
1797 				LIST_REMOVE(backing_object, shadow_list);
1798 				LIST_INSERT_HEAD(
1799 				    &backing_object->backing_object->shadow_head,
1800 				    object, shadow_list);
1801 				/*
1802 				 * The shadow_count has not changed.
1803 				 */
1804 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1805 			}
1806 			object->backing_object = backing_object->backing_object;
1807 			object->backing_object_offset +=
1808 			    backing_object->backing_object_offset;
1809 
1810 			/*
1811 			 * Discard backing_object.
1812 			 *
1813 			 * Since the backing object has no pages, no pager left,
1814 			 * and no object references within it, all that is
1815 			 * necessary is to dispose of it.
1816 			 */
1817 			KASSERT(backing_object->ref_count == 1, (
1818 "backing_object %p was somehow re-referenced during collapse!",
1819 			    backing_object));
1820 			vm_object_pip_wakeup(backing_object);
1821 			backing_object->type = OBJT_DEAD;
1822 			backing_object->ref_count = 0;
1823 			VM_OBJECT_WUNLOCK(backing_object);
1824 			vm_object_destroy(backing_object);
1825 
1826 			vm_object_pip_wakeup(object);
1827 			object_collapses++;
1828 		} else {
1829 			/*
1830 			 * If we do not entirely shadow the backing object,
1831 			 * there is nothing we can do so we give up.
1832 			 */
1833 			if (object->resident_page_count != object->size &&
1834 			    !vm_object_scan_all_shadowed(object)) {
1835 				VM_OBJECT_WUNLOCK(backing_object);
1836 				break;
1837 			}
1838 
1839 			/*
1840 			 * Make the parent shadow the next object in the
1841 			 * chain.  Deallocating backing_object will not remove
1842 			 * it, since its reference count is at least 2.
1843 			 */
1844 			LIST_REMOVE(object, shadow_list);
1845 			backing_object->shadow_count--;
1846 
1847 			new_backing_object = backing_object->backing_object;
1848 			if ((object->backing_object = new_backing_object) != NULL) {
1849 				VM_OBJECT_WLOCK(new_backing_object);
1850 				LIST_INSERT_HEAD(
1851 				    &new_backing_object->shadow_head,
1852 				    object,
1853 				    shadow_list
1854 				);
1855 				new_backing_object->shadow_count++;
1856 				vm_object_reference_locked(new_backing_object);
1857 				VM_OBJECT_WUNLOCK(new_backing_object);
1858 				object->backing_object_offset +=
1859 					backing_object->backing_object_offset;
1860 			}
1861 
1862 			/*
1863 			 * Drop the reference count on backing_object. Since
1864 			 * its ref_count was at least 2, it will not vanish.
1865 			 */
1866 			backing_object->ref_count--;
1867 			VM_OBJECT_WUNLOCK(backing_object);
1868 			object_bypasses++;
1869 		}
1870 
1871 		/*
1872 		 * Try again with this object's new backing object.
1873 		 */
1874 	}
1875 }
1876 
1877 /*
1878  *	vm_object_page_remove:
1879  *
1880  *	For the given object, either frees or invalidates each of the
1881  *	specified pages.  In general, a page is freed.  However, if a page is
1882  *	wired for any reason other than the existence of a managed, wired
1883  *	mapping, then it may be invalidated but not removed from the object.
1884  *	Pages are specified by the given range ["start", "end") and the option
1885  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1886  *	extends from "start" to the end of the object.  If the option
1887  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1888  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1889  *	specified, then the pages within the specified range must have no
1890  *	mappings.  Otherwise, if this option is not specified, any mappings to
1891  *	the specified pages are removed before the pages are freed or
1892  *	invalidated.
1893  *
1894  *	In general, this operation should only be performed on objects that
1895  *	contain managed pages.  There are, however, two exceptions.  First, it
1896  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1897  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1898  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1899  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1900  *
1901  *	The object must be locked.
1902  */
1903 void
1904 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1905     int options)
1906 {
1907 	vm_page_t p, next;
1908 
1909 	VM_OBJECT_ASSERT_WLOCKED(object);
1910 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1911 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1912 	    ("vm_object_page_remove: illegal options for object %p", object));
1913 	if (object->resident_page_count == 0)
1914 		return;
1915 	vm_object_pip_add(object, 1);
1916 again:
1917 	p = vm_page_find_least(object, start);
1918 
1919 	/*
1920 	 * Here, the variable "p" is either (1) the page with the least pindex
1921 	 * greater than or equal to the parameter "start" or (2) NULL.
1922 	 */
1923 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1924 		next = TAILQ_NEXT(p, listq);
1925 
1926 		/*
1927 		 * If the page is wired for any reason besides the existence
1928 		 * of managed, wired mappings, then it cannot be freed.  For
1929 		 * example, fictitious pages, which represent device memory,
1930 		 * are inherently wired and cannot be freed.  They can,
1931 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1932 		 * not specified.
1933 		 */
1934 		vm_page_lock(p);
1935 		if (vm_page_xbusied(p)) {
1936 			VM_OBJECT_WUNLOCK(object);
1937 			vm_page_busy_sleep(p, "vmopax", true);
1938 			VM_OBJECT_WLOCK(object);
1939 			goto again;
1940 		}
1941 		if (p->wire_count != 0) {
1942 			if ((options & OBJPR_NOTMAPPED) == 0)
1943 				pmap_remove_all(p);
1944 			if ((options & OBJPR_CLEANONLY) == 0) {
1945 				p->valid = 0;
1946 				vm_page_undirty(p);
1947 			}
1948 			goto next;
1949 		}
1950 		if (vm_page_busied(p)) {
1951 			VM_OBJECT_WUNLOCK(object);
1952 			vm_page_busy_sleep(p, "vmopar", false);
1953 			VM_OBJECT_WLOCK(object);
1954 			goto again;
1955 		}
1956 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1957 		    ("vm_object_page_remove: page %p is fictitious", p));
1958 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1959 			if ((options & OBJPR_NOTMAPPED) == 0)
1960 				pmap_remove_write(p);
1961 			if (p->dirty)
1962 				goto next;
1963 		}
1964 		if ((options & OBJPR_NOTMAPPED) == 0)
1965 			pmap_remove_all(p);
1966 		vm_page_free(p);
1967 next:
1968 		vm_page_unlock(p);
1969 	}
1970 	vm_object_pip_wakeup(object);
1971 }
1972 
1973 /*
1974  *	vm_object_page_noreuse:
1975  *
1976  *	For the given object, attempt to move the specified pages to
1977  *	the head of the inactive queue.  This bypasses regular LRU
1978  *	operation and allows the pages to be reused quickly under memory
1979  *	pressure.  If a page is wired for any reason, then it will not
1980  *	be queued.  Pages are specified by the range ["start", "end").
1981  *	As a special case, if "end" is zero, then the range extends from
1982  *	"start" to the end of the object.
1983  *
1984  *	This operation should only be performed on objects that
1985  *	contain non-fictitious, managed pages.
1986  *
1987  *	The object must be locked.
1988  */
1989 void
1990 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1991 {
1992 	struct mtx *mtx, *new_mtx;
1993 	vm_page_t p, next;
1994 
1995 	VM_OBJECT_ASSERT_LOCKED(object);
1996 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1997 	    ("vm_object_page_noreuse: illegal object %p", object));
1998 	if (object->resident_page_count == 0)
1999 		return;
2000 	p = vm_page_find_least(object, start);
2001 
2002 	/*
2003 	 * Here, the variable "p" is either (1) the page with the least pindex
2004 	 * greater than or equal to the parameter "start" or (2) NULL.
2005 	 */
2006 	mtx = NULL;
2007 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2008 		next = TAILQ_NEXT(p, listq);
2009 
2010 		/*
2011 		 * Avoid releasing and reacquiring the same page lock.
2012 		 */
2013 		new_mtx = vm_page_lockptr(p);
2014 		if (mtx != new_mtx) {
2015 			if (mtx != NULL)
2016 				mtx_unlock(mtx);
2017 			mtx = new_mtx;
2018 			mtx_lock(mtx);
2019 		}
2020 		vm_page_deactivate_noreuse(p);
2021 	}
2022 	if (mtx != NULL)
2023 		mtx_unlock(mtx);
2024 }
2025 
2026 /*
2027  *	Populate the specified range of the object with valid pages.  Returns
2028  *	TRUE if the range is successfully populated and FALSE otherwise.
2029  *
2030  *	Note: This function should be optimized to pass a larger array of
2031  *	pages to vm_pager_get_pages() before it is applied to a non-
2032  *	OBJT_DEVICE object.
2033  *
2034  *	The object must be locked.
2035  */
2036 boolean_t
2037 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2038 {
2039 	vm_page_t m;
2040 	vm_pindex_t pindex;
2041 	int rv;
2042 
2043 	VM_OBJECT_ASSERT_WLOCKED(object);
2044 	for (pindex = start; pindex < end; pindex++) {
2045 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2046 		if (m->valid != VM_PAGE_BITS_ALL) {
2047 			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2048 			if (rv != VM_PAGER_OK) {
2049 				vm_page_lock(m);
2050 				vm_page_free(m);
2051 				vm_page_unlock(m);
2052 				break;
2053 			}
2054 		}
2055 		/*
2056 		 * Keep "m" busy because a subsequent iteration may unlock
2057 		 * the object.
2058 		 */
2059 	}
2060 	if (pindex > start) {
2061 		m = vm_page_lookup(object, start);
2062 		while (m != NULL && m->pindex < pindex) {
2063 			vm_page_xunbusy(m);
2064 			m = TAILQ_NEXT(m, listq);
2065 		}
2066 	}
2067 	return (pindex == end);
2068 }
2069 
2070 /*
2071  *	Routine:	vm_object_coalesce
2072  *	Function:	Coalesces two objects backing up adjoining
2073  *			regions of memory into a single object.
2074  *
2075  *	returns TRUE if objects were combined.
2076  *
2077  *	NOTE:	Only works at the moment if the second object is NULL -
2078  *		if it's not, which object do we lock first?
2079  *
2080  *	Parameters:
2081  *		prev_object	First object to coalesce
2082  *		prev_offset	Offset into prev_object
2083  *		prev_size	Size of reference to prev_object
2084  *		next_size	Size of reference to the second object
2085  *		reserved	Indicator that extension region has
2086  *				swap accounted for
2087  *
2088  *	Conditions:
2089  *	The object must *not* be locked.
2090  */
2091 boolean_t
2092 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2093     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2094 {
2095 	vm_pindex_t next_pindex;
2096 
2097 	if (prev_object == NULL)
2098 		return (TRUE);
2099 	VM_OBJECT_WLOCK(prev_object);
2100 	if ((prev_object->type != OBJT_DEFAULT &&
2101 	    prev_object->type != OBJT_SWAP) ||
2102 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2103 		VM_OBJECT_WUNLOCK(prev_object);
2104 		return (FALSE);
2105 	}
2106 
2107 	/*
2108 	 * Try to collapse the object first
2109 	 */
2110 	vm_object_collapse(prev_object);
2111 
2112 	/*
2113 	 * Can't coalesce if: . more than one reference . paged out . shadows
2114 	 * another object . has a copy elsewhere (any of which mean that the
2115 	 * pages not mapped to prev_entry may be in use anyway)
2116 	 */
2117 	if (prev_object->backing_object != NULL) {
2118 		VM_OBJECT_WUNLOCK(prev_object);
2119 		return (FALSE);
2120 	}
2121 
2122 	prev_size >>= PAGE_SHIFT;
2123 	next_size >>= PAGE_SHIFT;
2124 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2125 
2126 	if ((prev_object->ref_count > 1) &&
2127 	    (prev_object->size != next_pindex)) {
2128 		VM_OBJECT_WUNLOCK(prev_object);
2129 		return (FALSE);
2130 	}
2131 
2132 	/*
2133 	 * Account for the charge.
2134 	 */
2135 	if (prev_object->cred != NULL) {
2136 
2137 		/*
2138 		 * If prev_object was charged, then this mapping,
2139 		 * although not charged now, may become writable
2140 		 * later. Non-NULL cred in the object would prevent
2141 		 * swap reservation during enabling of the write
2142 		 * access, so reserve swap now. Failed reservation
2143 		 * cause allocation of the separate object for the map
2144 		 * entry, and swap reservation for this entry is
2145 		 * managed in appropriate time.
2146 		 */
2147 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2148 		    prev_object->cred)) {
2149 			VM_OBJECT_WUNLOCK(prev_object);
2150 			return (FALSE);
2151 		}
2152 		prev_object->charge += ptoa(next_size);
2153 	}
2154 
2155 	/*
2156 	 * Remove any pages that may still be in the object from a previous
2157 	 * deallocation.
2158 	 */
2159 	if (next_pindex < prev_object->size) {
2160 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2161 		    next_size, 0);
2162 		if (prev_object->type == OBJT_SWAP)
2163 			swap_pager_freespace(prev_object,
2164 					     next_pindex, next_size);
2165 #if 0
2166 		if (prev_object->cred != NULL) {
2167 			KASSERT(prev_object->charge >=
2168 			    ptoa(prev_object->size - next_pindex),
2169 			    ("object %p overcharged 1 %jx %jx", prev_object,
2170 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2171 			prev_object->charge -= ptoa(prev_object->size -
2172 			    next_pindex);
2173 		}
2174 #endif
2175 	}
2176 
2177 	/*
2178 	 * Extend the object if necessary.
2179 	 */
2180 	if (next_pindex + next_size > prev_object->size)
2181 		prev_object->size = next_pindex + next_size;
2182 
2183 	VM_OBJECT_WUNLOCK(prev_object);
2184 	return (TRUE);
2185 }
2186 
2187 void
2188 vm_object_set_writeable_dirty(vm_object_t object)
2189 {
2190 
2191 	VM_OBJECT_ASSERT_WLOCKED(object);
2192 	if (object->type != OBJT_VNODE) {
2193 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2194 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2195 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2196 		}
2197 		return;
2198 	}
2199 	object->generation++;
2200 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2201 		return;
2202 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2203 }
2204 
2205 /*
2206  *	vm_object_unwire:
2207  *
2208  *	For each page offset within the specified range of the given object,
2209  *	find the highest-level page in the shadow chain and unwire it.  A page
2210  *	must exist at every page offset, and the highest-level page must be
2211  *	wired.
2212  */
2213 void
2214 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2215     uint8_t queue)
2216 {
2217 	vm_object_t tobject;
2218 	vm_page_t m, tm;
2219 	vm_pindex_t end_pindex, pindex, tpindex;
2220 	int depth, locked_depth;
2221 
2222 	KASSERT((offset & PAGE_MASK) == 0,
2223 	    ("vm_object_unwire: offset is not page aligned"));
2224 	KASSERT((length & PAGE_MASK) == 0,
2225 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2226 	/* The wired count of a fictitious page never changes. */
2227 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2228 		return;
2229 	pindex = OFF_TO_IDX(offset);
2230 	end_pindex = pindex + atop(length);
2231 	locked_depth = 1;
2232 	VM_OBJECT_RLOCK(object);
2233 	m = vm_page_find_least(object, pindex);
2234 	while (pindex < end_pindex) {
2235 		if (m == NULL || pindex < m->pindex) {
2236 			/*
2237 			 * The first object in the shadow chain doesn't
2238 			 * contain a page at the current index.  Therefore,
2239 			 * the page must exist in a backing object.
2240 			 */
2241 			tobject = object;
2242 			tpindex = pindex;
2243 			depth = 0;
2244 			do {
2245 				tpindex +=
2246 				    OFF_TO_IDX(tobject->backing_object_offset);
2247 				tobject = tobject->backing_object;
2248 				KASSERT(tobject != NULL,
2249 				    ("vm_object_unwire: missing page"));
2250 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2251 					goto next_page;
2252 				depth++;
2253 				if (depth == locked_depth) {
2254 					locked_depth++;
2255 					VM_OBJECT_RLOCK(tobject);
2256 				}
2257 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2258 			    NULL);
2259 		} else {
2260 			tm = m;
2261 			m = TAILQ_NEXT(m, listq);
2262 		}
2263 		vm_page_lock(tm);
2264 		vm_page_unwire(tm, queue);
2265 		vm_page_unlock(tm);
2266 next_page:
2267 		pindex++;
2268 	}
2269 	/* Release the accumulated object locks. */
2270 	for (depth = 0; depth < locked_depth; depth++) {
2271 		tobject = object->backing_object;
2272 		VM_OBJECT_RUNLOCK(object);
2273 		object = tobject;
2274 	}
2275 }
2276 
2277 struct vnode *
2278 vm_object_vnode(vm_object_t object)
2279 {
2280 
2281 	VM_OBJECT_ASSERT_LOCKED(object);
2282 	if (object->type == OBJT_VNODE)
2283 		return (object->handle);
2284 	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2285 		return (object->un_pager.swp.swp_tmpfs);
2286 	return (NULL);
2287 }
2288 
2289 static int
2290 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2291 {
2292 	struct kinfo_vmobject *kvo;
2293 	char *fullpath, *freepath;
2294 	struct vnode *vp;
2295 	struct vattr va;
2296 	vm_object_t obj;
2297 	vm_page_t m;
2298 	int count, error;
2299 
2300 	if (req->oldptr == NULL) {
2301 		/*
2302 		 * If an old buffer has not been provided, generate an
2303 		 * estimate of the space needed for a subsequent call.
2304 		 */
2305 		mtx_lock(&vm_object_list_mtx);
2306 		count = 0;
2307 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2308 			if (obj->type == OBJT_DEAD)
2309 				continue;
2310 			count++;
2311 		}
2312 		mtx_unlock(&vm_object_list_mtx);
2313 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2314 		    count * 11 / 10));
2315 	}
2316 
2317 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2318 	error = 0;
2319 
2320 	/*
2321 	 * VM objects are type stable and are never removed from the
2322 	 * list once added.  This allows us to safely read obj->object_list
2323 	 * after reacquiring the VM object lock.
2324 	 */
2325 	mtx_lock(&vm_object_list_mtx);
2326 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2327 		if (obj->type == OBJT_DEAD)
2328 			continue;
2329 		VM_OBJECT_RLOCK(obj);
2330 		if (obj->type == OBJT_DEAD) {
2331 			VM_OBJECT_RUNLOCK(obj);
2332 			continue;
2333 		}
2334 		mtx_unlock(&vm_object_list_mtx);
2335 		kvo->kvo_size = ptoa(obj->size);
2336 		kvo->kvo_resident = obj->resident_page_count;
2337 		kvo->kvo_ref_count = obj->ref_count;
2338 		kvo->kvo_shadow_count = obj->shadow_count;
2339 		kvo->kvo_memattr = obj->memattr;
2340 		kvo->kvo_active = 0;
2341 		kvo->kvo_inactive = 0;
2342 		TAILQ_FOREACH(m, &obj->memq, listq) {
2343 			/*
2344 			 * A page may belong to the object but be
2345 			 * dequeued and set to PQ_NONE while the
2346 			 * object lock is not held.  This makes the
2347 			 * reads of m->queue below racy, and we do not
2348 			 * count pages set to PQ_NONE.  However, this
2349 			 * sysctl is only meant to give an
2350 			 * approximation of the system anyway.
2351 			 */
2352 			if (vm_page_active(m))
2353 				kvo->kvo_active++;
2354 			else if (vm_page_inactive(m))
2355 				kvo->kvo_inactive++;
2356 		}
2357 
2358 		kvo->kvo_vn_fileid = 0;
2359 		kvo->kvo_vn_fsid = 0;
2360 		kvo->kvo_vn_fsid_freebsd11 = 0;
2361 		freepath = NULL;
2362 		fullpath = "";
2363 		vp = NULL;
2364 		switch (obj->type) {
2365 		case OBJT_DEFAULT:
2366 			kvo->kvo_type = KVME_TYPE_DEFAULT;
2367 			break;
2368 		case OBJT_VNODE:
2369 			kvo->kvo_type = KVME_TYPE_VNODE;
2370 			vp = obj->handle;
2371 			vref(vp);
2372 			break;
2373 		case OBJT_SWAP:
2374 			kvo->kvo_type = KVME_TYPE_SWAP;
2375 			break;
2376 		case OBJT_DEVICE:
2377 			kvo->kvo_type = KVME_TYPE_DEVICE;
2378 			break;
2379 		case OBJT_PHYS:
2380 			kvo->kvo_type = KVME_TYPE_PHYS;
2381 			break;
2382 		case OBJT_DEAD:
2383 			kvo->kvo_type = KVME_TYPE_DEAD;
2384 			break;
2385 		case OBJT_SG:
2386 			kvo->kvo_type = KVME_TYPE_SG;
2387 			break;
2388 		case OBJT_MGTDEVICE:
2389 			kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2390 			break;
2391 		default:
2392 			kvo->kvo_type = KVME_TYPE_UNKNOWN;
2393 			break;
2394 		}
2395 		VM_OBJECT_RUNLOCK(obj);
2396 		if (vp != NULL) {
2397 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2398 			vn_lock(vp, LK_SHARED | LK_RETRY);
2399 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2400 				kvo->kvo_vn_fileid = va.va_fileid;
2401 				kvo->kvo_vn_fsid = va.va_fsid;
2402 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2403 								/* truncate */
2404 			}
2405 			vput(vp);
2406 		}
2407 
2408 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2409 		if (freepath != NULL)
2410 			free(freepath, M_TEMP);
2411 
2412 		/* Pack record size down */
2413 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2414 		    + strlen(kvo->kvo_path) + 1;
2415 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2416 		    sizeof(uint64_t));
2417 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2418 		mtx_lock(&vm_object_list_mtx);
2419 		if (error)
2420 			break;
2421 	}
2422 	mtx_unlock(&vm_object_list_mtx);
2423 	free(kvo, M_TEMP);
2424 	return (error);
2425 }
2426 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2427     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2428     "List of VM objects");
2429 
2430 #include "opt_ddb.h"
2431 #ifdef DDB
2432 #include <sys/kernel.h>
2433 
2434 #include <sys/cons.h>
2435 
2436 #include <ddb/ddb.h>
2437 
2438 static int
2439 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2440 {
2441 	vm_map_t tmpm;
2442 	vm_map_entry_t tmpe;
2443 	vm_object_t obj;
2444 	int entcount;
2445 
2446 	if (map == 0)
2447 		return 0;
2448 
2449 	if (entry == 0) {
2450 		tmpe = map->header.next;
2451 		entcount = map->nentries;
2452 		while (entcount-- && (tmpe != &map->header)) {
2453 			if (_vm_object_in_map(map, object, tmpe)) {
2454 				return 1;
2455 			}
2456 			tmpe = tmpe->next;
2457 		}
2458 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2459 		tmpm = entry->object.sub_map;
2460 		tmpe = tmpm->header.next;
2461 		entcount = tmpm->nentries;
2462 		while (entcount-- && tmpe != &tmpm->header) {
2463 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2464 				return 1;
2465 			}
2466 			tmpe = tmpe->next;
2467 		}
2468 	} else if ((obj = entry->object.vm_object) != NULL) {
2469 		for (; obj; obj = obj->backing_object)
2470 			if (obj == object) {
2471 				return 1;
2472 			}
2473 	}
2474 	return 0;
2475 }
2476 
2477 static int
2478 vm_object_in_map(vm_object_t object)
2479 {
2480 	struct proc *p;
2481 
2482 	/* sx_slock(&allproc_lock); */
2483 	FOREACH_PROC_IN_SYSTEM(p) {
2484 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2485 			continue;
2486 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2487 			/* sx_sunlock(&allproc_lock); */
2488 			return 1;
2489 		}
2490 	}
2491 	/* sx_sunlock(&allproc_lock); */
2492 	if (_vm_object_in_map(kernel_map, object, 0))
2493 		return 1;
2494 	return 0;
2495 }
2496 
2497 DB_SHOW_COMMAND(vmochk, vm_object_check)
2498 {
2499 	vm_object_t object;
2500 
2501 	/*
2502 	 * make sure that internal objs are in a map somewhere
2503 	 * and none have zero ref counts.
2504 	 */
2505 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2506 		if (object->handle == NULL &&
2507 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2508 			if (object->ref_count == 0) {
2509 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2510 					(long)object->size);
2511 			}
2512 			if (!vm_object_in_map(object)) {
2513 				db_printf(
2514 			"vmochk: internal obj is not in a map: "
2515 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2516 				    object->ref_count, (u_long)object->size,
2517 				    (u_long)object->size,
2518 				    (void *)object->backing_object);
2519 			}
2520 		}
2521 	}
2522 }
2523 
2524 /*
2525  *	vm_object_print:	[ debug ]
2526  */
2527 DB_SHOW_COMMAND(object, vm_object_print_static)
2528 {
2529 	/* XXX convert args. */
2530 	vm_object_t object = (vm_object_t)addr;
2531 	boolean_t full = have_addr;
2532 
2533 	vm_page_t p;
2534 
2535 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2536 #define	count	was_count
2537 
2538 	int count;
2539 
2540 	if (object == NULL)
2541 		return;
2542 
2543 	db_iprintf(
2544 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2545 	    object, (int)object->type, (uintmax_t)object->size,
2546 	    object->resident_page_count, object->ref_count, object->flags,
2547 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2548 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2549 	    object->shadow_count,
2550 	    object->backing_object ? object->backing_object->ref_count : 0,
2551 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2552 
2553 	if (!full)
2554 		return;
2555 
2556 	db_indent += 2;
2557 	count = 0;
2558 	TAILQ_FOREACH(p, &object->memq, listq) {
2559 		if (count == 0)
2560 			db_iprintf("memory:=");
2561 		else if (count == 6) {
2562 			db_printf("\n");
2563 			db_iprintf(" ...");
2564 			count = 0;
2565 		} else
2566 			db_printf(",");
2567 		count++;
2568 
2569 		db_printf("(off=0x%jx,page=0x%jx)",
2570 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2571 	}
2572 	if (count != 0)
2573 		db_printf("\n");
2574 	db_indent -= 2;
2575 }
2576 
2577 /* XXX. */
2578 #undef count
2579 
2580 /* XXX need this non-static entry for calling from vm_map_print. */
2581 void
2582 vm_object_print(
2583         /* db_expr_t */ long addr,
2584 	boolean_t have_addr,
2585 	/* db_expr_t */ long count,
2586 	char *modif)
2587 {
2588 	vm_object_print_static(addr, have_addr, count, modif);
2589 }
2590 
2591 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2592 {
2593 	vm_object_t object;
2594 	vm_pindex_t fidx;
2595 	vm_paddr_t pa;
2596 	vm_page_t m, prev_m;
2597 	int rcount, nl, c;
2598 
2599 	nl = 0;
2600 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2601 		db_printf("new object: %p\n", (void *)object);
2602 		if (nl > 18) {
2603 			c = cngetc();
2604 			if (c != ' ')
2605 				return;
2606 			nl = 0;
2607 		}
2608 		nl++;
2609 		rcount = 0;
2610 		fidx = 0;
2611 		pa = -1;
2612 		TAILQ_FOREACH(m, &object->memq, listq) {
2613 			if (m->pindex > 128)
2614 				break;
2615 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2616 			    prev_m->pindex + 1 != m->pindex) {
2617 				if (rcount) {
2618 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2619 						(long)fidx, rcount, (long)pa);
2620 					if (nl > 18) {
2621 						c = cngetc();
2622 						if (c != ' ')
2623 							return;
2624 						nl = 0;
2625 					}
2626 					nl++;
2627 					rcount = 0;
2628 				}
2629 			}
2630 			if (rcount &&
2631 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2632 				++rcount;
2633 				continue;
2634 			}
2635 			if (rcount) {
2636 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2637 					(long)fidx, rcount, (long)pa);
2638 				if (nl > 18) {
2639 					c = cngetc();
2640 					if (c != ' ')
2641 						return;
2642 					nl = 0;
2643 				}
2644 				nl++;
2645 			}
2646 			fidx = m->pindex;
2647 			pa = VM_PAGE_TO_PHYS(m);
2648 			rcount = 1;
2649 		}
2650 		if (rcount) {
2651 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2652 				(long)fidx, rcount, (long)pa);
2653 			if (nl > 18) {
2654 				c = cngetc();
2655 				if (c != ' ')
2656 					return;
2657 				nl = 0;
2658 			}
2659 			nl++;
2660 		}
2661 	}
2662 }
2663 #endif /* DDB */
2664