1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory object module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include "opt_vm.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/blockcount.h> 75 #include <sys/cpuset.h> 76 #include <sys/limits.h> 77 #include <sys/lock.h> 78 #include <sys/mman.h> 79 #include <sys/mount.h> 80 #include <sys/kernel.h> 81 #include <sys/pctrie.h> 82 #include <sys/sysctl.h> 83 #include <sys/mutex.h> 84 #include <sys/proc.h> /* for curproc, pageproc */ 85 #include <sys/refcount.h> 86 #include <sys/socket.h> 87 #include <sys/resourcevar.h> 88 #include <sys/refcount.h> 89 #include <sys/rwlock.h> 90 #include <sys/user.h> 91 #include <sys/vnode.h> 92 #include <sys/vmmeter.h> 93 #include <sys/sx.h> 94 95 #include <vm/vm.h> 96 #include <vm/vm_param.h> 97 #include <vm/pmap.h> 98 #include <vm/vm_map.h> 99 #include <vm/vm_object.h> 100 #include <vm/vm_page.h> 101 #include <vm/vm_pageout.h> 102 #include <vm/vm_pager.h> 103 #include <vm/vm_phys.h> 104 #include <vm/vm_pagequeue.h> 105 #include <vm/swap_pager.h> 106 #include <vm/vm_kern.h> 107 #include <vm/vm_extern.h> 108 #include <vm/vm_radix.h> 109 #include <vm/vm_reserv.h> 110 #include <vm/uma.h> 111 112 static int old_msync; 113 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 114 "Use old (insecure) msync behavior"); 115 116 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 117 int pagerflags, int flags, boolean_t *allclean, 118 boolean_t *eio); 119 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 120 boolean_t *allclean); 121 static void vm_object_backing_remove(vm_object_t object); 122 123 /* 124 * Virtual memory objects maintain the actual data 125 * associated with allocated virtual memory. A given 126 * page of memory exists within exactly one object. 127 * 128 * An object is only deallocated when all "references" 129 * are given up. Only one "reference" to a given 130 * region of an object should be writeable. 131 * 132 * Associated with each object is a list of all resident 133 * memory pages belonging to that object; this list is 134 * maintained by the "vm_page" module, and locked by the object's 135 * lock. 136 * 137 * Each object also records a "pager" routine which is 138 * used to retrieve (and store) pages to the proper backing 139 * storage. In addition, objects may be backed by other 140 * objects from which they were virtual-copied. 141 * 142 * The only items within the object structure which are 143 * modified after time of creation are: 144 * reference count locked by object's lock 145 * pager routine locked by object's lock 146 * 147 */ 148 149 struct object_q vm_object_list; 150 struct mtx vm_object_list_mtx; /* lock for object list and count */ 151 152 struct vm_object kernel_object_store; 153 154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 155 "VM object stats"); 156 157 static COUNTER_U64_DEFINE_EARLY(object_collapses); 158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 159 &object_collapses, 160 "VM object collapses"); 161 162 static COUNTER_U64_DEFINE_EARLY(object_bypasses); 163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 164 &object_bypasses, 165 "VM object bypasses"); 166 167 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits); 168 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD, 169 &object_collapse_waits, 170 "Number of sleeps for collapse"); 171 172 static uma_zone_t obj_zone; 173 174 static int vm_object_zinit(void *mem, int size, int flags); 175 176 #ifdef INVARIANTS 177 static void vm_object_zdtor(void *mem, int size, void *arg); 178 179 static void 180 vm_object_zdtor(void *mem, int size, void *arg) 181 { 182 vm_object_t object; 183 184 object = (vm_object_t)mem; 185 KASSERT(object->ref_count == 0, 186 ("object %p ref_count = %d", object, object->ref_count)); 187 KASSERT(TAILQ_EMPTY(&object->memq), 188 ("object %p has resident pages in its memq", object)); 189 KASSERT(vm_radix_is_empty(&object->rtree), 190 ("object %p has resident pages in its trie", object)); 191 #if VM_NRESERVLEVEL > 0 192 KASSERT(LIST_EMPTY(&object->rvq), 193 ("object %p has reservations", 194 object)); 195 #endif 196 KASSERT(!vm_object_busied(object), 197 ("object %p busy = %d", object, blockcount_read(&object->busy))); 198 KASSERT(object->resident_page_count == 0, 199 ("object %p resident_page_count = %d", 200 object, object->resident_page_count)); 201 KASSERT(atomic_load_int(&object->shadow_count) == 0, 202 ("object %p shadow_count = %d", 203 object, atomic_load_int(&object->shadow_count))); 204 KASSERT(object->type == OBJT_DEAD, 205 ("object %p has non-dead type %d", 206 object, object->type)); 207 KASSERT(object->charge == 0 && object->cred == NULL, 208 ("object %p has non-zero charge %ju (%p)", 209 object, (uintmax_t)object->charge, object->cred)); 210 } 211 #endif 212 213 static int 214 vm_object_zinit(void *mem, int size, int flags) 215 { 216 vm_object_t object; 217 218 object = (vm_object_t)mem; 219 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 220 221 /* These are true for any object that has been freed */ 222 object->type = OBJT_DEAD; 223 vm_radix_init(&object->rtree); 224 refcount_init(&object->ref_count, 0); 225 blockcount_init(&object->paging_in_progress); 226 blockcount_init(&object->busy); 227 object->resident_page_count = 0; 228 atomic_store_int(&object->shadow_count, 0); 229 object->flags = OBJ_DEAD; 230 231 mtx_lock(&vm_object_list_mtx); 232 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 233 mtx_unlock(&vm_object_list_mtx); 234 return (0); 235 } 236 237 static void 238 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags, 239 vm_object_t object, void *handle) 240 { 241 242 TAILQ_INIT(&object->memq); 243 LIST_INIT(&object->shadow_head); 244 245 object->type = type; 246 object->flags = flags; 247 if ((flags & OBJ_SWAP) != 0) { 248 pctrie_init(&object->un_pager.swp.swp_blks); 249 object->un_pager.swp.writemappings = 0; 250 } 251 252 /* 253 * Ensure that swap_pager_swapoff() iteration over object_list 254 * sees up to date type and pctrie head if it observed 255 * non-dead object. 256 */ 257 atomic_thread_fence_rel(); 258 259 object->pg_color = 0; 260 object->size = size; 261 object->domain.dr_policy = NULL; 262 object->generation = 1; 263 object->cleangeneration = 1; 264 refcount_init(&object->ref_count, 1); 265 object->memattr = VM_MEMATTR_DEFAULT; 266 object->cred = NULL; 267 object->charge = 0; 268 object->handle = handle; 269 object->backing_object = NULL; 270 object->backing_object_offset = (vm_ooffset_t) 0; 271 #if VM_NRESERVLEVEL > 0 272 LIST_INIT(&object->rvq); 273 #endif 274 umtx_shm_object_init(object); 275 } 276 277 /* 278 * vm_object_init: 279 * 280 * Initialize the VM objects module. 281 */ 282 void 283 vm_object_init(void) 284 { 285 TAILQ_INIT(&vm_object_list); 286 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 287 288 rw_init(&kernel_object->lock, "kernel vm object"); 289 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 290 VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL); 291 #if VM_NRESERVLEVEL > 0 292 kernel_object->flags |= OBJ_COLORED; 293 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 294 #endif 295 kernel_object->un_pager.phys.ops = &default_phys_pg_ops; 296 297 /* 298 * The lock portion of struct vm_object must be type stable due 299 * to vm_pageout_fallback_object_lock locking a vm object 300 * without holding any references to it. 301 * 302 * paging_in_progress is valid always. Lockless references to 303 * the objects may acquire pip and then check OBJ_DEAD. 304 */ 305 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 306 #ifdef INVARIANTS 307 vm_object_zdtor, 308 #else 309 NULL, 310 #endif 311 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 312 313 vm_radix_zinit(); 314 } 315 316 void 317 vm_object_clear_flag(vm_object_t object, u_short bits) 318 { 319 320 VM_OBJECT_ASSERT_WLOCKED(object); 321 object->flags &= ~bits; 322 } 323 324 /* 325 * Sets the default memory attribute for the specified object. Pages 326 * that are allocated to this object are by default assigned this memory 327 * attribute. 328 * 329 * Presently, this function must be called before any pages are allocated 330 * to the object. In the future, this requirement may be relaxed for 331 * "default" and "swap" objects. 332 */ 333 int 334 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 335 { 336 337 VM_OBJECT_ASSERT_WLOCKED(object); 338 339 if (object->type == OBJT_DEAD) 340 return (KERN_INVALID_ARGUMENT); 341 if (!TAILQ_EMPTY(&object->memq)) 342 return (KERN_FAILURE); 343 344 object->memattr = memattr; 345 return (KERN_SUCCESS); 346 } 347 348 void 349 vm_object_pip_add(vm_object_t object, short i) 350 { 351 352 if (i > 0) 353 blockcount_acquire(&object->paging_in_progress, i); 354 } 355 356 void 357 vm_object_pip_wakeup(vm_object_t object) 358 { 359 360 vm_object_pip_wakeupn(object, 1); 361 } 362 363 void 364 vm_object_pip_wakeupn(vm_object_t object, short i) 365 { 366 367 if (i > 0) 368 blockcount_release(&object->paging_in_progress, i); 369 } 370 371 /* 372 * Atomically drop the object lock and wait for pip to drain. This protects 373 * from sleep/wakeup races due to identity changes. The lock is not re-acquired 374 * on return. 375 */ 376 static void 377 vm_object_pip_sleep(vm_object_t object, const char *waitid) 378 { 379 380 (void)blockcount_sleep(&object->paging_in_progress, &object->lock, 381 waitid, PVM | PDROP); 382 } 383 384 void 385 vm_object_pip_wait(vm_object_t object, const char *waitid) 386 { 387 388 VM_OBJECT_ASSERT_WLOCKED(object); 389 390 blockcount_wait(&object->paging_in_progress, &object->lock, waitid, 391 PVM); 392 } 393 394 void 395 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid) 396 { 397 398 VM_OBJECT_ASSERT_UNLOCKED(object); 399 400 blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM); 401 } 402 403 /* 404 * vm_object_allocate: 405 * 406 * Returns a new object with the given size. 407 */ 408 vm_object_t 409 vm_object_allocate(objtype_t type, vm_pindex_t size) 410 { 411 vm_object_t object; 412 u_short flags; 413 414 switch (type) { 415 case OBJT_DEAD: 416 panic("vm_object_allocate: can't create OBJT_DEAD"); 417 case OBJT_SWAP: 418 flags = OBJ_COLORED | OBJ_SWAP; 419 break; 420 case OBJT_DEVICE: 421 case OBJT_SG: 422 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 423 break; 424 case OBJT_MGTDEVICE: 425 flags = OBJ_FICTITIOUS; 426 break; 427 case OBJT_PHYS: 428 flags = OBJ_UNMANAGED; 429 break; 430 case OBJT_VNODE: 431 flags = 0; 432 break; 433 default: 434 panic("vm_object_allocate: type %d is undefined or dynamic", 435 type); 436 } 437 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 438 _vm_object_allocate(type, size, flags, object, NULL); 439 440 return (object); 441 } 442 443 vm_object_t 444 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags) 445 { 446 vm_object_t object; 447 448 MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */); 449 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 450 _vm_object_allocate(dyntype, size, flags, object, NULL); 451 452 return (object); 453 } 454 455 /* 456 * vm_object_allocate_anon: 457 * 458 * Returns a new default object of the given size and marked as 459 * anonymous memory for special split/collapse handling. Color 460 * to be initialized by the caller. 461 */ 462 vm_object_t 463 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object, 464 struct ucred *cred, vm_size_t charge) 465 { 466 vm_object_t handle, object; 467 468 if (backing_object == NULL) 469 handle = NULL; 470 else if ((backing_object->flags & OBJ_ANON) != 0) 471 handle = backing_object->handle; 472 else 473 handle = backing_object; 474 object = uma_zalloc(obj_zone, M_WAITOK); 475 _vm_object_allocate(OBJT_SWAP, size, 476 OBJ_ANON | OBJ_ONEMAPPING | OBJ_SWAP, object, handle); 477 object->cred = cred; 478 object->charge = cred != NULL ? charge : 0; 479 return (object); 480 } 481 482 static void 483 vm_object_reference_vnode(vm_object_t object) 484 { 485 u_int old; 486 487 /* 488 * vnode objects need the lock for the first reference 489 * to serialize with vnode_object_deallocate(). 490 */ 491 if (!refcount_acquire_if_gt(&object->ref_count, 0)) { 492 VM_OBJECT_RLOCK(object); 493 old = refcount_acquire(&object->ref_count); 494 if (object->type == OBJT_VNODE && old == 0) 495 vref(object->handle); 496 VM_OBJECT_RUNLOCK(object); 497 } 498 } 499 500 /* 501 * vm_object_reference: 502 * 503 * Acquires a reference to the given object. 504 */ 505 void 506 vm_object_reference(vm_object_t object) 507 { 508 509 if (object == NULL) 510 return; 511 512 if (object->type == OBJT_VNODE) 513 vm_object_reference_vnode(object); 514 else 515 refcount_acquire(&object->ref_count); 516 KASSERT((object->flags & OBJ_DEAD) == 0, 517 ("vm_object_reference: Referenced dead object.")); 518 } 519 520 /* 521 * vm_object_reference_locked: 522 * 523 * Gets another reference to the given object. 524 * 525 * The object must be locked. 526 */ 527 void 528 vm_object_reference_locked(vm_object_t object) 529 { 530 u_int old; 531 532 VM_OBJECT_ASSERT_LOCKED(object); 533 old = refcount_acquire(&object->ref_count); 534 if (object->type == OBJT_VNODE && old == 0) 535 vref(object->handle); 536 KASSERT((object->flags & OBJ_DEAD) == 0, 537 ("vm_object_reference: Referenced dead object.")); 538 } 539 540 /* 541 * Handle deallocating an object of type OBJT_VNODE. 542 */ 543 static void 544 vm_object_deallocate_vnode(vm_object_t object) 545 { 546 struct vnode *vp = (struct vnode *) object->handle; 547 bool last; 548 549 KASSERT(object->type == OBJT_VNODE, 550 ("vm_object_deallocate_vnode: not a vnode object")); 551 KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp")); 552 553 /* Object lock to protect handle lookup. */ 554 last = refcount_release(&object->ref_count); 555 VM_OBJECT_RUNLOCK(object); 556 557 if (!last) 558 return; 559 560 if (!umtx_shm_vnobj_persistent) 561 umtx_shm_object_terminated(object); 562 563 /* vrele may need the vnode lock. */ 564 vrele(vp); 565 } 566 567 /* 568 * We dropped a reference on an object and discovered that it had a 569 * single remaining shadow. This is a sibling of the reference we 570 * dropped. Attempt to collapse the sibling and backing object. 571 */ 572 static vm_object_t 573 vm_object_deallocate_anon(vm_object_t backing_object) 574 { 575 vm_object_t object; 576 577 /* Fetch the final shadow. */ 578 object = LIST_FIRST(&backing_object->shadow_head); 579 KASSERT(object != NULL && 580 atomic_load_int(&backing_object->shadow_count) == 1, 581 ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d", 582 backing_object->ref_count, 583 atomic_load_int(&backing_object->shadow_count))); 584 KASSERT((object->flags & OBJ_ANON) != 0, 585 ("invalid shadow object %p", object)); 586 587 if (!VM_OBJECT_TRYWLOCK(object)) { 588 /* 589 * Prevent object from disappearing since we do not have a 590 * reference. 591 */ 592 vm_object_pip_add(object, 1); 593 VM_OBJECT_WUNLOCK(backing_object); 594 VM_OBJECT_WLOCK(object); 595 vm_object_pip_wakeup(object); 596 } else 597 VM_OBJECT_WUNLOCK(backing_object); 598 599 /* 600 * Check for a collapse/terminate race with the last reference holder. 601 */ 602 if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 || 603 !refcount_acquire_if_not_zero(&object->ref_count)) { 604 VM_OBJECT_WUNLOCK(object); 605 return (NULL); 606 } 607 backing_object = object->backing_object; 608 if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0) 609 vm_object_collapse(object); 610 VM_OBJECT_WUNLOCK(object); 611 612 return (object); 613 } 614 615 /* 616 * vm_object_deallocate: 617 * 618 * Release a reference to the specified object, 619 * gained either through a vm_object_allocate 620 * or a vm_object_reference call. When all references 621 * are gone, storage associated with this object 622 * may be relinquished. 623 * 624 * No object may be locked. 625 */ 626 void 627 vm_object_deallocate(vm_object_t object) 628 { 629 vm_object_t temp; 630 bool released; 631 632 while (object != NULL) { 633 /* 634 * If the reference count goes to 0 we start calling 635 * vm_object_terminate() on the object chain. A ref count 636 * of 1 may be a special case depending on the shadow count 637 * being 0 or 1. These cases require a write lock on the 638 * object. 639 */ 640 if ((object->flags & OBJ_ANON) == 0) 641 released = refcount_release_if_gt(&object->ref_count, 1); 642 else 643 released = refcount_release_if_gt(&object->ref_count, 2); 644 if (released) 645 return; 646 647 if (object->type == OBJT_VNODE) { 648 VM_OBJECT_RLOCK(object); 649 if (object->type == OBJT_VNODE) { 650 vm_object_deallocate_vnode(object); 651 return; 652 } 653 VM_OBJECT_RUNLOCK(object); 654 } 655 656 VM_OBJECT_WLOCK(object); 657 KASSERT(object->ref_count > 0, 658 ("vm_object_deallocate: object deallocated too many times: %d", 659 object->type)); 660 661 /* 662 * If this is not the final reference to an anonymous 663 * object we may need to collapse the shadow chain. 664 */ 665 if (!refcount_release(&object->ref_count)) { 666 if (object->ref_count > 1 || 667 atomic_load_int(&object->shadow_count) == 0) { 668 if ((object->flags & OBJ_ANON) != 0 && 669 object->ref_count == 1) 670 vm_object_set_flag(object, 671 OBJ_ONEMAPPING); 672 VM_OBJECT_WUNLOCK(object); 673 return; 674 } 675 676 /* Handle collapsing last ref on anonymous objects. */ 677 object = vm_object_deallocate_anon(object); 678 continue; 679 } 680 681 /* 682 * Handle the final reference to an object. We restart 683 * the loop with the backing object to avoid recursion. 684 */ 685 umtx_shm_object_terminated(object); 686 temp = object->backing_object; 687 if (temp != NULL) { 688 KASSERT(object->type == OBJT_SWAP, 689 ("shadowed tmpfs v_object 2 %p", object)); 690 vm_object_backing_remove(object); 691 } 692 693 KASSERT((object->flags & OBJ_DEAD) == 0, 694 ("vm_object_deallocate: Terminating dead object.")); 695 vm_object_set_flag(object, OBJ_DEAD); 696 vm_object_terminate(object); 697 object = temp; 698 } 699 } 700 701 void 702 vm_object_destroy(vm_object_t object) 703 { 704 uma_zfree(obj_zone, object); 705 } 706 707 static void 708 vm_object_sub_shadow(vm_object_t object) 709 { 710 KASSERT(object->shadow_count >= 1, 711 ("object %p sub_shadow count zero", object)); 712 atomic_subtract_int(&object->shadow_count, 1); 713 } 714 715 static void 716 vm_object_backing_remove_locked(vm_object_t object) 717 { 718 vm_object_t backing_object; 719 720 backing_object = object->backing_object; 721 VM_OBJECT_ASSERT_WLOCKED(object); 722 VM_OBJECT_ASSERT_WLOCKED(backing_object); 723 724 KASSERT((object->flags & OBJ_COLLAPSING) == 0, 725 ("vm_object_backing_remove: Removing collapsing object.")); 726 727 vm_object_sub_shadow(backing_object); 728 if ((object->flags & OBJ_SHADOWLIST) != 0) { 729 LIST_REMOVE(object, shadow_list); 730 vm_object_clear_flag(object, OBJ_SHADOWLIST); 731 } 732 object->backing_object = NULL; 733 } 734 735 static void 736 vm_object_backing_remove(vm_object_t object) 737 { 738 vm_object_t backing_object; 739 740 VM_OBJECT_ASSERT_WLOCKED(object); 741 742 backing_object = object->backing_object; 743 if ((object->flags & OBJ_SHADOWLIST) != 0) { 744 VM_OBJECT_WLOCK(backing_object); 745 vm_object_backing_remove_locked(object); 746 VM_OBJECT_WUNLOCK(backing_object); 747 } else { 748 object->backing_object = NULL; 749 vm_object_sub_shadow(backing_object); 750 } 751 } 752 753 static void 754 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object) 755 { 756 757 VM_OBJECT_ASSERT_WLOCKED(object); 758 759 atomic_add_int(&backing_object->shadow_count, 1); 760 if ((backing_object->flags & OBJ_ANON) != 0) { 761 VM_OBJECT_ASSERT_WLOCKED(backing_object); 762 LIST_INSERT_HEAD(&backing_object->shadow_head, object, 763 shadow_list); 764 vm_object_set_flag(object, OBJ_SHADOWLIST); 765 } 766 object->backing_object = backing_object; 767 } 768 769 static void 770 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object) 771 { 772 773 VM_OBJECT_ASSERT_WLOCKED(object); 774 775 if ((backing_object->flags & OBJ_ANON) != 0) { 776 VM_OBJECT_WLOCK(backing_object); 777 vm_object_backing_insert_locked(object, backing_object); 778 VM_OBJECT_WUNLOCK(backing_object); 779 } else { 780 object->backing_object = backing_object; 781 atomic_add_int(&backing_object->shadow_count, 1); 782 } 783 } 784 785 /* 786 * Insert an object into a backing_object's shadow list with an additional 787 * reference to the backing_object added. 788 */ 789 static void 790 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object) 791 { 792 793 VM_OBJECT_ASSERT_WLOCKED(object); 794 795 if ((backing_object->flags & OBJ_ANON) != 0) { 796 VM_OBJECT_WLOCK(backing_object); 797 KASSERT((backing_object->flags & OBJ_DEAD) == 0, 798 ("shadowing dead anonymous object")); 799 vm_object_reference_locked(backing_object); 800 vm_object_backing_insert_locked(object, backing_object); 801 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING); 802 VM_OBJECT_WUNLOCK(backing_object); 803 } else { 804 vm_object_reference(backing_object); 805 atomic_add_int(&backing_object->shadow_count, 1); 806 object->backing_object = backing_object; 807 } 808 } 809 810 /* 811 * Transfer a backing reference from backing_object to object. 812 */ 813 static void 814 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object) 815 { 816 vm_object_t new_backing_object; 817 818 /* 819 * Note that the reference to backing_object->backing_object 820 * moves from within backing_object to within object. 821 */ 822 vm_object_backing_remove_locked(object); 823 new_backing_object = backing_object->backing_object; 824 if (new_backing_object == NULL) 825 return; 826 if ((new_backing_object->flags & OBJ_ANON) != 0) { 827 VM_OBJECT_WLOCK(new_backing_object); 828 vm_object_backing_remove_locked(backing_object); 829 vm_object_backing_insert_locked(object, new_backing_object); 830 VM_OBJECT_WUNLOCK(new_backing_object); 831 } else { 832 /* 833 * shadow_count for new_backing_object is left 834 * unchanged, its reference provided by backing_object 835 * is replaced by object. 836 */ 837 object->backing_object = new_backing_object; 838 backing_object->backing_object = NULL; 839 } 840 } 841 842 /* 843 * Wait for a concurrent collapse to settle. 844 */ 845 static void 846 vm_object_collapse_wait(vm_object_t object) 847 { 848 849 VM_OBJECT_ASSERT_WLOCKED(object); 850 851 while ((object->flags & OBJ_COLLAPSING) != 0) { 852 vm_object_pip_wait(object, "vmcolwait"); 853 counter_u64_add(object_collapse_waits, 1); 854 } 855 } 856 857 /* 858 * Waits for a backing object to clear a pending collapse and returns 859 * it locked if it is an ANON object. 860 */ 861 static vm_object_t 862 vm_object_backing_collapse_wait(vm_object_t object) 863 { 864 vm_object_t backing_object; 865 866 VM_OBJECT_ASSERT_WLOCKED(object); 867 868 for (;;) { 869 backing_object = object->backing_object; 870 if (backing_object == NULL || 871 (backing_object->flags & OBJ_ANON) == 0) 872 return (NULL); 873 VM_OBJECT_WLOCK(backing_object); 874 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0) 875 break; 876 VM_OBJECT_WUNLOCK(object); 877 vm_object_pip_sleep(backing_object, "vmbckwait"); 878 counter_u64_add(object_collapse_waits, 1); 879 VM_OBJECT_WLOCK(object); 880 } 881 return (backing_object); 882 } 883 884 /* 885 * vm_object_terminate_pages removes any remaining pageable pages 886 * from the object and resets the object to an empty state. 887 */ 888 static void 889 vm_object_terminate_pages(vm_object_t object) 890 { 891 vm_page_t p, p_next; 892 893 VM_OBJECT_ASSERT_WLOCKED(object); 894 895 /* 896 * Free any remaining pageable pages. This also removes them from the 897 * paging queues. However, don't free wired pages, just remove them 898 * from the object. Rather than incrementally removing each page from 899 * the object, the page and object are reset to any empty state. 900 */ 901 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 902 vm_page_assert_unbusied(p); 903 KASSERT(p->object == object && 904 (p->ref_count & VPRC_OBJREF) != 0, 905 ("vm_object_terminate_pages: page %p is inconsistent", p)); 906 907 p->object = NULL; 908 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) { 909 VM_CNT_INC(v_pfree); 910 vm_page_free(p); 911 } 912 } 913 914 /* 915 * If the object contained any pages, then reset it to an empty state. 916 * None of the object's fields, including "resident_page_count", were 917 * modified by the preceding loop. 918 */ 919 if (object->resident_page_count != 0) { 920 vm_radix_reclaim_allnodes(&object->rtree); 921 TAILQ_INIT(&object->memq); 922 object->resident_page_count = 0; 923 if (object->type == OBJT_VNODE) 924 vdrop(object->handle); 925 } 926 } 927 928 /* 929 * vm_object_terminate actually destroys the specified object, freeing 930 * up all previously used resources. 931 * 932 * The object must be locked. 933 * This routine may block. 934 */ 935 void 936 vm_object_terminate(vm_object_t object) 937 { 938 939 VM_OBJECT_ASSERT_WLOCKED(object); 940 KASSERT((object->flags & OBJ_DEAD) != 0, 941 ("terminating non-dead obj %p", object)); 942 KASSERT((object->flags & OBJ_COLLAPSING) == 0, 943 ("terminating collapsing obj %p", object)); 944 KASSERT(object->backing_object == NULL, 945 ("terminating shadow obj %p", object)); 946 947 /* 948 * Wait for the pageout daemon and other current users to be 949 * done with the object. Note that new paging_in_progress 950 * users can come after this wait, but they must check 951 * OBJ_DEAD flag set (without unlocking the object), and avoid 952 * the object being terminated. 953 */ 954 vm_object_pip_wait(object, "objtrm"); 955 956 KASSERT(object->ref_count == 0, 957 ("vm_object_terminate: object with references, ref_count=%d", 958 object->ref_count)); 959 960 if ((object->flags & OBJ_PG_DTOR) == 0) 961 vm_object_terminate_pages(object); 962 963 #if VM_NRESERVLEVEL > 0 964 if (__predict_false(!LIST_EMPTY(&object->rvq))) 965 vm_reserv_break_all(object); 966 #endif 967 968 KASSERT(object->cred == NULL || (object->flags & OBJ_SWAP) != 0, 969 ("%s: non-swap obj %p has cred", __func__, object)); 970 971 /* 972 * Let the pager know object is dead. 973 */ 974 vm_pager_deallocate(object); 975 VM_OBJECT_WUNLOCK(object); 976 977 vm_object_destroy(object); 978 } 979 980 /* 981 * Make the page read-only so that we can clear the object flags. However, if 982 * this is a nosync mmap then the object is likely to stay dirty so do not 983 * mess with the page and do not clear the object flags. Returns TRUE if the 984 * page should be flushed, and FALSE otherwise. 985 */ 986 static boolean_t 987 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean) 988 { 989 990 vm_page_assert_busied(p); 991 992 /* 993 * If we have been asked to skip nosync pages and this is a 994 * nosync page, skip it. Note that the object flags were not 995 * cleared in this case so we do not have to set them. 996 */ 997 if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) { 998 *allclean = FALSE; 999 return (FALSE); 1000 } else { 1001 pmap_remove_write(p); 1002 return (p->dirty != 0); 1003 } 1004 } 1005 1006 /* 1007 * vm_object_page_clean 1008 * 1009 * Clean all dirty pages in the specified range of object. Leaves page 1010 * on whatever queue it is currently on. If NOSYNC is set then do not 1011 * write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC), 1012 * leaving the object dirty. 1013 * 1014 * For swap objects backing tmpfs regular files, do not flush anything, 1015 * but remove write protection on the mapped pages to update mtime through 1016 * mmaped writes. 1017 * 1018 * When stuffing pages asynchronously, allow clustering. XXX we need a 1019 * synchronous clustering mode implementation. 1020 * 1021 * Odd semantics: if start == end, we clean everything. 1022 * 1023 * The object must be locked. 1024 * 1025 * Returns FALSE if some page from the range was not written, as 1026 * reported by the pager, and TRUE otherwise. 1027 */ 1028 boolean_t 1029 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 1030 int flags) 1031 { 1032 vm_page_t np, p; 1033 vm_pindex_t pi, tend, tstart; 1034 int curgeneration, n, pagerflags; 1035 boolean_t eio, res, allclean; 1036 1037 VM_OBJECT_ASSERT_WLOCKED(object); 1038 1039 if (!vm_object_mightbedirty(object) || object->resident_page_count == 0) 1040 return (TRUE); 1041 1042 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 1043 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 1044 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 1045 1046 tstart = OFF_TO_IDX(start); 1047 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 1048 allclean = tstart == 0 && tend >= object->size; 1049 res = TRUE; 1050 1051 rescan: 1052 curgeneration = object->generation; 1053 1054 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 1055 pi = p->pindex; 1056 if (pi >= tend) 1057 break; 1058 np = TAILQ_NEXT(p, listq); 1059 if (vm_page_none_valid(p)) 1060 continue; 1061 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) { 1062 if (object->generation != curgeneration && 1063 (flags & OBJPC_SYNC) != 0) 1064 goto rescan; 1065 np = vm_page_find_least(object, pi); 1066 continue; 1067 } 1068 if (!vm_object_page_remove_write(p, flags, &allclean)) { 1069 vm_page_xunbusy(p); 1070 continue; 1071 } 1072 if (object->type == OBJT_VNODE) { 1073 n = vm_object_page_collect_flush(object, p, pagerflags, 1074 flags, &allclean, &eio); 1075 if (eio) { 1076 res = FALSE; 1077 allclean = FALSE; 1078 } 1079 if (object->generation != curgeneration && 1080 (flags & OBJPC_SYNC) != 0) 1081 goto rescan; 1082 1083 /* 1084 * If the VOP_PUTPAGES() did a truncated write, so 1085 * that even the first page of the run is not fully 1086 * written, vm_pageout_flush() returns 0 as the run 1087 * length. Since the condition that caused truncated 1088 * write may be permanent, e.g. exhausted free space, 1089 * accepting n == 0 would cause an infinite loop. 1090 * 1091 * Forwarding the iterator leaves the unwritten page 1092 * behind, but there is not much we can do there if 1093 * filesystem refuses to write it. 1094 */ 1095 if (n == 0) { 1096 n = 1; 1097 allclean = FALSE; 1098 } 1099 } else { 1100 n = 1; 1101 vm_page_xunbusy(p); 1102 } 1103 np = vm_page_find_least(object, pi + n); 1104 } 1105 #if 0 1106 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 1107 #endif 1108 1109 /* 1110 * Leave updating cleangeneration for tmpfs objects to tmpfs 1111 * scan. It needs to update mtime, which happens for other 1112 * filesystems during page writeouts. 1113 */ 1114 if (allclean && object->type == OBJT_VNODE) 1115 object->cleangeneration = curgeneration; 1116 return (res); 1117 } 1118 1119 static int 1120 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 1121 int flags, boolean_t *allclean, boolean_t *eio) 1122 { 1123 vm_page_t ma[vm_pageout_page_count], p_first, tp; 1124 int count, i, mreq, runlen; 1125 1126 vm_page_lock_assert(p, MA_NOTOWNED); 1127 vm_page_assert_xbusied(p); 1128 VM_OBJECT_ASSERT_WLOCKED(object); 1129 1130 count = 1; 1131 mreq = 0; 1132 1133 for (tp = p; count < vm_pageout_page_count; count++) { 1134 tp = vm_page_next(tp); 1135 if (tp == NULL || vm_page_tryxbusy(tp) == 0) 1136 break; 1137 if (!vm_object_page_remove_write(tp, flags, allclean)) { 1138 vm_page_xunbusy(tp); 1139 break; 1140 } 1141 } 1142 1143 for (p_first = p; count < vm_pageout_page_count; count++) { 1144 tp = vm_page_prev(p_first); 1145 if (tp == NULL || vm_page_tryxbusy(tp) == 0) 1146 break; 1147 if (!vm_object_page_remove_write(tp, flags, allclean)) { 1148 vm_page_xunbusy(tp); 1149 break; 1150 } 1151 p_first = tp; 1152 mreq++; 1153 } 1154 1155 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 1156 ma[i] = tp; 1157 1158 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 1159 return (runlen); 1160 } 1161 1162 /* 1163 * Note that there is absolutely no sense in writing out 1164 * anonymous objects, so we track down the vnode object 1165 * to write out. 1166 * We invalidate (remove) all pages from the address space 1167 * for semantic correctness. 1168 * 1169 * If the backing object is a device object with unmanaged pages, then any 1170 * mappings to the specified range of pages must be removed before this 1171 * function is called. 1172 * 1173 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 1174 * may start out with a NULL object. 1175 */ 1176 boolean_t 1177 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 1178 boolean_t syncio, boolean_t invalidate) 1179 { 1180 vm_object_t backing_object; 1181 struct vnode *vp; 1182 struct mount *mp; 1183 int error, flags, fsync_after; 1184 boolean_t res; 1185 1186 if (object == NULL) 1187 return (TRUE); 1188 res = TRUE; 1189 error = 0; 1190 VM_OBJECT_WLOCK(object); 1191 while ((backing_object = object->backing_object) != NULL) { 1192 VM_OBJECT_WLOCK(backing_object); 1193 offset += object->backing_object_offset; 1194 VM_OBJECT_WUNLOCK(object); 1195 object = backing_object; 1196 if (object->size < OFF_TO_IDX(offset + size)) 1197 size = IDX_TO_OFF(object->size) - offset; 1198 } 1199 /* 1200 * Flush pages if writing is allowed, invalidate them 1201 * if invalidation requested. Pages undergoing I/O 1202 * will be ignored by vm_object_page_remove(). 1203 * 1204 * We cannot lock the vnode and then wait for paging 1205 * to complete without deadlocking against vm_fault. 1206 * Instead we simply call vm_object_page_remove() and 1207 * allow it to block internally on a page-by-page 1208 * basis when it encounters pages undergoing async 1209 * I/O. 1210 */ 1211 if (object->type == OBJT_VNODE && 1212 vm_object_mightbedirty(object) != 0 && 1213 ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) { 1214 VM_OBJECT_WUNLOCK(object); 1215 (void) vn_start_write(vp, &mp, V_WAIT); 1216 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1217 if (syncio && !invalidate && offset == 0 && 1218 atop(size) == object->size) { 1219 /* 1220 * If syncing the whole mapping of the file, 1221 * it is faster to schedule all the writes in 1222 * async mode, also allowing the clustering, 1223 * and then wait for i/o to complete. 1224 */ 1225 flags = 0; 1226 fsync_after = TRUE; 1227 } else { 1228 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1229 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1230 fsync_after = FALSE; 1231 } 1232 VM_OBJECT_WLOCK(object); 1233 res = vm_object_page_clean(object, offset, offset + size, 1234 flags); 1235 VM_OBJECT_WUNLOCK(object); 1236 if (fsync_after) 1237 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1238 VOP_UNLOCK(vp); 1239 vn_finished_write(mp); 1240 if (error != 0) 1241 res = FALSE; 1242 VM_OBJECT_WLOCK(object); 1243 } 1244 if ((object->type == OBJT_VNODE || 1245 object->type == OBJT_DEVICE) && invalidate) { 1246 if (object->type == OBJT_DEVICE) 1247 /* 1248 * The option OBJPR_NOTMAPPED must be passed here 1249 * because vm_object_page_remove() cannot remove 1250 * unmanaged mappings. 1251 */ 1252 flags = OBJPR_NOTMAPPED; 1253 else if (old_msync) 1254 flags = 0; 1255 else 1256 flags = OBJPR_CLEANONLY; 1257 vm_object_page_remove(object, OFF_TO_IDX(offset), 1258 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1259 } 1260 VM_OBJECT_WUNLOCK(object); 1261 return (res); 1262 } 1263 1264 /* 1265 * Determine whether the given advice can be applied to the object. Advice is 1266 * not applied to unmanaged pages since they never belong to page queues, and 1267 * since MADV_FREE is destructive, it can apply only to anonymous pages that 1268 * have been mapped at most once. 1269 */ 1270 static bool 1271 vm_object_advice_applies(vm_object_t object, int advice) 1272 { 1273 1274 if ((object->flags & OBJ_UNMANAGED) != 0) 1275 return (false); 1276 if (advice != MADV_FREE) 1277 return (true); 1278 return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) == 1279 (OBJ_ONEMAPPING | OBJ_ANON)); 1280 } 1281 1282 static void 1283 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex, 1284 vm_size_t size) 1285 { 1286 1287 if (advice == MADV_FREE) 1288 vm_pager_freespace(object, pindex, size); 1289 } 1290 1291 /* 1292 * vm_object_madvise: 1293 * 1294 * Implements the madvise function at the object/page level. 1295 * 1296 * MADV_WILLNEED (any object) 1297 * 1298 * Activate the specified pages if they are resident. 1299 * 1300 * MADV_DONTNEED (any object) 1301 * 1302 * Deactivate the specified pages if they are resident. 1303 * 1304 * MADV_FREE (OBJT_SWAP objects, OBJ_ONEMAPPING only) 1305 * 1306 * Deactivate and clean the specified pages if they are 1307 * resident. This permits the process to reuse the pages 1308 * without faulting or the kernel to reclaim the pages 1309 * without I/O. 1310 */ 1311 void 1312 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1313 int advice) 1314 { 1315 vm_pindex_t tpindex; 1316 vm_object_t backing_object, tobject; 1317 vm_page_t m, tm; 1318 1319 if (object == NULL) 1320 return; 1321 1322 relookup: 1323 VM_OBJECT_WLOCK(object); 1324 if (!vm_object_advice_applies(object, advice)) { 1325 VM_OBJECT_WUNLOCK(object); 1326 return; 1327 } 1328 for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) { 1329 tobject = object; 1330 1331 /* 1332 * If the next page isn't resident in the top-level object, we 1333 * need to search the shadow chain. When applying MADV_FREE, we 1334 * take care to release any swap space used to store 1335 * non-resident pages. 1336 */ 1337 if (m == NULL || pindex < m->pindex) { 1338 /* 1339 * Optimize a common case: if the top-level object has 1340 * no backing object, we can skip over the non-resident 1341 * range in constant time. 1342 */ 1343 if (object->backing_object == NULL) { 1344 tpindex = (m != NULL && m->pindex < end) ? 1345 m->pindex : end; 1346 vm_object_madvise_freespace(object, advice, 1347 pindex, tpindex - pindex); 1348 if ((pindex = tpindex) == end) 1349 break; 1350 goto next_page; 1351 } 1352 1353 tpindex = pindex; 1354 do { 1355 vm_object_madvise_freespace(tobject, advice, 1356 tpindex, 1); 1357 /* 1358 * Prepare to search the next object in the 1359 * chain. 1360 */ 1361 backing_object = tobject->backing_object; 1362 if (backing_object == NULL) 1363 goto next_pindex; 1364 VM_OBJECT_WLOCK(backing_object); 1365 tpindex += 1366 OFF_TO_IDX(tobject->backing_object_offset); 1367 if (tobject != object) 1368 VM_OBJECT_WUNLOCK(tobject); 1369 tobject = backing_object; 1370 if (!vm_object_advice_applies(tobject, advice)) 1371 goto next_pindex; 1372 } while ((tm = vm_page_lookup(tobject, tpindex)) == 1373 NULL); 1374 } else { 1375 next_page: 1376 tm = m; 1377 m = TAILQ_NEXT(m, listq); 1378 } 1379 1380 /* 1381 * If the page is not in a normal state, skip it. The page 1382 * can not be invalidated while the object lock is held. 1383 */ 1384 if (!vm_page_all_valid(tm) || vm_page_wired(tm)) 1385 goto next_pindex; 1386 KASSERT((tm->flags & PG_FICTITIOUS) == 0, 1387 ("vm_object_madvise: page %p is fictitious", tm)); 1388 KASSERT((tm->oflags & VPO_UNMANAGED) == 0, 1389 ("vm_object_madvise: page %p is not managed", tm)); 1390 if (vm_page_tryxbusy(tm) == 0) { 1391 if (object != tobject) 1392 VM_OBJECT_WUNLOCK(object); 1393 if (advice == MADV_WILLNEED) { 1394 /* 1395 * Reference the page before unlocking and 1396 * sleeping so that the page daemon is less 1397 * likely to reclaim it. 1398 */ 1399 vm_page_aflag_set(tm, PGA_REFERENCED); 1400 } 1401 if (!vm_page_busy_sleep(tm, "madvpo", 0)) 1402 VM_OBJECT_WUNLOCK(tobject); 1403 goto relookup; 1404 } 1405 vm_page_advise(tm, advice); 1406 vm_page_xunbusy(tm); 1407 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1); 1408 next_pindex: 1409 if (tobject != object) 1410 VM_OBJECT_WUNLOCK(tobject); 1411 } 1412 VM_OBJECT_WUNLOCK(object); 1413 } 1414 1415 /* 1416 * vm_object_shadow: 1417 * 1418 * Create a new object which is backed by the 1419 * specified existing object range. The source 1420 * object reference is deallocated. 1421 * 1422 * The new object and offset into that object 1423 * are returned in the source parameters. 1424 */ 1425 void 1426 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length, 1427 struct ucred *cred, bool shared) 1428 { 1429 vm_object_t source; 1430 vm_object_t result; 1431 1432 source = *object; 1433 1434 /* 1435 * Don't create the new object if the old object isn't shared. 1436 * 1437 * If we hold the only reference we can guarantee that it won't 1438 * increase while we have the map locked. Otherwise the race is 1439 * harmless and we will end up with an extra shadow object that 1440 * will be collapsed later. 1441 */ 1442 if (source != NULL && source->ref_count == 1 && 1443 (source->flags & OBJ_ANON) != 0) 1444 return; 1445 1446 /* 1447 * Allocate a new object with the given length. 1448 */ 1449 result = vm_object_allocate_anon(atop(length), source, cred, length); 1450 1451 /* 1452 * Store the offset into the source object, and fix up the offset into 1453 * the new object. 1454 */ 1455 result->backing_object_offset = *offset; 1456 1457 if (shared || source != NULL) { 1458 VM_OBJECT_WLOCK(result); 1459 1460 /* 1461 * The new object shadows the source object, adding a 1462 * reference to it. Our caller changes his reference 1463 * to point to the new object, removing a reference to 1464 * the source object. Net result: no change of 1465 * reference count, unless the caller needs to add one 1466 * more reference due to forking a shared map entry. 1467 */ 1468 if (shared) { 1469 vm_object_reference_locked(result); 1470 vm_object_clear_flag(result, OBJ_ONEMAPPING); 1471 } 1472 1473 /* 1474 * Try to optimize the result object's page color when 1475 * shadowing in order to maintain page coloring 1476 * consistency in the combined shadowed object. 1477 */ 1478 if (source != NULL) { 1479 vm_object_backing_insert(result, source); 1480 result->domain = source->domain; 1481 #if VM_NRESERVLEVEL > 0 1482 vm_object_set_flag(result, 1483 (source->flags & OBJ_COLORED)); 1484 result->pg_color = (source->pg_color + 1485 OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER - 1486 1)) - 1); 1487 #endif 1488 } 1489 VM_OBJECT_WUNLOCK(result); 1490 } 1491 1492 /* 1493 * Return the new things 1494 */ 1495 *offset = 0; 1496 *object = result; 1497 } 1498 1499 /* 1500 * vm_object_split: 1501 * 1502 * Split the pages in a map entry into a new object. This affords 1503 * easier removal of unused pages, and keeps object inheritance from 1504 * being a negative impact on memory usage. 1505 */ 1506 void 1507 vm_object_split(vm_map_entry_t entry) 1508 { 1509 vm_page_t m, m_next; 1510 vm_object_t orig_object, new_object, backing_object; 1511 vm_pindex_t idx, offidxstart; 1512 vm_size_t size; 1513 1514 orig_object = entry->object.vm_object; 1515 KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0, 1516 ("vm_object_split: Splitting object with multiple mappings.")); 1517 if ((orig_object->flags & OBJ_ANON) == 0) 1518 return; 1519 if (orig_object->ref_count <= 1) 1520 return; 1521 VM_OBJECT_WUNLOCK(orig_object); 1522 1523 offidxstart = OFF_TO_IDX(entry->offset); 1524 size = atop(entry->end - entry->start); 1525 1526 new_object = vm_object_allocate_anon(size, orig_object, 1527 orig_object->cred, ptoa(size)); 1528 1529 /* 1530 * We must wait for the orig_object to complete any in-progress 1531 * collapse so that the swap blocks are stable below. The 1532 * additional reference on backing_object by new object will 1533 * prevent further collapse operations until split completes. 1534 */ 1535 VM_OBJECT_WLOCK(orig_object); 1536 vm_object_collapse_wait(orig_object); 1537 1538 /* 1539 * At this point, the new object is still private, so the order in 1540 * which the original and new objects are locked does not matter. 1541 */ 1542 VM_OBJECT_WLOCK(new_object); 1543 new_object->domain = orig_object->domain; 1544 backing_object = orig_object->backing_object; 1545 if (backing_object != NULL) { 1546 vm_object_backing_insert_ref(new_object, backing_object); 1547 new_object->backing_object_offset = 1548 orig_object->backing_object_offset + entry->offset; 1549 } 1550 if (orig_object->cred != NULL) { 1551 crhold(orig_object->cred); 1552 KASSERT(orig_object->charge >= ptoa(size), 1553 ("orig_object->charge < 0")); 1554 orig_object->charge -= ptoa(size); 1555 } 1556 1557 /* 1558 * Mark the split operation so that swap_pager_getpages() knows 1559 * that the object is in transition. 1560 */ 1561 vm_object_set_flag(orig_object, OBJ_SPLIT); 1562 #ifdef INVARIANTS 1563 idx = 0; 1564 #endif 1565 retry: 1566 m = vm_page_find_least(orig_object, offidxstart); 1567 KASSERT(m == NULL || idx <= m->pindex - offidxstart, 1568 ("%s: object %p was repopulated", __func__, orig_object)); 1569 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1570 m = m_next) { 1571 m_next = TAILQ_NEXT(m, listq); 1572 1573 /* 1574 * We must wait for pending I/O to complete before we can 1575 * rename the page. 1576 * 1577 * We do not have to VM_PROT_NONE the page as mappings should 1578 * not be changed by this operation. 1579 */ 1580 if (vm_page_tryxbusy(m) == 0) { 1581 VM_OBJECT_WUNLOCK(new_object); 1582 if (vm_page_busy_sleep(m, "spltwt", 0)) 1583 VM_OBJECT_WLOCK(orig_object); 1584 VM_OBJECT_WLOCK(new_object); 1585 goto retry; 1586 } 1587 1588 /* 1589 * The page was left invalid. Likely placed there by 1590 * an incomplete fault. Just remove and ignore. 1591 */ 1592 if (vm_page_none_valid(m)) { 1593 if (vm_page_remove(m)) 1594 vm_page_free(m); 1595 continue; 1596 } 1597 1598 /* vm_page_rename() will dirty the page. */ 1599 if (vm_page_rename(m, new_object, idx)) { 1600 vm_page_xunbusy(m); 1601 VM_OBJECT_WUNLOCK(new_object); 1602 VM_OBJECT_WUNLOCK(orig_object); 1603 vm_radix_wait(); 1604 VM_OBJECT_WLOCK(orig_object); 1605 VM_OBJECT_WLOCK(new_object); 1606 goto retry; 1607 } 1608 1609 #if VM_NRESERVLEVEL > 0 1610 /* 1611 * If some of the reservation's allocated pages remain with 1612 * the original object, then transferring the reservation to 1613 * the new object is neither particularly beneficial nor 1614 * particularly harmful as compared to leaving the reservation 1615 * with the original object. If, however, all of the 1616 * reservation's allocated pages are transferred to the new 1617 * object, then transferring the reservation is typically 1618 * beneficial. Determining which of these two cases applies 1619 * would be more costly than unconditionally renaming the 1620 * reservation. 1621 */ 1622 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1623 #endif 1624 } 1625 1626 /* 1627 * swap_pager_copy() can sleep, in which case the orig_object's 1628 * and new_object's locks are released and reacquired. 1629 */ 1630 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1631 1632 TAILQ_FOREACH(m, &new_object->memq, listq) 1633 vm_page_xunbusy(m); 1634 1635 vm_object_clear_flag(orig_object, OBJ_SPLIT); 1636 VM_OBJECT_WUNLOCK(orig_object); 1637 VM_OBJECT_WUNLOCK(new_object); 1638 entry->object.vm_object = new_object; 1639 entry->offset = 0LL; 1640 vm_object_deallocate(orig_object); 1641 VM_OBJECT_WLOCK(new_object); 1642 } 1643 1644 static vm_page_t 1645 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p) 1646 { 1647 vm_object_t backing_object; 1648 1649 VM_OBJECT_ASSERT_WLOCKED(object); 1650 backing_object = object->backing_object; 1651 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1652 1653 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1654 ("invalid ownership %p %p %p", p, object, backing_object)); 1655 /* The page is only NULL when rename fails. */ 1656 if (p == NULL) { 1657 VM_OBJECT_WUNLOCK(object); 1658 VM_OBJECT_WUNLOCK(backing_object); 1659 vm_radix_wait(); 1660 VM_OBJECT_WLOCK(object); 1661 } else if (p->object == object) { 1662 VM_OBJECT_WUNLOCK(backing_object); 1663 if (vm_page_busy_sleep(p, "vmocol", 0)) 1664 VM_OBJECT_WLOCK(object); 1665 } else { 1666 VM_OBJECT_WUNLOCK(object); 1667 if (!vm_page_busy_sleep(p, "vmocol", 0)) 1668 VM_OBJECT_WUNLOCK(backing_object); 1669 VM_OBJECT_WLOCK(object); 1670 } 1671 VM_OBJECT_WLOCK(backing_object); 1672 return (TAILQ_FIRST(&backing_object->memq)); 1673 } 1674 1675 static bool 1676 vm_object_scan_all_shadowed(vm_object_t object) 1677 { 1678 vm_object_t backing_object; 1679 vm_page_t p, pp; 1680 vm_pindex_t backing_offset_index, new_pindex, pi, ps; 1681 1682 VM_OBJECT_ASSERT_WLOCKED(object); 1683 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1684 1685 backing_object = object->backing_object; 1686 1687 if ((backing_object->flags & OBJ_ANON) == 0) 1688 return (false); 1689 1690 pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1691 p = vm_page_find_least(backing_object, pi); 1692 ps = swap_pager_find_least(backing_object, pi); 1693 1694 /* 1695 * Only check pages inside the parent object's range and 1696 * inside the parent object's mapping of the backing object. 1697 */ 1698 for (;; pi++) { 1699 if (p != NULL && p->pindex < pi) 1700 p = TAILQ_NEXT(p, listq); 1701 if (ps < pi) 1702 ps = swap_pager_find_least(backing_object, pi); 1703 if (p == NULL && ps >= backing_object->size) 1704 break; 1705 else if (p == NULL) 1706 pi = ps; 1707 else 1708 pi = MIN(p->pindex, ps); 1709 1710 new_pindex = pi - backing_offset_index; 1711 if (new_pindex >= object->size) 1712 break; 1713 1714 if (p != NULL) { 1715 /* 1716 * If the backing object page is busy a 1717 * grandparent or older page may still be 1718 * undergoing CoW. It is not safe to collapse 1719 * the backing object until it is quiesced. 1720 */ 1721 if (vm_page_tryxbusy(p) == 0) 1722 return (false); 1723 1724 /* 1725 * We raced with the fault handler that left 1726 * newly allocated invalid page on the object 1727 * queue and retried. 1728 */ 1729 if (!vm_page_all_valid(p)) 1730 goto unbusy_ret; 1731 } 1732 1733 /* 1734 * See if the parent has the page or if the parent's object 1735 * pager has the page. If the parent has the page but the page 1736 * is not valid, the parent's object pager must have the page. 1737 * 1738 * If this fails, the parent does not completely shadow the 1739 * object and we might as well give up now. 1740 */ 1741 pp = vm_page_lookup(object, new_pindex); 1742 1743 /* 1744 * The valid check here is stable due to object lock 1745 * being required to clear valid and initiate paging. 1746 * Busy of p disallows fault handler to validate pp. 1747 */ 1748 if ((pp == NULL || vm_page_none_valid(pp)) && 1749 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1750 goto unbusy_ret; 1751 if (p != NULL) 1752 vm_page_xunbusy(p); 1753 } 1754 return (true); 1755 1756 unbusy_ret: 1757 if (p != NULL) 1758 vm_page_xunbusy(p); 1759 return (false); 1760 } 1761 1762 static void 1763 vm_object_collapse_scan(vm_object_t object) 1764 { 1765 vm_object_t backing_object; 1766 vm_page_t next, p, pp; 1767 vm_pindex_t backing_offset_index, new_pindex; 1768 1769 VM_OBJECT_ASSERT_WLOCKED(object); 1770 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1771 1772 backing_object = object->backing_object; 1773 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1774 1775 /* 1776 * Our scan 1777 */ 1778 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1779 next = TAILQ_NEXT(p, listq); 1780 new_pindex = p->pindex - backing_offset_index; 1781 1782 /* 1783 * Check for busy page 1784 */ 1785 if (vm_page_tryxbusy(p) == 0) { 1786 next = vm_object_collapse_scan_wait(object, p); 1787 continue; 1788 } 1789 1790 KASSERT(object->backing_object == backing_object, 1791 ("vm_object_collapse_scan: backing object mismatch %p != %p", 1792 object->backing_object, backing_object)); 1793 KASSERT(p->object == backing_object, 1794 ("vm_object_collapse_scan: object mismatch %p != %p", 1795 p->object, backing_object)); 1796 1797 if (p->pindex < backing_offset_index || 1798 new_pindex >= object->size) { 1799 vm_pager_freespace(backing_object, p->pindex, 1); 1800 1801 KASSERT(!pmap_page_is_mapped(p), 1802 ("freeing mapped page %p", p)); 1803 if (vm_page_remove(p)) 1804 vm_page_free(p); 1805 continue; 1806 } 1807 1808 if (!vm_page_all_valid(p)) { 1809 KASSERT(!pmap_page_is_mapped(p), 1810 ("freeing mapped page %p", p)); 1811 if (vm_page_remove(p)) 1812 vm_page_free(p); 1813 continue; 1814 } 1815 1816 pp = vm_page_lookup(object, new_pindex); 1817 if (pp != NULL && vm_page_tryxbusy(pp) == 0) { 1818 vm_page_xunbusy(p); 1819 /* 1820 * The page in the parent is busy and possibly not 1821 * (yet) valid. Until its state is finalized by the 1822 * busy bit owner, we can't tell whether it shadows the 1823 * original page. 1824 */ 1825 next = vm_object_collapse_scan_wait(object, pp); 1826 continue; 1827 } 1828 1829 if (pp != NULL && vm_page_none_valid(pp)) { 1830 /* 1831 * The page was invalid in the parent. Likely placed 1832 * there by an incomplete fault. Just remove and 1833 * ignore. p can replace it. 1834 */ 1835 if (vm_page_remove(pp)) 1836 vm_page_free(pp); 1837 pp = NULL; 1838 } 1839 1840 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1841 NULL)) { 1842 /* 1843 * The page already exists in the parent OR swap exists 1844 * for this location in the parent. Leave the parent's 1845 * page alone. Destroy the original page from the 1846 * backing object. 1847 */ 1848 vm_pager_freespace(backing_object, p->pindex, 1); 1849 KASSERT(!pmap_page_is_mapped(p), 1850 ("freeing mapped page %p", p)); 1851 if (vm_page_remove(p)) 1852 vm_page_free(p); 1853 if (pp != NULL) 1854 vm_page_xunbusy(pp); 1855 continue; 1856 } 1857 1858 /* 1859 * Page does not exist in parent, rename the page from the 1860 * backing object to the main object. 1861 * 1862 * If the page was mapped to a process, it can remain mapped 1863 * through the rename. vm_page_rename() will dirty the page. 1864 */ 1865 if (vm_page_rename(p, object, new_pindex)) { 1866 vm_page_xunbusy(p); 1867 next = vm_object_collapse_scan_wait(object, NULL); 1868 continue; 1869 } 1870 1871 /* Use the old pindex to free the right page. */ 1872 vm_pager_freespace(backing_object, new_pindex + 1873 backing_offset_index, 1); 1874 1875 #if VM_NRESERVLEVEL > 0 1876 /* 1877 * Rename the reservation. 1878 */ 1879 vm_reserv_rename(p, object, backing_object, 1880 backing_offset_index); 1881 #endif 1882 vm_page_xunbusy(p); 1883 } 1884 return; 1885 } 1886 1887 /* 1888 * vm_object_collapse: 1889 * 1890 * Collapse an object with the object backing it. 1891 * Pages in the backing object are moved into the 1892 * parent, and the backing object is deallocated. 1893 */ 1894 void 1895 vm_object_collapse(vm_object_t object) 1896 { 1897 vm_object_t backing_object, new_backing_object; 1898 1899 VM_OBJECT_ASSERT_WLOCKED(object); 1900 1901 while (TRUE) { 1902 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON, 1903 ("collapsing invalid object")); 1904 1905 /* 1906 * Wait for the backing_object to finish any pending 1907 * collapse so that the caller sees the shortest possible 1908 * shadow chain. 1909 */ 1910 backing_object = vm_object_backing_collapse_wait(object); 1911 if (backing_object == NULL) 1912 return; 1913 1914 KASSERT(object->ref_count > 0 && 1915 object->ref_count > atomic_load_int(&object->shadow_count), 1916 ("collapse with invalid ref %d or shadow %d count.", 1917 object->ref_count, atomic_load_int(&object->shadow_count))); 1918 KASSERT((backing_object->flags & 1919 (OBJ_COLLAPSING | OBJ_DEAD)) == 0, 1920 ("vm_object_collapse: Backing object already collapsing.")); 1921 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0, 1922 ("vm_object_collapse: object is already collapsing.")); 1923 1924 /* 1925 * We know that we can either collapse the backing object if 1926 * the parent is the only reference to it, or (perhaps) have 1927 * the parent bypass the object if the parent happens to shadow 1928 * all the resident pages in the entire backing object. 1929 */ 1930 if (backing_object->ref_count == 1) { 1931 KASSERT(atomic_load_int(&backing_object->shadow_count) 1932 == 1, 1933 ("vm_object_collapse: shadow_count: %d", 1934 atomic_load_int(&backing_object->shadow_count))); 1935 vm_object_pip_add(object, 1); 1936 vm_object_set_flag(object, OBJ_COLLAPSING); 1937 vm_object_pip_add(backing_object, 1); 1938 vm_object_set_flag(backing_object, OBJ_DEAD); 1939 1940 /* 1941 * If there is exactly one reference to the backing 1942 * object, we can collapse it into the parent. 1943 */ 1944 vm_object_collapse_scan(object); 1945 1946 #if VM_NRESERVLEVEL > 0 1947 /* 1948 * Break any reservations from backing_object. 1949 */ 1950 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1951 vm_reserv_break_all(backing_object); 1952 #endif 1953 1954 /* 1955 * Move the pager from backing_object to object. 1956 * 1957 * swap_pager_copy() can sleep, in which case the 1958 * backing_object's and object's locks are released and 1959 * reacquired. 1960 */ 1961 swap_pager_copy(backing_object, object, 1962 OFF_TO_IDX(object->backing_object_offset), TRUE); 1963 1964 /* 1965 * Object now shadows whatever backing_object did. 1966 */ 1967 vm_object_clear_flag(object, OBJ_COLLAPSING); 1968 vm_object_backing_transfer(object, backing_object); 1969 object->backing_object_offset += 1970 backing_object->backing_object_offset; 1971 VM_OBJECT_WUNLOCK(object); 1972 vm_object_pip_wakeup(object); 1973 1974 /* 1975 * Discard backing_object. 1976 * 1977 * Since the backing object has no pages, no pager left, 1978 * and no object references within it, all that is 1979 * necessary is to dispose of it. 1980 */ 1981 KASSERT(backing_object->ref_count == 1, ( 1982 "backing_object %p was somehow re-referenced during collapse!", 1983 backing_object)); 1984 vm_object_pip_wakeup(backing_object); 1985 (void)refcount_release(&backing_object->ref_count); 1986 vm_object_terminate(backing_object); 1987 counter_u64_add(object_collapses, 1); 1988 VM_OBJECT_WLOCK(object); 1989 } else { 1990 /* 1991 * If we do not entirely shadow the backing object, 1992 * there is nothing we can do so we give up. 1993 * 1994 * The object lock and backing_object lock must not 1995 * be dropped during this sequence. 1996 */ 1997 if (!vm_object_scan_all_shadowed(object)) { 1998 VM_OBJECT_WUNLOCK(backing_object); 1999 break; 2000 } 2001 2002 /* 2003 * Make the parent shadow the next object in the 2004 * chain. Deallocating backing_object will not remove 2005 * it, since its reference count is at least 2. 2006 */ 2007 vm_object_backing_remove_locked(object); 2008 new_backing_object = backing_object->backing_object; 2009 if (new_backing_object != NULL) { 2010 vm_object_backing_insert_ref(object, 2011 new_backing_object); 2012 object->backing_object_offset += 2013 backing_object->backing_object_offset; 2014 } 2015 2016 /* 2017 * Drop the reference count on backing_object. Since 2018 * its ref_count was at least 2, it will not vanish. 2019 */ 2020 (void)refcount_release(&backing_object->ref_count); 2021 KASSERT(backing_object->ref_count >= 1, ( 2022 "backing_object %p was somehow dereferenced during collapse!", 2023 backing_object)); 2024 VM_OBJECT_WUNLOCK(backing_object); 2025 counter_u64_add(object_bypasses, 1); 2026 } 2027 2028 /* 2029 * Try again with this object's new backing object. 2030 */ 2031 } 2032 } 2033 2034 /* 2035 * vm_object_page_remove: 2036 * 2037 * For the given object, either frees or invalidates each of the 2038 * specified pages. In general, a page is freed. However, if a page is 2039 * wired for any reason other than the existence of a managed, wired 2040 * mapping, then it may be invalidated but not removed from the object. 2041 * Pages are specified by the given range ["start", "end") and the option 2042 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 2043 * extends from "start" to the end of the object. If the option 2044 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 2045 * specified range are affected. If the option OBJPR_NOTMAPPED is 2046 * specified, then the pages within the specified range must have no 2047 * mappings. Otherwise, if this option is not specified, any mappings to 2048 * the specified pages are removed before the pages are freed or 2049 * invalidated. 2050 * 2051 * In general, this operation should only be performed on objects that 2052 * contain managed pages. There are, however, two exceptions. First, it 2053 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 2054 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 2055 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 2056 * not be specified and the option OBJPR_NOTMAPPED must be specified. 2057 * 2058 * The object must be locked. 2059 */ 2060 void 2061 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 2062 int options) 2063 { 2064 vm_page_t p, next; 2065 2066 VM_OBJECT_ASSERT_WLOCKED(object); 2067 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 2068 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 2069 ("vm_object_page_remove: illegal options for object %p", object)); 2070 if (object->resident_page_count == 0) 2071 return; 2072 vm_object_pip_add(object, 1); 2073 again: 2074 p = vm_page_find_least(object, start); 2075 2076 /* 2077 * Here, the variable "p" is either (1) the page with the least pindex 2078 * greater than or equal to the parameter "start" or (2) NULL. 2079 */ 2080 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2081 next = TAILQ_NEXT(p, listq); 2082 2083 /* 2084 * Skip invalid pages if asked to do so. Try to avoid acquiring 2085 * the busy lock, as some consumers rely on this to avoid 2086 * deadlocks. 2087 * 2088 * A thread may concurrently transition the page from invalid to 2089 * valid using only the busy lock, so the result of this check 2090 * is immediately stale. It is up to consumers to handle this, 2091 * for instance by ensuring that all invalid->valid transitions 2092 * happen with a mutex held, as may be possible for a 2093 * filesystem. 2094 */ 2095 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) 2096 continue; 2097 2098 /* 2099 * If the page is wired for any reason besides the existence 2100 * of managed, wired mappings, then it cannot be freed. For 2101 * example, fictitious pages, which represent device memory, 2102 * are inherently wired and cannot be freed. They can, 2103 * however, be invalidated if the option OBJPR_CLEANONLY is 2104 * not specified. 2105 */ 2106 if (vm_page_tryxbusy(p) == 0) { 2107 if (vm_page_busy_sleep(p, "vmopar", 0)) 2108 VM_OBJECT_WLOCK(object); 2109 goto again; 2110 } 2111 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) { 2112 vm_page_xunbusy(p); 2113 continue; 2114 } 2115 if (vm_page_wired(p)) { 2116 wired: 2117 if ((options & OBJPR_NOTMAPPED) == 0 && 2118 object->ref_count != 0) 2119 pmap_remove_all(p); 2120 if ((options & OBJPR_CLEANONLY) == 0) { 2121 vm_page_invalid(p); 2122 vm_page_undirty(p); 2123 } 2124 vm_page_xunbusy(p); 2125 continue; 2126 } 2127 KASSERT((p->flags & PG_FICTITIOUS) == 0, 2128 ("vm_object_page_remove: page %p is fictitious", p)); 2129 if ((options & OBJPR_CLEANONLY) != 0 && 2130 !vm_page_none_valid(p)) { 2131 if ((options & OBJPR_NOTMAPPED) == 0 && 2132 object->ref_count != 0 && 2133 !vm_page_try_remove_write(p)) 2134 goto wired; 2135 if (p->dirty != 0) { 2136 vm_page_xunbusy(p); 2137 continue; 2138 } 2139 } 2140 if ((options & OBJPR_NOTMAPPED) == 0 && 2141 object->ref_count != 0 && !vm_page_try_remove_all(p)) 2142 goto wired; 2143 vm_page_free(p); 2144 } 2145 vm_object_pip_wakeup(object); 2146 2147 vm_pager_freespace(object, start, (end == 0 ? object->size : end) - 2148 start); 2149 } 2150 2151 /* 2152 * vm_object_page_noreuse: 2153 * 2154 * For the given object, attempt to move the specified pages to 2155 * the head of the inactive queue. This bypasses regular LRU 2156 * operation and allows the pages to be reused quickly under memory 2157 * pressure. If a page is wired for any reason, then it will not 2158 * be queued. Pages are specified by the range ["start", "end"). 2159 * As a special case, if "end" is zero, then the range extends from 2160 * "start" to the end of the object. 2161 * 2162 * This operation should only be performed on objects that 2163 * contain non-fictitious, managed pages. 2164 * 2165 * The object must be locked. 2166 */ 2167 void 2168 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2169 { 2170 vm_page_t p, next; 2171 2172 VM_OBJECT_ASSERT_LOCKED(object); 2173 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 2174 ("vm_object_page_noreuse: illegal object %p", object)); 2175 if (object->resident_page_count == 0) 2176 return; 2177 p = vm_page_find_least(object, start); 2178 2179 /* 2180 * Here, the variable "p" is either (1) the page with the least pindex 2181 * greater than or equal to the parameter "start" or (2) NULL. 2182 */ 2183 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2184 next = TAILQ_NEXT(p, listq); 2185 vm_page_deactivate_noreuse(p); 2186 } 2187 } 2188 2189 /* 2190 * Populate the specified range of the object with valid pages. Returns 2191 * TRUE if the range is successfully populated and FALSE otherwise. 2192 * 2193 * Note: This function should be optimized to pass a larger array of 2194 * pages to vm_pager_get_pages() before it is applied to a non- 2195 * OBJT_DEVICE object. 2196 * 2197 * The object must be locked. 2198 */ 2199 boolean_t 2200 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2201 { 2202 vm_page_t m; 2203 vm_pindex_t pindex; 2204 int rv; 2205 2206 VM_OBJECT_ASSERT_WLOCKED(object); 2207 for (pindex = start; pindex < end; pindex++) { 2208 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL); 2209 if (rv != VM_PAGER_OK) 2210 break; 2211 2212 /* 2213 * Keep "m" busy because a subsequent iteration may unlock 2214 * the object. 2215 */ 2216 } 2217 if (pindex > start) { 2218 m = vm_page_lookup(object, start); 2219 while (m != NULL && m->pindex < pindex) { 2220 vm_page_xunbusy(m); 2221 m = TAILQ_NEXT(m, listq); 2222 } 2223 } 2224 return (pindex == end); 2225 } 2226 2227 /* 2228 * Routine: vm_object_coalesce 2229 * Function: Coalesces two objects backing up adjoining 2230 * regions of memory into a single object. 2231 * 2232 * returns TRUE if objects were combined. 2233 * 2234 * NOTE: Only works at the moment if the second object is NULL - 2235 * if it's not, which object do we lock first? 2236 * 2237 * Parameters: 2238 * prev_object First object to coalesce 2239 * prev_offset Offset into prev_object 2240 * prev_size Size of reference to prev_object 2241 * next_size Size of reference to the second object 2242 * reserved Indicator that extension region has 2243 * swap accounted for 2244 * 2245 * Conditions: 2246 * The object must *not* be locked. 2247 */ 2248 boolean_t 2249 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2250 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2251 { 2252 vm_pindex_t next_pindex; 2253 2254 if (prev_object == NULL) 2255 return (TRUE); 2256 if ((prev_object->flags & OBJ_ANON) == 0) 2257 return (FALSE); 2258 2259 VM_OBJECT_WLOCK(prev_object); 2260 /* 2261 * Try to collapse the object first. 2262 */ 2263 vm_object_collapse(prev_object); 2264 2265 /* 2266 * Can't coalesce if: . more than one reference . paged out . shadows 2267 * another object . has a copy elsewhere (any of which mean that the 2268 * pages not mapped to prev_entry may be in use anyway) 2269 */ 2270 if (prev_object->backing_object != NULL) { 2271 VM_OBJECT_WUNLOCK(prev_object); 2272 return (FALSE); 2273 } 2274 2275 prev_size >>= PAGE_SHIFT; 2276 next_size >>= PAGE_SHIFT; 2277 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2278 2279 if (prev_object->ref_count > 1 && 2280 prev_object->size != next_pindex && 2281 (prev_object->flags & OBJ_ONEMAPPING) == 0) { 2282 VM_OBJECT_WUNLOCK(prev_object); 2283 return (FALSE); 2284 } 2285 2286 /* 2287 * Account for the charge. 2288 */ 2289 if (prev_object->cred != NULL) { 2290 /* 2291 * If prev_object was charged, then this mapping, 2292 * although not charged now, may become writable 2293 * later. Non-NULL cred in the object would prevent 2294 * swap reservation during enabling of the write 2295 * access, so reserve swap now. Failed reservation 2296 * cause allocation of the separate object for the map 2297 * entry, and swap reservation for this entry is 2298 * managed in appropriate time. 2299 */ 2300 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2301 prev_object->cred)) { 2302 VM_OBJECT_WUNLOCK(prev_object); 2303 return (FALSE); 2304 } 2305 prev_object->charge += ptoa(next_size); 2306 } 2307 2308 /* 2309 * Remove any pages that may still be in the object from a previous 2310 * deallocation. 2311 */ 2312 if (next_pindex < prev_object->size) { 2313 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2314 next_size, 0); 2315 #if 0 2316 if (prev_object->cred != NULL) { 2317 KASSERT(prev_object->charge >= 2318 ptoa(prev_object->size - next_pindex), 2319 ("object %p overcharged 1 %jx %jx", prev_object, 2320 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2321 prev_object->charge -= ptoa(prev_object->size - 2322 next_pindex); 2323 } 2324 #endif 2325 } 2326 2327 /* 2328 * Extend the object if necessary. 2329 */ 2330 if (next_pindex + next_size > prev_object->size) 2331 prev_object->size = next_pindex + next_size; 2332 2333 VM_OBJECT_WUNLOCK(prev_object); 2334 return (TRUE); 2335 } 2336 2337 void 2338 vm_object_set_writeable_dirty_(vm_object_t object) 2339 { 2340 atomic_add_int(&object->generation, 1); 2341 } 2342 2343 bool 2344 vm_object_mightbedirty_(vm_object_t object) 2345 { 2346 return (object->generation != object->cleangeneration); 2347 } 2348 2349 /* 2350 * vm_object_unwire: 2351 * 2352 * For each page offset within the specified range of the given object, 2353 * find the highest-level page in the shadow chain and unwire it. A page 2354 * must exist at every page offset, and the highest-level page must be 2355 * wired. 2356 */ 2357 void 2358 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2359 uint8_t queue) 2360 { 2361 vm_object_t tobject, t1object; 2362 vm_page_t m, tm; 2363 vm_pindex_t end_pindex, pindex, tpindex; 2364 int depth, locked_depth; 2365 2366 KASSERT((offset & PAGE_MASK) == 0, 2367 ("vm_object_unwire: offset is not page aligned")); 2368 KASSERT((length & PAGE_MASK) == 0, 2369 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2370 /* The wired count of a fictitious page never changes. */ 2371 if ((object->flags & OBJ_FICTITIOUS) != 0) 2372 return; 2373 pindex = OFF_TO_IDX(offset); 2374 end_pindex = pindex + atop(length); 2375 again: 2376 locked_depth = 1; 2377 VM_OBJECT_RLOCK(object); 2378 m = vm_page_find_least(object, pindex); 2379 while (pindex < end_pindex) { 2380 if (m == NULL || pindex < m->pindex) { 2381 /* 2382 * The first object in the shadow chain doesn't 2383 * contain a page at the current index. Therefore, 2384 * the page must exist in a backing object. 2385 */ 2386 tobject = object; 2387 tpindex = pindex; 2388 depth = 0; 2389 do { 2390 tpindex += 2391 OFF_TO_IDX(tobject->backing_object_offset); 2392 tobject = tobject->backing_object; 2393 KASSERT(tobject != NULL, 2394 ("vm_object_unwire: missing page")); 2395 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2396 goto next_page; 2397 depth++; 2398 if (depth == locked_depth) { 2399 locked_depth++; 2400 VM_OBJECT_RLOCK(tobject); 2401 } 2402 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2403 NULL); 2404 } else { 2405 tm = m; 2406 m = TAILQ_NEXT(m, listq); 2407 } 2408 if (vm_page_trysbusy(tm) == 0) { 2409 for (tobject = object; locked_depth >= 1; 2410 locked_depth--) { 2411 t1object = tobject->backing_object; 2412 if (tm->object != tobject) 2413 VM_OBJECT_RUNLOCK(tobject); 2414 tobject = t1object; 2415 } 2416 tobject = tm->object; 2417 if (!vm_page_busy_sleep(tm, "unwbo", 2418 VM_ALLOC_IGN_SBUSY)) 2419 VM_OBJECT_RUNLOCK(tobject); 2420 goto again; 2421 } 2422 vm_page_unwire(tm, queue); 2423 vm_page_sunbusy(tm); 2424 next_page: 2425 pindex++; 2426 } 2427 /* Release the accumulated object locks. */ 2428 for (tobject = object; locked_depth >= 1; locked_depth--) { 2429 t1object = tobject->backing_object; 2430 VM_OBJECT_RUNLOCK(tobject); 2431 tobject = t1object; 2432 } 2433 } 2434 2435 /* 2436 * Return the vnode for the given object, or NULL if none exists. 2437 * For tmpfs objects, the function may return NULL if there is 2438 * no vnode allocated at the time of the call. 2439 */ 2440 struct vnode * 2441 vm_object_vnode(vm_object_t object) 2442 { 2443 struct vnode *vp; 2444 2445 VM_OBJECT_ASSERT_LOCKED(object); 2446 vm_pager_getvp(object, &vp, NULL); 2447 return (vp); 2448 } 2449 2450 /* 2451 * Busy the vm object. This prevents new pages belonging to the object from 2452 * becoming busy. Existing pages persist as busy. Callers are responsible 2453 * for checking page state before proceeding. 2454 */ 2455 void 2456 vm_object_busy(vm_object_t obj) 2457 { 2458 2459 VM_OBJECT_ASSERT_LOCKED(obj); 2460 2461 blockcount_acquire(&obj->busy, 1); 2462 /* The fence is required to order loads of page busy. */ 2463 atomic_thread_fence_acq_rel(); 2464 } 2465 2466 void 2467 vm_object_unbusy(vm_object_t obj) 2468 { 2469 2470 blockcount_release(&obj->busy, 1); 2471 } 2472 2473 void 2474 vm_object_busy_wait(vm_object_t obj, const char *wmesg) 2475 { 2476 2477 VM_OBJECT_ASSERT_UNLOCKED(obj); 2478 2479 (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM); 2480 } 2481 2482 /* 2483 * This function aims to determine if the object is mapped, 2484 * specifically, if it is referenced by a vm_map_entry. Because 2485 * objects occasionally acquire transient references that do not 2486 * represent a mapping, the method used here is inexact. However, it 2487 * has very low overhead and is good enough for the advisory 2488 * vm.vmtotal sysctl. 2489 */ 2490 bool 2491 vm_object_is_active(vm_object_t obj) 2492 { 2493 2494 return (obj->ref_count > atomic_load_int(&obj->shadow_count)); 2495 } 2496 2497 static int 2498 vm_object_list_handler(struct sysctl_req *req, bool swap_only) 2499 { 2500 struct kinfo_vmobject *kvo; 2501 char *fullpath, *freepath; 2502 struct vnode *vp; 2503 struct vattr va; 2504 vm_object_t obj; 2505 vm_page_t m; 2506 u_long sp; 2507 int count, error; 2508 2509 if (req->oldptr == NULL) { 2510 /* 2511 * If an old buffer has not been provided, generate an 2512 * estimate of the space needed for a subsequent call. 2513 */ 2514 mtx_lock(&vm_object_list_mtx); 2515 count = 0; 2516 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2517 if (obj->type == OBJT_DEAD) 2518 continue; 2519 count++; 2520 } 2521 mtx_unlock(&vm_object_list_mtx); 2522 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2523 count * 11 / 10)); 2524 } 2525 2526 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK); 2527 error = 0; 2528 2529 /* 2530 * VM objects are type stable and are never removed from the 2531 * list once added. This allows us to safely read obj->object_list 2532 * after reacquiring the VM object lock. 2533 */ 2534 mtx_lock(&vm_object_list_mtx); 2535 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2536 if (obj->type == OBJT_DEAD || 2537 (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) 2538 continue; 2539 VM_OBJECT_RLOCK(obj); 2540 if (obj->type == OBJT_DEAD || 2541 (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) { 2542 VM_OBJECT_RUNLOCK(obj); 2543 continue; 2544 } 2545 mtx_unlock(&vm_object_list_mtx); 2546 kvo->kvo_size = ptoa(obj->size); 2547 kvo->kvo_resident = obj->resident_page_count; 2548 kvo->kvo_ref_count = obj->ref_count; 2549 kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count); 2550 kvo->kvo_memattr = obj->memattr; 2551 kvo->kvo_active = 0; 2552 kvo->kvo_inactive = 0; 2553 if (!swap_only) { 2554 TAILQ_FOREACH(m, &obj->memq, listq) { 2555 /* 2556 * A page may belong to the object but be 2557 * dequeued and set to PQ_NONE while the 2558 * object lock is not held. This makes the 2559 * reads of m->queue below racy, and we do not 2560 * count pages set to PQ_NONE. However, this 2561 * sysctl is only meant to give an 2562 * approximation of the system anyway. 2563 */ 2564 if (m->a.queue == PQ_ACTIVE) 2565 kvo->kvo_active++; 2566 else if (m->a.queue == PQ_INACTIVE) 2567 kvo->kvo_inactive++; 2568 } 2569 } 2570 2571 kvo->kvo_vn_fileid = 0; 2572 kvo->kvo_vn_fsid = 0; 2573 kvo->kvo_vn_fsid_freebsd11 = 0; 2574 freepath = NULL; 2575 fullpath = ""; 2576 vp = NULL; 2577 kvo->kvo_type = vm_object_kvme_type(obj, swap_only ? NULL : &vp); 2578 if (vp != NULL) { 2579 vref(vp); 2580 } else if ((obj->flags & OBJ_ANON) != 0) { 2581 MPASS(kvo->kvo_type == KVME_TYPE_SWAP); 2582 kvo->kvo_me = (uintptr_t)obj; 2583 /* tmpfs objs are reported as vnodes */ 2584 kvo->kvo_backing_obj = (uintptr_t)obj->backing_object; 2585 sp = swap_pager_swapped_pages(obj); 2586 kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp; 2587 } 2588 VM_OBJECT_RUNLOCK(obj); 2589 if (vp != NULL) { 2590 vn_fullpath(vp, &fullpath, &freepath); 2591 vn_lock(vp, LK_SHARED | LK_RETRY); 2592 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2593 kvo->kvo_vn_fileid = va.va_fileid; 2594 kvo->kvo_vn_fsid = va.va_fsid; 2595 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid; 2596 /* truncate */ 2597 } 2598 vput(vp); 2599 } 2600 2601 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path)); 2602 if (freepath != NULL) 2603 free(freepath, M_TEMP); 2604 2605 /* Pack record size down */ 2606 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) 2607 + strlen(kvo->kvo_path) + 1; 2608 kvo->kvo_structsize = roundup(kvo->kvo_structsize, 2609 sizeof(uint64_t)); 2610 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize); 2611 maybe_yield(); 2612 mtx_lock(&vm_object_list_mtx); 2613 if (error) 2614 break; 2615 } 2616 mtx_unlock(&vm_object_list_mtx); 2617 free(kvo, M_TEMP); 2618 return (error); 2619 } 2620 2621 static int 2622 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2623 { 2624 return (vm_object_list_handler(req, false)); 2625 } 2626 2627 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2628 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2629 "List of VM objects"); 2630 2631 static int 2632 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS) 2633 { 2634 return (vm_object_list_handler(req, true)); 2635 } 2636 2637 /* 2638 * This sysctl returns list of the anonymous or swap objects. Intent 2639 * is to provide stripped optimized list useful to analyze swap use. 2640 * Since technically non-swap (default) objects participate in the 2641 * shadow chains, and are converted to swap type as needed by swap 2642 * pager, we must report them. 2643 */ 2644 SYSCTL_PROC(_vm, OID_AUTO, swap_objects, 2645 CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0, 2646 sysctl_vm_object_list_swap, "S,kinfo_vmobject", 2647 "List of swap VM objects"); 2648 2649 #include "opt_ddb.h" 2650 #ifdef DDB 2651 #include <sys/kernel.h> 2652 2653 #include <sys/cons.h> 2654 2655 #include <ddb/ddb.h> 2656 2657 static int 2658 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2659 { 2660 vm_map_t tmpm; 2661 vm_map_entry_t tmpe; 2662 vm_object_t obj; 2663 2664 if (map == 0) 2665 return 0; 2666 2667 if (entry == 0) { 2668 VM_MAP_ENTRY_FOREACH(tmpe, map) { 2669 if (_vm_object_in_map(map, object, tmpe)) { 2670 return 1; 2671 } 2672 } 2673 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2674 tmpm = entry->object.sub_map; 2675 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) { 2676 if (_vm_object_in_map(tmpm, object, tmpe)) { 2677 return 1; 2678 } 2679 } 2680 } else if ((obj = entry->object.vm_object) != NULL) { 2681 for (; obj; obj = obj->backing_object) 2682 if (obj == object) { 2683 return 1; 2684 } 2685 } 2686 return 0; 2687 } 2688 2689 static int 2690 vm_object_in_map(vm_object_t object) 2691 { 2692 struct proc *p; 2693 2694 /* sx_slock(&allproc_lock); */ 2695 FOREACH_PROC_IN_SYSTEM(p) { 2696 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2697 continue; 2698 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2699 /* sx_sunlock(&allproc_lock); */ 2700 return 1; 2701 } 2702 } 2703 /* sx_sunlock(&allproc_lock); */ 2704 if (_vm_object_in_map(kernel_map, object, 0)) 2705 return 1; 2706 return 0; 2707 } 2708 2709 DB_SHOW_COMMAND_FLAGS(vmochk, vm_object_check, DB_CMD_MEMSAFE) 2710 { 2711 vm_object_t object; 2712 2713 /* 2714 * make sure that internal objs are in a map somewhere 2715 * and none have zero ref counts. 2716 */ 2717 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2718 if ((object->flags & OBJ_ANON) != 0) { 2719 if (object->ref_count == 0) { 2720 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2721 (long)object->size); 2722 } 2723 if (!vm_object_in_map(object)) { 2724 db_printf( 2725 "vmochk: internal obj is not in a map: " 2726 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2727 object->ref_count, (u_long)object->size, 2728 (u_long)object->size, 2729 (void *)object->backing_object); 2730 } 2731 } 2732 if (db_pager_quit) 2733 return; 2734 } 2735 } 2736 2737 /* 2738 * vm_object_print: [ debug ] 2739 */ 2740 DB_SHOW_COMMAND(object, vm_object_print_static) 2741 { 2742 /* XXX convert args. */ 2743 vm_object_t object = (vm_object_t)addr; 2744 boolean_t full = have_addr; 2745 2746 vm_page_t p; 2747 2748 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2749 #define count was_count 2750 2751 int count; 2752 2753 if (object == NULL) 2754 return; 2755 2756 db_iprintf( 2757 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2758 object, (int)object->type, (uintmax_t)object->size, 2759 object->resident_page_count, object->ref_count, object->flags, 2760 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2761 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2762 atomic_load_int(&object->shadow_count), 2763 object->backing_object ? object->backing_object->ref_count : 0, 2764 object->backing_object, (uintmax_t)object->backing_object_offset); 2765 2766 if (!full) 2767 return; 2768 2769 db_indent += 2; 2770 count = 0; 2771 TAILQ_FOREACH(p, &object->memq, listq) { 2772 if (count == 0) 2773 db_iprintf("memory:="); 2774 else if (count == 6) { 2775 db_printf("\n"); 2776 db_iprintf(" ..."); 2777 count = 0; 2778 } else 2779 db_printf(","); 2780 count++; 2781 2782 db_printf("(off=0x%jx,page=0x%jx)", 2783 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2784 2785 if (db_pager_quit) 2786 break; 2787 } 2788 if (count != 0) 2789 db_printf("\n"); 2790 db_indent -= 2; 2791 } 2792 2793 /* XXX. */ 2794 #undef count 2795 2796 /* XXX need this non-static entry for calling from vm_map_print. */ 2797 void 2798 vm_object_print( 2799 /* db_expr_t */ long addr, 2800 boolean_t have_addr, 2801 /* db_expr_t */ long count, 2802 char *modif) 2803 { 2804 vm_object_print_static(addr, have_addr, count, modif); 2805 } 2806 2807 DB_SHOW_COMMAND_FLAGS(vmopag, vm_object_print_pages, DB_CMD_MEMSAFE) 2808 { 2809 vm_object_t object; 2810 vm_pindex_t fidx; 2811 vm_paddr_t pa; 2812 vm_page_t m, prev_m; 2813 int rcount; 2814 2815 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2816 db_printf("new object: %p\n", (void *)object); 2817 if (db_pager_quit) 2818 return; 2819 2820 rcount = 0; 2821 fidx = 0; 2822 pa = -1; 2823 TAILQ_FOREACH(m, &object->memq, listq) { 2824 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2825 prev_m->pindex + 1 != m->pindex) { 2826 if (rcount) { 2827 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2828 (long)fidx, rcount, (long)pa); 2829 if (db_pager_quit) 2830 return; 2831 rcount = 0; 2832 } 2833 } 2834 if (rcount && 2835 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2836 ++rcount; 2837 continue; 2838 } 2839 if (rcount) { 2840 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2841 (long)fidx, rcount, (long)pa); 2842 if (db_pager_quit) 2843 return; 2844 } 2845 fidx = m->pindex; 2846 pa = VM_PAGE_TO_PHYS(m); 2847 rcount = 1; 2848 } 2849 if (rcount) { 2850 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2851 (long)fidx, rcount, (long)pa); 2852 if (db_pager_quit) 2853 return; 2854 } 2855 } 2856 } 2857 #endif /* DDB */ 2858