xref: /freebsd/sys/vm/vm_object.c (revision 050570efa79efcc9cf5adeb545f1a679c8dc377b)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98 
99 static int old_msync;
100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
101     "Use old (insecure) msync behavior");
102 
103 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
104 		    int pagerflags, int flags, int *clearobjflags);
105 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
106 		    int *clearobjflags);
107 static void	vm_object_qcollapse(vm_object_t object);
108 static void	vm_object_vndeallocate(vm_object_t object);
109 
110 /*
111  *	Virtual memory objects maintain the actual data
112  *	associated with allocated virtual memory.  A given
113  *	page of memory exists within exactly one object.
114  *
115  *	An object is only deallocated when all "references"
116  *	are given up.  Only one "reference" to a given
117  *	region of an object should be writeable.
118  *
119  *	Associated with each object is a list of all resident
120  *	memory pages belonging to that object; this list is
121  *	maintained by the "vm_page" module, and locked by the object's
122  *	lock.
123  *
124  *	Each object also records a "pager" routine which is
125  *	used to retrieve (and store) pages to the proper backing
126  *	storage.  In addition, objects may be backed by other
127  *	objects from which they were virtual-copied.
128  *
129  *	The only items within the object structure which are
130  *	modified after time of creation are:
131  *		reference count		locked by object's lock
132  *		pager routine		locked by object's lock
133  *
134  */
135 
136 struct object_q vm_object_list;
137 struct mtx vm_object_list_mtx;	/* lock for object list and count */
138 
139 struct vm_object kernel_object_store;
140 struct vm_object kmem_object_store;
141 
142 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
143 
144 static long object_collapses;
145 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
146     &object_collapses, 0, "VM object collapses");
147 
148 static long object_bypasses;
149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
150     &object_bypasses, 0, "VM object bypasses");
151 
152 static uma_zone_t obj_zone;
153 
154 static int vm_object_zinit(void *mem, int size, int flags);
155 
156 #ifdef INVARIANTS
157 static void vm_object_zdtor(void *mem, int size, void *arg);
158 
159 static void
160 vm_object_zdtor(void *mem, int size, void *arg)
161 {
162 	vm_object_t object;
163 
164 	object = (vm_object_t)mem;
165 	KASSERT(TAILQ_EMPTY(&object->memq),
166 	    ("object %p has resident pages",
167 	    object));
168 #if VM_NRESERVLEVEL > 0
169 	KASSERT(LIST_EMPTY(&object->rvq),
170 	    ("object %p has reservations",
171 	    object));
172 #endif
173 	KASSERT(object->cache == NULL,
174 	    ("object %p has cached pages",
175 	    object));
176 	KASSERT(object->paging_in_progress == 0,
177 	    ("object %p paging_in_progress = %d",
178 	    object, object->paging_in_progress));
179 	KASSERT(object->resident_page_count == 0,
180 	    ("object %p resident_page_count = %d",
181 	    object, object->resident_page_count));
182 	KASSERT(object->shadow_count == 0,
183 	    ("object %p shadow_count = %d",
184 	    object, object->shadow_count));
185 }
186 #endif
187 
188 static int
189 vm_object_zinit(void *mem, int size, int flags)
190 {
191 	vm_object_t object;
192 
193 	object = (vm_object_t)mem;
194 	bzero(&object->mtx, sizeof(object->mtx));
195 	VM_OBJECT_LOCK_INIT(object, "standard object");
196 
197 	/* These are true for any object that has been freed */
198 	object->paging_in_progress = 0;
199 	object->resident_page_count = 0;
200 	object->shadow_count = 0;
201 	return (0);
202 }
203 
204 void
205 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
206 {
207 
208 	TAILQ_INIT(&object->memq);
209 	LIST_INIT(&object->shadow_head);
210 
211 	object->root = NULL;
212 	object->type = type;
213 	object->size = size;
214 	object->generation = 1;
215 	object->ref_count = 1;
216 	object->memattr = VM_MEMATTR_DEFAULT;
217 	object->flags = 0;
218 	object->cred = NULL;
219 	object->charge = 0;
220 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
221 		object->flags = OBJ_ONEMAPPING;
222 	object->pg_color = 0;
223 	object->handle = NULL;
224 	object->backing_object = NULL;
225 	object->backing_object_offset = (vm_ooffset_t) 0;
226 #if VM_NRESERVLEVEL > 0
227 	LIST_INIT(&object->rvq);
228 #endif
229 	object->cache = NULL;
230 
231 	mtx_lock(&vm_object_list_mtx);
232 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
233 	mtx_unlock(&vm_object_list_mtx);
234 }
235 
236 /*
237  *	vm_object_init:
238  *
239  *	Initialize the VM objects module.
240  */
241 void
242 vm_object_init(void)
243 {
244 	TAILQ_INIT(&vm_object_list);
245 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
246 
247 	VM_OBJECT_LOCK_INIT(kernel_object, "kernel object");
248 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
249 	    kernel_object);
250 #if VM_NRESERVLEVEL > 0
251 	kernel_object->flags |= OBJ_COLORED;
252 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
253 #endif
254 
255 	VM_OBJECT_LOCK_INIT(kmem_object, "kmem object");
256 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
257 	    kmem_object);
258 #if VM_NRESERVLEVEL > 0
259 	kmem_object->flags |= OBJ_COLORED;
260 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
261 #endif
262 
263 	/*
264 	 * The lock portion of struct vm_object must be type stable due
265 	 * to vm_pageout_fallback_object_lock locking a vm object
266 	 * without holding any references to it.
267 	 */
268 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
269 #ifdef INVARIANTS
270 	    vm_object_zdtor,
271 #else
272 	    NULL,
273 #endif
274 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
275 }
276 
277 void
278 vm_object_clear_flag(vm_object_t object, u_short bits)
279 {
280 
281 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
282 	object->flags &= ~bits;
283 }
284 
285 /*
286  *	Sets the default memory attribute for the specified object.  Pages
287  *	that are allocated to this object are by default assigned this memory
288  *	attribute.
289  *
290  *	Presently, this function must be called before any pages are allocated
291  *	to the object.  In the future, this requirement may be relaxed for
292  *	"default" and "swap" objects.
293  */
294 int
295 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
296 {
297 
298 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
299 	switch (object->type) {
300 	case OBJT_DEFAULT:
301 	case OBJT_DEVICE:
302 	case OBJT_PHYS:
303 	case OBJT_SG:
304 	case OBJT_SWAP:
305 	case OBJT_VNODE:
306 		if (!TAILQ_EMPTY(&object->memq))
307 			return (KERN_FAILURE);
308 		break;
309 	case OBJT_DEAD:
310 		return (KERN_INVALID_ARGUMENT);
311 	}
312 	object->memattr = memattr;
313 	return (KERN_SUCCESS);
314 }
315 
316 void
317 vm_object_pip_add(vm_object_t object, short i)
318 {
319 
320 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
321 	object->paging_in_progress += i;
322 }
323 
324 void
325 vm_object_pip_subtract(vm_object_t object, short i)
326 {
327 
328 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
329 	object->paging_in_progress -= i;
330 }
331 
332 void
333 vm_object_pip_wakeup(vm_object_t object)
334 {
335 
336 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
337 	object->paging_in_progress--;
338 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
339 		vm_object_clear_flag(object, OBJ_PIPWNT);
340 		wakeup(object);
341 	}
342 }
343 
344 void
345 vm_object_pip_wakeupn(vm_object_t object, short i)
346 {
347 
348 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
349 	if (i)
350 		object->paging_in_progress -= i;
351 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
352 		vm_object_clear_flag(object, OBJ_PIPWNT);
353 		wakeup(object);
354 	}
355 }
356 
357 void
358 vm_object_pip_wait(vm_object_t object, char *waitid)
359 {
360 
361 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
362 	while (object->paging_in_progress) {
363 		object->flags |= OBJ_PIPWNT;
364 		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
365 	}
366 }
367 
368 /*
369  *	vm_object_allocate:
370  *
371  *	Returns a new object with the given size.
372  */
373 vm_object_t
374 vm_object_allocate(objtype_t type, vm_pindex_t size)
375 {
376 	vm_object_t object;
377 
378 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
379 	_vm_object_allocate(type, size, object);
380 	return (object);
381 }
382 
383 
384 /*
385  *	vm_object_reference:
386  *
387  *	Gets another reference to the given object.  Note: OBJ_DEAD
388  *	objects can be referenced during final cleaning.
389  */
390 void
391 vm_object_reference(vm_object_t object)
392 {
393 	if (object == NULL)
394 		return;
395 	VM_OBJECT_LOCK(object);
396 	vm_object_reference_locked(object);
397 	VM_OBJECT_UNLOCK(object);
398 }
399 
400 /*
401  *	vm_object_reference_locked:
402  *
403  *	Gets another reference to the given object.
404  *
405  *	The object must be locked.
406  */
407 void
408 vm_object_reference_locked(vm_object_t object)
409 {
410 	struct vnode *vp;
411 
412 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
413 	object->ref_count++;
414 	if (object->type == OBJT_VNODE) {
415 		vp = object->handle;
416 		vref(vp);
417 	}
418 }
419 
420 /*
421  * Handle deallocating an object of type OBJT_VNODE.
422  */
423 static void
424 vm_object_vndeallocate(vm_object_t object)
425 {
426 	struct vnode *vp = (struct vnode *) object->handle;
427 
428 	VFS_ASSERT_GIANT(vp->v_mount);
429 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
430 	KASSERT(object->type == OBJT_VNODE,
431 	    ("vm_object_vndeallocate: not a vnode object"));
432 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
433 #ifdef INVARIANTS
434 	if (object->ref_count == 0) {
435 		vprint("vm_object_vndeallocate", vp);
436 		panic("vm_object_vndeallocate: bad object reference count");
437 	}
438 #endif
439 
440 	object->ref_count--;
441 	if (object->ref_count == 0) {
442 		mp_fixme("Unlocked vflag access.");
443 		vp->v_vflag &= ~VV_TEXT;
444 	}
445 	VM_OBJECT_UNLOCK(object);
446 	/*
447 	 * vrele may need a vop lock
448 	 */
449 	vrele(vp);
450 }
451 
452 /*
453  *	vm_object_deallocate:
454  *
455  *	Release a reference to the specified object,
456  *	gained either through a vm_object_allocate
457  *	or a vm_object_reference call.  When all references
458  *	are gone, storage associated with this object
459  *	may be relinquished.
460  *
461  *	No object may be locked.
462  */
463 void
464 vm_object_deallocate(vm_object_t object)
465 {
466 	vm_object_t temp;
467 
468 	while (object != NULL) {
469 		int vfslocked;
470 
471 		vfslocked = 0;
472 	restart:
473 		VM_OBJECT_LOCK(object);
474 		if (object->type == OBJT_VNODE) {
475 			struct vnode *vp = (struct vnode *) object->handle;
476 
477 			/*
478 			 * Conditionally acquire Giant for a vnode-backed
479 			 * object.  We have to be careful since the type of
480 			 * a vnode object can change while the object is
481 			 * unlocked.
482 			 */
483 			if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
484 				vfslocked = 1;
485 				if (!mtx_trylock(&Giant)) {
486 					VM_OBJECT_UNLOCK(object);
487 					mtx_lock(&Giant);
488 					goto restart;
489 				}
490 			}
491 			vm_object_vndeallocate(object);
492 			VFS_UNLOCK_GIANT(vfslocked);
493 			return;
494 		} else
495 			/*
496 			 * This is to handle the case that the object
497 			 * changed type while we dropped its lock to
498 			 * obtain Giant.
499 			 */
500 			VFS_UNLOCK_GIANT(vfslocked);
501 
502 		KASSERT(object->ref_count != 0,
503 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
504 
505 		/*
506 		 * If the reference count goes to 0 we start calling
507 		 * vm_object_terminate() on the object chain.
508 		 * A ref count of 1 may be a special case depending on the
509 		 * shadow count being 0 or 1.
510 		 */
511 		object->ref_count--;
512 		if (object->ref_count > 1) {
513 			VM_OBJECT_UNLOCK(object);
514 			return;
515 		} else if (object->ref_count == 1) {
516 			if (object->shadow_count == 0 &&
517 			    object->handle == NULL &&
518 			    (object->type == OBJT_DEFAULT ||
519 			     object->type == OBJT_SWAP)) {
520 				vm_object_set_flag(object, OBJ_ONEMAPPING);
521 			} else if ((object->shadow_count == 1) &&
522 			    (object->handle == NULL) &&
523 			    (object->type == OBJT_DEFAULT ||
524 			     object->type == OBJT_SWAP)) {
525 				vm_object_t robject;
526 
527 				robject = LIST_FIRST(&object->shadow_head);
528 				KASSERT(robject != NULL,
529 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
530 					 object->ref_count,
531 					 object->shadow_count));
532 				if (!VM_OBJECT_TRYLOCK(robject)) {
533 					/*
534 					 * Avoid a potential deadlock.
535 					 */
536 					object->ref_count++;
537 					VM_OBJECT_UNLOCK(object);
538 					/*
539 					 * More likely than not the thread
540 					 * holding robject's lock has lower
541 					 * priority than the current thread.
542 					 * Let the lower priority thread run.
543 					 */
544 					pause("vmo_de", 1);
545 					continue;
546 				}
547 				/*
548 				 * Collapse object into its shadow unless its
549 				 * shadow is dead.  In that case, object will
550 				 * be deallocated by the thread that is
551 				 * deallocating its shadow.
552 				 */
553 				if ((robject->flags & OBJ_DEAD) == 0 &&
554 				    (robject->handle == NULL) &&
555 				    (robject->type == OBJT_DEFAULT ||
556 				     robject->type == OBJT_SWAP)) {
557 
558 					robject->ref_count++;
559 retry:
560 					if (robject->paging_in_progress) {
561 						VM_OBJECT_UNLOCK(object);
562 						vm_object_pip_wait(robject,
563 						    "objde1");
564 						temp = robject->backing_object;
565 						if (object == temp) {
566 							VM_OBJECT_LOCK(object);
567 							goto retry;
568 						}
569 					} else if (object->paging_in_progress) {
570 						VM_OBJECT_UNLOCK(robject);
571 						object->flags |= OBJ_PIPWNT;
572 						msleep(object,
573 						    VM_OBJECT_MTX(object),
574 						    PDROP | PVM, "objde2", 0);
575 						VM_OBJECT_LOCK(robject);
576 						temp = robject->backing_object;
577 						if (object == temp) {
578 							VM_OBJECT_LOCK(object);
579 							goto retry;
580 						}
581 					} else
582 						VM_OBJECT_UNLOCK(object);
583 
584 					if (robject->ref_count == 1) {
585 						robject->ref_count--;
586 						object = robject;
587 						goto doterm;
588 					}
589 					object = robject;
590 					vm_object_collapse(object);
591 					VM_OBJECT_UNLOCK(object);
592 					continue;
593 				}
594 				VM_OBJECT_UNLOCK(robject);
595 			}
596 			VM_OBJECT_UNLOCK(object);
597 			return;
598 		}
599 doterm:
600 		temp = object->backing_object;
601 		if (temp != NULL) {
602 			VM_OBJECT_LOCK(temp);
603 			LIST_REMOVE(object, shadow_list);
604 			temp->shadow_count--;
605 			VM_OBJECT_UNLOCK(temp);
606 			object->backing_object = NULL;
607 		}
608 		/*
609 		 * Don't double-terminate, we could be in a termination
610 		 * recursion due to the terminate having to sync data
611 		 * to disk.
612 		 */
613 		if ((object->flags & OBJ_DEAD) == 0)
614 			vm_object_terminate(object);
615 		else
616 			VM_OBJECT_UNLOCK(object);
617 		object = temp;
618 	}
619 }
620 
621 /*
622  *	vm_object_destroy removes the object from the global object list
623  *      and frees the space for the object.
624  */
625 void
626 vm_object_destroy(vm_object_t object)
627 {
628 
629 	/*
630 	 * Remove the object from the global object list.
631 	 */
632 	mtx_lock(&vm_object_list_mtx);
633 	TAILQ_REMOVE(&vm_object_list, object, object_list);
634 	mtx_unlock(&vm_object_list_mtx);
635 
636 	/*
637 	 * Release the allocation charge.
638 	 */
639 	if (object->cred != NULL) {
640 		KASSERT(object->type == OBJT_DEFAULT ||
641 		    object->type == OBJT_SWAP,
642 		    ("vm_object_terminate: non-swap obj %p has cred",
643 		     object));
644 		swap_release_by_cred(object->charge, object->cred);
645 		object->charge = 0;
646 		crfree(object->cred);
647 		object->cred = NULL;
648 	}
649 
650 	/*
651 	 * Free the space for the object.
652 	 */
653 	uma_zfree(obj_zone, object);
654 }
655 
656 /*
657  *	vm_object_terminate actually destroys the specified object, freeing
658  *	up all previously used resources.
659  *
660  *	The object must be locked.
661  *	This routine may block.
662  */
663 void
664 vm_object_terminate(vm_object_t object)
665 {
666 	vm_page_t p, p_next;
667 
668 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
669 
670 	/*
671 	 * Make sure no one uses us.
672 	 */
673 	vm_object_set_flag(object, OBJ_DEAD);
674 
675 	/*
676 	 * wait for the pageout daemon to be done with the object
677 	 */
678 	vm_object_pip_wait(object, "objtrm");
679 
680 	KASSERT(!object->paging_in_progress,
681 		("vm_object_terminate: pageout in progress"));
682 
683 	/*
684 	 * Clean and free the pages, as appropriate. All references to the
685 	 * object are gone, so we don't need to lock it.
686 	 */
687 	if (object->type == OBJT_VNODE) {
688 		struct vnode *vp = (struct vnode *)object->handle;
689 
690 		/*
691 		 * Clean pages and flush buffers.
692 		 */
693 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
694 		VM_OBJECT_UNLOCK(object);
695 
696 		vinvalbuf(vp, V_SAVE, 0, 0);
697 
698 		VM_OBJECT_LOCK(object);
699 	}
700 
701 	KASSERT(object->ref_count == 0,
702 		("vm_object_terminate: object with references, ref_count=%d",
703 		object->ref_count));
704 
705 	/*
706 	 * Free any remaining pageable pages.  This also removes them from the
707 	 * paging queues.  However, don't free wired pages, just remove them
708 	 * from the object.  Rather than incrementally removing each page from
709 	 * the object, the page and object are reset to any empty state.
710 	 */
711 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
712 		KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
713 		    ("vm_object_terminate: freeing busy page %p", p));
714 		vm_page_lock(p);
715 		/*
716 		 * Optimize the page's removal from the object by resetting
717 		 * its "object" field.  Specifically, if the page is not
718 		 * wired, then the effect of this assignment is that
719 		 * vm_page_free()'s call to vm_page_remove() will return
720 		 * immediately without modifying the page or the object.
721 		 */
722 		p->object = NULL;
723 		if (p->wire_count == 0) {
724 			vm_page_free(p);
725 			PCPU_INC(cnt.v_pfree);
726 		}
727 		vm_page_unlock(p);
728 	}
729 	/*
730 	 * If the object contained any pages, then reset it to an empty state.
731 	 * None of the object's fields, including "resident_page_count", were
732 	 * modified by the preceding loop.
733 	 */
734 	if (object->resident_page_count != 0) {
735 		object->root = NULL;
736 		TAILQ_INIT(&object->memq);
737 		object->resident_page_count = 0;
738 		if (object->type == OBJT_VNODE)
739 			vdrop(object->handle);
740 	}
741 
742 #if VM_NRESERVLEVEL > 0
743 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
744 		vm_reserv_break_all(object);
745 #endif
746 	if (__predict_false(object->cache != NULL))
747 		vm_page_cache_free(object, 0, 0);
748 
749 	/*
750 	 * Let the pager know object is dead.
751 	 */
752 	vm_pager_deallocate(object);
753 	VM_OBJECT_UNLOCK(object);
754 
755 	vm_object_destroy(object);
756 }
757 
758 /*
759  * Make the page read-only so that we can clear the object flags.  However, if
760  * this is a nosync mmap then the object is likely to stay dirty so do not
761  * mess with the page and do not clear the object flags.  Returns TRUE if the
762  * page should be flushed, and FALSE otherwise.
763  */
764 static boolean_t
765 vm_object_page_remove_write(vm_page_t p, int flags, int *clearobjflags)
766 {
767 
768 	/*
769 	 * If we have been asked to skip nosync pages and this is a
770 	 * nosync page, skip it.  Note that the object flags were not
771 	 * cleared in this case so we do not have to set them.
772 	 */
773 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
774 		*clearobjflags = 0;
775 		return (FALSE);
776 	} else {
777 		pmap_remove_write(p);
778 		return (p->dirty != 0);
779 	}
780 }
781 
782 /*
783  *	vm_object_page_clean
784  *
785  *	Clean all dirty pages in the specified range of object.  Leaves page
786  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
787  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
788  *	leaving the object dirty.
789  *
790  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
791  *	synchronous clustering mode implementation.
792  *
793  *	Odd semantics: if start == end, we clean everything.
794  *
795  *	The object must be locked.
796  */
797 void
798 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
799     int flags)
800 {
801 	vm_page_t np, p;
802 	vm_pindex_t pi, tend;
803 	int clearobjflags, curgeneration, n, pagerflags;
804 
805 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
806 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
807 	KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
808 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
809 	    object->resident_page_count == 0)
810 		return;
811 
812 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
813 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
814 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
815 
816 	tend = (end == 0) ? object->size : end;
817 	clearobjflags = start == 0 && tend == object->size;
818 
819 rescan:
820 	curgeneration = object->generation;
821 
822 	for (p = vm_page_find_least(object, start); p != NULL; p = np) {
823 		pi = p->pindex;
824 		if (pi >= tend)
825 			break;
826 		np = TAILQ_NEXT(p, listq);
827 		if (p->valid == 0)
828 			continue;
829 		if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
830 			if (object->generation != curgeneration)
831 				goto rescan;
832 			np = vm_page_find_least(object, pi);
833 			continue;
834 		}
835 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
836 			continue;
837 
838 		n = vm_object_page_collect_flush(object, p, pagerflags,
839 		    flags, &clearobjflags);
840 		if (object->generation != curgeneration)
841 			goto rescan;
842 		np = vm_page_find_least(object, pi + n);
843 	}
844 #if 0
845 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
846 #endif
847 
848 	if (clearobjflags)
849 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
850 }
851 
852 static int
853 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
854     int flags, int *clearobjflags)
855 {
856 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
857 	int count, i, mreq, runlen;
858 
859 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
860 	vm_page_lock_assert(p, MA_NOTOWNED);
861 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
862 
863 	count = 1;
864 	mreq = 0;
865 
866 	for (tp = p; count < vm_pageout_page_count; count++) {
867 		tp = vm_page_next(tp);
868 		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
869 			break;
870 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
871 			break;
872 	}
873 
874 	for (p_first = p; count < vm_pageout_page_count; count++) {
875 		tp = vm_page_prev(p_first);
876 		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
877 			break;
878 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
879 			break;
880 		p_first = tp;
881 		mreq++;
882 	}
883 
884 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
885 		ma[i] = tp;
886 
887 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen);
888 	return (runlen);
889 }
890 
891 /*
892  * Note that there is absolutely no sense in writing out
893  * anonymous objects, so we track down the vnode object
894  * to write out.
895  * We invalidate (remove) all pages from the address space
896  * for semantic correctness.
897  *
898  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
899  * may start out with a NULL object.
900  */
901 void
902 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
903     boolean_t syncio, boolean_t invalidate)
904 {
905 	vm_object_t backing_object;
906 	struct vnode *vp;
907 	struct mount *mp;
908 	int flags;
909 
910 	if (object == NULL)
911 		return;
912 	VM_OBJECT_LOCK(object);
913 	while ((backing_object = object->backing_object) != NULL) {
914 		VM_OBJECT_LOCK(backing_object);
915 		offset += object->backing_object_offset;
916 		VM_OBJECT_UNLOCK(object);
917 		object = backing_object;
918 		if (object->size < OFF_TO_IDX(offset + size))
919 			size = IDX_TO_OFF(object->size) - offset;
920 	}
921 	/*
922 	 * Flush pages if writing is allowed, invalidate them
923 	 * if invalidation requested.  Pages undergoing I/O
924 	 * will be ignored by vm_object_page_remove().
925 	 *
926 	 * We cannot lock the vnode and then wait for paging
927 	 * to complete without deadlocking against vm_fault.
928 	 * Instead we simply call vm_object_page_remove() and
929 	 * allow it to block internally on a page-by-page
930 	 * basis when it encounters pages undergoing async
931 	 * I/O.
932 	 */
933 	if (object->type == OBJT_VNODE &&
934 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
935 		int vfslocked;
936 		vp = object->handle;
937 		VM_OBJECT_UNLOCK(object);
938 		(void) vn_start_write(vp, &mp, V_WAIT);
939 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
940 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
941 		flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
942 		flags |= invalidate ? OBJPC_INVAL : 0;
943 		VM_OBJECT_LOCK(object);
944 		vm_object_page_clean(object,
945 		    OFF_TO_IDX(offset),
946 		    OFF_TO_IDX(offset + size + PAGE_MASK),
947 		    flags);
948 		VM_OBJECT_UNLOCK(object);
949 		VOP_UNLOCK(vp, 0);
950 		VFS_UNLOCK_GIANT(vfslocked);
951 		vn_finished_write(mp);
952 		VM_OBJECT_LOCK(object);
953 	}
954 	if ((object->type == OBJT_VNODE ||
955 	     object->type == OBJT_DEVICE) && invalidate) {
956 		boolean_t purge;
957 		purge = old_msync || (object->type == OBJT_DEVICE);
958 		vm_object_page_remove(object,
959 		    OFF_TO_IDX(offset),
960 		    OFF_TO_IDX(offset + size + PAGE_MASK),
961 		    purge ? FALSE : TRUE);
962 	}
963 	VM_OBJECT_UNLOCK(object);
964 }
965 
966 /*
967  *	vm_object_madvise:
968  *
969  *	Implements the madvise function at the object/page level.
970  *
971  *	MADV_WILLNEED	(any object)
972  *
973  *	    Activate the specified pages if they are resident.
974  *
975  *	MADV_DONTNEED	(any object)
976  *
977  *	    Deactivate the specified pages if they are resident.
978  *
979  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
980  *			 OBJ_ONEMAPPING only)
981  *
982  *	    Deactivate and clean the specified pages if they are
983  *	    resident.  This permits the process to reuse the pages
984  *	    without faulting or the kernel to reclaim the pages
985  *	    without I/O.
986  */
987 void
988 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
989 {
990 	vm_pindex_t end, tpindex;
991 	vm_object_t backing_object, tobject;
992 	vm_page_t m;
993 
994 	if (object == NULL)
995 		return;
996 	VM_OBJECT_LOCK(object);
997 	end = pindex + count;
998 	/*
999 	 * Locate and adjust resident pages
1000 	 */
1001 	for (; pindex < end; pindex += 1) {
1002 relookup:
1003 		tobject = object;
1004 		tpindex = pindex;
1005 shadowlookup:
1006 		/*
1007 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1008 		 * and those pages must be OBJ_ONEMAPPING.
1009 		 */
1010 		if (advise == MADV_FREE) {
1011 			if ((tobject->type != OBJT_DEFAULT &&
1012 			     tobject->type != OBJT_SWAP) ||
1013 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1014 				goto unlock_tobject;
1015 			}
1016 		} else if (tobject->type == OBJT_PHYS)
1017 			goto unlock_tobject;
1018 		m = vm_page_lookup(tobject, tpindex);
1019 		if (m == NULL && advise == MADV_WILLNEED) {
1020 			/*
1021 			 * If the page is cached, reactivate it.
1022 			 */
1023 			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1024 			    VM_ALLOC_NOBUSY);
1025 		}
1026 		if (m == NULL) {
1027 			/*
1028 			 * There may be swap even if there is no backing page
1029 			 */
1030 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1031 				swap_pager_freespace(tobject, tpindex, 1);
1032 			/*
1033 			 * next object
1034 			 */
1035 			backing_object = tobject->backing_object;
1036 			if (backing_object == NULL)
1037 				goto unlock_tobject;
1038 			VM_OBJECT_LOCK(backing_object);
1039 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1040 			if (tobject != object)
1041 				VM_OBJECT_UNLOCK(tobject);
1042 			tobject = backing_object;
1043 			goto shadowlookup;
1044 		} else if (m->valid != VM_PAGE_BITS_ALL)
1045 			goto unlock_tobject;
1046 		/*
1047 		 * If the page is not in a normal state, skip it.
1048 		 */
1049 		vm_page_lock(m);
1050 		if (m->hold_count != 0 || m->wire_count != 0) {
1051 			vm_page_unlock(m);
1052 			goto unlock_tobject;
1053 		}
1054 		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1055 		    ("vm_object_madvise: page %p is not managed", m));
1056 		if ((m->oflags & VPO_BUSY) || m->busy) {
1057 			if (advise == MADV_WILLNEED) {
1058 				/*
1059 				 * Reference the page before unlocking and
1060 				 * sleeping so that the page daemon is less
1061 				 * likely to reclaim it.
1062 				 */
1063 				vm_page_lock_queues();
1064 				vm_page_flag_set(m, PG_REFERENCED);
1065 				vm_page_unlock_queues();
1066 			}
1067 			vm_page_unlock(m);
1068 			if (object != tobject)
1069 				VM_OBJECT_UNLOCK(object);
1070 			m->oflags |= VPO_WANTED;
1071 			msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
1072 			    0);
1073 			VM_OBJECT_LOCK(object);
1074   			goto relookup;
1075 		}
1076 		if (advise == MADV_WILLNEED) {
1077 			vm_page_activate(m);
1078 		} else if (advise == MADV_DONTNEED) {
1079 			vm_page_dontneed(m);
1080 		} else if (advise == MADV_FREE) {
1081 			/*
1082 			 * Mark the page clean.  This will allow the page
1083 			 * to be freed up by the system.  However, such pages
1084 			 * are often reused quickly by malloc()/free()
1085 			 * so we do not do anything that would cause
1086 			 * a page fault if we can help it.
1087 			 *
1088 			 * Specifically, we do not try to actually free
1089 			 * the page now nor do we try to put it in the
1090 			 * cache (which would cause a page fault on reuse).
1091 			 *
1092 			 * But we do make the page is freeable as we
1093 			 * can without actually taking the step of unmapping
1094 			 * it.
1095 			 */
1096 			pmap_clear_modify(m);
1097 			m->dirty = 0;
1098 			m->act_count = 0;
1099 			vm_page_dontneed(m);
1100 		}
1101 		vm_page_unlock(m);
1102 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1103 			swap_pager_freespace(tobject, tpindex, 1);
1104 unlock_tobject:
1105 		if (tobject != object)
1106 			VM_OBJECT_UNLOCK(tobject);
1107 	}
1108 	VM_OBJECT_UNLOCK(object);
1109 }
1110 
1111 /*
1112  *	vm_object_shadow:
1113  *
1114  *	Create a new object which is backed by the
1115  *	specified existing object range.  The source
1116  *	object reference is deallocated.
1117  *
1118  *	The new object and offset into that object
1119  *	are returned in the source parameters.
1120  */
1121 void
1122 vm_object_shadow(
1123 	vm_object_t *object,	/* IN/OUT */
1124 	vm_ooffset_t *offset,	/* IN/OUT */
1125 	vm_size_t length)
1126 {
1127 	vm_object_t source;
1128 	vm_object_t result;
1129 
1130 	source = *object;
1131 
1132 	/*
1133 	 * Don't create the new object if the old object isn't shared.
1134 	 */
1135 	if (source != NULL) {
1136 		VM_OBJECT_LOCK(source);
1137 		if (source->ref_count == 1 &&
1138 		    source->handle == NULL &&
1139 		    (source->type == OBJT_DEFAULT ||
1140 		     source->type == OBJT_SWAP)) {
1141 			VM_OBJECT_UNLOCK(source);
1142 			return;
1143 		}
1144 		VM_OBJECT_UNLOCK(source);
1145 	}
1146 
1147 	/*
1148 	 * Allocate a new object with the given length.
1149 	 */
1150 	result = vm_object_allocate(OBJT_DEFAULT, length);
1151 
1152 	/*
1153 	 * The new object shadows the source object, adding a reference to it.
1154 	 * Our caller changes his reference to point to the new object,
1155 	 * removing a reference to the source object.  Net result: no change
1156 	 * of reference count.
1157 	 *
1158 	 * Try to optimize the result object's page color when shadowing
1159 	 * in order to maintain page coloring consistency in the combined
1160 	 * shadowed object.
1161 	 */
1162 	result->backing_object = source;
1163 	/*
1164 	 * Store the offset into the source object, and fix up the offset into
1165 	 * the new object.
1166 	 */
1167 	result->backing_object_offset = *offset;
1168 	if (source != NULL) {
1169 		VM_OBJECT_LOCK(source);
1170 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1171 		source->shadow_count++;
1172 #if VM_NRESERVLEVEL > 0
1173 		result->flags |= source->flags & OBJ_COLORED;
1174 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1175 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1176 #endif
1177 		VM_OBJECT_UNLOCK(source);
1178 	}
1179 
1180 
1181 	/*
1182 	 * Return the new things
1183 	 */
1184 	*offset = 0;
1185 	*object = result;
1186 }
1187 
1188 /*
1189  *	vm_object_split:
1190  *
1191  * Split the pages in a map entry into a new object.  This affords
1192  * easier removal of unused pages, and keeps object inheritance from
1193  * being a negative impact on memory usage.
1194  */
1195 void
1196 vm_object_split(vm_map_entry_t entry)
1197 {
1198 	vm_page_t m, m_next;
1199 	vm_object_t orig_object, new_object, source;
1200 	vm_pindex_t idx, offidxstart;
1201 	vm_size_t size;
1202 
1203 	orig_object = entry->object.vm_object;
1204 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1205 		return;
1206 	if (orig_object->ref_count <= 1)
1207 		return;
1208 	VM_OBJECT_UNLOCK(orig_object);
1209 
1210 	offidxstart = OFF_TO_IDX(entry->offset);
1211 	size = atop(entry->end - entry->start);
1212 
1213 	/*
1214 	 * If swap_pager_copy() is later called, it will convert new_object
1215 	 * into a swap object.
1216 	 */
1217 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1218 
1219 	/*
1220 	 * At this point, the new object is still private, so the order in
1221 	 * which the original and new objects are locked does not matter.
1222 	 */
1223 	VM_OBJECT_LOCK(new_object);
1224 	VM_OBJECT_LOCK(orig_object);
1225 	source = orig_object->backing_object;
1226 	if (source != NULL) {
1227 		VM_OBJECT_LOCK(source);
1228 		if ((source->flags & OBJ_DEAD) != 0) {
1229 			VM_OBJECT_UNLOCK(source);
1230 			VM_OBJECT_UNLOCK(orig_object);
1231 			VM_OBJECT_UNLOCK(new_object);
1232 			vm_object_deallocate(new_object);
1233 			VM_OBJECT_LOCK(orig_object);
1234 			return;
1235 		}
1236 		LIST_INSERT_HEAD(&source->shadow_head,
1237 				  new_object, shadow_list);
1238 		source->shadow_count++;
1239 		vm_object_reference_locked(source);	/* for new_object */
1240 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1241 		VM_OBJECT_UNLOCK(source);
1242 		new_object->backing_object_offset =
1243 			orig_object->backing_object_offset + entry->offset;
1244 		new_object->backing_object = source;
1245 	}
1246 	if (orig_object->cred != NULL) {
1247 		new_object->cred = orig_object->cred;
1248 		crhold(orig_object->cred);
1249 		new_object->charge = ptoa(size);
1250 		KASSERT(orig_object->charge >= ptoa(size),
1251 		    ("orig_object->charge < 0"));
1252 		orig_object->charge -= ptoa(size);
1253 	}
1254 retry:
1255 	m = vm_page_find_least(orig_object, offidxstart);
1256 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1257 	    m = m_next) {
1258 		m_next = TAILQ_NEXT(m, listq);
1259 
1260 		/*
1261 		 * We must wait for pending I/O to complete before we can
1262 		 * rename the page.
1263 		 *
1264 		 * We do not have to VM_PROT_NONE the page as mappings should
1265 		 * not be changed by this operation.
1266 		 */
1267 		if ((m->oflags & VPO_BUSY) || m->busy) {
1268 			VM_OBJECT_UNLOCK(new_object);
1269 			m->oflags |= VPO_WANTED;
1270 			msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1271 			VM_OBJECT_LOCK(new_object);
1272 			goto retry;
1273 		}
1274 		vm_page_lock(m);
1275 		vm_page_rename(m, new_object, idx);
1276 		vm_page_unlock(m);
1277 		/* page automatically made dirty by rename and cache handled */
1278 		vm_page_busy(m);
1279 	}
1280 	if (orig_object->type == OBJT_SWAP) {
1281 		/*
1282 		 * swap_pager_copy() can sleep, in which case the orig_object's
1283 		 * and new_object's locks are released and reacquired.
1284 		 */
1285 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1286 
1287 		/*
1288 		 * Transfer any cached pages from orig_object to new_object.
1289 		 */
1290 		if (__predict_false(orig_object->cache != NULL))
1291 			vm_page_cache_transfer(orig_object, offidxstart,
1292 			    new_object);
1293 	}
1294 	VM_OBJECT_UNLOCK(orig_object);
1295 	TAILQ_FOREACH(m, &new_object->memq, listq)
1296 		vm_page_wakeup(m);
1297 	VM_OBJECT_UNLOCK(new_object);
1298 	entry->object.vm_object = new_object;
1299 	entry->offset = 0LL;
1300 	vm_object_deallocate(orig_object);
1301 	VM_OBJECT_LOCK(new_object);
1302 }
1303 
1304 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1305 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1306 #define	OBSC_COLLAPSE_WAIT	0x0004
1307 
1308 static int
1309 vm_object_backing_scan(vm_object_t object, int op)
1310 {
1311 	int r = 1;
1312 	vm_page_t p;
1313 	vm_object_t backing_object;
1314 	vm_pindex_t backing_offset_index;
1315 
1316 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1317 	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1318 
1319 	backing_object = object->backing_object;
1320 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1321 
1322 	/*
1323 	 * Initial conditions
1324 	 */
1325 	if (op & OBSC_TEST_ALL_SHADOWED) {
1326 		/*
1327 		 * We do not want to have to test for the existence of cache
1328 		 * or swap pages in the backing object.  XXX but with the
1329 		 * new swapper this would be pretty easy to do.
1330 		 *
1331 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1332 		 * been ZFOD faulted yet?  If we do not test for this, the
1333 		 * shadow test may succeed! XXX
1334 		 */
1335 		if (backing_object->type != OBJT_DEFAULT) {
1336 			return (0);
1337 		}
1338 	}
1339 	if (op & OBSC_COLLAPSE_WAIT) {
1340 		vm_object_set_flag(backing_object, OBJ_DEAD);
1341 	}
1342 
1343 	/*
1344 	 * Our scan
1345 	 */
1346 	p = TAILQ_FIRST(&backing_object->memq);
1347 	while (p) {
1348 		vm_page_t next = TAILQ_NEXT(p, listq);
1349 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1350 
1351 		if (op & OBSC_TEST_ALL_SHADOWED) {
1352 			vm_page_t pp;
1353 
1354 			/*
1355 			 * Ignore pages outside the parent object's range
1356 			 * and outside the parent object's mapping of the
1357 			 * backing object.
1358 			 *
1359 			 * note that we do not busy the backing object's
1360 			 * page.
1361 			 */
1362 			if (
1363 			    p->pindex < backing_offset_index ||
1364 			    new_pindex >= object->size
1365 			) {
1366 				p = next;
1367 				continue;
1368 			}
1369 
1370 			/*
1371 			 * See if the parent has the page or if the parent's
1372 			 * object pager has the page.  If the parent has the
1373 			 * page but the page is not valid, the parent's
1374 			 * object pager must have the page.
1375 			 *
1376 			 * If this fails, the parent does not completely shadow
1377 			 * the object and we might as well give up now.
1378 			 */
1379 
1380 			pp = vm_page_lookup(object, new_pindex);
1381 			if (
1382 			    (pp == NULL || pp->valid == 0) &&
1383 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1384 			) {
1385 				r = 0;
1386 				break;
1387 			}
1388 		}
1389 
1390 		/*
1391 		 * Check for busy page
1392 		 */
1393 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1394 			vm_page_t pp;
1395 
1396 			if (op & OBSC_COLLAPSE_NOWAIT) {
1397 				if ((p->oflags & VPO_BUSY) ||
1398 				    !p->valid ||
1399 				    p->busy) {
1400 					p = next;
1401 					continue;
1402 				}
1403 			} else if (op & OBSC_COLLAPSE_WAIT) {
1404 				if ((p->oflags & VPO_BUSY) || p->busy) {
1405 					VM_OBJECT_UNLOCK(object);
1406 					p->oflags |= VPO_WANTED;
1407 					msleep(p, VM_OBJECT_MTX(backing_object),
1408 					    PDROP | PVM, "vmocol", 0);
1409 					VM_OBJECT_LOCK(object);
1410 					VM_OBJECT_LOCK(backing_object);
1411 					/*
1412 					 * If we slept, anything could have
1413 					 * happened.  Since the object is
1414 					 * marked dead, the backing offset
1415 					 * should not have changed so we
1416 					 * just restart our scan.
1417 					 */
1418 					p = TAILQ_FIRST(&backing_object->memq);
1419 					continue;
1420 				}
1421 			}
1422 
1423 			KASSERT(
1424 			    p->object == backing_object,
1425 			    ("vm_object_backing_scan: object mismatch")
1426 			);
1427 
1428 			/*
1429 			 * Destroy any associated swap
1430 			 */
1431 			if (backing_object->type == OBJT_SWAP) {
1432 				swap_pager_freespace(
1433 				    backing_object,
1434 				    p->pindex,
1435 				    1
1436 				);
1437 			}
1438 
1439 			if (
1440 			    p->pindex < backing_offset_index ||
1441 			    new_pindex >= object->size
1442 			) {
1443 				/*
1444 				 * Page is out of the parent object's range, we
1445 				 * can simply destroy it.
1446 				 */
1447 				vm_page_lock(p);
1448 				KASSERT(!pmap_page_is_mapped(p),
1449 				    ("freeing mapped page %p", p));
1450 				if (p->wire_count == 0)
1451 					vm_page_free(p);
1452 				else
1453 					vm_page_remove(p);
1454 				vm_page_unlock(p);
1455 				p = next;
1456 				continue;
1457 			}
1458 
1459 			pp = vm_page_lookup(object, new_pindex);
1460 			if (
1461 			    pp != NULL ||
1462 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1463 			) {
1464 				/*
1465 				 * page already exists in parent OR swap exists
1466 				 * for this location in the parent.  Destroy
1467 				 * the original page from the backing object.
1468 				 *
1469 				 * Leave the parent's page alone
1470 				 */
1471 				vm_page_lock(p);
1472 				KASSERT(!pmap_page_is_mapped(p),
1473 				    ("freeing mapped page %p", p));
1474 				if (p->wire_count == 0)
1475 					vm_page_free(p);
1476 				else
1477 					vm_page_remove(p);
1478 				vm_page_unlock(p);
1479 				p = next;
1480 				continue;
1481 			}
1482 
1483 #if VM_NRESERVLEVEL > 0
1484 			/*
1485 			 * Rename the reservation.
1486 			 */
1487 			vm_reserv_rename(p, object, backing_object,
1488 			    backing_offset_index);
1489 #endif
1490 
1491 			/*
1492 			 * Page does not exist in parent, rename the
1493 			 * page from the backing object to the main object.
1494 			 *
1495 			 * If the page was mapped to a process, it can remain
1496 			 * mapped through the rename.
1497 			 */
1498 			vm_page_lock(p);
1499 			vm_page_rename(p, object, new_pindex);
1500 			vm_page_unlock(p);
1501 			/* page automatically made dirty by rename */
1502 		}
1503 		p = next;
1504 	}
1505 	return (r);
1506 }
1507 
1508 
1509 /*
1510  * this version of collapse allows the operation to occur earlier and
1511  * when paging_in_progress is true for an object...  This is not a complete
1512  * operation, but should plug 99.9% of the rest of the leaks.
1513  */
1514 static void
1515 vm_object_qcollapse(vm_object_t object)
1516 {
1517 	vm_object_t backing_object = object->backing_object;
1518 
1519 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1520 	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1521 
1522 	if (backing_object->ref_count != 1)
1523 		return;
1524 
1525 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1526 }
1527 
1528 /*
1529  *	vm_object_collapse:
1530  *
1531  *	Collapse an object with the object backing it.
1532  *	Pages in the backing object are moved into the
1533  *	parent, and the backing object is deallocated.
1534  */
1535 void
1536 vm_object_collapse(vm_object_t object)
1537 {
1538 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1539 
1540 	while (TRUE) {
1541 		vm_object_t backing_object;
1542 
1543 		/*
1544 		 * Verify that the conditions are right for collapse:
1545 		 *
1546 		 * The object exists and the backing object exists.
1547 		 */
1548 		if ((backing_object = object->backing_object) == NULL)
1549 			break;
1550 
1551 		/*
1552 		 * we check the backing object first, because it is most likely
1553 		 * not collapsable.
1554 		 */
1555 		VM_OBJECT_LOCK(backing_object);
1556 		if (backing_object->handle != NULL ||
1557 		    (backing_object->type != OBJT_DEFAULT &&
1558 		     backing_object->type != OBJT_SWAP) ||
1559 		    (backing_object->flags & OBJ_DEAD) ||
1560 		    object->handle != NULL ||
1561 		    (object->type != OBJT_DEFAULT &&
1562 		     object->type != OBJT_SWAP) ||
1563 		    (object->flags & OBJ_DEAD)) {
1564 			VM_OBJECT_UNLOCK(backing_object);
1565 			break;
1566 		}
1567 
1568 		if (
1569 		    object->paging_in_progress != 0 ||
1570 		    backing_object->paging_in_progress != 0
1571 		) {
1572 			vm_object_qcollapse(object);
1573 			VM_OBJECT_UNLOCK(backing_object);
1574 			break;
1575 		}
1576 		/*
1577 		 * We know that we can either collapse the backing object (if
1578 		 * the parent is the only reference to it) or (perhaps) have
1579 		 * the parent bypass the object if the parent happens to shadow
1580 		 * all the resident pages in the entire backing object.
1581 		 *
1582 		 * This is ignoring pager-backed pages such as swap pages.
1583 		 * vm_object_backing_scan fails the shadowing test in this
1584 		 * case.
1585 		 */
1586 		if (backing_object->ref_count == 1) {
1587 			/*
1588 			 * If there is exactly one reference to the backing
1589 			 * object, we can collapse it into the parent.
1590 			 */
1591 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1592 
1593 #if VM_NRESERVLEVEL > 0
1594 			/*
1595 			 * Break any reservations from backing_object.
1596 			 */
1597 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1598 				vm_reserv_break_all(backing_object);
1599 #endif
1600 
1601 			/*
1602 			 * Move the pager from backing_object to object.
1603 			 */
1604 			if (backing_object->type == OBJT_SWAP) {
1605 				/*
1606 				 * swap_pager_copy() can sleep, in which case
1607 				 * the backing_object's and object's locks are
1608 				 * released and reacquired.
1609 				 */
1610 				swap_pager_copy(
1611 				    backing_object,
1612 				    object,
1613 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1614 
1615 				/*
1616 				 * Free any cached pages from backing_object.
1617 				 */
1618 				if (__predict_false(backing_object->cache != NULL))
1619 					vm_page_cache_free(backing_object, 0, 0);
1620 			}
1621 			/*
1622 			 * Object now shadows whatever backing_object did.
1623 			 * Note that the reference to
1624 			 * backing_object->backing_object moves from within
1625 			 * backing_object to within object.
1626 			 */
1627 			LIST_REMOVE(object, shadow_list);
1628 			backing_object->shadow_count--;
1629 			if (backing_object->backing_object) {
1630 				VM_OBJECT_LOCK(backing_object->backing_object);
1631 				LIST_REMOVE(backing_object, shadow_list);
1632 				LIST_INSERT_HEAD(
1633 				    &backing_object->backing_object->shadow_head,
1634 				    object, shadow_list);
1635 				/*
1636 				 * The shadow_count has not changed.
1637 				 */
1638 				VM_OBJECT_UNLOCK(backing_object->backing_object);
1639 			}
1640 			object->backing_object = backing_object->backing_object;
1641 			object->backing_object_offset +=
1642 			    backing_object->backing_object_offset;
1643 
1644 			/*
1645 			 * Discard backing_object.
1646 			 *
1647 			 * Since the backing object has no pages, no pager left,
1648 			 * and no object references within it, all that is
1649 			 * necessary is to dispose of it.
1650 			 */
1651 			KASSERT(backing_object->ref_count == 1, (
1652 "backing_object %p was somehow re-referenced during collapse!",
1653 			    backing_object));
1654 			VM_OBJECT_UNLOCK(backing_object);
1655 			vm_object_destroy(backing_object);
1656 
1657 			object_collapses++;
1658 		} else {
1659 			vm_object_t new_backing_object;
1660 
1661 			/*
1662 			 * If we do not entirely shadow the backing object,
1663 			 * there is nothing we can do so we give up.
1664 			 */
1665 			if (object->resident_page_count != object->size &&
1666 			    vm_object_backing_scan(object,
1667 			    OBSC_TEST_ALL_SHADOWED) == 0) {
1668 				VM_OBJECT_UNLOCK(backing_object);
1669 				break;
1670 			}
1671 
1672 			/*
1673 			 * Make the parent shadow the next object in the
1674 			 * chain.  Deallocating backing_object will not remove
1675 			 * it, since its reference count is at least 2.
1676 			 */
1677 			LIST_REMOVE(object, shadow_list);
1678 			backing_object->shadow_count--;
1679 
1680 			new_backing_object = backing_object->backing_object;
1681 			if ((object->backing_object = new_backing_object) != NULL) {
1682 				VM_OBJECT_LOCK(new_backing_object);
1683 				LIST_INSERT_HEAD(
1684 				    &new_backing_object->shadow_head,
1685 				    object,
1686 				    shadow_list
1687 				);
1688 				new_backing_object->shadow_count++;
1689 				vm_object_reference_locked(new_backing_object);
1690 				VM_OBJECT_UNLOCK(new_backing_object);
1691 				object->backing_object_offset +=
1692 					backing_object->backing_object_offset;
1693 			}
1694 
1695 			/*
1696 			 * Drop the reference count on backing_object. Since
1697 			 * its ref_count was at least 2, it will not vanish.
1698 			 */
1699 			backing_object->ref_count--;
1700 			VM_OBJECT_UNLOCK(backing_object);
1701 			object_bypasses++;
1702 		}
1703 
1704 		/*
1705 		 * Try again with this object's new backing object.
1706 		 */
1707 	}
1708 }
1709 
1710 /*
1711  *	vm_object_page_remove:
1712  *
1713  *	For the given object, either frees or invalidates each of the
1714  *	specified pages.  In general, a page is freed.  However, if a
1715  *	page is wired for any reason other than the existence of a
1716  *	managed, wired mapping, then it may be invalidated but not
1717  *	removed from the object.  Pages are specified by the given
1718  *	range ["start", "end") and Boolean "clean_only".  As a
1719  *	special case, if "end" is zero, then the range extends from
1720  *	"start" to the end of the object.  If "clean_only" is TRUE,
1721  *	then only the non-dirty pages within the specified range are
1722  *	affected.
1723  *
1724  *	In general, this operation should only be performed on objects
1725  *	that contain managed pages.  There are two exceptions.  First,
1726  *	it may be performed on the kernel and kmem objects.  Second,
1727  *	it may be used by msync(..., MS_INVALIDATE) to invalidate
1728  *	device-backed pages.  In both of these cases, "clean_only"
1729  *	must be FALSE.
1730  *
1731  *	The object must be locked.
1732  */
1733 void
1734 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1735     boolean_t clean_only)
1736 {
1737 	vm_page_t p, next;
1738 	int wirings;
1739 
1740 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1741 	if (object->resident_page_count == 0)
1742 		goto skipmemq;
1743 
1744 	/*
1745 	 * Since physically-backed objects do not use managed pages, we can't
1746 	 * remove pages from the object (we must instead remove the page
1747 	 * references, and then destroy the object).
1748 	 */
1749 	KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1750 	    object == kmem_object,
1751 	    ("attempt to remove pages from a physical object"));
1752 
1753 	vm_object_pip_add(object, 1);
1754 again:
1755 	p = vm_page_find_least(object, start);
1756 
1757 	/*
1758 	 * Assert: the variable p is either (1) the page with the
1759 	 * least pindex greater than or equal to the parameter pindex
1760 	 * or (2) NULL.
1761 	 */
1762 	for (;
1763 	     p != NULL && (p->pindex < end || end == 0);
1764 	     p = next) {
1765 		next = TAILQ_NEXT(p, listq);
1766 
1767 		/*
1768 		 * If the page is wired for any reason besides the
1769 		 * existence of managed, wired mappings, then it cannot
1770 		 * be freed.  For example, fictitious pages, which
1771 		 * represent device memory, are inherently wired and
1772 		 * cannot be freed.  They can, however, be invalidated
1773 		 * if "clean_only" is FALSE.
1774 		 */
1775 		vm_page_lock(p);
1776 		if ((wirings = p->wire_count) != 0 &&
1777 		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1778 			/* Fictitious pages do not have managed mappings. */
1779 			if ((p->flags & PG_FICTITIOUS) == 0)
1780 				pmap_remove_all(p);
1781 			/* Account for removal of managed, wired mappings. */
1782 			p->wire_count -= wirings;
1783 			if (!clean_only) {
1784 				p->valid = 0;
1785 				vm_page_undirty(p);
1786 			}
1787 			vm_page_unlock(p);
1788 			continue;
1789 		}
1790 		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1791 			goto again;
1792 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1793 		    ("vm_object_page_remove: page %p is fictitious", p));
1794 		if (clean_only && p->valid) {
1795 			pmap_remove_write(p);
1796 			if (p->dirty) {
1797 				vm_page_unlock(p);
1798 				continue;
1799 			}
1800 		}
1801 		pmap_remove_all(p);
1802 		/* Account for removal of managed, wired mappings. */
1803 		if (wirings != 0)
1804 			p->wire_count -= wirings;
1805 		vm_page_free(p);
1806 		vm_page_unlock(p);
1807 	}
1808 	vm_object_pip_wakeup(object);
1809 skipmemq:
1810 	if (__predict_false(object->cache != NULL))
1811 		vm_page_cache_free(object, start, end);
1812 }
1813 
1814 /*
1815  *	Populate the specified range of the object with valid pages.  Returns
1816  *	TRUE if the range is successfully populated and FALSE otherwise.
1817  *
1818  *	Note: This function should be optimized to pass a larger array of
1819  *	pages to vm_pager_get_pages() before it is applied to a non-
1820  *	OBJT_DEVICE object.
1821  *
1822  *	The object must be locked.
1823  */
1824 boolean_t
1825 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1826 {
1827 	vm_page_t m, ma[1];
1828 	vm_pindex_t pindex;
1829 	int rv;
1830 
1831 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1832 	for (pindex = start; pindex < end; pindex++) {
1833 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
1834 		    VM_ALLOC_RETRY);
1835 		if (m->valid != VM_PAGE_BITS_ALL) {
1836 			ma[0] = m;
1837 			rv = vm_pager_get_pages(object, ma, 1, 0);
1838 			m = vm_page_lookup(object, pindex);
1839 			if (m == NULL)
1840 				break;
1841 			if (rv != VM_PAGER_OK) {
1842 				vm_page_lock(m);
1843 				vm_page_free(m);
1844 				vm_page_unlock(m);
1845 				break;
1846 			}
1847 		}
1848 		/*
1849 		 * Keep "m" busy because a subsequent iteration may unlock
1850 		 * the object.
1851 		 */
1852 	}
1853 	if (pindex > start) {
1854 		m = vm_page_lookup(object, start);
1855 		while (m != NULL && m->pindex < pindex) {
1856 			vm_page_wakeup(m);
1857 			m = TAILQ_NEXT(m, listq);
1858 		}
1859 	}
1860 	return (pindex == end);
1861 }
1862 
1863 /*
1864  *	Routine:	vm_object_coalesce
1865  *	Function:	Coalesces two objects backing up adjoining
1866  *			regions of memory into a single object.
1867  *
1868  *	returns TRUE if objects were combined.
1869  *
1870  *	NOTE:	Only works at the moment if the second object is NULL -
1871  *		if it's not, which object do we lock first?
1872  *
1873  *	Parameters:
1874  *		prev_object	First object to coalesce
1875  *		prev_offset	Offset into prev_object
1876  *		prev_size	Size of reference to prev_object
1877  *		next_size	Size of reference to the second object
1878  *		reserved	Indicator that extension region has
1879  *				swap accounted for
1880  *
1881  *	Conditions:
1882  *	The object must *not* be locked.
1883  */
1884 boolean_t
1885 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1886     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
1887 {
1888 	vm_pindex_t next_pindex;
1889 
1890 	if (prev_object == NULL)
1891 		return (TRUE);
1892 	VM_OBJECT_LOCK(prev_object);
1893 	if (prev_object->type != OBJT_DEFAULT &&
1894 	    prev_object->type != OBJT_SWAP) {
1895 		VM_OBJECT_UNLOCK(prev_object);
1896 		return (FALSE);
1897 	}
1898 
1899 	/*
1900 	 * Try to collapse the object first
1901 	 */
1902 	vm_object_collapse(prev_object);
1903 
1904 	/*
1905 	 * Can't coalesce if: . more than one reference . paged out . shadows
1906 	 * another object . has a copy elsewhere (any of which mean that the
1907 	 * pages not mapped to prev_entry may be in use anyway)
1908 	 */
1909 	if (prev_object->backing_object != NULL) {
1910 		VM_OBJECT_UNLOCK(prev_object);
1911 		return (FALSE);
1912 	}
1913 
1914 	prev_size >>= PAGE_SHIFT;
1915 	next_size >>= PAGE_SHIFT;
1916 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1917 
1918 	if ((prev_object->ref_count > 1) &&
1919 	    (prev_object->size != next_pindex)) {
1920 		VM_OBJECT_UNLOCK(prev_object);
1921 		return (FALSE);
1922 	}
1923 
1924 	/*
1925 	 * Account for the charge.
1926 	 */
1927 	if (prev_object->cred != NULL) {
1928 
1929 		/*
1930 		 * If prev_object was charged, then this mapping,
1931 		 * althought not charged now, may become writable
1932 		 * later. Non-NULL cred in the object would prevent
1933 		 * swap reservation during enabling of the write
1934 		 * access, so reserve swap now. Failed reservation
1935 		 * cause allocation of the separate object for the map
1936 		 * entry, and swap reservation for this entry is
1937 		 * managed in appropriate time.
1938 		 */
1939 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
1940 		    prev_object->cred)) {
1941 			return (FALSE);
1942 		}
1943 		prev_object->charge += ptoa(next_size);
1944 	}
1945 
1946 	/*
1947 	 * Remove any pages that may still be in the object from a previous
1948 	 * deallocation.
1949 	 */
1950 	if (next_pindex < prev_object->size) {
1951 		vm_object_page_remove(prev_object,
1952 				      next_pindex,
1953 				      next_pindex + next_size, FALSE);
1954 		if (prev_object->type == OBJT_SWAP)
1955 			swap_pager_freespace(prev_object,
1956 					     next_pindex, next_size);
1957 #if 0
1958 		if (prev_object->cred != NULL) {
1959 			KASSERT(prev_object->charge >=
1960 			    ptoa(prev_object->size - next_pindex),
1961 			    ("object %p overcharged 1 %jx %jx", prev_object,
1962 				(uintmax_t)next_pindex, (uintmax_t)next_size));
1963 			prev_object->charge -= ptoa(prev_object->size -
1964 			    next_pindex);
1965 		}
1966 #endif
1967 	}
1968 
1969 	/*
1970 	 * Extend the object if necessary.
1971 	 */
1972 	if (next_pindex + next_size > prev_object->size)
1973 		prev_object->size = next_pindex + next_size;
1974 
1975 	VM_OBJECT_UNLOCK(prev_object);
1976 	return (TRUE);
1977 }
1978 
1979 void
1980 vm_object_set_writeable_dirty(vm_object_t object)
1981 {
1982 
1983 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1984 	if (object->type != OBJT_VNODE)
1985 		return;
1986 	object->generation++;
1987 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
1988 		return;
1989 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
1990 }
1991 
1992 #include "opt_ddb.h"
1993 #ifdef DDB
1994 #include <sys/kernel.h>
1995 
1996 #include <sys/cons.h>
1997 
1998 #include <ddb/ddb.h>
1999 
2000 static int
2001 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2002 {
2003 	vm_map_t tmpm;
2004 	vm_map_entry_t tmpe;
2005 	vm_object_t obj;
2006 	int entcount;
2007 
2008 	if (map == 0)
2009 		return 0;
2010 
2011 	if (entry == 0) {
2012 		tmpe = map->header.next;
2013 		entcount = map->nentries;
2014 		while (entcount-- && (tmpe != &map->header)) {
2015 			if (_vm_object_in_map(map, object, tmpe)) {
2016 				return 1;
2017 			}
2018 			tmpe = tmpe->next;
2019 		}
2020 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2021 		tmpm = entry->object.sub_map;
2022 		tmpe = tmpm->header.next;
2023 		entcount = tmpm->nentries;
2024 		while (entcount-- && tmpe != &tmpm->header) {
2025 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2026 				return 1;
2027 			}
2028 			tmpe = tmpe->next;
2029 		}
2030 	} else if ((obj = entry->object.vm_object) != NULL) {
2031 		for (; obj; obj = obj->backing_object)
2032 			if (obj == object) {
2033 				return 1;
2034 			}
2035 	}
2036 	return 0;
2037 }
2038 
2039 static int
2040 vm_object_in_map(vm_object_t object)
2041 {
2042 	struct proc *p;
2043 
2044 	/* sx_slock(&allproc_lock); */
2045 	FOREACH_PROC_IN_SYSTEM(p) {
2046 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2047 			continue;
2048 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2049 			/* sx_sunlock(&allproc_lock); */
2050 			return 1;
2051 		}
2052 	}
2053 	/* sx_sunlock(&allproc_lock); */
2054 	if (_vm_object_in_map(kernel_map, object, 0))
2055 		return 1;
2056 	if (_vm_object_in_map(kmem_map, object, 0))
2057 		return 1;
2058 	if (_vm_object_in_map(pager_map, object, 0))
2059 		return 1;
2060 	if (_vm_object_in_map(buffer_map, object, 0))
2061 		return 1;
2062 	return 0;
2063 }
2064 
2065 DB_SHOW_COMMAND(vmochk, vm_object_check)
2066 {
2067 	vm_object_t object;
2068 
2069 	/*
2070 	 * make sure that internal objs are in a map somewhere
2071 	 * and none have zero ref counts.
2072 	 */
2073 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2074 		if (object->handle == NULL &&
2075 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2076 			if (object->ref_count == 0) {
2077 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2078 					(long)object->size);
2079 			}
2080 			if (!vm_object_in_map(object)) {
2081 				db_printf(
2082 			"vmochk: internal obj is not in a map: "
2083 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2084 				    object->ref_count, (u_long)object->size,
2085 				    (u_long)object->size,
2086 				    (void *)object->backing_object);
2087 			}
2088 		}
2089 	}
2090 }
2091 
2092 /*
2093  *	vm_object_print:	[ debug ]
2094  */
2095 DB_SHOW_COMMAND(object, vm_object_print_static)
2096 {
2097 	/* XXX convert args. */
2098 	vm_object_t object = (vm_object_t)addr;
2099 	boolean_t full = have_addr;
2100 
2101 	vm_page_t p;
2102 
2103 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2104 #define	count	was_count
2105 
2106 	int count;
2107 
2108 	if (object == NULL)
2109 		return;
2110 
2111 	db_iprintf(
2112 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2113 	    object, (int)object->type, (uintmax_t)object->size,
2114 	    object->resident_page_count, object->ref_count, object->flags,
2115 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2116 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2117 	    object->shadow_count,
2118 	    object->backing_object ? object->backing_object->ref_count : 0,
2119 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2120 
2121 	if (!full)
2122 		return;
2123 
2124 	db_indent += 2;
2125 	count = 0;
2126 	TAILQ_FOREACH(p, &object->memq, listq) {
2127 		if (count == 0)
2128 			db_iprintf("memory:=");
2129 		else if (count == 6) {
2130 			db_printf("\n");
2131 			db_iprintf(" ...");
2132 			count = 0;
2133 		} else
2134 			db_printf(",");
2135 		count++;
2136 
2137 		db_printf("(off=0x%jx,page=0x%jx)",
2138 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2139 	}
2140 	if (count != 0)
2141 		db_printf("\n");
2142 	db_indent -= 2;
2143 }
2144 
2145 /* XXX. */
2146 #undef count
2147 
2148 /* XXX need this non-static entry for calling from vm_map_print. */
2149 void
2150 vm_object_print(
2151         /* db_expr_t */ long addr,
2152 	boolean_t have_addr,
2153 	/* db_expr_t */ long count,
2154 	char *modif)
2155 {
2156 	vm_object_print_static(addr, have_addr, count, modif);
2157 }
2158 
2159 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2160 {
2161 	vm_object_t object;
2162 	vm_pindex_t fidx;
2163 	vm_paddr_t pa;
2164 	vm_page_t m, prev_m;
2165 	int rcount, nl, c;
2166 
2167 	nl = 0;
2168 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2169 		db_printf("new object: %p\n", (void *)object);
2170 		if (nl > 18) {
2171 			c = cngetc();
2172 			if (c != ' ')
2173 				return;
2174 			nl = 0;
2175 		}
2176 		nl++;
2177 		rcount = 0;
2178 		fidx = 0;
2179 		pa = -1;
2180 		TAILQ_FOREACH(m, &object->memq, listq) {
2181 			if (m->pindex > 128)
2182 				break;
2183 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2184 			    prev_m->pindex + 1 != m->pindex) {
2185 				if (rcount) {
2186 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2187 						(long)fidx, rcount, (long)pa);
2188 					if (nl > 18) {
2189 						c = cngetc();
2190 						if (c != ' ')
2191 							return;
2192 						nl = 0;
2193 					}
2194 					nl++;
2195 					rcount = 0;
2196 				}
2197 			}
2198 			if (rcount &&
2199 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2200 				++rcount;
2201 				continue;
2202 			}
2203 			if (rcount) {
2204 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2205 					(long)fidx, rcount, (long)pa);
2206 				if (nl > 18) {
2207 					c = cngetc();
2208 					if (c != ' ')
2209 						return;
2210 					nl = 0;
2211 				}
2212 				nl++;
2213 			}
2214 			fidx = m->pindex;
2215 			pa = VM_PAGE_TO_PHYS(m);
2216 			rcount = 1;
2217 		}
2218 		if (rcount) {
2219 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2220 				(long)fidx, rcount, (long)pa);
2221 			if (nl > 18) {
2222 				c = cngetc();
2223 				if (c != ' ')
2224 					return;
2225 				nl = 0;
2226 			}
2227 			nl++;
2228 		}
2229 	}
2230 }
2231 #endif /* DDB */
2232