1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory object module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include "opt_vm.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/cpuset.h> 75 #include <sys/lock.h> 76 #include <sys/mman.h> 77 #include <sys/mount.h> 78 #include <sys/kernel.h> 79 #include <sys/pctrie.h> 80 #include <sys/sysctl.h> 81 #include <sys/mutex.h> 82 #include <sys/proc.h> /* for curproc, pageproc */ 83 #include <sys/refcount.h> 84 #include <sys/socket.h> 85 #include <sys/resourcevar.h> 86 #include <sys/rwlock.h> 87 #include <sys/user.h> 88 #include <sys/vnode.h> 89 #include <sys/vmmeter.h> 90 #include <sys/sx.h> 91 92 #include <vm/vm.h> 93 #include <vm/vm_param.h> 94 #include <vm/pmap.h> 95 #include <vm/vm_map.h> 96 #include <vm/vm_object.h> 97 #include <vm/vm_page.h> 98 #include <vm/vm_pageout.h> 99 #include <vm/vm_pager.h> 100 #include <vm/vm_phys.h> 101 #include <vm/vm_pagequeue.h> 102 #include <vm/swap_pager.h> 103 #include <vm/vm_kern.h> 104 #include <vm/vm_extern.h> 105 #include <vm/vm_radix.h> 106 #include <vm/vm_reserv.h> 107 #include <vm/uma.h> 108 109 static int old_msync; 110 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 111 "Use old (insecure) msync behavior"); 112 113 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 114 int pagerflags, int flags, boolean_t *clearobjflags, 115 boolean_t *eio); 116 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 117 boolean_t *clearobjflags); 118 static void vm_object_qcollapse(vm_object_t object); 119 static void vm_object_vndeallocate(vm_object_t object); 120 121 /* 122 * Virtual memory objects maintain the actual data 123 * associated with allocated virtual memory. A given 124 * page of memory exists within exactly one object. 125 * 126 * An object is only deallocated when all "references" 127 * are given up. Only one "reference" to a given 128 * region of an object should be writeable. 129 * 130 * Associated with each object is a list of all resident 131 * memory pages belonging to that object; this list is 132 * maintained by the "vm_page" module, and locked by the object's 133 * lock. 134 * 135 * Each object also records a "pager" routine which is 136 * used to retrieve (and store) pages to the proper backing 137 * storage. In addition, objects may be backed by other 138 * objects from which they were virtual-copied. 139 * 140 * The only items within the object structure which are 141 * modified after time of creation are: 142 * reference count locked by object's lock 143 * pager routine locked by object's lock 144 * 145 */ 146 147 struct object_q vm_object_list; 148 struct mtx vm_object_list_mtx; /* lock for object list and count */ 149 150 struct vm_object kernel_object_store; 151 152 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 153 "VM object stats"); 154 155 static counter_u64_t object_collapses = EARLY_COUNTER; 156 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 157 &object_collapses, 158 "VM object collapses"); 159 160 static counter_u64_t object_bypasses = EARLY_COUNTER; 161 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 162 &object_bypasses, 163 "VM object bypasses"); 164 165 static void 166 counter_startup(void) 167 { 168 169 object_collapses = counter_u64_alloc(M_WAITOK); 170 object_bypasses = counter_u64_alloc(M_WAITOK); 171 } 172 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL); 173 174 static uma_zone_t obj_zone; 175 176 static int vm_object_zinit(void *mem, int size, int flags); 177 178 #ifdef INVARIANTS 179 static void vm_object_zdtor(void *mem, int size, void *arg); 180 181 static void 182 vm_object_zdtor(void *mem, int size, void *arg) 183 { 184 vm_object_t object; 185 186 object = (vm_object_t)mem; 187 KASSERT(object->ref_count == 0, 188 ("object %p ref_count = %d", object, object->ref_count)); 189 KASSERT(TAILQ_EMPTY(&object->memq), 190 ("object %p has resident pages in its memq", object)); 191 KASSERT(vm_radix_is_empty(&object->rtree), 192 ("object %p has resident pages in its trie", object)); 193 #if VM_NRESERVLEVEL > 0 194 KASSERT(LIST_EMPTY(&object->rvq), 195 ("object %p has reservations", 196 object)); 197 #endif 198 KASSERT(REFCOUNT_COUNT(object->paging_in_progress) == 0, 199 ("object %p paging_in_progress = %d", 200 object, REFCOUNT_COUNT(object->paging_in_progress))); 201 KASSERT(object->resident_page_count == 0, 202 ("object %p resident_page_count = %d", 203 object, object->resident_page_count)); 204 KASSERT(object->shadow_count == 0, 205 ("object %p shadow_count = %d", 206 object, object->shadow_count)); 207 KASSERT(object->type == OBJT_DEAD, 208 ("object %p has non-dead type %d", 209 object, object->type)); 210 } 211 #endif 212 213 static int 214 vm_object_zinit(void *mem, int size, int flags) 215 { 216 vm_object_t object; 217 218 object = (vm_object_t)mem; 219 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 220 221 /* These are true for any object that has been freed */ 222 object->type = OBJT_DEAD; 223 object->ref_count = 0; 224 vm_radix_init(&object->rtree); 225 refcount_init(&object->paging_in_progress, 0); 226 object->resident_page_count = 0; 227 object->shadow_count = 0; 228 object->flags = OBJ_DEAD; 229 230 mtx_lock(&vm_object_list_mtx); 231 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 232 mtx_unlock(&vm_object_list_mtx); 233 return (0); 234 } 235 236 static void 237 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 238 { 239 240 TAILQ_INIT(&object->memq); 241 LIST_INIT(&object->shadow_head); 242 243 object->type = type; 244 if (type == OBJT_SWAP) 245 pctrie_init(&object->un_pager.swp.swp_blks); 246 247 /* 248 * Ensure that swap_pager_swapoff() iteration over object_list 249 * sees up to date type and pctrie head if it observed 250 * non-dead object. 251 */ 252 atomic_thread_fence_rel(); 253 254 switch (type) { 255 case OBJT_DEAD: 256 panic("_vm_object_allocate: can't create OBJT_DEAD"); 257 case OBJT_DEFAULT: 258 case OBJT_SWAP: 259 object->flags = OBJ_ONEMAPPING; 260 break; 261 case OBJT_DEVICE: 262 case OBJT_SG: 263 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 264 break; 265 case OBJT_MGTDEVICE: 266 object->flags = OBJ_FICTITIOUS; 267 break; 268 case OBJT_PHYS: 269 object->flags = OBJ_UNMANAGED; 270 break; 271 case OBJT_VNODE: 272 object->flags = 0; 273 break; 274 default: 275 panic("_vm_object_allocate: type %d is undefined", type); 276 } 277 object->size = size; 278 object->domain.dr_policy = NULL; 279 object->generation = 1; 280 object->ref_count = 1; 281 object->memattr = VM_MEMATTR_DEFAULT; 282 object->cred = NULL; 283 object->charge = 0; 284 object->handle = NULL; 285 object->backing_object = NULL; 286 object->backing_object_offset = (vm_ooffset_t) 0; 287 #if VM_NRESERVLEVEL > 0 288 LIST_INIT(&object->rvq); 289 #endif 290 umtx_shm_object_init(object); 291 } 292 293 /* 294 * vm_object_init: 295 * 296 * Initialize the VM objects module. 297 */ 298 void 299 vm_object_init(void) 300 { 301 TAILQ_INIT(&vm_object_list); 302 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 303 304 rw_init(&kernel_object->lock, "kernel vm object"); 305 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 306 VM_MIN_KERNEL_ADDRESS), kernel_object); 307 #if VM_NRESERVLEVEL > 0 308 kernel_object->flags |= OBJ_COLORED; 309 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 310 #endif 311 312 /* 313 * The lock portion of struct vm_object must be type stable due 314 * to vm_pageout_fallback_object_lock locking a vm object 315 * without holding any references to it. 316 */ 317 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 318 #ifdef INVARIANTS 319 vm_object_zdtor, 320 #else 321 NULL, 322 #endif 323 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 324 325 vm_radix_zinit(); 326 } 327 328 void 329 vm_object_clear_flag(vm_object_t object, u_short bits) 330 { 331 332 VM_OBJECT_ASSERT_WLOCKED(object); 333 object->flags &= ~bits; 334 } 335 336 /* 337 * Sets the default memory attribute for the specified object. Pages 338 * that are allocated to this object are by default assigned this memory 339 * attribute. 340 * 341 * Presently, this function must be called before any pages are allocated 342 * to the object. In the future, this requirement may be relaxed for 343 * "default" and "swap" objects. 344 */ 345 int 346 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 347 { 348 349 VM_OBJECT_ASSERT_WLOCKED(object); 350 switch (object->type) { 351 case OBJT_DEFAULT: 352 case OBJT_DEVICE: 353 case OBJT_MGTDEVICE: 354 case OBJT_PHYS: 355 case OBJT_SG: 356 case OBJT_SWAP: 357 case OBJT_VNODE: 358 if (!TAILQ_EMPTY(&object->memq)) 359 return (KERN_FAILURE); 360 break; 361 case OBJT_DEAD: 362 return (KERN_INVALID_ARGUMENT); 363 default: 364 panic("vm_object_set_memattr: object %p is of undefined type", 365 object); 366 } 367 object->memattr = memattr; 368 return (KERN_SUCCESS); 369 } 370 371 void 372 vm_object_pip_add(vm_object_t object, short i) 373 { 374 375 refcount_acquiren(&object->paging_in_progress, i); 376 } 377 378 void 379 vm_object_pip_wakeup(vm_object_t object) 380 { 381 382 refcount_release(&object->paging_in_progress); 383 } 384 385 void 386 vm_object_pip_wakeupn(vm_object_t object, short i) 387 { 388 389 refcount_releasen(&object->paging_in_progress, i); 390 } 391 392 void 393 vm_object_pip_wait(vm_object_t object, char *waitid) 394 { 395 396 VM_OBJECT_ASSERT_WLOCKED(object); 397 398 while (REFCOUNT_COUNT(object->paging_in_progress) > 0) { 399 VM_OBJECT_WUNLOCK(object); 400 refcount_wait(&object->paging_in_progress, waitid, PVM); 401 VM_OBJECT_WLOCK(object); 402 } 403 } 404 405 void 406 vm_object_pip_wait_unlocked(vm_object_t object, char *waitid) 407 { 408 409 VM_OBJECT_ASSERT_UNLOCKED(object); 410 411 while (REFCOUNT_COUNT(object->paging_in_progress) > 0) 412 refcount_wait(&object->paging_in_progress, waitid, PVM); 413 } 414 415 /* 416 * vm_object_allocate: 417 * 418 * Returns a new object with the given size. 419 */ 420 vm_object_t 421 vm_object_allocate(objtype_t type, vm_pindex_t size) 422 { 423 vm_object_t object; 424 425 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 426 _vm_object_allocate(type, size, object); 427 return (object); 428 } 429 430 431 /* 432 * vm_object_reference: 433 * 434 * Gets another reference to the given object. Note: OBJ_DEAD 435 * objects can be referenced during final cleaning. 436 */ 437 void 438 vm_object_reference(vm_object_t object) 439 { 440 if (object == NULL) 441 return; 442 VM_OBJECT_WLOCK(object); 443 vm_object_reference_locked(object); 444 VM_OBJECT_WUNLOCK(object); 445 } 446 447 /* 448 * vm_object_reference_locked: 449 * 450 * Gets another reference to the given object. 451 * 452 * The object must be locked. 453 */ 454 void 455 vm_object_reference_locked(vm_object_t object) 456 { 457 struct vnode *vp; 458 459 VM_OBJECT_ASSERT_WLOCKED(object); 460 object->ref_count++; 461 if (object->type == OBJT_VNODE) { 462 vp = object->handle; 463 vref(vp); 464 } 465 } 466 467 /* 468 * Handle deallocating an object of type OBJT_VNODE. 469 */ 470 static void 471 vm_object_vndeallocate(vm_object_t object) 472 { 473 struct vnode *vp = (struct vnode *) object->handle; 474 475 VM_OBJECT_ASSERT_WLOCKED(object); 476 KASSERT(object->type == OBJT_VNODE, 477 ("vm_object_vndeallocate: not a vnode object")); 478 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 479 #ifdef INVARIANTS 480 if (object->ref_count == 0) { 481 vn_printf(vp, "vm_object_vndeallocate "); 482 panic("vm_object_vndeallocate: bad object reference count"); 483 } 484 #endif 485 486 if (!umtx_shm_vnobj_persistent && object->ref_count == 1) 487 umtx_shm_object_terminated(object); 488 489 object->ref_count--; 490 491 /* vrele may need the vnode lock. */ 492 VM_OBJECT_WUNLOCK(object); 493 vrele(vp); 494 } 495 496 /* 497 * vm_object_deallocate: 498 * 499 * Release a reference to the specified object, 500 * gained either through a vm_object_allocate 501 * or a vm_object_reference call. When all references 502 * are gone, storage associated with this object 503 * may be relinquished. 504 * 505 * No object may be locked. 506 */ 507 void 508 vm_object_deallocate(vm_object_t object) 509 { 510 vm_object_t temp; 511 512 while (object != NULL) { 513 VM_OBJECT_WLOCK(object); 514 if (object->type == OBJT_VNODE) { 515 vm_object_vndeallocate(object); 516 return; 517 } 518 519 KASSERT(object->ref_count != 0, 520 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 521 522 /* 523 * If the reference count goes to 0 we start calling 524 * vm_object_terminate() on the object chain. 525 * A ref count of 1 may be a special case depending on the 526 * shadow count being 0 or 1. 527 */ 528 object->ref_count--; 529 if (object->ref_count > 1) { 530 VM_OBJECT_WUNLOCK(object); 531 return; 532 } else if (object->ref_count == 1) { 533 if (object->shadow_count == 0 && 534 object->handle == NULL && 535 (object->type == OBJT_DEFAULT || 536 (object->type == OBJT_SWAP && 537 (object->flags & OBJ_TMPFS_NODE) == 0))) { 538 vm_object_set_flag(object, OBJ_ONEMAPPING); 539 } else if ((object->shadow_count == 1) && 540 (object->handle == NULL) && 541 (object->type == OBJT_DEFAULT || 542 object->type == OBJT_SWAP)) { 543 vm_object_t robject; 544 545 robject = LIST_FIRST(&object->shadow_head); 546 KASSERT(robject != NULL, 547 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 548 object->ref_count, 549 object->shadow_count)); 550 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0, 551 ("shadowed tmpfs v_object %p", object)); 552 if (!VM_OBJECT_TRYWLOCK(robject)) { 553 /* 554 * Avoid a potential deadlock. 555 */ 556 object->ref_count++; 557 VM_OBJECT_WUNLOCK(object); 558 /* 559 * More likely than not the thread 560 * holding robject's lock has lower 561 * priority than the current thread. 562 * Let the lower priority thread run. 563 */ 564 pause("vmo_de", 1); 565 continue; 566 } 567 /* 568 * Collapse object into its shadow unless its 569 * shadow is dead. In that case, object will 570 * be deallocated by the thread that is 571 * deallocating its shadow. 572 */ 573 if ((robject->flags & OBJ_DEAD) == 0 && 574 (robject->handle == NULL) && 575 (robject->type == OBJT_DEFAULT || 576 robject->type == OBJT_SWAP)) { 577 578 robject->ref_count++; 579 retry: 580 if (REFCOUNT_COUNT(robject->paging_in_progress) > 0) { 581 VM_OBJECT_WUNLOCK(object); 582 vm_object_pip_wait(robject, 583 "objde1"); 584 temp = robject->backing_object; 585 if (object == temp) { 586 VM_OBJECT_WLOCK(object); 587 goto retry; 588 } 589 } else if (REFCOUNT_COUNT(object->paging_in_progress) > 0) { 590 VM_OBJECT_WUNLOCK(robject); 591 VM_OBJECT_WUNLOCK(object); 592 refcount_wait( 593 &object->paging_in_progress, 594 "objde2", PVM); 595 VM_OBJECT_WLOCK(robject); 596 temp = robject->backing_object; 597 if (object == temp) { 598 VM_OBJECT_WLOCK(object); 599 goto retry; 600 } 601 } else 602 VM_OBJECT_WUNLOCK(object); 603 604 if (robject->ref_count == 1) { 605 robject->ref_count--; 606 object = robject; 607 goto doterm; 608 } 609 object = robject; 610 vm_object_collapse(object); 611 VM_OBJECT_WUNLOCK(object); 612 continue; 613 } 614 VM_OBJECT_WUNLOCK(robject); 615 } 616 VM_OBJECT_WUNLOCK(object); 617 return; 618 } 619 doterm: 620 umtx_shm_object_terminated(object); 621 temp = object->backing_object; 622 if (temp != NULL) { 623 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0, 624 ("shadowed tmpfs v_object 2 %p", object)); 625 VM_OBJECT_WLOCK(temp); 626 LIST_REMOVE(object, shadow_list); 627 temp->shadow_count--; 628 VM_OBJECT_WUNLOCK(temp); 629 object->backing_object = NULL; 630 } 631 /* 632 * Don't double-terminate, we could be in a termination 633 * recursion due to the terminate having to sync data 634 * to disk. 635 */ 636 if ((object->flags & OBJ_DEAD) == 0) { 637 vm_object_set_flag(object, OBJ_DEAD); 638 vm_object_terminate(object); 639 } else 640 VM_OBJECT_WUNLOCK(object); 641 object = temp; 642 } 643 } 644 645 /* 646 * vm_object_destroy removes the object from the global object list 647 * and frees the space for the object. 648 */ 649 void 650 vm_object_destroy(vm_object_t object) 651 { 652 653 /* 654 * Release the allocation charge. 655 */ 656 if (object->cred != NULL) { 657 swap_release_by_cred(object->charge, object->cred); 658 object->charge = 0; 659 crfree(object->cred); 660 object->cred = NULL; 661 } 662 663 /* 664 * Free the space for the object. 665 */ 666 uma_zfree(obj_zone, object); 667 } 668 669 /* 670 * vm_object_terminate_pages removes any remaining pageable pages 671 * from the object and resets the object to an empty state. 672 */ 673 static void 674 vm_object_terminate_pages(vm_object_t object) 675 { 676 vm_page_t p, p_next; 677 678 VM_OBJECT_ASSERT_WLOCKED(object); 679 680 /* 681 * Free any remaining pageable pages. This also removes them from the 682 * paging queues. However, don't free wired pages, just remove them 683 * from the object. Rather than incrementally removing each page from 684 * the object, the page and object are reset to any empty state. 685 */ 686 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 687 vm_page_assert_unbusied(p); 688 KASSERT(p->object == object && 689 (p->ref_count & VPRC_OBJREF) != 0, 690 ("vm_object_terminate_pages: page %p is inconsistent", p)); 691 692 p->object = NULL; 693 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) { 694 VM_CNT_INC(v_pfree); 695 vm_page_free(p); 696 } 697 } 698 699 /* 700 * If the object contained any pages, then reset it to an empty state. 701 * None of the object's fields, including "resident_page_count", were 702 * modified by the preceding loop. 703 */ 704 if (object->resident_page_count != 0) { 705 vm_radix_reclaim_allnodes(&object->rtree); 706 TAILQ_INIT(&object->memq); 707 object->resident_page_count = 0; 708 if (object->type == OBJT_VNODE) 709 vdrop(object->handle); 710 } 711 } 712 713 /* 714 * vm_object_terminate actually destroys the specified object, freeing 715 * up all previously used resources. 716 * 717 * The object must be locked. 718 * This routine may block. 719 */ 720 void 721 vm_object_terminate(vm_object_t object) 722 { 723 VM_OBJECT_ASSERT_WLOCKED(object); 724 KASSERT((object->flags & OBJ_DEAD) != 0, 725 ("terminating non-dead obj %p", object)); 726 727 /* 728 * wait for the pageout daemon to be done with the object 729 */ 730 vm_object_pip_wait(object, "objtrm"); 731 732 KASSERT(!REFCOUNT_COUNT(object->paging_in_progress), 733 ("vm_object_terminate: pageout in progress")); 734 735 KASSERT(object->ref_count == 0, 736 ("vm_object_terminate: object with references, ref_count=%d", 737 object->ref_count)); 738 739 if ((object->flags & OBJ_PG_DTOR) == 0) 740 vm_object_terminate_pages(object); 741 742 #if VM_NRESERVLEVEL > 0 743 if (__predict_false(!LIST_EMPTY(&object->rvq))) 744 vm_reserv_break_all(object); 745 #endif 746 747 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT || 748 object->type == OBJT_SWAP, 749 ("%s: non-swap obj %p has cred", __func__, object)); 750 751 /* 752 * Let the pager know object is dead. 753 */ 754 vm_pager_deallocate(object); 755 VM_OBJECT_WUNLOCK(object); 756 757 vm_object_destroy(object); 758 } 759 760 /* 761 * Make the page read-only so that we can clear the object flags. However, if 762 * this is a nosync mmap then the object is likely to stay dirty so do not 763 * mess with the page and do not clear the object flags. Returns TRUE if the 764 * page should be flushed, and FALSE otherwise. 765 */ 766 static boolean_t 767 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 768 { 769 770 /* 771 * If we have been asked to skip nosync pages and this is a 772 * nosync page, skip it. Note that the object flags were not 773 * cleared in this case so we do not have to set them. 774 */ 775 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 776 *clearobjflags = FALSE; 777 return (FALSE); 778 } else { 779 pmap_remove_write(p); 780 return (p->dirty != 0); 781 } 782 } 783 784 /* 785 * vm_object_page_clean 786 * 787 * Clean all dirty pages in the specified range of object. Leaves page 788 * on whatever queue it is currently on. If NOSYNC is set then do not 789 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 790 * leaving the object dirty. 791 * 792 * When stuffing pages asynchronously, allow clustering. XXX we need a 793 * synchronous clustering mode implementation. 794 * 795 * Odd semantics: if start == end, we clean everything. 796 * 797 * The object must be locked. 798 * 799 * Returns FALSE if some page from the range was not written, as 800 * reported by the pager, and TRUE otherwise. 801 */ 802 boolean_t 803 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 804 int flags) 805 { 806 vm_page_t np, p; 807 vm_pindex_t pi, tend, tstart; 808 int curgeneration, n, pagerflags; 809 boolean_t clearobjflags, eio, res; 810 811 VM_OBJECT_ASSERT_WLOCKED(object); 812 813 /* 814 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE 815 * objects. The check below prevents the function from 816 * operating on non-vnode objects. 817 */ 818 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 819 object->resident_page_count == 0) 820 return (TRUE); 821 822 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 823 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 824 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 825 826 tstart = OFF_TO_IDX(start); 827 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 828 clearobjflags = tstart == 0 && tend >= object->size; 829 res = TRUE; 830 831 rescan: 832 curgeneration = object->generation; 833 834 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 835 pi = p->pindex; 836 if (pi >= tend) 837 break; 838 np = TAILQ_NEXT(p, listq); 839 if (p->valid == 0) 840 continue; 841 if (vm_page_sleep_if_busy(p, "vpcwai")) { 842 if (object->generation != curgeneration) { 843 if ((flags & OBJPC_SYNC) != 0) 844 goto rescan; 845 else 846 clearobjflags = FALSE; 847 } 848 np = vm_page_find_least(object, pi); 849 continue; 850 } 851 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 852 continue; 853 854 n = vm_object_page_collect_flush(object, p, pagerflags, 855 flags, &clearobjflags, &eio); 856 if (eio) { 857 res = FALSE; 858 clearobjflags = FALSE; 859 } 860 if (object->generation != curgeneration) { 861 if ((flags & OBJPC_SYNC) != 0) 862 goto rescan; 863 else 864 clearobjflags = FALSE; 865 } 866 867 /* 868 * If the VOP_PUTPAGES() did a truncated write, so 869 * that even the first page of the run is not fully 870 * written, vm_pageout_flush() returns 0 as the run 871 * length. Since the condition that caused truncated 872 * write may be permanent, e.g. exhausted free space, 873 * accepting n == 0 would cause an infinite loop. 874 * 875 * Forwarding the iterator leaves the unwritten page 876 * behind, but there is not much we can do there if 877 * filesystem refuses to write it. 878 */ 879 if (n == 0) { 880 n = 1; 881 clearobjflags = FALSE; 882 } 883 np = vm_page_find_least(object, pi + n); 884 } 885 #if 0 886 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 887 #endif 888 889 if (clearobjflags) 890 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 891 return (res); 892 } 893 894 static int 895 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 896 int flags, boolean_t *clearobjflags, boolean_t *eio) 897 { 898 vm_page_t ma[vm_pageout_page_count], p_first, tp; 899 int count, i, mreq, runlen; 900 901 vm_page_lock_assert(p, MA_NOTOWNED); 902 VM_OBJECT_ASSERT_WLOCKED(object); 903 904 count = 1; 905 mreq = 0; 906 907 for (tp = p; count < vm_pageout_page_count; count++) { 908 tp = vm_page_next(tp); 909 if (tp == NULL || vm_page_busied(tp)) 910 break; 911 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 912 break; 913 } 914 915 for (p_first = p; count < vm_pageout_page_count; count++) { 916 tp = vm_page_prev(p_first); 917 if (tp == NULL || vm_page_busied(tp)) 918 break; 919 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 920 break; 921 p_first = tp; 922 mreq++; 923 } 924 925 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 926 ma[i] = tp; 927 928 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 929 return (runlen); 930 } 931 932 /* 933 * Note that there is absolutely no sense in writing out 934 * anonymous objects, so we track down the vnode object 935 * to write out. 936 * We invalidate (remove) all pages from the address space 937 * for semantic correctness. 938 * 939 * If the backing object is a device object with unmanaged pages, then any 940 * mappings to the specified range of pages must be removed before this 941 * function is called. 942 * 943 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 944 * may start out with a NULL object. 945 */ 946 boolean_t 947 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 948 boolean_t syncio, boolean_t invalidate) 949 { 950 vm_object_t backing_object; 951 struct vnode *vp; 952 struct mount *mp; 953 int error, flags, fsync_after; 954 boolean_t res; 955 956 if (object == NULL) 957 return (TRUE); 958 res = TRUE; 959 error = 0; 960 VM_OBJECT_WLOCK(object); 961 while ((backing_object = object->backing_object) != NULL) { 962 VM_OBJECT_WLOCK(backing_object); 963 offset += object->backing_object_offset; 964 VM_OBJECT_WUNLOCK(object); 965 object = backing_object; 966 if (object->size < OFF_TO_IDX(offset + size)) 967 size = IDX_TO_OFF(object->size) - offset; 968 } 969 /* 970 * Flush pages if writing is allowed, invalidate them 971 * if invalidation requested. Pages undergoing I/O 972 * will be ignored by vm_object_page_remove(). 973 * 974 * We cannot lock the vnode and then wait for paging 975 * to complete without deadlocking against vm_fault. 976 * Instead we simply call vm_object_page_remove() and 977 * allow it to block internally on a page-by-page 978 * basis when it encounters pages undergoing async 979 * I/O. 980 */ 981 if (object->type == OBJT_VNODE && 982 (object->flags & OBJ_MIGHTBEDIRTY) != 0 && 983 ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) { 984 VM_OBJECT_WUNLOCK(object); 985 (void) vn_start_write(vp, &mp, V_WAIT); 986 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 987 if (syncio && !invalidate && offset == 0 && 988 atop(size) == object->size) { 989 /* 990 * If syncing the whole mapping of the file, 991 * it is faster to schedule all the writes in 992 * async mode, also allowing the clustering, 993 * and then wait for i/o to complete. 994 */ 995 flags = 0; 996 fsync_after = TRUE; 997 } else { 998 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 999 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1000 fsync_after = FALSE; 1001 } 1002 VM_OBJECT_WLOCK(object); 1003 res = vm_object_page_clean(object, offset, offset + size, 1004 flags); 1005 VM_OBJECT_WUNLOCK(object); 1006 if (fsync_after) 1007 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1008 VOP_UNLOCK(vp, 0); 1009 vn_finished_write(mp); 1010 if (error != 0) 1011 res = FALSE; 1012 VM_OBJECT_WLOCK(object); 1013 } 1014 if ((object->type == OBJT_VNODE || 1015 object->type == OBJT_DEVICE) && invalidate) { 1016 if (object->type == OBJT_DEVICE) 1017 /* 1018 * The option OBJPR_NOTMAPPED must be passed here 1019 * because vm_object_page_remove() cannot remove 1020 * unmanaged mappings. 1021 */ 1022 flags = OBJPR_NOTMAPPED; 1023 else if (old_msync) 1024 flags = 0; 1025 else 1026 flags = OBJPR_CLEANONLY; 1027 vm_object_page_remove(object, OFF_TO_IDX(offset), 1028 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1029 } 1030 VM_OBJECT_WUNLOCK(object); 1031 return (res); 1032 } 1033 1034 /* 1035 * Determine whether the given advice can be applied to the object. Advice is 1036 * not applied to unmanaged pages since they never belong to page queues, and 1037 * since MADV_FREE is destructive, it can apply only to anonymous pages that 1038 * have been mapped at most once. 1039 */ 1040 static bool 1041 vm_object_advice_applies(vm_object_t object, int advice) 1042 { 1043 1044 if ((object->flags & OBJ_UNMANAGED) != 0) 1045 return (false); 1046 if (advice != MADV_FREE) 1047 return (true); 1048 return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) && 1049 (object->flags & OBJ_ONEMAPPING) != 0); 1050 } 1051 1052 static void 1053 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex, 1054 vm_size_t size) 1055 { 1056 1057 if (advice == MADV_FREE && object->type == OBJT_SWAP) 1058 swap_pager_freespace(object, pindex, size); 1059 } 1060 1061 /* 1062 * vm_object_madvise: 1063 * 1064 * Implements the madvise function at the object/page level. 1065 * 1066 * MADV_WILLNEED (any object) 1067 * 1068 * Activate the specified pages if they are resident. 1069 * 1070 * MADV_DONTNEED (any object) 1071 * 1072 * Deactivate the specified pages if they are resident. 1073 * 1074 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1075 * OBJ_ONEMAPPING only) 1076 * 1077 * Deactivate and clean the specified pages if they are 1078 * resident. This permits the process to reuse the pages 1079 * without faulting or the kernel to reclaim the pages 1080 * without I/O. 1081 */ 1082 void 1083 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1084 int advice) 1085 { 1086 vm_pindex_t tpindex; 1087 vm_object_t backing_object, tobject; 1088 vm_page_t m, tm; 1089 1090 if (object == NULL) 1091 return; 1092 1093 relookup: 1094 VM_OBJECT_WLOCK(object); 1095 if (!vm_object_advice_applies(object, advice)) { 1096 VM_OBJECT_WUNLOCK(object); 1097 return; 1098 } 1099 for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) { 1100 tobject = object; 1101 1102 /* 1103 * If the next page isn't resident in the top-level object, we 1104 * need to search the shadow chain. When applying MADV_FREE, we 1105 * take care to release any swap space used to store 1106 * non-resident pages. 1107 */ 1108 if (m == NULL || pindex < m->pindex) { 1109 /* 1110 * Optimize a common case: if the top-level object has 1111 * no backing object, we can skip over the non-resident 1112 * range in constant time. 1113 */ 1114 if (object->backing_object == NULL) { 1115 tpindex = (m != NULL && m->pindex < end) ? 1116 m->pindex : end; 1117 vm_object_madvise_freespace(object, advice, 1118 pindex, tpindex - pindex); 1119 if ((pindex = tpindex) == end) 1120 break; 1121 goto next_page; 1122 } 1123 1124 tpindex = pindex; 1125 do { 1126 vm_object_madvise_freespace(tobject, advice, 1127 tpindex, 1); 1128 /* 1129 * Prepare to search the next object in the 1130 * chain. 1131 */ 1132 backing_object = tobject->backing_object; 1133 if (backing_object == NULL) 1134 goto next_pindex; 1135 VM_OBJECT_WLOCK(backing_object); 1136 tpindex += 1137 OFF_TO_IDX(tobject->backing_object_offset); 1138 if (tobject != object) 1139 VM_OBJECT_WUNLOCK(tobject); 1140 tobject = backing_object; 1141 if (!vm_object_advice_applies(tobject, advice)) 1142 goto next_pindex; 1143 } while ((tm = vm_page_lookup(tobject, tpindex)) == 1144 NULL); 1145 } else { 1146 next_page: 1147 tm = m; 1148 m = TAILQ_NEXT(m, listq); 1149 } 1150 1151 /* 1152 * If the page is not in a normal state, skip it. 1153 */ 1154 if (tm->valid != VM_PAGE_BITS_ALL || 1155 vm_page_wired(tm)) 1156 goto next_pindex; 1157 KASSERT((tm->flags & PG_FICTITIOUS) == 0, 1158 ("vm_object_madvise: page %p is fictitious", tm)); 1159 KASSERT((tm->oflags & VPO_UNMANAGED) == 0, 1160 ("vm_object_madvise: page %p is not managed", tm)); 1161 if (vm_page_busied(tm)) { 1162 if (object != tobject) 1163 VM_OBJECT_WUNLOCK(object); 1164 if (advice == MADV_WILLNEED) { 1165 /* 1166 * Reference the page before unlocking and 1167 * sleeping so that the page daemon is less 1168 * likely to reclaim it. 1169 */ 1170 vm_page_aflag_set(tm, PGA_REFERENCED); 1171 } 1172 vm_page_busy_sleep(tm, "madvpo", false); 1173 goto relookup; 1174 } 1175 vm_page_lock(tm); 1176 vm_page_advise(tm, advice); 1177 vm_page_unlock(tm); 1178 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1); 1179 next_pindex: 1180 if (tobject != object) 1181 VM_OBJECT_WUNLOCK(tobject); 1182 } 1183 VM_OBJECT_WUNLOCK(object); 1184 } 1185 1186 /* 1187 * vm_object_shadow: 1188 * 1189 * Create a new object which is backed by the 1190 * specified existing object range. The source 1191 * object reference is deallocated. 1192 * 1193 * The new object and offset into that object 1194 * are returned in the source parameters. 1195 */ 1196 void 1197 vm_object_shadow( 1198 vm_object_t *object, /* IN/OUT */ 1199 vm_ooffset_t *offset, /* IN/OUT */ 1200 vm_size_t length) 1201 { 1202 vm_object_t source; 1203 vm_object_t result; 1204 1205 source = *object; 1206 1207 /* 1208 * Don't create the new object if the old object isn't shared. 1209 */ 1210 if (source != NULL) { 1211 VM_OBJECT_WLOCK(source); 1212 if (source->ref_count == 1 && 1213 source->handle == NULL && 1214 (source->type == OBJT_DEFAULT || 1215 source->type == OBJT_SWAP)) { 1216 VM_OBJECT_WUNLOCK(source); 1217 return; 1218 } 1219 VM_OBJECT_WUNLOCK(source); 1220 } 1221 1222 /* 1223 * Allocate a new object with the given length. 1224 */ 1225 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1226 1227 /* 1228 * The new object shadows the source object, adding a reference to it. 1229 * Our caller changes his reference to point to the new object, 1230 * removing a reference to the source object. Net result: no change 1231 * of reference count. 1232 * 1233 * Try to optimize the result object's page color when shadowing 1234 * in order to maintain page coloring consistency in the combined 1235 * shadowed object. 1236 */ 1237 result->backing_object = source; 1238 /* 1239 * Store the offset into the source object, and fix up the offset into 1240 * the new object. 1241 */ 1242 result->backing_object_offset = *offset; 1243 if (source != NULL) { 1244 VM_OBJECT_WLOCK(source); 1245 result->domain = source->domain; 1246 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1247 source->shadow_count++; 1248 #if VM_NRESERVLEVEL > 0 1249 result->flags |= source->flags & OBJ_COLORED; 1250 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1251 ((1 << (VM_NFREEORDER - 1)) - 1); 1252 #endif 1253 VM_OBJECT_WUNLOCK(source); 1254 } 1255 1256 1257 /* 1258 * Return the new things 1259 */ 1260 *offset = 0; 1261 *object = result; 1262 } 1263 1264 /* 1265 * vm_object_split: 1266 * 1267 * Split the pages in a map entry into a new object. This affords 1268 * easier removal of unused pages, and keeps object inheritance from 1269 * being a negative impact on memory usage. 1270 */ 1271 void 1272 vm_object_split(vm_map_entry_t entry) 1273 { 1274 vm_page_t m, m_next; 1275 vm_object_t orig_object, new_object, source; 1276 vm_pindex_t idx, offidxstart; 1277 vm_size_t size; 1278 1279 orig_object = entry->object.vm_object; 1280 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1281 return; 1282 if (orig_object->ref_count <= 1) 1283 return; 1284 VM_OBJECT_WUNLOCK(orig_object); 1285 1286 offidxstart = OFF_TO_IDX(entry->offset); 1287 size = atop(entry->end - entry->start); 1288 1289 /* 1290 * If swap_pager_copy() is later called, it will convert new_object 1291 * into a swap object. 1292 */ 1293 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1294 1295 /* 1296 * At this point, the new object is still private, so the order in 1297 * which the original and new objects are locked does not matter. 1298 */ 1299 VM_OBJECT_WLOCK(new_object); 1300 VM_OBJECT_WLOCK(orig_object); 1301 new_object->domain = orig_object->domain; 1302 source = orig_object->backing_object; 1303 if (source != NULL) { 1304 VM_OBJECT_WLOCK(source); 1305 if ((source->flags & OBJ_DEAD) != 0) { 1306 VM_OBJECT_WUNLOCK(source); 1307 VM_OBJECT_WUNLOCK(orig_object); 1308 VM_OBJECT_WUNLOCK(new_object); 1309 vm_object_deallocate(new_object); 1310 VM_OBJECT_WLOCK(orig_object); 1311 return; 1312 } 1313 LIST_INSERT_HEAD(&source->shadow_head, 1314 new_object, shadow_list); 1315 source->shadow_count++; 1316 vm_object_reference_locked(source); /* for new_object */ 1317 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1318 VM_OBJECT_WUNLOCK(source); 1319 new_object->backing_object_offset = 1320 orig_object->backing_object_offset + entry->offset; 1321 new_object->backing_object = source; 1322 } 1323 if (orig_object->cred != NULL) { 1324 new_object->cred = orig_object->cred; 1325 crhold(orig_object->cred); 1326 new_object->charge = ptoa(size); 1327 KASSERT(orig_object->charge >= ptoa(size), 1328 ("orig_object->charge < 0")); 1329 orig_object->charge -= ptoa(size); 1330 } 1331 retry: 1332 m = vm_page_find_least(orig_object, offidxstart); 1333 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1334 m = m_next) { 1335 m_next = TAILQ_NEXT(m, listq); 1336 1337 /* 1338 * We must wait for pending I/O to complete before we can 1339 * rename the page. 1340 * 1341 * We do not have to VM_PROT_NONE the page as mappings should 1342 * not be changed by this operation. 1343 */ 1344 if (vm_page_busied(m)) { 1345 VM_OBJECT_WUNLOCK(new_object); 1346 vm_page_sleep_if_busy(m, "spltwt"); 1347 VM_OBJECT_WLOCK(new_object); 1348 goto retry; 1349 } 1350 1351 /* vm_page_rename() will dirty the page. */ 1352 if (vm_page_rename(m, new_object, idx)) { 1353 VM_OBJECT_WUNLOCK(new_object); 1354 VM_OBJECT_WUNLOCK(orig_object); 1355 vm_radix_wait(); 1356 VM_OBJECT_WLOCK(orig_object); 1357 VM_OBJECT_WLOCK(new_object); 1358 goto retry; 1359 } 1360 #if VM_NRESERVLEVEL > 0 1361 /* 1362 * If some of the reservation's allocated pages remain with 1363 * the original object, then transferring the reservation to 1364 * the new object is neither particularly beneficial nor 1365 * particularly harmful as compared to leaving the reservation 1366 * with the original object. If, however, all of the 1367 * reservation's allocated pages are transferred to the new 1368 * object, then transferring the reservation is typically 1369 * beneficial. Determining which of these two cases applies 1370 * would be more costly than unconditionally renaming the 1371 * reservation. 1372 */ 1373 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1374 #endif 1375 if (orig_object->type == OBJT_SWAP) 1376 vm_page_xbusy(m); 1377 } 1378 if (orig_object->type == OBJT_SWAP) { 1379 /* 1380 * swap_pager_copy() can sleep, in which case the orig_object's 1381 * and new_object's locks are released and reacquired. 1382 */ 1383 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1384 TAILQ_FOREACH(m, &new_object->memq, listq) 1385 vm_page_xunbusy(m); 1386 } 1387 VM_OBJECT_WUNLOCK(orig_object); 1388 VM_OBJECT_WUNLOCK(new_object); 1389 entry->object.vm_object = new_object; 1390 entry->offset = 0LL; 1391 vm_object_deallocate(orig_object); 1392 VM_OBJECT_WLOCK(new_object); 1393 } 1394 1395 #define OBSC_COLLAPSE_NOWAIT 0x0002 1396 #define OBSC_COLLAPSE_WAIT 0x0004 1397 1398 static vm_page_t 1399 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next, 1400 int op) 1401 { 1402 vm_object_t backing_object; 1403 1404 VM_OBJECT_ASSERT_WLOCKED(object); 1405 backing_object = object->backing_object; 1406 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1407 1408 KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p)); 1409 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1410 ("invalid ownership %p %p %p", p, object, backing_object)); 1411 if ((op & OBSC_COLLAPSE_NOWAIT) != 0) 1412 return (next); 1413 /* The page is only NULL when rename fails. */ 1414 if (p == NULL) { 1415 vm_radix_wait(); 1416 } else { 1417 if (p->object == object) 1418 VM_OBJECT_WUNLOCK(backing_object); 1419 else 1420 VM_OBJECT_WUNLOCK(object); 1421 vm_page_busy_sleep(p, "vmocol", false); 1422 } 1423 VM_OBJECT_WLOCK(object); 1424 VM_OBJECT_WLOCK(backing_object); 1425 return (TAILQ_FIRST(&backing_object->memq)); 1426 } 1427 1428 static bool 1429 vm_object_scan_all_shadowed(vm_object_t object) 1430 { 1431 vm_object_t backing_object; 1432 vm_page_t p, pp; 1433 vm_pindex_t backing_offset_index, new_pindex, pi, ps; 1434 1435 VM_OBJECT_ASSERT_WLOCKED(object); 1436 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1437 1438 backing_object = object->backing_object; 1439 1440 if (backing_object->type != OBJT_DEFAULT && 1441 backing_object->type != OBJT_SWAP) 1442 return (false); 1443 1444 pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1445 p = vm_page_find_least(backing_object, pi); 1446 ps = swap_pager_find_least(backing_object, pi); 1447 1448 /* 1449 * Only check pages inside the parent object's range and 1450 * inside the parent object's mapping of the backing object. 1451 */ 1452 for (;; pi++) { 1453 if (p != NULL && p->pindex < pi) 1454 p = TAILQ_NEXT(p, listq); 1455 if (ps < pi) 1456 ps = swap_pager_find_least(backing_object, pi); 1457 if (p == NULL && ps >= backing_object->size) 1458 break; 1459 else if (p == NULL) 1460 pi = ps; 1461 else 1462 pi = MIN(p->pindex, ps); 1463 1464 new_pindex = pi - backing_offset_index; 1465 if (new_pindex >= object->size) 1466 break; 1467 1468 /* 1469 * See if the parent has the page or if the parent's object 1470 * pager has the page. If the parent has the page but the page 1471 * is not valid, the parent's object pager must have the page. 1472 * 1473 * If this fails, the parent does not completely shadow the 1474 * object and we might as well give up now. 1475 */ 1476 pp = vm_page_lookup(object, new_pindex); 1477 if ((pp == NULL || pp->valid == 0) && 1478 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1479 return (false); 1480 } 1481 return (true); 1482 } 1483 1484 static bool 1485 vm_object_collapse_scan(vm_object_t object, int op) 1486 { 1487 vm_object_t backing_object; 1488 vm_page_t next, p, pp; 1489 vm_pindex_t backing_offset_index, new_pindex; 1490 1491 VM_OBJECT_ASSERT_WLOCKED(object); 1492 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1493 1494 backing_object = object->backing_object; 1495 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1496 1497 /* 1498 * Initial conditions 1499 */ 1500 if ((op & OBSC_COLLAPSE_WAIT) != 0) 1501 vm_object_set_flag(backing_object, OBJ_DEAD); 1502 1503 /* 1504 * Our scan 1505 */ 1506 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1507 next = TAILQ_NEXT(p, listq); 1508 new_pindex = p->pindex - backing_offset_index; 1509 1510 /* 1511 * Check for busy page 1512 */ 1513 if (vm_page_busied(p)) { 1514 next = vm_object_collapse_scan_wait(object, p, next, op); 1515 continue; 1516 } 1517 1518 KASSERT(p->object == backing_object, 1519 ("vm_object_collapse_scan: object mismatch")); 1520 1521 if (p->pindex < backing_offset_index || 1522 new_pindex >= object->size) { 1523 if (backing_object->type == OBJT_SWAP) 1524 swap_pager_freespace(backing_object, p->pindex, 1525 1); 1526 1527 KASSERT(!pmap_page_is_mapped(p), 1528 ("freeing mapped page %p", p)); 1529 if (vm_page_remove(p)) 1530 vm_page_free(p); 1531 continue; 1532 } 1533 1534 pp = vm_page_lookup(object, new_pindex); 1535 if (pp != NULL && vm_page_busied(pp)) { 1536 /* 1537 * The page in the parent is busy and possibly not 1538 * (yet) valid. Until its state is finalized by the 1539 * busy bit owner, we can't tell whether it shadows the 1540 * original page. Therefore, we must either skip it 1541 * and the original (backing_object) page or wait for 1542 * its state to be finalized. 1543 * 1544 * This is due to a race with vm_fault() where we must 1545 * unbusy the original (backing_obj) page before we can 1546 * (re)lock the parent. Hence we can get here. 1547 */ 1548 next = vm_object_collapse_scan_wait(object, pp, next, 1549 op); 1550 continue; 1551 } 1552 1553 KASSERT(pp == NULL || pp->valid != 0, 1554 ("unbusy invalid page %p", pp)); 1555 1556 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1557 NULL)) { 1558 /* 1559 * The page already exists in the parent OR swap exists 1560 * for this location in the parent. Leave the parent's 1561 * page alone. Destroy the original page from the 1562 * backing object. 1563 */ 1564 if (backing_object->type == OBJT_SWAP) 1565 swap_pager_freespace(backing_object, p->pindex, 1566 1); 1567 KASSERT(!pmap_page_is_mapped(p), 1568 ("freeing mapped page %p", p)); 1569 if (vm_page_remove(p)) 1570 vm_page_free(p); 1571 continue; 1572 } 1573 1574 /* 1575 * Page does not exist in parent, rename the page from the 1576 * backing object to the main object. 1577 * 1578 * If the page was mapped to a process, it can remain mapped 1579 * through the rename. vm_page_rename() will dirty the page. 1580 */ 1581 if (vm_page_rename(p, object, new_pindex)) { 1582 next = vm_object_collapse_scan_wait(object, NULL, next, 1583 op); 1584 continue; 1585 } 1586 1587 /* Use the old pindex to free the right page. */ 1588 if (backing_object->type == OBJT_SWAP) 1589 swap_pager_freespace(backing_object, 1590 new_pindex + backing_offset_index, 1); 1591 1592 #if VM_NRESERVLEVEL > 0 1593 /* 1594 * Rename the reservation. 1595 */ 1596 vm_reserv_rename(p, object, backing_object, 1597 backing_offset_index); 1598 #endif 1599 } 1600 return (true); 1601 } 1602 1603 1604 /* 1605 * this version of collapse allows the operation to occur earlier and 1606 * when paging_in_progress is true for an object... This is not a complete 1607 * operation, but should plug 99.9% of the rest of the leaks. 1608 */ 1609 static void 1610 vm_object_qcollapse(vm_object_t object) 1611 { 1612 vm_object_t backing_object = object->backing_object; 1613 1614 VM_OBJECT_ASSERT_WLOCKED(object); 1615 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1616 1617 if (backing_object->ref_count != 1) 1618 return; 1619 1620 vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT); 1621 } 1622 1623 /* 1624 * vm_object_collapse: 1625 * 1626 * Collapse an object with the object backing it. 1627 * Pages in the backing object are moved into the 1628 * parent, and the backing object is deallocated. 1629 */ 1630 void 1631 vm_object_collapse(vm_object_t object) 1632 { 1633 vm_object_t backing_object, new_backing_object; 1634 1635 VM_OBJECT_ASSERT_WLOCKED(object); 1636 1637 while (TRUE) { 1638 /* 1639 * Verify that the conditions are right for collapse: 1640 * 1641 * The object exists and the backing object exists. 1642 */ 1643 if ((backing_object = object->backing_object) == NULL) 1644 break; 1645 1646 /* 1647 * we check the backing object first, because it is most likely 1648 * not collapsable. 1649 */ 1650 VM_OBJECT_WLOCK(backing_object); 1651 if (backing_object->handle != NULL || 1652 (backing_object->type != OBJT_DEFAULT && 1653 backing_object->type != OBJT_SWAP) || 1654 (backing_object->flags & (OBJ_DEAD | OBJ_NOSPLIT)) != 0 || 1655 object->handle != NULL || 1656 (object->type != OBJT_DEFAULT && 1657 object->type != OBJT_SWAP) || 1658 (object->flags & OBJ_DEAD)) { 1659 VM_OBJECT_WUNLOCK(backing_object); 1660 break; 1661 } 1662 1663 if (REFCOUNT_COUNT(object->paging_in_progress) > 0 || 1664 REFCOUNT_COUNT(backing_object->paging_in_progress) > 0) { 1665 vm_object_qcollapse(object); 1666 VM_OBJECT_WUNLOCK(backing_object); 1667 break; 1668 } 1669 1670 /* 1671 * We know that we can either collapse the backing object (if 1672 * the parent is the only reference to it) or (perhaps) have 1673 * the parent bypass the object if the parent happens to shadow 1674 * all the resident pages in the entire backing object. 1675 * 1676 * This is ignoring pager-backed pages such as swap pages. 1677 * vm_object_collapse_scan fails the shadowing test in this 1678 * case. 1679 */ 1680 if (backing_object->ref_count == 1) { 1681 vm_object_pip_add(object, 1); 1682 vm_object_pip_add(backing_object, 1); 1683 1684 /* 1685 * If there is exactly one reference to the backing 1686 * object, we can collapse it into the parent. 1687 */ 1688 vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT); 1689 1690 #if VM_NRESERVLEVEL > 0 1691 /* 1692 * Break any reservations from backing_object. 1693 */ 1694 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1695 vm_reserv_break_all(backing_object); 1696 #endif 1697 1698 /* 1699 * Move the pager from backing_object to object. 1700 */ 1701 if (backing_object->type == OBJT_SWAP) { 1702 /* 1703 * swap_pager_copy() can sleep, in which case 1704 * the backing_object's and object's locks are 1705 * released and reacquired. 1706 * Since swap_pager_copy() is being asked to 1707 * destroy the source, it will change the 1708 * backing_object's type to OBJT_DEFAULT. 1709 */ 1710 swap_pager_copy( 1711 backing_object, 1712 object, 1713 OFF_TO_IDX(object->backing_object_offset), TRUE); 1714 } 1715 /* 1716 * Object now shadows whatever backing_object did. 1717 * Note that the reference to 1718 * backing_object->backing_object moves from within 1719 * backing_object to within object. 1720 */ 1721 LIST_REMOVE(object, shadow_list); 1722 backing_object->shadow_count--; 1723 if (backing_object->backing_object) { 1724 VM_OBJECT_WLOCK(backing_object->backing_object); 1725 LIST_REMOVE(backing_object, shadow_list); 1726 LIST_INSERT_HEAD( 1727 &backing_object->backing_object->shadow_head, 1728 object, shadow_list); 1729 /* 1730 * The shadow_count has not changed. 1731 */ 1732 VM_OBJECT_WUNLOCK(backing_object->backing_object); 1733 } 1734 object->backing_object = backing_object->backing_object; 1735 object->backing_object_offset += 1736 backing_object->backing_object_offset; 1737 1738 /* 1739 * Discard backing_object. 1740 * 1741 * Since the backing object has no pages, no pager left, 1742 * and no object references within it, all that is 1743 * necessary is to dispose of it. 1744 */ 1745 KASSERT(backing_object->ref_count == 1, ( 1746 "backing_object %p was somehow re-referenced during collapse!", 1747 backing_object)); 1748 vm_object_pip_wakeup(backing_object); 1749 backing_object->type = OBJT_DEAD; 1750 backing_object->ref_count = 0; 1751 VM_OBJECT_WUNLOCK(backing_object); 1752 vm_object_destroy(backing_object); 1753 1754 vm_object_pip_wakeup(object); 1755 counter_u64_add(object_collapses, 1); 1756 } else { 1757 /* 1758 * If we do not entirely shadow the backing object, 1759 * there is nothing we can do so we give up. 1760 */ 1761 if (object->resident_page_count != object->size && 1762 !vm_object_scan_all_shadowed(object)) { 1763 VM_OBJECT_WUNLOCK(backing_object); 1764 break; 1765 } 1766 1767 /* 1768 * Make the parent shadow the next object in the 1769 * chain. Deallocating backing_object will not remove 1770 * it, since its reference count is at least 2. 1771 */ 1772 LIST_REMOVE(object, shadow_list); 1773 backing_object->shadow_count--; 1774 1775 new_backing_object = backing_object->backing_object; 1776 if ((object->backing_object = new_backing_object) != NULL) { 1777 VM_OBJECT_WLOCK(new_backing_object); 1778 LIST_INSERT_HEAD( 1779 &new_backing_object->shadow_head, 1780 object, 1781 shadow_list 1782 ); 1783 new_backing_object->shadow_count++; 1784 vm_object_reference_locked(new_backing_object); 1785 VM_OBJECT_WUNLOCK(new_backing_object); 1786 object->backing_object_offset += 1787 backing_object->backing_object_offset; 1788 } 1789 1790 /* 1791 * Drop the reference count on backing_object. Since 1792 * its ref_count was at least 2, it will not vanish. 1793 */ 1794 backing_object->ref_count--; 1795 VM_OBJECT_WUNLOCK(backing_object); 1796 counter_u64_add(object_bypasses, 1); 1797 } 1798 1799 /* 1800 * Try again with this object's new backing object. 1801 */ 1802 } 1803 } 1804 1805 /* 1806 * vm_object_page_remove: 1807 * 1808 * For the given object, either frees or invalidates each of the 1809 * specified pages. In general, a page is freed. However, if a page is 1810 * wired for any reason other than the existence of a managed, wired 1811 * mapping, then it may be invalidated but not removed from the object. 1812 * Pages are specified by the given range ["start", "end") and the option 1813 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1814 * extends from "start" to the end of the object. If the option 1815 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1816 * specified range are affected. If the option OBJPR_NOTMAPPED is 1817 * specified, then the pages within the specified range must have no 1818 * mappings. Otherwise, if this option is not specified, any mappings to 1819 * the specified pages are removed before the pages are freed or 1820 * invalidated. 1821 * 1822 * In general, this operation should only be performed on objects that 1823 * contain managed pages. There are, however, two exceptions. First, it 1824 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1825 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1826 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1827 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1828 * 1829 * The object must be locked. 1830 */ 1831 void 1832 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1833 int options) 1834 { 1835 vm_page_t p, next; 1836 1837 VM_OBJECT_ASSERT_WLOCKED(object); 1838 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1839 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1840 ("vm_object_page_remove: illegal options for object %p", object)); 1841 if (object->resident_page_count == 0) 1842 return; 1843 vm_object_pip_add(object, 1); 1844 again: 1845 p = vm_page_find_least(object, start); 1846 1847 /* 1848 * Here, the variable "p" is either (1) the page with the least pindex 1849 * greater than or equal to the parameter "start" or (2) NULL. 1850 */ 1851 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1852 next = TAILQ_NEXT(p, listq); 1853 1854 /* 1855 * If the page is wired for any reason besides the existence 1856 * of managed, wired mappings, then it cannot be freed. For 1857 * example, fictitious pages, which represent device memory, 1858 * are inherently wired and cannot be freed. They can, 1859 * however, be invalidated if the option OBJPR_CLEANONLY is 1860 * not specified. 1861 */ 1862 if (vm_page_busied(p)) { 1863 vm_page_sleep_if_busy(p, "vmopar"); 1864 goto again; 1865 } 1866 if (vm_page_wired(p)) { 1867 wired: 1868 if ((options & OBJPR_NOTMAPPED) == 0 && 1869 object->ref_count != 0) 1870 pmap_remove_all(p); 1871 if ((options & OBJPR_CLEANONLY) == 0) { 1872 p->valid = 0; 1873 vm_page_undirty(p); 1874 } 1875 continue; 1876 } 1877 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1878 ("vm_object_page_remove: page %p is fictitious", p)); 1879 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1880 if ((options & OBJPR_NOTMAPPED) == 0 && 1881 object->ref_count != 0 && 1882 !vm_page_try_remove_write(p)) 1883 goto wired; 1884 if (p->dirty != 0) 1885 continue; 1886 } 1887 if ((options & OBJPR_NOTMAPPED) == 0 && 1888 object->ref_count != 0 && !vm_page_try_remove_all(p)) 1889 goto wired; 1890 vm_page_free(p); 1891 } 1892 vm_object_pip_wakeup(object); 1893 } 1894 1895 /* 1896 * vm_object_page_noreuse: 1897 * 1898 * For the given object, attempt to move the specified pages to 1899 * the head of the inactive queue. This bypasses regular LRU 1900 * operation and allows the pages to be reused quickly under memory 1901 * pressure. If a page is wired for any reason, then it will not 1902 * be queued. Pages are specified by the range ["start", "end"). 1903 * As a special case, if "end" is zero, then the range extends from 1904 * "start" to the end of the object. 1905 * 1906 * This operation should only be performed on objects that 1907 * contain non-fictitious, managed pages. 1908 * 1909 * The object must be locked. 1910 */ 1911 void 1912 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1913 { 1914 struct mtx *mtx; 1915 vm_page_t p, next; 1916 1917 VM_OBJECT_ASSERT_LOCKED(object); 1918 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 1919 ("vm_object_page_noreuse: illegal object %p", object)); 1920 if (object->resident_page_count == 0) 1921 return; 1922 p = vm_page_find_least(object, start); 1923 1924 /* 1925 * Here, the variable "p" is either (1) the page with the least pindex 1926 * greater than or equal to the parameter "start" or (2) NULL. 1927 */ 1928 mtx = NULL; 1929 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1930 next = TAILQ_NEXT(p, listq); 1931 vm_page_change_lock(p, &mtx); 1932 vm_page_deactivate_noreuse(p); 1933 } 1934 if (mtx != NULL) 1935 mtx_unlock(mtx); 1936 } 1937 1938 /* 1939 * Populate the specified range of the object with valid pages. Returns 1940 * TRUE if the range is successfully populated and FALSE otherwise. 1941 * 1942 * Note: This function should be optimized to pass a larger array of 1943 * pages to vm_pager_get_pages() before it is applied to a non- 1944 * OBJT_DEVICE object. 1945 * 1946 * The object must be locked. 1947 */ 1948 boolean_t 1949 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1950 { 1951 vm_page_t m; 1952 vm_pindex_t pindex; 1953 int rv; 1954 1955 VM_OBJECT_ASSERT_WLOCKED(object); 1956 for (pindex = start; pindex < end; pindex++) { 1957 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL); 1958 if (rv != VM_PAGER_OK) 1959 break; 1960 1961 /* 1962 * Keep "m" busy because a subsequent iteration may unlock 1963 * the object. 1964 */ 1965 } 1966 if (pindex > start) { 1967 m = vm_page_lookup(object, start); 1968 while (m != NULL && m->pindex < pindex) { 1969 vm_page_xunbusy(m); 1970 m = TAILQ_NEXT(m, listq); 1971 } 1972 } 1973 return (pindex == end); 1974 } 1975 1976 /* 1977 * Routine: vm_object_coalesce 1978 * Function: Coalesces two objects backing up adjoining 1979 * regions of memory into a single object. 1980 * 1981 * returns TRUE if objects were combined. 1982 * 1983 * NOTE: Only works at the moment if the second object is NULL - 1984 * if it's not, which object do we lock first? 1985 * 1986 * Parameters: 1987 * prev_object First object to coalesce 1988 * prev_offset Offset into prev_object 1989 * prev_size Size of reference to prev_object 1990 * next_size Size of reference to the second object 1991 * reserved Indicator that extension region has 1992 * swap accounted for 1993 * 1994 * Conditions: 1995 * The object must *not* be locked. 1996 */ 1997 boolean_t 1998 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 1999 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2000 { 2001 vm_pindex_t next_pindex; 2002 2003 if (prev_object == NULL) 2004 return (TRUE); 2005 VM_OBJECT_WLOCK(prev_object); 2006 if ((prev_object->type != OBJT_DEFAULT && 2007 prev_object->type != OBJT_SWAP) || 2008 (prev_object->flags & OBJ_NOSPLIT) != 0) { 2009 VM_OBJECT_WUNLOCK(prev_object); 2010 return (FALSE); 2011 } 2012 2013 /* 2014 * Try to collapse the object first 2015 */ 2016 vm_object_collapse(prev_object); 2017 2018 /* 2019 * Can't coalesce if: . more than one reference . paged out . shadows 2020 * another object . has a copy elsewhere (any of which mean that the 2021 * pages not mapped to prev_entry may be in use anyway) 2022 */ 2023 if (prev_object->backing_object != NULL) { 2024 VM_OBJECT_WUNLOCK(prev_object); 2025 return (FALSE); 2026 } 2027 2028 prev_size >>= PAGE_SHIFT; 2029 next_size >>= PAGE_SHIFT; 2030 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2031 2032 if (prev_object->ref_count > 1 && 2033 prev_object->size != next_pindex && 2034 (prev_object->flags & OBJ_ONEMAPPING) == 0) { 2035 VM_OBJECT_WUNLOCK(prev_object); 2036 return (FALSE); 2037 } 2038 2039 /* 2040 * Account for the charge. 2041 */ 2042 if (prev_object->cred != NULL) { 2043 2044 /* 2045 * If prev_object was charged, then this mapping, 2046 * although not charged now, may become writable 2047 * later. Non-NULL cred in the object would prevent 2048 * swap reservation during enabling of the write 2049 * access, so reserve swap now. Failed reservation 2050 * cause allocation of the separate object for the map 2051 * entry, and swap reservation for this entry is 2052 * managed in appropriate time. 2053 */ 2054 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2055 prev_object->cred)) { 2056 VM_OBJECT_WUNLOCK(prev_object); 2057 return (FALSE); 2058 } 2059 prev_object->charge += ptoa(next_size); 2060 } 2061 2062 /* 2063 * Remove any pages that may still be in the object from a previous 2064 * deallocation. 2065 */ 2066 if (next_pindex < prev_object->size) { 2067 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2068 next_size, 0); 2069 if (prev_object->type == OBJT_SWAP) 2070 swap_pager_freespace(prev_object, 2071 next_pindex, next_size); 2072 #if 0 2073 if (prev_object->cred != NULL) { 2074 KASSERT(prev_object->charge >= 2075 ptoa(prev_object->size - next_pindex), 2076 ("object %p overcharged 1 %jx %jx", prev_object, 2077 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2078 prev_object->charge -= ptoa(prev_object->size - 2079 next_pindex); 2080 } 2081 #endif 2082 } 2083 2084 /* 2085 * Extend the object if necessary. 2086 */ 2087 if (next_pindex + next_size > prev_object->size) 2088 prev_object->size = next_pindex + next_size; 2089 2090 VM_OBJECT_WUNLOCK(prev_object); 2091 return (TRUE); 2092 } 2093 2094 void 2095 vm_object_set_writeable_dirty(vm_object_t object) 2096 { 2097 2098 VM_OBJECT_ASSERT_WLOCKED(object); 2099 if (object->type != OBJT_VNODE) { 2100 if ((object->flags & OBJ_TMPFS_NODE) != 0) { 2101 KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs")); 2102 vm_object_set_flag(object, OBJ_TMPFS_DIRTY); 2103 } 2104 return; 2105 } 2106 object->generation++; 2107 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2108 return; 2109 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2110 } 2111 2112 /* 2113 * vm_object_unwire: 2114 * 2115 * For each page offset within the specified range of the given object, 2116 * find the highest-level page in the shadow chain and unwire it. A page 2117 * must exist at every page offset, and the highest-level page must be 2118 * wired. 2119 */ 2120 void 2121 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2122 uint8_t queue) 2123 { 2124 vm_object_t tobject, t1object; 2125 vm_page_t m, tm; 2126 vm_pindex_t end_pindex, pindex, tpindex; 2127 int depth, locked_depth; 2128 2129 KASSERT((offset & PAGE_MASK) == 0, 2130 ("vm_object_unwire: offset is not page aligned")); 2131 KASSERT((length & PAGE_MASK) == 0, 2132 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2133 /* The wired count of a fictitious page never changes. */ 2134 if ((object->flags & OBJ_FICTITIOUS) != 0) 2135 return; 2136 pindex = OFF_TO_IDX(offset); 2137 end_pindex = pindex + atop(length); 2138 again: 2139 locked_depth = 1; 2140 VM_OBJECT_RLOCK(object); 2141 m = vm_page_find_least(object, pindex); 2142 while (pindex < end_pindex) { 2143 if (m == NULL || pindex < m->pindex) { 2144 /* 2145 * The first object in the shadow chain doesn't 2146 * contain a page at the current index. Therefore, 2147 * the page must exist in a backing object. 2148 */ 2149 tobject = object; 2150 tpindex = pindex; 2151 depth = 0; 2152 do { 2153 tpindex += 2154 OFF_TO_IDX(tobject->backing_object_offset); 2155 tobject = tobject->backing_object; 2156 KASSERT(tobject != NULL, 2157 ("vm_object_unwire: missing page")); 2158 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2159 goto next_page; 2160 depth++; 2161 if (depth == locked_depth) { 2162 locked_depth++; 2163 VM_OBJECT_RLOCK(tobject); 2164 } 2165 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2166 NULL); 2167 } else { 2168 tm = m; 2169 m = TAILQ_NEXT(m, listq); 2170 } 2171 if (vm_page_xbusied(tm)) { 2172 for (tobject = object; locked_depth >= 1; 2173 locked_depth--) { 2174 t1object = tobject->backing_object; 2175 if (tm->object != tobject) 2176 VM_OBJECT_RUNLOCK(tobject); 2177 tobject = t1object; 2178 } 2179 vm_page_busy_sleep(tm, "unwbo", true); 2180 goto again; 2181 } 2182 vm_page_unwire(tm, queue); 2183 next_page: 2184 pindex++; 2185 } 2186 /* Release the accumulated object locks. */ 2187 for (tobject = object; locked_depth >= 1; locked_depth--) { 2188 t1object = tobject->backing_object; 2189 VM_OBJECT_RUNLOCK(tobject); 2190 tobject = t1object; 2191 } 2192 } 2193 2194 /* 2195 * Return the vnode for the given object, or NULL if none exists. 2196 * For tmpfs objects, the function may return NULL if there is 2197 * no vnode allocated at the time of the call. 2198 */ 2199 struct vnode * 2200 vm_object_vnode(vm_object_t object) 2201 { 2202 struct vnode *vp; 2203 2204 VM_OBJECT_ASSERT_LOCKED(object); 2205 if (object->type == OBJT_VNODE) { 2206 vp = object->handle; 2207 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__)); 2208 } else if (object->type == OBJT_SWAP && 2209 (object->flags & OBJ_TMPFS) != 0) { 2210 vp = object->un_pager.swp.swp_tmpfs; 2211 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__)); 2212 } else { 2213 vp = NULL; 2214 } 2215 return (vp); 2216 } 2217 2218 /* 2219 * Return the kvme type of the given object. 2220 * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL. 2221 */ 2222 int 2223 vm_object_kvme_type(vm_object_t object, struct vnode **vpp) 2224 { 2225 2226 VM_OBJECT_ASSERT_LOCKED(object); 2227 if (vpp != NULL) 2228 *vpp = vm_object_vnode(object); 2229 switch (object->type) { 2230 case OBJT_DEFAULT: 2231 return (KVME_TYPE_DEFAULT); 2232 case OBJT_VNODE: 2233 return (KVME_TYPE_VNODE); 2234 case OBJT_SWAP: 2235 if ((object->flags & OBJ_TMPFS_NODE) != 0) 2236 return (KVME_TYPE_VNODE); 2237 return (KVME_TYPE_SWAP); 2238 case OBJT_DEVICE: 2239 return (KVME_TYPE_DEVICE); 2240 case OBJT_PHYS: 2241 return (KVME_TYPE_PHYS); 2242 case OBJT_DEAD: 2243 return (KVME_TYPE_DEAD); 2244 case OBJT_SG: 2245 return (KVME_TYPE_SG); 2246 case OBJT_MGTDEVICE: 2247 return (KVME_TYPE_MGTDEVICE); 2248 default: 2249 return (KVME_TYPE_UNKNOWN); 2250 } 2251 } 2252 2253 static int 2254 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2255 { 2256 struct kinfo_vmobject *kvo; 2257 char *fullpath, *freepath; 2258 struct vnode *vp; 2259 struct vattr va; 2260 vm_object_t obj; 2261 vm_page_t m; 2262 int count, error; 2263 2264 if (req->oldptr == NULL) { 2265 /* 2266 * If an old buffer has not been provided, generate an 2267 * estimate of the space needed for a subsequent call. 2268 */ 2269 mtx_lock(&vm_object_list_mtx); 2270 count = 0; 2271 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2272 if (obj->type == OBJT_DEAD) 2273 continue; 2274 count++; 2275 } 2276 mtx_unlock(&vm_object_list_mtx); 2277 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2278 count * 11 / 10)); 2279 } 2280 2281 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK); 2282 error = 0; 2283 2284 /* 2285 * VM objects are type stable and are never removed from the 2286 * list once added. This allows us to safely read obj->object_list 2287 * after reacquiring the VM object lock. 2288 */ 2289 mtx_lock(&vm_object_list_mtx); 2290 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2291 if (obj->type == OBJT_DEAD) 2292 continue; 2293 VM_OBJECT_RLOCK(obj); 2294 if (obj->type == OBJT_DEAD) { 2295 VM_OBJECT_RUNLOCK(obj); 2296 continue; 2297 } 2298 mtx_unlock(&vm_object_list_mtx); 2299 kvo->kvo_size = ptoa(obj->size); 2300 kvo->kvo_resident = obj->resident_page_count; 2301 kvo->kvo_ref_count = obj->ref_count; 2302 kvo->kvo_shadow_count = obj->shadow_count; 2303 kvo->kvo_memattr = obj->memattr; 2304 kvo->kvo_active = 0; 2305 kvo->kvo_inactive = 0; 2306 TAILQ_FOREACH(m, &obj->memq, listq) { 2307 /* 2308 * A page may belong to the object but be 2309 * dequeued and set to PQ_NONE while the 2310 * object lock is not held. This makes the 2311 * reads of m->queue below racy, and we do not 2312 * count pages set to PQ_NONE. However, this 2313 * sysctl is only meant to give an 2314 * approximation of the system anyway. 2315 */ 2316 if (m->queue == PQ_ACTIVE) 2317 kvo->kvo_active++; 2318 else if (m->queue == PQ_INACTIVE) 2319 kvo->kvo_inactive++; 2320 } 2321 2322 kvo->kvo_vn_fileid = 0; 2323 kvo->kvo_vn_fsid = 0; 2324 kvo->kvo_vn_fsid_freebsd11 = 0; 2325 freepath = NULL; 2326 fullpath = ""; 2327 kvo->kvo_type = vm_object_kvme_type(obj, &vp); 2328 if (vp != NULL) 2329 vref(vp); 2330 VM_OBJECT_RUNLOCK(obj); 2331 if (vp != NULL) { 2332 vn_fullpath(curthread, vp, &fullpath, &freepath); 2333 vn_lock(vp, LK_SHARED | LK_RETRY); 2334 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2335 kvo->kvo_vn_fileid = va.va_fileid; 2336 kvo->kvo_vn_fsid = va.va_fsid; 2337 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid; 2338 /* truncate */ 2339 } 2340 vput(vp); 2341 } 2342 2343 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path)); 2344 if (freepath != NULL) 2345 free(freepath, M_TEMP); 2346 2347 /* Pack record size down */ 2348 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) 2349 + strlen(kvo->kvo_path) + 1; 2350 kvo->kvo_structsize = roundup(kvo->kvo_structsize, 2351 sizeof(uint64_t)); 2352 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize); 2353 mtx_lock(&vm_object_list_mtx); 2354 if (error) 2355 break; 2356 } 2357 mtx_unlock(&vm_object_list_mtx); 2358 free(kvo, M_TEMP); 2359 return (error); 2360 } 2361 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2362 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2363 "List of VM objects"); 2364 2365 #include "opt_ddb.h" 2366 #ifdef DDB 2367 #include <sys/kernel.h> 2368 2369 #include <sys/cons.h> 2370 2371 #include <ddb/ddb.h> 2372 2373 static int 2374 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2375 { 2376 vm_map_t tmpm; 2377 vm_map_entry_t tmpe; 2378 vm_object_t obj; 2379 int entcount; 2380 2381 if (map == 0) 2382 return 0; 2383 2384 if (entry == 0) { 2385 tmpe = map->header.next; 2386 entcount = map->nentries; 2387 while (entcount-- && (tmpe != &map->header)) { 2388 if (_vm_object_in_map(map, object, tmpe)) { 2389 return 1; 2390 } 2391 tmpe = tmpe->next; 2392 } 2393 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2394 tmpm = entry->object.sub_map; 2395 tmpe = tmpm->header.next; 2396 entcount = tmpm->nentries; 2397 while (entcount-- && tmpe != &tmpm->header) { 2398 if (_vm_object_in_map(tmpm, object, tmpe)) { 2399 return 1; 2400 } 2401 tmpe = tmpe->next; 2402 } 2403 } else if ((obj = entry->object.vm_object) != NULL) { 2404 for (; obj; obj = obj->backing_object) 2405 if (obj == object) { 2406 return 1; 2407 } 2408 } 2409 return 0; 2410 } 2411 2412 static int 2413 vm_object_in_map(vm_object_t object) 2414 { 2415 struct proc *p; 2416 2417 /* sx_slock(&allproc_lock); */ 2418 FOREACH_PROC_IN_SYSTEM(p) { 2419 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2420 continue; 2421 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2422 /* sx_sunlock(&allproc_lock); */ 2423 return 1; 2424 } 2425 } 2426 /* sx_sunlock(&allproc_lock); */ 2427 if (_vm_object_in_map(kernel_map, object, 0)) 2428 return 1; 2429 return 0; 2430 } 2431 2432 DB_SHOW_COMMAND(vmochk, vm_object_check) 2433 { 2434 vm_object_t object; 2435 2436 /* 2437 * make sure that internal objs are in a map somewhere 2438 * and none have zero ref counts. 2439 */ 2440 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2441 if (object->handle == NULL && 2442 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2443 if (object->ref_count == 0) { 2444 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2445 (long)object->size); 2446 } 2447 if (!vm_object_in_map(object)) { 2448 db_printf( 2449 "vmochk: internal obj is not in a map: " 2450 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2451 object->ref_count, (u_long)object->size, 2452 (u_long)object->size, 2453 (void *)object->backing_object); 2454 } 2455 } 2456 } 2457 } 2458 2459 /* 2460 * vm_object_print: [ debug ] 2461 */ 2462 DB_SHOW_COMMAND(object, vm_object_print_static) 2463 { 2464 /* XXX convert args. */ 2465 vm_object_t object = (vm_object_t)addr; 2466 boolean_t full = have_addr; 2467 2468 vm_page_t p; 2469 2470 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2471 #define count was_count 2472 2473 int count; 2474 2475 if (object == NULL) 2476 return; 2477 2478 db_iprintf( 2479 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2480 object, (int)object->type, (uintmax_t)object->size, 2481 object->resident_page_count, object->ref_count, object->flags, 2482 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2483 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2484 object->shadow_count, 2485 object->backing_object ? object->backing_object->ref_count : 0, 2486 object->backing_object, (uintmax_t)object->backing_object_offset); 2487 2488 if (!full) 2489 return; 2490 2491 db_indent += 2; 2492 count = 0; 2493 TAILQ_FOREACH(p, &object->memq, listq) { 2494 if (count == 0) 2495 db_iprintf("memory:="); 2496 else if (count == 6) { 2497 db_printf("\n"); 2498 db_iprintf(" ..."); 2499 count = 0; 2500 } else 2501 db_printf(","); 2502 count++; 2503 2504 db_printf("(off=0x%jx,page=0x%jx)", 2505 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2506 } 2507 if (count != 0) 2508 db_printf("\n"); 2509 db_indent -= 2; 2510 } 2511 2512 /* XXX. */ 2513 #undef count 2514 2515 /* XXX need this non-static entry for calling from vm_map_print. */ 2516 void 2517 vm_object_print( 2518 /* db_expr_t */ long addr, 2519 boolean_t have_addr, 2520 /* db_expr_t */ long count, 2521 char *modif) 2522 { 2523 vm_object_print_static(addr, have_addr, count, modif); 2524 } 2525 2526 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2527 { 2528 vm_object_t object; 2529 vm_pindex_t fidx; 2530 vm_paddr_t pa; 2531 vm_page_t m, prev_m; 2532 int rcount, nl, c; 2533 2534 nl = 0; 2535 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2536 db_printf("new object: %p\n", (void *)object); 2537 if (nl > 18) { 2538 c = cngetc(); 2539 if (c != ' ') 2540 return; 2541 nl = 0; 2542 } 2543 nl++; 2544 rcount = 0; 2545 fidx = 0; 2546 pa = -1; 2547 TAILQ_FOREACH(m, &object->memq, listq) { 2548 if (m->pindex > 128) 2549 break; 2550 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2551 prev_m->pindex + 1 != m->pindex) { 2552 if (rcount) { 2553 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2554 (long)fidx, rcount, (long)pa); 2555 if (nl > 18) { 2556 c = cngetc(); 2557 if (c != ' ') 2558 return; 2559 nl = 0; 2560 } 2561 nl++; 2562 rcount = 0; 2563 } 2564 } 2565 if (rcount && 2566 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2567 ++rcount; 2568 continue; 2569 } 2570 if (rcount) { 2571 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2572 (long)fidx, rcount, (long)pa); 2573 if (nl > 18) { 2574 c = cngetc(); 2575 if (c != ' ') 2576 return; 2577 nl = 0; 2578 } 2579 nl++; 2580 } 2581 fidx = m->pindex; 2582 pa = VM_PAGE_TO_PHYS(m); 2583 rcount = 1; 2584 } 2585 if (rcount) { 2586 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2587 (long)fidx, rcount, (long)pa); 2588 if (nl > 18) { 2589 c = cngetc(); 2590 if (c != ' ') 2591 return; 2592 nl = 0; 2593 } 2594 nl++; 2595 } 2596 } 2597 } 2598 #endif /* DDB */ 2599