1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988 University of Utah. 5 * Copyright (c) 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: Utah $Hdr: vm_mmap.c 1.6 91/10/21$ 37 * 38 * @(#)vm_mmap.c 8.4 (Berkeley) 1/12/94 39 */ 40 41 /* 42 * Mapped file (mmap) interface to VM 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include "opt_hwpmc_hooks.h" 49 #include "opt_vm.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/capsicum.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/mutex.h> 57 #include <sys/sysproto.h> 58 #include <sys/elf.h> 59 #include <sys/filedesc.h> 60 #include <sys/priv.h> 61 #include <sys/proc.h> 62 #include <sys/procctl.h> 63 #include <sys/racct.h> 64 #include <sys/resource.h> 65 #include <sys/resourcevar.h> 66 #include <sys/rwlock.h> 67 #include <sys/sysctl.h> 68 #include <sys/vnode.h> 69 #include <sys/fcntl.h> 70 #include <sys/file.h> 71 #include <sys/mman.h> 72 #include <sys/mount.h> 73 #include <sys/conf.h> 74 #include <sys/stat.h> 75 #include <sys/syscallsubr.h> 76 #include <sys/sysent.h> 77 #include <sys/vmmeter.h> 78 #if defined(__amd64__) || defined(__i386__) /* for i386_read_exec */ 79 #include <machine/md_var.h> 80 #endif 81 82 #include <security/audit/audit.h> 83 #include <security/mac/mac_framework.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_pageout.h> 93 #include <vm/vm_extern.h> 94 #include <vm/vm_page.h> 95 #include <vm/vnode_pager.h> 96 97 #ifdef HWPMC_HOOKS 98 #include <sys/pmckern.h> 99 #endif 100 101 int old_mlock = 0; 102 SYSCTL_INT(_vm, OID_AUTO, old_mlock, CTLFLAG_RWTUN, &old_mlock, 0, 103 "Do not apply RLIMIT_MEMLOCK on mlockall"); 104 static int mincore_mapped = 1; 105 SYSCTL_INT(_vm, OID_AUTO, mincore_mapped, CTLFLAG_RWTUN, &mincore_mapped, 0, 106 "mincore reports mappings, not residency"); 107 static int imply_prot_max = 0; 108 SYSCTL_INT(_vm, OID_AUTO, imply_prot_max, CTLFLAG_RWTUN, &imply_prot_max, 0, 109 "Imply maximum page protections in mmap() when none are specified"); 110 111 #ifdef MAP_32BIT 112 #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) 113 #endif 114 115 _Static_assert(MAXPAGESIZES <= 4, "MINCORE_SUPER too narrow"); 116 117 #ifndef _SYS_SYSPROTO_H_ 118 struct sbrk_args { 119 int incr; 120 }; 121 #endif 122 123 int 124 sys_sbrk(struct thread *td, struct sbrk_args *uap) 125 { 126 /* Not yet implemented */ 127 return (EOPNOTSUPP); 128 } 129 130 #ifndef _SYS_SYSPROTO_H_ 131 struct sstk_args { 132 int incr; 133 }; 134 #endif 135 136 int 137 sys_sstk(struct thread *td, struct sstk_args *uap) 138 { 139 /* Not yet implemented */ 140 return (EOPNOTSUPP); 141 } 142 143 #if defined(COMPAT_43) 144 int 145 ogetpagesize(struct thread *td, struct ogetpagesize_args *uap) 146 { 147 148 td->td_retval[0] = PAGE_SIZE; 149 return (0); 150 } 151 #endif /* COMPAT_43 */ 152 153 /* 154 * Memory Map (mmap) system call. Note that the file offset 155 * and address are allowed to be NOT page aligned, though if 156 * the MAP_FIXED flag it set, both must have the same remainder 157 * modulo the PAGE_SIZE (POSIX 1003.1b). If the address is not 158 * page-aligned, the actual mapping starts at trunc_page(addr) 159 * and the return value is adjusted up by the page offset. 160 * 161 * Generally speaking, only character devices which are themselves 162 * memory-based, such as a video framebuffer, can be mmap'd. Otherwise 163 * there would be no cache coherency between a descriptor and a VM mapping 164 * both to the same character device. 165 */ 166 #ifndef _SYS_SYSPROTO_H_ 167 struct mmap_args { 168 void *addr; 169 size_t len; 170 int prot; 171 int flags; 172 int fd; 173 long pad; 174 off_t pos; 175 }; 176 #endif 177 178 int 179 sys_mmap(struct thread *td, struct mmap_args *uap) 180 { 181 182 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, uap->prot, 183 uap->flags, uap->fd, uap->pos)); 184 } 185 186 int 187 kern_mmap_maxprot(struct proc *p, int prot) 188 { 189 190 if ((p->p_flag2 & P2_PROTMAX_DISABLE) != 0 || 191 (p->p_fctl0 & NT_FREEBSD_FCTL_PROTMAX_DISABLE) != 0) 192 return (_PROT_ALL); 193 if (((p->p_flag2 & P2_PROTMAX_ENABLE) != 0 || imply_prot_max) && 194 prot != PROT_NONE) 195 return (prot); 196 return (_PROT_ALL); 197 } 198 199 int 200 kern_mmap(struct thread *td, uintptr_t addr0, size_t len, int prot, int flags, 201 int fd, off_t pos) 202 { 203 struct mmap_req mr = { 204 .mr_hint = addr0, 205 .mr_len = len, 206 .mr_prot = prot, 207 .mr_flags = flags, 208 .mr_fd = fd, 209 .mr_pos = pos 210 }; 211 212 return (kern_mmap_req(td, &mr)); 213 } 214 215 int 216 kern_mmap_req(struct thread *td, const struct mmap_req *mrp) 217 { 218 struct vmspace *vms; 219 struct file *fp; 220 struct proc *p; 221 off_t pos; 222 vm_offset_t addr; 223 vm_size_t len, pageoff, size; 224 vm_prot_t cap_maxprot; 225 int align, error, fd, flags, max_prot, prot; 226 cap_rights_t rights; 227 mmap_check_fp_fn check_fp_fn; 228 229 addr = mrp->mr_hint; 230 len = mrp->mr_len; 231 prot = mrp->mr_prot; 232 flags = mrp->mr_flags; 233 fd = mrp->mr_fd; 234 pos = mrp->mr_pos; 235 check_fp_fn = mrp->mr_check_fp_fn; 236 237 if ((prot & ~(_PROT_ALL | PROT_MAX(_PROT_ALL))) != 0) 238 return (EINVAL); 239 max_prot = PROT_MAX_EXTRACT(prot); 240 prot = PROT_EXTRACT(prot); 241 if (max_prot != 0 && (max_prot & prot) != prot) 242 return (ENOTSUP); 243 244 p = td->td_proc; 245 246 /* 247 * Always honor PROT_MAX if set. If not, default to all 248 * permissions unless we're implying maximum permissions. 249 */ 250 if (max_prot == 0) 251 max_prot = kern_mmap_maxprot(p, prot); 252 253 vms = p->p_vmspace; 254 fp = NULL; 255 AUDIT_ARG_FD(fd); 256 257 /* 258 * Ignore old flags that used to be defined but did not do anything. 259 */ 260 flags &= ~(MAP_RESERVED0020 | MAP_RESERVED0040); 261 262 /* 263 * Enforce the constraints. 264 * Mapping of length 0 is only allowed for old binaries. 265 * Anonymous mapping shall specify -1 as filedescriptor and 266 * zero position for new code. Be nice to ancient a.out 267 * binaries and correct pos for anonymous mapping, since old 268 * ld.so sometimes issues anonymous map requests with non-zero 269 * pos. 270 */ 271 if (!SV_CURPROC_FLAG(SV_AOUT)) { 272 if ((len == 0 && p->p_osrel >= P_OSREL_MAP_ANON) || 273 ((flags & MAP_ANON) != 0 && (fd != -1 || pos != 0))) 274 return (EINVAL); 275 } else { 276 if ((flags & MAP_ANON) != 0) 277 pos = 0; 278 } 279 280 if (flags & MAP_STACK) { 281 if ((fd != -1) || 282 ((prot & (PROT_READ | PROT_WRITE)) != (PROT_READ | PROT_WRITE))) 283 return (EINVAL); 284 flags |= MAP_ANON; 285 pos = 0; 286 } 287 if ((flags & ~(MAP_SHARED | MAP_PRIVATE | MAP_FIXED | MAP_HASSEMAPHORE | 288 MAP_STACK | MAP_NOSYNC | MAP_ANON | MAP_EXCL | MAP_NOCORE | 289 MAP_PREFAULT_READ | MAP_GUARD | 290 #ifdef MAP_32BIT 291 MAP_32BIT | 292 #endif 293 MAP_ALIGNMENT_MASK)) != 0) 294 return (EINVAL); 295 if ((flags & (MAP_EXCL | MAP_FIXED)) == MAP_EXCL) 296 return (EINVAL); 297 if ((flags & (MAP_SHARED | MAP_PRIVATE)) == (MAP_SHARED | MAP_PRIVATE)) 298 return (EINVAL); 299 if (prot != PROT_NONE && 300 (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) != 0) 301 return (EINVAL); 302 if ((flags & MAP_GUARD) != 0 && (prot != PROT_NONE || fd != -1 || 303 pos != 0 || (flags & ~(MAP_FIXED | MAP_GUARD | MAP_EXCL | 304 #ifdef MAP_32BIT 305 MAP_32BIT | 306 #endif 307 MAP_ALIGNMENT_MASK)) != 0)) 308 return (EINVAL); 309 310 /* 311 * Align the file position to a page boundary, 312 * and save its page offset component. 313 */ 314 pageoff = (pos & PAGE_MASK); 315 pos -= pageoff; 316 317 /* Compute size from len by rounding (on both ends). */ 318 size = len + pageoff; /* low end... */ 319 size = round_page(size); /* hi end */ 320 /* Check for rounding up to zero. */ 321 if (len > size) 322 return (ENOMEM); 323 324 /* Ensure alignment is at least a page and fits in a pointer. */ 325 align = flags & MAP_ALIGNMENT_MASK; 326 if (align != 0 && align != MAP_ALIGNED_SUPER && 327 (align >> MAP_ALIGNMENT_SHIFT >= sizeof(void *) * NBBY || 328 align >> MAP_ALIGNMENT_SHIFT < PAGE_SHIFT)) 329 return (EINVAL); 330 331 /* 332 * Check for illegal addresses. Watch out for address wrap... Note 333 * that VM_*_ADDRESS are not constants due to casts (argh). 334 */ 335 if (flags & MAP_FIXED) { 336 /* 337 * The specified address must have the same remainder 338 * as the file offset taken modulo PAGE_SIZE, so it 339 * should be aligned after adjustment by pageoff. 340 */ 341 addr -= pageoff; 342 if (addr & PAGE_MASK) 343 return (EINVAL); 344 345 /* Address range must be all in user VM space. */ 346 if (!vm_map_range_valid(&vms->vm_map, addr, addr + size)) 347 return (EINVAL); 348 #ifdef MAP_32BIT 349 if (flags & MAP_32BIT && addr + size > MAP_32BIT_MAX_ADDR) 350 return (EINVAL); 351 } else if (flags & MAP_32BIT) { 352 /* 353 * For MAP_32BIT, override the hint if it is too high and 354 * do not bother moving the mapping past the heap (since 355 * the heap is usually above 2GB). 356 */ 357 if (addr + size > MAP_32BIT_MAX_ADDR) 358 addr = 0; 359 #endif 360 } else { 361 /* 362 * XXX for non-fixed mappings where no hint is provided or 363 * the hint would fall in the potential heap space, 364 * place it after the end of the largest possible heap. 365 * 366 * There should really be a pmap call to determine a reasonable 367 * location. 368 */ 369 if (addr == 0 || 370 (addr >= round_page((vm_offset_t)vms->vm_taddr) && 371 addr < round_page((vm_offset_t)vms->vm_daddr + 372 lim_max(td, RLIMIT_DATA)))) 373 addr = round_page((vm_offset_t)vms->vm_daddr + 374 lim_max(td, RLIMIT_DATA)); 375 } 376 if (len == 0) { 377 /* 378 * Return success without mapping anything for old 379 * binaries that request a page-aligned mapping of 380 * length 0. For modern binaries, this function 381 * returns an error earlier. 382 */ 383 error = 0; 384 } else if ((flags & MAP_GUARD) != 0) { 385 error = vm_mmap_object(&vms->vm_map, &addr, size, VM_PROT_NONE, 386 VM_PROT_NONE, flags, NULL, pos, FALSE, td); 387 } else if ((flags & MAP_ANON) != 0) { 388 /* 389 * Mapping blank space is trivial. 390 * 391 * This relies on VM_PROT_* matching PROT_*. 392 */ 393 error = vm_mmap_object(&vms->vm_map, &addr, size, prot, 394 max_prot, flags, NULL, pos, FALSE, td); 395 } else { 396 /* 397 * Mapping file, get fp for validation and don't let the 398 * descriptor disappear on us if we block. Check capability 399 * rights, but also return the maximum rights to be combined 400 * with maxprot later. 401 */ 402 cap_rights_init_one(&rights, CAP_MMAP); 403 if (prot & PROT_READ) 404 cap_rights_set_one(&rights, CAP_MMAP_R); 405 if ((flags & MAP_SHARED) != 0) { 406 if (prot & PROT_WRITE) 407 cap_rights_set_one(&rights, CAP_MMAP_W); 408 } 409 if (prot & PROT_EXEC) 410 cap_rights_set_one(&rights, CAP_MMAP_X); 411 error = fget_mmap(td, fd, &rights, &cap_maxprot, &fp); 412 if (error != 0) 413 goto done; 414 if ((flags & (MAP_SHARED | MAP_PRIVATE)) == 0 && 415 p->p_osrel >= P_OSREL_MAP_FSTRICT) { 416 error = EINVAL; 417 goto done; 418 } 419 if (check_fp_fn != NULL) { 420 error = check_fp_fn(fp, prot, max_prot & cap_maxprot, 421 flags); 422 if (error != 0) 423 goto done; 424 } 425 /* This relies on VM_PROT_* matching PROT_*. */ 426 error = fo_mmap(fp, &vms->vm_map, &addr, size, prot, 427 max_prot & cap_maxprot, flags, pos, td); 428 } 429 430 if (error == 0) 431 td->td_retval[0] = (register_t) (addr + pageoff); 432 done: 433 if (fp) 434 fdrop(fp, td); 435 436 return (error); 437 } 438 439 #if defined(COMPAT_FREEBSD6) 440 int 441 freebsd6_mmap(struct thread *td, struct freebsd6_mmap_args *uap) 442 { 443 444 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, uap->prot, 445 uap->flags, uap->fd, uap->pos)); 446 } 447 #endif 448 449 #ifdef COMPAT_43 450 #ifndef _SYS_SYSPROTO_H_ 451 struct ommap_args { 452 caddr_t addr; 453 int len; 454 int prot; 455 int flags; 456 int fd; 457 long pos; 458 }; 459 #endif 460 int 461 ommap(struct thread *td, struct ommap_args *uap) 462 { 463 static const char cvtbsdprot[8] = { 464 0, 465 PROT_EXEC, 466 PROT_WRITE, 467 PROT_EXEC | PROT_WRITE, 468 PROT_READ, 469 PROT_EXEC | PROT_READ, 470 PROT_WRITE | PROT_READ, 471 PROT_EXEC | PROT_WRITE | PROT_READ, 472 }; 473 int flags, prot; 474 475 #define OMAP_ANON 0x0002 476 #define OMAP_COPY 0x0020 477 #define OMAP_SHARED 0x0010 478 #define OMAP_FIXED 0x0100 479 480 prot = cvtbsdprot[uap->prot & 0x7]; 481 #if (defined(COMPAT_FREEBSD32) && defined(__amd64__)) || defined(__i386__) 482 if (i386_read_exec && SV_PROC_FLAG(td->td_proc, SV_ILP32) && 483 prot != 0) 484 prot |= PROT_EXEC; 485 #endif 486 flags = 0; 487 if (uap->flags & OMAP_ANON) 488 flags |= MAP_ANON; 489 if (uap->flags & OMAP_COPY) 490 flags |= MAP_COPY; 491 if (uap->flags & OMAP_SHARED) 492 flags |= MAP_SHARED; 493 else 494 flags |= MAP_PRIVATE; 495 if (uap->flags & OMAP_FIXED) 496 flags |= MAP_FIXED; 497 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot, flags, 498 uap->fd, uap->pos)); 499 } 500 #endif /* COMPAT_43 */ 501 502 #ifndef _SYS_SYSPROTO_H_ 503 struct msync_args { 504 void *addr; 505 size_t len; 506 int flags; 507 }; 508 #endif 509 int 510 sys_msync(struct thread *td, struct msync_args *uap) 511 { 512 513 return (kern_msync(td, (uintptr_t)uap->addr, uap->len, uap->flags)); 514 } 515 516 int 517 kern_msync(struct thread *td, uintptr_t addr0, size_t size, int flags) 518 { 519 vm_offset_t addr; 520 vm_size_t pageoff; 521 vm_map_t map; 522 int rv; 523 524 addr = addr0; 525 pageoff = (addr & PAGE_MASK); 526 addr -= pageoff; 527 size += pageoff; 528 size = (vm_size_t) round_page(size); 529 if (addr + size < addr) 530 return (EINVAL); 531 532 if ((flags & (MS_ASYNC|MS_INVALIDATE)) == (MS_ASYNC|MS_INVALIDATE)) 533 return (EINVAL); 534 535 map = &td->td_proc->p_vmspace->vm_map; 536 537 /* 538 * Clean the pages and interpret the return value. 539 */ 540 rv = vm_map_sync(map, addr, addr + size, (flags & MS_ASYNC) == 0, 541 (flags & MS_INVALIDATE) != 0); 542 switch (rv) { 543 case KERN_SUCCESS: 544 return (0); 545 case KERN_INVALID_ADDRESS: 546 return (ENOMEM); 547 case KERN_INVALID_ARGUMENT: 548 return (EBUSY); 549 case KERN_FAILURE: 550 return (EIO); 551 default: 552 return (EINVAL); 553 } 554 } 555 556 #ifndef _SYS_SYSPROTO_H_ 557 struct munmap_args { 558 void *addr; 559 size_t len; 560 }; 561 #endif 562 int 563 sys_munmap(struct thread *td, struct munmap_args *uap) 564 { 565 566 return (kern_munmap(td, (uintptr_t)uap->addr, uap->len)); 567 } 568 569 int 570 kern_munmap(struct thread *td, uintptr_t addr0, size_t size) 571 { 572 #ifdef HWPMC_HOOKS 573 struct pmckern_map_out pkm; 574 vm_map_entry_t entry; 575 bool pmc_handled; 576 #endif 577 vm_offset_t addr, end; 578 vm_size_t pageoff; 579 vm_map_t map; 580 581 if (size == 0) 582 return (EINVAL); 583 584 addr = addr0; 585 pageoff = (addr & PAGE_MASK); 586 addr -= pageoff; 587 size += pageoff; 588 size = (vm_size_t) round_page(size); 589 end = addr + size; 590 map = &td->td_proc->p_vmspace->vm_map; 591 if (!vm_map_range_valid(map, addr, end)) 592 return (EINVAL); 593 594 vm_map_lock(map); 595 #ifdef HWPMC_HOOKS 596 pmc_handled = false; 597 if (PMC_HOOK_INSTALLED(PMC_FN_MUNMAP)) { 598 pmc_handled = true; 599 /* 600 * Inform hwpmc if the address range being unmapped contains 601 * an executable region. 602 */ 603 pkm.pm_address = (uintptr_t) NULL; 604 if (vm_map_lookup_entry(map, addr, &entry)) { 605 for (; entry->start < end; 606 entry = vm_map_entry_succ(entry)) { 607 if (vm_map_check_protection(map, entry->start, 608 entry->end, VM_PROT_EXECUTE) == TRUE) { 609 pkm.pm_address = (uintptr_t) addr; 610 pkm.pm_size = (size_t) size; 611 break; 612 } 613 } 614 } 615 } 616 #endif 617 vm_map_delete(map, addr, end); 618 619 #ifdef HWPMC_HOOKS 620 if (__predict_false(pmc_handled)) { 621 /* downgrade the lock to prevent a LOR with the pmc-sx lock */ 622 vm_map_lock_downgrade(map); 623 if (pkm.pm_address != (uintptr_t) NULL) 624 PMC_CALL_HOOK(td, PMC_FN_MUNMAP, (void *) &pkm); 625 vm_map_unlock_read(map); 626 } else 627 #endif 628 vm_map_unlock(map); 629 630 /* vm_map_delete returns nothing but KERN_SUCCESS anyway */ 631 return (0); 632 } 633 634 #ifndef _SYS_SYSPROTO_H_ 635 struct mprotect_args { 636 const void *addr; 637 size_t len; 638 int prot; 639 }; 640 #endif 641 int 642 sys_mprotect(struct thread *td, struct mprotect_args *uap) 643 { 644 645 return (kern_mprotect(td, (uintptr_t)uap->addr, uap->len, uap->prot)); 646 } 647 648 int 649 kern_mprotect(struct thread *td, uintptr_t addr0, size_t size, int prot) 650 { 651 vm_offset_t addr; 652 vm_size_t pageoff; 653 int vm_error, max_prot; 654 655 addr = addr0; 656 if ((prot & ~(_PROT_ALL | PROT_MAX(_PROT_ALL))) != 0) 657 return (EINVAL); 658 max_prot = PROT_MAX_EXTRACT(prot); 659 prot = PROT_EXTRACT(prot); 660 pageoff = (addr & PAGE_MASK); 661 addr -= pageoff; 662 size += pageoff; 663 size = (vm_size_t) round_page(size); 664 #ifdef COMPAT_FREEBSD32 665 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 666 if (((addr + size) & 0xffffffff) < addr) 667 return (EINVAL); 668 } else 669 #endif 670 if (addr + size < addr) 671 return (EINVAL); 672 673 vm_error = KERN_SUCCESS; 674 if (max_prot != 0) { 675 if ((max_prot & prot) != prot) 676 return (ENOTSUP); 677 vm_error = vm_map_protect(&td->td_proc->p_vmspace->vm_map, 678 addr, addr + size, max_prot, TRUE); 679 } 680 if (vm_error == KERN_SUCCESS) 681 vm_error = vm_map_protect(&td->td_proc->p_vmspace->vm_map, 682 addr, addr + size, prot, FALSE); 683 684 switch (vm_error) { 685 case KERN_SUCCESS: 686 return (0); 687 case KERN_PROTECTION_FAILURE: 688 return (EACCES); 689 case KERN_RESOURCE_SHORTAGE: 690 return (ENOMEM); 691 } 692 return (EINVAL); 693 } 694 695 #ifndef _SYS_SYSPROTO_H_ 696 struct minherit_args { 697 void *addr; 698 size_t len; 699 int inherit; 700 }; 701 #endif 702 int 703 sys_minherit(struct thread *td, struct minherit_args *uap) 704 { 705 706 return (kern_minherit(td, (uintptr_t)uap->addr, uap->len, 707 uap->inherit)); 708 } 709 710 int 711 kern_minherit(struct thread *td, uintptr_t addr0, size_t len, int inherit0) 712 { 713 vm_offset_t addr; 714 vm_size_t size, pageoff; 715 vm_inherit_t inherit; 716 717 addr = (vm_offset_t)addr0; 718 size = len; 719 inherit = inherit0; 720 721 pageoff = (addr & PAGE_MASK); 722 addr -= pageoff; 723 size += pageoff; 724 size = (vm_size_t) round_page(size); 725 if (addr + size < addr) 726 return (EINVAL); 727 728 switch (vm_map_inherit(&td->td_proc->p_vmspace->vm_map, addr, 729 addr + size, inherit)) { 730 case KERN_SUCCESS: 731 return (0); 732 case KERN_PROTECTION_FAILURE: 733 return (EACCES); 734 } 735 return (EINVAL); 736 } 737 738 #ifndef _SYS_SYSPROTO_H_ 739 struct madvise_args { 740 void *addr; 741 size_t len; 742 int behav; 743 }; 744 #endif 745 746 int 747 sys_madvise(struct thread *td, struct madvise_args *uap) 748 { 749 750 return (kern_madvise(td, (uintptr_t)uap->addr, uap->len, uap->behav)); 751 } 752 753 int 754 kern_madvise(struct thread *td, uintptr_t addr0, size_t len, int behav) 755 { 756 vm_map_t map; 757 vm_offset_t addr, end, start; 758 int flags; 759 760 /* 761 * Check for our special case, advising the swap pager we are 762 * "immortal." 763 */ 764 if (behav == MADV_PROTECT) { 765 flags = PPROT_SET; 766 return (kern_procctl(td, P_PID, td->td_proc->p_pid, 767 PROC_SPROTECT, &flags)); 768 } 769 770 /* 771 * Check for illegal addresses. Watch out for address wrap... Note 772 * that VM_*_ADDRESS are not constants due to casts (argh). 773 */ 774 map = &td->td_proc->p_vmspace->vm_map; 775 addr = addr0; 776 if (!vm_map_range_valid(map, addr, addr + len)) 777 return (EINVAL); 778 779 /* 780 * Since this routine is only advisory, we default to conservative 781 * behavior. 782 */ 783 start = trunc_page(addr); 784 end = round_page(addr + len); 785 786 /* 787 * vm_map_madvise() checks for illegal values of behav. 788 */ 789 return (vm_map_madvise(map, start, end, behav)); 790 } 791 792 #ifndef _SYS_SYSPROTO_H_ 793 struct mincore_args { 794 const void *addr; 795 size_t len; 796 char *vec; 797 }; 798 #endif 799 800 int 801 sys_mincore(struct thread *td, struct mincore_args *uap) 802 { 803 804 return (kern_mincore(td, (uintptr_t)uap->addr, uap->len, uap->vec)); 805 } 806 807 int 808 kern_mincore(struct thread *td, uintptr_t addr0, size_t len, char *vec) 809 { 810 pmap_t pmap; 811 vm_map_t map; 812 vm_map_entry_t current, entry; 813 vm_object_t object; 814 vm_offset_t addr, cend, end, first_addr; 815 vm_paddr_t pa; 816 vm_page_t m; 817 vm_pindex_t pindex; 818 int error, lastvecindex, mincoreinfo, vecindex; 819 unsigned int timestamp; 820 821 /* 822 * Make sure that the addresses presented are valid for user 823 * mode. 824 */ 825 first_addr = addr = trunc_page(addr0); 826 end = round_page(addr0 + len); 827 map = &td->td_proc->p_vmspace->vm_map; 828 if (end > vm_map_max(map) || end < addr) 829 return (ENOMEM); 830 831 pmap = vmspace_pmap(td->td_proc->p_vmspace); 832 833 vm_map_lock_read(map); 834 RestartScan: 835 timestamp = map->timestamp; 836 837 if (!vm_map_lookup_entry(map, addr, &entry)) { 838 vm_map_unlock_read(map); 839 return (ENOMEM); 840 } 841 842 /* 843 * Do this on a map entry basis so that if the pages are not 844 * in the current processes address space, we can easily look 845 * up the pages elsewhere. 846 */ 847 lastvecindex = -1; 848 while (entry->start < end) { 849 /* 850 * check for contiguity 851 */ 852 current = entry; 853 entry = vm_map_entry_succ(current); 854 if (current->end < end && 855 entry->start > current->end) { 856 vm_map_unlock_read(map); 857 return (ENOMEM); 858 } 859 860 /* 861 * ignore submaps (for now) or null objects 862 */ 863 if ((current->eflags & MAP_ENTRY_IS_SUB_MAP) || 864 current->object.vm_object == NULL) 865 continue; 866 867 /* 868 * limit this scan to the current map entry and the 869 * limits for the mincore call 870 */ 871 if (addr < current->start) 872 addr = current->start; 873 cend = current->end; 874 if (cend > end) 875 cend = end; 876 877 for (; addr < cend; addr += PAGE_SIZE) { 878 /* 879 * Check pmap first, it is likely faster, also 880 * it can provide info as to whether we are the 881 * one referencing or modifying the page. 882 */ 883 m = NULL; 884 object = NULL; 885 retry: 886 pa = 0; 887 mincoreinfo = pmap_mincore(pmap, addr, &pa); 888 if (mincore_mapped) { 889 /* 890 * We only care about this pmap's 891 * mapping of the page, if any. 892 */ 893 ; 894 } else if (pa != 0) { 895 /* 896 * The page is mapped by this process but not 897 * both accessed and modified. It is also 898 * managed. Acquire the object lock so that 899 * other mappings might be examined. The page's 900 * identity may change at any point before its 901 * object lock is acquired, so re-validate if 902 * necessary. 903 */ 904 m = PHYS_TO_VM_PAGE(pa); 905 while (object == NULL || m->object != object) { 906 if (object != NULL) 907 VM_OBJECT_WUNLOCK(object); 908 object = atomic_load_ptr(&m->object); 909 if (object == NULL) 910 goto retry; 911 VM_OBJECT_WLOCK(object); 912 } 913 if (pa != pmap_extract(pmap, addr)) 914 goto retry; 915 KASSERT(vm_page_all_valid(m), 916 ("mincore: page %p is mapped but invalid", 917 m)); 918 } else if (mincoreinfo == 0) { 919 /* 920 * The page is not mapped by this process. If 921 * the object implements managed pages, then 922 * determine if the page is resident so that 923 * the mappings might be examined. 924 */ 925 if (current->object.vm_object != object) { 926 if (object != NULL) 927 VM_OBJECT_WUNLOCK(object); 928 object = current->object.vm_object; 929 VM_OBJECT_WLOCK(object); 930 } 931 if (object->type == OBJT_DEFAULT || 932 object->type == OBJT_SWAP || 933 object->type == OBJT_VNODE) { 934 pindex = OFF_TO_IDX(current->offset + 935 (addr - current->start)); 936 m = vm_page_lookup(object, pindex); 937 if (m != NULL && vm_page_none_valid(m)) 938 m = NULL; 939 if (m != NULL) 940 mincoreinfo = MINCORE_INCORE; 941 } 942 } 943 if (m != NULL) { 944 VM_OBJECT_ASSERT_WLOCKED(m->object); 945 946 /* Examine other mappings of the page. */ 947 if (m->dirty == 0 && pmap_is_modified(m)) 948 vm_page_dirty(m); 949 if (m->dirty != 0) 950 mincoreinfo |= MINCORE_MODIFIED_OTHER; 951 952 /* 953 * The first test for PGA_REFERENCED is an 954 * optimization. The second test is 955 * required because a concurrent pmap 956 * operation could clear the last reference 957 * and set PGA_REFERENCED before the call to 958 * pmap_is_referenced(). 959 */ 960 if ((m->a.flags & PGA_REFERENCED) != 0 || 961 pmap_is_referenced(m) || 962 (m->a.flags & PGA_REFERENCED) != 0) 963 mincoreinfo |= MINCORE_REFERENCED_OTHER; 964 } 965 if (object != NULL) 966 VM_OBJECT_WUNLOCK(object); 967 968 /* 969 * subyte may page fault. In case it needs to modify 970 * the map, we release the lock. 971 */ 972 vm_map_unlock_read(map); 973 974 /* 975 * calculate index into user supplied byte vector 976 */ 977 vecindex = atop(addr - first_addr); 978 979 /* 980 * If we have skipped map entries, we need to make sure that 981 * the byte vector is zeroed for those skipped entries. 982 */ 983 while ((lastvecindex + 1) < vecindex) { 984 ++lastvecindex; 985 error = subyte(vec + lastvecindex, 0); 986 if (error) { 987 error = EFAULT; 988 goto done2; 989 } 990 } 991 992 /* 993 * Pass the page information to the user 994 */ 995 error = subyte(vec + vecindex, mincoreinfo); 996 if (error) { 997 error = EFAULT; 998 goto done2; 999 } 1000 1001 /* 1002 * If the map has changed, due to the subyte, the previous 1003 * output may be invalid. 1004 */ 1005 vm_map_lock_read(map); 1006 if (timestamp != map->timestamp) 1007 goto RestartScan; 1008 1009 lastvecindex = vecindex; 1010 } 1011 } 1012 1013 /* 1014 * subyte may page fault. In case it needs to modify 1015 * the map, we release the lock. 1016 */ 1017 vm_map_unlock_read(map); 1018 1019 /* 1020 * Zero the last entries in the byte vector. 1021 */ 1022 vecindex = atop(end - first_addr); 1023 while ((lastvecindex + 1) < vecindex) { 1024 ++lastvecindex; 1025 error = subyte(vec + lastvecindex, 0); 1026 if (error) { 1027 error = EFAULT; 1028 goto done2; 1029 } 1030 } 1031 1032 /* 1033 * If the map has changed, due to the subyte, the previous 1034 * output may be invalid. 1035 */ 1036 vm_map_lock_read(map); 1037 if (timestamp != map->timestamp) 1038 goto RestartScan; 1039 vm_map_unlock_read(map); 1040 done2: 1041 return (error); 1042 } 1043 1044 #ifndef _SYS_SYSPROTO_H_ 1045 struct mlock_args { 1046 const void *addr; 1047 size_t len; 1048 }; 1049 #endif 1050 int 1051 sys_mlock(struct thread *td, struct mlock_args *uap) 1052 { 1053 1054 return (kern_mlock(td->td_proc, td->td_ucred, 1055 __DECONST(uintptr_t, uap->addr), uap->len)); 1056 } 1057 1058 int 1059 kern_mlock(struct proc *proc, struct ucred *cred, uintptr_t addr0, size_t len) 1060 { 1061 vm_offset_t addr, end, last, start; 1062 vm_size_t npages, size; 1063 vm_map_t map; 1064 unsigned long nsize; 1065 int error; 1066 1067 error = priv_check_cred(cred, PRIV_VM_MLOCK); 1068 if (error) 1069 return (error); 1070 addr = addr0; 1071 size = len; 1072 last = addr + size; 1073 start = trunc_page(addr); 1074 end = round_page(last); 1075 if (last < addr || end < addr) 1076 return (EINVAL); 1077 npages = atop(end - start); 1078 if (npages > vm_page_max_user_wired) 1079 return (ENOMEM); 1080 map = &proc->p_vmspace->vm_map; 1081 PROC_LOCK(proc); 1082 nsize = ptoa(npages + pmap_wired_count(map->pmap)); 1083 if (nsize > lim_cur_proc(proc, RLIMIT_MEMLOCK)) { 1084 PROC_UNLOCK(proc); 1085 return (ENOMEM); 1086 } 1087 PROC_UNLOCK(proc); 1088 #ifdef RACCT 1089 if (racct_enable) { 1090 PROC_LOCK(proc); 1091 error = racct_set(proc, RACCT_MEMLOCK, nsize); 1092 PROC_UNLOCK(proc); 1093 if (error != 0) 1094 return (ENOMEM); 1095 } 1096 #endif 1097 error = vm_map_wire(map, start, end, 1098 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 1099 #ifdef RACCT 1100 if (racct_enable && error != KERN_SUCCESS) { 1101 PROC_LOCK(proc); 1102 racct_set(proc, RACCT_MEMLOCK, 1103 ptoa(pmap_wired_count(map->pmap))); 1104 PROC_UNLOCK(proc); 1105 } 1106 #endif 1107 return (error == KERN_SUCCESS ? 0 : ENOMEM); 1108 } 1109 1110 #ifndef _SYS_SYSPROTO_H_ 1111 struct mlockall_args { 1112 int how; 1113 }; 1114 #endif 1115 1116 int 1117 sys_mlockall(struct thread *td, struct mlockall_args *uap) 1118 { 1119 vm_map_t map; 1120 int error; 1121 1122 map = &td->td_proc->p_vmspace->vm_map; 1123 error = priv_check(td, PRIV_VM_MLOCK); 1124 if (error) 1125 return (error); 1126 1127 if ((uap->how == 0) || ((uap->how & ~(MCL_CURRENT|MCL_FUTURE)) != 0)) 1128 return (EINVAL); 1129 1130 /* 1131 * If wiring all pages in the process would cause it to exceed 1132 * a hard resource limit, return ENOMEM. 1133 */ 1134 if (!old_mlock && uap->how & MCL_CURRENT) { 1135 if (map->size > lim_cur(td, RLIMIT_MEMLOCK)) 1136 return (ENOMEM); 1137 } 1138 #ifdef RACCT 1139 if (racct_enable) { 1140 PROC_LOCK(td->td_proc); 1141 error = racct_set(td->td_proc, RACCT_MEMLOCK, map->size); 1142 PROC_UNLOCK(td->td_proc); 1143 if (error != 0) 1144 return (ENOMEM); 1145 } 1146 #endif 1147 1148 if (uap->how & MCL_FUTURE) { 1149 vm_map_lock(map); 1150 vm_map_modflags(map, MAP_WIREFUTURE, 0); 1151 vm_map_unlock(map); 1152 error = 0; 1153 } 1154 1155 if (uap->how & MCL_CURRENT) { 1156 /* 1157 * P1003.1-2001 mandates that all currently mapped pages 1158 * will be memory resident and locked (wired) upon return 1159 * from mlockall(). vm_map_wire() will wire pages, by 1160 * calling vm_fault_wire() for each page in the region. 1161 */ 1162 error = vm_map_wire(map, vm_map_min(map), vm_map_max(map), 1163 VM_MAP_WIRE_USER|VM_MAP_WIRE_HOLESOK); 1164 if (error == KERN_SUCCESS) 1165 error = 0; 1166 else if (error == KERN_RESOURCE_SHORTAGE) 1167 error = ENOMEM; 1168 else 1169 error = EAGAIN; 1170 } 1171 #ifdef RACCT 1172 if (racct_enable && error != KERN_SUCCESS) { 1173 PROC_LOCK(td->td_proc); 1174 racct_set(td->td_proc, RACCT_MEMLOCK, 1175 ptoa(pmap_wired_count(map->pmap))); 1176 PROC_UNLOCK(td->td_proc); 1177 } 1178 #endif 1179 1180 return (error); 1181 } 1182 1183 #ifndef _SYS_SYSPROTO_H_ 1184 struct munlockall_args { 1185 register_t dummy; 1186 }; 1187 #endif 1188 1189 int 1190 sys_munlockall(struct thread *td, struct munlockall_args *uap) 1191 { 1192 vm_map_t map; 1193 int error; 1194 1195 map = &td->td_proc->p_vmspace->vm_map; 1196 error = priv_check(td, PRIV_VM_MUNLOCK); 1197 if (error) 1198 return (error); 1199 1200 /* Clear the MAP_WIREFUTURE flag from this vm_map. */ 1201 vm_map_lock(map); 1202 vm_map_modflags(map, 0, MAP_WIREFUTURE); 1203 vm_map_unlock(map); 1204 1205 /* Forcibly unwire all pages. */ 1206 error = vm_map_unwire(map, vm_map_min(map), vm_map_max(map), 1207 VM_MAP_WIRE_USER|VM_MAP_WIRE_HOLESOK); 1208 #ifdef RACCT 1209 if (racct_enable && error == KERN_SUCCESS) { 1210 PROC_LOCK(td->td_proc); 1211 racct_set(td->td_proc, RACCT_MEMLOCK, 0); 1212 PROC_UNLOCK(td->td_proc); 1213 } 1214 #endif 1215 1216 return (error); 1217 } 1218 1219 #ifndef _SYS_SYSPROTO_H_ 1220 struct munlock_args { 1221 const void *addr; 1222 size_t len; 1223 }; 1224 #endif 1225 int 1226 sys_munlock(struct thread *td, struct munlock_args *uap) 1227 { 1228 1229 return (kern_munlock(td, (uintptr_t)uap->addr, uap->len)); 1230 } 1231 1232 int 1233 kern_munlock(struct thread *td, uintptr_t addr0, size_t size) 1234 { 1235 vm_offset_t addr, end, last, start; 1236 #ifdef RACCT 1237 vm_map_t map; 1238 #endif 1239 int error; 1240 1241 error = priv_check(td, PRIV_VM_MUNLOCK); 1242 if (error) 1243 return (error); 1244 addr = addr0; 1245 last = addr + size; 1246 start = trunc_page(addr); 1247 end = round_page(last); 1248 if (last < addr || end < addr) 1249 return (EINVAL); 1250 error = vm_map_unwire(&td->td_proc->p_vmspace->vm_map, start, end, 1251 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 1252 #ifdef RACCT 1253 if (racct_enable && error == KERN_SUCCESS) { 1254 PROC_LOCK(td->td_proc); 1255 map = &td->td_proc->p_vmspace->vm_map; 1256 racct_set(td->td_proc, RACCT_MEMLOCK, 1257 ptoa(pmap_wired_count(map->pmap))); 1258 PROC_UNLOCK(td->td_proc); 1259 } 1260 #endif 1261 return (error == KERN_SUCCESS ? 0 : ENOMEM); 1262 } 1263 1264 /* 1265 * vm_mmap_vnode() 1266 * 1267 * Helper function for vm_mmap. Perform sanity check specific for mmap 1268 * operations on vnodes. 1269 */ 1270 int 1271 vm_mmap_vnode(struct thread *td, vm_size_t objsize, 1272 vm_prot_t prot, vm_prot_t *maxprotp, int *flagsp, 1273 struct vnode *vp, vm_ooffset_t *foffp, vm_object_t *objp, 1274 boolean_t *writecounted) 1275 { 1276 struct vattr va; 1277 vm_object_t obj; 1278 vm_ooffset_t foff; 1279 struct ucred *cred; 1280 int error, flags; 1281 bool writex; 1282 1283 cred = td->td_ucred; 1284 writex = (*maxprotp & VM_PROT_WRITE) != 0 && 1285 (*flagsp & MAP_SHARED) != 0; 1286 if ((error = vget(vp, LK_SHARED)) != 0) 1287 return (error); 1288 AUDIT_ARG_VNODE1(vp); 1289 foff = *foffp; 1290 flags = *flagsp; 1291 obj = vp->v_object; 1292 if (vp->v_type == VREG) { 1293 /* 1294 * Get the proper underlying object 1295 */ 1296 if (obj == NULL) { 1297 error = EINVAL; 1298 goto done; 1299 } 1300 if (obj->type == OBJT_VNODE && obj->handle != vp) { 1301 vput(vp); 1302 vp = (struct vnode *)obj->handle; 1303 /* 1304 * Bypass filesystems obey the mpsafety of the 1305 * underlying fs. Tmpfs never bypasses. 1306 */ 1307 error = vget(vp, LK_SHARED); 1308 if (error != 0) 1309 return (error); 1310 } 1311 if (writex) { 1312 *writecounted = TRUE; 1313 vm_pager_update_writecount(obj, 0, objsize); 1314 } 1315 } else { 1316 error = EINVAL; 1317 goto done; 1318 } 1319 if ((error = VOP_GETATTR(vp, &va, cred))) 1320 goto done; 1321 #ifdef MAC 1322 /* This relies on VM_PROT_* matching PROT_*. */ 1323 error = mac_vnode_check_mmap(cred, vp, (int)prot, flags); 1324 if (error != 0) 1325 goto done; 1326 #endif 1327 if ((flags & MAP_SHARED) != 0) { 1328 if ((va.va_flags & (SF_SNAPSHOT|IMMUTABLE|APPEND)) != 0) { 1329 if (prot & VM_PROT_WRITE) { 1330 error = EPERM; 1331 goto done; 1332 } 1333 *maxprotp &= ~VM_PROT_WRITE; 1334 } 1335 } 1336 /* 1337 * If it is a regular file without any references 1338 * we do not need to sync it. 1339 * Adjust object size to be the size of actual file. 1340 */ 1341 objsize = round_page(va.va_size); 1342 if (va.va_nlink == 0) 1343 flags |= MAP_NOSYNC; 1344 if (obj->type == OBJT_VNODE) { 1345 obj = vm_pager_allocate(OBJT_VNODE, vp, objsize, prot, foff, 1346 cred); 1347 if (obj == NULL) { 1348 error = ENOMEM; 1349 goto done; 1350 } 1351 } else { 1352 KASSERT(obj->type == OBJT_DEFAULT || obj->type == OBJT_SWAP, 1353 ("wrong object type")); 1354 vm_object_reference(obj); 1355 #if VM_NRESERVLEVEL > 0 1356 if ((obj->flags & OBJ_COLORED) == 0) { 1357 VM_OBJECT_WLOCK(obj); 1358 vm_object_color(obj, 0); 1359 VM_OBJECT_WUNLOCK(obj); 1360 } 1361 #endif 1362 } 1363 *objp = obj; 1364 *flagsp = flags; 1365 1366 VOP_MMAPPED(vp); 1367 1368 done: 1369 if (error != 0 && *writecounted) { 1370 *writecounted = FALSE; 1371 vm_pager_update_writecount(obj, objsize, 0); 1372 } 1373 vput(vp); 1374 return (error); 1375 } 1376 1377 /* 1378 * vm_mmap_cdev() 1379 * 1380 * Helper function for vm_mmap. Perform sanity check specific for mmap 1381 * operations on cdevs. 1382 */ 1383 int 1384 vm_mmap_cdev(struct thread *td, vm_size_t objsize, vm_prot_t prot, 1385 vm_prot_t *maxprotp, int *flagsp, struct cdev *cdev, struct cdevsw *dsw, 1386 vm_ooffset_t *foff, vm_object_t *objp) 1387 { 1388 vm_object_t obj; 1389 int error, flags; 1390 1391 flags = *flagsp; 1392 1393 if (dsw->d_flags & D_MMAP_ANON) { 1394 *objp = NULL; 1395 *foff = 0; 1396 *maxprotp = VM_PROT_ALL; 1397 *flagsp |= MAP_ANON; 1398 return (0); 1399 } 1400 /* 1401 * cdevs do not provide private mappings of any kind. 1402 */ 1403 if ((*maxprotp & VM_PROT_WRITE) == 0 && 1404 (prot & VM_PROT_WRITE) != 0) 1405 return (EACCES); 1406 if (flags & (MAP_PRIVATE|MAP_COPY)) 1407 return (EINVAL); 1408 /* 1409 * Force device mappings to be shared. 1410 */ 1411 flags |= MAP_SHARED; 1412 #ifdef MAC_XXX 1413 error = mac_cdev_check_mmap(td->td_ucred, cdev, (int)prot); 1414 if (error != 0) 1415 return (error); 1416 #endif 1417 /* 1418 * First, try d_mmap_single(). If that is not implemented 1419 * (returns ENODEV), fall back to using the device pager. 1420 * Note that d_mmap_single() must return a reference to the 1421 * object (it needs to bump the reference count of the object 1422 * it returns somehow). 1423 * 1424 * XXX assumes VM_PROT_* == PROT_* 1425 */ 1426 error = dsw->d_mmap_single(cdev, foff, objsize, objp, (int)prot); 1427 if (error != ENODEV) 1428 return (error); 1429 obj = vm_pager_allocate(OBJT_DEVICE, cdev, objsize, prot, *foff, 1430 td->td_ucred); 1431 if (obj == NULL) 1432 return (EINVAL); 1433 *objp = obj; 1434 *flagsp = flags; 1435 return (0); 1436 } 1437 1438 /* 1439 * vm_mmap() 1440 * 1441 * Internal version of mmap used by exec, sys5 shared memory, and 1442 * various device drivers. Handle is either a vnode pointer, a 1443 * character device, or NULL for MAP_ANON. 1444 */ 1445 int 1446 vm_mmap(vm_map_t map, vm_offset_t *addr, vm_size_t size, vm_prot_t prot, 1447 vm_prot_t maxprot, int flags, 1448 objtype_t handle_type, void *handle, 1449 vm_ooffset_t foff) 1450 { 1451 vm_object_t object; 1452 struct thread *td = curthread; 1453 int error; 1454 boolean_t writecounted; 1455 1456 if (size == 0) 1457 return (EINVAL); 1458 1459 size = round_page(size); 1460 object = NULL; 1461 writecounted = FALSE; 1462 1463 /* 1464 * Lookup/allocate object. 1465 */ 1466 switch (handle_type) { 1467 case OBJT_DEVICE: { 1468 struct cdevsw *dsw; 1469 struct cdev *cdev; 1470 int ref; 1471 1472 cdev = handle; 1473 dsw = dev_refthread(cdev, &ref); 1474 if (dsw == NULL) 1475 return (ENXIO); 1476 error = vm_mmap_cdev(td, size, prot, &maxprot, &flags, cdev, 1477 dsw, &foff, &object); 1478 dev_relthread(cdev, ref); 1479 break; 1480 } 1481 case OBJT_VNODE: 1482 error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, 1483 handle, &foff, &object, &writecounted); 1484 break; 1485 case OBJT_DEFAULT: 1486 if (handle == NULL) { 1487 error = 0; 1488 break; 1489 } 1490 /* FALLTHROUGH */ 1491 default: 1492 error = EINVAL; 1493 break; 1494 } 1495 if (error) 1496 return (error); 1497 1498 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object, 1499 foff, writecounted, td); 1500 if (error != 0 && object != NULL) { 1501 /* 1502 * If this mapping was accounted for in the vnode's 1503 * writecount, then undo that now. 1504 */ 1505 if (writecounted) 1506 vm_pager_release_writecount(object, 0, size); 1507 vm_object_deallocate(object); 1508 } 1509 return (error); 1510 } 1511 1512 /* 1513 * Internal version of mmap that maps a specific VM object into an 1514 * map. Called by mmap for MAP_ANON, vm_mmap, shm_mmap, and vn_mmap. 1515 */ 1516 int 1517 vm_mmap_object(vm_map_t map, vm_offset_t *addr, vm_size_t size, vm_prot_t prot, 1518 vm_prot_t maxprot, int flags, vm_object_t object, vm_ooffset_t foff, 1519 boolean_t writecounted, struct thread *td) 1520 { 1521 boolean_t curmap, fitit; 1522 vm_offset_t max_addr; 1523 int docow, error, findspace, rv; 1524 1525 curmap = map == &td->td_proc->p_vmspace->vm_map; 1526 if (curmap) { 1527 RACCT_PROC_LOCK(td->td_proc); 1528 if (map->size + size > lim_cur(td, RLIMIT_VMEM)) { 1529 RACCT_PROC_UNLOCK(td->td_proc); 1530 return (ENOMEM); 1531 } 1532 if (racct_set(td->td_proc, RACCT_VMEM, map->size + size)) { 1533 RACCT_PROC_UNLOCK(td->td_proc); 1534 return (ENOMEM); 1535 } 1536 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 1537 if (ptoa(pmap_wired_count(map->pmap)) + size > 1538 lim_cur(td, RLIMIT_MEMLOCK)) { 1539 racct_set_force(td->td_proc, RACCT_VMEM, 1540 map->size); 1541 RACCT_PROC_UNLOCK(td->td_proc); 1542 return (ENOMEM); 1543 } 1544 error = racct_set(td->td_proc, RACCT_MEMLOCK, 1545 ptoa(pmap_wired_count(map->pmap)) + size); 1546 if (error != 0) { 1547 racct_set_force(td->td_proc, RACCT_VMEM, 1548 map->size); 1549 RACCT_PROC_UNLOCK(td->td_proc); 1550 return (error); 1551 } 1552 } 1553 RACCT_PROC_UNLOCK(td->td_proc); 1554 } 1555 1556 /* 1557 * We currently can only deal with page aligned file offsets. 1558 * The mmap() system call already enforces this by subtracting 1559 * the page offset from the file offset, but checking here 1560 * catches errors in device drivers (e.g. d_single_mmap() 1561 * callbacks) and other internal mapping requests (such as in 1562 * exec). 1563 */ 1564 if (foff & PAGE_MASK) 1565 return (EINVAL); 1566 1567 if ((flags & MAP_FIXED) == 0) { 1568 fitit = TRUE; 1569 *addr = round_page(*addr); 1570 } else { 1571 if (*addr != trunc_page(*addr)) 1572 return (EINVAL); 1573 fitit = FALSE; 1574 } 1575 1576 if (flags & MAP_ANON) { 1577 if (object != NULL || foff != 0) 1578 return (EINVAL); 1579 docow = 0; 1580 } else if (flags & MAP_PREFAULT_READ) 1581 docow = MAP_PREFAULT; 1582 else 1583 docow = MAP_PREFAULT_PARTIAL; 1584 1585 if ((flags & (MAP_ANON|MAP_SHARED)) == 0) 1586 docow |= MAP_COPY_ON_WRITE; 1587 if (flags & MAP_NOSYNC) 1588 docow |= MAP_DISABLE_SYNCER; 1589 if (flags & MAP_NOCORE) 1590 docow |= MAP_DISABLE_COREDUMP; 1591 /* Shared memory is also shared with children. */ 1592 if (flags & MAP_SHARED) 1593 docow |= MAP_INHERIT_SHARE; 1594 if (writecounted) 1595 docow |= MAP_WRITECOUNT; 1596 if (flags & MAP_STACK) { 1597 if (object != NULL) 1598 return (EINVAL); 1599 docow |= MAP_STACK_GROWS_DOWN; 1600 } 1601 if ((flags & MAP_EXCL) != 0) 1602 docow |= MAP_CHECK_EXCL; 1603 if ((flags & MAP_GUARD) != 0) 1604 docow |= MAP_CREATE_GUARD; 1605 1606 if (fitit) { 1607 if ((flags & MAP_ALIGNMENT_MASK) == MAP_ALIGNED_SUPER) 1608 findspace = VMFS_SUPER_SPACE; 1609 else if ((flags & MAP_ALIGNMENT_MASK) != 0) 1610 findspace = VMFS_ALIGNED_SPACE(flags >> 1611 MAP_ALIGNMENT_SHIFT); 1612 else 1613 findspace = VMFS_OPTIMAL_SPACE; 1614 max_addr = 0; 1615 #ifdef MAP_32BIT 1616 if ((flags & MAP_32BIT) != 0) 1617 max_addr = MAP_32BIT_MAX_ADDR; 1618 #endif 1619 if (curmap) { 1620 rv = vm_map_find_min(map, object, foff, addr, size, 1621 round_page((vm_offset_t)td->td_proc->p_vmspace-> 1622 vm_daddr + lim_max(td, RLIMIT_DATA)), max_addr, 1623 findspace, prot, maxprot, docow); 1624 } else { 1625 rv = vm_map_find(map, object, foff, addr, size, 1626 max_addr, findspace, prot, maxprot, docow); 1627 } 1628 } else { 1629 rv = vm_map_fixed(map, object, foff, *addr, size, 1630 prot, maxprot, docow); 1631 } 1632 1633 if (rv == KERN_SUCCESS) { 1634 /* 1635 * If the process has requested that all future mappings 1636 * be wired, then heed this. 1637 */ 1638 if ((map->flags & MAP_WIREFUTURE) != 0) { 1639 vm_map_lock(map); 1640 if ((map->flags & MAP_WIREFUTURE) != 0) 1641 (void)vm_map_wire_locked(map, *addr, 1642 *addr + size, VM_MAP_WIRE_USER | 1643 ((flags & MAP_STACK) ? VM_MAP_WIRE_HOLESOK : 1644 VM_MAP_WIRE_NOHOLES)); 1645 vm_map_unlock(map); 1646 } 1647 } 1648 return (vm_mmap_to_errno(rv)); 1649 } 1650 1651 /* 1652 * Translate a Mach VM return code to zero on success or the appropriate errno 1653 * on failure. 1654 */ 1655 int 1656 vm_mmap_to_errno(int rv) 1657 { 1658 1659 switch (rv) { 1660 case KERN_SUCCESS: 1661 return (0); 1662 case KERN_INVALID_ADDRESS: 1663 case KERN_NO_SPACE: 1664 return (ENOMEM); 1665 case KERN_PROTECTION_FAILURE: 1666 return (EACCES); 1667 default: 1668 return (EINVAL); 1669 } 1670 } 1671