1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988 University of Utah. 5 * Copyright (c) 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: Utah $Hdr: vm_mmap.c 1.6 91/10/21$ 37 * 38 * @(#)vm_mmap.c 8.4 (Berkeley) 1/12/94 39 */ 40 41 /* 42 * Mapped file (mmap) interface to VM 43 */ 44 45 #include <sys/cdefs.h> 46 #include "opt_hwpmc_hooks.h" 47 #include "opt_vm.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/capsicum.h> 52 #include <sys/kernel.h> 53 #include <sys/lock.h> 54 #include <sys/mutex.h> 55 #include <sys/sysproto.h> 56 #include <sys/elf.h> 57 #include <sys/filedesc.h> 58 #include <sys/priv.h> 59 #include <sys/proc.h> 60 #include <sys/procctl.h> 61 #include <sys/racct.h> 62 #include <sys/resource.h> 63 #include <sys/resourcevar.h> 64 #include <sys/rwlock.h> 65 #include <sys/sysctl.h> 66 #include <sys/vnode.h> 67 #include <sys/fcntl.h> 68 #include <sys/file.h> 69 #include <sys/mman.h> 70 #include <sys/mount.h> 71 #include <sys/conf.h> 72 #include <sys/stat.h> 73 #include <sys/syscallsubr.h> 74 #include <sys/sysent.h> 75 #include <sys/vmmeter.h> 76 #if defined(__amd64__) || defined(__i386__) /* for i386_read_exec */ 77 #include <machine/md_var.h> 78 #endif 79 80 #include <security/audit/audit.h> 81 #include <security/mac/mac_framework.h> 82 83 #include <vm/vm.h> 84 #include <vm/vm_param.h> 85 #include <vm/pmap.h> 86 #include <vm/vm_map.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_pager.h> 90 #include <vm/vm_pageout.h> 91 #include <vm/vm_extern.h> 92 #include <vm/vm_page.h> 93 #include <vm/vnode_pager.h> 94 95 #ifdef HWPMC_HOOKS 96 #include <sys/pmckern.h> 97 #endif 98 99 int old_mlock = 0; 100 SYSCTL_INT(_vm, OID_AUTO, old_mlock, CTLFLAG_RWTUN, &old_mlock, 0, 101 "Do not apply RLIMIT_MEMLOCK on mlockall"); 102 static int mincore_mapped = 1; 103 SYSCTL_INT(_vm, OID_AUTO, mincore_mapped, CTLFLAG_RWTUN, &mincore_mapped, 0, 104 "mincore reports mappings, not residency"); 105 static int imply_prot_max = 0; 106 SYSCTL_INT(_vm, OID_AUTO, imply_prot_max, CTLFLAG_RWTUN, &imply_prot_max, 0, 107 "Imply maximum page protections in mmap() when none are specified"); 108 109 _Static_assert(MAXPAGESIZES <= 4, "MINCORE_SUPER too narrow"); 110 111 #ifndef _SYS_SYSPROTO_H_ 112 struct sbrk_args { 113 int incr; 114 }; 115 #endif 116 117 int 118 sys_sbrk(struct thread *td, struct sbrk_args *uap) 119 { 120 /* Not yet implemented */ 121 return (EOPNOTSUPP); 122 } 123 124 #ifndef _SYS_SYSPROTO_H_ 125 struct sstk_args { 126 int incr; 127 }; 128 #endif 129 130 int 131 sys_sstk(struct thread *td, struct sstk_args *uap) 132 { 133 /* Not yet implemented */ 134 return (EOPNOTSUPP); 135 } 136 137 #if defined(COMPAT_43) 138 int 139 ogetpagesize(struct thread *td, struct ogetpagesize_args *uap) 140 { 141 142 td->td_retval[0] = PAGE_SIZE; 143 return (0); 144 } 145 #endif /* COMPAT_43 */ 146 147 /* 148 * Memory Map (mmap) system call. Note that the file offset 149 * and address are allowed to be NOT page aligned, though if 150 * the MAP_FIXED flag it set, both must have the same remainder 151 * modulo the PAGE_SIZE (POSIX 1003.1b). If the address is not 152 * page-aligned, the actual mapping starts at trunc_page(addr) 153 * and the return value is adjusted up by the page offset. 154 * 155 * Generally speaking, only character devices which are themselves 156 * memory-based, such as a video framebuffer, can be mmap'd. Otherwise 157 * there would be no cache coherency between a descriptor and a VM mapping 158 * both to the same character device. 159 */ 160 #ifndef _SYS_SYSPROTO_H_ 161 struct mmap_args { 162 void *addr; 163 size_t len; 164 int prot; 165 int flags; 166 int fd; 167 long pad; 168 off_t pos; 169 }; 170 #endif 171 172 int 173 sys_mmap(struct thread *td, struct mmap_args *uap) 174 { 175 176 return (kern_mmap(td, &(struct mmap_req){ 177 .mr_hint = (uintptr_t)uap->addr, 178 .mr_len = uap->len, 179 .mr_prot = uap->prot, 180 .mr_flags = uap->flags, 181 .mr_fd = uap->fd, 182 .mr_pos = uap->pos, 183 })); 184 } 185 186 int 187 kern_mmap_maxprot(struct proc *p, int prot) 188 { 189 190 if ((p->p_flag2 & P2_PROTMAX_DISABLE) != 0 || 191 (p->p_fctl0 & NT_FREEBSD_FCTL_PROTMAX_DISABLE) != 0) 192 return (_PROT_ALL); 193 if (((p->p_flag2 & P2_PROTMAX_ENABLE) != 0 || imply_prot_max) && 194 prot != PROT_NONE) 195 return (prot); 196 return (_PROT_ALL); 197 } 198 199 int 200 kern_mmap(struct thread *td, const struct mmap_req *mrp) 201 { 202 struct vmspace *vms; 203 struct file *fp; 204 struct proc *p; 205 off_t pos; 206 vm_offset_t addr, orig_addr; 207 vm_size_t len, pageoff, size; 208 vm_prot_t cap_maxprot; 209 int align, error, fd, flags, max_prot, prot; 210 cap_rights_t rights; 211 mmap_check_fp_fn check_fp_fn; 212 213 orig_addr = addr = mrp->mr_hint; 214 len = mrp->mr_len; 215 prot = mrp->mr_prot; 216 flags = mrp->mr_flags; 217 fd = mrp->mr_fd; 218 pos = mrp->mr_pos; 219 check_fp_fn = mrp->mr_check_fp_fn; 220 221 if ((prot & ~(_PROT_ALL | PROT_MAX(_PROT_ALL))) != 0) 222 return (EINVAL); 223 max_prot = PROT_MAX_EXTRACT(prot); 224 prot = PROT_EXTRACT(prot); 225 if (max_prot != 0 && (max_prot & prot) != prot) 226 return (ENOTSUP); 227 228 p = td->td_proc; 229 230 /* 231 * Always honor PROT_MAX if set. If not, default to all 232 * permissions unless we're implying maximum permissions. 233 */ 234 if (max_prot == 0) 235 max_prot = kern_mmap_maxprot(p, prot); 236 237 vms = p->p_vmspace; 238 fp = NULL; 239 AUDIT_ARG_FD(fd); 240 241 /* 242 * Ignore old flags that used to be defined but did not do anything. 243 */ 244 flags &= ~(MAP_RESERVED0020 | MAP_RESERVED0040); 245 246 /* 247 * Enforce the constraints. 248 * Mapping of length 0 is only allowed for old binaries. 249 * Anonymous mapping shall specify -1 as filedescriptor and 250 * zero position for new code. Be nice to ancient a.out 251 * binaries and correct pos for anonymous mapping, since old 252 * ld.so sometimes issues anonymous map requests with non-zero 253 * pos. 254 */ 255 if (!SV_CURPROC_FLAG(SV_AOUT)) { 256 if ((len == 0 && p->p_osrel >= P_OSREL_MAP_ANON) || 257 ((flags & MAP_ANON) != 0 && (fd != -1 || pos != 0))) 258 return (EINVAL); 259 } else { 260 if ((flags & MAP_ANON) != 0) 261 pos = 0; 262 } 263 264 if (flags & MAP_STACK) { 265 if ((fd != -1) || 266 ((prot & (PROT_READ | PROT_WRITE)) != (PROT_READ | PROT_WRITE))) 267 return (EINVAL); 268 flags |= MAP_ANON; 269 pos = 0; 270 } 271 if ((flags & ~(MAP_SHARED | MAP_PRIVATE | MAP_FIXED | MAP_HASSEMAPHORE | 272 MAP_STACK | MAP_NOSYNC | MAP_ANON | MAP_EXCL | MAP_NOCORE | 273 MAP_PREFAULT_READ | MAP_GUARD | MAP_32BIT | MAP_ALIGNMENT_MASK)) != 0) 274 return (EINVAL); 275 if ((flags & (MAP_EXCL | MAP_FIXED)) == MAP_EXCL) 276 return (EINVAL); 277 if ((flags & (MAP_SHARED | MAP_PRIVATE)) == (MAP_SHARED | MAP_PRIVATE)) 278 return (EINVAL); 279 if (prot != PROT_NONE && 280 (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) != 0) 281 return (EINVAL); 282 if ((flags & MAP_GUARD) != 0 && (prot != PROT_NONE || fd != -1 || 283 pos != 0 || (flags & ~(MAP_FIXED | MAP_GUARD | MAP_EXCL | 284 MAP_32BIT | MAP_ALIGNMENT_MASK)) != 0)) 285 return (EINVAL); 286 287 /* 288 * Align the file position to a page boundary, 289 * and save its page offset component. 290 */ 291 pageoff = (pos & PAGE_MASK); 292 pos -= pageoff; 293 294 /* Compute size from len by rounding (on both ends). */ 295 size = len + pageoff; /* low end... */ 296 size = round_page(size); /* hi end */ 297 /* Check for rounding up to zero. */ 298 if (len > size) 299 return (ENOMEM); 300 301 /* Ensure alignment is at least a page and fits in a pointer. */ 302 align = flags & MAP_ALIGNMENT_MASK; 303 if (align != 0 && align != MAP_ALIGNED_SUPER && 304 (align >> MAP_ALIGNMENT_SHIFT >= sizeof(void *) * NBBY || 305 align >> MAP_ALIGNMENT_SHIFT < PAGE_SHIFT)) 306 return (EINVAL); 307 308 /* 309 * Check for illegal addresses. Watch out for address wrap... Note 310 * that VM_*_ADDRESS are not constants due to casts (argh). 311 */ 312 if (flags & MAP_FIXED) { 313 /* 314 * The specified address must have the same remainder 315 * as the file offset taken modulo PAGE_SIZE, so it 316 * should be aligned after adjustment by pageoff. 317 */ 318 addr -= pageoff; 319 if (addr & PAGE_MASK) 320 return (EINVAL); 321 322 /* Address range must be all in user VM space. */ 323 if (!vm_map_range_valid(&vms->vm_map, addr, addr + size)) 324 return (EINVAL); 325 if (flags & MAP_32BIT && addr + size > MAP_32BIT_MAX_ADDR) 326 return (EINVAL); 327 } else if (flags & MAP_32BIT) { 328 /* 329 * For MAP_32BIT, override the hint if it is too high and 330 * do not bother moving the mapping past the heap (since 331 * the heap is usually above 2GB). 332 */ 333 if (addr + size > MAP_32BIT_MAX_ADDR) 334 addr = 0; 335 } else { 336 /* 337 * XXX for non-fixed mappings where no hint is provided or 338 * the hint would fall in the potential heap space, 339 * place it after the end of the largest possible heap. 340 * 341 * For anonymous mappings within the address space of the 342 * calling process, the absence of a hint is handled at a 343 * lower level in order to implement different clustering 344 * strategies for ASLR. 345 */ 346 if (((flags & MAP_ANON) == 0 && addr == 0) || 347 (addr >= round_page((vm_offset_t)vms->vm_taddr) && 348 addr < round_page((vm_offset_t)vms->vm_daddr + 349 lim_max(td, RLIMIT_DATA)))) 350 addr = round_page((vm_offset_t)vms->vm_daddr + 351 lim_max(td, RLIMIT_DATA)); 352 } 353 if (len == 0) { 354 /* 355 * Return success without mapping anything for old 356 * binaries that request a page-aligned mapping of 357 * length 0. For modern binaries, this function 358 * returns an error earlier. 359 */ 360 error = 0; 361 } else if ((flags & MAP_GUARD) != 0) { 362 error = vm_mmap_object(&vms->vm_map, &addr, size, VM_PROT_NONE, 363 VM_PROT_NONE, flags, NULL, pos, FALSE, td); 364 } else if ((flags & MAP_ANON) != 0) { 365 /* 366 * Mapping blank space is trivial. 367 * 368 * This relies on VM_PROT_* matching PROT_*. 369 */ 370 error = vm_mmap_object(&vms->vm_map, &addr, size, prot, 371 max_prot, flags, NULL, pos, FALSE, td); 372 } else { 373 /* 374 * Mapping file, get fp for validation and don't let the 375 * descriptor disappear on us if we block. Check capability 376 * rights, but also return the maximum rights to be combined 377 * with maxprot later. 378 */ 379 cap_rights_init_one(&rights, CAP_MMAP); 380 if (prot & PROT_READ) 381 cap_rights_set_one(&rights, CAP_MMAP_R); 382 if ((flags & MAP_SHARED) != 0) { 383 if (prot & PROT_WRITE) 384 cap_rights_set_one(&rights, CAP_MMAP_W); 385 } 386 if (prot & PROT_EXEC) 387 cap_rights_set_one(&rights, CAP_MMAP_X); 388 error = fget_mmap(td, fd, &rights, &cap_maxprot, &fp); 389 if (error != 0) 390 goto done; 391 if ((flags & (MAP_SHARED | MAP_PRIVATE)) == 0 && 392 p->p_osrel >= P_OSREL_MAP_FSTRICT) { 393 error = EINVAL; 394 goto done; 395 } 396 if (check_fp_fn != NULL) { 397 error = check_fp_fn(fp, prot, max_prot & cap_maxprot, 398 flags); 399 if (error != 0) 400 goto done; 401 } 402 if (fp->f_ops == &shm_ops && shm_largepage(fp->f_data)) 403 addr = orig_addr; 404 /* This relies on VM_PROT_* matching PROT_*. */ 405 error = fo_mmap(fp, &vms->vm_map, &addr, size, prot, 406 max_prot & cap_maxprot, flags, pos, td); 407 } 408 409 if (error == 0) 410 td->td_retval[0] = addr + pageoff; 411 done: 412 if (fp) 413 fdrop(fp, td); 414 415 return (error); 416 } 417 418 #if defined(COMPAT_FREEBSD6) 419 int 420 freebsd6_mmap(struct thread *td, struct freebsd6_mmap_args *uap) 421 { 422 return (kern_mmap(td, &(struct mmap_req){ 423 .mr_hint = (uintptr_t)uap->addr, 424 .mr_len = uap->len, 425 .mr_prot = uap->prot, 426 .mr_flags = uap->flags, 427 .mr_fd = uap->fd, 428 .mr_pos = uap->pos, 429 })); 430 } 431 #endif 432 433 #ifdef COMPAT_43 434 #ifndef _SYS_SYSPROTO_H_ 435 struct ommap_args { 436 caddr_t addr; 437 int len; 438 int prot; 439 int flags; 440 int fd; 441 long pos; 442 }; 443 #endif 444 int 445 ommap(struct thread *td, struct ommap_args *uap) 446 { 447 return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot, 448 uap->flags, uap->fd, uap->pos)); 449 } 450 451 int 452 kern_ommap(struct thread *td, uintptr_t hint, int len, int oprot, 453 int oflags, int fd, long pos) 454 { 455 static const char cvtbsdprot[8] = { 456 0, 457 PROT_EXEC, 458 PROT_WRITE, 459 PROT_EXEC | PROT_WRITE, 460 PROT_READ, 461 PROT_EXEC | PROT_READ, 462 PROT_WRITE | PROT_READ, 463 PROT_EXEC | PROT_WRITE | PROT_READ, 464 }; 465 int flags, prot; 466 467 if (len < 0) 468 return (EINVAL); 469 470 #define OMAP_ANON 0x0002 471 #define OMAP_COPY 0x0020 472 #define OMAP_SHARED 0x0010 473 #define OMAP_FIXED 0x0100 474 475 prot = cvtbsdprot[oprot & 0x7]; 476 #if (defined(COMPAT_FREEBSD32) && defined(__amd64__)) || defined(__i386__) 477 if (i386_read_exec && SV_PROC_FLAG(td->td_proc, SV_ILP32) && 478 prot != 0) 479 prot |= PROT_EXEC; 480 #endif 481 flags = 0; 482 if (oflags & OMAP_ANON) 483 flags |= MAP_ANON; 484 if (oflags & OMAP_COPY) 485 flags |= MAP_COPY; 486 if (oflags & OMAP_SHARED) 487 flags |= MAP_SHARED; 488 else 489 flags |= MAP_PRIVATE; 490 if (oflags & OMAP_FIXED) 491 flags |= MAP_FIXED; 492 return (kern_mmap(td, &(struct mmap_req){ 493 .mr_hint = hint, 494 .mr_len = len, 495 .mr_prot = prot, 496 .mr_flags = flags, 497 .mr_fd = fd, 498 .mr_pos = pos, 499 })); 500 } 501 #endif /* COMPAT_43 */ 502 503 #ifndef _SYS_SYSPROTO_H_ 504 struct msync_args { 505 void *addr; 506 size_t len; 507 int flags; 508 }; 509 #endif 510 int 511 sys_msync(struct thread *td, struct msync_args *uap) 512 { 513 514 return (kern_msync(td, (uintptr_t)uap->addr, uap->len, uap->flags)); 515 } 516 517 int 518 kern_msync(struct thread *td, uintptr_t addr0, size_t size, int flags) 519 { 520 vm_offset_t addr; 521 vm_size_t pageoff; 522 vm_map_t map; 523 int rv; 524 525 addr = addr0; 526 pageoff = (addr & PAGE_MASK); 527 addr -= pageoff; 528 size += pageoff; 529 size = (vm_size_t) round_page(size); 530 if (addr + size < addr) 531 return (EINVAL); 532 533 if ((flags & (MS_ASYNC|MS_INVALIDATE)) == (MS_ASYNC|MS_INVALIDATE)) 534 return (EINVAL); 535 536 map = &td->td_proc->p_vmspace->vm_map; 537 538 /* 539 * Clean the pages and interpret the return value. 540 */ 541 rv = vm_map_sync(map, addr, addr + size, (flags & MS_ASYNC) == 0, 542 (flags & MS_INVALIDATE) != 0); 543 switch (rv) { 544 case KERN_SUCCESS: 545 return (0); 546 case KERN_INVALID_ADDRESS: 547 return (ENOMEM); 548 case KERN_INVALID_ARGUMENT: 549 return (EBUSY); 550 case KERN_FAILURE: 551 return (EIO); 552 default: 553 return (EINVAL); 554 } 555 } 556 557 #ifndef _SYS_SYSPROTO_H_ 558 struct munmap_args { 559 void *addr; 560 size_t len; 561 }; 562 #endif 563 int 564 sys_munmap(struct thread *td, struct munmap_args *uap) 565 { 566 567 return (kern_munmap(td, (uintptr_t)uap->addr, uap->len)); 568 } 569 570 int 571 kern_munmap(struct thread *td, uintptr_t addr0, size_t size) 572 { 573 #ifdef HWPMC_HOOKS 574 struct pmckern_map_out pkm; 575 vm_map_entry_t entry; 576 bool pmc_handled; 577 #endif 578 vm_offset_t addr, end; 579 vm_size_t pageoff; 580 vm_map_t map; 581 int rv; 582 583 if (size == 0) 584 return (EINVAL); 585 586 addr = addr0; 587 pageoff = (addr & PAGE_MASK); 588 addr -= pageoff; 589 size += pageoff; 590 size = (vm_size_t) round_page(size); 591 end = addr + size; 592 map = &td->td_proc->p_vmspace->vm_map; 593 if (!vm_map_range_valid(map, addr, end)) 594 return (EINVAL); 595 596 vm_map_lock(map); 597 #ifdef HWPMC_HOOKS 598 pmc_handled = false; 599 if (PMC_HOOK_INSTALLED(PMC_FN_MUNMAP)) { 600 pmc_handled = true; 601 /* 602 * Inform hwpmc if the address range being unmapped contains 603 * an executable region. 604 */ 605 pkm.pm_address = (uintptr_t) NULL; 606 if (vm_map_lookup_entry(map, addr, &entry)) { 607 for (; entry->start < end; 608 entry = vm_map_entry_succ(entry)) { 609 if (vm_map_check_protection(map, entry->start, 610 entry->end, VM_PROT_EXECUTE) == TRUE) { 611 pkm.pm_address = (uintptr_t) addr; 612 pkm.pm_size = (size_t) size; 613 break; 614 } 615 } 616 } 617 } 618 #endif 619 rv = vm_map_delete(map, addr, end); 620 621 #ifdef HWPMC_HOOKS 622 if (rv == KERN_SUCCESS && __predict_false(pmc_handled)) { 623 /* downgrade the lock to prevent a LOR with the pmc-sx lock */ 624 vm_map_lock_downgrade(map); 625 if (pkm.pm_address != (uintptr_t) NULL) 626 PMC_CALL_HOOK(td, PMC_FN_MUNMAP, (void *) &pkm); 627 vm_map_unlock_read(map); 628 } else 629 #endif 630 vm_map_unlock(map); 631 632 return (vm_mmap_to_errno(rv)); 633 } 634 635 #ifndef _SYS_SYSPROTO_H_ 636 struct mprotect_args { 637 const void *addr; 638 size_t len; 639 int prot; 640 }; 641 #endif 642 int 643 sys_mprotect(struct thread *td, struct mprotect_args *uap) 644 { 645 646 return (kern_mprotect(td, (uintptr_t)uap->addr, uap->len, 647 uap->prot, 0)); 648 } 649 650 int 651 kern_mprotect(struct thread *td, uintptr_t addr0, size_t size, int prot, 652 int flags) 653 { 654 vm_offset_t addr; 655 vm_size_t pageoff; 656 int vm_error, max_prot; 657 658 addr = addr0; 659 if ((prot & ~(_PROT_ALL | PROT_MAX(_PROT_ALL))) != 0) 660 return (EINVAL); 661 max_prot = PROT_MAX_EXTRACT(prot); 662 prot = PROT_EXTRACT(prot); 663 pageoff = (addr & PAGE_MASK); 664 addr -= pageoff; 665 size += pageoff; 666 size = (vm_size_t) round_page(size); 667 #ifdef COMPAT_FREEBSD32 668 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 669 if (((addr + size) & 0xffffffff) < addr) 670 return (EINVAL); 671 } else 672 #endif 673 if (addr + size < addr) 674 return (EINVAL); 675 676 flags |= VM_MAP_PROTECT_SET_PROT; 677 if (max_prot != 0) 678 flags |= VM_MAP_PROTECT_SET_MAXPROT; 679 vm_error = vm_map_protect(&td->td_proc->p_vmspace->vm_map, 680 addr, addr + size, prot, max_prot, flags); 681 682 switch (vm_error) { 683 case KERN_SUCCESS: 684 return (0); 685 case KERN_PROTECTION_FAILURE: 686 return (EACCES); 687 case KERN_RESOURCE_SHORTAGE: 688 return (ENOMEM); 689 case KERN_OUT_OF_BOUNDS: 690 return (ENOTSUP); 691 } 692 return (EINVAL); 693 } 694 695 #ifndef _SYS_SYSPROTO_H_ 696 struct minherit_args { 697 void *addr; 698 size_t len; 699 int inherit; 700 }; 701 #endif 702 int 703 sys_minherit(struct thread *td, struct minherit_args *uap) 704 { 705 706 return (kern_minherit(td, (uintptr_t)uap->addr, uap->len, 707 uap->inherit)); 708 } 709 710 int 711 kern_minherit(struct thread *td, uintptr_t addr0, size_t len, int inherit0) 712 { 713 vm_offset_t addr; 714 vm_size_t size, pageoff; 715 vm_inherit_t inherit; 716 717 addr = (vm_offset_t)addr0; 718 size = len; 719 inherit = inherit0; 720 721 pageoff = (addr & PAGE_MASK); 722 addr -= pageoff; 723 size += pageoff; 724 size = (vm_size_t) round_page(size); 725 if (addr + size < addr) 726 return (EINVAL); 727 728 switch (vm_map_inherit(&td->td_proc->p_vmspace->vm_map, addr, 729 addr + size, inherit)) { 730 case KERN_SUCCESS: 731 return (0); 732 case KERN_PROTECTION_FAILURE: 733 return (EACCES); 734 } 735 return (EINVAL); 736 } 737 738 #ifndef _SYS_SYSPROTO_H_ 739 struct madvise_args { 740 void *addr; 741 size_t len; 742 int behav; 743 }; 744 #endif 745 746 int 747 sys_madvise(struct thread *td, struct madvise_args *uap) 748 { 749 750 return (kern_madvise(td, (uintptr_t)uap->addr, uap->len, uap->behav)); 751 } 752 753 int 754 kern_madvise(struct thread *td, uintptr_t addr0, size_t len, int behav) 755 { 756 vm_map_t map; 757 vm_offset_t addr, end, start; 758 int flags; 759 760 /* 761 * Check for our special case, advising the swap pager we are 762 * "immortal." 763 */ 764 if (behav == MADV_PROTECT) { 765 flags = PPROT_SET; 766 return (kern_procctl(td, P_PID, td->td_proc->p_pid, 767 PROC_SPROTECT, &flags)); 768 } 769 770 /* 771 * Check for illegal addresses. Watch out for address wrap... Note 772 * that VM_*_ADDRESS are not constants due to casts (argh). 773 */ 774 map = &td->td_proc->p_vmspace->vm_map; 775 addr = addr0; 776 if (!vm_map_range_valid(map, addr, addr + len)) 777 return (EINVAL); 778 779 /* 780 * Since this routine is only advisory, we default to conservative 781 * behavior. 782 */ 783 start = trunc_page(addr); 784 end = round_page(addr + len); 785 786 /* 787 * vm_map_madvise() checks for illegal values of behav. 788 */ 789 return (vm_map_madvise(map, start, end, behav)); 790 } 791 792 #ifndef _SYS_SYSPROTO_H_ 793 struct mincore_args { 794 const void *addr; 795 size_t len; 796 char *vec; 797 }; 798 #endif 799 800 int 801 sys_mincore(struct thread *td, struct mincore_args *uap) 802 { 803 804 return (kern_mincore(td, (uintptr_t)uap->addr, uap->len, uap->vec)); 805 } 806 807 int 808 kern_mincore(struct thread *td, uintptr_t addr0, size_t len, char *vec) 809 { 810 pmap_t pmap; 811 vm_map_t map; 812 vm_map_entry_t current, entry; 813 vm_object_t object; 814 vm_offset_t addr, cend, end, first_addr; 815 vm_paddr_t pa; 816 vm_page_t m; 817 vm_pindex_t pindex; 818 int error, lastvecindex, mincoreinfo, vecindex; 819 unsigned int timestamp; 820 821 /* 822 * Make sure that the addresses presented are valid for user 823 * mode. 824 */ 825 first_addr = addr = trunc_page(addr0); 826 end = round_page(addr0 + len); 827 map = &td->td_proc->p_vmspace->vm_map; 828 if (end > vm_map_max(map) || end < addr) 829 return (ENOMEM); 830 831 pmap = vmspace_pmap(td->td_proc->p_vmspace); 832 833 vm_map_lock_read(map); 834 RestartScan: 835 timestamp = map->timestamp; 836 837 if (!vm_map_lookup_entry(map, addr, &entry)) { 838 vm_map_unlock_read(map); 839 return (ENOMEM); 840 } 841 842 /* 843 * Do this on a map entry basis so that if the pages are not 844 * in the current processes address space, we can easily look 845 * up the pages elsewhere. 846 */ 847 lastvecindex = -1; 848 while (entry->start < end) { 849 /* 850 * check for contiguity 851 */ 852 current = entry; 853 entry = vm_map_entry_succ(current); 854 if (current->end < end && 855 entry->start > current->end) { 856 vm_map_unlock_read(map); 857 return (ENOMEM); 858 } 859 860 /* 861 * ignore submaps (for now) or null objects 862 */ 863 if ((current->eflags & MAP_ENTRY_IS_SUB_MAP) || 864 current->object.vm_object == NULL) 865 continue; 866 867 /* 868 * limit this scan to the current map entry and the 869 * limits for the mincore call 870 */ 871 if (addr < current->start) 872 addr = current->start; 873 cend = current->end; 874 if (cend > end) 875 cend = end; 876 877 for (; addr < cend; addr += PAGE_SIZE) { 878 /* 879 * Check pmap first, it is likely faster, also 880 * it can provide info as to whether we are the 881 * one referencing or modifying the page. 882 */ 883 m = NULL; 884 object = NULL; 885 retry: 886 pa = 0; 887 mincoreinfo = pmap_mincore(pmap, addr, &pa); 888 if (mincore_mapped) { 889 /* 890 * We only care about this pmap's 891 * mapping of the page, if any. 892 */ 893 ; 894 } else if (pa != 0) { 895 /* 896 * The page is mapped by this process but not 897 * both accessed and modified. It is also 898 * managed. Acquire the object lock so that 899 * other mappings might be examined. The page's 900 * identity may change at any point before its 901 * object lock is acquired, so re-validate if 902 * necessary. 903 */ 904 m = PHYS_TO_VM_PAGE(pa); 905 while (object == NULL || m->object != object) { 906 if (object != NULL) 907 VM_OBJECT_WUNLOCK(object); 908 object = atomic_load_ptr(&m->object); 909 if (object == NULL) 910 goto retry; 911 VM_OBJECT_WLOCK(object); 912 } 913 if (pa != pmap_extract(pmap, addr)) 914 goto retry; 915 KASSERT(vm_page_all_valid(m), 916 ("mincore: page %p is mapped but invalid", 917 m)); 918 } else if (mincoreinfo == 0) { 919 /* 920 * The page is not mapped by this process. If 921 * the object implements managed pages, then 922 * determine if the page is resident so that 923 * the mappings might be examined. 924 */ 925 if (current->object.vm_object != object) { 926 if (object != NULL) 927 VM_OBJECT_WUNLOCK(object); 928 object = current->object.vm_object; 929 VM_OBJECT_WLOCK(object); 930 } 931 if ((object->flags & OBJ_SWAP) != 0 || 932 object->type == OBJT_VNODE) { 933 pindex = OFF_TO_IDX(current->offset + 934 (addr - current->start)); 935 m = vm_page_lookup(object, pindex); 936 if (m != NULL && vm_page_none_valid(m)) 937 m = NULL; 938 if (m != NULL) 939 mincoreinfo = MINCORE_INCORE; 940 } 941 } 942 if (m != NULL) { 943 VM_OBJECT_ASSERT_WLOCKED(m->object); 944 945 /* Examine other mappings of the page. */ 946 if (m->dirty == 0 && pmap_is_modified(m)) 947 vm_page_dirty(m); 948 if (m->dirty != 0) 949 mincoreinfo |= MINCORE_MODIFIED_OTHER; 950 951 /* 952 * The first test for PGA_REFERENCED is an 953 * optimization. The second test is 954 * required because a concurrent pmap 955 * operation could clear the last reference 956 * and set PGA_REFERENCED before the call to 957 * pmap_is_referenced(). 958 */ 959 if ((m->a.flags & PGA_REFERENCED) != 0 || 960 pmap_is_referenced(m) || 961 (m->a.flags & PGA_REFERENCED) != 0) 962 mincoreinfo |= MINCORE_REFERENCED_OTHER; 963 } 964 if (object != NULL) 965 VM_OBJECT_WUNLOCK(object); 966 967 /* 968 * subyte may page fault. In case it needs to modify 969 * the map, we release the lock. 970 */ 971 vm_map_unlock_read(map); 972 973 /* 974 * calculate index into user supplied byte vector 975 */ 976 vecindex = atop(addr - first_addr); 977 978 /* 979 * If we have skipped map entries, we need to make sure that 980 * the byte vector is zeroed for those skipped entries. 981 */ 982 while ((lastvecindex + 1) < vecindex) { 983 ++lastvecindex; 984 error = subyte(vec + lastvecindex, 0); 985 if (error) { 986 error = EFAULT; 987 goto done2; 988 } 989 } 990 991 /* 992 * Pass the page information to the user 993 */ 994 error = subyte(vec + vecindex, mincoreinfo); 995 if (error) { 996 error = EFAULT; 997 goto done2; 998 } 999 1000 /* 1001 * If the map has changed, due to the subyte, the previous 1002 * output may be invalid. 1003 */ 1004 vm_map_lock_read(map); 1005 if (timestamp != map->timestamp) 1006 goto RestartScan; 1007 1008 lastvecindex = vecindex; 1009 } 1010 } 1011 1012 /* 1013 * subyte may page fault. In case it needs to modify 1014 * the map, we release the lock. 1015 */ 1016 vm_map_unlock_read(map); 1017 1018 /* 1019 * Zero the last entries in the byte vector. 1020 */ 1021 vecindex = atop(end - first_addr); 1022 while ((lastvecindex + 1) < vecindex) { 1023 ++lastvecindex; 1024 error = subyte(vec + lastvecindex, 0); 1025 if (error) { 1026 error = EFAULT; 1027 goto done2; 1028 } 1029 } 1030 1031 /* 1032 * If the map has changed, due to the subyte, the previous 1033 * output may be invalid. 1034 */ 1035 vm_map_lock_read(map); 1036 if (timestamp != map->timestamp) 1037 goto RestartScan; 1038 vm_map_unlock_read(map); 1039 done2: 1040 return (error); 1041 } 1042 1043 #ifndef _SYS_SYSPROTO_H_ 1044 struct mlock_args { 1045 const void *addr; 1046 size_t len; 1047 }; 1048 #endif 1049 int 1050 sys_mlock(struct thread *td, struct mlock_args *uap) 1051 { 1052 1053 return (kern_mlock(td->td_proc, td->td_ucred, 1054 __DECONST(uintptr_t, uap->addr), uap->len)); 1055 } 1056 1057 int 1058 kern_mlock(struct proc *proc, struct ucred *cred, uintptr_t addr0, size_t len) 1059 { 1060 vm_offset_t addr, end, last, start; 1061 vm_size_t npages, size; 1062 vm_map_t map; 1063 unsigned long nsize; 1064 int error; 1065 1066 error = priv_check_cred(cred, PRIV_VM_MLOCK); 1067 if (error) 1068 return (error); 1069 addr = addr0; 1070 size = len; 1071 last = addr + size; 1072 start = trunc_page(addr); 1073 end = round_page(last); 1074 if (last < addr || end < addr) 1075 return (EINVAL); 1076 npages = atop(end - start); 1077 if (npages > vm_page_max_user_wired) 1078 return (ENOMEM); 1079 map = &proc->p_vmspace->vm_map; 1080 PROC_LOCK(proc); 1081 nsize = ptoa(npages + pmap_wired_count(map->pmap)); 1082 if (nsize > lim_cur_proc(proc, RLIMIT_MEMLOCK)) { 1083 PROC_UNLOCK(proc); 1084 return (ENOMEM); 1085 } 1086 PROC_UNLOCK(proc); 1087 #ifdef RACCT 1088 if (racct_enable) { 1089 PROC_LOCK(proc); 1090 error = racct_set(proc, RACCT_MEMLOCK, nsize); 1091 PROC_UNLOCK(proc); 1092 if (error != 0) 1093 return (ENOMEM); 1094 } 1095 #endif 1096 error = vm_map_wire(map, start, end, 1097 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 1098 #ifdef RACCT 1099 if (racct_enable && error != KERN_SUCCESS) { 1100 PROC_LOCK(proc); 1101 racct_set(proc, RACCT_MEMLOCK, 1102 ptoa(pmap_wired_count(map->pmap))); 1103 PROC_UNLOCK(proc); 1104 } 1105 #endif 1106 switch (error) { 1107 case KERN_SUCCESS: 1108 return (0); 1109 case KERN_INVALID_ARGUMENT: 1110 return (EINVAL); 1111 default: 1112 return (ENOMEM); 1113 } 1114 } 1115 1116 #ifndef _SYS_SYSPROTO_H_ 1117 struct mlockall_args { 1118 int how; 1119 }; 1120 #endif 1121 1122 int 1123 sys_mlockall(struct thread *td, struct mlockall_args *uap) 1124 { 1125 vm_map_t map; 1126 int error; 1127 1128 map = &td->td_proc->p_vmspace->vm_map; 1129 error = priv_check(td, PRIV_VM_MLOCK); 1130 if (error) 1131 return (error); 1132 1133 if ((uap->how == 0) || ((uap->how & ~(MCL_CURRENT|MCL_FUTURE)) != 0)) 1134 return (EINVAL); 1135 1136 /* 1137 * If wiring all pages in the process would cause it to exceed 1138 * a hard resource limit, return ENOMEM. 1139 */ 1140 if (!old_mlock && uap->how & MCL_CURRENT) { 1141 if (map->size > lim_cur(td, RLIMIT_MEMLOCK)) 1142 return (ENOMEM); 1143 } 1144 #ifdef RACCT 1145 if (racct_enable) { 1146 PROC_LOCK(td->td_proc); 1147 error = racct_set(td->td_proc, RACCT_MEMLOCK, map->size); 1148 PROC_UNLOCK(td->td_proc); 1149 if (error != 0) 1150 return (ENOMEM); 1151 } 1152 #endif 1153 1154 if (uap->how & MCL_FUTURE) { 1155 vm_map_lock(map); 1156 vm_map_modflags(map, MAP_WIREFUTURE, 0); 1157 vm_map_unlock(map); 1158 error = 0; 1159 } 1160 1161 if (uap->how & MCL_CURRENT) { 1162 /* 1163 * P1003.1-2001 mandates that all currently mapped pages 1164 * will be memory resident and locked (wired) upon return 1165 * from mlockall(). vm_map_wire() will wire pages, by 1166 * calling vm_fault_wire() for each page in the region. 1167 */ 1168 error = vm_map_wire(map, vm_map_min(map), vm_map_max(map), 1169 VM_MAP_WIRE_USER|VM_MAP_WIRE_HOLESOK); 1170 if (error == KERN_SUCCESS) 1171 error = 0; 1172 else if (error == KERN_RESOURCE_SHORTAGE) 1173 error = ENOMEM; 1174 else 1175 error = EAGAIN; 1176 } 1177 #ifdef RACCT 1178 if (racct_enable && error != KERN_SUCCESS) { 1179 PROC_LOCK(td->td_proc); 1180 racct_set(td->td_proc, RACCT_MEMLOCK, 1181 ptoa(pmap_wired_count(map->pmap))); 1182 PROC_UNLOCK(td->td_proc); 1183 } 1184 #endif 1185 1186 return (error); 1187 } 1188 1189 #ifndef _SYS_SYSPROTO_H_ 1190 struct munlockall_args { 1191 register_t dummy; 1192 }; 1193 #endif 1194 1195 int 1196 sys_munlockall(struct thread *td, struct munlockall_args *uap) 1197 { 1198 vm_map_t map; 1199 int error; 1200 1201 map = &td->td_proc->p_vmspace->vm_map; 1202 error = priv_check(td, PRIV_VM_MUNLOCK); 1203 if (error) 1204 return (error); 1205 1206 /* Clear the MAP_WIREFUTURE flag from this vm_map. */ 1207 vm_map_lock(map); 1208 vm_map_modflags(map, 0, MAP_WIREFUTURE); 1209 vm_map_unlock(map); 1210 1211 /* Forcibly unwire all pages. */ 1212 error = vm_map_unwire(map, vm_map_min(map), vm_map_max(map), 1213 VM_MAP_WIRE_USER|VM_MAP_WIRE_HOLESOK); 1214 #ifdef RACCT 1215 if (racct_enable && error == KERN_SUCCESS) { 1216 PROC_LOCK(td->td_proc); 1217 racct_set(td->td_proc, RACCT_MEMLOCK, 0); 1218 PROC_UNLOCK(td->td_proc); 1219 } 1220 #endif 1221 1222 return (error); 1223 } 1224 1225 #ifndef _SYS_SYSPROTO_H_ 1226 struct munlock_args { 1227 const void *addr; 1228 size_t len; 1229 }; 1230 #endif 1231 int 1232 sys_munlock(struct thread *td, struct munlock_args *uap) 1233 { 1234 1235 return (kern_munlock(td, (uintptr_t)uap->addr, uap->len)); 1236 } 1237 1238 int 1239 kern_munlock(struct thread *td, uintptr_t addr0, size_t size) 1240 { 1241 vm_offset_t addr, end, last, start; 1242 #ifdef RACCT 1243 vm_map_t map; 1244 #endif 1245 int error; 1246 1247 error = priv_check(td, PRIV_VM_MUNLOCK); 1248 if (error) 1249 return (error); 1250 addr = addr0; 1251 last = addr + size; 1252 start = trunc_page(addr); 1253 end = round_page(last); 1254 if (last < addr || end < addr) 1255 return (EINVAL); 1256 error = vm_map_unwire(&td->td_proc->p_vmspace->vm_map, start, end, 1257 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 1258 #ifdef RACCT 1259 if (racct_enable && error == KERN_SUCCESS) { 1260 PROC_LOCK(td->td_proc); 1261 map = &td->td_proc->p_vmspace->vm_map; 1262 racct_set(td->td_proc, RACCT_MEMLOCK, 1263 ptoa(pmap_wired_count(map->pmap))); 1264 PROC_UNLOCK(td->td_proc); 1265 } 1266 #endif 1267 return (error == KERN_SUCCESS ? 0 : ENOMEM); 1268 } 1269 1270 /* 1271 * vm_mmap_vnode() 1272 * 1273 * Helper function for vm_mmap. Perform sanity check specific for mmap 1274 * operations on vnodes. 1275 */ 1276 int 1277 vm_mmap_vnode(struct thread *td, vm_size_t objsize, 1278 vm_prot_t prot, vm_prot_t *maxprotp, int *flagsp, 1279 struct vnode *vp, vm_ooffset_t *foffp, vm_object_t *objp, 1280 boolean_t *writecounted) 1281 { 1282 struct vattr va; 1283 vm_object_t obj; 1284 vm_ooffset_t foff; 1285 struct ucred *cred; 1286 int error, flags; 1287 bool writex; 1288 1289 cred = td->td_ucred; 1290 writex = (*maxprotp & VM_PROT_WRITE) != 0 && 1291 (*flagsp & MAP_SHARED) != 0; 1292 if ((error = vget(vp, LK_SHARED)) != 0) 1293 return (error); 1294 AUDIT_ARG_VNODE1(vp); 1295 foff = *foffp; 1296 flags = *flagsp; 1297 obj = vp->v_object; 1298 if (vp->v_type == VREG) { 1299 /* 1300 * Get the proper underlying object 1301 */ 1302 if (obj == NULL) { 1303 error = EINVAL; 1304 goto done; 1305 } 1306 if (obj->type == OBJT_VNODE && obj->handle != vp) { 1307 vput(vp); 1308 vp = (struct vnode *)obj->handle; 1309 /* 1310 * Bypass filesystems obey the mpsafety of the 1311 * underlying fs. Tmpfs never bypasses. 1312 */ 1313 error = vget(vp, LK_SHARED); 1314 if (error != 0) 1315 return (error); 1316 } 1317 if (writex) { 1318 *writecounted = TRUE; 1319 vm_pager_update_writecount(obj, 0, objsize); 1320 } 1321 } else { 1322 error = EINVAL; 1323 goto done; 1324 } 1325 if ((error = VOP_GETATTR(vp, &va, cred))) 1326 goto done; 1327 #ifdef MAC 1328 /* This relies on VM_PROT_* matching PROT_*. */ 1329 error = mac_vnode_check_mmap(cred, vp, (int)prot, flags); 1330 if (error != 0) 1331 goto done; 1332 #endif 1333 if ((flags & MAP_SHARED) != 0) { 1334 if ((va.va_flags & (SF_SNAPSHOT|IMMUTABLE|APPEND)) != 0) { 1335 if (prot & VM_PROT_WRITE) { 1336 error = EPERM; 1337 goto done; 1338 } 1339 *maxprotp &= ~VM_PROT_WRITE; 1340 } 1341 } 1342 /* 1343 * If it is a regular file without any references 1344 * we do not need to sync it. 1345 * Adjust object size to be the size of actual file. 1346 */ 1347 objsize = round_page(va.va_size); 1348 if (va.va_nlink == 0) 1349 flags |= MAP_NOSYNC; 1350 if (obj->type == OBJT_VNODE) { 1351 obj = vm_pager_allocate(OBJT_VNODE, vp, objsize, prot, foff, 1352 cred); 1353 if (obj == NULL) { 1354 error = ENOMEM; 1355 goto done; 1356 } 1357 } else { 1358 KASSERT((obj->flags & OBJ_SWAP) != 0, ("wrong object type")); 1359 vm_object_reference(obj); 1360 #if VM_NRESERVLEVEL > 0 1361 if ((obj->flags & OBJ_COLORED) == 0) { 1362 VM_OBJECT_WLOCK(obj); 1363 vm_object_color(obj, 0); 1364 VM_OBJECT_WUNLOCK(obj); 1365 } 1366 #endif 1367 } 1368 *objp = obj; 1369 *flagsp = flags; 1370 1371 VOP_MMAPPED(vp); 1372 1373 done: 1374 if (error != 0 && *writecounted) { 1375 *writecounted = FALSE; 1376 vm_pager_update_writecount(obj, objsize, 0); 1377 } 1378 vput(vp); 1379 return (error); 1380 } 1381 1382 /* 1383 * vm_mmap_cdev() 1384 * 1385 * Helper function for vm_mmap. Perform sanity check specific for mmap 1386 * operations on cdevs. 1387 */ 1388 int 1389 vm_mmap_cdev(struct thread *td, vm_size_t objsize, vm_prot_t prot, 1390 vm_prot_t *maxprotp, int *flagsp, struct cdev *cdev, struct cdevsw *dsw, 1391 vm_ooffset_t *foff, vm_object_t *objp) 1392 { 1393 vm_object_t obj; 1394 int error, flags; 1395 1396 flags = *flagsp; 1397 1398 if (dsw->d_flags & D_MMAP_ANON) { 1399 *objp = NULL; 1400 *foff = 0; 1401 *maxprotp = VM_PROT_ALL; 1402 *flagsp |= MAP_ANON; 1403 return (0); 1404 } 1405 /* 1406 * cdevs do not provide private mappings of any kind. 1407 */ 1408 if ((*maxprotp & VM_PROT_WRITE) == 0 && 1409 (prot & VM_PROT_WRITE) != 0) 1410 return (EACCES); 1411 if (flags & (MAP_PRIVATE|MAP_COPY)) 1412 return (EINVAL); 1413 /* 1414 * Force device mappings to be shared. 1415 */ 1416 flags |= MAP_SHARED; 1417 #ifdef MAC_XXX 1418 error = mac_cdev_check_mmap(td->td_ucred, cdev, (int)prot); 1419 if (error != 0) 1420 return (error); 1421 #endif 1422 /* 1423 * First, try d_mmap_single(). If that is not implemented 1424 * (returns ENODEV), fall back to using the device pager. 1425 * Note that d_mmap_single() must return a reference to the 1426 * object (it needs to bump the reference count of the object 1427 * it returns somehow). 1428 * 1429 * XXX assumes VM_PROT_* == PROT_* 1430 */ 1431 error = dsw->d_mmap_single(cdev, foff, objsize, objp, (int)prot); 1432 if (error != ENODEV) 1433 return (error); 1434 obj = vm_pager_allocate(OBJT_DEVICE, cdev, objsize, prot, *foff, 1435 td->td_ucred); 1436 if (obj == NULL) 1437 return (EINVAL); 1438 *objp = obj; 1439 *flagsp = flags; 1440 return (0); 1441 } 1442 1443 int 1444 vm_mmap(vm_map_t map, vm_offset_t *addr, vm_size_t size, vm_prot_t prot, 1445 vm_prot_t maxprot, int flags, 1446 objtype_t handle_type, void *handle, 1447 vm_ooffset_t foff) 1448 { 1449 vm_object_t object; 1450 struct thread *td = curthread; 1451 int error; 1452 boolean_t writecounted; 1453 1454 if (size == 0) 1455 return (EINVAL); 1456 1457 size = round_page(size); 1458 object = NULL; 1459 writecounted = FALSE; 1460 1461 switch (handle_type) { 1462 case OBJT_DEVICE: { 1463 struct cdevsw *dsw; 1464 struct cdev *cdev; 1465 int ref; 1466 1467 cdev = handle; 1468 dsw = dev_refthread(cdev, &ref); 1469 if (dsw == NULL) 1470 return (ENXIO); 1471 error = vm_mmap_cdev(td, size, prot, &maxprot, &flags, cdev, 1472 dsw, &foff, &object); 1473 dev_relthread(cdev, ref); 1474 break; 1475 } 1476 case OBJT_VNODE: 1477 error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, 1478 handle, &foff, &object, &writecounted); 1479 break; 1480 default: 1481 error = EINVAL; 1482 break; 1483 } 1484 if (error) 1485 return (error); 1486 1487 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object, 1488 foff, writecounted, td); 1489 if (error != 0 && object != NULL) { 1490 /* 1491 * If this mapping was accounted for in the vnode's 1492 * writecount, then undo that now. 1493 */ 1494 if (writecounted) 1495 vm_pager_release_writecount(object, 0, size); 1496 vm_object_deallocate(object); 1497 } 1498 return (error); 1499 } 1500 1501 int 1502 kern_mmap_racct_check(struct thread *td, vm_map_t map, vm_size_t size) 1503 { 1504 int error; 1505 1506 RACCT_PROC_LOCK(td->td_proc); 1507 if (map->size + size > lim_cur(td, RLIMIT_VMEM)) { 1508 RACCT_PROC_UNLOCK(td->td_proc); 1509 return (ENOMEM); 1510 } 1511 if (racct_set(td->td_proc, RACCT_VMEM, map->size + size)) { 1512 RACCT_PROC_UNLOCK(td->td_proc); 1513 return (ENOMEM); 1514 } 1515 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 1516 if (ptoa(pmap_wired_count(map->pmap)) + size > 1517 lim_cur(td, RLIMIT_MEMLOCK)) { 1518 racct_set_force(td->td_proc, RACCT_VMEM, map->size); 1519 RACCT_PROC_UNLOCK(td->td_proc); 1520 return (ENOMEM); 1521 } 1522 error = racct_set(td->td_proc, RACCT_MEMLOCK, 1523 ptoa(pmap_wired_count(map->pmap)) + size); 1524 if (error != 0) { 1525 racct_set_force(td->td_proc, RACCT_VMEM, map->size); 1526 RACCT_PROC_UNLOCK(td->td_proc); 1527 return (error); 1528 } 1529 } 1530 RACCT_PROC_UNLOCK(td->td_proc); 1531 return (0); 1532 } 1533 1534 /* 1535 * Internal version of mmap that maps a specific VM object into an 1536 * map. Called by mmap for MAP_ANON, vm_mmap, shm_mmap, and vn_mmap. 1537 */ 1538 int 1539 vm_mmap_object(vm_map_t map, vm_offset_t *addr, vm_size_t size, vm_prot_t prot, 1540 vm_prot_t maxprot, int flags, vm_object_t object, vm_ooffset_t foff, 1541 boolean_t writecounted, struct thread *td) 1542 { 1543 vm_offset_t default_addr, max_addr; 1544 int docow, error, findspace, rv; 1545 bool curmap, fitit; 1546 1547 curmap = map == &td->td_proc->p_vmspace->vm_map; 1548 if (curmap) { 1549 error = kern_mmap_racct_check(td, map, size); 1550 if (error != 0) 1551 return (error); 1552 } 1553 1554 /* 1555 * We currently can only deal with page aligned file offsets. 1556 * The mmap() system call already enforces this by subtracting 1557 * the page offset from the file offset, but checking here 1558 * catches errors in device drivers (e.g. d_single_mmap() 1559 * callbacks) and other internal mapping requests (such as in 1560 * exec). 1561 */ 1562 if (foff & PAGE_MASK) 1563 return (EINVAL); 1564 1565 if ((flags & MAP_FIXED) == 0) { 1566 fitit = true; 1567 *addr = round_page(*addr); 1568 } else { 1569 if (*addr != trunc_page(*addr)) 1570 return (EINVAL); 1571 fitit = false; 1572 } 1573 1574 if (flags & MAP_ANON) { 1575 if (object != NULL || foff != 0) 1576 return (EINVAL); 1577 docow = 0; 1578 } else if (flags & MAP_PREFAULT_READ) 1579 docow = MAP_PREFAULT; 1580 else 1581 docow = MAP_PREFAULT_PARTIAL; 1582 1583 if ((flags & (MAP_ANON|MAP_SHARED)) == 0) 1584 docow |= MAP_COPY_ON_WRITE; 1585 if (flags & MAP_NOSYNC) 1586 docow |= MAP_DISABLE_SYNCER; 1587 if (flags & MAP_NOCORE) 1588 docow |= MAP_DISABLE_COREDUMP; 1589 /* Shared memory is also shared with children. */ 1590 if (flags & MAP_SHARED) 1591 docow |= MAP_INHERIT_SHARE; 1592 if (writecounted) 1593 docow |= MAP_WRITECOUNT; 1594 if (flags & MAP_STACK) { 1595 if (object != NULL) 1596 return (EINVAL); 1597 docow |= MAP_STACK_GROWS_DOWN; 1598 } 1599 if ((flags & MAP_EXCL) != 0) 1600 docow |= MAP_CHECK_EXCL; 1601 if ((flags & MAP_GUARD) != 0) 1602 docow |= MAP_CREATE_GUARD; 1603 1604 if (fitit) { 1605 if ((flags & MAP_ALIGNMENT_MASK) == MAP_ALIGNED_SUPER) 1606 findspace = VMFS_SUPER_SPACE; 1607 else if ((flags & MAP_ALIGNMENT_MASK) != 0) 1608 findspace = VMFS_ALIGNED_SPACE(flags >> 1609 MAP_ALIGNMENT_SHIFT); 1610 else 1611 findspace = VMFS_OPTIMAL_SPACE; 1612 max_addr = 0; 1613 if ((flags & MAP_32BIT) != 0) 1614 max_addr = MAP_32BIT_MAX_ADDR; 1615 if (curmap) { 1616 default_addr = 1617 round_page((vm_offset_t)td->td_proc->p_vmspace-> 1618 vm_daddr + lim_max(td, RLIMIT_DATA)); 1619 if ((flags & MAP_32BIT) != 0) 1620 default_addr = 0; 1621 rv = vm_map_find_min(map, object, foff, addr, size, 1622 default_addr, max_addr, findspace, prot, maxprot, 1623 docow); 1624 } else { 1625 rv = vm_map_find(map, object, foff, addr, size, 1626 max_addr, findspace, prot, maxprot, docow); 1627 } 1628 } else { 1629 rv = vm_map_fixed(map, object, foff, *addr, size, 1630 prot, maxprot, docow); 1631 } 1632 1633 if (rv == KERN_SUCCESS) { 1634 /* 1635 * If the process has requested that all future mappings 1636 * be wired, then heed this. 1637 */ 1638 if ((map->flags & MAP_WIREFUTURE) != 0) { 1639 vm_map_lock(map); 1640 if ((map->flags & MAP_WIREFUTURE) != 0) 1641 (void)vm_map_wire_locked(map, *addr, 1642 *addr + size, VM_MAP_WIRE_USER | 1643 ((flags & MAP_STACK) ? VM_MAP_WIRE_HOLESOK : 1644 VM_MAP_WIRE_NOHOLES)); 1645 vm_map_unlock(map); 1646 } 1647 } 1648 return (vm_mmap_to_errno(rv)); 1649 } 1650 1651 /* 1652 * Translate a Mach VM return code to zero on success or the appropriate errno 1653 * on failure. 1654 */ 1655 int 1656 vm_mmap_to_errno(int rv) 1657 { 1658 1659 switch (rv) { 1660 case KERN_SUCCESS: 1661 return (0); 1662 case KERN_INVALID_ADDRESS: 1663 case KERN_NO_SPACE: 1664 return (ENOMEM); 1665 case KERN_PROTECTION_FAILURE: 1666 return (EACCES); 1667 default: 1668 return (EINVAL); 1669 } 1670 } 1671