xref: /freebsd/sys/vm/vm_map.c (revision fe2494903422ba3b924eba82cb63a6a9188fad7a)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100 
101 /*
102  *	Virtual memory maps provide for the mapping, protection,
103  *	and sharing of virtual memory objects.  In addition,
104  *	this module provides for an efficient virtual copy of
105  *	memory from one map to another.
106  *
107  *	Synchronization is required prior to most operations.
108  *
109  *	Maps consist of an ordered doubly-linked list of simple
110  *	entries; a self-adjusting binary search tree of these
111  *	entries is used to speed up lookups.
112  *
113  *	Since portions of maps are specified by start/end addresses,
114  *	which may not align with existing map entries, all
115  *	routines merely "clip" entries to these start/end values.
116  *	[That is, an entry is split into two, bordering at a
117  *	start or end value.]  Note that these clippings may not
118  *	always be necessary (as the two resulting entries are then
119  *	not changed); however, the clipping is done for convenience.
120  *
121  *	As mentioned above, virtual copy operations are performed
122  *	by copying VM object references from one map to
123  *	another, and then marking both regions as copy-on-write.
124  */
125 
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static int vm_map_alignspace(vm_map_t map, vm_object_t object,
136     vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length,
137     vm_offset_t max_addr, vm_offset_t alignment);
138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
142     vm_map_entry_t gap_entry);
143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
144     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
145 #ifdef INVARIANTS
146 static void vm_map_zdtor(void *mem, int size, void *arg);
147 static void vmspace_zdtor(void *mem, int size, void *arg);
148 #endif
149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
150     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
151     int cow);
152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
153     vm_offset_t failed_addr);
154 
155 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
156     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
157      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
158 
159 /*
160  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
161  * stable.
162  */
163 #define PROC_VMSPACE_LOCK(p) do { } while (0)
164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
165 
166 /*
167  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
168  *
169  *	Asserts that the starting and ending region
170  *	addresses fall within the valid range of the map.
171  */
172 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
173 		{					\
174 		if (start < vm_map_min(map))		\
175 			start = vm_map_min(map);	\
176 		if (end > vm_map_max(map))		\
177 			end = vm_map_max(map);		\
178 		if (start > end)			\
179 			start = end;			\
180 		}
181 
182 /*
183  *	vm_map_startup:
184  *
185  *	Initialize the vm_map module.  Must be called before
186  *	any other vm_map routines.
187  *
188  *	Map and entry structures are allocated from the general
189  *	purpose memory pool with some exceptions:
190  *
191  *	- The kernel map and kmem submap are allocated statically.
192  *	- Kernel map entries are allocated out of a static pool.
193  *
194  *	These restrictions are necessary since malloc() uses the
195  *	maps and requires map entries.
196  */
197 
198 void
199 vm_map_startup(void)
200 {
201 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
202 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
203 #ifdef INVARIANTS
204 	    vm_map_zdtor,
205 #else
206 	    NULL,
207 #endif
208 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
209 	uma_prealloc(mapzone, MAX_KMAP);
210 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
211 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
212 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
213 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
214 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
215 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
216 #ifdef INVARIANTS
217 	    vmspace_zdtor,
218 #else
219 	    NULL,
220 #endif
221 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
222 }
223 
224 static int
225 vmspace_zinit(void *mem, int size, int flags)
226 {
227 	struct vmspace *vm;
228 
229 	vm = (struct vmspace *)mem;
230 
231 	vm->vm_map.pmap = NULL;
232 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
233 	PMAP_LOCK_INIT(vmspace_pmap(vm));
234 	return (0);
235 }
236 
237 static int
238 vm_map_zinit(void *mem, int size, int flags)
239 {
240 	vm_map_t map;
241 
242 	map = (vm_map_t)mem;
243 	memset(map, 0, sizeof(*map));
244 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245 	sx_init(&map->lock, "vm map (user)");
246 	return (0);
247 }
248 
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253 	struct vmspace *vm;
254 
255 	vm = (struct vmspace *)mem;
256 
257 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262 	vm_map_t map;
263 
264 	map = (vm_map_t)mem;
265 	KASSERT(map->nentries == 0,
266 	    ("map %p nentries == %d on free.",
267 	    map, map->nentries));
268 	KASSERT(map->size == 0,
269 	    ("map %p size == %lu on free.",
270 	    map, (unsigned long)map->size));
271 }
272 #endif	/* INVARIANTS */
273 
274 /*
275  * Allocate a vmspace structure, including a vm_map and pmap,
276  * and initialize those structures.  The refcnt is set to 1.
277  *
278  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
279  */
280 struct vmspace *
281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
282 {
283 	struct vmspace *vm;
284 
285 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
286 
287 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
288 
289 	if (pinit == NULL)
290 		pinit = &pmap_pinit;
291 
292 	if (!pinit(vmspace_pmap(vm))) {
293 		uma_zfree(vmspace_zone, vm);
294 		return (NULL);
295 	}
296 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
297 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
298 	vm->vm_refcnt = 1;
299 	vm->vm_shm = NULL;
300 	vm->vm_swrss = 0;
301 	vm->vm_tsize = 0;
302 	vm->vm_dsize = 0;
303 	vm->vm_ssize = 0;
304 	vm->vm_taddr = 0;
305 	vm->vm_daddr = 0;
306 	vm->vm_maxsaddr = 0;
307 	return (vm);
308 }
309 
310 #ifdef RACCT
311 static void
312 vmspace_container_reset(struct proc *p)
313 {
314 
315 	PROC_LOCK(p);
316 	racct_set(p, RACCT_DATA, 0);
317 	racct_set(p, RACCT_STACK, 0);
318 	racct_set(p, RACCT_RSS, 0);
319 	racct_set(p, RACCT_MEMLOCK, 0);
320 	racct_set(p, RACCT_VMEM, 0);
321 	PROC_UNLOCK(p);
322 }
323 #endif
324 
325 static inline void
326 vmspace_dofree(struct vmspace *vm)
327 {
328 
329 	CTR1(KTR_VM, "vmspace_free: %p", vm);
330 
331 	/*
332 	 * Make sure any SysV shm is freed, it might not have been in
333 	 * exit1().
334 	 */
335 	shmexit(vm);
336 
337 	/*
338 	 * Lock the map, to wait out all other references to it.
339 	 * Delete all of the mappings and pages they hold, then call
340 	 * the pmap module to reclaim anything left.
341 	 */
342 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
343 	    vm_map_max(&vm->vm_map));
344 
345 	pmap_release(vmspace_pmap(vm));
346 	vm->vm_map.pmap = NULL;
347 	uma_zfree(vmspace_zone, vm);
348 }
349 
350 void
351 vmspace_free(struct vmspace *vm)
352 {
353 
354 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
355 	    "vmspace_free() called");
356 
357 	if (vm->vm_refcnt == 0)
358 		panic("vmspace_free: attempt to free already freed vmspace");
359 
360 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
361 		vmspace_dofree(vm);
362 }
363 
364 void
365 vmspace_exitfree(struct proc *p)
366 {
367 	struct vmspace *vm;
368 
369 	PROC_VMSPACE_LOCK(p);
370 	vm = p->p_vmspace;
371 	p->p_vmspace = NULL;
372 	PROC_VMSPACE_UNLOCK(p);
373 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
374 	vmspace_free(vm);
375 }
376 
377 void
378 vmspace_exit(struct thread *td)
379 {
380 	int refcnt;
381 	struct vmspace *vm;
382 	struct proc *p;
383 
384 	/*
385 	 * Release user portion of address space.
386 	 * This releases references to vnodes,
387 	 * which could cause I/O if the file has been unlinked.
388 	 * Need to do this early enough that we can still sleep.
389 	 *
390 	 * The last exiting process to reach this point releases as
391 	 * much of the environment as it can. vmspace_dofree() is the
392 	 * slower fallback in case another process had a temporary
393 	 * reference to the vmspace.
394 	 */
395 
396 	p = td->td_proc;
397 	vm = p->p_vmspace;
398 	atomic_add_int(&vmspace0.vm_refcnt, 1);
399 	do {
400 		refcnt = vm->vm_refcnt;
401 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
402 			/* Switch now since other proc might free vmspace */
403 			PROC_VMSPACE_LOCK(p);
404 			p->p_vmspace = &vmspace0;
405 			PROC_VMSPACE_UNLOCK(p);
406 			pmap_activate(td);
407 		}
408 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
409 	if (refcnt == 1) {
410 		if (p->p_vmspace != vm) {
411 			/* vmspace not yet freed, switch back */
412 			PROC_VMSPACE_LOCK(p);
413 			p->p_vmspace = vm;
414 			PROC_VMSPACE_UNLOCK(p);
415 			pmap_activate(td);
416 		}
417 		pmap_remove_pages(vmspace_pmap(vm));
418 		/* Switch now since this proc will free vmspace */
419 		PROC_VMSPACE_LOCK(p);
420 		p->p_vmspace = &vmspace0;
421 		PROC_VMSPACE_UNLOCK(p);
422 		pmap_activate(td);
423 		vmspace_dofree(vm);
424 	}
425 #ifdef RACCT
426 	if (racct_enable)
427 		vmspace_container_reset(p);
428 #endif
429 }
430 
431 /* Acquire reference to vmspace owned by another process. */
432 
433 struct vmspace *
434 vmspace_acquire_ref(struct proc *p)
435 {
436 	struct vmspace *vm;
437 	int refcnt;
438 
439 	PROC_VMSPACE_LOCK(p);
440 	vm = p->p_vmspace;
441 	if (vm == NULL) {
442 		PROC_VMSPACE_UNLOCK(p);
443 		return (NULL);
444 	}
445 	do {
446 		refcnt = vm->vm_refcnt;
447 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
448 			PROC_VMSPACE_UNLOCK(p);
449 			return (NULL);
450 		}
451 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
452 	if (vm != p->p_vmspace) {
453 		PROC_VMSPACE_UNLOCK(p);
454 		vmspace_free(vm);
455 		return (NULL);
456 	}
457 	PROC_VMSPACE_UNLOCK(p);
458 	return (vm);
459 }
460 
461 /*
462  * Switch between vmspaces in an AIO kernel process.
463  *
464  * The AIO kernel processes switch to and from a user process's
465  * vmspace while performing an I/O operation on behalf of a user
466  * process.  The new vmspace is either the vmspace of a user process
467  * obtained from an active AIO request or the initial vmspace of the
468  * AIO kernel process (when it is idling).  Because user processes
469  * will block to drain any active AIO requests before proceeding in
470  * exit() or execve(), the vmspace reference count for these vmspaces
471  * can never be 0.  This allows for a much simpler implementation than
472  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
473  * processes hold an extra reference on their initial vmspace for the
474  * life of the process so that this guarantee is true for any vmspace
475  * passed as 'newvm'.
476  */
477 void
478 vmspace_switch_aio(struct vmspace *newvm)
479 {
480 	struct vmspace *oldvm;
481 
482 	/* XXX: Need some way to assert that this is an aio daemon. */
483 
484 	KASSERT(newvm->vm_refcnt > 0,
485 	    ("vmspace_switch_aio: newvm unreferenced"));
486 
487 	oldvm = curproc->p_vmspace;
488 	if (oldvm == newvm)
489 		return;
490 
491 	/*
492 	 * Point to the new address space and refer to it.
493 	 */
494 	curproc->p_vmspace = newvm;
495 	atomic_add_int(&newvm->vm_refcnt, 1);
496 
497 	/* Activate the new mapping. */
498 	pmap_activate(curthread);
499 
500 	/* Remove the daemon's reference to the old address space. */
501 	KASSERT(oldvm->vm_refcnt > 1,
502 	    ("vmspace_switch_aio: oldvm dropping last reference"));
503 	vmspace_free(oldvm);
504 }
505 
506 void
507 _vm_map_lock(vm_map_t map, const char *file, int line)
508 {
509 
510 	if (map->system_map)
511 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
512 	else
513 		sx_xlock_(&map->lock, file, line);
514 	map->timestamp++;
515 }
516 
517 static void
518 vm_map_process_deferred(void)
519 {
520 	struct thread *td;
521 	vm_map_entry_t entry, next;
522 	vm_object_t object;
523 
524 	td = curthread;
525 	entry = td->td_map_def_user;
526 	td->td_map_def_user = NULL;
527 	while (entry != NULL) {
528 		next = entry->next;
529 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
530 			/*
531 			 * Decrement the object's writemappings and
532 			 * possibly the vnode's v_writecount.
533 			 */
534 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
535 			    ("Submap with writecount"));
536 			object = entry->object.vm_object;
537 			KASSERT(object != NULL, ("No object for writecount"));
538 			vnode_pager_release_writecount(object, entry->start,
539 			    entry->end);
540 		}
541 		vm_map_entry_deallocate(entry, FALSE);
542 		entry = next;
543 	}
544 }
545 
546 void
547 _vm_map_unlock(vm_map_t map, const char *file, int line)
548 {
549 
550 	if (map->system_map)
551 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
552 	else {
553 		sx_xunlock_(&map->lock, file, line);
554 		vm_map_process_deferred();
555 	}
556 }
557 
558 void
559 _vm_map_lock_read(vm_map_t map, const char *file, int line)
560 {
561 
562 	if (map->system_map)
563 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
564 	else
565 		sx_slock_(&map->lock, file, line);
566 }
567 
568 void
569 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
570 {
571 
572 	if (map->system_map)
573 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
574 	else {
575 		sx_sunlock_(&map->lock, file, line);
576 		vm_map_process_deferred();
577 	}
578 }
579 
580 int
581 _vm_map_trylock(vm_map_t map, const char *file, int line)
582 {
583 	int error;
584 
585 	error = map->system_map ?
586 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
587 	    !sx_try_xlock_(&map->lock, file, line);
588 	if (error == 0)
589 		map->timestamp++;
590 	return (error == 0);
591 }
592 
593 int
594 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
595 {
596 	int error;
597 
598 	error = map->system_map ?
599 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
600 	    !sx_try_slock_(&map->lock, file, line);
601 	return (error == 0);
602 }
603 
604 /*
605  *	_vm_map_lock_upgrade:	[ internal use only ]
606  *
607  *	Tries to upgrade a read (shared) lock on the specified map to a write
608  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
609  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
610  *	returned without a read or write lock held.
611  *
612  *	Requires that the map be read locked.
613  */
614 int
615 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
616 {
617 	unsigned int last_timestamp;
618 
619 	if (map->system_map) {
620 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
621 	} else {
622 		if (!sx_try_upgrade_(&map->lock, file, line)) {
623 			last_timestamp = map->timestamp;
624 			sx_sunlock_(&map->lock, file, line);
625 			vm_map_process_deferred();
626 			/*
627 			 * If the map's timestamp does not change while the
628 			 * map is unlocked, then the upgrade succeeds.
629 			 */
630 			sx_xlock_(&map->lock, file, line);
631 			if (last_timestamp != map->timestamp) {
632 				sx_xunlock_(&map->lock, file, line);
633 				return (1);
634 			}
635 		}
636 	}
637 	map->timestamp++;
638 	return (0);
639 }
640 
641 void
642 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
643 {
644 
645 	if (map->system_map) {
646 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
647 	} else
648 		sx_downgrade_(&map->lock, file, line);
649 }
650 
651 /*
652  *	vm_map_locked:
653  *
654  *	Returns a non-zero value if the caller holds a write (exclusive) lock
655  *	on the specified map and the value "0" otherwise.
656  */
657 int
658 vm_map_locked(vm_map_t map)
659 {
660 
661 	if (map->system_map)
662 		return (mtx_owned(&map->system_mtx));
663 	else
664 		return (sx_xlocked(&map->lock));
665 }
666 
667 #ifdef INVARIANTS
668 static void
669 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
670 {
671 
672 	if (map->system_map)
673 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
674 	else
675 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
676 }
677 
678 #define	VM_MAP_ASSERT_LOCKED(map) \
679     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
680 #else
681 #define	VM_MAP_ASSERT_LOCKED(map)
682 #endif
683 
684 /*
685  *	_vm_map_unlock_and_wait:
686  *
687  *	Atomically releases the lock on the specified map and puts the calling
688  *	thread to sleep.  The calling thread will remain asleep until either
689  *	vm_map_wakeup() is performed on the map or the specified timeout is
690  *	exceeded.
691  *
692  *	WARNING!  This function does not perform deferred deallocations of
693  *	objects and map	entries.  Therefore, the calling thread is expected to
694  *	reacquire the map lock after reawakening and later perform an ordinary
695  *	unlock operation, such as vm_map_unlock(), before completing its
696  *	operation on the map.
697  */
698 int
699 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
700 {
701 
702 	mtx_lock(&map_sleep_mtx);
703 	if (map->system_map)
704 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
705 	else
706 		sx_xunlock_(&map->lock, file, line);
707 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
708 	    timo));
709 }
710 
711 /*
712  *	vm_map_wakeup:
713  *
714  *	Awaken any threads that have slept on the map using
715  *	vm_map_unlock_and_wait().
716  */
717 void
718 vm_map_wakeup(vm_map_t map)
719 {
720 
721 	/*
722 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
723 	 * from being performed (and lost) between the map unlock
724 	 * and the msleep() in _vm_map_unlock_and_wait().
725 	 */
726 	mtx_lock(&map_sleep_mtx);
727 	mtx_unlock(&map_sleep_mtx);
728 	wakeup(&map->root);
729 }
730 
731 void
732 vm_map_busy(vm_map_t map)
733 {
734 
735 	VM_MAP_ASSERT_LOCKED(map);
736 	map->busy++;
737 }
738 
739 void
740 vm_map_unbusy(vm_map_t map)
741 {
742 
743 	VM_MAP_ASSERT_LOCKED(map);
744 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
745 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
746 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
747 		wakeup(&map->busy);
748 	}
749 }
750 
751 void
752 vm_map_wait_busy(vm_map_t map)
753 {
754 
755 	VM_MAP_ASSERT_LOCKED(map);
756 	while (map->busy) {
757 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
758 		if (map->system_map)
759 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
760 		else
761 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
762 	}
763 	map->timestamp++;
764 }
765 
766 long
767 vmspace_resident_count(struct vmspace *vmspace)
768 {
769 	return pmap_resident_count(vmspace_pmap(vmspace));
770 }
771 
772 /*
773  *	vm_map_create:
774  *
775  *	Creates and returns a new empty VM map with
776  *	the given physical map structure, and having
777  *	the given lower and upper address bounds.
778  */
779 vm_map_t
780 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
781 {
782 	vm_map_t result;
783 
784 	result = uma_zalloc(mapzone, M_WAITOK);
785 	CTR1(KTR_VM, "vm_map_create: %p", result);
786 	_vm_map_init(result, pmap, min, max);
787 	return (result);
788 }
789 
790 /*
791  * Initialize an existing vm_map structure
792  * such as that in the vmspace structure.
793  */
794 static void
795 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
796 {
797 
798 	map->header.next = map->header.prev = &map->header;
799 	map->header.eflags = MAP_ENTRY_HEADER;
800 	map->needs_wakeup = FALSE;
801 	map->system_map = 0;
802 	map->pmap = pmap;
803 	map->header.end = min;
804 	map->header.start = max;
805 	map->flags = 0;
806 	map->root = NULL;
807 	map->timestamp = 0;
808 	map->busy = 0;
809 }
810 
811 void
812 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
813 {
814 
815 	_vm_map_init(map, pmap, min, max);
816 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
817 	sx_init(&map->lock, "user map");
818 }
819 
820 /*
821  *	vm_map_entry_dispose:	[ internal use only ]
822  *
823  *	Inverse of vm_map_entry_create.
824  */
825 static void
826 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
827 {
828 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
829 }
830 
831 /*
832  *	vm_map_entry_create:	[ internal use only ]
833  *
834  *	Allocates a VM map entry for insertion.
835  *	No entry fields are filled in.
836  */
837 static vm_map_entry_t
838 vm_map_entry_create(vm_map_t map)
839 {
840 	vm_map_entry_t new_entry;
841 
842 	if (map->system_map)
843 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
844 	else
845 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
846 	if (new_entry == NULL)
847 		panic("vm_map_entry_create: kernel resources exhausted");
848 	return (new_entry);
849 }
850 
851 /*
852  *	vm_map_entry_set_behavior:
853  *
854  *	Set the expected access behavior, either normal, random, or
855  *	sequential.
856  */
857 static inline void
858 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
859 {
860 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
861 	    (behavior & MAP_ENTRY_BEHAV_MASK);
862 }
863 
864 /*
865  *	vm_map_entry_set_max_free:
866  *
867  *	Set the max_free field in a vm_map_entry.
868  */
869 static inline void
870 vm_map_entry_set_max_free(vm_map_entry_t entry)
871 {
872 
873 	entry->max_free = entry->adj_free;
874 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
875 		entry->max_free = entry->left->max_free;
876 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
877 		entry->max_free = entry->right->max_free;
878 }
879 
880 /*
881  *	vm_map_entry_splay:
882  *
883  *	The Sleator and Tarjan top-down splay algorithm with the
884  *	following variation.  Max_free must be computed bottom-up, so
885  *	on the downward pass, maintain the left and right spines in
886  *	reverse order.  Then, make a second pass up each side to fix
887  *	the pointers and compute max_free.  The time bound is O(log n)
888  *	amortized.
889  *
890  *	The new root is the vm_map_entry containing "addr", or else an
891  *	adjacent entry (lower or higher) if addr is not in the tree.
892  *
893  *	The map must be locked, and leaves it so.
894  *
895  *	Returns: the new root.
896  */
897 static vm_map_entry_t
898 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
899 {
900 	vm_map_entry_t llist, rlist;
901 	vm_map_entry_t ltree, rtree;
902 	vm_map_entry_t y;
903 
904 	/* Special case of empty tree. */
905 	if (root == NULL)
906 		return (root);
907 
908 	/*
909 	 * Pass One: Splay down the tree until we find addr or a NULL
910 	 * pointer where addr would go.  llist and rlist are the two
911 	 * sides in reverse order (bottom-up), with llist linked by
912 	 * the right pointer and rlist linked by the left pointer in
913 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
914 	 * the two spines.
915 	 */
916 	llist = NULL;
917 	rlist = NULL;
918 	for (;;) {
919 		/* root is never NULL in here. */
920 		if (addr < root->start) {
921 			y = root->left;
922 			if (y == NULL)
923 				break;
924 			if (addr < y->start && y->left != NULL) {
925 				/* Rotate right and put y on rlist. */
926 				root->left = y->right;
927 				y->right = root;
928 				vm_map_entry_set_max_free(root);
929 				root = y->left;
930 				y->left = rlist;
931 				rlist = y;
932 			} else {
933 				/* Put root on rlist. */
934 				root->left = rlist;
935 				rlist = root;
936 				root = y;
937 			}
938 		} else if (addr >= root->end) {
939 			y = root->right;
940 			if (y == NULL)
941 				break;
942 			if (addr >= y->end && y->right != NULL) {
943 				/* Rotate left and put y on llist. */
944 				root->right = y->left;
945 				y->left = root;
946 				vm_map_entry_set_max_free(root);
947 				root = y->right;
948 				y->right = llist;
949 				llist = y;
950 			} else {
951 				/* Put root on llist. */
952 				root->right = llist;
953 				llist = root;
954 				root = y;
955 			}
956 		} else
957 			break;
958 	}
959 
960 	/*
961 	 * Pass Two: Walk back up the two spines, flip the pointers
962 	 * and set max_free.  The subtrees of the root go at the
963 	 * bottom of llist and rlist.
964 	 */
965 	ltree = root->left;
966 	while (llist != NULL) {
967 		y = llist->right;
968 		llist->right = ltree;
969 		vm_map_entry_set_max_free(llist);
970 		ltree = llist;
971 		llist = y;
972 	}
973 	rtree = root->right;
974 	while (rlist != NULL) {
975 		y = rlist->left;
976 		rlist->left = rtree;
977 		vm_map_entry_set_max_free(rlist);
978 		rtree = rlist;
979 		rlist = y;
980 	}
981 
982 	/*
983 	 * Final assembly: add ltree and rtree as subtrees of root.
984 	 */
985 	root->left = ltree;
986 	root->right = rtree;
987 	vm_map_entry_set_max_free(root);
988 
989 	return (root);
990 }
991 
992 /*
993  *	vm_map_entry_{un,}link:
994  *
995  *	Insert/remove entries from maps.
996  */
997 static void
998 vm_map_entry_link(vm_map_t map,
999 		  vm_map_entry_t after_where,
1000 		  vm_map_entry_t entry)
1001 {
1002 
1003 	CTR4(KTR_VM,
1004 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
1005 	    map->nentries, entry, after_where);
1006 	VM_MAP_ASSERT_LOCKED(map);
1007 	KASSERT(after_where->end <= entry->start,
1008 	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
1009 	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
1010 	KASSERT(entry->end <= after_where->next->start,
1011 	    ("vm_map_entry_link: new end %jx next start %jx overlap",
1012 	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1013 
1014 	map->nentries++;
1015 	entry->prev = after_where;
1016 	entry->next = after_where->next;
1017 	entry->next->prev = entry;
1018 	after_where->next = entry;
1019 
1020 	if (after_where != &map->header) {
1021 		if (after_where != map->root)
1022 			vm_map_entry_splay(after_where->start, map->root);
1023 		entry->right = after_where->right;
1024 		entry->left = after_where;
1025 		after_where->right = NULL;
1026 		after_where->adj_free = entry->start - after_where->end;
1027 		vm_map_entry_set_max_free(after_where);
1028 	} else {
1029 		entry->right = map->root;
1030 		entry->left = NULL;
1031 	}
1032 	entry->adj_free = entry->next->start - entry->end;
1033 	vm_map_entry_set_max_free(entry);
1034 	map->root = entry;
1035 }
1036 
1037 static void
1038 vm_map_entry_unlink(vm_map_t map,
1039 		    vm_map_entry_t entry)
1040 {
1041 	vm_map_entry_t next, prev, root;
1042 
1043 	VM_MAP_ASSERT_LOCKED(map);
1044 	if (entry != map->root)
1045 		vm_map_entry_splay(entry->start, map->root);
1046 	if (entry->left == NULL)
1047 		root = entry->right;
1048 	else {
1049 		root = vm_map_entry_splay(entry->start, entry->left);
1050 		root->right = entry->right;
1051 		root->adj_free = entry->next->start - root->end;
1052 		vm_map_entry_set_max_free(root);
1053 	}
1054 	map->root = root;
1055 
1056 	prev = entry->prev;
1057 	next = entry->next;
1058 	next->prev = prev;
1059 	prev->next = next;
1060 	map->nentries--;
1061 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1062 	    map->nentries, entry);
1063 }
1064 
1065 /*
1066  *	vm_map_entry_resize_free:
1067  *
1068  *	Recompute the amount of free space following a vm_map_entry
1069  *	and propagate that value up the tree.  Call this function after
1070  *	resizing a map entry in-place, that is, without a call to
1071  *	vm_map_entry_link() or _unlink().
1072  *
1073  *	The map must be locked, and leaves it so.
1074  */
1075 static void
1076 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1077 {
1078 
1079 	/*
1080 	 * Using splay trees without parent pointers, propagating
1081 	 * max_free up the tree is done by moving the entry to the
1082 	 * root and making the change there.
1083 	 */
1084 	if (entry != map->root)
1085 		map->root = vm_map_entry_splay(entry->start, map->root);
1086 
1087 	entry->adj_free = entry->next->start - entry->end;
1088 	vm_map_entry_set_max_free(entry);
1089 }
1090 
1091 /*
1092  *	vm_map_lookup_entry:	[ internal use only ]
1093  *
1094  *	Finds the map entry containing (or
1095  *	immediately preceding) the specified address
1096  *	in the given map; the entry is returned
1097  *	in the "entry" parameter.  The boolean
1098  *	result indicates whether the address is
1099  *	actually contained in the map.
1100  */
1101 boolean_t
1102 vm_map_lookup_entry(
1103 	vm_map_t map,
1104 	vm_offset_t address,
1105 	vm_map_entry_t *entry)	/* OUT */
1106 {
1107 	vm_map_entry_t cur;
1108 	boolean_t locked;
1109 
1110 	/*
1111 	 * If the map is empty, then the map entry immediately preceding
1112 	 * "address" is the map's header.
1113 	 */
1114 	cur = map->root;
1115 	if (cur == NULL)
1116 		*entry = &map->header;
1117 	else if (address >= cur->start && cur->end > address) {
1118 		*entry = cur;
1119 		return (TRUE);
1120 	} else if ((locked = vm_map_locked(map)) ||
1121 	    sx_try_upgrade(&map->lock)) {
1122 		/*
1123 		 * Splay requires a write lock on the map.  However, it only
1124 		 * restructures the binary search tree; it does not otherwise
1125 		 * change the map.  Thus, the map's timestamp need not change
1126 		 * on a temporary upgrade.
1127 		 */
1128 		map->root = cur = vm_map_entry_splay(address, cur);
1129 		if (!locked)
1130 			sx_downgrade(&map->lock);
1131 
1132 		/*
1133 		 * If "address" is contained within a map entry, the new root
1134 		 * is that map entry.  Otherwise, the new root is a map entry
1135 		 * immediately before or after "address".
1136 		 */
1137 		if (address >= cur->start) {
1138 			*entry = cur;
1139 			if (cur->end > address)
1140 				return (TRUE);
1141 		} else
1142 			*entry = cur->prev;
1143 	} else
1144 		/*
1145 		 * Since the map is only locked for read access, perform a
1146 		 * standard binary search tree lookup for "address".
1147 		 */
1148 		for (;;) {
1149 			if (address < cur->start) {
1150 				if (cur->left == NULL) {
1151 					*entry = cur->prev;
1152 					break;
1153 				}
1154 				cur = cur->left;
1155 			} else if (cur->end > address) {
1156 				*entry = cur;
1157 				return (TRUE);
1158 			} else {
1159 				if (cur->right == NULL) {
1160 					*entry = cur;
1161 					break;
1162 				}
1163 				cur = cur->right;
1164 			}
1165 		}
1166 	return (FALSE);
1167 }
1168 
1169 /*
1170  *	vm_map_insert:
1171  *
1172  *	Inserts the given whole VM object into the target
1173  *	map at the specified address range.  The object's
1174  *	size should match that of the address range.
1175  *
1176  *	Requires that the map be locked, and leaves it so.
1177  *
1178  *	If object is non-NULL, ref count must be bumped by caller
1179  *	prior to making call to account for the new entry.
1180  */
1181 int
1182 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1183     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1184 {
1185 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1186 	struct ucred *cred;
1187 	vm_eflags_t protoeflags;
1188 	vm_inherit_t inheritance;
1189 
1190 	VM_MAP_ASSERT_LOCKED(map);
1191 	KASSERT(object != kernel_object ||
1192 	    (cow & MAP_COPY_ON_WRITE) == 0,
1193 	    ("vm_map_insert: kernel object and COW"));
1194 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1195 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1196 	KASSERT((prot & ~max) == 0,
1197 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1198 
1199 	/*
1200 	 * Check that the start and end points are not bogus.
1201 	 */
1202 	if (start < vm_map_min(map) || end > vm_map_max(map) ||
1203 	    start >= end)
1204 		return (KERN_INVALID_ADDRESS);
1205 
1206 	/*
1207 	 * Find the entry prior to the proposed starting address; if it's part
1208 	 * of an existing entry, this range is bogus.
1209 	 */
1210 	if (vm_map_lookup_entry(map, start, &temp_entry))
1211 		return (KERN_NO_SPACE);
1212 
1213 	prev_entry = temp_entry;
1214 
1215 	/*
1216 	 * Assert that the next entry doesn't overlap the end point.
1217 	 */
1218 	if (prev_entry->next->start < end)
1219 		return (KERN_NO_SPACE);
1220 
1221 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1222 	    max != VM_PROT_NONE))
1223 		return (KERN_INVALID_ARGUMENT);
1224 
1225 	protoeflags = 0;
1226 	if (cow & MAP_COPY_ON_WRITE)
1227 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1228 	if (cow & MAP_NOFAULT)
1229 		protoeflags |= MAP_ENTRY_NOFAULT;
1230 	if (cow & MAP_DISABLE_SYNCER)
1231 		protoeflags |= MAP_ENTRY_NOSYNC;
1232 	if (cow & MAP_DISABLE_COREDUMP)
1233 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1234 	if (cow & MAP_STACK_GROWS_DOWN)
1235 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1236 	if (cow & MAP_STACK_GROWS_UP)
1237 		protoeflags |= MAP_ENTRY_GROWS_UP;
1238 	if (cow & MAP_VN_WRITECOUNT)
1239 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1240 	if ((cow & MAP_CREATE_GUARD) != 0)
1241 		protoeflags |= MAP_ENTRY_GUARD;
1242 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1243 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1244 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1245 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1246 	if (cow & MAP_INHERIT_SHARE)
1247 		inheritance = VM_INHERIT_SHARE;
1248 	else
1249 		inheritance = VM_INHERIT_DEFAULT;
1250 
1251 	cred = NULL;
1252 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1253 		goto charged;
1254 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1255 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1256 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1257 			return (KERN_RESOURCE_SHORTAGE);
1258 		KASSERT(object == NULL ||
1259 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1260 		    object->cred == NULL,
1261 		    ("overcommit: vm_map_insert o %p", object));
1262 		cred = curthread->td_ucred;
1263 	}
1264 
1265 charged:
1266 	/* Expand the kernel pmap, if necessary. */
1267 	if (map == kernel_map && end > kernel_vm_end)
1268 		pmap_growkernel(end);
1269 	if (object != NULL) {
1270 		/*
1271 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1272 		 * is trivially proven to be the only mapping for any
1273 		 * of the object's pages.  (Object granularity
1274 		 * reference counting is insufficient to recognize
1275 		 * aliases with precision.)
1276 		 */
1277 		VM_OBJECT_WLOCK(object);
1278 		if (object->ref_count > 1 || object->shadow_count != 0)
1279 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1280 		VM_OBJECT_WUNLOCK(object);
1281 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1282 	    protoeflags &&
1283 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1284 	    prev_entry->end == start && (prev_entry->cred == cred ||
1285 	    (prev_entry->object.vm_object != NULL &&
1286 	    prev_entry->object.vm_object->cred == cred)) &&
1287 	    vm_object_coalesce(prev_entry->object.vm_object,
1288 	    prev_entry->offset,
1289 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1290 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1291 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1292 		/*
1293 		 * We were able to extend the object.  Determine if we
1294 		 * can extend the previous map entry to include the
1295 		 * new range as well.
1296 		 */
1297 		if (prev_entry->inheritance == inheritance &&
1298 		    prev_entry->protection == prot &&
1299 		    prev_entry->max_protection == max &&
1300 		    prev_entry->wired_count == 0) {
1301 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1302 			    0, ("prev_entry %p has incoherent wiring",
1303 			    prev_entry));
1304 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1305 				map->size += end - prev_entry->end;
1306 			prev_entry->end = end;
1307 			vm_map_entry_resize_free(map, prev_entry);
1308 			vm_map_simplify_entry(map, prev_entry);
1309 			return (KERN_SUCCESS);
1310 		}
1311 
1312 		/*
1313 		 * If we can extend the object but cannot extend the
1314 		 * map entry, we have to create a new map entry.  We
1315 		 * must bump the ref count on the extended object to
1316 		 * account for it.  object may be NULL.
1317 		 */
1318 		object = prev_entry->object.vm_object;
1319 		offset = prev_entry->offset +
1320 		    (prev_entry->end - prev_entry->start);
1321 		vm_object_reference(object);
1322 		if (cred != NULL && object != NULL && object->cred != NULL &&
1323 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1324 			/* Object already accounts for this uid. */
1325 			cred = NULL;
1326 		}
1327 	}
1328 	if (cred != NULL)
1329 		crhold(cred);
1330 
1331 	/*
1332 	 * Create a new entry
1333 	 */
1334 	new_entry = vm_map_entry_create(map);
1335 	new_entry->start = start;
1336 	new_entry->end = end;
1337 	new_entry->cred = NULL;
1338 
1339 	new_entry->eflags = protoeflags;
1340 	new_entry->object.vm_object = object;
1341 	new_entry->offset = offset;
1342 
1343 	new_entry->inheritance = inheritance;
1344 	new_entry->protection = prot;
1345 	new_entry->max_protection = max;
1346 	new_entry->wired_count = 0;
1347 	new_entry->wiring_thread = NULL;
1348 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1349 	new_entry->next_read = start;
1350 
1351 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1352 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1353 	new_entry->cred = cred;
1354 
1355 	/*
1356 	 * Insert the new entry into the list
1357 	 */
1358 	vm_map_entry_link(map, prev_entry, new_entry);
1359 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1360 		map->size += new_entry->end - new_entry->start;
1361 
1362 	/*
1363 	 * Try to coalesce the new entry with both the previous and next
1364 	 * entries in the list.  Previously, we only attempted to coalesce
1365 	 * with the previous entry when object is NULL.  Here, we handle the
1366 	 * other cases, which are less common.
1367 	 */
1368 	vm_map_simplify_entry(map, new_entry);
1369 
1370 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1371 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1372 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1373 	}
1374 
1375 	return (KERN_SUCCESS);
1376 }
1377 
1378 /*
1379  *	vm_map_findspace:
1380  *
1381  *	Find the first fit (lowest VM address) for "length" free bytes
1382  *	beginning at address >= start in the given map.
1383  *
1384  *	In a vm_map_entry, "adj_free" is the amount of free space
1385  *	adjacent (higher address) to this entry, and "max_free" is the
1386  *	maximum amount of contiguous free space in its subtree.  This
1387  *	allows finding a free region in one path down the tree, so
1388  *	O(log n) amortized with splay trees.
1389  *
1390  *	The map must be locked, and leaves it so.
1391  *
1392  *	Returns: 0 on success, and starting address in *addr,
1393  *		 1 if insufficient space.
1394  */
1395 int
1396 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1397     vm_offset_t *addr)	/* OUT */
1398 {
1399 	vm_map_entry_t entry;
1400 	vm_offset_t st;
1401 
1402 	/*
1403 	 * Request must fit within min/max VM address and must avoid
1404 	 * address wrap.
1405 	 */
1406 	start = MAX(start, vm_map_min(map));
1407 	if (start + length > vm_map_max(map) || start + length < start)
1408 		return (1);
1409 
1410 	/* Empty tree means wide open address space. */
1411 	if (map->root == NULL) {
1412 		*addr = start;
1413 		return (0);
1414 	}
1415 
1416 	/*
1417 	 * After splay, if start comes before root node, then there
1418 	 * must be a gap from start to the root.
1419 	 */
1420 	map->root = vm_map_entry_splay(start, map->root);
1421 	if (start + length <= map->root->start) {
1422 		*addr = start;
1423 		return (0);
1424 	}
1425 
1426 	/*
1427 	 * Root is the last node that might begin its gap before
1428 	 * start, and this is the last comparison where address
1429 	 * wrap might be a problem.
1430 	 */
1431 	st = (start > map->root->end) ? start : map->root->end;
1432 	if (length <= map->root->end + map->root->adj_free - st) {
1433 		*addr = st;
1434 		return (0);
1435 	}
1436 
1437 	/* With max_free, can immediately tell if no solution. */
1438 	entry = map->root->right;
1439 	if (entry == NULL || length > entry->max_free)
1440 		return (1);
1441 
1442 	/*
1443 	 * Search the right subtree in the order: left subtree, root,
1444 	 * right subtree (first fit).  The previous splay implies that
1445 	 * all regions in the right subtree have addresses > start.
1446 	 */
1447 	while (entry != NULL) {
1448 		if (entry->left != NULL && entry->left->max_free >= length)
1449 			entry = entry->left;
1450 		else if (entry->adj_free >= length) {
1451 			*addr = entry->end;
1452 			return (0);
1453 		} else
1454 			entry = entry->right;
1455 	}
1456 
1457 	/* Can't get here, so panic if we do. */
1458 	panic("vm_map_findspace: max_free corrupt");
1459 }
1460 
1461 int
1462 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1463     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1464     vm_prot_t max, int cow)
1465 {
1466 	vm_offset_t end;
1467 	int result;
1468 
1469 	end = start + length;
1470 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1471 	    object == NULL,
1472 	    ("vm_map_fixed: non-NULL backing object for stack"));
1473 	vm_map_lock(map);
1474 	VM_MAP_RANGE_CHECK(map, start, end);
1475 	if ((cow & MAP_CHECK_EXCL) == 0)
1476 		vm_map_delete(map, start, end);
1477 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1478 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1479 		    prot, max, cow);
1480 	} else {
1481 		result = vm_map_insert(map, object, offset, start, end,
1482 		    prot, max, cow);
1483 	}
1484 	vm_map_unlock(map);
1485 	return (result);
1486 }
1487 
1488 /*
1489  * Searches for the specified amount of free space in the given map with the
1490  * specified alignment.  Performs an address-ordered, first-fit search from
1491  * the given address "*addr", with an optional upper bound "max_addr".  If the
1492  * parameter "alignment" is zero, then the alignment is computed from the
1493  * given (object, offset) pair so as to enable the greatest possible use of
1494  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1495  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1496  *
1497  * The map must be locked.  Initially, there must be at least "length" bytes
1498  * of free space at the given address.
1499  */
1500 static int
1501 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1502     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1503     vm_offset_t alignment)
1504 {
1505 	vm_offset_t aligned_addr, free_addr;
1506 
1507 	VM_MAP_ASSERT_LOCKED(map);
1508 	free_addr = *addr;
1509 	KASSERT(!vm_map_findspace(map, free_addr, length, addr) &&
1510 	    free_addr == *addr, ("caller provided insufficient free space"));
1511 	for (;;) {
1512 		/*
1513 		 * At the start of every iteration, the free space at address
1514 		 * "*addr" is at least "length" bytes.
1515 		 */
1516 		if (alignment == 0)
1517 			pmap_align_superpage(object, offset, addr, length);
1518 		else if ((*addr & (alignment - 1)) != 0) {
1519 			*addr &= ~(alignment - 1);
1520 			*addr += alignment;
1521 		}
1522 		aligned_addr = *addr;
1523 		if (aligned_addr == free_addr) {
1524 			/*
1525 			 * Alignment did not change "*addr", so "*addr" must
1526 			 * still provide sufficient free space.
1527 			 */
1528 			return (KERN_SUCCESS);
1529 		}
1530 
1531 		/*
1532 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
1533 		 * be a valid address, in which case vm_map_findspace() cannot
1534 		 * be relied upon to fail.
1535 		 */
1536 		if (aligned_addr < free_addr ||
1537 		    vm_map_findspace(map, aligned_addr, length, addr) ||
1538 		    (max_addr != 0 && *addr + length > max_addr))
1539 			return (KERN_NO_SPACE);
1540 		free_addr = *addr;
1541 		if (free_addr == aligned_addr) {
1542 			/*
1543 			 * If a successful call to vm_map_findspace() did not
1544 			 * change "*addr", then "*addr" must still be aligned
1545 			 * and provide sufficient free space.
1546 			 */
1547 			return (KERN_SUCCESS);
1548 		}
1549 	}
1550 }
1551 
1552 /*
1553  *	vm_map_find finds an unallocated region in the target address
1554  *	map with the given length.  The search is defined to be
1555  *	first-fit from the specified address; the region found is
1556  *	returned in the same parameter.
1557  *
1558  *	If object is non-NULL, ref count must be bumped by caller
1559  *	prior to making call to account for the new entry.
1560  */
1561 int
1562 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1563 	    vm_offset_t *addr,	/* IN/OUT */
1564 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1565 	    vm_prot_t prot, vm_prot_t max, int cow)
1566 {
1567 	vm_offset_t alignment, min_addr;
1568 	int rv;
1569 
1570 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1571 	    object == NULL,
1572 	    ("vm_map_find: non-NULL backing object for stack"));
1573 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1574 	    (object->flags & OBJ_COLORED) == 0))
1575 		find_space = VMFS_ANY_SPACE;
1576 	if (find_space >> 8 != 0) {
1577 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1578 		alignment = (vm_offset_t)1 << (find_space >> 8);
1579 	} else
1580 		alignment = 0;
1581 	vm_map_lock(map);
1582 	if (find_space != VMFS_NO_SPACE) {
1583 		KASSERT(find_space == VMFS_ANY_SPACE ||
1584 		    find_space == VMFS_OPTIMAL_SPACE ||
1585 		    find_space == VMFS_SUPER_SPACE ||
1586 		    alignment != 0, ("unexpected VMFS flag"));
1587 		min_addr = *addr;
1588 again:
1589 		if (vm_map_findspace(map, min_addr, length, addr) ||
1590 		    (max_addr != 0 && *addr + length > max_addr)) {
1591 			rv = KERN_NO_SPACE;
1592 			goto done;
1593 		}
1594 		if (find_space != VMFS_ANY_SPACE &&
1595 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
1596 		    max_addr, alignment)) != KERN_SUCCESS) {
1597 			if (find_space == VMFS_OPTIMAL_SPACE) {
1598 				find_space = VMFS_ANY_SPACE;
1599 				goto again;
1600 			}
1601 			goto done;
1602 		}
1603 	}
1604 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1605 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1606 		    max, cow);
1607 	} else {
1608 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1609 		    prot, max, cow);
1610 	}
1611 done:
1612 	vm_map_unlock(map);
1613 	return (rv);
1614 }
1615 
1616 /*
1617  *	vm_map_find_min() is a variant of vm_map_find() that takes an
1618  *	additional parameter (min_addr) and treats the given address
1619  *	(*addr) differently.  Specifically, it treats *addr as a hint
1620  *	and not as the minimum address where the mapping is created.
1621  *
1622  *	This function works in two phases.  First, it tries to
1623  *	allocate above the hint.  If that fails and the hint is
1624  *	greater than min_addr, it performs a second pass, replacing
1625  *	the hint with min_addr as the minimum address for the
1626  *	allocation.
1627  */
1628 int
1629 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1630     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1631     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1632     int cow)
1633 {
1634 	vm_offset_t hint;
1635 	int rv;
1636 
1637 	hint = *addr;
1638 	for (;;) {
1639 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
1640 		    find_space, prot, max, cow);
1641 		if (rv == KERN_SUCCESS || min_addr >= hint)
1642 			return (rv);
1643 		*addr = hint = min_addr;
1644 	}
1645 }
1646 
1647 static bool
1648 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
1649 {
1650 	vm_size_t prevsize;
1651 
1652 	prevsize = prev->end - prev->start;
1653 	return (prev->end == entry->start &&
1654 	    prev->object.vm_object == entry->object.vm_object &&
1655 	    (prev->object.vm_object == NULL ||
1656 	    prev->offset + prevsize == entry->offset) &&
1657 	    prev->eflags == entry->eflags &&
1658 	    prev->protection == entry->protection &&
1659 	    prev->max_protection == entry->max_protection &&
1660 	    prev->inheritance == entry->inheritance &&
1661 	    prev->wired_count == entry->wired_count &&
1662 	    prev->cred == entry->cred);
1663 }
1664 
1665 static void
1666 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
1667 {
1668 
1669 	/*
1670 	 * If the backing object is a vnode object,
1671 	 * vm_object_deallocate() calls vrele().
1672 	 * However, vrele() does not lock the vnode
1673 	 * because the vnode has additional
1674 	 * references.  Thus, the map lock can be kept
1675 	 * without causing a lock-order reversal with
1676 	 * the vnode lock.
1677 	 *
1678 	 * Since we count the number of virtual page
1679 	 * mappings in object->un_pager.vnp.writemappings,
1680 	 * the writemappings value should not be adjusted
1681 	 * when the entry is disposed of.
1682 	 */
1683 	if (entry->object.vm_object != NULL)
1684 		vm_object_deallocate(entry->object.vm_object);
1685 	if (entry->cred != NULL)
1686 		crfree(entry->cred);
1687 	vm_map_entry_dispose(map, entry);
1688 }
1689 
1690 /*
1691  *	vm_map_simplify_entry:
1692  *
1693  *	Simplify the given map entry by merging with either neighbor.  This
1694  *	routine also has the ability to merge with both neighbors.
1695  *
1696  *	The map must be locked.
1697  *
1698  *	This routine guarantees that the passed entry remains valid (though
1699  *	possibly extended).  When merging, this routine may delete one or
1700  *	both neighbors.
1701  */
1702 void
1703 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1704 {
1705 	vm_map_entry_t next, prev;
1706 
1707 	if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1708 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1709 		return;
1710 
1711 	prev = entry->prev;
1712 	if (vm_map_mergeable_neighbors(prev, entry)) {
1713 		vm_map_entry_unlink(map, prev);
1714 		entry->start = prev->start;
1715 		entry->offset = prev->offset;
1716 		if (entry->prev != &map->header)
1717 			vm_map_entry_resize_free(map, entry->prev);
1718 		vm_map_merged_neighbor_dispose(map, prev);
1719 	}
1720 
1721 	next = entry->next;
1722 	if (vm_map_mergeable_neighbors(entry, next)) {
1723 		vm_map_entry_unlink(map, next);
1724 		entry->end = next->end;
1725 		vm_map_entry_resize_free(map, entry);
1726 		vm_map_merged_neighbor_dispose(map, next);
1727 	}
1728 }
1729 /*
1730  *	vm_map_clip_start:	[ internal use only ]
1731  *
1732  *	Asserts that the given entry begins at or after
1733  *	the specified address; if necessary,
1734  *	it splits the entry into two.
1735  */
1736 #define vm_map_clip_start(map, entry, startaddr) \
1737 { \
1738 	if (startaddr > entry->start) \
1739 		_vm_map_clip_start(map, entry, startaddr); \
1740 }
1741 
1742 /*
1743  *	This routine is called only when it is known that
1744  *	the entry must be split.
1745  */
1746 static void
1747 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1748 {
1749 	vm_map_entry_t new_entry;
1750 
1751 	VM_MAP_ASSERT_LOCKED(map);
1752 	KASSERT(entry->end > start && entry->start < start,
1753 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
1754 
1755 	/*
1756 	 * Split off the front portion -- note that we must insert the new
1757 	 * entry BEFORE this one, so that this entry has the specified
1758 	 * starting address.
1759 	 */
1760 	vm_map_simplify_entry(map, entry);
1761 
1762 	/*
1763 	 * If there is no object backing this entry, we might as well create
1764 	 * one now.  If we defer it, an object can get created after the map
1765 	 * is clipped, and individual objects will be created for the split-up
1766 	 * map.  This is a bit of a hack, but is also about the best place to
1767 	 * put this improvement.
1768 	 */
1769 	if (entry->object.vm_object == NULL && !map->system_map &&
1770 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1771 		vm_object_t object;
1772 		object = vm_object_allocate(OBJT_DEFAULT,
1773 				atop(entry->end - entry->start));
1774 		entry->object.vm_object = object;
1775 		entry->offset = 0;
1776 		if (entry->cred != NULL) {
1777 			object->cred = entry->cred;
1778 			object->charge = entry->end - entry->start;
1779 			entry->cred = NULL;
1780 		}
1781 	} else if (entry->object.vm_object != NULL &&
1782 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1783 		   entry->cred != NULL) {
1784 		VM_OBJECT_WLOCK(entry->object.vm_object);
1785 		KASSERT(entry->object.vm_object->cred == NULL,
1786 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1787 		entry->object.vm_object->cred = entry->cred;
1788 		entry->object.vm_object->charge = entry->end - entry->start;
1789 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1790 		entry->cred = NULL;
1791 	}
1792 
1793 	new_entry = vm_map_entry_create(map);
1794 	*new_entry = *entry;
1795 
1796 	new_entry->end = start;
1797 	entry->offset += (start - entry->start);
1798 	entry->start = start;
1799 	if (new_entry->cred != NULL)
1800 		crhold(entry->cred);
1801 
1802 	vm_map_entry_link(map, entry->prev, new_entry);
1803 
1804 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1805 		vm_object_reference(new_entry->object.vm_object);
1806 		/*
1807 		 * The object->un_pager.vnp.writemappings for the
1808 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1809 		 * kept as is here.  The virtual pages are
1810 		 * re-distributed among the clipped entries, so the sum is
1811 		 * left the same.
1812 		 */
1813 	}
1814 }
1815 
1816 /*
1817  *	vm_map_clip_end:	[ internal use only ]
1818  *
1819  *	Asserts that the given entry ends at or before
1820  *	the specified address; if necessary,
1821  *	it splits the entry into two.
1822  */
1823 #define vm_map_clip_end(map, entry, endaddr) \
1824 { \
1825 	if ((endaddr) < (entry->end)) \
1826 		_vm_map_clip_end((map), (entry), (endaddr)); \
1827 }
1828 
1829 /*
1830  *	This routine is called only when it is known that
1831  *	the entry must be split.
1832  */
1833 static void
1834 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1835 {
1836 	vm_map_entry_t new_entry;
1837 
1838 	VM_MAP_ASSERT_LOCKED(map);
1839 	KASSERT(entry->start < end && entry->end > end,
1840 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
1841 
1842 	/*
1843 	 * If there is no object backing this entry, we might as well create
1844 	 * one now.  If we defer it, an object can get created after the map
1845 	 * is clipped, and individual objects will be created for the split-up
1846 	 * map.  This is a bit of a hack, but is also about the best place to
1847 	 * put this improvement.
1848 	 */
1849 	if (entry->object.vm_object == NULL && !map->system_map &&
1850 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1851 		vm_object_t object;
1852 		object = vm_object_allocate(OBJT_DEFAULT,
1853 				atop(entry->end - entry->start));
1854 		entry->object.vm_object = object;
1855 		entry->offset = 0;
1856 		if (entry->cred != NULL) {
1857 			object->cred = entry->cred;
1858 			object->charge = entry->end - entry->start;
1859 			entry->cred = NULL;
1860 		}
1861 	} else if (entry->object.vm_object != NULL &&
1862 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1863 		   entry->cred != NULL) {
1864 		VM_OBJECT_WLOCK(entry->object.vm_object);
1865 		KASSERT(entry->object.vm_object->cred == NULL,
1866 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1867 		entry->object.vm_object->cred = entry->cred;
1868 		entry->object.vm_object->charge = entry->end - entry->start;
1869 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1870 		entry->cred = NULL;
1871 	}
1872 
1873 	/*
1874 	 * Create a new entry and insert it AFTER the specified entry
1875 	 */
1876 	new_entry = vm_map_entry_create(map);
1877 	*new_entry = *entry;
1878 
1879 	new_entry->start = entry->end = end;
1880 	new_entry->offset += (end - entry->start);
1881 	if (new_entry->cred != NULL)
1882 		crhold(entry->cred);
1883 
1884 	vm_map_entry_link(map, entry, new_entry);
1885 
1886 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1887 		vm_object_reference(new_entry->object.vm_object);
1888 	}
1889 }
1890 
1891 /*
1892  *	vm_map_submap:		[ kernel use only ]
1893  *
1894  *	Mark the given range as handled by a subordinate map.
1895  *
1896  *	This range must have been created with vm_map_find,
1897  *	and no other operations may have been performed on this
1898  *	range prior to calling vm_map_submap.
1899  *
1900  *	Only a limited number of operations can be performed
1901  *	within this rage after calling vm_map_submap:
1902  *		vm_fault
1903  *	[Don't try vm_map_copy!]
1904  *
1905  *	To remove a submapping, one must first remove the
1906  *	range from the superior map, and then destroy the
1907  *	submap (if desired).  [Better yet, don't try it.]
1908  */
1909 int
1910 vm_map_submap(
1911 	vm_map_t map,
1912 	vm_offset_t start,
1913 	vm_offset_t end,
1914 	vm_map_t submap)
1915 {
1916 	vm_map_entry_t entry;
1917 	int result = KERN_INVALID_ARGUMENT;
1918 
1919 	vm_map_lock(map);
1920 
1921 	VM_MAP_RANGE_CHECK(map, start, end);
1922 
1923 	if (vm_map_lookup_entry(map, start, &entry)) {
1924 		vm_map_clip_start(map, entry, start);
1925 	} else
1926 		entry = entry->next;
1927 
1928 	vm_map_clip_end(map, entry, end);
1929 
1930 	if ((entry->start == start) && (entry->end == end) &&
1931 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1932 	    (entry->object.vm_object == NULL)) {
1933 		entry->object.sub_map = submap;
1934 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1935 		result = KERN_SUCCESS;
1936 	}
1937 	vm_map_unlock(map);
1938 
1939 	return (result);
1940 }
1941 
1942 /*
1943  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1944  */
1945 #define	MAX_INIT_PT	96
1946 
1947 /*
1948  *	vm_map_pmap_enter:
1949  *
1950  *	Preload the specified map's pmap with mappings to the specified
1951  *	object's memory-resident pages.  No further physical pages are
1952  *	allocated, and no further virtual pages are retrieved from secondary
1953  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1954  *	limited number of page mappings are created at the low-end of the
1955  *	specified address range.  (For this purpose, a superpage mapping
1956  *	counts as one page mapping.)  Otherwise, all resident pages within
1957  *	the specified address range are mapped.
1958  */
1959 static void
1960 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1961     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1962 {
1963 	vm_offset_t start;
1964 	vm_page_t p, p_start;
1965 	vm_pindex_t mask, psize, threshold, tmpidx;
1966 
1967 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1968 		return;
1969 	VM_OBJECT_RLOCK(object);
1970 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1971 		VM_OBJECT_RUNLOCK(object);
1972 		VM_OBJECT_WLOCK(object);
1973 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1974 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1975 			    size);
1976 			VM_OBJECT_WUNLOCK(object);
1977 			return;
1978 		}
1979 		VM_OBJECT_LOCK_DOWNGRADE(object);
1980 	}
1981 
1982 	psize = atop(size);
1983 	if (psize + pindex > object->size) {
1984 		if (object->size < pindex) {
1985 			VM_OBJECT_RUNLOCK(object);
1986 			return;
1987 		}
1988 		psize = object->size - pindex;
1989 	}
1990 
1991 	start = 0;
1992 	p_start = NULL;
1993 	threshold = MAX_INIT_PT;
1994 
1995 	p = vm_page_find_least(object, pindex);
1996 	/*
1997 	 * Assert: the variable p is either (1) the page with the
1998 	 * least pindex greater than or equal to the parameter pindex
1999 	 * or (2) NULL.
2000 	 */
2001 	for (;
2002 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2003 	     p = TAILQ_NEXT(p, listq)) {
2004 		/*
2005 		 * don't allow an madvise to blow away our really
2006 		 * free pages allocating pv entries.
2007 		 */
2008 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2009 		    vm_page_count_severe()) ||
2010 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2011 		    tmpidx >= threshold)) {
2012 			psize = tmpidx;
2013 			break;
2014 		}
2015 		if (p->valid == VM_PAGE_BITS_ALL) {
2016 			if (p_start == NULL) {
2017 				start = addr + ptoa(tmpidx);
2018 				p_start = p;
2019 			}
2020 			/* Jump ahead if a superpage mapping is possible. */
2021 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2022 			    (pagesizes[p->psind] - 1)) == 0) {
2023 				mask = atop(pagesizes[p->psind]) - 1;
2024 				if (tmpidx + mask < psize &&
2025 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2026 					p += mask;
2027 					threshold += mask;
2028 				}
2029 			}
2030 		} else if (p_start != NULL) {
2031 			pmap_enter_object(map->pmap, start, addr +
2032 			    ptoa(tmpidx), p_start, prot);
2033 			p_start = NULL;
2034 		}
2035 	}
2036 	if (p_start != NULL)
2037 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2038 		    p_start, prot);
2039 	VM_OBJECT_RUNLOCK(object);
2040 }
2041 
2042 /*
2043  *	vm_map_protect:
2044  *
2045  *	Sets the protection of the specified address
2046  *	region in the target map.  If "set_max" is
2047  *	specified, the maximum protection is to be set;
2048  *	otherwise, only the current protection is affected.
2049  */
2050 int
2051 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2052 	       vm_prot_t new_prot, boolean_t set_max)
2053 {
2054 	vm_map_entry_t current, entry;
2055 	vm_object_t obj;
2056 	struct ucred *cred;
2057 	vm_prot_t old_prot;
2058 
2059 	if (start == end)
2060 		return (KERN_SUCCESS);
2061 
2062 	vm_map_lock(map);
2063 
2064 	/*
2065 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2066 	 * need to fault pages into the map and will drop the map lock while
2067 	 * doing so, and the VM object may end up in an inconsistent state if we
2068 	 * update the protection on the map entry in between faults.
2069 	 */
2070 	vm_map_wait_busy(map);
2071 
2072 	VM_MAP_RANGE_CHECK(map, start, end);
2073 
2074 	if (vm_map_lookup_entry(map, start, &entry)) {
2075 		vm_map_clip_start(map, entry, start);
2076 	} else {
2077 		entry = entry->next;
2078 	}
2079 
2080 	/*
2081 	 * Make a first pass to check for protection violations.
2082 	 */
2083 	for (current = entry; current->start < end; current = current->next) {
2084 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2085 			continue;
2086 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2087 			vm_map_unlock(map);
2088 			return (KERN_INVALID_ARGUMENT);
2089 		}
2090 		if ((new_prot & current->max_protection) != new_prot) {
2091 			vm_map_unlock(map);
2092 			return (KERN_PROTECTION_FAILURE);
2093 		}
2094 	}
2095 
2096 	/*
2097 	 * Do an accounting pass for private read-only mappings that
2098 	 * now will do cow due to allowed write (e.g. debugger sets
2099 	 * breakpoint on text segment)
2100 	 */
2101 	for (current = entry; current->start < end; current = current->next) {
2102 
2103 		vm_map_clip_end(map, current, end);
2104 
2105 		if (set_max ||
2106 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2107 		    ENTRY_CHARGED(current) ||
2108 		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
2109 			continue;
2110 		}
2111 
2112 		cred = curthread->td_ucred;
2113 		obj = current->object.vm_object;
2114 
2115 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2116 			if (!swap_reserve(current->end - current->start)) {
2117 				vm_map_unlock(map);
2118 				return (KERN_RESOURCE_SHORTAGE);
2119 			}
2120 			crhold(cred);
2121 			current->cred = cred;
2122 			continue;
2123 		}
2124 
2125 		VM_OBJECT_WLOCK(obj);
2126 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2127 			VM_OBJECT_WUNLOCK(obj);
2128 			continue;
2129 		}
2130 
2131 		/*
2132 		 * Charge for the whole object allocation now, since
2133 		 * we cannot distinguish between non-charged and
2134 		 * charged clipped mapping of the same object later.
2135 		 */
2136 		KASSERT(obj->charge == 0,
2137 		    ("vm_map_protect: object %p overcharged (entry %p)",
2138 		    obj, current));
2139 		if (!swap_reserve(ptoa(obj->size))) {
2140 			VM_OBJECT_WUNLOCK(obj);
2141 			vm_map_unlock(map);
2142 			return (KERN_RESOURCE_SHORTAGE);
2143 		}
2144 
2145 		crhold(cred);
2146 		obj->cred = cred;
2147 		obj->charge = ptoa(obj->size);
2148 		VM_OBJECT_WUNLOCK(obj);
2149 	}
2150 
2151 	/*
2152 	 * Go back and fix up protections. [Note that clipping is not
2153 	 * necessary the second time.]
2154 	 */
2155 	for (current = entry; current->start < end; current = current->next) {
2156 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2157 			continue;
2158 
2159 		old_prot = current->protection;
2160 
2161 		if (set_max)
2162 			current->protection =
2163 			    (current->max_protection = new_prot) &
2164 			    old_prot;
2165 		else
2166 			current->protection = new_prot;
2167 
2168 		/*
2169 		 * For user wired map entries, the normal lazy evaluation of
2170 		 * write access upgrades through soft page faults is
2171 		 * undesirable.  Instead, immediately copy any pages that are
2172 		 * copy-on-write and enable write access in the physical map.
2173 		 */
2174 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2175 		    (current->protection & VM_PROT_WRITE) != 0 &&
2176 		    (old_prot & VM_PROT_WRITE) == 0)
2177 			vm_fault_copy_entry(map, map, current, current, NULL);
2178 
2179 		/*
2180 		 * When restricting access, update the physical map.  Worry
2181 		 * about copy-on-write here.
2182 		 */
2183 		if ((old_prot & ~current->protection) != 0) {
2184 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2185 							VM_PROT_ALL)
2186 			pmap_protect(map->pmap, current->start,
2187 			    current->end,
2188 			    current->protection & MASK(current));
2189 #undef	MASK
2190 		}
2191 		vm_map_simplify_entry(map, current);
2192 	}
2193 	vm_map_unlock(map);
2194 	return (KERN_SUCCESS);
2195 }
2196 
2197 /*
2198  *	vm_map_madvise:
2199  *
2200  *	This routine traverses a processes map handling the madvise
2201  *	system call.  Advisories are classified as either those effecting
2202  *	the vm_map_entry structure, or those effecting the underlying
2203  *	objects.
2204  */
2205 int
2206 vm_map_madvise(
2207 	vm_map_t map,
2208 	vm_offset_t start,
2209 	vm_offset_t end,
2210 	int behav)
2211 {
2212 	vm_map_entry_t current, entry;
2213 	bool modify_map;
2214 
2215 	/*
2216 	 * Some madvise calls directly modify the vm_map_entry, in which case
2217 	 * we need to use an exclusive lock on the map and we need to perform
2218 	 * various clipping operations.  Otherwise we only need a read-lock
2219 	 * on the map.
2220 	 */
2221 	switch(behav) {
2222 	case MADV_NORMAL:
2223 	case MADV_SEQUENTIAL:
2224 	case MADV_RANDOM:
2225 	case MADV_NOSYNC:
2226 	case MADV_AUTOSYNC:
2227 	case MADV_NOCORE:
2228 	case MADV_CORE:
2229 		if (start == end)
2230 			return (0);
2231 		modify_map = true;
2232 		vm_map_lock(map);
2233 		break;
2234 	case MADV_WILLNEED:
2235 	case MADV_DONTNEED:
2236 	case MADV_FREE:
2237 		if (start == end)
2238 			return (0);
2239 		modify_map = false;
2240 		vm_map_lock_read(map);
2241 		break;
2242 	default:
2243 		return (EINVAL);
2244 	}
2245 
2246 	/*
2247 	 * Locate starting entry and clip if necessary.
2248 	 */
2249 	VM_MAP_RANGE_CHECK(map, start, end);
2250 
2251 	if (vm_map_lookup_entry(map, start, &entry)) {
2252 		if (modify_map)
2253 			vm_map_clip_start(map, entry, start);
2254 	} else {
2255 		entry = entry->next;
2256 	}
2257 
2258 	if (modify_map) {
2259 		/*
2260 		 * madvise behaviors that are implemented in the vm_map_entry.
2261 		 *
2262 		 * We clip the vm_map_entry so that behavioral changes are
2263 		 * limited to the specified address range.
2264 		 */
2265 		for (current = entry; current->start < end;
2266 		    current = current->next) {
2267 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2268 				continue;
2269 
2270 			vm_map_clip_end(map, current, end);
2271 
2272 			switch (behav) {
2273 			case MADV_NORMAL:
2274 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2275 				break;
2276 			case MADV_SEQUENTIAL:
2277 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2278 				break;
2279 			case MADV_RANDOM:
2280 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2281 				break;
2282 			case MADV_NOSYNC:
2283 				current->eflags |= MAP_ENTRY_NOSYNC;
2284 				break;
2285 			case MADV_AUTOSYNC:
2286 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2287 				break;
2288 			case MADV_NOCORE:
2289 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2290 				break;
2291 			case MADV_CORE:
2292 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2293 				break;
2294 			default:
2295 				break;
2296 			}
2297 			vm_map_simplify_entry(map, current);
2298 		}
2299 		vm_map_unlock(map);
2300 	} else {
2301 		vm_pindex_t pstart, pend;
2302 
2303 		/*
2304 		 * madvise behaviors that are implemented in the underlying
2305 		 * vm_object.
2306 		 *
2307 		 * Since we don't clip the vm_map_entry, we have to clip
2308 		 * the vm_object pindex and count.
2309 		 */
2310 		for (current = entry; current->start < end;
2311 		    current = current->next) {
2312 			vm_offset_t useEnd, useStart;
2313 
2314 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2315 				continue;
2316 
2317 			pstart = OFF_TO_IDX(current->offset);
2318 			pend = pstart + atop(current->end - current->start);
2319 			useStart = current->start;
2320 			useEnd = current->end;
2321 
2322 			if (current->start < start) {
2323 				pstart += atop(start - current->start);
2324 				useStart = start;
2325 			}
2326 			if (current->end > end) {
2327 				pend -= atop(current->end - end);
2328 				useEnd = end;
2329 			}
2330 
2331 			if (pstart >= pend)
2332 				continue;
2333 
2334 			/*
2335 			 * Perform the pmap_advise() before clearing
2336 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2337 			 * concurrent pmap operation, such as pmap_remove(),
2338 			 * could clear a reference in the pmap and set
2339 			 * PGA_REFERENCED on the page before the pmap_advise()
2340 			 * had completed.  Consequently, the page would appear
2341 			 * referenced based upon an old reference that
2342 			 * occurred before this pmap_advise() ran.
2343 			 */
2344 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2345 				pmap_advise(map->pmap, useStart, useEnd,
2346 				    behav);
2347 
2348 			vm_object_madvise(current->object.vm_object, pstart,
2349 			    pend, behav);
2350 
2351 			/*
2352 			 * Pre-populate paging structures in the
2353 			 * WILLNEED case.  For wired entries, the
2354 			 * paging structures are already populated.
2355 			 */
2356 			if (behav == MADV_WILLNEED &&
2357 			    current->wired_count == 0) {
2358 				vm_map_pmap_enter(map,
2359 				    useStart,
2360 				    current->protection,
2361 				    current->object.vm_object,
2362 				    pstart,
2363 				    ptoa(pend - pstart),
2364 				    MAP_PREFAULT_MADVISE
2365 				);
2366 			}
2367 		}
2368 		vm_map_unlock_read(map);
2369 	}
2370 	return (0);
2371 }
2372 
2373 
2374 /*
2375  *	vm_map_inherit:
2376  *
2377  *	Sets the inheritance of the specified address
2378  *	range in the target map.  Inheritance
2379  *	affects how the map will be shared with
2380  *	child maps at the time of vmspace_fork.
2381  */
2382 int
2383 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2384 	       vm_inherit_t new_inheritance)
2385 {
2386 	vm_map_entry_t entry;
2387 	vm_map_entry_t temp_entry;
2388 
2389 	switch (new_inheritance) {
2390 	case VM_INHERIT_NONE:
2391 	case VM_INHERIT_COPY:
2392 	case VM_INHERIT_SHARE:
2393 	case VM_INHERIT_ZERO:
2394 		break;
2395 	default:
2396 		return (KERN_INVALID_ARGUMENT);
2397 	}
2398 	if (start == end)
2399 		return (KERN_SUCCESS);
2400 	vm_map_lock(map);
2401 	VM_MAP_RANGE_CHECK(map, start, end);
2402 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2403 		entry = temp_entry;
2404 		vm_map_clip_start(map, entry, start);
2405 	} else
2406 		entry = temp_entry->next;
2407 	while (entry->start < end) {
2408 		vm_map_clip_end(map, entry, end);
2409 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2410 		    new_inheritance != VM_INHERIT_ZERO)
2411 			entry->inheritance = new_inheritance;
2412 		vm_map_simplify_entry(map, entry);
2413 		entry = entry->next;
2414 	}
2415 	vm_map_unlock(map);
2416 	return (KERN_SUCCESS);
2417 }
2418 
2419 /*
2420  *	vm_map_unwire:
2421  *
2422  *	Implements both kernel and user unwiring.
2423  */
2424 int
2425 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2426     int flags)
2427 {
2428 	vm_map_entry_t entry, first_entry, tmp_entry;
2429 	vm_offset_t saved_start;
2430 	unsigned int last_timestamp;
2431 	int rv;
2432 	boolean_t need_wakeup, result, user_unwire;
2433 
2434 	if (start == end)
2435 		return (KERN_SUCCESS);
2436 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2437 	vm_map_lock(map);
2438 	VM_MAP_RANGE_CHECK(map, start, end);
2439 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2440 		if (flags & VM_MAP_WIRE_HOLESOK)
2441 			first_entry = first_entry->next;
2442 		else {
2443 			vm_map_unlock(map);
2444 			return (KERN_INVALID_ADDRESS);
2445 		}
2446 	}
2447 	last_timestamp = map->timestamp;
2448 	entry = first_entry;
2449 	while (entry->start < end) {
2450 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2451 			/*
2452 			 * We have not yet clipped the entry.
2453 			 */
2454 			saved_start = (start >= entry->start) ? start :
2455 			    entry->start;
2456 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2457 			if (vm_map_unlock_and_wait(map, 0)) {
2458 				/*
2459 				 * Allow interruption of user unwiring?
2460 				 */
2461 			}
2462 			vm_map_lock(map);
2463 			if (last_timestamp+1 != map->timestamp) {
2464 				/*
2465 				 * Look again for the entry because the map was
2466 				 * modified while it was unlocked.
2467 				 * Specifically, the entry may have been
2468 				 * clipped, merged, or deleted.
2469 				 */
2470 				if (!vm_map_lookup_entry(map, saved_start,
2471 				    &tmp_entry)) {
2472 					if (flags & VM_MAP_WIRE_HOLESOK)
2473 						tmp_entry = tmp_entry->next;
2474 					else {
2475 						if (saved_start == start) {
2476 							/*
2477 							 * First_entry has been deleted.
2478 							 */
2479 							vm_map_unlock(map);
2480 							return (KERN_INVALID_ADDRESS);
2481 						}
2482 						end = saved_start;
2483 						rv = KERN_INVALID_ADDRESS;
2484 						goto done;
2485 					}
2486 				}
2487 				if (entry == first_entry)
2488 					first_entry = tmp_entry;
2489 				else
2490 					first_entry = NULL;
2491 				entry = tmp_entry;
2492 			}
2493 			last_timestamp = map->timestamp;
2494 			continue;
2495 		}
2496 		vm_map_clip_start(map, entry, start);
2497 		vm_map_clip_end(map, entry, end);
2498 		/*
2499 		 * Mark the entry in case the map lock is released.  (See
2500 		 * above.)
2501 		 */
2502 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2503 		    entry->wiring_thread == NULL,
2504 		    ("owned map entry %p", entry));
2505 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2506 		entry->wiring_thread = curthread;
2507 		/*
2508 		 * Check the map for holes in the specified region.
2509 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2510 		 */
2511 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2512 		    (entry->end < end && entry->next->start > entry->end)) {
2513 			end = entry->end;
2514 			rv = KERN_INVALID_ADDRESS;
2515 			goto done;
2516 		}
2517 		/*
2518 		 * If system unwiring, require that the entry is system wired.
2519 		 */
2520 		if (!user_unwire &&
2521 		    vm_map_entry_system_wired_count(entry) == 0) {
2522 			end = entry->end;
2523 			rv = KERN_INVALID_ARGUMENT;
2524 			goto done;
2525 		}
2526 		entry = entry->next;
2527 	}
2528 	rv = KERN_SUCCESS;
2529 done:
2530 	need_wakeup = FALSE;
2531 	if (first_entry == NULL) {
2532 		result = vm_map_lookup_entry(map, start, &first_entry);
2533 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2534 			first_entry = first_entry->next;
2535 		else
2536 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2537 	}
2538 	for (entry = first_entry; entry->start < end; entry = entry->next) {
2539 		/*
2540 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2541 		 * space in the unwired region could have been mapped
2542 		 * while the map lock was dropped for draining
2543 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2544 		 * could be simultaneously wiring this new mapping
2545 		 * entry.  Detect these cases and skip any entries
2546 		 * marked as in transition by us.
2547 		 */
2548 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2549 		    entry->wiring_thread != curthread) {
2550 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2551 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2552 			continue;
2553 		}
2554 
2555 		if (rv == KERN_SUCCESS && (!user_unwire ||
2556 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2557 			if (user_unwire)
2558 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2559 			if (entry->wired_count == 1)
2560 				vm_map_entry_unwire(map, entry);
2561 			else
2562 				entry->wired_count--;
2563 		}
2564 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2565 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2566 		KASSERT(entry->wiring_thread == curthread,
2567 		    ("vm_map_unwire: alien wire %p", entry));
2568 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2569 		entry->wiring_thread = NULL;
2570 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2571 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2572 			need_wakeup = TRUE;
2573 		}
2574 		vm_map_simplify_entry(map, entry);
2575 	}
2576 	vm_map_unlock(map);
2577 	if (need_wakeup)
2578 		vm_map_wakeup(map);
2579 	return (rv);
2580 }
2581 
2582 /*
2583  *	vm_map_wire_entry_failure:
2584  *
2585  *	Handle a wiring failure on the given entry.
2586  *
2587  *	The map should be locked.
2588  */
2589 static void
2590 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2591     vm_offset_t failed_addr)
2592 {
2593 
2594 	VM_MAP_ASSERT_LOCKED(map);
2595 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2596 	    entry->wired_count == 1,
2597 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2598 	KASSERT(failed_addr < entry->end,
2599 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2600 
2601 	/*
2602 	 * If any pages at the start of this entry were successfully wired,
2603 	 * then unwire them.
2604 	 */
2605 	if (failed_addr > entry->start) {
2606 		pmap_unwire(map->pmap, entry->start, failed_addr);
2607 		vm_object_unwire(entry->object.vm_object, entry->offset,
2608 		    failed_addr - entry->start, PQ_ACTIVE);
2609 	}
2610 
2611 	/*
2612 	 * Assign an out-of-range value to represent the failure to wire this
2613 	 * entry.
2614 	 */
2615 	entry->wired_count = -1;
2616 }
2617 
2618 /*
2619  *	vm_map_wire:
2620  *
2621  *	Implements both kernel and user wiring.
2622  */
2623 int
2624 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2625     int flags)
2626 {
2627 	vm_map_entry_t entry, first_entry, tmp_entry;
2628 	vm_offset_t faddr, saved_end, saved_start;
2629 	unsigned int last_timestamp;
2630 	int rv;
2631 	boolean_t need_wakeup, result, user_wire;
2632 	vm_prot_t prot;
2633 
2634 	if (start == end)
2635 		return (KERN_SUCCESS);
2636 	prot = 0;
2637 	if (flags & VM_MAP_WIRE_WRITE)
2638 		prot |= VM_PROT_WRITE;
2639 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2640 	vm_map_lock(map);
2641 	VM_MAP_RANGE_CHECK(map, start, end);
2642 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2643 		if (flags & VM_MAP_WIRE_HOLESOK)
2644 			first_entry = first_entry->next;
2645 		else {
2646 			vm_map_unlock(map);
2647 			return (KERN_INVALID_ADDRESS);
2648 		}
2649 	}
2650 	last_timestamp = map->timestamp;
2651 	entry = first_entry;
2652 	while (entry->start < end) {
2653 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2654 			/*
2655 			 * We have not yet clipped the entry.
2656 			 */
2657 			saved_start = (start >= entry->start) ? start :
2658 			    entry->start;
2659 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2660 			if (vm_map_unlock_and_wait(map, 0)) {
2661 				/*
2662 				 * Allow interruption of user wiring?
2663 				 */
2664 			}
2665 			vm_map_lock(map);
2666 			if (last_timestamp + 1 != map->timestamp) {
2667 				/*
2668 				 * Look again for the entry because the map was
2669 				 * modified while it was unlocked.
2670 				 * Specifically, the entry may have been
2671 				 * clipped, merged, or deleted.
2672 				 */
2673 				if (!vm_map_lookup_entry(map, saved_start,
2674 				    &tmp_entry)) {
2675 					if (flags & VM_MAP_WIRE_HOLESOK)
2676 						tmp_entry = tmp_entry->next;
2677 					else {
2678 						if (saved_start == start) {
2679 							/*
2680 							 * first_entry has been deleted.
2681 							 */
2682 							vm_map_unlock(map);
2683 							return (KERN_INVALID_ADDRESS);
2684 						}
2685 						end = saved_start;
2686 						rv = KERN_INVALID_ADDRESS;
2687 						goto done;
2688 					}
2689 				}
2690 				if (entry == first_entry)
2691 					first_entry = tmp_entry;
2692 				else
2693 					first_entry = NULL;
2694 				entry = tmp_entry;
2695 			}
2696 			last_timestamp = map->timestamp;
2697 			continue;
2698 		}
2699 		vm_map_clip_start(map, entry, start);
2700 		vm_map_clip_end(map, entry, end);
2701 		/*
2702 		 * Mark the entry in case the map lock is released.  (See
2703 		 * above.)
2704 		 */
2705 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2706 		    entry->wiring_thread == NULL,
2707 		    ("owned map entry %p", entry));
2708 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2709 		entry->wiring_thread = curthread;
2710 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2711 		    || (entry->protection & prot) != prot) {
2712 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2713 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2714 				end = entry->end;
2715 				rv = KERN_INVALID_ADDRESS;
2716 				goto done;
2717 			}
2718 			goto next_entry;
2719 		}
2720 		if (entry->wired_count == 0) {
2721 			entry->wired_count++;
2722 			saved_start = entry->start;
2723 			saved_end = entry->end;
2724 
2725 			/*
2726 			 * Release the map lock, relying on the in-transition
2727 			 * mark.  Mark the map busy for fork.
2728 			 */
2729 			vm_map_busy(map);
2730 			vm_map_unlock(map);
2731 
2732 			faddr = saved_start;
2733 			do {
2734 				/*
2735 				 * Simulate a fault to get the page and enter
2736 				 * it into the physical map.
2737 				 */
2738 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2739 				    VM_FAULT_WIRE)) != KERN_SUCCESS)
2740 					break;
2741 			} while ((faddr += PAGE_SIZE) < saved_end);
2742 			vm_map_lock(map);
2743 			vm_map_unbusy(map);
2744 			if (last_timestamp + 1 != map->timestamp) {
2745 				/*
2746 				 * Look again for the entry because the map was
2747 				 * modified while it was unlocked.  The entry
2748 				 * may have been clipped, but NOT merged or
2749 				 * deleted.
2750 				 */
2751 				result = vm_map_lookup_entry(map, saved_start,
2752 				    &tmp_entry);
2753 				KASSERT(result, ("vm_map_wire: lookup failed"));
2754 				if (entry == first_entry)
2755 					first_entry = tmp_entry;
2756 				else
2757 					first_entry = NULL;
2758 				entry = tmp_entry;
2759 				while (entry->end < saved_end) {
2760 					/*
2761 					 * In case of failure, handle entries
2762 					 * that were not fully wired here;
2763 					 * fully wired entries are handled
2764 					 * later.
2765 					 */
2766 					if (rv != KERN_SUCCESS &&
2767 					    faddr < entry->end)
2768 						vm_map_wire_entry_failure(map,
2769 						    entry, faddr);
2770 					entry = entry->next;
2771 				}
2772 			}
2773 			last_timestamp = map->timestamp;
2774 			if (rv != KERN_SUCCESS) {
2775 				vm_map_wire_entry_failure(map, entry, faddr);
2776 				end = entry->end;
2777 				goto done;
2778 			}
2779 		} else if (!user_wire ||
2780 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2781 			entry->wired_count++;
2782 		}
2783 		/*
2784 		 * Check the map for holes in the specified region.
2785 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2786 		 */
2787 	next_entry:
2788 		if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2789 		    entry->end < end && entry->next->start > entry->end) {
2790 			end = entry->end;
2791 			rv = KERN_INVALID_ADDRESS;
2792 			goto done;
2793 		}
2794 		entry = entry->next;
2795 	}
2796 	rv = KERN_SUCCESS;
2797 done:
2798 	need_wakeup = FALSE;
2799 	if (first_entry == NULL) {
2800 		result = vm_map_lookup_entry(map, start, &first_entry);
2801 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2802 			first_entry = first_entry->next;
2803 		else
2804 			KASSERT(result, ("vm_map_wire: lookup failed"));
2805 	}
2806 	for (entry = first_entry; entry->start < end; entry = entry->next) {
2807 		/*
2808 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2809 		 * space in the unwired region could have been mapped
2810 		 * while the map lock was dropped for faulting in the
2811 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2812 		 * Moreover, another thread could be simultaneously
2813 		 * wiring this new mapping entry.  Detect these cases
2814 		 * and skip any entries marked as in transition not by us.
2815 		 */
2816 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2817 		    entry->wiring_thread != curthread) {
2818 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2819 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2820 			continue;
2821 		}
2822 
2823 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2824 			goto next_entry_done;
2825 
2826 		if (rv == KERN_SUCCESS) {
2827 			if (user_wire)
2828 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2829 		} else if (entry->wired_count == -1) {
2830 			/*
2831 			 * Wiring failed on this entry.  Thus, unwiring is
2832 			 * unnecessary.
2833 			 */
2834 			entry->wired_count = 0;
2835 		} else if (!user_wire ||
2836 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2837 			/*
2838 			 * Undo the wiring.  Wiring succeeded on this entry
2839 			 * but failed on a later entry.
2840 			 */
2841 			if (entry->wired_count == 1)
2842 				vm_map_entry_unwire(map, entry);
2843 			else
2844 				entry->wired_count--;
2845 		}
2846 	next_entry_done:
2847 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2848 		    ("vm_map_wire: in-transition flag missing %p", entry));
2849 		KASSERT(entry->wiring_thread == curthread,
2850 		    ("vm_map_wire: alien wire %p", entry));
2851 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2852 		    MAP_ENTRY_WIRE_SKIPPED);
2853 		entry->wiring_thread = NULL;
2854 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2855 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2856 			need_wakeup = TRUE;
2857 		}
2858 		vm_map_simplify_entry(map, entry);
2859 	}
2860 	vm_map_unlock(map);
2861 	if (need_wakeup)
2862 		vm_map_wakeup(map);
2863 	return (rv);
2864 }
2865 
2866 /*
2867  * vm_map_sync
2868  *
2869  * Push any dirty cached pages in the address range to their pager.
2870  * If syncio is TRUE, dirty pages are written synchronously.
2871  * If invalidate is TRUE, any cached pages are freed as well.
2872  *
2873  * If the size of the region from start to end is zero, we are
2874  * supposed to flush all modified pages within the region containing
2875  * start.  Unfortunately, a region can be split or coalesced with
2876  * neighboring regions, making it difficult to determine what the
2877  * original region was.  Therefore, we approximate this requirement by
2878  * flushing the current region containing start.
2879  *
2880  * Returns an error if any part of the specified range is not mapped.
2881  */
2882 int
2883 vm_map_sync(
2884 	vm_map_t map,
2885 	vm_offset_t start,
2886 	vm_offset_t end,
2887 	boolean_t syncio,
2888 	boolean_t invalidate)
2889 {
2890 	vm_map_entry_t current;
2891 	vm_map_entry_t entry;
2892 	vm_size_t size;
2893 	vm_object_t object;
2894 	vm_ooffset_t offset;
2895 	unsigned int last_timestamp;
2896 	boolean_t failed;
2897 
2898 	vm_map_lock_read(map);
2899 	VM_MAP_RANGE_CHECK(map, start, end);
2900 	if (!vm_map_lookup_entry(map, start, &entry)) {
2901 		vm_map_unlock_read(map);
2902 		return (KERN_INVALID_ADDRESS);
2903 	} else if (start == end) {
2904 		start = entry->start;
2905 		end = entry->end;
2906 	}
2907 	/*
2908 	 * Make a first pass to check for user-wired memory and holes.
2909 	 */
2910 	for (current = entry; current->start < end; current = current->next) {
2911 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2912 			vm_map_unlock_read(map);
2913 			return (KERN_INVALID_ARGUMENT);
2914 		}
2915 		if (end > current->end &&
2916 		    current->end != current->next->start) {
2917 			vm_map_unlock_read(map);
2918 			return (KERN_INVALID_ADDRESS);
2919 		}
2920 	}
2921 
2922 	if (invalidate)
2923 		pmap_remove(map->pmap, start, end);
2924 	failed = FALSE;
2925 
2926 	/*
2927 	 * Make a second pass, cleaning/uncaching pages from the indicated
2928 	 * objects as we go.
2929 	 */
2930 	for (current = entry; current->start < end;) {
2931 		offset = current->offset + (start - current->start);
2932 		size = (end <= current->end ? end : current->end) - start;
2933 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2934 			vm_map_t smap;
2935 			vm_map_entry_t tentry;
2936 			vm_size_t tsize;
2937 
2938 			smap = current->object.sub_map;
2939 			vm_map_lock_read(smap);
2940 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2941 			tsize = tentry->end - offset;
2942 			if (tsize < size)
2943 				size = tsize;
2944 			object = tentry->object.vm_object;
2945 			offset = tentry->offset + (offset - tentry->start);
2946 			vm_map_unlock_read(smap);
2947 		} else {
2948 			object = current->object.vm_object;
2949 		}
2950 		vm_object_reference(object);
2951 		last_timestamp = map->timestamp;
2952 		vm_map_unlock_read(map);
2953 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2954 			failed = TRUE;
2955 		start += size;
2956 		vm_object_deallocate(object);
2957 		vm_map_lock_read(map);
2958 		if (last_timestamp == map->timestamp ||
2959 		    !vm_map_lookup_entry(map, start, &current))
2960 			current = current->next;
2961 	}
2962 
2963 	vm_map_unlock_read(map);
2964 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2965 }
2966 
2967 /*
2968  *	vm_map_entry_unwire:	[ internal use only ]
2969  *
2970  *	Make the region specified by this entry pageable.
2971  *
2972  *	The map in question should be locked.
2973  *	[This is the reason for this routine's existence.]
2974  */
2975 static void
2976 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2977 {
2978 
2979 	VM_MAP_ASSERT_LOCKED(map);
2980 	KASSERT(entry->wired_count > 0,
2981 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
2982 	pmap_unwire(map->pmap, entry->start, entry->end);
2983 	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2984 	    entry->start, PQ_ACTIVE);
2985 	entry->wired_count = 0;
2986 }
2987 
2988 static void
2989 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2990 {
2991 
2992 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2993 		vm_object_deallocate(entry->object.vm_object);
2994 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2995 }
2996 
2997 /*
2998  *	vm_map_entry_delete:	[ internal use only ]
2999  *
3000  *	Deallocate the given entry from the target map.
3001  */
3002 static void
3003 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3004 {
3005 	vm_object_t object;
3006 	vm_pindex_t offidxstart, offidxend, count, size1;
3007 	vm_size_t size;
3008 
3009 	vm_map_entry_unlink(map, entry);
3010 	object = entry->object.vm_object;
3011 
3012 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3013 		MPASS(entry->cred == NULL);
3014 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3015 		MPASS(object == NULL);
3016 		vm_map_entry_deallocate(entry, map->system_map);
3017 		return;
3018 	}
3019 
3020 	size = entry->end - entry->start;
3021 	map->size -= size;
3022 
3023 	if (entry->cred != NULL) {
3024 		swap_release_by_cred(size, entry->cred);
3025 		crfree(entry->cred);
3026 	}
3027 
3028 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3029 	    (object != NULL)) {
3030 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3031 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3032 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3033 		count = atop(size);
3034 		offidxstart = OFF_TO_IDX(entry->offset);
3035 		offidxend = offidxstart + count;
3036 		VM_OBJECT_WLOCK(object);
3037 		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3038 		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3039 		    object == kernel_object)) {
3040 			vm_object_collapse(object);
3041 
3042 			/*
3043 			 * The option OBJPR_NOTMAPPED can be passed here
3044 			 * because vm_map_delete() already performed
3045 			 * pmap_remove() on the only mapping to this range
3046 			 * of pages.
3047 			 */
3048 			vm_object_page_remove(object, offidxstart, offidxend,
3049 			    OBJPR_NOTMAPPED);
3050 			if (object->type == OBJT_SWAP)
3051 				swap_pager_freespace(object, offidxstart,
3052 				    count);
3053 			if (offidxend >= object->size &&
3054 			    offidxstart < object->size) {
3055 				size1 = object->size;
3056 				object->size = offidxstart;
3057 				if (object->cred != NULL) {
3058 					size1 -= object->size;
3059 					KASSERT(object->charge >= ptoa(size1),
3060 					    ("object %p charge < 0", object));
3061 					swap_release_by_cred(ptoa(size1),
3062 					    object->cred);
3063 					object->charge -= ptoa(size1);
3064 				}
3065 			}
3066 		}
3067 		VM_OBJECT_WUNLOCK(object);
3068 	} else
3069 		entry->object.vm_object = NULL;
3070 	if (map->system_map)
3071 		vm_map_entry_deallocate(entry, TRUE);
3072 	else {
3073 		entry->next = curthread->td_map_def_user;
3074 		curthread->td_map_def_user = entry;
3075 	}
3076 }
3077 
3078 /*
3079  *	vm_map_delete:	[ internal use only ]
3080  *
3081  *	Deallocates the given address range from the target
3082  *	map.
3083  */
3084 int
3085 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3086 {
3087 	vm_map_entry_t entry;
3088 	vm_map_entry_t first_entry;
3089 
3090 	VM_MAP_ASSERT_LOCKED(map);
3091 	if (start == end)
3092 		return (KERN_SUCCESS);
3093 
3094 	/*
3095 	 * Find the start of the region, and clip it
3096 	 */
3097 	if (!vm_map_lookup_entry(map, start, &first_entry))
3098 		entry = first_entry->next;
3099 	else {
3100 		entry = first_entry;
3101 		vm_map_clip_start(map, entry, start);
3102 	}
3103 
3104 	/*
3105 	 * Step through all entries in this region
3106 	 */
3107 	while (entry->start < end) {
3108 		vm_map_entry_t next;
3109 
3110 		/*
3111 		 * Wait for wiring or unwiring of an entry to complete.
3112 		 * Also wait for any system wirings to disappear on
3113 		 * user maps.
3114 		 */
3115 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3116 		    (vm_map_pmap(map) != kernel_pmap &&
3117 		    vm_map_entry_system_wired_count(entry) != 0)) {
3118 			unsigned int last_timestamp;
3119 			vm_offset_t saved_start;
3120 			vm_map_entry_t tmp_entry;
3121 
3122 			saved_start = entry->start;
3123 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3124 			last_timestamp = map->timestamp;
3125 			(void) vm_map_unlock_and_wait(map, 0);
3126 			vm_map_lock(map);
3127 			if (last_timestamp + 1 != map->timestamp) {
3128 				/*
3129 				 * Look again for the entry because the map was
3130 				 * modified while it was unlocked.
3131 				 * Specifically, the entry may have been
3132 				 * clipped, merged, or deleted.
3133 				 */
3134 				if (!vm_map_lookup_entry(map, saved_start,
3135 							 &tmp_entry))
3136 					entry = tmp_entry->next;
3137 				else {
3138 					entry = tmp_entry;
3139 					vm_map_clip_start(map, entry,
3140 							  saved_start);
3141 				}
3142 			}
3143 			continue;
3144 		}
3145 		vm_map_clip_end(map, entry, end);
3146 
3147 		next = entry->next;
3148 
3149 		/*
3150 		 * Unwire before removing addresses from the pmap; otherwise,
3151 		 * unwiring will put the entries back in the pmap.
3152 		 */
3153 		if (entry->wired_count != 0)
3154 			vm_map_entry_unwire(map, entry);
3155 
3156 		/*
3157 		 * Remove mappings for the pages, but only if the
3158 		 * mappings could exist.  For instance, it does not
3159 		 * make sense to call pmap_remove() for guard entries.
3160 		 */
3161 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3162 		    entry->object.vm_object != NULL)
3163 			pmap_remove(map->pmap, entry->start, entry->end);
3164 
3165 		/*
3166 		 * Delete the entry only after removing all pmap
3167 		 * entries pointing to its pages.  (Otherwise, its
3168 		 * page frames may be reallocated, and any modify bits
3169 		 * will be set in the wrong object!)
3170 		 */
3171 		vm_map_entry_delete(map, entry);
3172 		entry = next;
3173 	}
3174 	return (KERN_SUCCESS);
3175 }
3176 
3177 /*
3178  *	vm_map_remove:
3179  *
3180  *	Remove the given address range from the target map.
3181  *	This is the exported form of vm_map_delete.
3182  */
3183 int
3184 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3185 {
3186 	int result;
3187 
3188 	vm_map_lock(map);
3189 	VM_MAP_RANGE_CHECK(map, start, end);
3190 	result = vm_map_delete(map, start, end);
3191 	vm_map_unlock(map);
3192 	return (result);
3193 }
3194 
3195 /*
3196  *	vm_map_check_protection:
3197  *
3198  *	Assert that the target map allows the specified privilege on the
3199  *	entire address region given.  The entire region must be allocated.
3200  *
3201  *	WARNING!  This code does not and should not check whether the
3202  *	contents of the region is accessible.  For example a smaller file
3203  *	might be mapped into a larger address space.
3204  *
3205  *	NOTE!  This code is also called by munmap().
3206  *
3207  *	The map must be locked.  A read lock is sufficient.
3208  */
3209 boolean_t
3210 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3211 			vm_prot_t protection)
3212 {
3213 	vm_map_entry_t entry;
3214 	vm_map_entry_t tmp_entry;
3215 
3216 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3217 		return (FALSE);
3218 	entry = tmp_entry;
3219 
3220 	while (start < end) {
3221 		/*
3222 		 * No holes allowed!
3223 		 */
3224 		if (start < entry->start)
3225 			return (FALSE);
3226 		/*
3227 		 * Check protection associated with entry.
3228 		 */
3229 		if ((entry->protection & protection) != protection)
3230 			return (FALSE);
3231 		/* go to next entry */
3232 		start = entry->end;
3233 		entry = entry->next;
3234 	}
3235 	return (TRUE);
3236 }
3237 
3238 /*
3239  *	vm_map_copy_entry:
3240  *
3241  *	Copies the contents of the source entry to the destination
3242  *	entry.  The entries *must* be aligned properly.
3243  */
3244 static void
3245 vm_map_copy_entry(
3246 	vm_map_t src_map,
3247 	vm_map_t dst_map,
3248 	vm_map_entry_t src_entry,
3249 	vm_map_entry_t dst_entry,
3250 	vm_ooffset_t *fork_charge)
3251 {
3252 	vm_object_t src_object;
3253 	vm_map_entry_t fake_entry;
3254 	vm_offset_t size;
3255 	struct ucred *cred;
3256 	int charged;
3257 
3258 	VM_MAP_ASSERT_LOCKED(dst_map);
3259 
3260 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3261 		return;
3262 
3263 	if (src_entry->wired_count == 0 ||
3264 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3265 		/*
3266 		 * If the source entry is marked needs_copy, it is already
3267 		 * write-protected.
3268 		 */
3269 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3270 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3271 			pmap_protect(src_map->pmap,
3272 			    src_entry->start,
3273 			    src_entry->end,
3274 			    src_entry->protection & ~VM_PROT_WRITE);
3275 		}
3276 
3277 		/*
3278 		 * Make a copy of the object.
3279 		 */
3280 		size = src_entry->end - src_entry->start;
3281 		if ((src_object = src_entry->object.vm_object) != NULL) {
3282 			VM_OBJECT_WLOCK(src_object);
3283 			charged = ENTRY_CHARGED(src_entry);
3284 			if (src_object->handle == NULL &&
3285 			    (src_object->type == OBJT_DEFAULT ||
3286 			    src_object->type == OBJT_SWAP)) {
3287 				vm_object_collapse(src_object);
3288 				if ((src_object->flags & (OBJ_NOSPLIT |
3289 				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3290 					vm_object_split(src_entry);
3291 					src_object =
3292 					    src_entry->object.vm_object;
3293 				}
3294 			}
3295 			vm_object_reference_locked(src_object);
3296 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3297 			if (src_entry->cred != NULL &&
3298 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3299 				KASSERT(src_object->cred == NULL,
3300 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3301 				     src_object));
3302 				src_object->cred = src_entry->cred;
3303 				src_object->charge = size;
3304 			}
3305 			VM_OBJECT_WUNLOCK(src_object);
3306 			dst_entry->object.vm_object = src_object;
3307 			if (charged) {
3308 				cred = curthread->td_ucred;
3309 				crhold(cred);
3310 				dst_entry->cred = cred;
3311 				*fork_charge += size;
3312 				if (!(src_entry->eflags &
3313 				      MAP_ENTRY_NEEDS_COPY)) {
3314 					crhold(cred);
3315 					src_entry->cred = cred;
3316 					*fork_charge += size;
3317 				}
3318 			}
3319 			src_entry->eflags |= MAP_ENTRY_COW |
3320 			    MAP_ENTRY_NEEDS_COPY;
3321 			dst_entry->eflags |= MAP_ENTRY_COW |
3322 			    MAP_ENTRY_NEEDS_COPY;
3323 			dst_entry->offset = src_entry->offset;
3324 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3325 				/*
3326 				 * MAP_ENTRY_VN_WRITECNT cannot
3327 				 * indicate write reference from
3328 				 * src_entry, since the entry is
3329 				 * marked as needs copy.  Allocate a
3330 				 * fake entry that is used to
3331 				 * decrement object->un_pager.vnp.writecount
3332 				 * at the appropriate time.  Attach
3333 				 * fake_entry to the deferred list.
3334 				 */
3335 				fake_entry = vm_map_entry_create(dst_map);
3336 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3337 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3338 				vm_object_reference(src_object);
3339 				fake_entry->object.vm_object = src_object;
3340 				fake_entry->start = src_entry->start;
3341 				fake_entry->end = src_entry->end;
3342 				fake_entry->next = curthread->td_map_def_user;
3343 				curthread->td_map_def_user = fake_entry;
3344 			}
3345 
3346 			pmap_copy(dst_map->pmap, src_map->pmap,
3347 			    dst_entry->start, dst_entry->end - dst_entry->start,
3348 			    src_entry->start);
3349 		} else {
3350 			dst_entry->object.vm_object = NULL;
3351 			dst_entry->offset = 0;
3352 			if (src_entry->cred != NULL) {
3353 				dst_entry->cred = curthread->td_ucred;
3354 				crhold(dst_entry->cred);
3355 				*fork_charge += size;
3356 			}
3357 		}
3358 	} else {
3359 		/*
3360 		 * We don't want to make writeable wired pages copy-on-write.
3361 		 * Immediately copy these pages into the new map by simulating
3362 		 * page faults.  The new pages are pageable.
3363 		 */
3364 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3365 		    fork_charge);
3366 	}
3367 }
3368 
3369 /*
3370  * vmspace_map_entry_forked:
3371  * Update the newly-forked vmspace each time a map entry is inherited
3372  * or copied.  The values for vm_dsize and vm_tsize are approximate
3373  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3374  */
3375 static void
3376 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3377     vm_map_entry_t entry)
3378 {
3379 	vm_size_t entrysize;
3380 	vm_offset_t newend;
3381 
3382 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3383 		return;
3384 	entrysize = entry->end - entry->start;
3385 	vm2->vm_map.size += entrysize;
3386 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3387 		vm2->vm_ssize += btoc(entrysize);
3388 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3389 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3390 		newend = MIN(entry->end,
3391 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3392 		vm2->vm_dsize += btoc(newend - entry->start);
3393 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3394 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3395 		newend = MIN(entry->end,
3396 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3397 		vm2->vm_tsize += btoc(newend - entry->start);
3398 	}
3399 }
3400 
3401 /*
3402  * vmspace_fork:
3403  * Create a new process vmspace structure and vm_map
3404  * based on those of an existing process.  The new map
3405  * is based on the old map, according to the inheritance
3406  * values on the regions in that map.
3407  *
3408  * XXX It might be worth coalescing the entries added to the new vmspace.
3409  *
3410  * The source map must not be locked.
3411  */
3412 struct vmspace *
3413 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3414 {
3415 	struct vmspace *vm2;
3416 	vm_map_t new_map, old_map;
3417 	vm_map_entry_t new_entry, old_entry;
3418 	vm_object_t object;
3419 	int locked;
3420 	vm_inherit_t inh;
3421 
3422 	old_map = &vm1->vm_map;
3423 	/* Copy immutable fields of vm1 to vm2. */
3424 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), NULL);
3425 	if (vm2 == NULL)
3426 		return (NULL);
3427 	vm2->vm_taddr = vm1->vm_taddr;
3428 	vm2->vm_daddr = vm1->vm_daddr;
3429 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3430 	vm_map_lock(old_map);
3431 	if (old_map->busy)
3432 		vm_map_wait_busy(old_map);
3433 	new_map = &vm2->vm_map;
3434 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3435 	KASSERT(locked, ("vmspace_fork: lock failed"));
3436 
3437 	old_entry = old_map->header.next;
3438 
3439 	while (old_entry != &old_map->header) {
3440 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3441 			panic("vm_map_fork: encountered a submap");
3442 
3443 		inh = old_entry->inheritance;
3444 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3445 		    inh != VM_INHERIT_NONE)
3446 			inh = VM_INHERIT_COPY;
3447 
3448 		switch (inh) {
3449 		case VM_INHERIT_NONE:
3450 			break;
3451 
3452 		case VM_INHERIT_SHARE:
3453 			/*
3454 			 * Clone the entry, creating the shared object if necessary.
3455 			 */
3456 			object = old_entry->object.vm_object;
3457 			if (object == NULL) {
3458 				object = vm_object_allocate(OBJT_DEFAULT,
3459 					atop(old_entry->end - old_entry->start));
3460 				old_entry->object.vm_object = object;
3461 				old_entry->offset = 0;
3462 				if (old_entry->cred != NULL) {
3463 					object->cred = old_entry->cred;
3464 					object->charge = old_entry->end -
3465 					    old_entry->start;
3466 					old_entry->cred = NULL;
3467 				}
3468 			}
3469 
3470 			/*
3471 			 * Add the reference before calling vm_object_shadow
3472 			 * to insure that a shadow object is created.
3473 			 */
3474 			vm_object_reference(object);
3475 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3476 				vm_object_shadow(&old_entry->object.vm_object,
3477 				    &old_entry->offset,
3478 				    old_entry->end - old_entry->start);
3479 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3480 				/* Transfer the second reference too. */
3481 				vm_object_reference(
3482 				    old_entry->object.vm_object);
3483 
3484 				/*
3485 				 * As in vm_map_simplify_entry(), the
3486 				 * vnode lock will not be acquired in
3487 				 * this call to vm_object_deallocate().
3488 				 */
3489 				vm_object_deallocate(object);
3490 				object = old_entry->object.vm_object;
3491 			}
3492 			VM_OBJECT_WLOCK(object);
3493 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3494 			if (old_entry->cred != NULL) {
3495 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3496 				object->cred = old_entry->cred;
3497 				object->charge = old_entry->end - old_entry->start;
3498 				old_entry->cred = NULL;
3499 			}
3500 
3501 			/*
3502 			 * Assert the correct state of the vnode
3503 			 * v_writecount while the object is locked, to
3504 			 * not relock it later for the assertion
3505 			 * correctness.
3506 			 */
3507 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3508 			    object->type == OBJT_VNODE) {
3509 				KASSERT(((struct vnode *)object->handle)->
3510 				    v_writecount > 0,
3511 				    ("vmspace_fork: v_writecount %p", object));
3512 				KASSERT(object->un_pager.vnp.writemappings > 0,
3513 				    ("vmspace_fork: vnp.writecount %p",
3514 				    object));
3515 			}
3516 			VM_OBJECT_WUNLOCK(object);
3517 
3518 			/*
3519 			 * Clone the entry, referencing the shared object.
3520 			 */
3521 			new_entry = vm_map_entry_create(new_map);
3522 			*new_entry = *old_entry;
3523 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3524 			    MAP_ENTRY_IN_TRANSITION);
3525 			new_entry->wiring_thread = NULL;
3526 			new_entry->wired_count = 0;
3527 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3528 				vnode_pager_update_writecount(object,
3529 				    new_entry->start, new_entry->end);
3530 			}
3531 
3532 			/*
3533 			 * Insert the entry into the new map -- we know we're
3534 			 * inserting at the end of the new map.
3535 			 */
3536 			vm_map_entry_link(new_map, new_map->header.prev,
3537 			    new_entry);
3538 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3539 
3540 			/*
3541 			 * Update the physical map
3542 			 */
3543 			pmap_copy(new_map->pmap, old_map->pmap,
3544 			    new_entry->start,
3545 			    (old_entry->end - old_entry->start),
3546 			    old_entry->start);
3547 			break;
3548 
3549 		case VM_INHERIT_COPY:
3550 			/*
3551 			 * Clone the entry and link into the map.
3552 			 */
3553 			new_entry = vm_map_entry_create(new_map);
3554 			*new_entry = *old_entry;
3555 			/*
3556 			 * Copied entry is COW over the old object.
3557 			 */
3558 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3559 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3560 			new_entry->wiring_thread = NULL;
3561 			new_entry->wired_count = 0;
3562 			new_entry->object.vm_object = NULL;
3563 			new_entry->cred = NULL;
3564 			vm_map_entry_link(new_map, new_map->header.prev,
3565 			    new_entry);
3566 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3567 			vm_map_copy_entry(old_map, new_map, old_entry,
3568 			    new_entry, fork_charge);
3569 			break;
3570 
3571 		case VM_INHERIT_ZERO:
3572 			/*
3573 			 * Create a new anonymous mapping entry modelled from
3574 			 * the old one.
3575 			 */
3576 			new_entry = vm_map_entry_create(new_map);
3577 			memset(new_entry, 0, sizeof(*new_entry));
3578 
3579 			new_entry->start = old_entry->start;
3580 			new_entry->end = old_entry->end;
3581 			new_entry->eflags = old_entry->eflags &
3582 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3583 			    MAP_ENTRY_VN_WRITECNT);
3584 			new_entry->protection = old_entry->protection;
3585 			new_entry->max_protection = old_entry->max_protection;
3586 			new_entry->inheritance = VM_INHERIT_ZERO;
3587 
3588 			vm_map_entry_link(new_map, new_map->header.prev,
3589 			    new_entry);
3590 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3591 
3592 			new_entry->cred = curthread->td_ucred;
3593 			crhold(new_entry->cred);
3594 			*fork_charge += (new_entry->end - new_entry->start);
3595 
3596 			break;
3597 		}
3598 		old_entry = old_entry->next;
3599 	}
3600 	/*
3601 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3602 	 * map entries, which cannot be done until both old_map and
3603 	 * new_map locks are released.
3604 	 */
3605 	sx_xunlock(&old_map->lock);
3606 	sx_xunlock(&new_map->lock);
3607 	vm_map_process_deferred();
3608 
3609 	return (vm2);
3610 }
3611 
3612 /*
3613  * Create a process's stack for exec_new_vmspace().  This function is never
3614  * asked to wire the newly created stack.
3615  */
3616 int
3617 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3618     vm_prot_t prot, vm_prot_t max, int cow)
3619 {
3620 	vm_size_t growsize, init_ssize;
3621 	rlim_t vmemlim;
3622 	int rv;
3623 
3624 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
3625 	growsize = sgrowsiz;
3626 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3627 	vm_map_lock(map);
3628 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3629 	/* If we would blow our VMEM resource limit, no go */
3630 	if (map->size + init_ssize > vmemlim) {
3631 		rv = KERN_NO_SPACE;
3632 		goto out;
3633 	}
3634 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3635 	    max, cow);
3636 out:
3637 	vm_map_unlock(map);
3638 	return (rv);
3639 }
3640 
3641 static int stack_guard_page = 1;
3642 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3643     &stack_guard_page, 0,
3644     "Specifies the number of guard pages for a stack that grows");
3645 
3646 static int
3647 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3648     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3649 {
3650 	vm_map_entry_t new_entry, prev_entry;
3651 	vm_offset_t bot, gap_bot, gap_top, top;
3652 	vm_size_t init_ssize, sgp;
3653 	int orient, rv;
3654 
3655 	/*
3656 	 * The stack orientation is piggybacked with the cow argument.
3657 	 * Extract it into orient and mask the cow argument so that we
3658 	 * don't pass it around further.
3659 	 */
3660 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3661 	KASSERT(orient != 0, ("No stack grow direction"));
3662 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3663 	    ("bi-dir stack"));
3664 
3665 	if (addrbos < vm_map_min(map) ||
3666 	    addrbos + max_ssize > vm_map_max(map) ||
3667 	    addrbos + max_ssize <= addrbos)
3668 		return (KERN_INVALID_ADDRESS);
3669 	sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3670 	if (sgp >= max_ssize)
3671 		return (KERN_INVALID_ARGUMENT);
3672 
3673 	init_ssize = growsize;
3674 	if (max_ssize < init_ssize + sgp)
3675 		init_ssize = max_ssize - sgp;
3676 
3677 	/* If addr is already mapped, no go */
3678 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3679 		return (KERN_NO_SPACE);
3680 
3681 	/*
3682 	 * If we can't accommodate max_ssize in the current mapping, no go.
3683 	 */
3684 	if (prev_entry->next->start < addrbos + max_ssize)
3685 		return (KERN_NO_SPACE);
3686 
3687 	/*
3688 	 * We initially map a stack of only init_ssize.  We will grow as
3689 	 * needed later.  Depending on the orientation of the stack (i.e.
3690 	 * the grow direction) we either map at the top of the range, the
3691 	 * bottom of the range or in the middle.
3692 	 *
3693 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3694 	 * and cow to be 0.  Possibly we should eliminate these as input
3695 	 * parameters, and just pass these values here in the insert call.
3696 	 */
3697 	if (orient == MAP_STACK_GROWS_DOWN) {
3698 		bot = addrbos + max_ssize - init_ssize;
3699 		top = bot + init_ssize;
3700 		gap_bot = addrbos;
3701 		gap_top = bot;
3702 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
3703 		bot = addrbos;
3704 		top = bot + init_ssize;
3705 		gap_bot = top;
3706 		gap_top = addrbos + max_ssize;
3707 	}
3708 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3709 	if (rv != KERN_SUCCESS)
3710 		return (rv);
3711 	new_entry = prev_entry->next;
3712 	KASSERT(new_entry->end == top || new_entry->start == bot,
3713 	    ("Bad entry start/end for new stack entry"));
3714 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3715 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3716 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3717 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3718 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3719 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3720 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3721 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3722 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3723 	if (rv != KERN_SUCCESS)
3724 		(void)vm_map_delete(map, bot, top);
3725 	return (rv);
3726 }
3727 
3728 /*
3729  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3730  * successfully grow the stack.
3731  */
3732 static int
3733 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3734 {
3735 	vm_map_entry_t stack_entry;
3736 	struct proc *p;
3737 	struct vmspace *vm;
3738 	struct ucred *cred;
3739 	vm_offset_t gap_end, gap_start, grow_start;
3740 	size_t grow_amount, guard, max_grow;
3741 	rlim_t lmemlim, stacklim, vmemlim;
3742 	int rv, rv1;
3743 	bool gap_deleted, grow_down, is_procstack;
3744 #ifdef notyet
3745 	uint64_t limit;
3746 #endif
3747 #ifdef RACCT
3748 	int error;
3749 #endif
3750 
3751 	p = curproc;
3752 	vm = p->p_vmspace;
3753 
3754 	/*
3755 	 * Disallow stack growth when the access is performed by a
3756 	 * debugger or AIO daemon.  The reason is that the wrong
3757 	 * resource limits are applied.
3758 	 */
3759 	if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3760 		return (KERN_FAILURE);
3761 
3762 	MPASS(!map->system_map);
3763 
3764 	guard = stack_guard_page * PAGE_SIZE;
3765 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3766 	stacklim = lim_cur(curthread, RLIMIT_STACK);
3767 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3768 retry:
3769 	/* If addr is not in a hole for a stack grow area, no need to grow. */
3770 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3771 		return (KERN_FAILURE);
3772 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3773 		return (KERN_SUCCESS);
3774 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3775 		stack_entry = gap_entry->next;
3776 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3777 		    stack_entry->start != gap_entry->end)
3778 			return (KERN_FAILURE);
3779 		grow_amount = round_page(stack_entry->start - addr);
3780 		grow_down = true;
3781 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3782 		stack_entry = gap_entry->prev;
3783 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3784 		    stack_entry->end != gap_entry->start)
3785 			return (KERN_FAILURE);
3786 		grow_amount = round_page(addr + 1 - stack_entry->end);
3787 		grow_down = false;
3788 	} else {
3789 		return (KERN_FAILURE);
3790 	}
3791 	max_grow = gap_entry->end - gap_entry->start;
3792 	if (guard > max_grow)
3793 		return (KERN_NO_SPACE);
3794 	max_grow -= guard;
3795 	if (grow_amount > max_grow)
3796 		return (KERN_NO_SPACE);
3797 
3798 	/*
3799 	 * If this is the main process stack, see if we're over the stack
3800 	 * limit.
3801 	 */
3802 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3803 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3804 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3805 		return (KERN_NO_SPACE);
3806 
3807 #ifdef RACCT
3808 	if (racct_enable) {
3809 		PROC_LOCK(p);
3810 		if (is_procstack && racct_set(p, RACCT_STACK,
3811 		    ctob(vm->vm_ssize) + grow_amount)) {
3812 			PROC_UNLOCK(p);
3813 			return (KERN_NO_SPACE);
3814 		}
3815 		PROC_UNLOCK(p);
3816 	}
3817 #endif
3818 
3819 	grow_amount = roundup(grow_amount, sgrowsiz);
3820 	if (grow_amount > max_grow)
3821 		grow_amount = max_grow;
3822 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3823 		grow_amount = trunc_page((vm_size_t)stacklim) -
3824 		    ctob(vm->vm_ssize);
3825 	}
3826 
3827 #ifdef notyet
3828 	PROC_LOCK(p);
3829 	limit = racct_get_available(p, RACCT_STACK);
3830 	PROC_UNLOCK(p);
3831 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3832 		grow_amount = limit - ctob(vm->vm_ssize);
3833 #endif
3834 
3835 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3836 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3837 			rv = KERN_NO_SPACE;
3838 			goto out;
3839 		}
3840 #ifdef RACCT
3841 		if (racct_enable) {
3842 			PROC_LOCK(p);
3843 			if (racct_set(p, RACCT_MEMLOCK,
3844 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3845 				PROC_UNLOCK(p);
3846 				rv = KERN_NO_SPACE;
3847 				goto out;
3848 			}
3849 			PROC_UNLOCK(p);
3850 		}
3851 #endif
3852 	}
3853 
3854 	/* If we would blow our VMEM resource limit, no go */
3855 	if (map->size + grow_amount > vmemlim) {
3856 		rv = KERN_NO_SPACE;
3857 		goto out;
3858 	}
3859 #ifdef RACCT
3860 	if (racct_enable) {
3861 		PROC_LOCK(p);
3862 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3863 			PROC_UNLOCK(p);
3864 			rv = KERN_NO_SPACE;
3865 			goto out;
3866 		}
3867 		PROC_UNLOCK(p);
3868 	}
3869 #endif
3870 
3871 	if (vm_map_lock_upgrade(map)) {
3872 		gap_entry = NULL;
3873 		vm_map_lock_read(map);
3874 		goto retry;
3875 	}
3876 
3877 	if (grow_down) {
3878 		grow_start = gap_entry->end - grow_amount;
3879 		if (gap_entry->start + grow_amount == gap_entry->end) {
3880 			gap_start = gap_entry->start;
3881 			gap_end = gap_entry->end;
3882 			vm_map_entry_delete(map, gap_entry);
3883 			gap_deleted = true;
3884 		} else {
3885 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
3886 			gap_entry->end -= grow_amount;
3887 			vm_map_entry_resize_free(map, gap_entry);
3888 			gap_deleted = false;
3889 		}
3890 		rv = vm_map_insert(map, NULL, 0, grow_start,
3891 		    grow_start + grow_amount,
3892 		    stack_entry->protection, stack_entry->max_protection,
3893 		    MAP_STACK_GROWS_DOWN);
3894 		if (rv != KERN_SUCCESS) {
3895 			if (gap_deleted) {
3896 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
3897 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
3898 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3899 				MPASS(rv1 == KERN_SUCCESS);
3900 			} else {
3901 				gap_entry->end += grow_amount;
3902 				vm_map_entry_resize_free(map, gap_entry);
3903 			}
3904 		}
3905 	} else {
3906 		grow_start = stack_entry->end;
3907 		cred = stack_entry->cred;
3908 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3909 			cred = stack_entry->object.vm_object->cred;
3910 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3911 			rv = KERN_NO_SPACE;
3912 		/* Grow the underlying object if applicable. */
3913 		else if (stack_entry->object.vm_object == NULL ||
3914 		    vm_object_coalesce(stack_entry->object.vm_object,
3915 		    stack_entry->offset,
3916 		    (vm_size_t)(stack_entry->end - stack_entry->start),
3917 		    (vm_size_t)grow_amount, cred != NULL)) {
3918 			if (gap_entry->start + grow_amount == gap_entry->end)
3919 				vm_map_entry_delete(map, gap_entry);
3920 			else
3921 				gap_entry->start += grow_amount;
3922 			stack_entry->end += grow_amount;
3923 			map->size += grow_amount;
3924 			vm_map_entry_resize_free(map, stack_entry);
3925 			rv = KERN_SUCCESS;
3926 		} else
3927 			rv = KERN_FAILURE;
3928 	}
3929 	if (rv == KERN_SUCCESS && is_procstack)
3930 		vm->vm_ssize += btoc(grow_amount);
3931 
3932 	/*
3933 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3934 	 */
3935 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3936 		vm_map_unlock(map);
3937 		vm_map_wire(map, grow_start, grow_start + grow_amount,
3938 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3939 		vm_map_lock_read(map);
3940 	} else
3941 		vm_map_lock_downgrade(map);
3942 
3943 out:
3944 #ifdef RACCT
3945 	if (racct_enable && rv != KERN_SUCCESS) {
3946 		PROC_LOCK(p);
3947 		error = racct_set(p, RACCT_VMEM, map->size);
3948 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3949 		if (!old_mlock) {
3950 			error = racct_set(p, RACCT_MEMLOCK,
3951 			    ptoa(pmap_wired_count(map->pmap)));
3952 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3953 		}
3954 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3955 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3956 		PROC_UNLOCK(p);
3957 	}
3958 #endif
3959 
3960 	return (rv);
3961 }
3962 
3963 /*
3964  * Unshare the specified VM space for exec.  If other processes are
3965  * mapped to it, then create a new one.  The new vmspace is null.
3966  */
3967 int
3968 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3969 {
3970 	struct vmspace *oldvmspace = p->p_vmspace;
3971 	struct vmspace *newvmspace;
3972 
3973 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3974 	    ("vmspace_exec recursed"));
3975 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3976 	if (newvmspace == NULL)
3977 		return (ENOMEM);
3978 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3979 	/*
3980 	 * This code is written like this for prototype purposes.  The
3981 	 * goal is to avoid running down the vmspace here, but let the
3982 	 * other process's that are still using the vmspace to finally
3983 	 * run it down.  Even though there is little or no chance of blocking
3984 	 * here, it is a good idea to keep this form for future mods.
3985 	 */
3986 	PROC_VMSPACE_LOCK(p);
3987 	p->p_vmspace = newvmspace;
3988 	PROC_VMSPACE_UNLOCK(p);
3989 	if (p == curthread->td_proc)
3990 		pmap_activate(curthread);
3991 	curthread->td_pflags |= TDP_EXECVMSPC;
3992 	return (0);
3993 }
3994 
3995 /*
3996  * Unshare the specified VM space for forcing COW.  This
3997  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3998  */
3999 int
4000 vmspace_unshare(struct proc *p)
4001 {
4002 	struct vmspace *oldvmspace = p->p_vmspace;
4003 	struct vmspace *newvmspace;
4004 	vm_ooffset_t fork_charge;
4005 
4006 	if (oldvmspace->vm_refcnt == 1)
4007 		return (0);
4008 	fork_charge = 0;
4009 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4010 	if (newvmspace == NULL)
4011 		return (ENOMEM);
4012 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4013 		vmspace_free(newvmspace);
4014 		return (ENOMEM);
4015 	}
4016 	PROC_VMSPACE_LOCK(p);
4017 	p->p_vmspace = newvmspace;
4018 	PROC_VMSPACE_UNLOCK(p);
4019 	if (p == curthread->td_proc)
4020 		pmap_activate(curthread);
4021 	vmspace_free(oldvmspace);
4022 	return (0);
4023 }
4024 
4025 /*
4026  *	vm_map_lookup:
4027  *
4028  *	Finds the VM object, offset, and
4029  *	protection for a given virtual address in the
4030  *	specified map, assuming a page fault of the
4031  *	type specified.
4032  *
4033  *	Leaves the map in question locked for read; return
4034  *	values are guaranteed until a vm_map_lookup_done
4035  *	call is performed.  Note that the map argument
4036  *	is in/out; the returned map must be used in
4037  *	the call to vm_map_lookup_done.
4038  *
4039  *	A handle (out_entry) is returned for use in
4040  *	vm_map_lookup_done, to make that fast.
4041  *
4042  *	If a lookup is requested with "write protection"
4043  *	specified, the map may be changed to perform virtual
4044  *	copying operations, although the data referenced will
4045  *	remain the same.
4046  */
4047 int
4048 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4049 	      vm_offset_t vaddr,
4050 	      vm_prot_t fault_typea,
4051 	      vm_map_entry_t *out_entry,	/* OUT */
4052 	      vm_object_t *object,		/* OUT */
4053 	      vm_pindex_t *pindex,		/* OUT */
4054 	      vm_prot_t *out_prot,		/* OUT */
4055 	      boolean_t *wired)			/* OUT */
4056 {
4057 	vm_map_entry_t entry;
4058 	vm_map_t map = *var_map;
4059 	vm_prot_t prot;
4060 	vm_prot_t fault_type = fault_typea;
4061 	vm_object_t eobject;
4062 	vm_size_t size;
4063 	struct ucred *cred;
4064 
4065 RetryLookup:
4066 
4067 	vm_map_lock_read(map);
4068 
4069 RetryLookupLocked:
4070 	/*
4071 	 * Lookup the faulting address.
4072 	 */
4073 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4074 		vm_map_unlock_read(map);
4075 		return (KERN_INVALID_ADDRESS);
4076 	}
4077 
4078 	entry = *out_entry;
4079 
4080 	/*
4081 	 * Handle submaps.
4082 	 */
4083 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4084 		vm_map_t old_map = map;
4085 
4086 		*var_map = map = entry->object.sub_map;
4087 		vm_map_unlock_read(old_map);
4088 		goto RetryLookup;
4089 	}
4090 
4091 	/*
4092 	 * Check whether this task is allowed to have this page.
4093 	 */
4094 	prot = entry->protection;
4095 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4096 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4097 		if (prot == VM_PROT_NONE && map != kernel_map &&
4098 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4099 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4100 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4101 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4102 			goto RetryLookupLocked;
4103 	}
4104 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4105 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4106 		vm_map_unlock_read(map);
4107 		return (KERN_PROTECTION_FAILURE);
4108 	}
4109 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4110 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4111 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4112 	    ("entry %p flags %x", entry, entry->eflags));
4113 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4114 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4115 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4116 		vm_map_unlock_read(map);
4117 		return (KERN_PROTECTION_FAILURE);
4118 	}
4119 
4120 	/*
4121 	 * If this page is not pageable, we have to get it for all possible
4122 	 * accesses.
4123 	 */
4124 	*wired = (entry->wired_count != 0);
4125 	if (*wired)
4126 		fault_type = entry->protection;
4127 	size = entry->end - entry->start;
4128 	/*
4129 	 * If the entry was copy-on-write, we either ...
4130 	 */
4131 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4132 		/*
4133 		 * If we want to write the page, we may as well handle that
4134 		 * now since we've got the map locked.
4135 		 *
4136 		 * If we don't need to write the page, we just demote the
4137 		 * permissions allowed.
4138 		 */
4139 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4140 		    (fault_typea & VM_PROT_COPY) != 0) {
4141 			/*
4142 			 * Make a new object, and place it in the object
4143 			 * chain.  Note that no new references have appeared
4144 			 * -- one just moved from the map to the new
4145 			 * object.
4146 			 */
4147 			if (vm_map_lock_upgrade(map))
4148 				goto RetryLookup;
4149 
4150 			if (entry->cred == NULL) {
4151 				/*
4152 				 * The debugger owner is charged for
4153 				 * the memory.
4154 				 */
4155 				cred = curthread->td_ucred;
4156 				crhold(cred);
4157 				if (!swap_reserve_by_cred(size, cred)) {
4158 					crfree(cred);
4159 					vm_map_unlock(map);
4160 					return (KERN_RESOURCE_SHORTAGE);
4161 				}
4162 				entry->cred = cred;
4163 			}
4164 			vm_object_shadow(&entry->object.vm_object,
4165 			    &entry->offset, size);
4166 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4167 			eobject = entry->object.vm_object;
4168 			if (eobject->cred != NULL) {
4169 				/*
4170 				 * The object was not shadowed.
4171 				 */
4172 				swap_release_by_cred(size, entry->cred);
4173 				crfree(entry->cred);
4174 				entry->cred = NULL;
4175 			} else if (entry->cred != NULL) {
4176 				VM_OBJECT_WLOCK(eobject);
4177 				eobject->cred = entry->cred;
4178 				eobject->charge = size;
4179 				VM_OBJECT_WUNLOCK(eobject);
4180 				entry->cred = NULL;
4181 			}
4182 
4183 			vm_map_lock_downgrade(map);
4184 		} else {
4185 			/*
4186 			 * We're attempting to read a copy-on-write page --
4187 			 * don't allow writes.
4188 			 */
4189 			prot &= ~VM_PROT_WRITE;
4190 		}
4191 	}
4192 
4193 	/*
4194 	 * Create an object if necessary.
4195 	 */
4196 	if (entry->object.vm_object == NULL &&
4197 	    !map->system_map) {
4198 		if (vm_map_lock_upgrade(map))
4199 			goto RetryLookup;
4200 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4201 		    atop(size));
4202 		entry->offset = 0;
4203 		if (entry->cred != NULL) {
4204 			VM_OBJECT_WLOCK(entry->object.vm_object);
4205 			entry->object.vm_object->cred = entry->cred;
4206 			entry->object.vm_object->charge = size;
4207 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4208 			entry->cred = NULL;
4209 		}
4210 		vm_map_lock_downgrade(map);
4211 	}
4212 
4213 	/*
4214 	 * Return the object/offset from this entry.  If the entry was
4215 	 * copy-on-write or empty, it has been fixed up.
4216 	 */
4217 	*pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4218 	*object = entry->object.vm_object;
4219 
4220 	*out_prot = prot;
4221 	return (KERN_SUCCESS);
4222 }
4223 
4224 /*
4225  *	vm_map_lookup_locked:
4226  *
4227  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4228  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4229  */
4230 int
4231 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4232 		     vm_offset_t vaddr,
4233 		     vm_prot_t fault_typea,
4234 		     vm_map_entry_t *out_entry,	/* OUT */
4235 		     vm_object_t *object,	/* OUT */
4236 		     vm_pindex_t *pindex,	/* OUT */
4237 		     vm_prot_t *out_prot,	/* OUT */
4238 		     boolean_t *wired)		/* OUT */
4239 {
4240 	vm_map_entry_t entry;
4241 	vm_map_t map = *var_map;
4242 	vm_prot_t prot;
4243 	vm_prot_t fault_type = fault_typea;
4244 
4245 	/*
4246 	 * Lookup the faulting address.
4247 	 */
4248 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4249 		return (KERN_INVALID_ADDRESS);
4250 
4251 	entry = *out_entry;
4252 
4253 	/*
4254 	 * Fail if the entry refers to a submap.
4255 	 */
4256 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4257 		return (KERN_FAILURE);
4258 
4259 	/*
4260 	 * Check whether this task is allowed to have this page.
4261 	 */
4262 	prot = entry->protection;
4263 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4264 	if ((fault_type & prot) != fault_type)
4265 		return (KERN_PROTECTION_FAILURE);
4266 
4267 	/*
4268 	 * If this page is not pageable, we have to get it for all possible
4269 	 * accesses.
4270 	 */
4271 	*wired = (entry->wired_count != 0);
4272 	if (*wired)
4273 		fault_type = entry->protection;
4274 
4275 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4276 		/*
4277 		 * Fail if the entry was copy-on-write for a write fault.
4278 		 */
4279 		if (fault_type & VM_PROT_WRITE)
4280 			return (KERN_FAILURE);
4281 		/*
4282 		 * We're attempting to read a copy-on-write page --
4283 		 * don't allow writes.
4284 		 */
4285 		prot &= ~VM_PROT_WRITE;
4286 	}
4287 
4288 	/*
4289 	 * Fail if an object should be created.
4290 	 */
4291 	if (entry->object.vm_object == NULL && !map->system_map)
4292 		return (KERN_FAILURE);
4293 
4294 	/*
4295 	 * Return the object/offset from this entry.  If the entry was
4296 	 * copy-on-write or empty, it has been fixed up.
4297 	 */
4298 	*pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4299 	*object = entry->object.vm_object;
4300 
4301 	*out_prot = prot;
4302 	return (KERN_SUCCESS);
4303 }
4304 
4305 /*
4306  *	vm_map_lookup_done:
4307  *
4308  *	Releases locks acquired by a vm_map_lookup
4309  *	(according to the handle returned by that lookup).
4310  */
4311 void
4312 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4313 {
4314 	/*
4315 	 * Unlock the main-level map
4316 	 */
4317 	vm_map_unlock_read(map);
4318 }
4319 
4320 vm_offset_t
4321 vm_map_max_KBI(const struct vm_map *map)
4322 {
4323 
4324 	return (vm_map_max(map));
4325 }
4326 
4327 vm_offset_t
4328 vm_map_min_KBI(const struct vm_map *map)
4329 {
4330 
4331 	return (vm_map_min(map));
4332 }
4333 
4334 pmap_t
4335 vm_map_pmap_KBI(vm_map_t map)
4336 {
4337 
4338 	return (map->pmap);
4339 }
4340 
4341 #include "opt_ddb.h"
4342 #ifdef DDB
4343 #include <sys/kernel.h>
4344 
4345 #include <ddb/ddb.h>
4346 
4347 static void
4348 vm_map_print(vm_map_t map)
4349 {
4350 	vm_map_entry_t entry;
4351 
4352 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4353 	    (void *)map,
4354 	    (void *)map->pmap, map->nentries, map->timestamp);
4355 
4356 	db_indent += 2;
4357 	for (entry = map->header.next; entry != &map->header;
4358 	    entry = entry->next) {
4359 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4360 		    (void *)entry, (void *)entry->start, (void *)entry->end,
4361 		    entry->eflags);
4362 		{
4363 			static char *inheritance_name[4] =
4364 			{"share", "copy", "none", "donate_copy"};
4365 
4366 			db_iprintf(" prot=%x/%x/%s",
4367 			    entry->protection,
4368 			    entry->max_protection,
4369 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4370 			if (entry->wired_count != 0)
4371 				db_printf(", wired");
4372 		}
4373 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4374 			db_printf(", share=%p, offset=0x%jx\n",
4375 			    (void *)entry->object.sub_map,
4376 			    (uintmax_t)entry->offset);
4377 			if ((entry->prev == &map->header) ||
4378 			    (entry->prev->object.sub_map !=
4379 				entry->object.sub_map)) {
4380 				db_indent += 2;
4381 				vm_map_print((vm_map_t)entry->object.sub_map);
4382 				db_indent -= 2;
4383 			}
4384 		} else {
4385 			if (entry->cred != NULL)
4386 				db_printf(", ruid %d", entry->cred->cr_ruid);
4387 			db_printf(", object=%p, offset=0x%jx",
4388 			    (void *)entry->object.vm_object,
4389 			    (uintmax_t)entry->offset);
4390 			if (entry->object.vm_object && entry->object.vm_object->cred)
4391 				db_printf(", obj ruid %d charge %jx",
4392 				    entry->object.vm_object->cred->cr_ruid,
4393 				    (uintmax_t)entry->object.vm_object->charge);
4394 			if (entry->eflags & MAP_ENTRY_COW)
4395 				db_printf(", copy (%s)",
4396 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4397 			db_printf("\n");
4398 
4399 			if ((entry->prev == &map->header) ||
4400 			    (entry->prev->object.vm_object !=
4401 				entry->object.vm_object)) {
4402 				db_indent += 2;
4403 				vm_object_print((db_expr_t)(intptr_t)
4404 						entry->object.vm_object,
4405 						0, 0, (char *)0);
4406 				db_indent -= 2;
4407 			}
4408 		}
4409 	}
4410 	db_indent -= 2;
4411 }
4412 
4413 DB_SHOW_COMMAND(map, map)
4414 {
4415 
4416 	if (!have_addr) {
4417 		db_printf("usage: show map <addr>\n");
4418 		return;
4419 	}
4420 	vm_map_print((vm_map_t)addr);
4421 }
4422 
4423 DB_SHOW_COMMAND(procvm, procvm)
4424 {
4425 	struct proc *p;
4426 
4427 	if (have_addr) {
4428 		p = db_lookup_proc(addr);
4429 	} else {
4430 		p = curproc;
4431 	}
4432 
4433 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4434 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4435 	    (void *)vmspace_pmap(p->p_vmspace));
4436 
4437 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4438 }
4439 
4440 #endif /* DDB */
4441