1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/racct.h> 81 #include <sys/resourcevar.h> 82 #include <sys/rwlock.h> 83 #include <sys/file.h> 84 #include <sys/sysctl.h> 85 #include <sys/sysent.h> 86 #include <sys/shm.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_object.h> 94 #include <vm/vm_pager.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vnode_pager.h> 98 #include <vm/swap_pager.h> 99 #include <vm/uma.h> 100 101 /* 102 * Virtual memory maps provide for the mapping, protection, 103 * and sharing of virtual memory objects. In addition, 104 * this module provides for an efficient virtual copy of 105 * memory from one map to another. 106 * 107 * Synchronization is required prior to most operations. 108 * 109 * Maps consist of an ordered doubly-linked list of simple 110 * entries; a self-adjusting binary search tree of these 111 * entries is used to speed up lookups. 112 * 113 * Since portions of maps are specified by start/end addresses, 114 * which may not align with existing map entries, all 115 * routines merely "clip" entries to these start/end values. 116 * [That is, an entry is split into two, bordering at a 117 * start or end value.] Note that these clippings may not 118 * always be necessary (as the two resulting entries are then 119 * not changed); however, the clipping is done for convenience. 120 * 121 * As mentioned above, virtual copy operations are performed 122 * by copying VM object references from one map to 123 * another, and then marking both regions as copy-on-write. 124 */ 125 126 static struct mtx map_sleep_mtx; 127 static uma_zone_t mapentzone; 128 static uma_zone_t kmapentzone; 129 static uma_zone_t mapzone; 130 static uma_zone_t vmspace_zone; 131 static int vmspace_zinit(void *mem, int size, int flags); 132 static int vm_map_zinit(void *mem, int ize, int flags); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static int vm_map_alignspace(vm_map_t map, vm_object_t object, 136 vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length, 137 vm_offset_t max_addr, vm_offset_t alignment); 138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 142 vm_map_entry_t gap_entry); 143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 144 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 145 #ifdef INVARIANTS 146 static void vm_map_zdtor(void *mem, int size, void *arg); 147 static void vmspace_zdtor(void *mem, int size, void *arg); 148 #endif 149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 150 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 151 int cow); 152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 153 vm_offset_t failed_addr); 154 155 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 156 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 157 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 158 159 /* 160 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 161 * stable. 162 */ 163 #define PROC_VMSPACE_LOCK(p) do { } while (0) 164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 165 166 /* 167 * VM_MAP_RANGE_CHECK: [ internal use only ] 168 * 169 * Asserts that the starting and ending region 170 * addresses fall within the valid range of the map. 171 */ 172 #define VM_MAP_RANGE_CHECK(map, start, end) \ 173 { \ 174 if (start < vm_map_min(map)) \ 175 start = vm_map_min(map); \ 176 if (end > vm_map_max(map)) \ 177 end = vm_map_max(map); \ 178 if (start > end) \ 179 start = end; \ 180 } 181 182 /* 183 * vm_map_startup: 184 * 185 * Initialize the vm_map module. Must be called before 186 * any other vm_map routines. 187 * 188 * Map and entry structures are allocated from the general 189 * purpose memory pool with some exceptions: 190 * 191 * - The kernel map and kmem submap are allocated statically. 192 * - Kernel map entries are allocated out of a static pool. 193 * 194 * These restrictions are necessary since malloc() uses the 195 * maps and requires map entries. 196 */ 197 198 void 199 vm_map_startup(void) 200 { 201 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 202 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 203 #ifdef INVARIANTS 204 vm_map_zdtor, 205 #else 206 NULL, 207 #endif 208 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 209 uma_prealloc(mapzone, MAX_KMAP); 210 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 211 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 212 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 213 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 214 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 215 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 216 #ifdef INVARIANTS 217 vmspace_zdtor, 218 #else 219 NULL, 220 #endif 221 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 222 } 223 224 static int 225 vmspace_zinit(void *mem, int size, int flags) 226 { 227 struct vmspace *vm; 228 229 vm = (struct vmspace *)mem; 230 231 vm->vm_map.pmap = NULL; 232 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 233 PMAP_LOCK_INIT(vmspace_pmap(vm)); 234 return (0); 235 } 236 237 static int 238 vm_map_zinit(void *mem, int size, int flags) 239 { 240 vm_map_t map; 241 242 map = (vm_map_t)mem; 243 memset(map, 0, sizeof(*map)); 244 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 245 sx_init(&map->lock, "vm map (user)"); 246 return (0); 247 } 248 249 #ifdef INVARIANTS 250 static void 251 vmspace_zdtor(void *mem, int size, void *arg) 252 { 253 struct vmspace *vm; 254 255 vm = (struct vmspace *)mem; 256 257 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 258 } 259 static void 260 vm_map_zdtor(void *mem, int size, void *arg) 261 { 262 vm_map_t map; 263 264 map = (vm_map_t)mem; 265 KASSERT(map->nentries == 0, 266 ("map %p nentries == %d on free.", 267 map, map->nentries)); 268 KASSERT(map->size == 0, 269 ("map %p size == %lu on free.", 270 map, (unsigned long)map->size)); 271 } 272 #endif /* INVARIANTS */ 273 274 /* 275 * Allocate a vmspace structure, including a vm_map and pmap, 276 * and initialize those structures. The refcnt is set to 1. 277 * 278 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 279 */ 280 struct vmspace * 281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 282 { 283 struct vmspace *vm; 284 285 vm = uma_zalloc(vmspace_zone, M_WAITOK); 286 287 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 288 289 if (pinit == NULL) 290 pinit = &pmap_pinit; 291 292 if (!pinit(vmspace_pmap(vm))) { 293 uma_zfree(vmspace_zone, vm); 294 return (NULL); 295 } 296 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 297 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 298 vm->vm_refcnt = 1; 299 vm->vm_shm = NULL; 300 vm->vm_swrss = 0; 301 vm->vm_tsize = 0; 302 vm->vm_dsize = 0; 303 vm->vm_ssize = 0; 304 vm->vm_taddr = 0; 305 vm->vm_daddr = 0; 306 vm->vm_maxsaddr = 0; 307 return (vm); 308 } 309 310 #ifdef RACCT 311 static void 312 vmspace_container_reset(struct proc *p) 313 { 314 315 PROC_LOCK(p); 316 racct_set(p, RACCT_DATA, 0); 317 racct_set(p, RACCT_STACK, 0); 318 racct_set(p, RACCT_RSS, 0); 319 racct_set(p, RACCT_MEMLOCK, 0); 320 racct_set(p, RACCT_VMEM, 0); 321 PROC_UNLOCK(p); 322 } 323 #endif 324 325 static inline void 326 vmspace_dofree(struct vmspace *vm) 327 { 328 329 CTR1(KTR_VM, "vmspace_free: %p", vm); 330 331 /* 332 * Make sure any SysV shm is freed, it might not have been in 333 * exit1(). 334 */ 335 shmexit(vm); 336 337 /* 338 * Lock the map, to wait out all other references to it. 339 * Delete all of the mappings and pages they hold, then call 340 * the pmap module to reclaim anything left. 341 */ 342 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 343 vm_map_max(&vm->vm_map)); 344 345 pmap_release(vmspace_pmap(vm)); 346 vm->vm_map.pmap = NULL; 347 uma_zfree(vmspace_zone, vm); 348 } 349 350 void 351 vmspace_free(struct vmspace *vm) 352 { 353 354 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 355 "vmspace_free() called"); 356 357 if (vm->vm_refcnt == 0) 358 panic("vmspace_free: attempt to free already freed vmspace"); 359 360 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 361 vmspace_dofree(vm); 362 } 363 364 void 365 vmspace_exitfree(struct proc *p) 366 { 367 struct vmspace *vm; 368 369 PROC_VMSPACE_LOCK(p); 370 vm = p->p_vmspace; 371 p->p_vmspace = NULL; 372 PROC_VMSPACE_UNLOCK(p); 373 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 374 vmspace_free(vm); 375 } 376 377 void 378 vmspace_exit(struct thread *td) 379 { 380 int refcnt; 381 struct vmspace *vm; 382 struct proc *p; 383 384 /* 385 * Release user portion of address space. 386 * This releases references to vnodes, 387 * which could cause I/O if the file has been unlinked. 388 * Need to do this early enough that we can still sleep. 389 * 390 * The last exiting process to reach this point releases as 391 * much of the environment as it can. vmspace_dofree() is the 392 * slower fallback in case another process had a temporary 393 * reference to the vmspace. 394 */ 395 396 p = td->td_proc; 397 vm = p->p_vmspace; 398 atomic_add_int(&vmspace0.vm_refcnt, 1); 399 do { 400 refcnt = vm->vm_refcnt; 401 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 402 /* Switch now since other proc might free vmspace */ 403 PROC_VMSPACE_LOCK(p); 404 p->p_vmspace = &vmspace0; 405 PROC_VMSPACE_UNLOCK(p); 406 pmap_activate(td); 407 } 408 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 409 if (refcnt == 1) { 410 if (p->p_vmspace != vm) { 411 /* vmspace not yet freed, switch back */ 412 PROC_VMSPACE_LOCK(p); 413 p->p_vmspace = vm; 414 PROC_VMSPACE_UNLOCK(p); 415 pmap_activate(td); 416 } 417 pmap_remove_pages(vmspace_pmap(vm)); 418 /* Switch now since this proc will free vmspace */ 419 PROC_VMSPACE_LOCK(p); 420 p->p_vmspace = &vmspace0; 421 PROC_VMSPACE_UNLOCK(p); 422 pmap_activate(td); 423 vmspace_dofree(vm); 424 } 425 #ifdef RACCT 426 if (racct_enable) 427 vmspace_container_reset(p); 428 #endif 429 } 430 431 /* Acquire reference to vmspace owned by another process. */ 432 433 struct vmspace * 434 vmspace_acquire_ref(struct proc *p) 435 { 436 struct vmspace *vm; 437 int refcnt; 438 439 PROC_VMSPACE_LOCK(p); 440 vm = p->p_vmspace; 441 if (vm == NULL) { 442 PROC_VMSPACE_UNLOCK(p); 443 return (NULL); 444 } 445 do { 446 refcnt = vm->vm_refcnt; 447 if (refcnt <= 0) { /* Avoid 0->1 transition */ 448 PROC_VMSPACE_UNLOCK(p); 449 return (NULL); 450 } 451 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 452 if (vm != p->p_vmspace) { 453 PROC_VMSPACE_UNLOCK(p); 454 vmspace_free(vm); 455 return (NULL); 456 } 457 PROC_VMSPACE_UNLOCK(p); 458 return (vm); 459 } 460 461 /* 462 * Switch between vmspaces in an AIO kernel process. 463 * 464 * The AIO kernel processes switch to and from a user process's 465 * vmspace while performing an I/O operation on behalf of a user 466 * process. The new vmspace is either the vmspace of a user process 467 * obtained from an active AIO request or the initial vmspace of the 468 * AIO kernel process (when it is idling). Because user processes 469 * will block to drain any active AIO requests before proceeding in 470 * exit() or execve(), the vmspace reference count for these vmspaces 471 * can never be 0. This allows for a much simpler implementation than 472 * the loop in vmspace_acquire_ref() above. Similarly, AIO kernel 473 * processes hold an extra reference on their initial vmspace for the 474 * life of the process so that this guarantee is true for any vmspace 475 * passed as 'newvm'. 476 */ 477 void 478 vmspace_switch_aio(struct vmspace *newvm) 479 { 480 struct vmspace *oldvm; 481 482 /* XXX: Need some way to assert that this is an aio daemon. */ 483 484 KASSERT(newvm->vm_refcnt > 0, 485 ("vmspace_switch_aio: newvm unreferenced")); 486 487 oldvm = curproc->p_vmspace; 488 if (oldvm == newvm) 489 return; 490 491 /* 492 * Point to the new address space and refer to it. 493 */ 494 curproc->p_vmspace = newvm; 495 atomic_add_int(&newvm->vm_refcnt, 1); 496 497 /* Activate the new mapping. */ 498 pmap_activate(curthread); 499 500 /* Remove the daemon's reference to the old address space. */ 501 KASSERT(oldvm->vm_refcnt > 1, 502 ("vmspace_switch_aio: oldvm dropping last reference")); 503 vmspace_free(oldvm); 504 } 505 506 void 507 _vm_map_lock(vm_map_t map, const char *file, int line) 508 { 509 510 if (map->system_map) 511 mtx_lock_flags_(&map->system_mtx, 0, file, line); 512 else 513 sx_xlock_(&map->lock, file, line); 514 map->timestamp++; 515 } 516 517 static void 518 vm_map_process_deferred(void) 519 { 520 struct thread *td; 521 vm_map_entry_t entry, next; 522 vm_object_t object; 523 524 td = curthread; 525 entry = td->td_map_def_user; 526 td->td_map_def_user = NULL; 527 while (entry != NULL) { 528 next = entry->next; 529 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 530 /* 531 * Decrement the object's writemappings and 532 * possibly the vnode's v_writecount. 533 */ 534 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 535 ("Submap with writecount")); 536 object = entry->object.vm_object; 537 KASSERT(object != NULL, ("No object for writecount")); 538 vnode_pager_release_writecount(object, entry->start, 539 entry->end); 540 } 541 vm_map_entry_deallocate(entry, FALSE); 542 entry = next; 543 } 544 } 545 546 void 547 _vm_map_unlock(vm_map_t map, const char *file, int line) 548 { 549 550 if (map->system_map) 551 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 552 else { 553 sx_xunlock_(&map->lock, file, line); 554 vm_map_process_deferred(); 555 } 556 } 557 558 void 559 _vm_map_lock_read(vm_map_t map, const char *file, int line) 560 { 561 562 if (map->system_map) 563 mtx_lock_flags_(&map->system_mtx, 0, file, line); 564 else 565 sx_slock_(&map->lock, file, line); 566 } 567 568 void 569 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 570 { 571 572 if (map->system_map) 573 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 574 else { 575 sx_sunlock_(&map->lock, file, line); 576 vm_map_process_deferred(); 577 } 578 } 579 580 int 581 _vm_map_trylock(vm_map_t map, const char *file, int line) 582 { 583 int error; 584 585 error = map->system_map ? 586 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 587 !sx_try_xlock_(&map->lock, file, line); 588 if (error == 0) 589 map->timestamp++; 590 return (error == 0); 591 } 592 593 int 594 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 595 { 596 int error; 597 598 error = map->system_map ? 599 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 600 !sx_try_slock_(&map->lock, file, line); 601 return (error == 0); 602 } 603 604 /* 605 * _vm_map_lock_upgrade: [ internal use only ] 606 * 607 * Tries to upgrade a read (shared) lock on the specified map to a write 608 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 609 * non-zero value if the upgrade fails. If the upgrade fails, the map is 610 * returned without a read or write lock held. 611 * 612 * Requires that the map be read locked. 613 */ 614 int 615 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 616 { 617 unsigned int last_timestamp; 618 619 if (map->system_map) { 620 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 621 } else { 622 if (!sx_try_upgrade_(&map->lock, file, line)) { 623 last_timestamp = map->timestamp; 624 sx_sunlock_(&map->lock, file, line); 625 vm_map_process_deferred(); 626 /* 627 * If the map's timestamp does not change while the 628 * map is unlocked, then the upgrade succeeds. 629 */ 630 sx_xlock_(&map->lock, file, line); 631 if (last_timestamp != map->timestamp) { 632 sx_xunlock_(&map->lock, file, line); 633 return (1); 634 } 635 } 636 } 637 map->timestamp++; 638 return (0); 639 } 640 641 void 642 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 643 { 644 645 if (map->system_map) { 646 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 647 } else 648 sx_downgrade_(&map->lock, file, line); 649 } 650 651 /* 652 * vm_map_locked: 653 * 654 * Returns a non-zero value if the caller holds a write (exclusive) lock 655 * on the specified map and the value "0" otherwise. 656 */ 657 int 658 vm_map_locked(vm_map_t map) 659 { 660 661 if (map->system_map) 662 return (mtx_owned(&map->system_mtx)); 663 else 664 return (sx_xlocked(&map->lock)); 665 } 666 667 #ifdef INVARIANTS 668 static void 669 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 670 { 671 672 if (map->system_map) 673 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 674 else 675 sx_assert_(&map->lock, SA_XLOCKED, file, line); 676 } 677 678 #define VM_MAP_ASSERT_LOCKED(map) \ 679 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 680 #else 681 #define VM_MAP_ASSERT_LOCKED(map) 682 #endif 683 684 /* 685 * _vm_map_unlock_and_wait: 686 * 687 * Atomically releases the lock on the specified map and puts the calling 688 * thread to sleep. The calling thread will remain asleep until either 689 * vm_map_wakeup() is performed on the map or the specified timeout is 690 * exceeded. 691 * 692 * WARNING! This function does not perform deferred deallocations of 693 * objects and map entries. Therefore, the calling thread is expected to 694 * reacquire the map lock after reawakening and later perform an ordinary 695 * unlock operation, such as vm_map_unlock(), before completing its 696 * operation on the map. 697 */ 698 int 699 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 700 { 701 702 mtx_lock(&map_sleep_mtx); 703 if (map->system_map) 704 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 705 else 706 sx_xunlock_(&map->lock, file, line); 707 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 708 timo)); 709 } 710 711 /* 712 * vm_map_wakeup: 713 * 714 * Awaken any threads that have slept on the map using 715 * vm_map_unlock_and_wait(). 716 */ 717 void 718 vm_map_wakeup(vm_map_t map) 719 { 720 721 /* 722 * Acquire and release map_sleep_mtx to prevent a wakeup() 723 * from being performed (and lost) between the map unlock 724 * and the msleep() in _vm_map_unlock_and_wait(). 725 */ 726 mtx_lock(&map_sleep_mtx); 727 mtx_unlock(&map_sleep_mtx); 728 wakeup(&map->root); 729 } 730 731 void 732 vm_map_busy(vm_map_t map) 733 { 734 735 VM_MAP_ASSERT_LOCKED(map); 736 map->busy++; 737 } 738 739 void 740 vm_map_unbusy(vm_map_t map) 741 { 742 743 VM_MAP_ASSERT_LOCKED(map); 744 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 745 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 746 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 747 wakeup(&map->busy); 748 } 749 } 750 751 void 752 vm_map_wait_busy(vm_map_t map) 753 { 754 755 VM_MAP_ASSERT_LOCKED(map); 756 while (map->busy) { 757 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 758 if (map->system_map) 759 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 760 else 761 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 762 } 763 map->timestamp++; 764 } 765 766 long 767 vmspace_resident_count(struct vmspace *vmspace) 768 { 769 return pmap_resident_count(vmspace_pmap(vmspace)); 770 } 771 772 /* 773 * vm_map_create: 774 * 775 * Creates and returns a new empty VM map with 776 * the given physical map structure, and having 777 * the given lower and upper address bounds. 778 */ 779 vm_map_t 780 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 781 { 782 vm_map_t result; 783 784 result = uma_zalloc(mapzone, M_WAITOK); 785 CTR1(KTR_VM, "vm_map_create: %p", result); 786 _vm_map_init(result, pmap, min, max); 787 return (result); 788 } 789 790 /* 791 * Initialize an existing vm_map structure 792 * such as that in the vmspace structure. 793 */ 794 static void 795 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 796 { 797 798 map->header.next = map->header.prev = &map->header; 799 map->header.eflags = MAP_ENTRY_HEADER; 800 map->needs_wakeup = FALSE; 801 map->system_map = 0; 802 map->pmap = pmap; 803 map->header.end = min; 804 map->header.start = max; 805 map->flags = 0; 806 map->root = NULL; 807 map->timestamp = 0; 808 map->busy = 0; 809 } 810 811 void 812 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 813 { 814 815 _vm_map_init(map, pmap, min, max); 816 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 817 sx_init(&map->lock, "user map"); 818 } 819 820 /* 821 * vm_map_entry_dispose: [ internal use only ] 822 * 823 * Inverse of vm_map_entry_create. 824 */ 825 static void 826 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 827 { 828 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 829 } 830 831 /* 832 * vm_map_entry_create: [ internal use only ] 833 * 834 * Allocates a VM map entry for insertion. 835 * No entry fields are filled in. 836 */ 837 static vm_map_entry_t 838 vm_map_entry_create(vm_map_t map) 839 { 840 vm_map_entry_t new_entry; 841 842 if (map->system_map) 843 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 844 else 845 new_entry = uma_zalloc(mapentzone, M_WAITOK); 846 if (new_entry == NULL) 847 panic("vm_map_entry_create: kernel resources exhausted"); 848 return (new_entry); 849 } 850 851 /* 852 * vm_map_entry_set_behavior: 853 * 854 * Set the expected access behavior, either normal, random, or 855 * sequential. 856 */ 857 static inline void 858 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 859 { 860 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 861 (behavior & MAP_ENTRY_BEHAV_MASK); 862 } 863 864 /* 865 * vm_map_entry_set_max_free: 866 * 867 * Set the max_free field in a vm_map_entry. 868 */ 869 static inline void 870 vm_map_entry_set_max_free(vm_map_entry_t entry) 871 { 872 873 entry->max_free = entry->adj_free; 874 if (entry->left != NULL && entry->left->max_free > entry->max_free) 875 entry->max_free = entry->left->max_free; 876 if (entry->right != NULL && entry->right->max_free > entry->max_free) 877 entry->max_free = entry->right->max_free; 878 } 879 880 /* 881 * vm_map_entry_splay: 882 * 883 * The Sleator and Tarjan top-down splay algorithm with the 884 * following variation. Max_free must be computed bottom-up, so 885 * on the downward pass, maintain the left and right spines in 886 * reverse order. Then, make a second pass up each side to fix 887 * the pointers and compute max_free. The time bound is O(log n) 888 * amortized. 889 * 890 * The new root is the vm_map_entry containing "addr", or else an 891 * adjacent entry (lower or higher) if addr is not in the tree. 892 * 893 * The map must be locked, and leaves it so. 894 * 895 * Returns: the new root. 896 */ 897 static vm_map_entry_t 898 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 899 { 900 vm_map_entry_t llist, rlist; 901 vm_map_entry_t ltree, rtree; 902 vm_map_entry_t y; 903 904 /* Special case of empty tree. */ 905 if (root == NULL) 906 return (root); 907 908 /* 909 * Pass One: Splay down the tree until we find addr or a NULL 910 * pointer where addr would go. llist and rlist are the two 911 * sides in reverse order (bottom-up), with llist linked by 912 * the right pointer and rlist linked by the left pointer in 913 * the vm_map_entry. Wait until Pass Two to set max_free on 914 * the two spines. 915 */ 916 llist = NULL; 917 rlist = NULL; 918 for (;;) { 919 /* root is never NULL in here. */ 920 if (addr < root->start) { 921 y = root->left; 922 if (y == NULL) 923 break; 924 if (addr < y->start && y->left != NULL) { 925 /* Rotate right and put y on rlist. */ 926 root->left = y->right; 927 y->right = root; 928 vm_map_entry_set_max_free(root); 929 root = y->left; 930 y->left = rlist; 931 rlist = y; 932 } else { 933 /* Put root on rlist. */ 934 root->left = rlist; 935 rlist = root; 936 root = y; 937 } 938 } else if (addr >= root->end) { 939 y = root->right; 940 if (y == NULL) 941 break; 942 if (addr >= y->end && y->right != NULL) { 943 /* Rotate left and put y on llist. */ 944 root->right = y->left; 945 y->left = root; 946 vm_map_entry_set_max_free(root); 947 root = y->right; 948 y->right = llist; 949 llist = y; 950 } else { 951 /* Put root on llist. */ 952 root->right = llist; 953 llist = root; 954 root = y; 955 } 956 } else 957 break; 958 } 959 960 /* 961 * Pass Two: Walk back up the two spines, flip the pointers 962 * and set max_free. The subtrees of the root go at the 963 * bottom of llist and rlist. 964 */ 965 ltree = root->left; 966 while (llist != NULL) { 967 y = llist->right; 968 llist->right = ltree; 969 vm_map_entry_set_max_free(llist); 970 ltree = llist; 971 llist = y; 972 } 973 rtree = root->right; 974 while (rlist != NULL) { 975 y = rlist->left; 976 rlist->left = rtree; 977 vm_map_entry_set_max_free(rlist); 978 rtree = rlist; 979 rlist = y; 980 } 981 982 /* 983 * Final assembly: add ltree and rtree as subtrees of root. 984 */ 985 root->left = ltree; 986 root->right = rtree; 987 vm_map_entry_set_max_free(root); 988 989 return (root); 990 } 991 992 /* 993 * vm_map_entry_{un,}link: 994 * 995 * Insert/remove entries from maps. 996 */ 997 static void 998 vm_map_entry_link(vm_map_t map, 999 vm_map_entry_t after_where, 1000 vm_map_entry_t entry) 1001 { 1002 1003 CTR4(KTR_VM, 1004 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 1005 map->nentries, entry, after_where); 1006 VM_MAP_ASSERT_LOCKED(map); 1007 KASSERT(after_where->end <= entry->start, 1008 ("vm_map_entry_link: prev end %jx new start %jx overlap", 1009 (uintmax_t)after_where->end, (uintmax_t)entry->start)); 1010 KASSERT(entry->end <= after_where->next->start, 1011 ("vm_map_entry_link: new end %jx next start %jx overlap", 1012 (uintmax_t)entry->end, (uintmax_t)after_where->next->start)); 1013 1014 map->nentries++; 1015 entry->prev = after_where; 1016 entry->next = after_where->next; 1017 entry->next->prev = entry; 1018 after_where->next = entry; 1019 1020 if (after_where != &map->header) { 1021 if (after_where != map->root) 1022 vm_map_entry_splay(after_where->start, map->root); 1023 entry->right = after_where->right; 1024 entry->left = after_where; 1025 after_where->right = NULL; 1026 after_where->adj_free = entry->start - after_where->end; 1027 vm_map_entry_set_max_free(after_where); 1028 } else { 1029 entry->right = map->root; 1030 entry->left = NULL; 1031 } 1032 entry->adj_free = entry->next->start - entry->end; 1033 vm_map_entry_set_max_free(entry); 1034 map->root = entry; 1035 } 1036 1037 static void 1038 vm_map_entry_unlink(vm_map_t map, 1039 vm_map_entry_t entry) 1040 { 1041 vm_map_entry_t next, prev, root; 1042 1043 VM_MAP_ASSERT_LOCKED(map); 1044 if (entry != map->root) 1045 vm_map_entry_splay(entry->start, map->root); 1046 if (entry->left == NULL) 1047 root = entry->right; 1048 else { 1049 root = vm_map_entry_splay(entry->start, entry->left); 1050 root->right = entry->right; 1051 root->adj_free = entry->next->start - root->end; 1052 vm_map_entry_set_max_free(root); 1053 } 1054 map->root = root; 1055 1056 prev = entry->prev; 1057 next = entry->next; 1058 next->prev = prev; 1059 prev->next = next; 1060 map->nentries--; 1061 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1062 map->nentries, entry); 1063 } 1064 1065 /* 1066 * vm_map_entry_resize_free: 1067 * 1068 * Recompute the amount of free space following a vm_map_entry 1069 * and propagate that value up the tree. Call this function after 1070 * resizing a map entry in-place, that is, without a call to 1071 * vm_map_entry_link() or _unlink(). 1072 * 1073 * The map must be locked, and leaves it so. 1074 */ 1075 static void 1076 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1077 { 1078 1079 /* 1080 * Using splay trees without parent pointers, propagating 1081 * max_free up the tree is done by moving the entry to the 1082 * root and making the change there. 1083 */ 1084 if (entry != map->root) 1085 map->root = vm_map_entry_splay(entry->start, map->root); 1086 1087 entry->adj_free = entry->next->start - entry->end; 1088 vm_map_entry_set_max_free(entry); 1089 } 1090 1091 /* 1092 * vm_map_lookup_entry: [ internal use only ] 1093 * 1094 * Finds the map entry containing (or 1095 * immediately preceding) the specified address 1096 * in the given map; the entry is returned 1097 * in the "entry" parameter. The boolean 1098 * result indicates whether the address is 1099 * actually contained in the map. 1100 */ 1101 boolean_t 1102 vm_map_lookup_entry( 1103 vm_map_t map, 1104 vm_offset_t address, 1105 vm_map_entry_t *entry) /* OUT */ 1106 { 1107 vm_map_entry_t cur; 1108 boolean_t locked; 1109 1110 /* 1111 * If the map is empty, then the map entry immediately preceding 1112 * "address" is the map's header. 1113 */ 1114 cur = map->root; 1115 if (cur == NULL) 1116 *entry = &map->header; 1117 else if (address >= cur->start && cur->end > address) { 1118 *entry = cur; 1119 return (TRUE); 1120 } else if ((locked = vm_map_locked(map)) || 1121 sx_try_upgrade(&map->lock)) { 1122 /* 1123 * Splay requires a write lock on the map. However, it only 1124 * restructures the binary search tree; it does not otherwise 1125 * change the map. Thus, the map's timestamp need not change 1126 * on a temporary upgrade. 1127 */ 1128 map->root = cur = vm_map_entry_splay(address, cur); 1129 if (!locked) 1130 sx_downgrade(&map->lock); 1131 1132 /* 1133 * If "address" is contained within a map entry, the new root 1134 * is that map entry. Otherwise, the new root is a map entry 1135 * immediately before or after "address". 1136 */ 1137 if (address >= cur->start) { 1138 *entry = cur; 1139 if (cur->end > address) 1140 return (TRUE); 1141 } else 1142 *entry = cur->prev; 1143 } else 1144 /* 1145 * Since the map is only locked for read access, perform a 1146 * standard binary search tree lookup for "address". 1147 */ 1148 for (;;) { 1149 if (address < cur->start) { 1150 if (cur->left == NULL) { 1151 *entry = cur->prev; 1152 break; 1153 } 1154 cur = cur->left; 1155 } else if (cur->end > address) { 1156 *entry = cur; 1157 return (TRUE); 1158 } else { 1159 if (cur->right == NULL) { 1160 *entry = cur; 1161 break; 1162 } 1163 cur = cur->right; 1164 } 1165 } 1166 return (FALSE); 1167 } 1168 1169 /* 1170 * vm_map_insert: 1171 * 1172 * Inserts the given whole VM object into the target 1173 * map at the specified address range. The object's 1174 * size should match that of the address range. 1175 * 1176 * Requires that the map be locked, and leaves it so. 1177 * 1178 * If object is non-NULL, ref count must be bumped by caller 1179 * prior to making call to account for the new entry. 1180 */ 1181 int 1182 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1183 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1184 { 1185 vm_map_entry_t new_entry, prev_entry, temp_entry; 1186 struct ucred *cred; 1187 vm_eflags_t protoeflags; 1188 vm_inherit_t inheritance; 1189 1190 VM_MAP_ASSERT_LOCKED(map); 1191 KASSERT(object != kernel_object || 1192 (cow & MAP_COPY_ON_WRITE) == 0, 1193 ("vm_map_insert: kernel object and COW")); 1194 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1195 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1196 KASSERT((prot & ~max) == 0, 1197 ("prot %#x is not subset of max_prot %#x", prot, max)); 1198 1199 /* 1200 * Check that the start and end points are not bogus. 1201 */ 1202 if (start < vm_map_min(map) || end > vm_map_max(map) || 1203 start >= end) 1204 return (KERN_INVALID_ADDRESS); 1205 1206 /* 1207 * Find the entry prior to the proposed starting address; if it's part 1208 * of an existing entry, this range is bogus. 1209 */ 1210 if (vm_map_lookup_entry(map, start, &temp_entry)) 1211 return (KERN_NO_SPACE); 1212 1213 prev_entry = temp_entry; 1214 1215 /* 1216 * Assert that the next entry doesn't overlap the end point. 1217 */ 1218 if (prev_entry->next->start < end) 1219 return (KERN_NO_SPACE); 1220 1221 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1222 max != VM_PROT_NONE)) 1223 return (KERN_INVALID_ARGUMENT); 1224 1225 protoeflags = 0; 1226 if (cow & MAP_COPY_ON_WRITE) 1227 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1228 if (cow & MAP_NOFAULT) 1229 protoeflags |= MAP_ENTRY_NOFAULT; 1230 if (cow & MAP_DISABLE_SYNCER) 1231 protoeflags |= MAP_ENTRY_NOSYNC; 1232 if (cow & MAP_DISABLE_COREDUMP) 1233 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1234 if (cow & MAP_STACK_GROWS_DOWN) 1235 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1236 if (cow & MAP_STACK_GROWS_UP) 1237 protoeflags |= MAP_ENTRY_GROWS_UP; 1238 if (cow & MAP_VN_WRITECOUNT) 1239 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1240 if ((cow & MAP_CREATE_GUARD) != 0) 1241 protoeflags |= MAP_ENTRY_GUARD; 1242 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1243 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1244 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1245 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1246 if (cow & MAP_INHERIT_SHARE) 1247 inheritance = VM_INHERIT_SHARE; 1248 else 1249 inheritance = VM_INHERIT_DEFAULT; 1250 1251 cred = NULL; 1252 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1253 goto charged; 1254 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1255 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1256 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1257 return (KERN_RESOURCE_SHORTAGE); 1258 KASSERT(object == NULL || 1259 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1260 object->cred == NULL, 1261 ("overcommit: vm_map_insert o %p", object)); 1262 cred = curthread->td_ucred; 1263 } 1264 1265 charged: 1266 /* Expand the kernel pmap, if necessary. */ 1267 if (map == kernel_map && end > kernel_vm_end) 1268 pmap_growkernel(end); 1269 if (object != NULL) { 1270 /* 1271 * OBJ_ONEMAPPING must be cleared unless this mapping 1272 * is trivially proven to be the only mapping for any 1273 * of the object's pages. (Object granularity 1274 * reference counting is insufficient to recognize 1275 * aliases with precision.) 1276 */ 1277 VM_OBJECT_WLOCK(object); 1278 if (object->ref_count > 1 || object->shadow_count != 0) 1279 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1280 VM_OBJECT_WUNLOCK(object); 1281 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1282 protoeflags && 1283 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 && 1284 prev_entry->end == start && (prev_entry->cred == cred || 1285 (prev_entry->object.vm_object != NULL && 1286 prev_entry->object.vm_object->cred == cred)) && 1287 vm_object_coalesce(prev_entry->object.vm_object, 1288 prev_entry->offset, 1289 (vm_size_t)(prev_entry->end - prev_entry->start), 1290 (vm_size_t)(end - prev_entry->end), cred != NULL && 1291 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1292 /* 1293 * We were able to extend the object. Determine if we 1294 * can extend the previous map entry to include the 1295 * new range as well. 1296 */ 1297 if (prev_entry->inheritance == inheritance && 1298 prev_entry->protection == prot && 1299 prev_entry->max_protection == max && 1300 prev_entry->wired_count == 0) { 1301 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1302 0, ("prev_entry %p has incoherent wiring", 1303 prev_entry)); 1304 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1305 map->size += end - prev_entry->end; 1306 prev_entry->end = end; 1307 vm_map_entry_resize_free(map, prev_entry); 1308 vm_map_simplify_entry(map, prev_entry); 1309 return (KERN_SUCCESS); 1310 } 1311 1312 /* 1313 * If we can extend the object but cannot extend the 1314 * map entry, we have to create a new map entry. We 1315 * must bump the ref count on the extended object to 1316 * account for it. object may be NULL. 1317 */ 1318 object = prev_entry->object.vm_object; 1319 offset = prev_entry->offset + 1320 (prev_entry->end - prev_entry->start); 1321 vm_object_reference(object); 1322 if (cred != NULL && object != NULL && object->cred != NULL && 1323 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1324 /* Object already accounts for this uid. */ 1325 cred = NULL; 1326 } 1327 } 1328 if (cred != NULL) 1329 crhold(cred); 1330 1331 /* 1332 * Create a new entry 1333 */ 1334 new_entry = vm_map_entry_create(map); 1335 new_entry->start = start; 1336 new_entry->end = end; 1337 new_entry->cred = NULL; 1338 1339 new_entry->eflags = protoeflags; 1340 new_entry->object.vm_object = object; 1341 new_entry->offset = offset; 1342 1343 new_entry->inheritance = inheritance; 1344 new_entry->protection = prot; 1345 new_entry->max_protection = max; 1346 new_entry->wired_count = 0; 1347 new_entry->wiring_thread = NULL; 1348 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1349 new_entry->next_read = start; 1350 1351 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1352 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1353 new_entry->cred = cred; 1354 1355 /* 1356 * Insert the new entry into the list 1357 */ 1358 vm_map_entry_link(map, prev_entry, new_entry); 1359 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1360 map->size += new_entry->end - new_entry->start; 1361 1362 /* 1363 * Try to coalesce the new entry with both the previous and next 1364 * entries in the list. Previously, we only attempted to coalesce 1365 * with the previous entry when object is NULL. Here, we handle the 1366 * other cases, which are less common. 1367 */ 1368 vm_map_simplify_entry(map, new_entry); 1369 1370 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1371 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1372 end - start, cow & MAP_PREFAULT_PARTIAL); 1373 } 1374 1375 return (KERN_SUCCESS); 1376 } 1377 1378 /* 1379 * vm_map_findspace: 1380 * 1381 * Find the first fit (lowest VM address) for "length" free bytes 1382 * beginning at address >= start in the given map. 1383 * 1384 * In a vm_map_entry, "adj_free" is the amount of free space 1385 * adjacent (higher address) to this entry, and "max_free" is the 1386 * maximum amount of contiguous free space in its subtree. This 1387 * allows finding a free region in one path down the tree, so 1388 * O(log n) amortized with splay trees. 1389 * 1390 * The map must be locked, and leaves it so. 1391 * 1392 * Returns: 0 on success, and starting address in *addr, 1393 * 1 if insufficient space. 1394 */ 1395 int 1396 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1397 vm_offset_t *addr) /* OUT */ 1398 { 1399 vm_map_entry_t entry; 1400 vm_offset_t st; 1401 1402 /* 1403 * Request must fit within min/max VM address and must avoid 1404 * address wrap. 1405 */ 1406 start = MAX(start, vm_map_min(map)); 1407 if (start + length > vm_map_max(map) || start + length < start) 1408 return (1); 1409 1410 /* Empty tree means wide open address space. */ 1411 if (map->root == NULL) { 1412 *addr = start; 1413 return (0); 1414 } 1415 1416 /* 1417 * After splay, if start comes before root node, then there 1418 * must be a gap from start to the root. 1419 */ 1420 map->root = vm_map_entry_splay(start, map->root); 1421 if (start + length <= map->root->start) { 1422 *addr = start; 1423 return (0); 1424 } 1425 1426 /* 1427 * Root is the last node that might begin its gap before 1428 * start, and this is the last comparison where address 1429 * wrap might be a problem. 1430 */ 1431 st = (start > map->root->end) ? start : map->root->end; 1432 if (length <= map->root->end + map->root->adj_free - st) { 1433 *addr = st; 1434 return (0); 1435 } 1436 1437 /* With max_free, can immediately tell if no solution. */ 1438 entry = map->root->right; 1439 if (entry == NULL || length > entry->max_free) 1440 return (1); 1441 1442 /* 1443 * Search the right subtree in the order: left subtree, root, 1444 * right subtree (first fit). The previous splay implies that 1445 * all regions in the right subtree have addresses > start. 1446 */ 1447 while (entry != NULL) { 1448 if (entry->left != NULL && entry->left->max_free >= length) 1449 entry = entry->left; 1450 else if (entry->adj_free >= length) { 1451 *addr = entry->end; 1452 return (0); 1453 } else 1454 entry = entry->right; 1455 } 1456 1457 /* Can't get here, so panic if we do. */ 1458 panic("vm_map_findspace: max_free corrupt"); 1459 } 1460 1461 int 1462 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1463 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1464 vm_prot_t max, int cow) 1465 { 1466 vm_offset_t end; 1467 int result; 1468 1469 end = start + length; 1470 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1471 object == NULL, 1472 ("vm_map_fixed: non-NULL backing object for stack")); 1473 vm_map_lock(map); 1474 VM_MAP_RANGE_CHECK(map, start, end); 1475 if ((cow & MAP_CHECK_EXCL) == 0) 1476 vm_map_delete(map, start, end); 1477 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1478 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1479 prot, max, cow); 1480 } else { 1481 result = vm_map_insert(map, object, offset, start, end, 1482 prot, max, cow); 1483 } 1484 vm_map_unlock(map); 1485 return (result); 1486 } 1487 1488 /* 1489 * Searches for the specified amount of free space in the given map with the 1490 * specified alignment. Performs an address-ordered, first-fit search from 1491 * the given address "*addr", with an optional upper bound "max_addr". If the 1492 * parameter "alignment" is zero, then the alignment is computed from the 1493 * given (object, offset) pair so as to enable the greatest possible use of 1494 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1495 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1496 * 1497 * The map must be locked. Initially, there must be at least "length" bytes 1498 * of free space at the given address. 1499 */ 1500 static int 1501 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1502 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1503 vm_offset_t alignment) 1504 { 1505 vm_offset_t aligned_addr, free_addr; 1506 1507 VM_MAP_ASSERT_LOCKED(map); 1508 free_addr = *addr; 1509 KASSERT(!vm_map_findspace(map, free_addr, length, addr) && 1510 free_addr == *addr, ("caller provided insufficient free space")); 1511 for (;;) { 1512 /* 1513 * At the start of every iteration, the free space at address 1514 * "*addr" is at least "length" bytes. 1515 */ 1516 if (alignment == 0) 1517 pmap_align_superpage(object, offset, addr, length); 1518 else if ((*addr & (alignment - 1)) != 0) { 1519 *addr &= ~(alignment - 1); 1520 *addr += alignment; 1521 } 1522 aligned_addr = *addr; 1523 if (aligned_addr == free_addr) { 1524 /* 1525 * Alignment did not change "*addr", so "*addr" must 1526 * still provide sufficient free space. 1527 */ 1528 return (KERN_SUCCESS); 1529 } 1530 1531 /* 1532 * Test for address wrap on "*addr". A wrapped "*addr" could 1533 * be a valid address, in which case vm_map_findspace() cannot 1534 * be relied upon to fail. 1535 */ 1536 if (aligned_addr < free_addr || 1537 vm_map_findspace(map, aligned_addr, length, addr) || 1538 (max_addr != 0 && *addr + length > max_addr)) 1539 return (KERN_NO_SPACE); 1540 free_addr = *addr; 1541 if (free_addr == aligned_addr) { 1542 /* 1543 * If a successful call to vm_map_findspace() did not 1544 * change "*addr", then "*addr" must still be aligned 1545 * and provide sufficient free space. 1546 */ 1547 return (KERN_SUCCESS); 1548 } 1549 } 1550 } 1551 1552 /* 1553 * vm_map_find finds an unallocated region in the target address 1554 * map with the given length. The search is defined to be 1555 * first-fit from the specified address; the region found is 1556 * returned in the same parameter. 1557 * 1558 * If object is non-NULL, ref count must be bumped by caller 1559 * prior to making call to account for the new entry. 1560 */ 1561 int 1562 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1563 vm_offset_t *addr, /* IN/OUT */ 1564 vm_size_t length, vm_offset_t max_addr, int find_space, 1565 vm_prot_t prot, vm_prot_t max, int cow) 1566 { 1567 vm_offset_t alignment, min_addr; 1568 int rv; 1569 1570 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1571 object == NULL, 1572 ("vm_map_find: non-NULL backing object for stack")); 1573 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1574 (object->flags & OBJ_COLORED) == 0)) 1575 find_space = VMFS_ANY_SPACE; 1576 if (find_space >> 8 != 0) { 1577 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1578 alignment = (vm_offset_t)1 << (find_space >> 8); 1579 } else 1580 alignment = 0; 1581 vm_map_lock(map); 1582 if (find_space != VMFS_NO_SPACE) { 1583 KASSERT(find_space == VMFS_ANY_SPACE || 1584 find_space == VMFS_OPTIMAL_SPACE || 1585 find_space == VMFS_SUPER_SPACE || 1586 alignment != 0, ("unexpected VMFS flag")); 1587 min_addr = *addr; 1588 again: 1589 if (vm_map_findspace(map, min_addr, length, addr) || 1590 (max_addr != 0 && *addr + length > max_addr)) { 1591 rv = KERN_NO_SPACE; 1592 goto done; 1593 } 1594 if (find_space != VMFS_ANY_SPACE && 1595 (rv = vm_map_alignspace(map, object, offset, addr, length, 1596 max_addr, alignment)) != KERN_SUCCESS) { 1597 if (find_space == VMFS_OPTIMAL_SPACE) { 1598 find_space = VMFS_ANY_SPACE; 1599 goto again; 1600 } 1601 goto done; 1602 } 1603 } 1604 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1605 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 1606 max, cow); 1607 } else { 1608 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 1609 prot, max, cow); 1610 } 1611 done: 1612 vm_map_unlock(map); 1613 return (rv); 1614 } 1615 1616 /* 1617 * vm_map_find_min() is a variant of vm_map_find() that takes an 1618 * additional parameter (min_addr) and treats the given address 1619 * (*addr) differently. Specifically, it treats *addr as a hint 1620 * and not as the minimum address where the mapping is created. 1621 * 1622 * This function works in two phases. First, it tries to 1623 * allocate above the hint. If that fails and the hint is 1624 * greater than min_addr, it performs a second pass, replacing 1625 * the hint with min_addr as the minimum address for the 1626 * allocation. 1627 */ 1628 int 1629 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1630 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 1631 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 1632 int cow) 1633 { 1634 vm_offset_t hint; 1635 int rv; 1636 1637 hint = *addr; 1638 for (;;) { 1639 rv = vm_map_find(map, object, offset, addr, length, max_addr, 1640 find_space, prot, max, cow); 1641 if (rv == KERN_SUCCESS || min_addr >= hint) 1642 return (rv); 1643 *addr = hint = min_addr; 1644 } 1645 } 1646 1647 static bool 1648 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 1649 { 1650 vm_size_t prevsize; 1651 1652 prevsize = prev->end - prev->start; 1653 return (prev->end == entry->start && 1654 prev->object.vm_object == entry->object.vm_object && 1655 (prev->object.vm_object == NULL || 1656 prev->offset + prevsize == entry->offset) && 1657 prev->eflags == entry->eflags && 1658 prev->protection == entry->protection && 1659 prev->max_protection == entry->max_protection && 1660 prev->inheritance == entry->inheritance && 1661 prev->wired_count == entry->wired_count && 1662 prev->cred == entry->cred); 1663 } 1664 1665 static void 1666 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 1667 { 1668 1669 /* 1670 * If the backing object is a vnode object, 1671 * vm_object_deallocate() calls vrele(). 1672 * However, vrele() does not lock the vnode 1673 * because the vnode has additional 1674 * references. Thus, the map lock can be kept 1675 * without causing a lock-order reversal with 1676 * the vnode lock. 1677 * 1678 * Since we count the number of virtual page 1679 * mappings in object->un_pager.vnp.writemappings, 1680 * the writemappings value should not be adjusted 1681 * when the entry is disposed of. 1682 */ 1683 if (entry->object.vm_object != NULL) 1684 vm_object_deallocate(entry->object.vm_object); 1685 if (entry->cred != NULL) 1686 crfree(entry->cred); 1687 vm_map_entry_dispose(map, entry); 1688 } 1689 1690 /* 1691 * vm_map_simplify_entry: 1692 * 1693 * Simplify the given map entry by merging with either neighbor. This 1694 * routine also has the ability to merge with both neighbors. 1695 * 1696 * The map must be locked. 1697 * 1698 * This routine guarantees that the passed entry remains valid (though 1699 * possibly extended). When merging, this routine may delete one or 1700 * both neighbors. 1701 */ 1702 void 1703 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1704 { 1705 vm_map_entry_t next, prev; 1706 1707 if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | 1708 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0) 1709 return; 1710 1711 prev = entry->prev; 1712 if (vm_map_mergeable_neighbors(prev, entry)) { 1713 vm_map_entry_unlink(map, prev); 1714 entry->start = prev->start; 1715 entry->offset = prev->offset; 1716 if (entry->prev != &map->header) 1717 vm_map_entry_resize_free(map, entry->prev); 1718 vm_map_merged_neighbor_dispose(map, prev); 1719 } 1720 1721 next = entry->next; 1722 if (vm_map_mergeable_neighbors(entry, next)) { 1723 vm_map_entry_unlink(map, next); 1724 entry->end = next->end; 1725 vm_map_entry_resize_free(map, entry); 1726 vm_map_merged_neighbor_dispose(map, next); 1727 } 1728 } 1729 /* 1730 * vm_map_clip_start: [ internal use only ] 1731 * 1732 * Asserts that the given entry begins at or after 1733 * the specified address; if necessary, 1734 * it splits the entry into two. 1735 */ 1736 #define vm_map_clip_start(map, entry, startaddr) \ 1737 { \ 1738 if (startaddr > entry->start) \ 1739 _vm_map_clip_start(map, entry, startaddr); \ 1740 } 1741 1742 /* 1743 * This routine is called only when it is known that 1744 * the entry must be split. 1745 */ 1746 static void 1747 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1748 { 1749 vm_map_entry_t new_entry; 1750 1751 VM_MAP_ASSERT_LOCKED(map); 1752 KASSERT(entry->end > start && entry->start < start, 1753 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 1754 1755 /* 1756 * Split off the front portion -- note that we must insert the new 1757 * entry BEFORE this one, so that this entry has the specified 1758 * starting address. 1759 */ 1760 vm_map_simplify_entry(map, entry); 1761 1762 /* 1763 * If there is no object backing this entry, we might as well create 1764 * one now. If we defer it, an object can get created after the map 1765 * is clipped, and individual objects will be created for the split-up 1766 * map. This is a bit of a hack, but is also about the best place to 1767 * put this improvement. 1768 */ 1769 if (entry->object.vm_object == NULL && !map->system_map && 1770 (entry->eflags & MAP_ENTRY_GUARD) == 0) { 1771 vm_object_t object; 1772 object = vm_object_allocate(OBJT_DEFAULT, 1773 atop(entry->end - entry->start)); 1774 entry->object.vm_object = object; 1775 entry->offset = 0; 1776 if (entry->cred != NULL) { 1777 object->cred = entry->cred; 1778 object->charge = entry->end - entry->start; 1779 entry->cred = NULL; 1780 } 1781 } else if (entry->object.vm_object != NULL && 1782 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1783 entry->cred != NULL) { 1784 VM_OBJECT_WLOCK(entry->object.vm_object); 1785 KASSERT(entry->object.vm_object->cred == NULL, 1786 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1787 entry->object.vm_object->cred = entry->cred; 1788 entry->object.vm_object->charge = entry->end - entry->start; 1789 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1790 entry->cred = NULL; 1791 } 1792 1793 new_entry = vm_map_entry_create(map); 1794 *new_entry = *entry; 1795 1796 new_entry->end = start; 1797 entry->offset += (start - entry->start); 1798 entry->start = start; 1799 if (new_entry->cred != NULL) 1800 crhold(entry->cred); 1801 1802 vm_map_entry_link(map, entry->prev, new_entry); 1803 1804 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1805 vm_object_reference(new_entry->object.vm_object); 1806 /* 1807 * The object->un_pager.vnp.writemappings for the 1808 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1809 * kept as is here. The virtual pages are 1810 * re-distributed among the clipped entries, so the sum is 1811 * left the same. 1812 */ 1813 } 1814 } 1815 1816 /* 1817 * vm_map_clip_end: [ internal use only ] 1818 * 1819 * Asserts that the given entry ends at or before 1820 * the specified address; if necessary, 1821 * it splits the entry into two. 1822 */ 1823 #define vm_map_clip_end(map, entry, endaddr) \ 1824 { \ 1825 if ((endaddr) < (entry->end)) \ 1826 _vm_map_clip_end((map), (entry), (endaddr)); \ 1827 } 1828 1829 /* 1830 * This routine is called only when it is known that 1831 * the entry must be split. 1832 */ 1833 static void 1834 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1835 { 1836 vm_map_entry_t new_entry; 1837 1838 VM_MAP_ASSERT_LOCKED(map); 1839 KASSERT(entry->start < end && entry->end > end, 1840 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 1841 1842 /* 1843 * If there is no object backing this entry, we might as well create 1844 * one now. If we defer it, an object can get created after the map 1845 * is clipped, and individual objects will be created for the split-up 1846 * map. This is a bit of a hack, but is also about the best place to 1847 * put this improvement. 1848 */ 1849 if (entry->object.vm_object == NULL && !map->system_map && 1850 (entry->eflags & MAP_ENTRY_GUARD) == 0) { 1851 vm_object_t object; 1852 object = vm_object_allocate(OBJT_DEFAULT, 1853 atop(entry->end - entry->start)); 1854 entry->object.vm_object = object; 1855 entry->offset = 0; 1856 if (entry->cred != NULL) { 1857 object->cred = entry->cred; 1858 object->charge = entry->end - entry->start; 1859 entry->cred = NULL; 1860 } 1861 } else if (entry->object.vm_object != NULL && 1862 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1863 entry->cred != NULL) { 1864 VM_OBJECT_WLOCK(entry->object.vm_object); 1865 KASSERT(entry->object.vm_object->cred == NULL, 1866 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1867 entry->object.vm_object->cred = entry->cred; 1868 entry->object.vm_object->charge = entry->end - entry->start; 1869 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1870 entry->cred = NULL; 1871 } 1872 1873 /* 1874 * Create a new entry and insert it AFTER the specified entry 1875 */ 1876 new_entry = vm_map_entry_create(map); 1877 *new_entry = *entry; 1878 1879 new_entry->start = entry->end = end; 1880 new_entry->offset += (end - entry->start); 1881 if (new_entry->cred != NULL) 1882 crhold(entry->cred); 1883 1884 vm_map_entry_link(map, entry, new_entry); 1885 1886 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1887 vm_object_reference(new_entry->object.vm_object); 1888 } 1889 } 1890 1891 /* 1892 * vm_map_submap: [ kernel use only ] 1893 * 1894 * Mark the given range as handled by a subordinate map. 1895 * 1896 * This range must have been created with vm_map_find, 1897 * and no other operations may have been performed on this 1898 * range prior to calling vm_map_submap. 1899 * 1900 * Only a limited number of operations can be performed 1901 * within this rage after calling vm_map_submap: 1902 * vm_fault 1903 * [Don't try vm_map_copy!] 1904 * 1905 * To remove a submapping, one must first remove the 1906 * range from the superior map, and then destroy the 1907 * submap (if desired). [Better yet, don't try it.] 1908 */ 1909 int 1910 vm_map_submap( 1911 vm_map_t map, 1912 vm_offset_t start, 1913 vm_offset_t end, 1914 vm_map_t submap) 1915 { 1916 vm_map_entry_t entry; 1917 int result = KERN_INVALID_ARGUMENT; 1918 1919 vm_map_lock(map); 1920 1921 VM_MAP_RANGE_CHECK(map, start, end); 1922 1923 if (vm_map_lookup_entry(map, start, &entry)) { 1924 vm_map_clip_start(map, entry, start); 1925 } else 1926 entry = entry->next; 1927 1928 vm_map_clip_end(map, entry, end); 1929 1930 if ((entry->start == start) && (entry->end == end) && 1931 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1932 (entry->object.vm_object == NULL)) { 1933 entry->object.sub_map = submap; 1934 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1935 result = KERN_SUCCESS; 1936 } 1937 vm_map_unlock(map); 1938 1939 return (result); 1940 } 1941 1942 /* 1943 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 1944 */ 1945 #define MAX_INIT_PT 96 1946 1947 /* 1948 * vm_map_pmap_enter: 1949 * 1950 * Preload the specified map's pmap with mappings to the specified 1951 * object's memory-resident pages. No further physical pages are 1952 * allocated, and no further virtual pages are retrieved from secondary 1953 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 1954 * limited number of page mappings are created at the low-end of the 1955 * specified address range. (For this purpose, a superpage mapping 1956 * counts as one page mapping.) Otherwise, all resident pages within 1957 * the specified address range are mapped. 1958 */ 1959 static void 1960 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1961 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1962 { 1963 vm_offset_t start; 1964 vm_page_t p, p_start; 1965 vm_pindex_t mask, psize, threshold, tmpidx; 1966 1967 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1968 return; 1969 VM_OBJECT_RLOCK(object); 1970 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1971 VM_OBJECT_RUNLOCK(object); 1972 VM_OBJECT_WLOCK(object); 1973 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1974 pmap_object_init_pt(map->pmap, addr, object, pindex, 1975 size); 1976 VM_OBJECT_WUNLOCK(object); 1977 return; 1978 } 1979 VM_OBJECT_LOCK_DOWNGRADE(object); 1980 } 1981 1982 psize = atop(size); 1983 if (psize + pindex > object->size) { 1984 if (object->size < pindex) { 1985 VM_OBJECT_RUNLOCK(object); 1986 return; 1987 } 1988 psize = object->size - pindex; 1989 } 1990 1991 start = 0; 1992 p_start = NULL; 1993 threshold = MAX_INIT_PT; 1994 1995 p = vm_page_find_least(object, pindex); 1996 /* 1997 * Assert: the variable p is either (1) the page with the 1998 * least pindex greater than or equal to the parameter pindex 1999 * or (2) NULL. 2000 */ 2001 for (; 2002 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2003 p = TAILQ_NEXT(p, listq)) { 2004 /* 2005 * don't allow an madvise to blow away our really 2006 * free pages allocating pv entries. 2007 */ 2008 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2009 vm_page_count_severe()) || 2010 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2011 tmpidx >= threshold)) { 2012 psize = tmpidx; 2013 break; 2014 } 2015 if (p->valid == VM_PAGE_BITS_ALL) { 2016 if (p_start == NULL) { 2017 start = addr + ptoa(tmpidx); 2018 p_start = p; 2019 } 2020 /* Jump ahead if a superpage mapping is possible. */ 2021 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2022 (pagesizes[p->psind] - 1)) == 0) { 2023 mask = atop(pagesizes[p->psind]) - 1; 2024 if (tmpidx + mask < psize && 2025 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2026 p += mask; 2027 threshold += mask; 2028 } 2029 } 2030 } else if (p_start != NULL) { 2031 pmap_enter_object(map->pmap, start, addr + 2032 ptoa(tmpidx), p_start, prot); 2033 p_start = NULL; 2034 } 2035 } 2036 if (p_start != NULL) 2037 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2038 p_start, prot); 2039 VM_OBJECT_RUNLOCK(object); 2040 } 2041 2042 /* 2043 * vm_map_protect: 2044 * 2045 * Sets the protection of the specified address 2046 * region in the target map. If "set_max" is 2047 * specified, the maximum protection is to be set; 2048 * otherwise, only the current protection is affected. 2049 */ 2050 int 2051 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2052 vm_prot_t new_prot, boolean_t set_max) 2053 { 2054 vm_map_entry_t current, entry; 2055 vm_object_t obj; 2056 struct ucred *cred; 2057 vm_prot_t old_prot; 2058 2059 if (start == end) 2060 return (KERN_SUCCESS); 2061 2062 vm_map_lock(map); 2063 2064 /* 2065 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2066 * need to fault pages into the map and will drop the map lock while 2067 * doing so, and the VM object may end up in an inconsistent state if we 2068 * update the protection on the map entry in between faults. 2069 */ 2070 vm_map_wait_busy(map); 2071 2072 VM_MAP_RANGE_CHECK(map, start, end); 2073 2074 if (vm_map_lookup_entry(map, start, &entry)) { 2075 vm_map_clip_start(map, entry, start); 2076 } else { 2077 entry = entry->next; 2078 } 2079 2080 /* 2081 * Make a first pass to check for protection violations. 2082 */ 2083 for (current = entry; current->start < end; current = current->next) { 2084 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2085 continue; 2086 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2087 vm_map_unlock(map); 2088 return (KERN_INVALID_ARGUMENT); 2089 } 2090 if ((new_prot & current->max_protection) != new_prot) { 2091 vm_map_unlock(map); 2092 return (KERN_PROTECTION_FAILURE); 2093 } 2094 } 2095 2096 /* 2097 * Do an accounting pass for private read-only mappings that 2098 * now will do cow due to allowed write (e.g. debugger sets 2099 * breakpoint on text segment) 2100 */ 2101 for (current = entry; current->start < end; current = current->next) { 2102 2103 vm_map_clip_end(map, current, end); 2104 2105 if (set_max || 2106 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 2107 ENTRY_CHARGED(current) || 2108 (current->eflags & MAP_ENTRY_GUARD) != 0) { 2109 continue; 2110 } 2111 2112 cred = curthread->td_ucred; 2113 obj = current->object.vm_object; 2114 2115 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 2116 if (!swap_reserve(current->end - current->start)) { 2117 vm_map_unlock(map); 2118 return (KERN_RESOURCE_SHORTAGE); 2119 } 2120 crhold(cred); 2121 current->cred = cred; 2122 continue; 2123 } 2124 2125 VM_OBJECT_WLOCK(obj); 2126 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2127 VM_OBJECT_WUNLOCK(obj); 2128 continue; 2129 } 2130 2131 /* 2132 * Charge for the whole object allocation now, since 2133 * we cannot distinguish between non-charged and 2134 * charged clipped mapping of the same object later. 2135 */ 2136 KASSERT(obj->charge == 0, 2137 ("vm_map_protect: object %p overcharged (entry %p)", 2138 obj, current)); 2139 if (!swap_reserve(ptoa(obj->size))) { 2140 VM_OBJECT_WUNLOCK(obj); 2141 vm_map_unlock(map); 2142 return (KERN_RESOURCE_SHORTAGE); 2143 } 2144 2145 crhold(cred); 2146 obj->cred = cred; 2147 obj->charge = ptoa(obj->size); 2148 VM_OBJECT_WUNLOCK(obj); 2149 } 2150 2151 /* 2152 * Go back and fix up protections. [Note that clipping is not 2153 * necessary the second time.] 2154 */ 2155 for (current = entry; current->start < end; current = current->next) { 2156 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2157 continue; 2158 2159 old_prot = current->protection; 2160 2161 if (set_max) 2162 current->protection = 2163 (current->max_protection = new_prot) & 2164 old_prot; 2165 else 2166 current->protection = new_prot; 2167 2168 /* 2169 * For user wired map entries, the normal lazy evaluation of 2170 * write access upgrades through soft page faults is 2171 * undesirable. Instead, immediately copy any pages that are 2172 * copy-on-write and enable write access in the physical map. 2173 */ 2174 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2175 (current->protection & VM_PROT_WRITE) != 0 && 2176 (old_prot & VM_PROT_WRITE) == 0) 2177 vm_fault_copy_entry(map, map, current, current, NULL); 2178 2179 /* 2180 * When restricting access, update the physical map. Worry 2181 * about copy-on-write here. 2182 */ 2183 if ((old_prot & ~current->protection) != 0) { 2184 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2185 VM_PROT_ALL) 2186 pmap_protect(map->pmap, current->start, 2187 current->end, 2188 current->protection & MASK(current)); 2189 #undef MASK 2190 } 2191 vm_map_simplify_entry(map, current); 2192 } 2193 vm_map_unlock(map); 2194 return (KERN_SUCCESS); 2195 } 2196 2197 /* 2198 * vm_map_madvise: 2199 * 2200 * This routine traverses a processes map handling the madvise 2201 * system call. Advisories are classified as either those effecting 2202 * the vm_map_entry structure, or those effecting the underlying 2203 * objects. 2204 */ 2205 int 2206 vm_map_madvise( 2207 vm_map_t map, 2208 vm_offset_t start, 2209 vm_offset_t end, 2210 int behav) 2211 { 2212 vm_map_entry_t current, entry; 2213 bool modify_map; 2214 2215 /* 2216 * Some madvise calls directly modify the vm_map_entry, in which case 2217 * we need to use an exclusive lock on the map and we need to perform 2218 * various clipping operations. Otherwise we only need a read-lock 2219 * on the map. 2220 */ 2221 switch(behav) { 2222 case MADV_NORMAL: 2223 case MADV_SEQUENTIAL: 2224 case MADV_RANDOM: 2225 case MADV_NOSYNC: 2226 case MADV_AUTOSYNC: 2227 case MADV_NOCORE: 2228 case MADV_CORE: 2229 if (start == end) 2230 return (0); 2231 modify_map = true; 2232 vm_map_lock(map); 2233 break; 2234 case MADV_WILLNEED: 2235 case MADV_DONTNEED: 2236 case MADV_FREE: 2237 if (start == end) 2238 return (0); 2239 modify_map = false; 2240 vm_map_lock_read(map); 2241 break; 2242 default: 2243 return (EINVAL); 2244 } 2245 2246 /* 2247 * Locate starting entry and clip if necessary. 2248 */ 2249 VM_MAP_RANGE_CHECK(map, start, end); 2250 2251 if (vm_map_lookup_entry(map, start, &entry)) { 2252 if (modify_map) 2253 vm_map_clip_start(map, entry, start); 2254 } else { 2255 entry = entry->next; 2256 } 2257 2258 if (modify_map) { 2259 /* 2260 * madvise behaviors that are implemented in the vm_map_entry. 2261 * 2262 * We clip the vm_map_entry so that behavioral changes are 2263 * limited to the specified address range. 2264 */ 2265 for (current = entry; current->start < end; 2266 current = current->next) { 2267 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2268 continue; 2269 2270 vm_map_clip_end(map, current, end); 2271 2272 switch (behav) { 2273 case MADV_NORMAL: 2274 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2275 break; 2276 case MADV_SEQUENTIAL: 2277 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2278 break; 2279 case MADV_RANDOM: 2280 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2281 break; 2282 case MADV_NOSYNC: 2283 current->eflags |= MAP_ENTRY_NOSYNC; 2284 break; 2285 case MADV_AUTOSYNC: 2286 current->eflags &= ~MAP_ENTRY_NOSYNC; 2287 break; 2288 case MADV_NOCORE: 2289 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2290 break; 2291 case MADV_CORE: 2292 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2293 break; 2294 default: 2295 break; 2296 } 2297 vm_map_simplify_entry(map, current); 2298 } 2299 vm_map_unlock(map); 2300 } else { 2301 vm_pindex_t pstart, pend; 2302 2303 /* 2304 * madvise behaviors that are implemented in the underlying 2305 * vm_object. 2306 * 2307 * Since we don't clip the vm_map_entry, we have to clip 2308 * the vm_object pindex and count. 2309 */ 2310 for (current = entry; current->start < end; 2311 current = current->next) { 2312 vm_offset_t useEnd, useStart; 2313 2314 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2315 continue; 2316 2317 pstart = OFF_TO_IDX(current->offset); 2318 pend = pstart + atop(current->end - current->start); 2319 useStart = current->start; 2320 useEnd = current->end; 2321 2322 if (current->start < start) { 2323 pstart += atop(start - current->start); 2324 useStart = start; 2325 } 2326 if (current->end > end) { 2327 pend -= atop(current->end - end); 2328 useEnd = end; 2329 } 2330 2331 if (pstart >= pend) 2332 continue; 2333 2334 /* 2335 * Perform the pmap_advise() before clearing 2336 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2337 * concurrent pmap operation, such as pmap_remove(), 2338 * could clear a reference in the pmap and set 2339 * PGA_REFERENCED on the page before the pmap_advise() 2340 * had completed. Consequently, the page would appear 2341 * referenced based upon an old reference that 2342 * occurred before this pmap_advise() ran. 2343 */ 2344 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2345 pmap_advise(map->pmap, useStart, useEnd, 2346 behav); 2347 2348 vm_object_madvise(current->object.vm_object, pstart, 2349 pend, behav); 2350 2351 /* 2352 * Pre-populate paging structures in the 2353 * WILLNEED case. For wired entries, the 2354 * paging structures are already populated. 2355 */ 2356 if (behav == MADV_WILLNEED && 2357 current->wired_count == 0) { 2358 vm_map_pmap_enter(map, 2359 useStart, 2360 current->protection, 2361 current->object.vm_object, 2362 pstart, 2363 ptoa(pend - pstart), 2364 MAP_PREFAULT_MADVISE 2365 ); 2366 } 2367 } 2368 vm_map_unlock_read(map); 2369 } 2370 return (0); 2371 } 2372 2373 2374 /* 2375 * vm_map_inherit: 2376 * 2377 * Sets the inheritance of the specified address 2378 * range in the target map. Inheritance 2379 * affects how the map will be shared with 2380 * child maps at the time of vmspace_fork. 2381 */ 2382 int 2383 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2384 vm_inherit_t new_inheritance) 2385 { 2386 vm_map_entry_t entry; 2387 vm_map_entry_t temp_entry; 2388 2389 switch (new_inheritance) { 2390 case VM_INHERIT_NONE: 2391 case VM_INHERIT_COPY: 2392 case VM_INHERIT_SHARE: 2393 case VM_INHERIT_ZERO: 2394 break; 2395 default: 2396 return (KERN_INVALID_ARGUMENT); 2397 } 2398 if (start == end) 2399 return (KERN_SUCCESS); 2400 vm_map_lock(map); 2401 VM_MAP_RANGE_CHECK(map, start, end); 2402 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2403 entry = temp_entry; 2404 vm_map_clip_start(map, entry, start); 2405 } else 2406 entry = temp_entry->next; 2407 while (entry->start < end) { 2408 vm_map_clip_end(map, entry, end); 2409 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 2410 new_inheritance != VM_INHERIT_ZERO) 2411 entry->inheritance = new_inheritance; 2412 vm_map_simplify_entry(map, entry); 2413 entry = entry->next; 2414 } 2415 vm_map_unlock(map); 2416 return (KERN_SUCCESS); 2417 } 2418 2419 /* 2420 * vm_map_unwire: 2421 * 2422 * Implements both kernel and user unwiring. 2423 */ 2424 int 2425 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2426 int flags) 2427 { 2428 vm_map_entry_t entry, first_entry, tmp_entry; 2429 vm_offset_t saved_start; 2430 unsigned int last_timestamp; 2431 int rv; 2432 boolean_t need_wakeup, result, user_unwire; 2433 2434 if (start == end) 2435 return (KERN_SUCCESS); 2436 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2437 vm_map_lock(map); 2438 VM_MAP_RANGE_CHECK(map, start, end); 2439 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2440 if (flags & VM_MAP_WIRE_HOLESOK) 2441 first_entry = first_entry->next; 2442 else { 2443 vm_map_unlock(map); 2444 return (KERN_INVALID_ADDRESS); 2445 } 2446 } 2447 last_timestamp = map->timestamp; 2448 entry = first_entry; 2449 while (entry->start < end) { 2450 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2451 /* 2452 * We have not yet clipped the entry. 2453 */ 2454 saved_start = (start >= entry->start) ? start : 2455 entry->start; 2456 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2457 if (vm_map_unlock_and_wait(map, 0)) { 2458 /* 2459 * Allow interruption of user unwiring? 2460 */ 2461 } 2462 vm_map_lock(map); 2463 if (last_timestamp+1 != map->timestamp) { 2464 /* 2465 * Look again for the entry because the map was 2466 * modified while it was unlocked. 2467 * Specifically, the entry may have been 2468 * clipped, merged, or deleted. 2469 */ 2470 if (!vm_map_lookup_entry(map, saved_start, 2471 &tmp_entry)) { 2472 if (flags & VM_MAP_WIRE_HOLESOK) 2473 tmp_entry = tmp_entry->next; 2474 else { 2475 if (saved_start == start) { 2476 /* 2477 * First_entry has been deleted. 2478 */ 2479 vm_map_unlock(map); 2480 return (KERN_INVALID_ADDRESS); 2481 } 2482 end = saved_start; 2483 rv = KERN_INVALID_ADDRESS; 2484 goto done; 2485 } 2486 } 2487 if (entry == first_entry) 2488 first_entry = tmp_entry; 2489 else 2490 first_entry = NULL; 2491 entry = tmp_entry; 2492 } 2493 last_timestamp = map->timestamp; 2494 continue; 2495 } 2496 vm_map_clip_start(map, entry, start); 2497 vm_map_clip_end(map, entry, end); 2498 /* 2499 * Mark the entry in case the map lock is released. (See 2500 * above.) 2501 */ 2502 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2503 entry->wiring_thread == NULL, 2504 ("owned map entry %p", entry)); 2505 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2506 entry->wiring_thread = curthread; 2507 /* 2508 * Check the map for holes in the specified region. 2509 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2510 */ 2511 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2512 (entry->end < end && entry->next->start > entry->end)) { 2513 end = entry->end; 2514 rv = KERN_INVALID_ADDRESS; 2515 goto done; 2516 } 2517 /* 2518 * If system unwiring, require that the entry is system wired. 2519 */ 2520 if (!user_unwire && 2521 vm_map_entry_system_wired_count(entry) == 0) { 2522 end = entry->end; 2523 rv = KERN_INVALID_ARGUMENT; 2524 goto done; 2525 } 2526 entry = entry->next; 2527 } 2528 rv = KERN_SUCCESS; 2529 done: 2530 need_wakeup = FALSE; 2531 if (first_entry == NULL) { 2532 result = vm_map_lookup_entry(map, start, &first_entry); 2533 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2534 first_entry = first_entry->next; 2535 else 2536 KASSERT(result, ("vm_map_unwire: lookup failed")); 2537 } 2538 for (entry = first_entry; entry->start < end; entry = entry->next) { 2539 /* 2540 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2541 * space in the unwired region could have been mapped 2542 * while the map lock was dropped for draining 2543 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2544 * could be simultaneously wiring this new mapping 2545 * entry. Detect these cases and skip any entries 2546 * marked as in transition by us. 2547 */ 2548 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2549 entry->wiring_thread != curthread) { 2550 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2551 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2552 continue; 2553 } 2554 2555 if (rv == KERN_SUCCESS && (!user_unwire || 2556 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2557 if (user_unwire) 2558 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2559 if (entry->wired_count == 1) 2560 vm_map_entry_unwire(map, entry); 2561 else 2562 entry->wired_count--; 2563 } 2564 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2565 ("vm_map_unwire: in-transition flag missing %p", entry)); 2566 KASSERT(entry->wiring_thread == curthread, 2567 ("vm_map_unwire: alien wire %p", entry)); 2568 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2569 entry->wiring_thread = NULL; 2570 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2571 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2572 need_wakeup = TRUE; 2573 } 2574 vm_map_simplify_entry(map, entry); 2575 } 2576 vm_map_unlock(map); 2577 if (need_wakeup) 2578 vm_map_wakeup(map); 2579 return (rv); 2580 } 2581 2582 /* 2583 * vm_map_wire_entry_failure: 2584 * 2585 * Handle a wiring failure on the given entry. 2586 * 2587 * The map should be locked. 2588 */ 2589 static void 2590 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 2591 vm_offset_t failed_addr) 2592 { 2593 2594 VM_MAP_ASSERT_LOCKED(map); 2595 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 2596 entry->wired_count == 1, 2597 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 2598 KASSERT(failed_addr < entry->end, 2599 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 2600 2601 /* 2602 * If any pages at the start of this entry were successfully wired, 2603 * then unwire them. 2604 */ 2605 if (failed_addr > entry->start) { 2606 pmap_unwire(map->pmap, entry->start, failed_addr); 2607 vm_object_unwire(entry->object.vm_object, entry->offset, 2608 failed_addr - entry->start, PQ_ACTIVE); 2609 } 2610 2611 /* 2612 * Assign an out-of-range value to represent the failure to wire this 2613 * entry. 2614 */ 2615 entry->wired_count = -1; 2616 } 2617 2618 /* 2619 * vm_map_wire: 2620 * 2621 * Implements both kernel and user wiring. 2622 */ 2623 int 2624 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2625 int flags) 2626 { 2627 vm_map_entry_t entry, first_entry, tmp_entry; 2628 vm_offset_t faddr, saved_end, saved_start; 2629 unsigned int last_timestamp; 2630 int rv; 2631 boolean_t need_wakeup, result, user_wire; 2632 vm_prot_t prot; 2633 2634 if (start == end) 2635 return (KERN_SUCCESS); 2636 prot = 0; 2637 if (flags & VM_MAP_WIRE_WRITE) 2638 prot |= VM_PROT_WRITE; 2639 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2640 vm_map_lock(map); 2641 VM_MAP_RANGE_CHECK(map, start, end); 2642 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2643 if (flags & VM_MAP_WIRE_HOLESOK) 2644 first_entry = first_entry->next; 2645 else { 2646 vm_map_unlock(map); 2647 return (KERN_INVALID_ADDRESS); 2648 } 2649 } 2650 last_timestamp = map->timestamp; 2651 entry = first_entry; 2652 while (entry->start < end) { 2653 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2654 /* 2655 * We have not yet clipped the entry. 2656 */ 2657 saved_start = (start >= entry->start) ? start : 2658 entry->start; 2659 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2660 if (vm_map_unlock_and_wait(map, 0)) { 2661 /* 2662 * Allow interruption of user wiring? 2663 */ 2664 } 2665 vm_map_lock(map); 2666 if (last_timestamp + 1 != map->timestamp) { 2667 /* 2668 * Look again for the entry because the map was 2669 * modified while it was unlocked. 2670 * Specifically, the entry may have been 2671 * clipped, merged, or deleted. 2672 */ 2673 if (!vm_map_lookup_entry(map, saved_start, 2674 &tmp_entry)) { 2675 if (flags & VM_MAP_WIRE_HOLESOK) 2676 tmp_entry = tmp_entry->next; 2677 else { 2678 if (saved_start == start) { 2679 /* 2680 * first_entry has been deleted. 2681 */ 2682 vm_map_unlock(map); 2683 return (KERN_INVALID_ADDRESS); 2684 } 2685 end = saved_start; 2686 rv = KERN_INVALID_ADDRESS; 2687 goto done; 2688 } 2689 } 2690 if (entry == first_entry) 2691 first_entry = tmp_entry; 2692 else 2693 first_entry = NULL; 2694 entry = tmp_entry; 2695 } 2696 last_timestamp = map->timestamp; 2697 continue; 2698 } 2699 vm_map_clip_start(map, entry, start); 2700 vm_map_clip_end(map, entry, end); 2701 /* 2702 * Mark the entry in case the map lock is released. (See 2703 * above.) 2704 */ 2705 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2706 entry->wiring_thread == NULL, 2707 ("owned map entry %p", entry)); 2708 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2709 entry->wiring_thread = curthread; 2710 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2711 || (entry->protection & prot) != prot) { 2712 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2713 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2714 end = entry->end; 2715 rv = KERN_INVALID_ADDRESS; 2716 goto done; 2717 } 2718 goto next_entry; 2719 } 2720 if (entry->wired_count == 0) { 2721 entry->wired_count++; 2722 saved_start = entry->start; 2723 saved_end = entry->end; 2724 2725 /* 2726 * Release the map lock, relying on the in-transition 2727 * mark. Mark the map busy for fork. 2728 */ 2729 vm_map_busy(map); 2730 vm_map_unlock(map); 2731 2732 faddr = saved_start; 2733 do { 2734 /* 2735 * Simulate a fault to get the page and enter 2736 * it into the physical map. 2737 */ 2738 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 2739 VM_FAULT_WIRE)) != KERN_SUCCESS) 2740 break; 2741 } while ((faddr += PAGE_SIZE) < saved_end); 2742 vm_map_lock(map); 2743 vm_map_unbusy(map); 2744 if (last_timestamp + 1 != map->timestamp) { 2745 /* 2746 * Look again for the entry because the map was 2747 * modified while it was unlocked. The entry 2748 * may have been clipped, but NOT merged or 2749 * deleted. 2750 */ 2751 result = vm_map_lookup_entry(map, saved_start, 2752 &tmp_entry); 2753 KASSERT(result, ("vm_map_wire: lookup failed")); 2754 if (entry == first_entry) 2755 first_entry = tmp_entry; 2756 else 2757 first_entry = NULL; 2758 entry = tmp_entry; 2759 while (entry->end < saved_end) { 2760 /* 2761 * In case of failure, handle entries 2762 * that were not fully wired here; 2763 * fully wired entries are handled 2764 * later. 2765 */ 2766 if (rv != KERN_SUCCESS && 2767 faddr < entry->end) 2768 vm_map_wire_entry_failure(map, 2769 entry, faddr); 2770 entry = entry->next; 2771 } 2772 } 2773 last_timestamp = map->timestamp; 2774 if (rv != KERN_SUCCESS) { 2775 vm_map_wire_entry_failure(map, entry, faddr); 2776 end = entry->end; 2777 goto done; 2778 } 2779 } else if (!user_wire || 2780 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2781 entry->wired_count++; 2782 } 2783 /* 2784 * Check the map for holes in the specified region. 2785 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2786 */ 2787 next_entry: 2788 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 && 2789 entry->end < end && entry->next->start > entry->end) { 2790 end = entry->end; 2791 rv = KERN_INVALID_ADDRESS; 2792 goto done; 2793 } 2794 entry = entry->next; 2795 } 2796 rv = KERN_SUCCESS; 2797 done: 2798 need_wakeup = FALSE; 2799 if (first_entry == NULL) { 2800 result = vm_map_lookup_entry(map, start, &first_entry); 2801 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2802 first_entry = first_entry->next; 2803 else 2804 KASSERT(result, ("vm_map_wire: lookup failed")); 2805 } 2806 for (entry = first_entry; entry->start < end; entry = entry->next) { 2807 /* 2808 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2809 * space in the unwired region could have been mapped 2810 * while the map lock was dropped for faulting in the 2811 * pages or draining MAP_ENTRY_IN_TRANSITION. 2812 * Moreover, another thread could be simultaneously 2813 * wiring this new mapping entry. Detect these cases 2814 * and skip any entries marked as in transition not by us. 2815 */ 2816 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2817 entry->wiring_thread != curthread) { 2818 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2819 ("vm_map_wire: !HOLESOK and new/changed entry")); 2820 continue; 2821 } 2822 2823 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2824 goto next_entry_done; 2825 2826 if (rv == KERN_SUCCESS) { 2827 if (user_wire) 2828 entry->eflags |= MAP_ENTRY_USER_WIRED; 2829 } else if (entry->wired_count == -1) { 2830 /* 2831 * Wiring failed on this entry. Thus, unwiring is 2832 * unnecessary. 2833 */ 2834 entry->wired_count = 0; 2835 } else if (!user_wire || 2836 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2837 /* 2838 * Undo the wiring. Wiring succeeded on this entry 2839 * but failed on a later entry. 2840 */ 2841 if (entry->wired_count == 1) 2842 vm_map_entry_unwire(map, entry); 2843 else 2844 entry->wired_count--; 2845 } 2846 next_entry_done: 2847 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2848 ("vm_map_wire: in-transition flag missing %p", entry)); 2849 KASSERT(entry->wiring_thread == curthread, 2850 ("vm_map_wire: alien wire %p", entry)); 2851 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2852 MAP_ENTRY_WIRE_SKIPPED); 2853 entry->wiring_thread = NULL; 2854 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2855 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2856 need_wakeup = TRUE; 2857 } 2858 vm_map_simplify_entry(map, entry); 2859 } 2860 vm_map_unlock(map); 2861 if (need_wakeup) 2862 vm_map_wakeup(map); 2863 return (rv); 2864 } 2865 2866 /* 2867 * vm_map_sync 2868 * 2869 * Push any dirty cached pages in the address range to their pager. 2870 * If syncio is TRUE, dirty pages are written synchronously. 2871 * If invalidate is TRUE, any cached pages are freed as well. 2872 * 2873 * If the size of the region from start to end is zero, we are 2874 * supposed to flush all modified pages within the region containing 2875 * start. Unfortunately, a region can be split or coalesced with 2876 * neighboring regions, making it difficult to determine what the 2877 * original region was. Therefore, we approximate this requirement by 2878 * flushing the current region containing start. 2879 * 2880 * Returns an error if any part of the specified range is not mapped. 2881 */ 2882 int 2883 vm_map_sync( 2884 vm_map_t map, 2885 vm_offset_t start, 2886 vm_offset_t end, 2887 boolean_t syncio, 2888 boolean_t invalidate) 2889 { 2890 vm_map_entry_t current; 2891 vm_map_entry_t entry; 2892 vm_size_t size; 2893 vm_object_t object; 2894 vm_ooffset_t offset; 2895 unsigned int last_timestamp; 2896 boolean_t failed; 2897 2898 vm_map_lock_read(map); 2899 VM_MAP_RANGE_CHECK(map, start, end); 2900 if (!vm_map_lookup_entry(map, start, &entry)) { 2901 vm_map_unlock_read(map); 2902 return (KERN_INVALID_ADDRESS); 2903 } else if (start == end) { 2904 start = entry->start; 2905 end = entry->end; 2906 } 2907 /* 2908 * Make a first pass to check for user-wired memory and holes. 2909 */ 2910 for (current = entry; current->start < end; current = current->next) { 2911 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2912 vm_map_unlock_read(map); 2913 return (KERN_INVALID_ARGUMENT); 2914 } 2915 if (end > current->end && 2916 current->end != current->next->start) { 2917 vm_map_unlock_read(map); 2918 return (KERN_INVALID_ADDRESS); 2919 } 2920 } 2921 2922 if (invalidate) 2923 pmap_remove(map->pmap, start, end); 2924 failed = FALSE; 2925 2926 /* 2927 * Make a second pass, cleaning/uncaching pages from the indicated 2928 * objects as we go. 2929 */ 2930 for (current = entry; current->start < end;) { 2931 offset = current->offset + (start - current->start); 2932 size = (end <= current->end ? end : current->end) - start; 2933 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2934 vm_map_t smap; 2935 vm_map_entry_t tentry; 2936 vm_size_t tsize; 2937 2938 smap = current->object.sub_map; 2939 vm_map_lock_read(smap); 2940 (void) vm_map_lookup_entry(smap, offset, &tentry); 2941 tsize = tentry->end - offset; 2942 if (tsize < size) 2943 size = tsize; 2944 object = tentry->object.vm_object; 2945 offset = tentry->offset + (offset - tentry->start); 2946 vm_map_unlock_read(smap); 2947 } else { 2948 object = current->object.vm_object; 2949 } 2950 vm_object_reference(object); 2951 last_timestamp = map->timestamp; 2952 vm_map_unlock_read(map); 2953 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2954 failed = TRUE; 2955 start += size; 2956 vm_object_deallocate(object); 2957 vm_map_lock_read(map); 2958 if (last_timestamp == map->timestamp || 2959 !vm_map_lookup_entry(map, start, ¤t)) 2960 current = current->next; 2961 } 2962 2963 vm_map_unlock_read(map); 2964 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2965 } 2966 2967 /* 2968 * vm_map_entry_unwire: [ internal use only ] 2969 * 2970 * Make the region specified by this entry pageable. 2971 * 2972 * The map in question should be locked. 2973 * [This is the reason for this routine's existence.] 2974 */ 2975 static void 2976 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2977 { 2978 2979 VM_MAP_ASSERT_LOCKED(map); 2980 KASSERT(entry->wired_count > 0, 2981 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 2982 pmap_unwire(map->pmap, entry->start, entry->end); 2983 vm_object_unwire(entry->object.vm_object, entry->offset, entry->end - 2984 entry->start, PQ_ACTIVE); 2985 entry->wired_count = 0; 2986 } 2987 2988 static void 2989 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2990 { 2991 2992 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2993 vm_object_deallocate(entry->object.vm_object); 2994 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2995 } 2996 2997 /* 2998 * vm_map_entry_delete: [ internal use only ] 2999 * 3000 * Deallocate the given entry from the target map. 3001 */ 3002 static void 3003 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3004 { 3005 vm_object_t object; 3006 vm_pindex_t offidxstart, offidxend, count, size1; 3007 vm_size_t size; 3008 3009 vm_map_entry_unlink(map, entry); 3010 object = entry->object.vm_object; 3011 3012 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3013 MPASS(entry->cred == NULL); 3014 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3015 MPASS(object == NULL); 3016 vm_map_entry_deallocate(entry, map->system_map); 3017 return; 3018 } 3019 3020 size = entry->end - entry->start; 3021 map->size -= size; 3022 3023 if (entry->cred != NULL) { 3024 swap_release_by_cred(size, entry->cred); 3025 crfree(entry->cred); 3026 } 3027 3028 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 3029 (object != NULL)) { 3030 KASSERT(entry->cred == NULL || object->cred == NULL || 3031 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3032 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3033 count = atop(size); 3034 offidxstart = OFF_TO_IDX(entry->offset); 3035 offidxend = offidxstart + count; 3036 VM_OBJECT_WLOCK(object); 3037 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT | 3038 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 3039 object == kernel_object)) { 3040 vm_object_collapse(object); 3041 3042 /* 3043 * The option OBJPR_NOTMAPPED can be passed here 3044 * because vm_map_delete() already performed 3045 * pmap_remove() on the only mapping to this range 3046 * of pages. 3047 */ 3048 vm_object_page_remove(object, offidxstart, offidxend, 3049 OBJPR_NOTMAPPED); 3050 if (object->type == OBJT_SWAP) 3051 swap_pager_freespace(object, offidxstart, 3052 count); 3053 if (offidxend >= object->size && 3054 offidxstart < object->size) { 3055 size1 = object->size; 3056 object->size = offidxstart; 3057 if (object->cred != NULL) { 3058 size1 -= object->size; 3059 KASSERT(object->charge >= ptoa(size1), 3060 ("object %p charge < 0", object)); 3061 swap_release_by_cred(ptoa(size1), 3062 object->cred); 3063 object->charge -= ptoa(size1); 3064 } 3065 } 3066 } 3067 VM_OBJECT_WUNLOCK(object); 3068 } else 3069 entry->object.vm_object = NULL; 3070 if (map->system_map) 3071 vm_map_entry_deallocate(entry, TRUE); 3072 else { 3073 entry->next = curthread->td_map_def_user; 3074 curthread->td_map_def_user = entry; 3075 } 3076 } 3077 3078 /* 3079 * vm_map_delete: [ internal use only ] 3080 * 3081 * Deallocates the given address range from the target 3082 * map. 3083 */ 3084 int 3085 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3086 { 3087 vm_map_entry_t entry; 3088 vm_map_entry_t first_entry; 3089 3090 VM_MAP_ASSERT_LOCKED(map); 3091 if (start == end) 3092 return (KERN_SUCCESS); 3093 3094 /* 3095 * Find the start of the region, and clip it 3096 */ 3097 if (!vm_map_lookup_entry(map, start, &first_entry)) 3098 entry = first_entry->next; 3099 else { 3100 entry = first_entry; 3101 vm_map_clip_start(map, entry, start); 3102 } 3103 3104 /* 3105 * Step through all entries in this region 3106 */ 3107 while (entry->start < end) { 3108 vm_map_entry_t next; 3109 3110 /* 3111 * Wait for wiring or unwiring of an entry to complete. 3112 * Also wait for any system wirings to disappear on 3113 * user maps. 3114 */ 3115 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3116 (vm_map_pmap(map) != kernel_pmap && 3117 vm_map_entry_system_wired_count(entry) != 0)) { 3118 unsigned int last_timestamp; 3119 vm_offset_t saved_start; 3120 vm_map_entry_t tmp_entry; 3121 3122 saved_start = entry->start; 3123 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3124 last_timestamp = map->timestamp; 3125 (void) vm_map_unlock_and_wait(map, 0); 3126 vm_map_lock(map); 3127 if (last_timestamp + 1 != map->timestamp) { 3128 /* 3129 * Look again for the entry because the map was 3130 * modified while it was unlocked. 3131 * Specifically, the entry may have been 3132 * clipped, merged, or deleted. 3133 */ 3134 if (!vm_map_lookup_entry(map, saved_start, 3135 &tmp_entry)) 3136 entry = tmp_entry->next; 3137 else { 3138 entry = tmp_entry; 3139 vm_map_clip_start(map, entry, 3140 saved_start); 3141 } 3142 } 3143 continue; 3144 } 3145 vm_map_clip_end(map, entry, end); 3146 3147 next = entry->next; 3148 3149 /* 3150 * Unwire before removing addresses from the pmap; otherwise, 3151 * unwiring will put the entries back in the pmap. 3152 */ 3153 if (entry->wired_count != 0) 3154 vm_map_entry_unwire(map, entry); 3155 3156 /* 3157 * Remove mappings for the pages, but only if the 3158 * mappings could exist. For instance, it does not 3159 * make sense to call pmap_remove() for guard entries. 3160 */ 3161 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3162 entry->object.vm_object != NULL) 3163 pmap_remove(map->pmap, entry->start, entry->end); 3164 3165 /* 3166 * Delete the entry only after removing all pmap 3167 * entries pointing to its pages. (Otherwise, its 3168 * page frames may be reallocated, and any modify bits 3169 * will be set in the wrong object!) 3170 */ 3171 vm_map_entry_delete(map, entry); 3172 entry = next; 3173 } 3174 return (KERN_SUCCESS); 3175 } 3176 3177 /* 3178 * vm_map_remove: 3179 * 3180 * Remove the given address range from the target map. 3181 * This is the exported form of vm_map_delete. 3182 */ 3183 int 3184 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3185 { 3186 int result; 3187 3188 vm_map_lock(map); 3189 VM_MAP_RANGE_CHECK(map, start, end); 3190 result = vm_map_delete(map, start, end); 3191 vm_map_unlock(map); 3192 return (result); 3193 } 3194 3195 /* 3196 * vm_map_check_protection: 3197 * 3198 * Assert that the target map allows the specified privilege on the 3199 * entire address region given. The entire region must be allocated. 3200 * 3201 * WARNING! This code does not and should not check whether the 3202 * contents of the region is accessible. For example a smaller file 3203 * might be mapped into a larger address space. 3204 * 3205 * NOTE! This code is also called by munmap(). 3206 * 3207 * The map must be locked. A read lock is sufficient. 3208 */ 3209 boolean_t 3210 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3211 vm_prot_t protection) 3212 { 3213 vm_map_entry_t entry; 3214 vm_map_entry_t tmp_entry; 3215 3216 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3217 return (FALSE); 3218 entry = tmp_entry; 3219 3220 while (start < end) { 3221 /* 3222 * No holes allowed! 3223 */ 3224 if (start < entry->start) 3225 return (FALSE); 3226 /* 3227 * Check protection associated with entry. 3228 */ 3229 if ((entry->protection & protection) != protection) 3230 return (FALSE); 3231 /* go to next entry */ 3232 start = entry->end; 3233 entry = entry->next; 3234 } 3235 return (TRUE); 3236 } 3237 3238 /* 3239 * vm_map_copy_entry: 3240 * 3241 * Copies the contents of the source entry to the destination 3242 * entry. The entries *must* be aligned properly. 3243 */ 3244 static void 3245 vm_map_copy_entry( 3246 vm_map_t src_map, 3247 vm_map_t dst_map, 3248 vm_map_entry_t src_entry, 3249 vm_map_entry_t dst_entry, 3250 vm_ooffset_t *fork_charge) 3251 { 3252 vm_object_t src_object; 3253 vm_map_entry_t fake_entry; 3254 vm_offset_t size; 3255 struct ucred *cred; 3256 int charged; 3257 3258 VM_MAP_ASSERT_LOCKED(dst_map); 3259 3260 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3261 return; 3262 3263 if (src_entry->wired_count == 0 || 3264 (src_entry->protection & VM_PROT_WRITE) == 0) { 3265 /* 3266 * If the source entry is marked needs_copy, it is already 3267 * write-protected. 3268 */ 3269 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3270 (src_entry->protection & VM_PROT_WRITE) != 0) { 3271 pmap_protect(src_map->pmap, 3272 src_entry->start, 3273 src_entry->end, 3274 src_entry->protection & ~VM_PROT_WRITE); 3275 } 3276 3277 /* 3278 * Make a copy of the object. 3279 */ 3280 size = src_entry->end - src_entry->start; 3281 if ((src_object = src_entry->object.vm_object) != NULL) { 3282 VM_OBJECT_WLOCK(src_object); 3283 charged = ENTRY_CHARGED(src_entry); 3284 if (src_object->handle == NULL && 3285 (src_object->type == OBJT_DEFAULT || 3286 src_object->type == OBJT_SWAP)) { 3287 vm_object_collapse(src_object); 3288 if ((src_object->flags & (OBJ_NOSPLIT | 3289 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3290 vm_object_split(src_entry); 3291 src_object = 3292 src_entry->object.vm_object; 3293 } 3294 } 3295 vm_object_reference_locked(src_object); 3296 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3297 if (src_entry->cred != NULL && 3298 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3299 KASSERT(src_object->cred == NULL, 3300 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3301 src_object)); 3302 src_object->cred = src_entry->cred; 3303 src_object->charge = size; 3304 } 3305 VM_OBJECT_WUNLOCK(src_object); 3306 dst_entry->object.vm_object = src_object; 3307 if (charged) { 3308 cred = curthread->td_ucred; 3309 crhold(cred); 3310 dst_entry->cred = cred; 3311 *fork_charge += size; 3312 if (!(src_entry->eflags & 3313 MAP_ENTRY_NEEDS_COPY)) { 3314 crhold(cred); 3315 src_entry->cred = cred; 3316 *fork_charge += size; 3317 } 3318 } 3319 src_entry->eflags |= MAP_ENTRY_COW | 3320 MAP_ENTRY_NEEDS_COPY; 3321 dst_entry->eflags |= MAP_ENTRY_COW | 3322 MAP_ENTRY_NEEDS_COPY; 3323 dst_entry->offset = src_entry->offset; 3324 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3325 /* 3326 * MAP_ENTRY_VN_WRITECNT cannot 3327 * indicate write reference from 3328 * src_entry, since the entry is 3329 * marked as needs copy. Allocate a 3330 * fake entry that is used to 3331 * decrement object->un_pager.vnp.writecount 3332 * at the appropriate time. Attach 3333 * fake_entry to the deferred list. 3334 */ 3335 fake_entry = vm_map_entry_create(dst_map); 3336 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3337 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3338 vm_object_reference(src_object); 3339 fake_entry->object.vm_object = src_object; 3340 fake_entry->start = src_entry->start; 3341 fake_entry->end = src_entry->end; 3342 fake_entry->next = curthread->td_map_def_user; 3343 curthread->td_map_def_user = fake_entry; 3344 } 3345 3346 pmap_copy(dst_map->pmap, src_map->pmap, 3347 dst_entry->start, dst_entry->end - dst_entry->start, 3348 src_entry->start); 3349 } else { 3350 dst_entry->object.vm_object = NULL; 3351 dst_entry->offset = 0; 3352 if (src_entry->cred != NULL) { 3353 dst_entry->cred = curthread->td_ucred; 3354 crhold(dst_entry->cred); 3355 *fork_charge += size; 3356 } 3357 } 3358 } else { 3359 /* 3360 * We don't want to make writeable wired pages copy-on-write. 3361 * Immediately copy these pages into the new map by simulating 3362 * page faults. The new pages are pageable. 3363 */ 3364 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3365 fork_charge); 3366 } 3367 } 3368 3369 /* 3370 * vmspace_map_entry_forked: 3371 * Update the newly-forked vmspace each time a map entry is inherited 3372 * or copied. The values for vm_dsize and vm_tsize are approximate 3373 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3374 */ 3375 static void 3376 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3377 vm_map_entry_t entry) 3378 { 3379 vm_size_t entrysize; 3380 vm_offset_t newend; 3381 3382 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 3383 return; 3384 entrysize = entry->end - entry->start; 3385 vm2->vm_map.size += entrysize; 3386 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3387 vm2->vm_ssize += btoc(entrysize); 3388 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3389 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3390 newend = MIN(entry->end, 3391 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3392 vm2->vm_dsize += btoc(newend - entry->start); 3393 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3394 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3395 newend = MIN(entry->end, 3396 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3397 vm2->vm_tsize += btoc(newend - entry->start); 3398 } 3399 } 3400 3401 /* 3402 * vmspace_fork: 3403 * Create a new process vmspace structure and vm_map 3404 * based on those of an existing process. The new map 3405 * is based on the old map, according to the inheritance 3406 * values on the regions in that map. 3407 * 3408 * XXX It might be worth coalescing the entries added to the new vmspace. 3409 * 3410 * The source map must not be locked. 3411 */ 3412 struct vmspace * 3413 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3414 { 3415 struct vmspace *vm2; 3416 vm_map_t new_map, old_map; 3417 vm_map_entry_t new_entry, old_entry; 3418 vm_object_t object; 3419 int locked; 3420 vm_inherit_t inh; 3421 3422 old_map = &vm1->vm_map; 3423 /* Copy immutable fields of vm1 to vm2. */ 3424 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), NULL); 3425 if (vm2 == NULL) 3426 return (NULL); 3427 vm2->vm_taddr = vm1->vm_taddr; 3428 vm2->vm_daddr = vm1->vm_daddr; 3429 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3430 vm_map_lock(old_map); 3431 if (old_map->busy) 3432 vm_map_wait_busy(old_map); 3433 new_map = &vm2->vm_map; 3434 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3435 KASSERT(locked, ("vmspace_fork: lock failed")); 3436 3437 old_entry = old_map->header.next; 3438 3439 while (old_entry != &old_map->header) { 3440 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3441 panic("vm_map_fork: encountered a submap"); 3442 3443 inh = old_entry->inheritance; 3444 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 3445 inh != VM_INHERIT_NONE) 3446 inh = VM_INHERIT_COPY; 3447 3448 switch (inh) { 3449 case VM_INHERIT_NONE: 3450 break; 3451 3452 case VM_INHERIT_SHARE: 3453 /* 3454 * Clone the entry, creating the shared object if necessary. 3455 */ 3456 object = old_entry->object.vm_object; 3457 if (object == NULL) { 3458 object = vm_object_allocate(OBJT_DEFAULT, 3459 atop(old_entry->end - old_entry->start)); 3460 old_entry->object.vm_object = object; 3461 old_entry->offset = 0; 3462 if (old_entry->cred != NULL) { 3463 object->cred = old_entry->cred; 3464 object->charge = old_entry->end - 3465 old_entry->start; 3466 old_entry->cred = NULL; 3467 } 3468 } 3469 3470 /* 3471 * Add the reference before calling vm_object_shadow 3472 * to insure that a shadow object is created. 3473 */ 3474 vm_object_reference(object); 3475 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3476 vm_object_shadow(&old_entry->object.vm_object, 3477 &old_entry->offset, 3478 old_entry->end - old_entry->start); 3479 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3480 /* Transfer the second reference too. */ 3481 vm_object_reference( 3482 old_entry->object.vm_object); 3483 3484 /* 3485 * As in vm_map_simplify_entry(), the 3486 * vnode lock will not be acquired in 3487 * this call to vm_object_deallocate(). 3488 */ 3489 vm_object_deallocate(object); 3490 object = old_entry->object.vm_object; 3491 } 3492 VM_OBJECT_WLOCK(object); 3493 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3494 if (old_entry->cred != NULL) { 3495 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3496 object->cred = old_entry->cred; 3497 object->charge = old_entry->end - old_entry->start; 3498 old_entry->cred = NULL; 3499 } 3500 3501 /* 3502 * Assert the correct state of the vnode 3503 * v_writecount while the object is locked, to 3504 * not relock it later for the assertion 3505 * correctness. 3506 */ 3507 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3508 object->type == OBJT_VNODE) { 3509 KASSERT(((struct vnode *)object->handle)-> 3510 v_writecount > 0, 3511 ("vmspace_fork: v_writecount %p", object)); 3512 KASSERT(object->un_pager.vnp.writemappings > 0, 3513 ("vmspace_fork: vnp.writecount %p", 3514 object)); 3515 } 3516 VM_OBJECT_WUNLOCK(object); 3517 3518 /* 3519 * Clone the entry, referencing the shared object. 3520 */ 3521 new_entry = vm_map_entry_create(new_map); 3522 *new_entry = *old_entry; 3523 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3524 MAP_ENTRY_IN_TRANSITION); 3525 new_entry->wiring_thread = NULL; 3526 new_entry->wired_count = 0; 3527 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3528 vnode_pager_update_writecount(object, 3529 new_entry->start, new_entry->end); 3530 } 3531 3532 /* 3533 * Insert the entry into the new map -- we know we're 3534 * inserting at the end of the new map. 3535 */ 3536 vm_map_entry_link(new_map, new_map->header.prev, 3537 new_entry); 3538 vmspace_map_entry_forked(vm1, vm2, new_entry); 3539 3540 /* 3541 * Update the physical map 3542 */ 3543 pmap_copy(new_map->pmap, old_map->pmap, 3544 new_entry->start, 3545 (old_entry->end - old_entry->start), 3546 old_entry->start); 3547 break; 3548 3549 case VM_INHERIT_COPY: 3550 /* 3551 * Clone the entry and link into the map. 3552 */ 3553 new_entry = vm_map_entry_create(new_map); 3554 *new_entry = *old_entry; 3555 /* 3556 * Copied entry is COW over the old object. 3557 */ 3558 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3559 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3560 new_entry->wiring_thread = NULL; 3561 new_entry->wired_count = 0; 3562 new_entry->object.vm_object = NULL; 3563 new_entry->cred = NULL; 3564 vm_map_entry_link(new_map, new_map->header.prev, 3565 new_entry); 3566 vmspace_map_entry_forked(vm1, vm2, new_entry); 3567 vm_map_copy_entry(old_map, new_map, old_entry, 3568 new_entry, fork_charge); 3569 break; 3570 3571 case VM_INHERIT_ZERO: 3572 /* 3573 * Create a new anonymous mapping entry modelled from 3574 * the old one. 3575 */ 3576 new_entry = vm_map_entry_create(new_map); 3577 memset(new_entry, 0, sizeof(*new_entry)); 3578 3579 new_entry->start = old_entry->start; 3580 new_entry->end = old_entry->end; 3581 new_entry->eflags = old_entry->eflags & 3582 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 3583 MAP_ENTRY_VN_WRITECNT); 3584 new_entry->protection = old_entry->protection; 3585 new_entry->max_protection = old_entry->max_protection; 3586 new_entry->inheritance = VM_INHERIT_ZERO; 3587 3588 vm_map_entry_link(new_map, new_map->header.prev, 3589 new_entry); 3590 vmspace_map_entry_forked(vm1, vm2, new_entry); 3591 3592 new_entry->cred = curthread->td_ucred; 3593 crhold(new_entry->cred); 3594 *fork_charge += (new_entry->end - new_entry->start); 3595 3596 break; 3597 } 3598 old_entry = old_entry->next; 3599 } 3600 /* 3601 * Use inlined vm_map_unlock() to postpone handling the deferred 3602 * map entries, which cannot be done until both old_map and 3603 * new_map locks are released. 3604 */ 3605 sx_xunlock(&old_map->lock); 3606 sx_xunlock(&new_map->lock); 3607 vm_map_process_deferred(); 3608 3609 return (vm2); 3610 } 3611 3612 /* 3613 * Create a process's stack for exec_new_vmspace(). This function is never 3614 * asked to wire the newly created stack. 3615 */ 3616 int 3617 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3618 vm_prot_t prot, vm_prot_t max, int cow) 3619 { 3620 vm_size_t growsize, init_ssize; 3621 rlim_t vmemlim; 3622 int rv; 3623 3624 MPASS((map->flags & MAP_WIREFUTURE) == 0); 3625 growsize = sgrowsiz; 3626 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3627 vm_map_lock(map); 3628 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 3629 /* If we would blow our VMEM resource limit, no go */ 3630 if (map->size + init_ssize > vmemlim) { 3631 rv = KERN_NO_SPACE; 3632 goto out; 3633 } 3634 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 3635 max, cow); 3636 out: 3637 vm_map_unlock(map); 3638 return (rv); 3639 } 3640 3641 static int stack_guard_page = 1; 3642 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 3643 &stack_guard_page, 0, 3644 "Specifies the number of guard pages for a stack that grows"); 3645 3646 static int 3647 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3648 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 3649 { 3650 vm_map_entry_t new_entry, prev_entry; 3651 vm_offset_t bot, gap_bot, gap_top, top; 3652 vm_size_t init_ssize, sgp; 3653 int orient, rv; 3654 3655 /* 3656 * The stack orientation is piggybacked with the cow argument. 3657 * Extract it into orient and mask the cow argument so that we 3658 * don't pass it around further. 3659 */ 3660 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 3661 KASSERT(orient != 0, ("No stack grow direction")); 3662 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 3663 ("bi-dir stack")); 3664 3665 if (addrbos < vm_map_min(map) || 3666 addrbos + max_ssize > vm_map_max(map) || 3667 addrbos + max_ssize <= addrbos) 3668 return (KERN_INVALID_ADDRESS); 3669 sgp = (vm_size_t)stack_guard_page * PAGE_SIZE; 3670 if (sgp >= max_ssize) 3671 return (KERN_INVALID_ARGUMENT); 3672 3673 init_ssize = growsize; 3674 if (max_ssize < init_ssize + sgp) 3675 init_ssize = max_ssize - sgp; 3676 3677 /* If addr is already mapped, no go */ 3678 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 3679 return (KERN_NO_SPACE); 3680 3681 /* 3682 * If we can't accommodate max_ssize in the current mapping, no go. 3683 */ 3684 if (prev_entry->next->start < addrbos + max_ssize) 3685 return (KERN_NO_SPACE); 3686 3687 /* 3688 * We initially map a stack of only init_ssize. We will grow as 3689 * needed later. Depending on the orientation of the stack (i.e. 3690 * the grow direction) we either map at the top of the range, the 3691 * bottom of the range or in the middle. 3692 * 3693 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3694 * and cow to be 0. Possibly we should eliminate these as input 3695 * parameters, and just pass these values here in the insert call. 3696 */ 3697 if (orient == MAP_STACK_GROWS_DOWN) { 3698 bot = addrbos + max_ssize - init_ssize; 3699 top = bot + init_ssize; 3700 gap_bot = addrbos; 3701 gap_top = bot; 3702 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 3703 bot = addrbos; 3704 top = bot + init_ssize; 3705 gap_bot = top; 3706 gap_top = addrbos + max_ssize; 3707 } 3708 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3709 if (rv != KERN_SUCCESS) 3710 return (rv); 3711 new_entry = prev_entry->next; 3712 KASSERT(new_entry->end == top || new_entry->start == bot, 3713 ("Bad entry start/end for new stack entry")); 3714 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 3715 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 3716 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 3717 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 3718 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 3719 ("new entry lacks MAP_ENTRY_GROWS_UP")); 3720 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 3721 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 3722 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 3723 if (rv != KERN_SUCCESS) 3724 (void)vm_map_delete(map, bot, top); 3725 return (rv); 3726 } 3727 3728 /* 3729 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 3730 * successfully grow the stack. 3731 */ 3732 static int 3733 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 3734 { 3735 vm_map_entry_t stack_entry; 3736 struct proc *p; 3737 struct vmspace *vm; 3738 struct ucred *cred; 3739 vm_offset_t gap_end, gap_start, grow_start; 3740 size_t grow_amount, guard, max_grow; 3741 rlim_t lmemlim, stacklim, vmemlim; 3742 int rv, rv1; 3743 bool gap_deleted, grow_down, is_procstack; 3744 #ifdef notyet 3745 uint64_t limit; 3746 #endif 3747 #ifdef RACCT 3748 int error; 3749 #endif 3750 3751 p = curproc; 3752 vm = p->p_vmspace; 3753 3754 /* 3755 * Disallow stack growth when the access is performed by a 3756 * debugger or AIO daemon. The reason is that the wrong 3757 * resource limits are applied. 3758 */ 3759 if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL) 3760 return (KERN_FAILURE); 3761 3762 MPASS(!map->system_map); 3763 3764 guard = stack_guard_page * PAGE_SIZE; 3765 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 3766 stacklim = lim_cur(curthread, RLIMIT_STACK); 3767 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 3768 retry: 3769 /* If addr is not in a hole for a stack grow area, no need to grow. */ 3770 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 3771 return (KERN_FAILURE); 3772 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 3773 return (KERN_SUCCESS); 3774 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 3775 stack_entry = gap_entry->next; 3776 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 3777 stack_entry->start != gap_entry->end) 3778 return (KERN_FAILURE); 3779 grow_amount = round_page(stack_entry->start - addr); 3780 grow_down = true; 3781 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 3782 stack_entry = gap_entry->prev; 3783 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 3784 stack_entry->end != gap_entry->start) 3785 return (KERN_FAILURE); 3786 grow_amount = round_page(addr + 1 - stack_entry->end); 3787 grow_down = false; 3788 } else { 3789 return (KERN_FAILURE); 3790 } 3791 max_grow = gap_entry->end - gap_entry->start; 3792 if (guard > max_grow) 3793 return (KERN_NO_SPACE); 3794 max_grow -= guard; 3795 if (grow_amount > max_grow) 3796 return (KERN_NO_SPACE); 3797 3798 /* 3799 * If this is the main process stack, see if we're over the stack 3800 * limit. 3801 */ 3802 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 3803 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 3804 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 3805 return (KERN_NO_SPACE); 3806 3807 #ifdef RACCT 3808 if (racct_enable) { 3809 PROC_LOCK(p); 3810 if (is_procstack && racct_set(p, RACCT_STACK, 3811 ctob(vm->vm_ssize) + grow_amount)) { 3812 PROC_UNLOCK(p); 3813 return (KERN_NO_SPACE); 3814 } 3815 PROC_UNLOCK(p); 3816 } 3817 #endif 3818 3819 grow_amount = roundup(grow_amount, sgrowsiz); 3820 if (grow_amount > max_grow) 3821 grow_amount = max_grow; 3822 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3823 grow_amount = trunc_page((vm_size_t)stacklim) - 3824 ctob(vm->vm_ssize); 3825 } 3826 3827 #ifdef notyet 3828 PROC_LOCK(p); 3829 limit = racct_get_available(p, RACCT_STACK); 3830 PROC_UNLOCK(p); 3831 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3832 grow_amount = limit - ctob(vm->vm_ssize); 3833 #endif 3834 3835 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 3836 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3837 rv = KERN_NO_SPACE; 3838 goto out; 3839 } 3840 #ifdef RACCT 3841 if (racct_enable) { 3842 PROC_LOCK(p); 3843 if (racct_set(p, RACCT_MEMLOCK, 3844 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3845 PROC_UNLOCK(p); 3846 rv = KERN_NO_SPACE; 3847 goto out; 3848 } 3849 PROC_UNLOCK(p); 3850 } 3851 #endif 3852 } 3853 3854 /* If we would blow our VMEM resource limit, no go */ 3855 if (map->size + grow_amount > vmemlim) { 3856 rv = KERN_NO_SPACE; 3857 goto out; 3858 } 3859 #ifdef RACCT 3860 if (racct_enable) { 3861 PROC_LOCK(p); 3862 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3863 PROC_UNLOCK(p); 3864 rv = KERN_NO_SPACE; 3865 goto out; 3866 } 3867 PROC_UNLOCK(p); 3868 } 3869 #endif 3870 3871 if (vm_map_lock_upgrade(map)) { 3872 gap_entry = NULL; 3873 vm_map_lock_read(map); 3874 goto retry; 3875 } 3876 3877 if (grow_down) { 3878 grow_start = gap_entry->end - grow_amount; 3879 if (gap_entry->start + grow_amount == gap_entry->end) { 3880 gap_start = gap_entry->start; 3881 gap_end = gap_entry->end; 3882 vm_map_entry_delete(map, gap_entry); 3883 gap_deleted = true; 3884 } else { 3885 MPASS(gap_entry->start < gap_entry->end - grow_amount); 3886 gap_entry->end -= grow_amount; 3887 vm_map_entry_resize_free(map, gap_entry); 3888 gap_deleted = false; 3889 } 3890 rv = vm_map_insert(map, NULL, 0, grow_start, 3891 grow_start + grow_amount, 3892 stack_entry->protection, stack_entry->max_protection, 3893 MAP_STACK_GROWS_DOWN); 3894 if (rv != KERN_SUCCESS) { 3895 if (gap_deleted) { 3896 rv1 = vm_map_insert(map, NULL, 0, gap_start, 3897 gap_end, VM_PROT_NONE, VM_PROT_NONE, 3898 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 3899 MPASS(rv1 == KERN_SUCCESS); 3900 } else { 3901 gap_entry->end += grow_amount; 3902 vm_map_entry_resize_free(map, gap_entry); 3903 } 3904 } 3905 } else { 3906 grow_start = stack_entry->end; 3907 cred = stack_entry->cred; 3908 if (cred == NULL && stack_entry->object.vm_object != NULL) 3909 cred = stack_entry->object.vm_object->cred; 3910 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3911 rv = KERN_NO_SPACE; 3912 /* Grow the underlying object if applicable. */ 3913 else if (stack_entry->object.vm_object == NULL || 3914 vm_object_coalesce(stack_entry->object.vm_object, 3915 stack_entry->offset, 3916 (vm_size_t)(stack_entry->end - stack_entry->start), 3917 (vm_size_t)grow_amount, cred != NULL)) { 3918 if (gap_entry->start + grow_amount == gap_entry->end) 3919 vm_map_entry_delete(map, gap_entry); 3920 else 3921 gap_entry->start += grow_amount; 3922 stack_entry->end += grow_amount; 3923 map->size += grow_amount; 3924 vm_map_entry_resize_free(map, stack_entry); 3925 rv = KERN_SUCCESS; 3926 } else 3927 rv = KERN_FAILURE; 3928 } 3929 if (rv == KERN_SUCCESS && is_procstack) 3930 vm->vm_ssize += btoc(grow_amount); 3931 3932 /* 3933 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3934 */ 3935 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 3936 vm_map_unlock(map); 3937 vm_map_wire(map, grow_start, grow_start + grow_amount, 3938 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 3939 vm_map_lock_read(map); 3940 } else 3941 vm_map_lock_downgrade(map); 3942 3943 out: 3944 #ifdef RACCT 3945 if (racct_enable && rv != KERN_SUCCESS) { 3946 PROC_LOCK(p); 3947 error = racct_set(p, RACCT_VMEM, map->size); 3948 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3949 if (!old_mlock) { 3950 error = racct_set(p, RACCT_MEMLOCK, 3951 ptoa(pmap_wired_count(map->pmap))); 3952 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3953 } 3954 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3955 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3956 PROC_UNLOCK(p); 3957 } 3958 #endif 3959 3960 return (rv); 3961 } 3962 3963 /* 3964 * Unshare the specified VM space for exec. If other processes are 3965 * mapped to it, then create a new one. The new vmspace is null. 3966 */ 3967 int 3968 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3969 { 3970 struct vmspace *oldvmspace = p->p_vmspace; 3971 struct vmspace *newvmspace; 3972 3973 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 3974 ("vmspace_exec recursed")); 3975 newvmspace = vmspace_alloc(minuser, maxuser, NULL); 3976 if (newvmspace == NULL) 3977 return (ENOMEM); 3978 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3979 /* 3980 * This code is written like this for prototype purposes. The 3981 * goal is to avoid running down the vmspace here, but let the 3982 * other process's that are still using the vmspace to finally 3983 * run it down. Even though there is little or no chance of blocking 3984 * here, it is a good idea to keep this form for future mods. 3985 */ 3986 PROC_VMSPACE_LOCK(p); 3987 p->p_vmspace = newvmspace; 3988 PROC_VMSPACE_UNLOCK(p); 3989 if (p == curthread->td_proc) 3990 pmap_activate(curthread); 3991 curthread->td_pflags |= TDP_EXECVMSPC; 3992 return (0); 3993 } 3994 3995 /* 3996 * Unshare the specified VM space for forcing COW. This 3997 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3998 */ 3999 int 4000 vmspace_unshare(struct proc *p) 4001 { 4002 struct vmspace *oldvmspace = p->p_vmspace; 4003 struct vmspace *newvmspace; 4004 vm_ooffset_t fork_charge; 4005 4006 if (oldvmspace->vm_refcnt == 1) 4007 return (0); 4008 fork_charge = 0; 4009 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4010 if (newvmspace == NULL) 4011 return (ENOMEM); 4012 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4013 vmspace_free(newvmspace); 4014 return (ENOMEM); 4015 } 4016 PROC_VMSPACE_LOCK(p); 4017 p->p_vmspace = newvmspace; 4018 PROC_VMSPACE_UNLOCK(p); 4019 if (p == curthread->td_proc) 4020 pmap_activate(curthread); 4021 vmspace_free(oldvmspace); 4022 return (0); 4023 } 4024 4025 /* 4026 * vm_map_lookup: 4027 * 4028 * Finds the VM object, offset, and 4029 * protection for a given virtual address in the 4030 * specified map, assuming a page fault of the 4031 * type specified. 4032 * 4033 * Leaves the map in question locked for read; return 4034 * values are guaranteed until a vm_map_lookup_done 4035 * call is performed. Note that the map argument 4036 * is in/out; the returned map must be used in 4037 * the call to vm_map_lookup_done. 4038 * 4039 * A handle (out_entry) is returned for use in 4040 * vm_map_lookup_done, to make that fast. 4041 * 4042 * If a lookup is requested with "write protection" 4043 * specified, the map may be changed to perform virtual 4044 * copying operations, although the data referenced will 4045 * remain the same. 4046 */ 4047 int 4048 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4049 vm_offset_t vaddr, 4050 vm_prot_t fault_typea, 4051 vm_map_entry_t *out_entry, /* OUT */ 4052 vm_object_t *object, /* OUT */ 4053 vm_pindex_t *pindex, /* OUT */ 4054 vm_prot_t *out_prot, /* OUT */ 4055 boolean_t *wired) /* OUT */ 4056 { 4057 vm_map_entry_t entry; 4058 vm_map_t map = *var_map; 4059 vm_prot_t prot; 4060 vm_prot_t fault_type = fault_typea; 4061 vm_object_t eobject; 4062 vm_size_t size; 4063 struct ucred *cred; 4064 4065 RetryLookup: 4066 4067 vm_map_lock_read(map); 4068 4069 RetryLookupLocked: 4070 /* 4071 * Lookup the faulting address. 4072 */ 4073 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4074 vm_map_unlock_read(map); 4075 return (KERN_INVALID_ADDRESS); 4076 } 4077 4078 entry = *out_entry; 4079 4080 /* 4081 * Handle submaps. 4082 */ 4083 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4084 vm_map_t old_map = map; 4085 4086 *var_map = map = entry->object.sub_map; 4087 vm_map_unlock_read(old_map); 4088 goto RetryLookup; 4089 } 4090 4091 /* 4092 * Check whether this task is allowed to have this page. 4093 */ 4094 prot = entry->protection; 4095 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4096 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4097 if (prot == VM_PROT_NONE && map != kernel_map && 4098 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4099 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4100 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4101 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4102 goto RetryLookupLocked; 4103 } 4104 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4105 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4106 vm_map_unlock_read(map); 4107 return (KERN_PROTECTION_FAILURE); 4108 } 4109 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4110 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4111 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4112 ("entry %p flags %x", entry, entry->eflags)); 4113 if ((fault_typea & VM_PROT_COPY) != 0 && 4114 (entry->max_protection & VM_PROT_WRITE) == 0 && 4115 (entry->eflags & MAP_ENTRY_COW) == 0) { 4116 vm_map_unlock_read(map); 4117 return (KERN_PROTECTION_FAILURE); 4118 } 4119 4120 /* 4121 * If this page is not pageable, we have to get it for all possible 4122 * accesses. 4123 */ 4124 *wired = (entry->wired_count != 0); 4125 if (*wired) 4126 fault_type = entry->protection; 4127 size = entry->end - entry->start; 4128 /* 4129 * If the entry was copy-on-write, we either ... 4130 */ 4131 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4132 /* 4133 * If we want to write the page, we may as well handle that 4134 * now since we've got the map locked. 4135 * 4136 * If we don't need to write the page, we just demote the 4137 * permissions allowed. 4138 */ 4139 if ((fault_type & VM_PROT_WRITE) != 0 || 4140 (fault_typea & VM_PROT_COPY) != 0) { 4141 /* 4142 * Make a new object, and place it in the object 4143 * chain. Note that no new references have appeared 4144 * -- one just moved from the map to the new 4145 * object. 4146 */ 4147 if (vm_map_lock_upgrade(map)) 4148 goto RetryLookup; 4149 4150 if (entry->cred == NULL) { 4151 /* 4152 * The debugger owner is charged for 4153 * the memory. 4154 */ 4155 cred = curthread->td_ucred; 4156 crhold(cred); 4157 if (!swap_reserve_by_cred(size, cred)) { 4158 crfree(cred); 4159 vm_map_unlock(map); 4160 return (KERN_RESOURCE_SHORTAGE); 4161 } 4162 entry->cred = cred; 4163 } 4164 vm_object_shadow(&entry->object.vm_object, 4165 &entry->offset, size); 4166 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4167 eobject = entry->object.vm_object; 4168 if (eobject->cred != NULL) { 4169 /* 4170 * The object was not shadowed. 4171 */ 4172 swap_release_by_cred(size, entry->cred); 4173 crfree(entry->cred); 4174 entry->cred = NULL; 4175 } else if (entry->cred != NULL) { 4176 VM_OBJECT_WLOCK(eobject); 4177 eobject->cred = entry->cred; 4178 eobject->charge = size; 4179 VM_OBJECT_WUNLOCK(eobject); 4180 entry->cred = NULL; 4181 } 4182 4183 vm_map_lock_downgrade(map); 4184 } else { 4185 /* 4186 * We're attempting to read a copy-on-write page -- 4187 * don't allow writes. 4188 */ 4189 prot &= ~VM_PROT_WRITE; 4190 } 4191 } 4192 4193 /* 4194 * Create an object if necessary. 4195 */ 4196 if (entry->object.vm_object == NULL && 4197 !map->system_map) { 4198 if (vm_map_lock_upgrade(map)) 4199 goto RetryLookup; 4200 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4201 atop(size)); 4202 entry->offset = 0; 4203 if (entry->cred != NULL) { 4204 VM_OBJECT_WLOCK(entry->object.vm_object); 4205 entry->object.vm_object->cred = entry->cred; 4206 entry->object.vm_object->charge = size; 4207 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4208 entry->cred = NULL; 4209 } 4210 vm_map_lock_downgrade(map); 4211 } 4212 4213 /* 4214 * Return the object/offset from this entry. If the entry was 4215 * copy-on-write or empty, it has been fixed up. 4216 */ 4217 *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset); 4218 *object = entry->object.vm_object; 4219 4220 *out_prot = prot; 4221 return (KERN_SUCCESS); 4222 } 4223 4224 /* 4225 * vm_map_lookup_locked: 4226 * 4227 * Lookup the faulting address. A version of vm_map_lookup that returns 4228 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4229 */ 4230 int 4231 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4232 vm_offset_t vaddr, 4233 vm_prot_t fault_typea, 4234 vm_map_entry_t *out_entry, /* OUT */ 4235 vm_object_t *object, /* OUT */ 4236 vm_pindex_t *pindex, /* OUT */ 4237 vm_prot_t *out_prot, /* OUT */ 4238 boolean_t *wired) /* OUT */ 4239 { 4240 vm_map_entry_t entry; 4241 vm_map_t map = *var_map; 4242 vm_prot_t prot; 4243 vm_prot_t fault_type = fault_typea; 4244 4245 /* 4246 * Lookup the faulting address. 4247 */ 4248 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4249 return (KERN_INVALID_ADDRESS); 4250 4251 entry = *out_entry; 4252 4253 /* 4254 * Fail if the entry refers to a submap. 4255 */ 4256 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4257 return (KERN_FAILURE); 4258 4259 /* 4260 * Check whether this task is allowed to have this page. 4261 */ 4262 prot = entry->protection; 4263 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4264 if ((fault_type & prot) != fault_type) 4265 return (KERN_PROTECTION_FAILURE); 4266 4267 /* 4268 * If this page is not pageable, we have to get it for all possible 4269 * accesses. 4270 */ 4271 *wired = (entry->wired_count != 0); 4272 if (*wired) 4273 fault_type = entry->protection; 4274 4275 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4276 /* 4277 * Fail if the entry was copy-on-write for a write fault. 4278 */ 4279 if (fault_type & VM_PROT_WRITE) 4280 return (KERN_FAILURE); 4281 /* 4282 * We're attempting to read a copy-on-write page -- 4283 * don't allow writes. 4284 */ 4285 prot &= ~VM_PROT_WRITE; 4286 } 4287 4288 /* 4289 * Fail if an object should be created. 4290 */ 4291 if (entry->object.vm_object == NULL && !map->system_map) 4292 return (KERN_FAILURE); 4293 4294 /* 4295 * Return the object/offset from this entry. If the entry was 4296 * copy-on-write or empty, it has been fixed up. 4297 */ 4298 *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset); 4299 *object = entry->object.vm_object; 4300 4301 *out_prot = prot; 4302 return (KERN_SUCCESS); 4303 } 4304 4305 /* 4306 * vm_map_lookup_done: 4307 * 4308 * Releases locks acquired by a vm_map_lookup 4309 * (according to the handle returned by that lookup). 4310 */ 4311 void 4312 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4313 { 4314 /* 4315 * Unlock the main-level map 4316 */ 4317 vm_map_unlock_read(map); 4318 } 4319 4320 vm_offset_t 4321 vm_map_max_KBI(const struct vm_map *map) 4322 { 4323 4324 return (vm_map_max(map)); 4325 } 4326 4327 vm_offset_t 4328 vm_map_min_KBI(const struct vm_map *map) 4329 { 4330 4331 return (vm_map_min(map)); 4332 } 4333 4334 pmap_t 4335 vm_map_pmap_KBI(vm_map_t map) 4336 { 4337 4338 return (map->pmap); 4339 } 4340 4341 #include "opt_ddb.h" 4342 #ifdef DDB 4343 #include <sys/kernel.h> 4344 4345 #include <ddb/ddb.h> 4346 4347 static void 4348 vm_map_print(vm_map_t map) 4349 { 4350 vm_map_entry_t entry; 4351 4352 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4353 (void *)map, 4354 (void *)map->pmap, map->nentries, map->timestamp); 4355 4356 db_indent += 2; 4357 for (entry = map->header.next; entry != &map->header; 4358 entry = entry->next) { 4359 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 4360 (void *)entry, (void *)entry->start, (void *)entry->end, 4361 entry->eflags); 4362 { 4363 static char *inheritance_name[4] = 4364 {"share", "copy", "none", "donate_copy"}; 4365 4366 db_iprintf(" prot=%x/%x/%s", 4367 entry->protection, 4368 entry->max_protection, 4369 inheritance_name[(int)(unsigned char)entry->inheritance]); 4370 if (entry->wired_count != 0) 4371 db_printf(", wired"); 4372 } 4373 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4374 db_printf(", share=%p, offset=0x%jx\n", 4375 (void *)entry->object.sub_map, 4376 (uintmax_t)entry->offset); 4377 if ((entry->prev == &map->header) || 4378 (entry->prev->object.sub_map != 4379 entry->object.sub_map)) { 4380 db_indent += 2; 4381 vm_map_print((vm_map_t)entry->object.sub_map); 4382 db_indent -= 2; 4383 } 4384 } else { 4385 if (entry->cred != NULL) 4386 db_printf(", ruid %d", entry->cred->cr_ruid); 4387 db_printf(", object=%p, offset=0x%jx", 4388 (void *)entry->object.vm_object, 4389 (uintmax_t)entry->offset); 4390 if (entry->object.vm_object && entry->object.vm_object->cred) 4391 db_printf(", obj ruid %d charge %jx", 4392 entry->object.vm_object->cred->cr_ruid, 4393 (uintmax_t)entry->object.vm_object->charge); 4394 if (entry->eflags & MAP_ENTRY_COW) 4395 db_printf(", copy (%s)", 4396 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4397 db_printf("\n"); 4398 4399 if ((entry->prev == &map->header) || 4400 (entry->prev->object.vm_object != 4401 entry->object.vm_object)) { 4402 db_indent += 2; 4403 vm_object_print((db_expr_t)(intptr_t) 4404 entry->object.vm_object, 4405 0, 0, (char *)0); 4406 db_indent -= 2; 4407 } 4408 } 4409 } 4410 db_indent -= 2; 4411 } 4412 4413 DB_SHOW_COMMAND(map, map) 4414 { 4415 4416 if (!have_addr) { 4417 db_printf("usage: show map <addr>\n"); 4418 return; 4419 } 4420 vm_map_print((vm_map_t)addr); 4421 } 4422 4423 DB_SHOW_COMMAND(procvm, procvm) 4424 { 4425 struct proc *p; 4426 4427 if (have_addr) { 4428 p = db_lookup_proc(addr); 4429 } else { 4430 p = curproc; 4431 } 4432 4433 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4434 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4435 (void *)vmspace_pmap(p->p_vmspace)); 4436 4437 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4438 } 4439 4440 #endif /* DDB */ 4441