xref: /freebsd/sys/vm/vm_map.c (revision fe01740653ed066369f3c892b7aa18a710c608c5)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 #ifdef INVARIANTS
136 static void vm_map_zdtor(void *mem, int size, void *arg);
137 static void vmspace_zdtor(void *mem, int size, void *arg);
138 #endif
139 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
140     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
141     int cow);
142 
143 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
144     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
145      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
146 
147 /*
148  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
149  * stable.
150  */
151 #define PROC_VMSPACE_LOCK(p) do { } while (0)
152 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
153 
154 /*
155  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
156  *
157  *	Asserts that the starting and ending region
158  *	addresses fall within the valid range of the map.
159  */
160 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
161 		{					\
162 		if (start < vm_map_min(map))		\
163 			start = vm_map_min(map);	\
164 		if (end > vm_map_max(map))		\
165 			end = vm_map_max(map);		\
166 		if (start > end)			\
167 			start = end;			\
168 		}
169 
170 /*
171  *	vm_map_startup:
172  *
173  *	Initialize the vm_map module.  Must be called before
174  *	any other vm_map routines.
175  *
176  *	Map and entry structures are allocated from the general
177  *	purpose memory pool with some exceptions:
178  *
179  *	- The kernel map and kmem submap are allocated statically.
180  *	- Kernel map entries are allocated out of a static pool.
181  *
182  *	These restrictions are necessary since malloc() uses the
183  *	maps and requires map entries.
184  */
185 
186 void
187 vm_map_startup(void)
188 {
189 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
190 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
191 #ifdef INVARIANTS
192 	    vm_map_zdtor,
193 #else
194 	    NULL,
195 #endif
196 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
197 	uma_prealloc(mapzone, MAX_KMAP);
198 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
199 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
200 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
201 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
202 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
203 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
204 #ifdef INVARIANTS
205 	    vmspace_zdtor,
206 #else
207 	    NULL,
208 #endif
209 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
210 }
211 
212 static int
213 vmspace_zinit(void *mem, int size, int flags)
214 {
215 	struct vmspace *vm;
216 
217 	vm = (struct vmspace *)mem;
218 
219 	vm->vm_map.pmap = NULL;
220 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
221 	PMAP_LOCK_INIT(vmspace_pmap(vm));
222 	return (0);
223 }
224 
225 static int
226 vm_map_zinit(void *mem, int size, int flags)
227 {
228 	vm_map_t map;
229 
230 	map = (vm_map_t)mem;
231 	memset(map, 0, sizeof(*map));
232 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
233 	sx_init(&map->lock, "vm map (user)");
234 	return (0);
235 }
236 
237 #ifdef INVARIANTS
238 static void
239 vmspace_zdtor(void *mem, int size, void *arg)
240 {
241 	struct vmspace *vm;
242 
243 	vm = (struct vmspace *)mem;
244 
245 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
246 }
247 static void
248 vm_map_zdtor(void *mem, int size, void *arg)
249 {
250 	vm_map_t map;
251 
252 	map = (vm_map_t)mem;
253 	KASSERT(map->nentries == 0,
254 	    ("map %p nentries == %d on free.",
255 	    map, map->nentries));
256 	KASSERT(map->size == 0,
257 	    ("map %p size == %lu on free.",
258 	    map, (unsigned long)map->size));
259 }
260 #endif	/* INVARIANTS */
261 
262 /*
263  * Allocate a vmspace structure, including a vm_map and pmap,
264  * and initialize those structures.  The refcnt is set to 1.
265  *
266  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
267  */
268 struct vmspace *
269 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
270 {
271 	struct vmspace *vm;
272 
273 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
274 
275 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
276 
277 	if (pinit == NULL)
278 		pinit = &pmap_pinit;
279 
280 	if (!pinit(vmspace_pmap(vm))) {
281 		uma_zfree(vmspace_zone, vm);
282 		return (NULL);
283 	}
284 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
285 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
286 	vm->vm_refcnt = 1;
287 	vm->vm_shm = NULL;
288 	vm->vm_swrss = 0;
289 	vm->vm_tsize = 0;
290 	vm->vm_dsize = 0;
291 	vm->vm_ssize = 0;
292 	vm->vm_taddr = 0;
293 	vm->vm_daddr = 0;
294 	vm->vm_maxsaddr = 0;
295 	return (vm);
296 }
297 
298 static void
299 vmspace_container_reset(struct proc *p)
300 {
301 
302 #ifdef RACCT
303 	PROC_LOCK(p);
304 	racct_set(p, RACCT_DATA, 0);
305 	racct_set(p, RACCT_STACK, 0);
306 	racct_set(p, RACCT_RSS, 0);
307 	racct_set(p, RACCT_MEMLOCK, 0);
308 	racct_set(p, RACCT_VMEM, 0);
309 	PROC_UNLOCK(p);
310 #endif
311 }
312 
313 static inline void
314 vmspace_dofree(struct vmspace *vm)
315 {
316 
317 	CTR1(KTR_VM, "vmspace_free: %p", vm);
318 
319 	/*
320 	 * Make sure any SysV shm is freed, it might not have been in
321 	 * exit1().
322 	 */
323 	shmexit(vm);
324 
325 	/*
326 	 * Lock the map, to wait out all other references to it.
327 	 * Delete all of the mappings and pages they hold, then call
328 	 * the pmap module to reclaim anything left.
329 	 */
330 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
331 	    vm->vm_map.max_offset);
332 
333 	pmap_release(vmspace_pmap(vm));
334 	vm->vm_map.pmap = NULL;
335 	uma_zfree(vmspace_zone, vm);
336 }
337 
338 void
339 vmspace_free(struct vmspace *vm)
340 {
341 
342 	if (vm->vm_refcnt == 0)
343 		panic("vmspace_free: attempt to free already freed vmspace");
344 
345 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
346 		vmspace_dofree(vm);
347 }
348 
349 void
350 vmspace_exitfree(struct proc *p)
351 {
352 	struct vmspace *vm;
353 
354 	PROC_VMSPACE_LOCK(p);
355 	vm = p->p_vmspace;
356 	p->p_vmspace = NULL;
357 	PROC_VMSPACE_UNLOCK(p);
358 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
359 	vmspace_free(vm);
360 }
361 
362 void
363 vmspace_exit(struct thread *td)
364 {
365 	int refcnt;
366 	struct vmspace *vm;
367 	struct proc *p;
368 
369 	/*
370 	 * Release user portion of address space.
371 	 * This releases references to vnodes,
372 	 * which could cause I/O if the file has been unlinked.
373 	 * Need to do this early enough that we can still sleep.
374 	 *
375 	 * The last exiting process to reach this point releases as
376 	 * much of the environment as it can. vmspace_dofree() is the
377 	 * slower fallback in case another process had a temporary
378 	 * reference to the vmspace.
379 	 */
380 
381 	p = td->td_proc;
382 	vm = p->p_vmspace;
383 	atomic_add_int(&vmspace0.vm_refcnt, 1);
384 	do {
385 		refcnt = vm->vm_refcnt;
386 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
387 			/* Switch now since other proc might free vmspace */
388 			PROC_VMSPACE_LOCK(p);
389 			p->p_vmspace = &vmspace0;
390 			PROC_VMSPACE_UNLOCK(p);
391 			pmap_activate(td);
392 		}
393 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
394 	if (refcnt == 1) {
395 		if (p->p_vmspace != vm) {
396 			/* vmspace not yet freed, switch back */
397 			PROC_VMSPACE_LOCK(p);
398 			p->p_vmspace = vm;
399 			PROC_VMSPACE_UNLOCK(p);
400 			pmap_activate(td);
401 		}
402 		pmap_remove_pages(vmspace_pmap(vm));
403 		/* Switch now since this proc will free vmspace */
404 		PROC_VMSPACE_LOCK(p);
405 		p->p_vmspace = &vmspace0;
406 		PROC_VMSPACE_UNLOCK(p);
407 		pmap_activate(td);
408 		vmspace_dofree(vm);
409 	}
410 	vmspace_container_reset(p);
411 }
412 
413 /* Acquire reference to vmspace owned by another process. */
414 
415 struct vmspace *
416 vmspace_acquire_ref(struct proc *p)
417 {
418 	struct vmspace *vm;
419 	int refcnt;
420 
421 	PROC_VMSPACE_LOCK(p);
422 	vm = p->p_vmspace;
423 	if (vm == NULL) {
424 		PROC_VMSPACE_UNLOCK(p);
425 		return (NULL);
426 	}
427 	do {
428 		refcnt = vm->vm_refcnt;
429 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
430 			PROC_VMSPACE_UNLOCK(p);
431 			return (NULL);
432 		}
433 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
434 	if (vm != p->p_vmspace) {
435 		PROC_VMSPACE_UNLOCK(p);
436 		vmspace_free(vm);
437 		return (NULL);
438 	}
439 	PROC_VMSPACE_UNLOCK(p);
440 	return (vm);
441 }
442 
443 void
444 _vm_map_lock(vm_map_t map, const char *file, int line)
445 {
446 
447 	if (map->system_map)
448 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
449 	else
450 		sx_xlock_(&map->lock, file, line);
451 	map->timestamp++;
452 }
453 
454 static void
455 vm_map_process_deferred(void)
456 {
457 	struct thread *td;
458 	vm_map_entry_t entry, next;
459 	vm_object_t object;
460 
461 	td = curthread;
462 	entry = td->td_map_def_user;
463 	td->td_map_def_user = NULL;
464 	while (entry != NULL) {
465 		next = entry->next;
466 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
467 			/*
468 			 * Decrement the object's writemappings and
469 			 * possibly the vnode's v_writecount.
470 			 */
471 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
472 			    ("Submap with writecount"));
473 			object = entry->object.vm_object;
474 			KASSERT(object != NULL, ("No object for writecount"));
475 			vnode_pager_release_writecount(object, entry->start,
476 			    entry->end);
477 		}
478 		vm_map_entry_deallocate(entry, FALSE);
479 		entry = next;
480 	}
481 }
482 
483 void
484 _vm_map_unlock(vm_map_t map, const char *file, int line)
485 {
486 
487 	if (map->system_map)
488 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
489 	else {
490 		sx_xunlock_(&map->lock, file, line);
491 		vm_map_process_deferred();
492 	}
493 }
494 
495 void
496 _vm_map_lock_read(vm_map_t map, const char *file, int line)
497 {
498 
499 	if (map->system_map)
500 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
501 	else
502 		sx_slock_(&map->lock, file, line);
503 }
504 
505 void
506 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
507 {
508 
509 	if (map->system_map)
510 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
511 	else {
512 		sx_sunlock_(&map->lock, file, line);
513 		vm_map_process_deferred();
514 	}
515 }
516 
517 int
518 _vm_map_trylock(vm_map_t map, const char *file, int line)
519 {
520 	int error;
521 
522 	error = map->system_map ?
523 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
524 	    !sx_try_xlock_(&map->lock, file, line);
525 	if (error == 0)
526 		map->timestamp++;
527 	return (error == 0);
528 }
529 
530 int
531 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
532 {
533 	int error;
534 
535 	error = map->system_map ?
536 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
537 	    !sx_try_slock_(&map->lock, file, line);
538 	return (error == 0);
539 }
540 
541 /*
542  *	_vm_map_lock_upgrade:	[ internal use only ]
543  *
544  *	Tries to upgrade a read (shared) lock on the specified map to a write
545  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
546  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
547  *	returned without a read or write lock held.
548  *
549  *	Requires that the map be read locked.
550  */
551 int
552 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
553 {
554 	unsigned int last_timestamp;
555 
556 	if (map->system_map) {
557 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
558 	} else {
559 		if (!sx_try_upgrade_(&map->lock, file, line)) {
560 			last_timestamp = map->timestamp;
561 			sx_sunlock_(&map->lock, file, line);
562 			vm_map_process_deferred();
563 			/*
564 			 * If the map's timestamp does not change while the
565 			 * map is unlocked, then the upgrade succeeds.
566 			 */
567 			sx_xlock_(&map->lock, file, line);
568 			if (last_timestamp != map->timestamp) {
569 				sx_xunlock_(&map->lock, file, line);
570 				return (1);
571 			}
572 		}
573 	}
574 	map->timestamp++;
575 	return (0);
576 }
577 
578 void
579 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
580 {
581 
582 	if (map->system_map) {
583 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
584 	} else
585 		sx_downgrade_(&map->lock, file, line);
586 }
587 
588 /*
589  *	vm_map_locked:
590  *
591  *	Returns a non-zero value if the caller holds a write (exclusive) lock
592  *	on the specified map and the value "0" otherwise.
593  */
594 int
595 vm_map_locked(vm_map_t map)
596 {
597 
598 	if (map->system_map)
599 		return (mtx_owned(&map->system_mtx));
600 	else
601 		return (sx_xlocked(&map->lock));
602 }
603 
604 #ifdef INVARIANTS
605 static void
606 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
607 {
608 
609 	if (map->system_map)
610 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
611 	else
612 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
613 }
614 
615 #define	VM_MAP_ASSERT_LOCKED(map) \
616     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
617 #else
618 #define	VM_MAP_ASSERT_LOCKED(map)
619 #endif
620 
621 /*
622  *	_vm_map_unlock_and_wait:
623  *
624  *	Atomically releases the lock on the specified map and puts the calling
625  *	thread to sleep.  The calling thread will remain asleep until either
626  *	vm_map_wakeup() is performed on the map or the specified timeout is
627  *	exceeded.
628  *
629  *	WARNING!  This function does not perform deferred deallocations of
630  *	objects and map	entries.  Therefore, the calling thread is expected to
631  *	reacquire the map lock after reawakening and later perform an ordinary
632  *	unlock operation, such as vm_map_unlock(), before completing its
633  *	operation on the map.
634  */
635 int
636 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
637 {
638 
639 	mtx_lock(&map_sleep_mtx);
640 	if (map->system_map)
641 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
642 	else
643 		sx_xunlock_(&map->lock, file, line);
644 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
645 	    timo));
646 }
647 
648 /*
649  *	vm_map_wakeup:
650  *
651  *	Awaken any threads that have slept on the map using
652  *	vm_map_unlock_and_wait().
653  */
654 void
655 vm_map_wakeup(vm_map_t map)
656 {
657 
658 	/*
659 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
660 	 * from being performed (and lost) between the map unlock
661 	 * and the msleep() in _vm_map_unlock_and_wait().
662 	 */
663 	mtx_lock(&map_sleep_mtx);
664 	mtx_unlock(&map_sleep_mtx);
665 	wakeup(&map->root);
666 }
667 
668 void
669 vm_map_busy(vm_map_t map)
670 {
671 
672 	VM_MAP_ASSERT_LOCKED(map);
673 	map->busy++;
674 }
675 
676 void
677 vm_map_unbusy(vm_map_t map)
678 {
679 
680 	VM_MAP_ASSERT_LOCKED(map);
681 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
682 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
683 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
684 		wakeup(&map->busy);
685 	}
686 }
687 
688 void
689 vm_map_wait_busy(vm_map_t map)
690 {
691 
692 	VM_MAP_ASSERT_LOCKED(map);
693 	while (map->busy) {
694 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
695 		if (map->system_map)
696 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
697 		else
698 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
699 	}
700 	map->timestamp++;
701 }
702 
703 long
704 vmspace_resident_count(struct vmspace *vmspace)
705 {
706 	return pmap_resident_count(vmspace_pmap(vmspace));
707 }
708 
709 /*
710  *	vm_map_create:
711  *
712  *	Creates and returns a new empty VM map with
713  *	the given physical map structure, and having
714  *	the given lower and upper address bounds.
715  */
716 vm_map_t
717 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
718 {
719 	vm_map_t result;
720 
721 	result = uma_zalloc(mapzone, M_WAITOK);
722 	CTR1(KTR_VM, "vm_map_create: %p", result);
723 	_vm_map_init(result, pmap, min, max);
724 	return (result);
725 }
726 
727 /*
728  * Initialize an existing vm_map structure
729  * such as that in the vmspace structure.
730  */
731 static void
732 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
733 {
734 
735 	map->header.next = map->header.prev = &map->header;
736 	map->needs_wakeup = FALSE;
737 	map->system_map = 0;
738 	map->pmap = pmap;
739 	map->min_offset = min;
740 	map->max_offset = max;
741 	map->flags = 0;
742 	map->root = NULL;
743 	map->timestamp = 0;
744 	map->busy = 0;
745 }
746 
747 void
748 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
749 {
750 
751 	_vm_map_init(map, pmap, min, max);
752 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
753 	sx_init(&map->lock, "user map");
754 }
755 
756 /*
757  *	vm_map_entry_dispose:	[ internal use only ]
758  *
759  *	Inverse of vm_map_entry_create.
760  */
761 static void
762 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
763 {
764 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
765 }
766 
767 /*
768  *	vm_map_entry_create:	[ internal use only ]
769  *
770  *	Allocates a VM map entry for insertion.
771  *	No entry fields are filled in.
772  */
773 static vm_map_entry_t
774 vm_map_entry_create(vm_map_t map)
775 {
776 	vm_map_entry_t new_entry;
777 
778 	if (map->system_map)
779 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
780 	else
781 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
782 	if (new_entry == NULL)
783 		panic("vm_map_entry_create: kernel resources exhausted");
784 	return (new_entry);
785 }
786 
787 /*
788  *	vm_map_entry_set_behavior:
789  *
790  *	Set the expected access behavior, either normal, random, or
791  *	sequential.
792  */
793 static inline void
794 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
795 {
796 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
797 	    (behavior & MAP_ENTRY_BEHAV_MASK);
798 }
799 
800 /*
801  *	vm_map_entry_set_max_free:
802  *
803  *	Set the max_free field in a vm_map_entry.
804  */
805 static inline void
806 vm_map_entry_set_max_free(vm_map_entry_t entry)
807 {
808 
809 	entry->max_free = entry->adj_free;
810 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
811 		entry->max_free = entry->left->max_free;
812 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
813 		entry->max_free = entry->right->max_free;
814 }
815 
816 /*
817  *	vm_map_entry_splay:
818  *
819  *	The Sleator and Tarjan top-down splay algorithm with the
820  *	following variation.  Max_free must be computed bottom-up, so
821  *	on the downward pass, maintain the left and right spines in
822  *	reverse order.  Then, make a second pass up each side to fix
823  *	the pointers and compute max_free.  The time bound is O(log n)
824  *	amortized.
825  *
826  *	The new root is the vm_map_entry containing "addr", or else an
827  *	adjacent entry (lower or higher) if addr is not in the tree.
828  *
829  *	The map must be locked, and leaves it so.
830  *
831  *	Returns: the new root.
832  */
833 static vm_map_entry_t
834 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
835 {
836 	vm_map_entry_t llist, rlist;
837 	vm_map_entry_t ltree, rtree;
838 	vm_map_entry_t y;
839 
840 	/* Special case of empty tree. */
841 	if (root == NULL)
842 		return (root);
843 
844 	/*
845 	 * Pass One: Splay down the tree until we find addr or a NULL
846 	 * pointer where addr would go.  llist and rlist are the two
847 	 * sides in reverse order (bottom-up), with llist linked by
848 	 * the right pointer and rlist linked by the left pointer in
849 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
850 	 * the two spines.
851 	 */
852 	llist = NULL;
853 	rlist = NULL;
854 	for (;;) {
855 		/* root is never NULL in here. */
856 		if (addr < root->start) {
857 			y = root->left;
858 			if (y == NULL)
859 				break;
860 			if (addr < y->start && y->left != NULL) {
861 				/* Rotate right and put y on rlist. */
862 				root->left = y->right;
863 				y->right = root;
864 				vm_map_entry_set_max_free(root);
865 				root = y->left;
866 				y->left = rlist;
867 				rlist = y;
868 			} else {
869 				/* Put root on rlist. */
870 				root->left = rlist;
871 				rlist = root;
872 				root = y;
873 			}
874 		} else if (addr >= root->end) {
875 			y = root->right;
876 			if (y == NULL)
877 				break;
878 			if (addr >= y->end && y->right != NULL) {
879 				/* Rotate left and put y on llist. */
880 				root->right = y->left;
881 				y->left = root;
882 				vm_map_entry_set_max_free(root);
883 				root = y->right;
884 				y->right = llist;
885 				llist = y;
886 			} else {
887 				/* Put root on llist. */
888 				root->right = llist;
889 				llist = root;
890 				root = y;
891 			}
892 		} else
893 			break;
894 	}
895 
896 	/*
897 	 * Pass Two: Walk back up the two spines, flip the pointers
898 	 * and set max_free.  The subtrees of the root go at the
899 	 * bottom of llist and rlist.
900 	 */
901 	ltree = root->left;
902 	while (llist != NULL) {
903 		y = llist->right;
904 		llist->right = ltree;
905 		vm_map_entry_set_max_free(llist);
906 		ltree = llist;
907 		llist = y;
908 	}
909 	rtree = root->right;
910 	while (rlist != NULL) {
911 		y = rlist->left;
912 		rlist->left = rtree;
913 		vm_map_entry_set_max_free(rlist);
914 		rtree = rlist;
915 		rlist = y;
916 	}
917 
918 	/*
919 	 * Final assembly: add ltree and rtree as subtrees of root.
920 	 */
921 	root->left = ltree;
922 	root->right = rtree;
923 	vm_map_entry_set_max_free(root);
924 
925 	return (root);
926 }
927 
928 /*
929  *	vm_map_entry_{un,}link:
930  *
931  *	Insert/remove entries from maps.
932  */
933 static void
934 vm_map_entry_link(vm_map_t map,
935 		  vm_map_entry_t after_where,
936 		  vm_map_entry_t entry)
937 {
938 
939 	CTR4(KTR_VM,
940 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
941 	    map->nentries, entry, after_where);
942 	VM_MAP_ASSERT_LOCKED(map);
943 	KASSERT(after_where == &map->header ||
944 	    after_where->end <= entry->start,
945 	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
946 	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
947 	KASSERT(after_where->next == &map->header ||
948 	    entry->end <= after_where->next->start,
949 	    ("vm_map_entry_link: new end %jx next start %jx overlap",
950 	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
951 
952 	map->nentries++;
953 	entry->prev = after_where;
954 	entry->next = after_where->next;
955 	entry->next->prev = entry;
956 	after_where->next = entry;
957 
958 	if (after_where != &map->header) {
959 		if (after_where != map->root)
960 			vm_map_entry_splay(after_where->start, map->root);
961 		entry->right = after_where->right;
962 		entry->left = after_where;
963 		after_where->right = NULL;
964 		after_where->adj_free = entry->start - after_where->end;
965 		vm_map_entry_set_max_free(after_where);
966 	} else {
967 		entry->right = map->root;
968 		entry->left = NULL;
969 	}
970 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
971 	    entry->next->start) - entry->end;
972 	vm_map_entry_set_max_free(entry);
973 	map->root = entry;
974 }
975 
976 static void
977 vm_map_entry_unlink(vm_map_t map,
978 		    vm_map_entry_t entry)
979 {
980 	vm_map_entry_t next, prev, root;
981 
982 	VM_MAP_ASSERT_LOCKED(map);
983 	if (entry != map->root)
984 		vm_map_entry_splay(entry->start, map->root);
985 	if (entry->left == NULL)
986 		root = entry->right;
987 	else {
988 		root = vm_map_entry_splay(entry->start, entry->left);
989 		root->right = entry->right;
990 		root->adj_free = (entry->next == &map->header ? map->max_offset :
991 		    entry->next->start) - root->end;
992 		vm_map_entry_set_max_free(root);
993 	}
994 	map->root = root;
995 
996 	prev = entry->prev;
997 	next = entry->next;
998 	next->prev = prev;
999 	prev->next = next;
1000 	map->nentries--;
1001 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1002 	    map->nentries, entry);
1003 }
1004 
1005 /*
1006  *	vm_map_entry_resize_free:
1007  *
1008  *	Recompute the amount of free space following a vm_map_entry
1009  *	and propagate that value up the tree.  Call this function after
1010  *	resizing a map entry in-place, that is, without a call to
1011  *	vm_map_entry_link() or _unlink().
1012  *
1013  *	The map must be locked, and leaves it so.
1014  */
1015 static void
1016 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1017 {
1018 
1019 	/*
1020 	 * Using splay trees without parent pointers, propagating
1021 	 * max_free up the tree is done by moving the entry to the
1022 	 * root and making the change there.
1023 	 */
1024 	if (entry != map->root)
1025 		map->root = vm_map_entry_splay(entry->start, map->root);
1026 
1027 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1028 	    entry->next->start) - entry->end;
1029 	vm_map_entry_set_max_free(entry);
1030 }
1031 
1032 /*
1033  *	vm_map_lookup_entry:	[ internal use only ]
1034  *
1035  *	Finds the map entry containing (or
1036  *	immediately preceding) the specified address
1037  *	in the given map; the entry is returned
1038  *	in the "entry" parameter.  The boolean
1039  *	result indicates whether the address is
1040  *	actually contained in the map.
1041  */
1042 boolean_t
1043 vm_map_lookup_entry(
1044 	vm_map_t map,
1045 	vm_offset_t address,
1046 	vm_map_entry_t *entry)	/* OUT */
1047 {
1048 	vm_map_entry_t cur;
1049 	boolean_t locked;
1050 
1051 	/*
1052 	 * If the map is empty, then the map entry immediately preceding
1053 	 * "address" is the map's header.
1054 	 */
1055 	cur = map->root;
1056 	if (cur == NULL)
1057 		*entry = &map->header;
1058 	else if (address >= cur->start && cur->end > address) {
1059 		*entry = cur;
1060 		return (TRUE);
1061 	} else if ((locked = vm_map_locked(map)) ||
1062 	    sx_try_upgrade(&map->lock)) {
1063 		/*
1064 		 * Splay requires a write lock on the map.  However, it only
1065 		 * restructures the binary search tree; it does not otherwise
1066 		 * change the map.  Thus, the map's timestamp need not change
1067 		 * on a temporary upgrade.
1068 		 */
1069 		map->root = cur = vm_map_entry_splay(address, cur);
1070 		if (!locked)
1071 			sx_downgrade(&map->lock);
1072 
1073 		/*
1074 		 * If "address" is contained within a map entry, the new root
1075 		 * is that map entry.  Otherwise, the new root is a map entry
1076 		 * immediately before or after "address".
1077 		 */
1078 		if (address >= cur->start) {
1079 			*entry = cur;
1080 			if (cur->end > address)
1081 				return (TRUE);
1082 		} else
1083 			*entry = cur->prev;
1084 	} else
1085 		/*
1086 		 * Since the map is only locked for read access, perform a
1087 		 * standard binary search tree lookup for "address".
1088 		 */
1089 		for (;;) {
1090 			if (address < cur->start) {
1091 				if (cur->left == NULL) {
1092 					*entry = cur->prev;
1093 					break;
1094 				}
1095 				cur = cur->left;
1096 			} else if (cur->end > address) {
1097 				*entry = cur;
1098 				return (TRUE);
1099 			} else {
1100 				if (cur->right == NULL) {
1101 					*entry = cur;
1102 					break;
1103 				}
1104 				cur = cur->right;
1105 			}
1106 		}
1107 	return (FALSE);
1108 }
1109 
1110 /*
1111  *	vm_map_insert:
1112  *
1113  *	Inserts the given whole VM object into the target
1114  *	map at the specified address range.  The object's
1115  *	size should match that of the address range.
1116  *
1117  *	Requires that the map be locked, and leaves it so.
1118  *
1119  *	If object is non-NULL, ref count must be bumped by caller
1120  *	prior to making call to account for the new entry.
1121  */
1122 int
1123 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1124     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1125 {
1126 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1127 	vm_eflags_t protoeflags;
1128 	struct ucred *cred;
1129 	vm_inherit_t inheritance;
1130 	boolean_t charge_prev_obj;
1131 
1132 	VM_MAP_ASSERT_LOCKED(map);
1133 	KASSERT((object != kmem_object && object != kernel_object) ||
1134 	    (cow & MAP_COPY_ON_WRITE) == 0,
1135 	    ("vm_map_insert: kmem or kernel object and COW"));
1136 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1137 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1138 
1139 	/*
1140 	 * Check that the start and end points are not bogus.
1141 	 */
1142 	if ((start < map->min_offset) || (end > map->max_offset) ||
1143 	    (start >= end))
1144 		return (KERN_INVALID_ADDRESS);
1145 
1146 	/*
1147 	 * Find the entry prior to the proposed starting address; if it's part
1148 	 * of an existing entry, this range is bogus.
1149 	 */
1150 	if (vm_map_lookup_entry(map, start, &temp_entry))
1151 		return (KERN_NO_SPACE);
1152 
1153 	prev_entry = temp_entry;
1154 
1155 	/*
1156 	 * Assert that the next entry doesn't overlap the end point.
1157 	 */
1158 	if ((prev_entry->next != &map->header) &&
1159 	    (prev_entry->next->start < end))
1160 		return (KERN_NO_SPACE);
1161 
1162 	protoeflags = 0;
1163 	if (cow & MAP_COPY_ON_WRITE)
1164 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1165 	if (cow & MAP_NOFAULT)
1166 		protoeflags |= MAP_ENTRY_NOFAULT;
1167 	if (cow & MAP_DISABLE_SYNCER)
1168 		protoeflags |= MAP_ENTRY_NOSYNC;
1169 	if (cow & MAP_DISABLE_COREDUMP)
1170 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1171 	if (cow & MAP_STACK_GROWS_DOWN)
1172 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1173 	if (cow & MAP_STACK_GROWS_UP)
1174 		protoeflags |= MAP_ENTRY_GROWS_UP;
1175 	if (cow & MAP_VN_WRITECOUNT)
1176 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1177 	if (cow & MAP_INHERIT_SHARE)
1178 		inheritance = VM_INHERIT_SHARE;
1179 	else
1180 		inheritance = VM_INHERIT_DEFAULT;
1181 
1182 	cred = NULL;
1183 	charge_prev_obj = FALSE;
1184 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1185 		goto charged;
1186 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1187 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1188 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1189 			return (KERN_RESOURCE_SHORTAGE);
1190 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1191 		    object->cred == NULL,
1192 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1193 		cred = curthread->td_ucred;
1194 		crhold(cred);
1195 		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1196 			charge_prev_obj = TRUE;
1197 	}
1198 
1199 charged:
1200 	/* Expand the kernel pmap, if necessary. */
1201 	if (map == kernel_map && end > kernel_vm_end)
1202 		pmap_growkernel(end);
1203 	if (object != NULL) {
1204 		/*
1205 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1206 		 * is trivially proven to be the only mapping for any
1207 		 * of the object's pages.  (Object granularity
1208 		 * reference counting is insufficient to recognize
1209 		 * aliases with precision.)
1210 		 */
1211 		VM_OBJECT_WLOCK(object);
1212 		if (object->ref_count > 1 || object->shadow_count != 0)
1213 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1214 		VM_OBJECT_WUNLOCK(object);
1215 	}
1216 	else if ((prev_entry != &map->header) &&
1217 		 (prev_entry->eflags == protoeflags) &&
1218 		 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1219 		 (prev_entry->end == start) &&
1220 		 (prev_entry->wired_count == 0) &&
1221 		 (prev_entry->cred == cred ||
1222 		  (prev_entry->object.vm_object != NULL &&
1223 		   (prev_entry->object.vm_object->cred == cred))) &&
1224 		   vm_object_coalesce(prev_entry->object.vm_object,
1225 		       prev_entry->offset,
1226 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1227 		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1228 		/*
1229 		 * We were able to extend the object.  Determine if we
1230 		 * can extend the previous map entry to include the
1231 		 * new range as well.
1232 		 */
1233 		if ((prev_entry->inheritance == inheritance) &&
1234 		    (prev_entry->protection == prot) &&
1235 		    (prev_entry->max_protection == max)) {
1236 			map->size += (end - prev_entry->end);
1237 			prev_entry->end = end;
1238 			vm_map_entry_resize_free(map, prev_entry);
1239 			vm_map_simplify_entry(map, prev_entry);
1240 			if (cred != NULL)
1241 				crfree(cred);
1242 			return (KERN_SUCCESS);
1243 		}
1244 
1245 		/*
1246 		 * If we can extend the object but cannot extend the
1247 		 * map entry, we have to create a new map entry.  We
1248 		 * must bump the ref count on the extended object to
1249 		 * account for it.  object may be NULL.
1250 		 */
1251 		object = prev_entry->object.vm_object;
1252 		offset = prev_entry->offset +
1253 			(prev_entry->end - prev_entry->start);
1254 		vm_object_reference(object);
1255 		if (cred != NULL && object != NULL && object->cred != NULL &&
1256 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1257 			/* Object already accounts for this uid. */
1258 			crfree(cred);
1259 			cred = NULL;
1260 		}
1261 	}
1262 
1263 	/*
1264 	 * Create a new entry
1265 	 */
1266 	new_entry = vm_map_entry_create(map);
1267 	new_entry->start = start;
1268 	new_entry->end = end;
1269 	new_entry->cred = NULL;
1270 
1271 	new_entry->eflags = protoeflags;
1272 	new_entry->object.vm_object = object;
1273 	new_entry->offset = offset;
1274 	new_entry->avail_ssize = 0;
1275 
1276 	new_entry->inheritance = inheritance;
1277 	new_entry->protection = prot;
1278 	new_entry->max_protection = max;
1279 	new_entry->wired_count = 0;
1280 	new_entry->wiring_thread = NULL;
1281 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1282 	new_entry->next_read = OFF_TO_IDX(offset);
1283 
1284 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1285 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1286 	new_entry->cred = cred;
1287 
1288 	/*
1289 	 * Insert the new entry into the list
1290 	 */
1291 	vm_map_entry_link(map, prev_entry, new_entry);
1292 	map->size += new_entry->end - new_entry->start;
1293 
1294 	/*
1295 	 * Try to coalesce the new entry with both the previous and next
1296 	 * entries in the list.  Previously, we only attempted to coalesce
1297 	 * with the previous entry when object is NULL.  Here, we handle the
1298 	 * other cases, which are less common.
1299 	 */
1300 	vm_map_simplify_entry(map, new_entry);
1301 
1302 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1303 		vm_map_pmap_enter(map, start, prot,
1304 				    object, OFF_TO_IDX(offset), end - start,
1305 				    cow & MAP_PREFAULT_PARTIAL);
1306 	}
1307 
1308 	return (KERN_SUCCESS);
1309 }
1310 
1311 /*
1312  *	vm_map_findspace:
1313  *
1314  *	Find the first fit (lowest VM address) for "length" free bytes
1315  *	beginning at address >= start in the given map.
1316  *
1317  *	In a vm_map_entry, "adj_free" is the amount of free space
1318  *	adjacent (higher address) to this entry, and "max_free" is the
1319  *	maximum amount of contiguous free space in its subtree.  This
1320  *	allows finding a free region in one path down the tree, so
1321  *	O(log n) amortized with splay trees.
1322  *
1323  *	The map must be locked, and leaves it so.
1324  *
1325  *	Returns: 0 on success, and starting address in *addr,
1326  *		 1 if insufficient space.
1327  */
1328 int
1329 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1330     vm_offset_t *addr)	/* OUT */
1331 {
1332 	vm_map_entry_t entry;
1333 	vm_offset_t st;
1334 
1335 	/*
1336 	 * Request must fit within min/max VM address and must avoid
1337 	 * address wrap.
1338 	 */
1339 	if (start < map->min_offset)
1340 		start = map->min_offset;
1341 	if (start + length > map->max_offset || start + length < start)
1342 		return (1);
1343 
1344 	/* Empty tree means wide open address space. */
1345 	if (map->root == NULL) {
1346 		*addr = start;
1347 		return (0);
1348 	}
1349 
1350 	/*
1351 	 * After splay, if start comes before root node, then there
1352 	 * must be a gap from start to the root.
1353 	 */
1354 	map->root = vm_map_entry_splay(start, map->root);
1355 	if (start + length <= map->root->start) {
1356 		*addr = start;
1357 		return (0);
1358 	}
1359 
1360 	/*
1361 	 * Root is the last node that might begin its gap before
1362 	 * start, and this is the last comparison where address
1363 	 * wrap might be a problem.
1364 	 */
1365 	st = (start > map->root->end) ? start : map->root->end;
1366 	if (length <= map->root->end + map->root->adj_free - st) {
1367 		*addr = st;
1368 		return (0);
1369 	}
1370 
1371 	/* With max_free, can immediately tell if no solution. */
1372 	entry = map->root->right;
1373 	if (entry == NULL || length > entry->max_free)
1374 		return (1);
1375 
1376 	/*
1377 	 * Search the right subtree in the order: left subtree, root,
1378 	 * right subtree (first fit).  The previous splay implies that
1379 	 * all regions in the right subtree have addresses > start.
1380 	 */
1381 	while (entry != NULL) {
1382 		if (entry->left != NULL && entry->left->max_free >= length)
1383 			entry = entry->left;
1384 		else if (entry->adj_free >= length) {
1385 			*addr = entry->end;
1386 			return (0);
1387 		} else
1388 			entry = entry->right;
1389 	}
1390 
1391 	/* Can't get here, so panic if we do. */
1392 	panic("vm_map_findspace: max_free corrupt");
1393 }
1394 
1395 int
1396 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1397     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1398     vm_prot_t max, int cow)
1399 {
1400 	vm_offset_t end;
1401 	int result;
1402 
1403 	end = start + length;
1404 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1405 	    object == NULL,
1406 	    ("vm_map_fixed: non-NULL backing object for stack"));
1407 	vm_map_lock(map);
1408 	VM_MAP_RANGE_CHECK(map, start, end);
1409 	if ((cow & MAP_CHECK_EXCL) == 0)
1410 		vm_map_delete(map, start, end);
1411 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1412 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1413 		    prot, max, cow);
1414 	} else {
1415 		result = vm_map_insert(map, object, offset, start, end,
1416 		    prot, max, cow);
1417 	}
1418 	vm_map_unlock(map);
1419 	return (result);
1420 }
1421 
1422 /*
1423  *	vm_map_find finds an unallocated region in the target address
1424  *	map with the given length.  The search is defined to be
1425  *	first-fit from the specified address; the region found is
1426  *	returned in the same parameter.
1427  *
1428  *	If object is non-NULL, ref count must be bumped by caller
1429  *	prior to making call to account for the new entry.
1430  */
1431 int
1432 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1433 	    vm_offset_t *addr,	/* IN/OUT */
1434 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1435 	    vm_prot_t prot, vm_prot_t max, int cow)
1436 {
1437 	vm_offset_t alignment, initial_addr, start;
1438 	int result;
1439 
1440 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1441 	    object == NULL,
1442 	    ("vm_map_find: non-NULL backing object for stack"));
1443 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1444 	    (object->flags & OBJ_COLORED) == 0))
1445 		find_space = VMFS_ANY_SPACE;
1446 	if (find_space >> 8 != 0) {
1447 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1448 		alignment = (vm_offset_t)1 << (find_space >> 8);
1449 	} else
1450 		alignment = 0;
1451 	initial_addr = *addr;
1452 again:
1453 	start = initial_addr;
1454 	vm_map_lock(map);
1455 	do {
1456 		if (find_space != VMFS_NO_SPACE) {
1457 			if (vm_map_findspace(map, start, length, addr) ||
1458 			    (max_addr != 0 && *addr + length > max_addr)) {
1459 				vm_map_unlock(map);
1460 				if (find_space == VMFS_OPTIMAL_SPACE) {
1461 					find_space = VMFS_ANY_SPACE;
1462 					goto again;
1463 				}
1464 				return (KERN_NO_SPACE);
1465 			}
1466 			switch (find_space) {
1467 			case VMFS_SUPER_SPACE:
1468 			case VMFS_OPTIMAL_SPACE:
1469 				pmap_align_superpage(object, offset, addr,
1470 				    length);
1471 				break;
1472 			case VMFS_ANY_SPACE:
1473 				break;
1474 			default:
1475 				if ((*addr & (alignment - 1)) != 0) {
1476 					*addr &= ~(alignment - 1);
1477 					*addr += alignment;
1478 				}
1479 				break;
1480 			}
1481 
1482 			start = *addr;
1483 		}
1484 		if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1485 			result = vm_map_stack_locked(map, start, length,
1486 			    sgrowsiz, prot, max, cow);
1487 		} else {
1488 			result = vm_map_insert(map, object, offset, start,
1489 			    start + length, prot, max, cow);
1490 		}
1491 	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1492 	    find_space != VMFS_ANY_SPACE);
1493 	vm_map_unlock(map);
1494 	return (result);
1495 }
1496 
1497 /*
1498  *	vm_map_simplify_entry:
1499  *
1500  *	Simplify the given map entry by merging with either neighbor.  This
1501  *	routine also has the ability to merge with both neighbors.
1502  *
1503  *	The map must be locked.
1504  *
1505  *	This routine guarentees that the passed entry remains valid (though
1506  *	possibly extended).  When merging, this routine may delete one or
1507  *	both neighbors.
1508  */
1509 void
1510 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1511 {
1512 	vm_map_entry_t next, prev;
1513 	vm_size_t prevsize, esize;
1514 
1515 	if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1516 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1517 		return;
1518 
1519 	prev = entry->prev;
1520 	if (prev != &map->header) {
1521 		prevsize = prev->end - prev->start;
1522 		if ( (prev->end == entry->start) &&
1523 		     (prev->object.vm_object == entry->object.vm_object) &&
1524 		     (!prev->object.vm_object ||
1525 			(prev->offset + prevsize == entry->offset)) &&
1526 		     (prev->eflags == entry->eflags) &&
1527 		     (prev->protection == entry->protection) &&
1528 		     (prev->max_protection == entry->max_protection) &&
1529 		     (prev->inheritance == entry->inheritance) &&
1530 		     (prev->wired_count == entry->wired_count) &&
1531 		     (prev->cred == entry->cred)) {
1532 			vm_map_entry_unlink(map, prev);
1533 			entry->start = prev->start;
1534 			entry->offset = prev->offset;
1535 			if (entry->prev != &map->header)
1536 				vm_map_entry_resize_free(map, entry->prev);
1537 
1538 			/*
1539 			 * If the backing object is a vnode object,
1540 			 * vm_object_deallocate() calls vrele().
1541 			 * However, vrele() does not lock the vnode
1542 			 * because the vnode has additional
1543 			 * references.  Thus, the map lock can be kept
1544 			 * without causing a lock-order reversal with
1545 			 * the vnode lock.
1546 			 *
1547 			 * Since we count the number of virtual page
1548 			 * mappings in object->un_pager.vnp.writemappings,
1549 			 * the writemappings value should not be adjusted
1550 			 * when the entry is disposed of.
1551 			 */
1552 			if (prev->object.vm_object)
1553 				vm_object_deallocate(prev->object.vm_object);
1554 			if (prev->cred != NULL)
1555 				crfree(prev->cred);
1556 			vm_map_entry_dispose(map, prev);
1557 		}
1558 	}
1559 
1560 	next = entry->next;
1561 	if (next != &map->header) {
1562 		esize = entry->end - entry->start;
1563 		if ((entry->end == next->start) &&
1564 		    (next->object.vm_object == entry->object.vm_object) &&
1565 		     (!entry->object.vm_object ||
1566 			(entry->offset + esize == next->offset)) &&
1567 		    (next->eflags == entry->eflags) &&
1568 		    (next->protection == entry->protection) &&
1569 		    (next->max_protection == entry->max_protection) &&
1570 		    (next->inheritance == entry->inheritance) &&
1571 		    (next->wired_count == entry->wired_count) &&
1572 		    (next->cred == entry->cred)) {
1573 			vm_map_entry_unlink(map, next);
1574 			entry->end = next->end;
1575 			vm_map_entry_resize_free(map, entry);
1576 
1577 			/*
1578 			 * See comment above.
1579 			 */
1580 			if (next->object.vm_object)
1581 				vm_object_deallocate(next->object.vm_object);
1582 			if (next->cred != NULL)
1583 				crfree(next->cred);
1584 			vm_map_entry_dispose(map, next);
1585 		}
1586 	}
1587 }
1588 /*
1589  *	vm_map_clip_start:	[ internal use only ]
1590  *
1591  *	Asserts that the given entry begins at or after
1592  *	the specified address; if necessary,
1593  *	it splits the entry into two.
1594  */
1595 #define vm_map_clip_start(map, entry, startaddr) \
1596 { \
1597 	if (startaddr > entry->start) \
1598 		_vm_map_clip_start(map, entry, startaddr); \
1599 }
1600 
1601 /*
1602  *	This routine is called only when it is known that
1603  *	the entry must be split.
1604  */
1605 static void
1606 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1607 {
1608 	vm_map_entry_t new_entry;
1609 
1610 	VM_MAP_ASSERT_LOCKED(map);
1611 
1612 	/*
1613 	 * Split off the front portion -- note that we must insert the new
1614 	 * entry BEFORE this one, so that this entry has the specified
1615 	 * starting address.
1616 	 */
1617 	vm_map_simplify_entry(map, entry);
1618 
1619 	/*
1620 	 * If there is no object backing this entry, we might as well create
1621 	 * one now.  If we defer it, an object can get created after the map
1622 	 * is clipped, and individual objects will be created for the split-up
1623 	 * map.  This is a bit of a hack, but is also about the best place to
1624 	 * put this improvement.
1625 	 */
1626 	if (entry->object.vm_object == NULL && !map->system_map) {
1627 		vm_object_t object;
1628 		object = vm_object_allocate(OBJT_DEFAULT,
1629 				atop(entry->end - entry->start));
1630 		entry->object.vm_object = object;
1631 		entry->offset = 0;
1632 		if (entry->cred != NULL) {
1633 			object->cred = entry->cred;
1634 			object->charge = entry->end - entry->start;
1635 			entry->cred = NULL;
1636 		}
1637 	} else if (entry->object.vm_object != NULL &&
1638 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1639 		   entry->cred != NULL) {
1640 		VM_OBJECT_WLOCK(entry->object.vm_object);
1641 		KASSERT(entry->object.vm_object->cred == NULL,
1642 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1643 		entry->object.vm_object->cred = entry->cred;
1644 		entry->object.vm_object->charge = entry->end - entry->start;
1645 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1646 		entry->cred = NULL;
1647 	}
1648 
1649 	new_entry = vm_map_entry_create(map);
1650 	*new_entry = *entry;
1651 
1652 	new_entry->end = start;
1653 	entry->offset += (start - entry->start);
1654 	entry->start = start;
1655 	if (new_entry->cred != NULL)
1656 		crhold(entry->cred);
1657 
1658 	vm_map_entry_link(map, entry->prev, new_entry);
1659 
1660 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1661 		vm_object_reference(new_entry->object.vm_object);
1662 		/*
1663 		 * The object->un_pager.vnp.writemappings for the
1664 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1665 		 * kept as is here.  The virtual pages are
1666 		 * re-distributed among the clipped entries, so the sum is
1667 		 * left the same.
1668 		 */
1669 	}
1670 }
1671 
1672 /*
1673  *	vm_map_clip_end:	[ internal use only ]
1674  *
1675  *	Asserts that the given entry ends at or before
1676  *	the specified address; if necessary,
1677  *	it splits the entry into two.
1678  */
1679 #define vm_map_clip_end(map, entry, endaddr) \
1680 { \
1681 	if ((endaddr) < (entry->end)) \
1682 		_vm_map_clip_end((map), (entry), (endaddr)); \
1683 }
1684 
1685 /*
1686  *	This routine is called only when it is known that
1687  *	the entry must be split.
1688  */
1689 static void
1690 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1691 {
1692 	vm_map_entry_t new_entry;
1693 
1694 	VM_MAP_ASSERT_LOCKED(map);
1695 
1696 	/*
1697 	 * If there is no object backing this entry, we might as well create
1698 	 * one now.  If we defer it, an object can get created after the map
1699 	 * is clipped, and individual objects will be created for the split-up
1700 	 * map.  This is a bit of a hack, but is also about the best place to
1701 	 * put this improvement.
1702 	 */
1703 	if (entry->object.vm_object == NULL && !map->system_map) {
1704 		vm_object_t object;
1705 		object = vm_object_allocate(OBJT_DEFAULT,
1706 				atop(entry->end - entry->start));
1707 		entry->object.vm_object = object;
1708 		entry->offset = 0;
1709 		if (entry->cred != NULL) {
1710 			object->cred = entry->cred;
1711 			object->charge = entry->end - entry->start;
1712 			entry->cred = NULL;
1713 		}
1714 	} else if (entry->object.vm_object != NULL &&
1715 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1716 		   entry->cred != NULL) {
1717 		VM_OBJECT_WLOCK(entry->object.vm_object);
1718 		KASSERT(entry->object.vm_object->cred == NULL,
1719 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1720 		entry->object.vm_object->cred = entry->cred;
1721 		entry->object.vm_object->charge = entry->end - entry->start;
1722 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1723 		entry->cred = NULL;
1724 	}
1725 
1726 	/*
1727 	 * Create a new entry and insert it AFTER the specified entry
1728 	 */
1729 	new_entry = vm_map_entry_create(map);
1730 	*new_entry = *entry;
1731 
1732 	new_entry->start = entry->end = end;
1733 	new_entry->offset += (end - entry->start);
1734 	if (new_entry->cred != NULL)
1735 		crhold(entry->cred);
1736 
1737 	vm_map_entry_link(map, entry, new_entry);
1738 
1739 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1740 		vm_object_reference(new_entry->object.vm_object);
1741 	}
1742 }
1743 
1744 /*
1745  *	vm_map_submap:		[ kernel use only ]
1746  *
1747  *	Mark the given range as handled by a subordinate map.
1748  *
1749  *	This range must have been created with vm_map_find,
1750  *	and no other operations may have been performed on this
1751  *	range prior to calling vm_map_submap.
1752  *
1753  *	Only a limited number of operations can be performed
1754  *	within this rage after calling vm_map_submap:
1755  *		vm_fault
1756  *	[Don't try vm_map_copy!]
1757  *
1758  *	To remove a submapping, one must first remove the
1759  *	range from the superior map, and then destroy the
1760  *	submap (if desired).  [Better yet, don't try it.]
1761  */
1762 int
1763 vm_map_submap(
1764 	vm_map_t map,
1765 	vm_offset_t start,
1766 	vm_offset_t end,
1767 	vm_map_t submap)
1768 {
1769 	vm_map_entry_t entry;
1770 	int result = KERN_INVALID_ARGUMENT;
1771 
1772 	vm_map_lock(map);
1773 
1774 	VM_MAP_RANGE_CHECK(map, start, end);
1775 
1776 	if (vm_map_lookup_entry(map, start, &entry)) {
1777 		vm_map_clip_start(map, entry, start);
1778 	} else
1779 		entry = entry->next;
1780 
1781 	vm_map_clip_end(map, entry, end);
1782 
1783 	if ((entry->start == start) && (entry->end == end) &&
1784 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1785 	    (entry->object.vm_object == NULL)) {
1786 		entry->object.sub_map = submap;
1787 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1788 		result = KERN_SUCCESS;
1789 	}
1790 	vm_map_unlock(map);
1791 
1792 	return (result);
1793 }
1794 
1795 /*
1796  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1797  */
1798 #define	MAX_INIT_PT	96
1799 
1800 /*
1801  *	vm_map_pmap_enter:
1802  *
1803  *	Preload the specified map's pmap with mappings to the specified
1804  *	object's memory-resident pages.  No further physical pages are
1805  *	allocated, and no further virtual pages are retrieved from secondary
1806  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1807  *	limited number of page mappings are created at the low-end of the
1808  *	specified address range.  (For this purpose, a superpage mapping
1809  *	counts as one page mapping.)  Otherwise, all resident pages within
1810  *	the specified address range are mapped.  Because these mappings are
1811  *	being created speculatively, cached pages are not reactivated and
1812  *	mapped.
1813  */
1814 void
1815 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1816     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1817 {
1818 	vm_offset_t start;
1819 	vm_page_t p, p_start;
1820 	vm_pindex_t mask, psize, threshold, tmpidx;
1821 
1822 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1823 		return;
1824 	VM_OBJECT_RLOCK(object);
1825 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1826 		VM_OBJECT_RUNLOCK(object);
1827 		VM_OBJECT_WLOCK(object);
1828 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1829 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1830 			    size);
1831 			VM_OBJECT_WUNLOCK(object);
1832 			return;
1833 		}
1834 		VM_OBJECT_LOCK_DOWNGRADE(object);
1835 	}
1836 
1837 	psize = atop(size);
1838 	if (psize + pindex > object->size) {
1839 		if (object->size < pindex) {
1840 			VM_OBJECT_RUNLOCK(object);
1841 			return;
1842 		}
1843 		psize = object->size - pindex;
1844 	}
1845 
1846 	start = 0;
1847 	p_start = NULL;
1848 	threshold = MAX_INIT_PT;
1849 
1850 	p = vm_page_find_least(object, pindex);
1851 	/*
1852 	 * Assert: the variable p is either (1) the page with the
1853 	 * least pindex greater than or equal to the parameter pindex
1854 	 * or (2) NULL.
1855 	 */
1856 	for (;
1857 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1858 	     p = TAILQ_NEXT(p, listq)) {
1859 		/*
1860 		 * don't allow an madvise to blow away our really
1861 		 * free pages allocating pv entries.
1862 		 */
1863 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1864 		    vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1865 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1866 		    tmpidx >= threshold)) {
1867 			psize = tmpidx;
1868 			break;
1869 		}
1870 		if (p->valid == VM_PAGE_BITS_ALL) {
1871 			if (p_start == NULL) {
1872 				start = addr + ptoa(tmpidx);
1873 				p_start = p;
1874 			}
1875 			/* Jump ahead if a superpage mapping is possible. */
1876 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1877 			    (pagesizes[p->psind] - 1)) == 0) {
1878 				mask = atop(pagesizes[p->psind]) - 1;
1879 				if (tmpidx + mask < psize &&
1880 				    vm_page_ps_is_valid(p)) {
1881 					p += mask;
1882 					threshold += mask;
1883 				}
1884 			}
1885 		} else if (p_start != NULL) {
1886 			pmap_enter_object(map->pmap, start, addr +
1887 			    ptoa(tmpidx), p_start, prot);
1888 			p_start = NULL;
1889 		}
1890 	}
1891 	if (p_start != NULL)
1892 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1893 		    p_start, prot);
1894 	VM_OBJECT_RUNLOCK(object);
1895 }
1896 
1897 /*
1898  *	vm_map_protect:
1899  *
1900  *	Sets the protection of the specified address
1901  *	region in the target map.  If "set_max" is
1902  *	specified, the maximum protection is to be set;
1903  *	otherwise, only the current protection is affected.
1904  */
1905 int
1906 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1907 	       vm_prot_t new_prot, boolean_t set_max)
1908 {
1909 	vm_map_entry_t current, entry;
1910 	vm_object_t obj;
1911 	struct ucred *cred;
1912 	vm_prot_t old_prot;
1913 
1914 	if (start == end)
1915 		return (KERN_SUCCESS);
1916 
1917 	vm_map_lock(map);
1918 
1919 	VM_MAP_RANGE_CHECK(map, start, end);
1920 
1921 	if (vm_map_lookup_entry(map, start, &entry)) {
1922 		vm_map_clip_start(map, entry, start);
1923 	} else {
1924 		entry = entry->next;
1925 	}
1926 
1927 	/*
1928 	 * Make a first pass to check for protection violations.
1929 	 */
1930 	current = entry;
1931 	while ((current != &map->header) && (current->start < end)) {
1932 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1933 			vm_map_unlock(map);
1934 			return (KERN_INVALID_ARGUMENT);
1935 		}
1936 		if ((new_prot & current->max_protection) != new_prot) {
1937 			vm_map_unlock(map);
1938 			return (KERN_PROTECTION_FAILURE);
1939 		}
1940 		current = current->next;
1941 	}
1942 
1943 
1944 	/*
1945 	 * Do an accounting pass for private read-only mappings that
1946 	 * now will do cow due to allowed write (e.g. debugger sets
1947 	 * breakpoint on text segment)
1948 	 */
1949 	for (current = entry; (current != &map->header) &&
1950 	     (current->start < end); current = current->next) {
1951 
1952 		vm_map_clip_end(map, current, end);
1953 
1954 		if (set_max ||
1955 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1956 		    ENTRY_CHARGED(current)) {
1957 			continue;
1958 		}
1959 
1960 		cred = curthread->td_ucred;
1961 		obj = current->object.vm_object;
1962 
1963 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1964 			if (!swap_reserve(current->end - current->start)) {
1965 				vm_map_unlock(map);
1966 				return (KERN_RESOURCE_SHORTAGE);
1967 			}
1968 			crhold(cred);
1969 			current->cred = cred;
1970 			continue;
1971 		}
1972 
1973 		VM_OBJECT_WLOCK(obj);
1974 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1975 			VM_OBJECT_WUNLOCK(obj);
1976 			continue;
1977 		}
1978 
1979 		/*
1980 		 * Charge for the whole object allocation now, since
1981 		 * we cannot distinguish between non-charged and
1982 		 * charged clipped mapping of the same object later.
1983 		 */
1984 		KASSERT(obj->charge == 0,
1985 		    ("vm_map_protect: object %p overcharged (entry %p)",
1986 		    obj, current));
1987 		if (!swap_reserve(ptoa(obj->size))) {
1988 			VM_OBJECT_WUNLOCK(obj);
1989 			vm_map_unlock(map);
1990 			return (KERN_RESOURCE_SHORTAGE);
1991 		}
1992 
1993 		crhold(cred);
1994 		obj->cred = cred;
1995 		obj->charge = ptoa(obj->size);
1996 		VM_OBJECT_WUNLOCK(obj);
1997 	}
1998 
1999 	/*
2000 	 * Go back and fix up protections. [Note that clipping is not
2001 	 * necessary the second time.]
2002 	 */
2003 	current = entry;
2004 	while ((current != &map->header) && (current->start < end)) {
2005 		old_prot = current->protection;
2006 
2007 		if (set_max)
2008 			current->protection =
2009 			    (current->max_protection = new_prot) &
2010 			    old_prot;
2011 		else
2012 			current->protection = new_prot;
2013 
2014 		/*
2015 		 * For user wired map entries, the normal lazy evaluation of
2016 		 * write access upgrades through soft page faults is
2017 		 * undesirable.  Instead, immediately copy any pages that are
2018 		 * copy-on-write and enable write access in the physical map.
2019 		 */
2020 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2021 		    (current->protection & VM_PROT_WRITE) != 0 &&
2022 		    (old_prot & VM_PROT_WRITE) == 0)
2023 			vm_fault_copy_entry(map, map, current, current, NULL);
2024 
2025 		/*
2026 		 * When restricting access, update the physical map.  Worry
2027 		 * about copy-on-write here.
2028 		 */
2029 		if ((old_prot & ~current->protection) != 0) {
2030 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2031 							VM_PROT_ALL)
2032 			pmap_protect(map->pmap, current->start,
2033 			    current->end,
2034 			    current->protection & MASK(current));
2035 #undef	MASK
2036 		}
2037 		vm_map_simplify_entry(map, current);
2038 		current = current->next;
2039 	}
2040 	vm_map_unlock(map);
2041 	return (KERN_SUCCESS);
2042 }
2043 
2044 /*
2045  *	vm_map_madvise:
2046  *
2047  *	This routine traverses a processes map handling the madvise
2048  *	system call.  Advisories are classified as either those effecting
2049  *	the vm_map_entry structure, or those effecting the underlying
2050  *	objects.
2051  */
2052 int
2053 vm_map_madvise(
2054 	vm_map_t map,
2055 	vm_offset_t start,
2056 	vm_offset_t end,
2057 	int behav)
2058 {
2059 	vm_map_entry_t current, entry;
2060 	int modify_map = 0;
2061 
2062 	/*
2063 	 * Some madvise calls directly modify the vm_map_entry, in which case
2064 	 * we need to use an exclusive lock on the map and we need to perform
2065 	 * various clipping operations.  Otherwise we only need a read-lock
2066 	 * on the map.
2067 	 */
2068 	switch(behav) {
2069 	case MADV_NORMAL:
2070 	case MADV_SEQUENTIAL:
2071 	case MADV_RANDOM:
2072 	case MADV_NOSYNC:
2073 	case MADV_AUTOSYNC:
2074 	case MADV_NOCORE:
2075 	case MADV_CORE:
2076 		if (start == end)
2077 			return (KERN_SUCCESS);
2078 		modify_map = 1;
2079 		vm_map_lock(map);
2080 		break;
2081 	case MADV_WILLNEED:
2082 	case MADV_DONTNEED:
2083 	case MADV_FREE:
2084 		if (start == end)
2085 			return (KERN_SUCCESS);
2086 		vm_map_lock_read(map);
2087 		break;
2088 	default:
2089 		return (KERN_INVALID_ARGUMENT);
2090 	}
2091 
2092 	/*
2093 	 * Locate starting entry and clip if necessary.
2094 	 */
2095 	VM_MAP_RANGE_CHECK(map, start, end);
2096 
2097 	if (vm_map_lookup_entry(map, start, &entry)) {
2098 		if (modify_map)
2099 			vm_map_clip_start(map, entry, start);
2100 	} else {
2101 		entry = entry->next;
2102 	}
2103 
2104 	if (modify_map) {
2105 		/*
2106 		 * madvise behaviors that are implemented in the vm_map_entry.
2107 		 *
2108 		 * We clip the vm_map_entry so that behavioral changes are
2109 		 * limited to the specified address range.
2110 		 */
2111 		for (current = entry;
2112 		     (current != &map->header) && (current->start < end);
2113 		     current = current->next
2114 		) {
2115 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2116 				continue;
2117 
2118 			vm_map_clip_end(map, current, end);
2119 
2120 			switch (behav) {
2121 			case MADV_NORMAL:
2122 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2123 				break;
2124 			case MADV_SEQUENTIAL:
2125 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2126 				break;
2127 			case MADV_RANDOM:
2128 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2129 				break;
2130 			case MADV_NOSYNC:
2131 				current->eflags |= MAP_ENTRY_NOSYNC;
2132 				break;
2133 			case MADV_AUTOSYNC:
2134 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2135 				break;
2136 			case MADV_NOCORE:
2137 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2138 				break;
2139 			case MADV_CORE:
2140 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2141 				break;
2142 			default:
2143 				break;
2144 			}
2145 			vm_map_simplify_entry(map, current);
2146 		}
2147 		vm_map_unlock(map);
2148 	} else {
2149 		vm_pindex_t pstart, pend;
2150 
2151 		/*
2152 		 * madvise behaviors that are implemented in the underlying
2153 		 * vm_object.
2154 		 *
2155 		 * Since we don't clip the vm_map_entry, we have to clip
2156 		 * the vm_object pindex and count.
2157 		 */
2158 		for (current = entry;
2159 		     (current != &map->header) && (current->start < end);
2160 		     current = current->next
2161 		) {
2162 			vm_offset_t useEnd, useStart;
2163 
2164 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2165 				continue;
2166 
2167 			pstart = OFF_TO_IDX(current->offset);
2168 			pend = pstart + atop(current->end - current->start);
2169 			useStart = current->start;
2170 			useEnd = current->end;
2171 
2172 			if (current->start < start) {
2173 				pstart += atop(start - current->start);
2174 				useStart = start;
2175 			}
2176 			if (current->end > end) {
2177 				pend -= atop(current->end - end);
2178 				useEnd = end;
2179 			}
2180 
2181 			if (pstart >= pend)
2182 				continue;
2183 
2184 			/*
2185 			 * Perform the pmap_advise() before clearing
2186 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2187 			 * concurrent pmap operation, such as pmap_remove(),
2188 			 * could clear a reference in the pmap and set
2189 			 * PGA_REFERENCED on the page before the pmap_advise()
2190 			 * had completed.  Consequently, the page would appear
2191 			 * referenced based upon an old reference that
2192 			 * occurred before this pmap_advise() ran.
2193 			 */
2194 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2195 				pmap_advise(map->pmap, useStart, useEnd,
2196 				    behav);
2197 
2198 			vm_object_madvise(current->object.vm_object, pstart,
2199 			    pend, behav);
2200 			if (behav == MADV_WILLNEED) {
2201 				vm_map_pmap_enter(map,
2202 				    useStart,
2203 				    current->protection,
2204 				    current->object.vm_object,
2205 				    pstart,
2206 				    ptoa(pend - pstart),
2207 				    MAP_PREFAULT_MADVISE
2208 				);
2209 			}
2210 		}
2211 		vm_map_unlock_read(map);
2212 	}
2213 	return (0);
2214 }
2215 
2216 
2217 /*
2218  *	vm_map_inherit:
2219  *
2220  *	Sets the inheritance of the specified address
2221  *	range in the target map.  Inheritance
2222  *	affects how the map will be shared with
2223  *	child maps at the time of vmspace_fork.
2224  */
2225 int
2226 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2227 	       vm_inherit_t new_inheritance)
2228 {
2229 	vm_map_entry_t entry;
2230 	vm_map_entry_t temp_entry;
2231 
2232 	switch (new_inheritance) {
2233 	case VM_INHERIT_NONE:
2234 	case VM_INHERIT_COPY:
2235 	case VM_INHERIT_SHARE:
2236 		break;
2237 	default:
2238 		return (KERN_INVALID_ARGUMENT);
2239 	}
2240 	if (start == end)
2241 		return (KERN_SUCCESS);
2242 	vm_map_lock(map);
2243 	VM_MAP_RANGE_CHECK(map, start, end);
2244 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2245 		entry = temp_entry;
2246 		vm_map_clip_start(map, entry, start);
2247 	} else
2248 		entry = temp_entry->next;
2249 	while ((entry != &map->header) && (entry->start < end)) {
2250 		vm_map_clip_end(map, entry, end);
2251 		entry->inheritance = new_inheritance;
2252 		vm_map_simplify_entry(map, entry);
2253 		entry = entry->next;
2254 	}
2255 	vm_map_unlock(map);
2256 	return (KERN_SUCCESS);
2257 }
2258 
2259 /*
2260  *	vm_map_unwire:
2261  *
2262  *	Implements both kernel and user unwiring.
2263  */
2264 int
2265 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2266     int flags)
2267 {
2268 	vm_map_entry_t entry, first_entry, tmp_entry;
2269 	vm_offset_t saved_start;
2270 	unsigned int last_timestamp;
2271 	int rv;
2272 	boolean_t need_wakeup, result, user_unwire;
2273 
2274 	if (start == end)
2275 		return (KERN_SUCCESS);
2276 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2277 	vm_map_lock(map);
2278 	VM_MAP_RANGE_CHECK(map, start, end);
2279 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2280 		if (flags & VM_MAP_WIRE_HOLESOK)
2281 			first_entry = first_entry->next;
2282 		else {
2283 			vm_map_unlock(map);
2284 			return (KERN_INVALID_ADDRESS);
2285 		}
2286 	}
2287 	last_timestamp = map->timestamp;
2288 	entry = first_entry;
2289 	while (entry != &map->header && entry->start < end) {
2290 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2291 			/*
2292 			 * We have not yet clipped the entry.
2293 			 */
2294 			saved_start = (start >= entry->start) ? start :
2295 			    entry->start;
2296 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2297 			if (vm_map_unlock_and_wait(map, 0)) {
2298 				/*
2299 				 * Allow interruption of user unwiring?
2300 				 */
2301 			}
2302 			vm_map_lock(map);
2303 			if (last_timestamp+1 != map->timestamp) {
2304 				/*
2305 				 * Look again for the entry because the map was
2306 				 * modified while it was unlocked.
2307 				 * Specifically, the entry may have been
2308 				 * clipped, merged, or deleted.
2309 				 */
2310 				if (!vm_map_lookup_entry(map, saved_start,
2311 				    &tmp_entry)) {
2312 					if (flags & VM_MAP_WIRE_HOLESOK)
2313 						tmp_entry = tmp_entry->next;
2314 					else {
2315 						if (saved_start == start) {
2316 							/*
2317 							 * First_entry has been deleted.
2318 							 */
2319 							vm_map_unlock(map);
2320 							return (KERN_INVALID_ADDRESS);
2321 						}
2322 						end = saved_start;
2323 						rv = KERN_INVALID_ADDRESS;
2324 						goto done;
2325 					}
2326 				}
2327 				if (entry == first_entry)
2328 					first_entry = tmp_entry;
2329 				else
2330 					first_entry = NULL;
2331 				entry = tmp_entry;
2332 			}
2333 			last_timestamp = map->timestamp;
2334 			continue;
2335 		}
2336 		vm_map_clip_start(map, entry, start);
2337 		vm_map_clip_end(map, entry, end);
2338 		/*
2339 		 * Mark the entry in case the map lock is released.  (See
2340 		 * above.)
2341 		 */
2342 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2343 		    entry->wiring_thread == NULL,
2344 		    ("owned map entry %p", entry));
2345 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2346 		entry->wiring_thread = curthread;
2347 		/*
2348 		 * Check the map for holes in the specified region.
2349 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2350 		 */
2351 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2352 		    (entry->end < end && (entry->next == &map->header ||
2353 		    entry->next->start > entry->end))) {
2354 			end = entry->end;
2355 			rv = KERN_INVALID_ADDRESS;
2356 			goto done;
2357 		}
2358 		/*
2359 		 * If system unwiring, require that the entry is system wired.
2360 		 */
2361 		if (!user_unwire &&
2362 		    vm_map_entry_system_wired_count(entry) == 0) {
2363 			end = entry->end;
2364 			rv = KERN_INVALID_ARGUMENT;
2365 			goto done;
2366 		}
2367 		entry = entry->next;
2368 	}
2369 	rv = KERN_SUCCESS;
2370 done:
2371 	need_wakeup = FALSE;
2372 	if (first_entry == NULL) {
2373 		result = vm_map_lookup_entry(map, start, &first_entry);
2374 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2375 			first_entry = first_entry->next;
2376 		else
2377 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2378 	}
2379 	for (entry = first_entry; entry != &map->header && entry->start < end;
2380 	    entry = entry->next) {
2381 		/*
2382 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2383 		 * space in the unwired region could have been mapped
2384 		 * while the map lock was dropped for draining
2385 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2386 		 * could be simultaneously wiring this new mapping
2387 		 * entry.  Detect these cases and skip any entries
2388 		 * marked as in transition by us.
2389 		 */
2390 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2391 		    entry->wiring_thread != curthread) {
2392 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2393 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2394 			continue;
2395 		}
2396 
2397 		if (rv == KERN_SUCCESS && (!user_unwire ||
2398 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2399 			if (user_unwire)
2400 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2401 			entry->wired_count--;
2402 			if (entry->wired_count == 0) {
2403 				/*
2404 				 * Retain the map lock.
2405 				 */
2406 				vm_fault_unwire(map, entry->start, entry->end,
2407 				    entry->object.vm_object != NULL &&
2408 				    (entry->object.vm_object->flags &
2409 				    OBJ_FICTITIOUS) != 0);
2410 			}
2411 		}
2412 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2413 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2414 		KASSERT(entry->wiring_thread == curthread,
2415 		    ("vm_map_unwire: alien wire %p", entry));
2416 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2417 		entry->wiring_thread = NULL;
2418 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2419 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2420 			need_wakeup = TRUE;
2421 		}
2422 		vm_map_simplify_entry(map, entry);
2423 	}
2424 	vm_map_unlock(map);
2425 	if (need_wakeup)
2426 		vm_map_wakeup(map);
2427 	return (rv);
2428 }
2429 
2430 /*
2431  *	vm_map_wire:
2432  *
2433  *	Implements both kernel and user wiring.
2434  */
2435 int
2436 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2437     int flags)
2438 {
2439 	vm_map_entry_t entry, first_entry, tmp_entry;
2440 	vm_offset_t saved_end, saved_start;
2441 	unsigned int last_timestamp;
2442 	int rv;
2443 	boolean_t fictitious, need_wakeup, result, user_wire;
2444 	vm_prot_t prot;
2445 
2446 	if (start == end)
2447 		return (KERN_SUCCESS);
2448 	prot = 0;
2449 	if (flags & VM_MAP_WIRE_WRITE)
2450 		prot |= VM_PROT_WRITE;
2451 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2452 	vm_map_lock(map);
2453 	VM_MAP_RANGE_CHECK(map, start, end);
2454 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2455 		if (flags & VM_MAP_WIRE_HOLESOK)
2456 			first_entry = first_entry->next;
2457 		else {
2458 			vm_map_unlock(map);
2459 			return (KERN_INVALID_ADDRESS);
2460 		}
2461 	}
2462 	last_timestamp = map->timestamp;
2463 	entry = first_entry;
2464 	while (entry != &map->header && entry->start < end) {
2465 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2466 			/*
2467 			 * We have not yet clipped the entry.
2468 			 */
2469 			saved_start = (start >= entry->start) ? start :
2470 			    entry->start;
2471 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2472 			if (vm_map_unlock_and_wait(map, 0)) {
2473 				/*
2474 				 * Allow interruption of user wiring?
2475 				 */
2476 			}
2477 			vm_map_lock(map);
2478 			if (last_timestamp + 1 != map->timestamp) {
2479 				/*
2480 				 * Look again for the entry because the map was
2481 				 * modified while it was unlocked.
2482 				 * Specifically, the entry may have been
2483 				 * clipped, merged, or deleted.
2484 				 */
2485 				if (!vm_map_lookup_entry(map, saved_start,
2486 				    &tmp_entry)) {
2487 					if (flags & VM_MAP_WIRE_HOLESOK)
2488 						tmp_entry = tmp_entry->next;
2489 					else {
2490 						if (saved_start == start) {
2491 							/*
2492 							 * first_entry has been deleted.
2493 							 */
2494 							vm_map_unlock(map);
2495 							return (KERN_INVALID_ADDRESS);
2496 						}
2497 						end = saved_start;
2498 						rv = KERN_INVALID_ADDRESS;
2499 						goto done;
2500 					}
2501 				}
2502 				if (entry == first_entry)
2503 					first_entry = tmp_entry;
2504 				else
2505 					first_entry = NULL;
2506 				entry = tmp_entry;
2507 			}
2508 			last_timestamp = map->timestamp;
2509 			continue;
2510 		}
2511 		vm_map_clip_start(map, entry, start);
2512 		vm_map_clip_end(map, entry, end);
2513 		/*
2514 		 * Mark the entry in case the map lock is released.  (See
2515 		 * above.)
2516 		 */
2517 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2518 		    entry->wiring_thread == NULL,
2519 		    ("owned map entry %p", entry));
2520 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2521 		entry->wiring_thread = curthread;
2522 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2523 		    || (entry->protection & prot) != prot) {
2524 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2525 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2526 				end = entry->end;
2527 				rv = KERN_INVALID_ADDRESS;
2528 				goto done;
2529 			}
2530 			goto next_entry;
2531 		}
2532 		if (entry->wired_count == 0) {
2533 			entry->wired_count++;
2534 			saved_start = entry->start;
2535 			saved_end = entry->end;
2536 			fictitious = entry->object.vm_object != NULL &&
2537 			    (entry->object.vm_object->flags &
2538 			    OBJ_FICTITIOUS) != 0;
2539 			/*
2540 			 * Release the map lock, relying on the in-transition
2541 			 * mark.  Mark the map busy for fork.
2542 			 */
2543 			vm_map_busy(map);
2544 			vm_map_unlock(map);
2545 			rv = vm_fault_wire(map, saved_start, saved_end,
2546 			    fictitious);
2547 			vm_map_lock(map);
2548 			vm_map_unbusy(map);
2549 			if (last_timestamp + 1 != map->timestamp) {
2550 				/*
2551 				 * Look again for the entry because the map was
2552 				 * modified while it was unlocked.  The entry
2553 				 * may have been clipped, but NOT merged or
2554 				 * deleted.
2555 				 */
2556 				result = vm_map_lookup_entry(map, saved_start,
2557 				    &tmp_entry);
2558 				KASSERT(result, ("vm_map_wire: lookup failed"));
2559 				if (entry == first_entry)
2560 					first_entry = tmp_entry;
2561 				else
2562 					first_entry = NULL;
2563 				entry = tmp_entry;
2564 				while (entry->end < saved_end) {
2565 					if (rv != KERN_SUCCESS) {
2566 						KASSERT(entry->wired_count == 1,
2567 						    ("vm_map_wire: bad count"));
2568 						entry->wired_count = -1;
2569 					}
2570 					entry = entry->next;
2571 				}
2572 			}
2573 			last_timestamp = map->timestamp;
2574 			if (rv != KERN_SUCCESS) {
2575 				KASSERT(entry->wired_count == 1,
2576 				    ("vm_map_wire: bad count"));
2577 				/*
2578 				 * Assign an out-of-range value to represent
2579 				 * the failure to wire this entry.
2580 				 */
2581 				entry->wired_count = -1;
2582 				end = entry->end;
2583 				goto done;
2584 			}
2585 		} else if (!user_wire ||
2586 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2587 			entry->wired_count++;
2588 		}
2589 		/*
2590 		 * Check the map for holes in the specified region.
2591 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2592 		 */
2593 	next_entry:
2594 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2595 		    (entry->end < end && (entry->next == &map->header ||
2596 		    entry->next->start > entry->end))) {
2597 			end = entry->end;
2598 			rv = KERN_INVALID_ADDRESS;
2599 			goto done;
2600 		}
2601 		entry = entry->next;
2602 	}
2603 	rv = KERN_SUCCESS;
2604 done:
2605 	need_wakeup = FALSE;
2606 	if (first_entry == NULL) {
2607 		result = vm_map_lookup_entry(map, start, &first_entry);
2608 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2609 			first_entry = first_entry->next;
2610 		else
2611 			KASSERT(result, ("vm_map_wire: lookup failed"));
2612 	}
2613 	for (entry = first_entry; entry != &map->header && entry->start < end;
2614 	    entry = entry->next) {
2615 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2616 			goto next_entry_done;
2617 
2618 		/*
2619 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2620 		 * space in the unwired region could have been mapped
2621 		 * while the map lock was dropped for faulting in the
2622 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2623 		 * Moreover, another thread could be simultaneously
2624 		 * wiring this new mapping entry.  Detect these cases
2625 		 * and skip any entries marked as in transition by us.
2626 		 */
2627 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2628 		    entry->wiring_thread != curthread) {
2629 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2630 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2631 			continue;
2632 		}
2633 
2634 		if (rv == KERN_SUCCESS) {
2635 			if (user_wire)
2636 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2637 		} else if (entry->wired_count == -1) {
2638 			/*
2639 			 * Wiring failed on this entry.  Thus, unwiring is
2640 			 * unnecessary.
2641 			 */
2642 			entry->wired_count = 0;
2643 		} else {
2644 			if (!user_wire ||
2645 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2646 				entry->wired_count--;
2647 			if (entry->wired_count == 0) {
2648 				/*
2649 				 * Retain the map lock.
2650 				 */
2651 				vm_fault_unwire(map, entry->start, entry->end,
2652 				    entry->object.vm_object != NULL &&
2653 				    (entry->object.vm_object->flags &
2654 				    OBJ_FICTITIOUS) != 0);
2655 			}
2656 		}
2657 	next_entry_done:
2658 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2659 		    ("vm_map_wire: in-transition flag missing %p", entry));
2660 		KASSERT(entry->wiring_thread == curthread,
2661 		    ("vm_map_wire: alien wire %p", entry));
2662 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2663 		    MAP_ENTRY_WIRE_SKIPPED);
2664 		entry->wiring_thread = NULL;
2665 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2666 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2667 			need_wakeup = TRUE;
2668 		}
2669 		vm_map_simplify_entry(map, entry);
2670 	}
2671 	vm_map_unlock(map);
2672 	if (need_wakeup)
2673 		vm_map_wakeup(map);
2674 	return (rv);
2675 }
2676 
2677 /*
2678  * vm_map_sync
2679  *
2680  * Push any dirty cached pages in the address range to their pager.
2681  * If syncio is TRUE, dirty pages are written synchronously.
2682  * If invalidate is TRUE, any cached pages are freed as well.
2683  *
2684  * If the size of the region from start to end is zero, we are
2685  * supposed to flush all modified pages within the region containing
2686  * start.  Unfortunately, a region can be split or coalesced with
2687  * neighboring regions, making it difficult to determine what the
2688  * original region was.  Therefore, we approximate this requirement by
2689  * flushing the current region containing start.
2690  *
2691  * Returns an error if any part of the specified range is not mapped.
2692  */
2693 int
2694 vm_map_sync(
2695 	vm_map_t map,
2696 	vm_offset_t start,
2697 	vm_offset_t end,
2698 	boolean_t syncio,
2699 	boolean_t invalidate)
2700 {
2701 	vm_map_entry_t current;
2702 	vm_map_entry_t entry;
2703 	vm_size_t size;
2704 	vm_object_t object;
2705 	vm_ooffset_t offset;
2706 	unsigned int last_timestamp;
2707 	boolean_t failed;
2708 
2709 	vm_map_lock_read(map);
2710 	VM_MAP_RANGE_CHECK(map, start, end);
2711 	if (!vm_map_lookup_entry(map, start, &entry)) {
2712 		vm_map_unlock_read(map);
2713 		return (KERN_INVALID_ADDRESS);
2714 	} else if (start == end) {
2715 		start = entry->start;
2716 		end = entry->end;
2717 	}
2718 	/*
2719 	 * Make a first pass to check for user-wired memory and holes.
2720 	 */
2721 	for (current = entry; current != &map->header && current->start < end;
2722 	    current = current->next) {
2723 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2724 			vm_map_unlock_read(map);
2725 			return (KERN_INVALID_ARGUMENT);
2726 		}
2727 		if (end > current->end &&
2728 		    (current->next == &map->header ||
2729 			current->end != current->next->start)) {
2730 			vm_map_unlock_read(map);
2731 			return (KERN_INVALID_ADDRESS);
2732 		}
2733 	}
2734 
2735 	if (invalidate)
2736 		pmap_remove(map->pmap, start, end);
2737 	failed = FALSE;
2738 
2739 	/*
2740 	 * Make a second pass, cleaning/uncaching pages from the indicated
2741 	 * objects as we go.
2742 	 */
2743 	for (current = entry; current != &map->header && current->start < end;) {
2744 		offset = current->offset + (start - current->start);
2745 		size = (end <= current->end ? end : current->end) - start;
2746 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2747 			vm_map_t smap;
2748 			vm_map_entry_t tentry;
2749 			vm_size_t tsize;
2750 
2751 			smap = current->object.sub_map;
2752 			vm_map_lock_read(smap);
2753 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2754 			tsize = tentry->end - offset;
2755 			if (tsize < size)
2756 				size = tsize;
2757 			object = tentry->object.vm_object;
2758 			offset = tentry->offset + (offset - tentry->start);
2759 			vm_map_unlock_read(smap);
2760 		} else {
2761 			object = current->object.vm_object;
2762 		}
2763 		vm_object_reference(object);
2764 		last_timestamp = map->timestamp;
2765 		vm_map_unlock_read(map);
2766 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2767 			failed = TRUE;
2768 		start += size;
2769 		vm_object_deallocate(object);
2770 		vm_map_lock_read(map);
2771 		if (last_timestamp == map->timestamp ||
2772 		    !vm_map_lookup_entry(map, start, &current))
2773 			current = current->next;
2774 	}
2775 
2776 	vm_map_unlock_read(map);
2777 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2778 }
2779 
2780 /*
2781  *	vm_map_entry_unwire:	[ internal use only ]
2782  *
2783  *	Make the region specified by this entry pageable.
2784  *
2785  *	The map in question should be locked.
2786  *	[This is the reason for this routine's existence.]
2787  */
2788 static void
2789 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2790 {
2791 	vm_fault_unwire(map, entry->start, entry->end,
2792 	    entry->object.vm_object != NULL &&
2793 	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2794 	entry->wired_count = 0;
2795 }
2796 
2797 static void
2798 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2799 {
2800 
2801 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2802 		vm_object_deallocate(entry->object.vm_object);
2803 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2804 }
2805 
2806 /*
2807  *	vm_map_entry_delete:	[ internal use only ]
2808  *
2809  *	Deallocate the given entry from the target map.
2810  */
2811 static void
2812 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2813 {
2814 	vm_object_t object;
2815 	vm_pindex_t offidxstart, offidxend, count, size1;
2816 	vm_ooffset_t size;
2817 
2818 	vm_map_entry_unlink(map, entry);
2819 	object = entry->object.vm_object;
2820 	size = entry->end - entry->start;
2821 	map->size -= size;
2822 
2823 	if (entry->cred != NULL) {
2824 		swap_release_by_cred(size, entry->cred);
2825 		crfree(entry->cred);
2826 	}
2827 
2828 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2829 	    (object != NULL)) {
2830 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2831 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2832 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2833 		count = OFF_TO_IDX(size);
2834 		offidxstart = OFF_TO_IDX(entry->offset);
2835 		offidxend = offidxstart + count;
2836 		VM_OBJECT_WLOCK(object);
2837 		if (object->ref_count != 1 &&
2838 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2839 		    object == kernel_object || object == kmem_object)) {
2840 			vm_object_collapse(object);
2841 
2842 			/*
2843 			 * The option OBJPR_NOTMAPPED can be passed here
2844 			 * because vm_map_delete() already performed
2845 			 * pmap_remove() on the only mapping to this range
2846 			 * of pages.
2847 			 */
2848 			vm_object_page_remove(object, offidxstart, offidxend,
2849 			    OBJPR_NOTMAPPED);
2850 			if (object->type == OBJT_SWAP)
2851 				swap_pager_freespace(object, offidxstart, count);
2852 			if (offidxend >= object->size &&
2853 			    offidxstart < object->size) {
2854 				size1 = object->size;
2855 				object->size = offidxstart;
2856 				if (object->cred != NULL) {
2857 					size1 -= object->size;
2858 					KASSERT(object->charge >= ptoa(size1),
2859 					    ("vm_map_entry_delete: object->charge < 0"));
2860 					swap_release_by_cred(ptoa(size1), object->cred);
2861 					object->charge -= ptoa(size1);
2862 				}
2863 			}
2864 		}
2865 		VM_OBJECT_WUNLOCK(object);
2866 	} else
2867 		entry->object.vm_object = NULL;
2868 	if (map->system_map)
2869 		vm_map_entry_deallocate(entry, TRUE);
2870 	else {
2871 		entry->next = curthread->td_map_def_user;
2872 		curthread->td_map_def_user = entry;
2873 	}
2874 }
2875 
2876 /*
2877  *	vm_map_delete:	[ internal use only ]
2878  *
2879  *	Deallocates the given address range from the target
2880  *	map.
2881  */
2882 int
2883 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2884 {
2885 	vm_map_entry_t entry;
2886 	vm_map_entry_t first_entry;
2887 
2888 	VM_MAP_ASSERT_LOCKED(map);
2889 	if (start == end)
2890 		return (KERN_SUCCESS);
2891 
2892 	/*
2893 	 * Find the start of the region, and clip it
2894 	 */
2895 	if (!vm_map_lookup_entry(map, start, &first_entry))
2896 		entry = first_entry->next;
2897 	else {
2898 		entry = first_entry;
2899 		vm_map_clip_start(map, entry, start);
2900 	}
2901 
2902 	/*
2903 	 * Step through all entries in this region
2904 	 */
2905 	while ((entry != &map->header) && (entry->start < end)) {
2906 		vm_map_entry_t next;
2907 
2908 		/*
2909 		 * Wait for wiring or unwiring of an entry to complete.
2910 		 * Also wait for any system wirings to disappear on
2911 		 * user maps.
2912 		 */
2913 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2914 		    (vm_map_pmap(map) != kernel_pmap &&
2915 		    vm_map_entry_system_wired_count(entry) != 0)) {
2916 			unsigned int last_timestamp;
2917 			vm_offset_t saved_start;
2918 			vm_map_entry_t tmp_entry;
2919 
2920 			saved_start = entry->start;
2921 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2922 			last_timestamp = map->timestamp;
2923 			(void) vm_map_unlock_and_wait(map, 0);
2924 			vm_map_lock(map);
2925 			if (last_timestamp + 1 != map->timestamp) {
2926 				/*
2927 				 * Look again for the entry because the map was
2928 				 * modified while it was unlocked.
2929 				 * Specifically, the entry may have been
2930 				 * clipped, merged, or deleted.
2931 				 */
2932 				if (!vm_map_lookup_entry(map, saved_start,
2933 							 &tmp_entry))
2934 					entry = tmp_entry->next;
2935 				else {
2936 					entry = tmp_entry;
2937 					vm_map_clip_start(map, entry,
2938 							  saved_start);
2939 				}
2940 			}
2941 			continue;
2942 		}
2943 		vm_map_clip_end(map, entry, end);
2944 
2945 		next = entry->next;
2946 
2947 		/*
2948 		 * Unwire before removing addresses from the pmap; otherwise,
2949 		 * unwiring will put the entries back in the pmap.
2950 		 */
2951 		if (entry->wired_count != 0) {
2952 			vm_map_entry_unwire(map, entry);
2953 		}
2954 
2955 		pmap_remove(map->pmap, entry->start, entry->end);
2956 
2957 		/*
2958 		 * Delete the entry only after removing all pmap
2959 		 * entries pointing to its pages.  (Otherwise, its
2960 		 * page frames may be reallocated, and any modify bits
2961 		 * will be set in the wrong object!)
2962 		 */
2963 		vm_map_entry_delete(map, entry);
2964 		entry = next;
2965 	}
2966 	return (KERN_SUCCESS);
2967 }
2968 
2969 /*
2970  *	vm_map_remove:
2971  *
2972  *	Remove the given address range from the target map.
2973  *	This is the exported form of vm_map_delete.
2974  */
2975 int
2976 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2977 {
2978 	int result;
2979 
2980 	vm_map_lock(map);
2981 	VM_MAP_RANGE_CHECK(map, start, end);
2982 	result = vm_map_delete(map, start, end);
2983 	vm_map_unlock(map);
2984 	return (result);
2985 }
2986 
2987 /*
2988  *	vm_map_check_protection:
2989  *
2990  *	Assert that the target map allows the specified privilege on the
2991  *	entire address region given.  The entire region must be allocated.
2992  *
2993  *	WARNING!  This code does not and should not check whether the
2994  *	contents of the region is accessible.  For example a smaller file
2995  *	might be mapped into a larger address space.
2996  *
2997  *	NOTE!  This code is also called by munmap().
2998  *
2999  *	The map must be locked.  A read lock is sufficient.
3000  */
3001 boolean_t
3002 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3003 			vm_prot_t protection)
3004 {
3005 	vm_map_entry_t entry;
3006 	vm_map_entry_t tmp_entry;
3007 
3008 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3009 		return (FALSE);
3010 	entry = tmp_entry;
3011 
3012 	while (start < end) {
3013 		if (entry == &map->header)
3014 			return (FALSE);
3015 		/*
3016 		 * No holes allowed!
3017 		 */
3018 		if (start < entry->start)
3019 			return (FALSE);
3020 		/*
3021 		 * Check protection associated with entry.
3022 		 */
3023 		if ((entry->protection & protection) != protection)
3024 			return (FALSE);
3025 		/* go to next entry */
3026 		start = entry->end;
3027 		entry = entry->next;
3028 	}
3029 	return (TRUE);
3030 }
3031 
3032 /*
3033  *	vm_map_copy_entry:
3034  *
3035  *	Copies the contents of the source entry to the destination
3036  *	entry.  The entries *must* be aligned properly.
3037  */
3038 static void
3039 vm_map_copy_entry(
3040 	vm_map_t src_map,
3041 	vm_map_t dst_map,
3042 	vm_map_entry_t src_entry,
3043 	vm_map_entry_t dst_entry,
3044 	vm_ooffset_t *fork_charge)
3045 {
3046 	vm_object_t src_object;
3047 	vm_map_entry_t fake_entry;
3048 	vm_offset_t size;
3049 	struct ucred *cred;
3050 	int charged;
3051 
3052 	VM_MAP_ASSERT_LOCKED(dst_map);
3053 
3054 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3055 		return;
3056 
3057 	if (src_entry->wired_count == 0 ||
3058 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3059 		/*
3060 		 * If the source entry is marked needs_copy, it is already
3061 		 * write-protected.
3062 		 */
3063 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3064 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3065 			pmap_protect(src_map->pmap,
3066 			    src_entry->start,
3067 			    src_entry->end,
3068 			    src_entry->protection & ~VM_PROT_WRITE);
3069 		}
3070 
3071 		/*
3072 		 * Make a copy of the object.
3073 		 */
3074 		size = src_entry->end - src_entry->start;
3075 		if ((src_object = src_entry->object.vm_object) != NULL) {
3076 			VM_OBJECT_WLOCK(src_object);
3077 			charged = ENTRY_CHARGED(src_entry);
3078 			if ((src_object->handle == NULL) &&
3079 				(src_object->type == OBJT_DEFAULT ||
3080 				 src_object->type == OBJT_SWAP)) {
3081 				vm_object_collapse(src_object);
3082 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3083 					vm_object_split(src_entry);
3084 					src_object = src_entry->object.vm_object;
3085 				}
3086 			}
3087 			vm_object_reference_locked(src_object);
3088 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3089 			if (src_entry->cred != NULL &&
3090 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3091 				KASSERT(src_object->cred == NULL,
3092 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3093 				     src_object));
3094 				src_object->cred = src_entry->cred;
3095 				src_object->charge = size;
3096 			}
3097 			VM_OBJECT_WUNLOCK(src_object);
3098 			dst_entry->object.vm_object = src_object;
3099 			if (charged) {
3100 				cred = curthread->td_ucred;
3101 				crhold(cred);
3102 				dst_entry->cred = cred;
3103 				*fork_charge += size;
3104 				if (!(src_entry->eflags &
3105 				      MAP_ENTRY_NEEDS_COPY)) {
3106 					crhold(cred);
3107 					src_entry->cred = cred;
3108 					*fork_charge += size;
3109 				}
3110 			}
3111 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3112 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3113 			dst_entry->offset = src_entry->offset;
3114 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3115 				/*
3116 				 * MAP_ENTRY_VN_WRITECNT cannot
3117 				 * indicate write reference from
3118 				 * src_entry, since the entry is
3119 				 * marked as needs copy.  Allocate a
3120 				 * fake entry that is used to
3121 				 * decrement object->un_pager.vnp.writecount
3122 				 * at the appropriate time.  Attach
3123 				 * fake_entry to the deferred list.
3124 				 */
3125 				fake_entry = vm_map_entry_create(dst_map);
3126 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3127 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3128 				vm_object_reference(src_object);
3129 				fake_entry->object.vm_object = src_object;
3130 				fake_entry->start = src_entry->start;
3131 				fake_entry->end = src_entry->end;
3132 				fake_entry->next = curthread->td_map_def_user;
3133 				curthread->td_map_def_user = fake_entry;
3134 			}
3135 		} else {
3136 			dst_entry->object.vm_object = NULL;
3137 			dst_entry->offset = 0;
3138 			if (src_entry->cred != NULL) {
3139 				dst_entry->cred = curthread->td_ucred;
3140 				crhold(dst_entry->cred);
3141 				*fork_charge += size;
3142 			}
3143 		}
3144 
3145 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3146 		    dst_entry->end - dst_entry->start, src_entry->start);
3147 	} else {
3148 		/*
3149 		 * We don't want to make writeable wired pages copy-on-write.
3150 		 * Immediately copy these pages into the new map by simulating
3151 		 * page faults.  The new pages are pageable.
3152 		 */
3153 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3154 		    fork_charge);
3155 	}
3156 }
3157 
3158 /*
3159  * vmspace_map_entry_forked:
3160  * Update the newly-forked vmspace each time a map entry is inherited
3161  * or copied.  The values for vm_dsize and vm_tsize are approximate
3162  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3163  */
3164 static void
3165 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3166     vm_map_entry_t entry)
3167 {
3168 	vm_size_t entrysize;
3169 	vm_offset_t newend;
3170 
3171 	entrysize = entry->end - entry->start;
3172 	vm2->vm_map.size += entrysize;
3173 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3174 		vm2->vm_ssize += btoc(entrysize);
3175 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3176 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3177 		newend = MIN(entry->end,
3178 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3179 		vm2->vm_dsize += btoc(newend - entry->start);
3180 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3181 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3182 		newend = MIN(entry->end,
3183 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3184 		vm2->vm_tsize += btoc(newend - entry->start);
3185 	}
3186 }
3187 
3188 /*
3189  * vmspace_fork:
3190  * Create a new process vmspace structure and vm_map
3191  * based on those of an existing process.  The new map
3192  * is based on the old map, according to the inheritance
3193  * values on the regions in that map.
3194  *
3195  * XXX It might be worth coalescing the entries added to the new vmspace.
3196  *
3197  * The source map must not be locked.
3198  */
3199 struct vmspace *
3200 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3201 {
3202 	struct vmspace *vm2;
3203 	vm_map_t new_map, old_map;
3204 	vm_map_entry_t new_entry, old_entry;
3205 	vm_object_t object;
3206 	int locked;
3207 
3208 	old_map = &vm1->vm_map;
3209 	/* Copy immutable fields of vm1 to vm2. */
3210 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3211 	if (vm2 == NULL)
3212 		return (NULL);
3213 	vm2->vm_taddr = vm1->vm_taddr;
3214 	vm2->vm_daddr = vm1->vm_daddr;
3215 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3216 	vm_map_lock(old_map);
3217 	if (old_map->busy)
3218 		vm_map_wait_busy(old_map);
3219 	new_map = &vm2->vm_map;
3220 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3221 	KASSERT(locked, ("vmspace_fork: lock failed"));
3222 
3223 	old_entry = old_map->header.next;
3224 
3225 	while (old_entry != &old_map->header) {
3226 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3227 			panic("vm_map_fork: encountered a submap");
3228 
3229 		switch (old_entry->inheritance) {
3230 		case VM_INHERIT_NONE:
3231 			break;
3232 
3233 		case VM_INHERIT_SHARE:
3234 			/*
3235 			 * Clone the entry, creating the shared object if necessary.
3236 			 */
3237 			object = old_entry->object.vm_object;
3238 			if (object == NULL) {
3239 				object = vm_object_allocate(OBJT_DEFAULT,
3240 					atop(old_entry->end - old_entry->start));
3241 				old_entry->object.vm_object = object;
3242 				old_entry->offset = 0;
3243 				if (old_entry->cred != NULL) {
3244 					object->cred = old_entry->cred;
3245 					object->charge = old_entry->end -
3246 					    old_entry->start;
3247 					old_entry->cred = NULL;
3248 				}
3249 			}
3250 
3251 			/*
3252 			 * Add the reference before calling vm_object_shadow
3253 			 * to insure that a shadow object is created.
3254 			 */
3255 			vm_object_reference(object);
3256 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3257 				vm_object_shadow(&old_entry->object.vm_object,
3258 				    &old_entry->offset,
3259 				    old_entry->end - old_entry->start);
3260 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3261 				/* Transfer the second reference too. */
3262 				vm_object_reference(
3263 				    old_entry->object.vm_object);
3264 
3265 				/*
3266 				 * As in vm_map_simplify_entry(), the
3267 				 * vnode lock will not be acquired in
3268 				 * this call to vm_object_deallocate().
3269 				 */
3270 				vm_object_deallocate(object);
3271 				object = old_entry->object.vm_object;
3272 			}
3273 			VM_OBJECT_WLOCK(object);
3274 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3275 			if (old_entry->cred != NULL) {
3276 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3277 				object->cred = old_entry->cred;
3278 				object->charge = old_entry->end - old_entry->start;
3279 				old_entry->cred = NULL;
3280 			}
3281 
3282 			/*
3283 			 * Assert the correct state of the vnode
3284 			 * v_writecount while the object is locked, to
3285 			 * not relock it later for the assertion
3286 			 * correctness.
3287 			 */
3288 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3289 			    object->type == OBJT_VNODE) {
3290 				KASSERT(((struct vnode *)object->handle)->
3291 				    v_writecount > 0,
3292 				    ("vmspace_fork: v_writecount %p", object));
3293 				KASSERT(object->un_pager.vnp.writemappings > 0,
3294 				    ("vmspace_fork: vnp.writecount %p",
3295 				    object));
3296 			}
3297 			VM_OBJECT_WUNLOCK(object);
3298 
3299 			/*
3300 			 * Clone the entry, referencing the shared object.
3301 			 */
3302 			new_entry = vm_map_entry_create(new_map);
3303 			*new_entry = *old_entry;
3304 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3305 			    MAP_ENTRY_IN_TRANSITION);
3306 			new_entry->wiring_thread = NULL;
3307 			new_entry->wired_count = 0;
3308 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3309 				vnode_pager_update_writecount(object,
3310 				    new_entry->start, new_entry->end);
3311 			}
3312 
3313 			/*
3314 			 * Insert the entry into the new map -- we know we're
3315 			 * inserting at the end of the new map.
3316 			 */
3317 			vm_map_entry_link(new_map, new_map->header.prev,
3318 			    new_entry);
3319 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3320 
3321 			/*
3322 			 * Update the physical map
3323 			 */
3324 			pmap_copy(new_map->pmap, old_map->pmap,
3325 			    new_entry->start,
3326 			    (old_entry->end - old_entry->start),
3327 			    old_entry->start);
3328 			break;
3329 
3330 		case VM_INHERIT_COPY:
3331 			/*
3332 			 * Clone the entry and link into the map.
3333 			 */
3334 			new_entry = vm_map_entry_create(new_map);
3335 			*new_entry = *old_entry;
3336 			/*
3337 			 * Copied entry is COW over the old object.
3338 			 */
3339 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3340 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3341 			new_entry->wiring_thread = NULL;
3342 			new_entry->wired_count = 0;
3343 			new_entry->object.vm_object = NULL;
3344 			new_entry->cred = NULL;
3345 			vm_map_entry_link(new_map, new_map->header.prev,
3346 			    new_entry);
3347 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3348 			vm_map_copy_entry(old_map, new_map, old_entry,
3349 			    new_entry, fork_charge);
3350 			break;
3351 		}
3352 		old_entry = old_entry->next;
3353 	}
3354 	/*
3355 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3356 	 * map entries, which cannot be done until both old_map and
3357 	 * new_map locks are released.
3358 	 */
3359 	sx_xunlock(&old_map->lock);
3360 	sx_xunlock(&new_map->lock);
3361 	vm_map_process_deferred();
3362 
3363 	return (vm2);
3364 }
3365 
3366 int
3367 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3368     vm_prot_t prot, vm_prot_t max, int cow)
3369 {
3370 	vm_size_t growsize, init_ssize;
3371 	rlim_t lmemlim, vmemlim;
3372 	int rv;
3373 
3374 	growsize = sgrowsiz;
3375 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3376 	vm_map_lock(map);
3377 	PROC_LOCK(curproc);
3378 	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3379 	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3380 	PROC_UNLOCK(curproc);
3381 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3382 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3383 			rv = KERN_NO_SPACE;
3384 			goto out;
3385 		}
3386 	}
3387 	/* If we would blow our VMEM resource limit, no go */
3388 	if (map->size + init_ssize > vmemlim) {
3389 		rv = KERN_NO_SPACE;
3390 		goto out;
3391 	}
3392 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3393 	    max, cow);
3394 out:
3395 	vm_map_unlock(map);
3396 	return (rv);
3397 }
3398 
3399 static int
3400 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3401     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3402 {
3403 	vm_map_entry_t new_entry, prev_entry;
3404 	vm_offset_t bot, top;
3405 	vm_size_t init_ssize;
3406 	int orient, rv;
3407 
3408 	/*
3409 	 * The stack orientation is piggybacked with the cow argument.
3410 	 * Extract it into orient and mask the cow argument so that we
3411 	 * don't pass it around further.
3412 	 * NOTE: We explicitly allow bi-directional stacks.
3413 	 */
3414 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3415 	KASSERT(orient != 0, ("No stack grow direction"));
3416 
3417 	if (addrbos < vm_map_min(map) ||
3418 	    addrbos > vm_map_max(map) ||
3419 	    addrbos + max_ssize < addrbos)
3420 		return (KERN_NO_SPACE);
3421 
3422 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3423 
3424 	/* If addr is already mapped, no go */
3425 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3426 		return (KERN_NO_SPACE);
3427 
3428 	/*
3429 	 * If we can't accomodate max_ssize in the current mapping, no go.
3430 	 * However, we need to be aware that subsequent user mappings might
3431 	 * map into the space we have reserved for stack, and currently this
3432 	 * space is not protected.
3433 	 *
3434 	 * Hopefully we will at least detect this condition when we try to
3435 	 * grow the stack.
3436 	 */
3437 	if ((prev_entry->next != &map->header) &&
3438 	    (prev_entry->next->start < addrbos + max_ssize))
3439 		return (KERN_NO_SPACE);
3440 
3441 	/*
3442 	 * We initially map a stack of only init_ssize.  We will grow as
3443 	 * needed later.  Depending on the orientation of the stack (i.e.
3444 	 * the grow direction) we either map at the top of the range, the
3445 	 * bottom of the range or in the middle.
3446 	 *
3447 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3448 	 * and cow to be 0.  Possibly we should eliminate these as input
3449 	 * parameters, and just pass these values here in the insert call.
3450 	 */
3451 	if (orient == MAP_STACK_GROWS_DOWN)
3452 		bot = addrbos + max_ssize - init_ssize;
3453 	else if (orient == MAP_STACK_GROWS_UP)
3454 		bot = addrbos;
3455 	else
3456 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3457 	top = bot + init_ssize;
3458 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3459 
3460 	/* Now set the avail_ssize amount. */
3461 	if (rv == KERN_SUCCESS) {
3462 		new_entry = prev_entry->next;
3463 		if (new_entry->end != top || new_entry->start != bot)
3464 			panic("Bad entry start/end for new stack entry");
3465 
3466 		new_entry->avail_ssize = max_ssize - init_ssize;
3467 		KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3468 		    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3469 		    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3470 		KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3471 		    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3472 		    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3473 	}
3474 
3475 	return (rv);
3476 }
3477 
3478 static int stack_guard_page = 0;
3479 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3480 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3481     &stack_guard_page, 0,
3482     "Insert stack guard page ahead of the growable segments.");
3483 
3484 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3485  * desired address is already mapped, or if we successfully grow
3486  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3487  * stack range (this is strange, but preserves compatibility with
3488  * the grow function in vm_machdep.c).
3489  */
3490 int
3491 vm_map_growstack(struct proc *p, vm_offset_t addr)
3492 {
3493 	vm_map_entry_t next_entry, prev_entry;
3494 	vm_map_entry_t new_entry, stack_entry;
3495 	struct vmspace *vm = p->p_vmspace;
3496 	vm_map_t map = &vm->vm_map;
3497 	vm_offset_t end;
3498 	vm_size_t growsize;
3499 	size_t grow_amount, max_grow;
3500 	rlim_t lmemlim, stacklim, vmemlim;
3501 	int is_procstack, rv;
3502 	struct ucred *cred;
3503 #ifdef notyet
3504 	uint64_t limit;
3505 #endif
3506 #ifdef RACCT
3507 	int error;
3508 #endif
3509 
3510 Retry:
3511 	PROC_LOCK(p);
3512 	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3513 	stacklim = lim_cur(p, RLIMIT_STACK);
3514 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3515 	PROC_UNLOCK(p);
3516 
3517 	vm_map_lock_read(map);
3518 
3519 	/* If addr is already in the entry range, no need to grow.*/
3520 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3521 		vm_map_unlock_read(map);
3522 		return (KERN_SUCCESS);
3523 	}
3524 
3525 	next_entry = prev_entry->next;
3526 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3527 		/*
3528 		 * This entry does not grow upwards. Since the address lies
3529 		 * beyond this entry, the next entry (if one exists) has to
3530 		 * be a downward growable entry. The entry list header is
3531 		 * never a growable entry, so it suffices to check the flags.
3532 		 */
3533 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3534 			vm_map_unlock_read(map);
3535 			return (KERN_SUCCESS);
3536 		}
3537 		stack_entry = next_entry;
3538 	} else {
3539 		/*
3540 		 * This entry grows upward. If the next entry does not at
3541 		 * least grow downwards, this is the entry we need to grow.
3542 		 * otherwise we have two possible choices and we have to
3543 		 * select one.
3544 		 */
3545 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3546 			/*
3547 			 * We have two choices; grow the entry closest to
3548 			 * the address to minimize the amount of growth.
3549 			 */
3550 			if (addr - prev_entry->end <= next_entry->start - addr)
3551 				stack_entry = prev_entry;
3552 			else
3553 				stack_entry = next_entry;
3554 		} else
3555 			stack_entry = prev_entry;
3556 	}
3557 
3558 	if (stack_entry == next_entry) {
3559 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3560 		KASSERT(addr < stack_entry->start, ("foo"));
3561 		end = (prev_entry != &map->header) ? prev_entry->end :
3562 		    stack_entry->start - stack_entry->avail_ssize;
3563 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3564 		max_grow = stack_entry->start - end;
3565 	} else {
3566 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3567 		KASSERT(addr >= stack_entry->end, ("foo"));
3568 		end = (next_entry != &map->header) ? next_entry->start :
3569 		    stack_entry->end + stack_entry->avail_ssize;
3570 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3571 		max_grow = end - stack_entry->end;
3572 	}
3573 
3574 	if (grow_amount > stack_entry->avail_ssize) {
3575 		vm_map_unlock_read(map);
3576 		return (KERN_NO_SPACE);
3577 	}
3578 
3579 	/*
3580 	 * If there is no longer enough space between the entries nogo, and
3581 	 * adjust the available space.  Note: this  should only happen if the
3582 	 * user has mapped into the stack area after the stack was created,
3583 	 * and is probably an error.
3584 	 *
3585 	 * This also effectively destroys any guard page the user might have
3586 	 * intended by limiting the stack size.
3587 	 */
3588 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3589 		if (vm_map_lock_upgrade(map))
3590 			goto Retry;
3591 
3592 		stack_entry->avail_ssize = max_grow;
3593 
3594 		vm_map_unlock(map);
3595 		return (KERN_NO_SPACE);
3596 	}
3597 
3598 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3599 
3600 	/*
3601 	 * If this is the main process stack, see if we're over the stack
3602 	 * limit.
3603 	 */
3604 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3605 		vm_map_unlock_read(map);
3606 		return (KERN_NO_SPACE);
3607 	}
3608 #ifdef RACCT
3609 	PROC_LOCK(p);
3610 	if (is_procstack &&
3611 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3612 		PROC_UNLOCK(p);
3613 		vm_map_unlock_read(map);
3614 		return (KERN_NO_SPACE);
3615 	}
3616 	PROC_UNLOCK(p);
3617 #endif
3618 
3619 	/* Round up the grow amount modulo sgrowsiz */
3620 	growsize = sgrowsiz;
3621 	grow_amount = roundup(grow_amount, growsize);
3622 	if (grow_amount > stack_entry->avail_ssize)
3623 		grow_amount = stack_entry->avail_ssize;
3624 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3625 		grow_amount = trunc_page((vm_size_t)stacklim) -
3626 		    ctob(vm->vm_ssize);
3627 	}
3628 #ifdef notyet
3629 	PROC_LOCK(p);
3630 	limit = racct_get_available(p, RACCT_STACK);
3631 	PROC_UNLOCK(p);
3632 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3633 		grow_amount = limit - ctob(vm->vm_ssize);
3634 #endif
3635 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3636 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3637 			vm_map_unlock_read(map);
3638 			rv = KERN_NO_SPACE;
3639 			goto out;
3640 		}
3641 #ifdef RACCT
3642 		PROC_LOCK(p);
3643 		if (racct_set(p, RACCT_MEMLOCK,
3644 		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3645 			PROC_UNLOCK(p);
3646 			vm_map_unlock_read(map);
3647 			rv = KERN_NO_SPACE;
3648 			goto out;
3649 		}
3650 		PROC_UNLOCK(p);
3651 #endif
3652 	}
3653 	/* If we would blow our VMEM resource limit, no go */
3654 	if (map->size + grow_amount > vmemlim) {
3655 		vm_map_unlock_read(map);
3656 		rv = KERN_NO_SPACE;
3657 		goto out;
3658 	}
3659 #ifdef RACCT
3660 	PROC_LOCK(p);
3661 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3662 		PROC_UNLOCK(p);
3663 		vm_map_unlock_read(map);
3664 		rv = KERN_NO_SPACE;
3665 		goto out;
3666 	}
3667 	PROC_UNLOCK(p);
3668 #endif
3669 
3670 	if (vm_map_lock_upgrade(map))
3671 		goto Retry;
3672 
3673 	if (stack_entry == next_entry) {
3674 		/*
3675 		 * Growing downward.
3676 		 */
3677 		/* Get the preliminary new entry start value */
3678 		addr = stack_entry->start - grow_amount;
3679 
3680 		/*
3681 		 * If this puts us into the previous entry, cut back our
3682 		 * growth to the available space. Also, see the note above.
3683 		 */
3684 		if (addr < end) {
3685 			stack_entry->avail_ssize = max_grow;
3686 			addr = end;
3687 			if (stack_guard_page)
3688 				addr += PAGE_SIZE;
3689 		}
3690 
3691 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3692 		    next_entry->protection, next_entry->max_protection,
3693 		    MAP_STACK_GROWS_DOWN);
3694 
3695 		/* Adjust the available stack space by the amount we grew. */
3696 		if (rv == KERN_SUCCESS) {
3697 			new_entry = prev_entry->next;
3698 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3699 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3700 			KASSERT(new_entry->start == addr, ("foo"));
3701 			KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) !=
3702 			    0, ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3703 			grow_amount = new_entry->end - new_entry->start;
3704 			new_entry->avail_ssize = stack_entry->avail_ssize -
3705 			    grow_amount;
3706 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3707 		}
3708 	} else {
3709 		/*
3710 		 * Growing upward.
3711 		 */
3712 		addr = stack_entry->end + grow_amount;
3713 
3714 		/*
3715 		 * If this puts us into the next entry, cut back our growth
3716 		 * to the available space. Also, see the note above.
3717 		 */
3718 		if (addr > end) {
3719 			stack_entry->avail_ssize = end - stack_entry->end;
3720 			addr = end;
3721 			if (stack_guard_page)
3722 				addr -= PAGE_SIZE;
3723 		}
3724 
3725 		grow_amount = addr - stack_entry->end;
3726 		cred = stack_entry->cred;
3727 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3728 			cred = stack_entry->object.vm_object->cred;
3729 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3730 			rv = KERN_NO_SPACE;
3731 		/* Grow the underlying object if applicable. */
3732 		else if (stack_entry->object.vm_object == NULL ||
3733 			 vm_object_coalesce(stack_entry->object.vm_object,
3734 			 stack_entry->offset,
3735 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3736 			 (vm_size_t)grow_amount, cred != NULL)) {
3737 			map->size += (addr - stack_entry->end);
3738 			/* Update the current entry. */
3739 			stack_entry->end = addr;
3740 			stack_entry->avail_ssize -= grow_amount;
3741 			vm_map_entry_resize_free(map, stack_entry);
3742 			rv = KERN_SUCCESS;
3743 		} else
3744 			rv = KERN_FAILURE;
3745 	}
3746 
3747 	if (rv == KERN_SUCCESS && is_procstack)
3748 		vm->vm_ssize += btoc(grow_amount);
3749 
3750 	vm_map_unlock(map);
3751 
3752 	/*
3753 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3754 	 */
3755 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3756 		vm_map_wire(map,
3757 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3758 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3759 		    (p->p_flag & P_SYSTEM)
3760 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3761 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3762 	}
3763 
3764 out:
3765 #ifdef RACCT
3766 	if (rv != KERN_SUCCESS) {
3767 		PROC_LOCK(p);
3768 		error = racct_set(p, RACCT_VMEM, map->size);
3769 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3770 		if (!old_mlock) {
3771 			error = racct_set(p, RACCT_MEMLOCK,
3772 			    ptoa(pmap_wired_count(map->pmap)));
3773 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3774 		}
3775 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3776 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3777 		PROC_UNLOCK(p);
3778 	}
3779 #endif
3780 
3781 	return (rv);
3782 }
3783 
3784 /*
3785  * Unshare the specified VM space for exec.  If other processes are
3786  * mapped to it, then create a new one.  The new vmspace is null.
3787  */
3788 int
3789 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3790 {
3791 	struct vmspace *oldvmspace = p->p_vmspace;
3792 	struct vmspace *newvmspace;
3793 
3794 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3795 	    ("vmspace_exec recursed"));
3796 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3797 	if (newvmspace == NULL)
3798 		return (ENOMEM);
3799 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3800 	/*
3801 	 * This code is written like this for prototype purposes.  The
3802 	 * goal is to avoid running down the vmspace here, but let the
3803 	 * other process's that are still using the vmspace to finally
3804 	 * run it down.  Even though there is little or no chance of blocking
3805 	 * here, it is a good idea to keep this form for future mods.
3806 	 */
3807 	PROC_VMSPACE_LOCK(p);
3808 	p->p_vmspace = newvmspace;
3809 	PROC_VMSPACE_UNLOCK(p);
3810 	if (p == curthread->td_proc)
3811 		pmap_activate(curthread);
3812 	curthread->td_pflags |= TDP_EXECVMSPC;
3813 	return (0);
3814 }
3815 
3816 /*
3817  * Unshare the specified VM space for forcing COW.  This
3818  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3819  */
3820 int
3821 vmspace_unshare(struct proc *p)
3822 {
3823 	struct vmspace *oldvmspace = p->p_vmspace;
3824 	struct vmspace *newvmspace;
3825 	vm_ooffset_t fork_charge;
3826 
3827 	if (oldvmspace->vm_refcnt == 1)
3828 		return (0);
3829 	fork_charge = 0;
3830 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3831 	if (newvmspace == NULL)
3832 		return (ENOMEM);
3833 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3834 		vmspace_free(newvmspace);
3835 		return (ENOMEM);
3836 	}
3837 	PROC_VMSPACE_LOCK(p);
3838 	p->p_vmspace = newvmspace;
3839 	PROC_VMSPACE_UNLOCK(p);
3840 	if (p == curthread->td_proc)
3841 		pmap_activate(curthread);
3842 	vmspace_free(oldvmspace);
3843 	return (0);
3844 }
3845 
3846 /*
3847  *	vm_map_lookup:
3848  *
3849  *	Finds the VM object, offset, and
3850  *	protection for a given virtual address in the
3851  *	specified map, assuming a page fault of the
3852  *	type specified.
3853  *
3854  *	Leaves the map in question locked for read; return
3855  *	values are guaranteed until a vm_map_lookup_done
3856  *	call is performed.  Note that the map argument
3857  *	is in/out; the returned map must be used in
3858  *	the call to vm_map_lookup_done.
3859  *
3860  *	A handle (out_entry) is returned for use in
3861  *	vm_map_lookup_done, to make that fast.
3862  *
3863  *	If a lookup is requested with "write protection"
3864  *	specified, the map may be changed to perform virtual
3865  *	copying operations, although the data referenced will
3866  *	remain the same.
3867  */
3868 int
3869 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3870 	      vm_offset_t vaddr,
3871 	      vm_prot_t fault_typea,
3872 	      vm_map_entry_t *out_entry,	/* OUT */
3873 	      vm_object_t *object,		/* OUT */
3874 	      vm_pindex_t *pindex,		/* OUT */
3875 	      vm_prot_t *out_prot,		/* OUT */
3876 	      boolean_t *wired)			/* OUT */
3877 {
3878 	vm_map_entry_t entry;
3879 	vm_map_t map = *var_map;
3880 	vm_prot_t prot;
3881 	vm_prot_t fault_type = fault_typea;
3882 	vm_object_t eobject;
3883 	vm_size_t size;
3884 	struct ucred *cred;
3885 
3886 RetryLookup:;
3887 
3888 	vm_map_lock_read(map);
3889 
3890 	/*
3891 	 * Lookup the faulting address.
3892 	 */
3893 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3894 		vm_map_unlock_read(map);
3895 		return (KERN_INVALID_ADDRESS);
3896 	}
3897 
3898 	entry = *out_entry;
3899 
3900 	/*
3901 	 * Handle submaps.
3902 	 */
3903 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3904 		vm_map_t old_map = map;
3905 
3906 		*var_map = map = entry->object.sub_map;
3907 		vm_map_unlock_read(old_map);
3908 		goto RetryLookup;
3909 	}
3910 
3911 	/*
3912 	 * Check whether this task is allowed to have this page.
3913 	 */
3914 	prot = entry->protection;
3915 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3916 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3917 		vm_map_unlock_read(map);
3918 		return (KERN_PROTECTION_FAILURE);
3919 	}
3920 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3921 	    (entry->eflags & MAP_ENTRY_COW) &&
3922 	    (fault_type & VM_PROT_WRITE)) {
3923 		vm_map_unlock_read(map);
3924 		return (KERN_PROTECTION_FAILURE);
3925 	}
3926 	if ((fault_typea & VM_PROT_COPY) != 0 &&
3927 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3928 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3929 		vm_map_unlock_read(map);
3930 		return (KERN_PROTECTION_FAILURE);
3931 	}
3932 
3933 	/*
3934 	 * If this page is not pageable, we have to get it for all possible
3935 	 * accesses.
3936 	 */
3937 	*wired = (entry->wired_count != 0);
3938 	if (*wired)
3939 		fault_type = entry->protection;
3940 	size = entry->end - entry->start;
3941 	/*
3942 	 * If the entry was copy-on-write, we either ...
3943 	 */
3944 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3945 		/*
3946 		 * If we want to write the page, we may as well handle that
3947 		 * now since we've got the map locked.
3948 		 *
3949 		 * If we don't need to write the page, we just demote the
3950 		 * permissions allowed.
3951 		 */
3952 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3953 		    (fault_typea & VM_PROT_COPY) != 0) {
3954 			/*
3955 			 * Make a new object, and place it in the object
3956 			 * chain.  Note that no new references have appeared
3957 			 * -- one just moved from the map to the new
3958 			 * object.
3959 			 */
3960 			if (vm_map_lock_upgrade(map))
3961 				goto RetryLookup;
3962 
3963 			if (entry->cred == NULL) {
3964 				/*
3965 				 * The debugger owner is charged for
3966 				 * the memory.
3967 				 */
3968 				cred = curthread->td_ucred;
3969 				crhold(cred);
3970 				if (!swap_reserve_by_cred(size, cred)) {
3971 					crfree(cred);
3972 					vm_map_unlock(map);
3973 					return (KERN_RESOURCE_SHORTAGE);
3974 				}
3975 				entry->cred = cred;
3976 			}
3977 			vm_object_shadow(&entry->object.vm_object,
3978 			    &entry->offset, size);
3979 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3980 			eobject = entry->object.vm_object;
3981 			if (eobject->cred != NULL) {
3982 				/*
3983 				 * The object was not shadowed.
3984 				 */
3985 				swap_release_by_cred(size, entry->cred);
3986 				crfree(entry->cred);
3987 				entry->cred = NULL;
3988 			} else if (entry->cred != NULL) {
3989 				VM_OBJECT_WLOCK(eobject);
3990 				eobject->cred = entry->cred;
3991 				eobject->charge = size;
3992 				VM_OBJECT_WUNLOCK(eobject);
3993 				entry->cred = NULL;
3994 			}
3995 
3996 			vm_map_lock_downgrade(map);
3997 		} else {
3998 			/*
3999 			 * We're attempting to read a copy-on-write page --
4000 			 * don't allow writes.
4001 			 */
4002 			prot &= ~VM_PROT_WRITE;
4003 		}
4004 	}
4005 
4006 	/*
4007 	 * Create an object if necessary.
4008 	 */
4009 	if (entry->object.vm_object == NULL &&
4010 	    !map->system_map) {
4011 		if (vm_map_lock_upgrade(map))
4012 			goto RetryLookup;
4013 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4014 		    atop(size));
4015 		entry->offset = 0;
4016 		if (entry->cred != NULL) {
4017 			VM_OBJECT_WLOCK(entry->object.vm_object);
4018 			entry->object.vm_object->cred = entry->cred;
4019 			entry->object.vm_object->charge = size;
4020 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4021 			entry->cred = NULL;
4022 		}
4023 		vm_map_lock_downgrade(map);
4024 	}
4025 
4026 	/*
4027 	 * Return the object/offset from this entry.  If the entry was
4028 	 * copy-on-write or empty, it has been fixed up.
4029 	 */
4030 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4031 	*object = entry->object.vm_object;
4032 
4033 	*out_prot = prot;
4034 	return (KERN_SUCCESS);
4035 }
4036 
4037 /*
4038  *	vm_map_lookup_locked:
4039  *
4040  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4041  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4042  */
4043 int
4044 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4045 		     vm_offset_t vaddr,
4046 		     vm_prot_t fault_typea,
4047 		     vm_map_entry_t *out_entry,	/* OUT */
4048 		     vm_object_t *object,	/* OUT */
4049 		     vm_pindex_t *pindex,	/* OUT */
4050 		     vm_prot_t *out_prot,	/* OUT */
4051 		     boolean_t *wired)		/* OUT */
4052 {
4053 	vm_map_entry_t entry;
4054 	vm_map_t map = *var_map;
4055 	vm_prot_t prot;
4056 	vm_prot_t fault_type = fault_typea;
4057 
4058 	/*
4059 	 * Lookup the faulting address.
4060 	 */
4061 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4062 		return (KERN_INVALID_ADDRESS);
4063 
4064 	entry = *out_entry;
4065 
4066 	/*
4067 	 * Fail if the entry refers to a submap.
4068 	 */
4069 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4070 		return (KERN_FAILURE);
4071 
4072 	/*
4073 	 * Check whether this task is allowed to have this page.
4074 	 */
4075 	prot = entry->protection;
4076 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4077 	if ((fault_type & prot) != fault_type)
4078 		return (KERN_PROTECTION_FAILURE);
4079 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4080 	    (entry->eflags & MAP_ENTRY_COW) &&
4081 	    (fault_type & VM_PROT_WRITE))
4082 		return (KERN_PROTECTION_FAILURE);
4083 
4084 	/*
4085 	 * If this page is not pageable, we have to get it for all possible
4086 	 * accesses.
4087 	 */
4088 	*wired = (entry->wired_count != 0);
4089 	if (*wired)
4090 		fault_type = entry->protection;
4091 
4092 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4093 		/*
4094 		 * Fail if the entry was copy-on-write for a write fault.
4095 		 */
4096 		if (fault_type & VM_PROT_WRITE)
4097 			return (KERN_FAILURE);
4098 		/*
4099 		 * We're attempting to read a copy-on-write page --
4100 		 * don't allow writes.
4101 		 */
4102 		prot &= ~VM_PROT_WRITE;
4103 	}
4104 
4105 	/*
4106 	 * Fail if an object should be created.
4107 	 */
4108 	if (entry->object.vm_object == NULL && !map->system_map)
4109 		return (KERN_FAILURE);
4110 
4111 	/*
4112 	 * Return the object/offset from this entry.  If the entry was
4113 	 * copy-on-write or empty, it has been fixed up.
4114 	 */
4115 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4116 	*object = entry->object.vm_object;
4117 
4118 	*out_prot = prot;
4119 	return (KERN_SUCCESS);
4120 }
4121 
4122 /*
4123  *	vm_map_lookup_done:
4124  *
4125  *	Releases locks acquired by a vm_map_lookup
4126  *	(according to the handle returned by that lookup).
4127  */
4128 void
4129 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4130 {
4131 	/*
4132 	 * Unlock the main-level map
4133 	 */
4134 	vm_map_unlock_read(map);
4135 }
4136 
4137 #include "opt_ddb.h"
4138 #ifdef DDB
4139 #include <sys/kernel.h>
4140 
4141 #include <ddb/ddb.h>
4142 
4143 static void
4144 vm_map_print(vm_map_t map)
4145 {
4146 	vm_map_entry_t entry;
4147 
4148 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4149 	    (void *)map,
4150 	    (void *)map->pmap, map->nentries, map->timestamp);
4151 
4152 	db_indent += 2;
4153 	for (entry = map->header.next; entry != &map->header;
4154 	    entry = entry->next) {
4155 		db_iprintf("map entry %p: start=%p, end=%p\n",
4156 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4157 		{
4158 			static char *inheritance_name[4] =
4159 			{"share", "copy", "none", "donate_copy"};
4160 
4161 			db_iprintf(" prot=%x/%x/%s",
4162 			    entry->protection,
4163 			    entry->max_protection,
4164 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4165 			if (entry->wired_count != 0)
4166 				db_printf(", wired");
4167 		}
4168 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4169 			db_printf(", share=%p, offset=0x%jx\n",
4170 			    (void *)entry->object.sub_map,
4171 			    (uintmax_t)entry->offset);
4172 			if ((entry->prev == &map->header) ||
4173 			    (entry->prev->object.sub_map !=
4174 				entry->object.sub_map)) {
4175 				db_indent += 2;
4176 				vm_map_print((vm_map_t)entry->object.sub_map);
4177 				db_indent -= 2;
4178 			}
4179 		} else {
4180 			if (entry->cred != NULL)
4181 				db_printf(", ruid %d", entry->cred->cr_ruid);
4182 			db_printf(", object=%p, offset=0x%jx",
4183 			    (void *)entry->object.vm_object,
4184 			    (uintmax_t)entry->offset);
4185 			if (entry->object.vm_object && entry->object.vm_object->cred)
4186 				db_printf(", obj ruid %d charge %jx",
4187 				    entry->object.vm_object->cred->cr_ruid,
4188 				    (uintmax_t)entry->object.vm_object->charge);
4189 			if (entry->eflags & MAP_ENTRY_COW)
4190 				db_printf(", copy (%s)",
4191 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4192 			db_printf("\n");
4193 
4194 			if ((entry->prev == &map->header) ||
4195 			    (entry->prev->object.vm_object !=
4196 				entry->object.vm_object)) {
4197 				db_indent += 2;
4198 				vm_object_print((db_expr_t)(intptr_t)
4199 						entry->object.vm_object,
4200 						0, 0, (char *)0);
4201 				db_indent -= 2;
4202 			}
4203 		}
4204 	}
4205 	db_indent -= 2;
4206 }
4207 
4208 DB_SHOW_COMMAND(map, map)
4209 {
4210 
4211 	if (!have_addr) {
4212 		db_printf("usage: show map <addr>\n");
4213 		return;
4214 	}
4215 	vm_map_print((vm_map_t)addr);
4216 }
4217 
4218 DB_SHOW_COMMAND(procvm, procvm)
4219 {
4220 	struct proc *p;
4221 
4222 	if (have_addr) {
4223 		p = (struct proc *) addr;
4224 	} else {
4225 		p = curproc;
4226 	}
4227 
4228 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4229 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4230 	    (void *)vmspace_pmap(p->p_vmspace));
4231 
4232 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4233 }
4234 
4235 #endif /* DDB */
4236