1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/racct.h> 81 #include <sys/resourcevar.h> 82 #include <sys/rwlock.h> 83 #include <sys/file.h> 84 #include <sys/sysctl.h> 85 #include <sys/sysent.h> 86 #include <sys/shm.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_object.h> 94 #include <vm/vm_pager.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vnode_pager.h> 98 #include <vm/swap_pager.h> 99 #include <vm/uma.h> 100 101 /* 102 * Virtual memory maps provide for the mapping, protection, 103 * and sharing of virtual memory objects. In addition, 104 * this module provides for an efficient virtual copy of 105 * memory from one map to another. 106 * 107 * Synchronization is required prior to most operations. 108 * 109 * Maps consist of an ordered doubly-linked list of simple 110 * entries; a self-adjusting binary search tree of these 111 * entries is used to speed up lookups. 112 * 113 * Since portions of maps are specified by start/end addresses, 114 * which may not align with existing map entries, all 115 * routines merely "clip" entries to these start/end values. 116 * [That is, an entry is split into two, bordering at a 117 * start or end value.] Note that these clippings may not 118 * always be necessary (as the two resulting entries are then 119 * not changed); however, the clipping is done for convenience. 120 * 121 * As mentioned above, virtual copy operations are performed 122 * by copying VM object references from one map to 123 * another, and then marking both regions as copy-on-write. 124 */ 125 126 static struct mtx map_sleep_mtx; 127 static uma_zone_t mapentzone; 128 static uma_zone_t kmapentzone; 129 static uma_zone_t mapzone; 130 static uma_zone_t vmspace_zone; 131 static int vmspace_zinit(void *mem, int size, int flags); 132 static int vm_map_zinit(void *mem, int ize, int flags); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static int vm_map_alignspace(vm_map_t map, vm_object_t object, 136 vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length, 137 vm_offset_t max_addr, vm_offset_t alignment); 138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 142 vm_map_entry_t gap_entry); 143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 144 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 145 #ifdef INVARIANTS 146 static void vm_map_zdtor(void *mem, int size, void *arg); 147 static void vmspace_zdtor(void *mem, int size, void *arg); 148 #endif 149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 150 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 151 int cow); 152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 153 vm_offset_t failed_addr); 154 155 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 156 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 157 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 158 159 /* 160 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 161 * stable. 162 */ 163 #define PROC_VMSPACE_LOCK(p) do { } while (0) 164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 165 166 /* 167 * VM_MAP_RANGE_CHECK: [ internal use only ] 168 * 169 * Asserts that the starting and ending region 170 * addresses fall within the valid range of the map. 171 */ 172 #define VM_MAP_RANGE_CHECK(map, start, end) \ 173 { \ 174 if (start < vm_map_min(map)) \ 175 start = vm_map_min(map); \ 176 if (end > vm_map_max(map)) \ 177 end = vm_map_max(map); \ 178 if (start > end) \ 179 start = end; \ 180 } 181 182 /* 183 * vm_map_startup: 184 * 185 * Initialize the vm_map module. Must be called before 186 * any other vm_map routines. 187 * 188 * Map and entry structures are allocated from the general 189 * purpose memory pool with some exceptions: 190 * 191 * - The kernel map and kmem submap are allocated statically. 192 * - Kernel map entries are allocated out of a static pool. 193 * 194 * These restrictions are necessary since malloc() uses the 195 * maps and requires map entries. 196 */ 197 198 void 199 vm_map_startup(void) 200 { 201 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 202 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 203 #ifdef INVARIANTS 204 vm_map_zdtor, 205 #else 206 NULL, 207 #endif 208 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 209 uma_prealloc(mapzone, MAX_KMAP); 210 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 211 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 212 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 213 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 214 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 215 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 216 #ifdef INVARIANTS 217 vmspace_zdtor, 218 #else 219 NULL, 220 #endif 221 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 222 } 223 224 static int 225 vmspace_zinit(void *mem, int size, int flags) 226 { 227 struct vmspace *vm; 228 229 vm = (struct vmspace *)mem; 230 231 vm->vm_map.pmap = NULL; 232 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 233 PMAP_LOCK_INIT(vmspace_pmap(vm)); 234 return (0); 235 } 236 237 static int 238 vm_map_zinit(void *mem, int size, int flags) 239 { 240 vm_map_t map; 241 242 map = (vm_map_t)mem; 243 memset(map, 0, sizeof(*map)); 244 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 245 sx_init(&map->lock, "vm map (user)"); 246 return (0); 247 } 248 249 #ifdef INVARIANTS 250 static void 251 vmspace_zdtor(void *mem, int size, void *arg) 252 { 253 struct vmspace *vm; 254 255 vm = (struct vmspace *)mem; 256 257 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 258 } 259 static void 260 vm_map_zdtor(void *mem, int size, void *arg) 261 { 262 vm_map_t map; 263 264 map = (vm_map_t)mem; 265 KASSERT(map->nentries == 0, 266 ("map %p nentries == %d on free.", 267 map, map->nentries)); 268 KASSERT(map->size == 0, 269 ("map %p size == %lu on free.", 270 map, (unsigned long)map->size)); 271 } 272 #endif /* INVARIANTS */ 273 274 /* 275 * Allocate a vmspace structure, including a vm_map and pmap, 276 * and initialize those structures. The refcnt is set to 1. 277 * 278 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 279 */ 280 struct vmspace * 281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 282 { 283 struct vmspace *vm; 284 285 vm = uma_zalloc(vmspace_zone, M_WAITOK); 286 287 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 288 289 if (pinit == NULL) 290 pinit = &pmap_pinit; 291 292 if (!pinit(vmspace_pmap(vm))) { 293 uma_zfree(vmspace_zone, vm); 294 return (NULL); 295 } 296 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 297 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 298 vm->vm_refcnt = 1; 299 vm->vm_shm = NULL; 300 vm->vm_swrss = 0; 301 vm->vm_tsize = 0; 302 vm->vm_dsize = 0; 303 vm->vm_ssize = 0; 304 vm->vm_taddr = 0; 305 vm->vm_daddr = 0; 306 vm->vm_maxsaddr = 0; 307 return (vm); 308 } 309 310 #ifdef RACCT 311 static void 312 vmspace_container_reset(struct proc *p) 313 { 314 315 PROC_LOCK(p); 316 racct_set(p, RACCT_DATA, 0); 317 racct_set(p, RACCT_STACK, 0); 318 racct_set(p, RACCT_RSS, 0); 319 racct_set(p, RACCT_MEMLOCK, 0); 320 racct_set(p, RACCT_VMEM, 0); 321 PROC_UNLOCK(p); 322 } 323 #endif 324 325 static inline void 326 vmspace_dofree(struct vmspace *vm) 327 { 328 329 CTR1(KTR_VM, "vmspace_free: %p", vm); 330 331 /* 332 * Make sure any SysV shm is freed, it might not have been in 333 * exit1(). 334 */ 335 shmexit(vm); 336 337 /* 338 * Lock the map, to wait out all other references to it. 339 * Delete all of the mappings and pages they hold, then call 340 * the pmap module to reclaim anything left. 341 */ 342 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 343 vm_map_max(&vm->vm_map)); 344 345 pmap_release(vmspace_pmap(vm)); 346 vm->vm_map.pmap = NULL; 347 uma_zfree(vmspace_zone, vm); 348 } 349 350 void 351 vmspace_free(struct vmspace *vm) 352 { 353 354 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 355 "vmspace_free() called"); 356 357 if (vm->vm_refcnt == 0) 358 panic("vmspace_free: attempt to free already freed vmspace"); 359 360 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 361 vmspace_dofree(vm); 362 } 363 364 void 365 vmspace_exitfree(struct proc *p) 366 { 367 struct vmspace *vm; 368 369 PROC_VMSPACE_LOCK(p); 370 vm = p->p_vmspace; 371 p->p_vmspace = NULL; 372 PROC_VMSPACE_UNLOCK(p); 373 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 374 vmspace_free(vm); 375 } 376 377 void 378 vmspace_exit(struct thread *td) 379 { 380 int refcnt; 381 struct vmspace *vm; 382 struct proc *p; 383 384 /* 385 * Release user portion of address space. 386 * This releases references to vnodes, 387 * which could cause I/O if the file has been unlinked. 388 * Need to do this early enough that we can still sleep. 389 * 390 * The last exiting process to reach this point releases as 391 * much of the environment as it can. vmspace_dofree() is the 392 * slower fallback in case another process had a temporary 393 * reference to the vmspace. 394 */ 395 396 p = td->td_proc; 397 vm = p->p_vmspace; 398 atomic_add_int(&vmspace0.vm_refcnt, 1); 399 do { 400 refcnt = vm->vm_refcnt; 401 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 402 /* Switch now since other proc might free vmspace */ 403 PROC_VMSPACE_LOCK(p); 404 p->p_vmspace = &vmspace0; 405 PROC_VMSPACE_UNLOCK(p); 406 pmap_activate(td); 407 } 408 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 409 if (refcnt == 1) { 410 if (p->p_vmspace != vm) { 411 /* vmspace not yet freed, switch back */ 412 PROC_VMSPACE_LOCK(p); 413 p->p_vmspace = vm; 414 PROC_VMSPACE_UNLOCK(p); 415 pmap_activate(td); 416 } 417 pmap_remove_pages(vmspace_pmap(vm)); 418 /* Switch now since this proc will free vmspace */ 419 PROC_VMSPACE_LOCK(p); 420 p->p_vmspace = &vmspace0; 421 PROC_VMSPACE_UNLOCK(p); 422 pmap_activate(td); 423 vmspace_dofree(vm); 424 } 425 #ifdef RACCT 426 if (racct_enable) 427 vmspace_container_reset(p); 428 #endif 429 } 430 431 /* Acquire reference to vmspace owned by another process. */ 432 433 struct vmspace * 434 vmspace_acquire_ref(struct proc *p) 435 { 436 struct vmspace *vm; 437 int refcnt; 438 439 PROC_VMSPACE_LOCK(p); 440 vm = p->p_vmspace; 441 if (vm == NULL) { 442 PROC_VMSPACE_UNLOCK(p); 443 return (NULL); 444 } 445 do { 446 refcnt = vm->vm_refcnt; 447 if (refcnt <= 0) { /* Avoid 0->1 transition */ 448 PROC_VMSPACE_UNLOCK(p); 449 return (NULL); 450 } 451 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 452 if (vm != p->p_vmspace) { 453 PROC_VMSPACE_UNLOCK(p); 454 vmspace_free(vm); 455 return (NULL); 456 } 457 PROC_VMSPACE_UNLOCK(p); 458 return (vm); 459 } 460 461 /* 462 * Switch between vmspaces in an AIO kernel process. 463 * 464 * The AIO kernel processes switch to and from a user process's 465 * vmspace while performing an I/O operation on behalf of a user 466 * process. The new vmspace is either the vmspace of a user process 467 * obtained from an active AIO request or the initial vmspace of the 468 * AIO kernel process (when it is idling). Because user processes 469 * will block to drain any active AIO requests before proceeding in 470 * exit() or execve(), the vmspace reference count for these vmspaces 471 * can never be 0. This allows for a much simpler implementation than 472 * the loop in vmspace_acquire_ref() above. Similarly, AIO kernel 473 * processes hold an extra reference on their initial vmspace for the 474 * life of the process so that this guarantee is true for any vmspace 475 * passed as 'newvm'. 476 */ 477 void 478 vmspace_switch_aio(struct vmspace *newvm) 479 { 480 struct vmspace *oldvm; 481 482 /* XXX: Need some way to assert that this is an aio daemon. */ 483 484 KASSERT(newvm->vm_refcnt > 0, 485 ("vmspace_switch_aio: newvm unreferenced")); 486 487 oldvm = curproc->p_vmspace; 488 if (oldvm == newvm) 489 return; 490 491 /* 492 * Point to the new address space and refer to it. 493 */ 494 curproc->p_vmspace = newvm; 495 atomic_add_int(&newvm->vm_refcnt, 1); 496 497 /* Activate the new mapping. */ 498 pmap_activate(curthread); 499 500 /* Remove the daemon's reference to the old address space. */ 501 KASSERT(oldvm->vm_refcnt > 1, 502 ("vmspace_switch_aio: oldvm dropping last reference")); 503 vmspace_free(oldvm); 504 } 505 506 void 507 _vm_map_lock(vm_map_t map, const char *file, int line) 508 { 509 510 if (map->system_map) 511 mtx_lock_flags_(&map->system_mtx, 0, file, line); 512 else 513 sx_xlock_(&map->lock, file, line); 514 map->timestamp++; 515 } 516 517 static void 518 vm_map_process_deferred(void) 519 { 520 struct thread *td; 521 vm_map_entry_t entry, next; 522 vm_object_t object; 523 524 td = curthread; 525 entry = td->td_map_def_user; 526 td->td_map_def_user = NULL; 527 while (entry != NULL) { 528 next = entry->next; 529 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 530 /* 531 * Decrement the object's writemappings and 532 * possibly the vnode's v_writecount. 533 */ 534 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 535 ("Submap with writecount")); 536 object = entry->object.vm_object; 537 KASSERT(object != NULL, ("No object for writecount")); 538 vnode_pager_release_writecount(object, entry->start, 539 entry->end); 540 } 541 vm_map_entry_deallocate(entry, FALSE); 542 entry = next; 543 } 544 } 545 546 void 547 _vm_map_unlock(vm_map_t map, const char *file, int line) 548 { 549 550 if (map->system_map) 551 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 552 else { 553 sx_xunlock_(&map->lock, file, line); 554 vm_map_process_deferred(); 555 } 556 } 557 558 void 559 _vm_map_lock_read(vm_map_t map, const char *file, int line) 560 { 561 562 if (map->system_map) 563 mtx_lock_flags_(&map->system_mtx, 0, file, line); 564 else 565 sx_slock_(&map->lock, file, line); 566 } 567 568 void 569 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 570 { 571 572 if (map->system_map) 573 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 574 else { 575 sx_sunlock_(&map->lock, file, line); 576 vm_map_process_deferred(); 577 } 578 } 579 580 int 581 _vm_map_trylock(vm_map_t map, const char *file, int line) 582 { 583 int error; 584 585 error = map->system_map ? 586 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 587 !sx_try_xlock_(&map->lock, file, line); 588 if (error == 0) 589 map->timestamp++; 590 return (error == 0); 591 } 592 593 int 594 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 595 { 596 int error; 597 598 error = map->system_map ? 599 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 600 !sx_try_slock_(&map->lock, file, line); 601 return (error == 0); 602 } 603 604 /* 605 * _vm_map_lock_upgrade: [ internal use only ] 606 * 607 * Tries to upgrade a read (shared) lock on the specified map to a write 608 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 609 * non-zero value if the upgrade fails. If the upgrade fails, the map is 610 * returned without a read or write lock held. 611 * 612 * Requires that the map be read locked. 613 */ 614 int 615 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 616 { 617 unsigned int last_timestamp; 618 619 if (map->system_map) { 620 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 621 } else { 622 if (!sx_try_upgrade_(&map->lock, file, line)) { 623 last_timestamp = map->timestamp; 624 sx_sunlock_(&map->lock, file, line); 625 vm_map_process_deferred(); 626 /* 627 * If the map's timestamp does not change while the 628 * map is unlocked, then the upgrade succeeds. 629 */ 630 sx_xlock_(&map->lock, file, line); 631 if (last_timestamp != map->timestamp) { 632 sx_xunlock_(&map->lock, file, line); 633 return (1); 634 } 635 } 636 } 637 map->timestamp++; 638 return (0); 639 } 640 641 void 642 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 643 { 644 645 if (map->system_map) { 646 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 647 } else 648 sx_downgrade_(&map->lock, file, line); 649 } 650 651 /* 652 * vm_map_locked: 653 * 654 * Returns a non-zero value if the caller holds a write (exclusive) lock 655 * on the specified map and the value "0" otherwise. 656 */ 657 int 658 vm_map_locked(vm_map_t map) 659 { 660 661 if (map->system_map) 662 return (mtx_owned(&map->system_mtx)); 663 else 664 return (sx_xlocked(&map->lock)); 665 } 666 667 #ifdef INVARIANTS 668 static void 669 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 670 { 671 672 if (map->system_map) 673 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 674 else 675 sx_assert_(&map->lock, SA_XLOCKED, file, line); 676 } 677 678 #define VM_MAP_ASSERT_LOCKED(map) \ 679 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 680 #else 681 #define VM_MAP_ASSERT_LOCKED(map) 682 #endif 683 684 /* 685 * _vm_map_unlock_and_wait: 686 * 687 * Atomically releases the lock on the specified map and puts the calling 688 * thread to sleep. The calling thread will remain asleep until either 689 * vm_map_wakeup() is performed on the map or the specified timeout is 690 * exceeded. 691 * 692 * WARNING! This function does not perform deferred deallocations of 693 * objects and map entries. Therefore, the calling thread is expected to 694 * reacquire the map lock after reawakening and later perform an ordinary 695 * unlock operation, such as vm_map_unlock(), before completing its 696 * operation on the map. 697 */ 698 int 699 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 700 { 701 702 mtx_lock(&map_sleep_mtx); 703 if (map->system_map) 704 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 705 else 706 sx_xunlock_(&map->lock, file, line); 707 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 708 timo)); 709 } 710 711 /* 712 * vm_map_wakeup: 713 * 714 * Awaken any threads that have slept on the map using 715 * vm_map_unlock_and_wait(). 716 */ 717 void 718 vm_map_wakeup(vm_map_t map) 719 { 720 721 /* 722 * Acquire and release map_sleep_mtx to prevent a wakeup() 723 * from being performed (and lost) between the map unlock 724 * and the msleep() in _vm_map_unlock_and_wait(). 725 */ 726 mtx_lock(&map_sleep_mtx); 727 mtx_unlock(&map_sleep_mtx); 728 wakeup(&map->root); 729 } 730 731 void 732 vm_map_busy(vm_map_t map) 733 { 734 735 VM_MAP_ASSERT_LOCKED(map); 736 map->busy++; 737 } 738 739 void 740 vm_map_unbusy(vm_map_t map) 741 { 742 743 VM_MAP_ASSERT_LOCKED(map); 744 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 745 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 746 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 747 wakeup(&map->busy); 748 } 749 } 750 751 void 752 vm_map_wait_busy(vm_map_t map) 753 { 754 755 VM_MAP_ASSERT_LOCKED(map); 756 while (map->busy) { 757 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 758 if (map->system_map) 759 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 760 else 761 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 762 } 763 map->timestamp++; 764 } 765 766 long 767 vmspace_resident_count(struct vmspace *vmspace) 768 { 769 return pmap_resident_count(vmspace_pmap(vmspace)); 770 } 771 772 /* 773 * vm_map_create: 774 * 775 * Creates and returns a new empty VM map with 776 * the given physical map structure, and having 777 * the given lower and upper address bounds. 778 */ 779 vm_map_t 780 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 781 { 782 vm_map_t result; 783 784 result = uma_zalloc(mapzone, M_WAITOK); 785 CTR1(KTR_VM, "vm_map_create: %p", result); 786 _vm_map_init(result, pmap, min, max); 787 return (result); 788 } 789 790 /* 791 * Initialize an existing vm_map structure 792 * such as that in the vmspace structure. 793 */ 794 static void 795 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 796 { 797 798 map->header.next = map->header.prev = &map->header; 799 map->header.eflags = MAP_ENTRY_HEADER; 800 map->needs_wakeup = FALSE; 801 map->system_map = 0; 802 map->pmap = pmap; 803 map->header.end = min; 804 map->header.start = max; 805 map->flags = 0; 806 map->root = NULL; 807 map->timestamp = 0; 808 map->busy = 0; 809 } 810 811 void 812 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 813 { 814 815 _vm_map_init(map, pmap, min, max); 816 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 817 sx_init(&map->lock, "user map"); 818 } 819 820 /* 821 * vm_map_entry_dispose: [ internal use only ] 822 * 823 * Inverse of vm_map_entry_create. 824 */ 825 static void 826 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 827 { 828 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 829 } 830 831 /* 832 * vm_map_entry_create: [ internal use only ] 833 * 834 * Allocates a VM map entry for insertion. 835 * No entry fields are filled in. 836 */ 837 static vm_map_entry_t 838 vm_map_entry_create(vm_map_t map) 839 { 840 vm_map_entry_t new_entry; 841 842 if (map->system_map) 843 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 844 else 845 new_entry = uma_zalloc(mapentzone, M_WAITOK); 846 if (new_entry == NULL) 847 panic("vm_map_entry_create: kernel resources exhausted"); 848 return (new_entry); 849 } 850 851 /* 852 * vm_map_entry_set_behavior: 853 * 854 * Set the expected access behavior, either normal, random, or 855 * sequential. 856 */ 857 static inline void 858 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 859 { 860 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 861 (behavior & MAP_ENTRY_BEHAV_MASK); 862 } 863 864 /* 865 * vm_map_entry_set_max_free: 866 * 867 * Set the max_free field in a vm_map_entry. 868 */ 869 static inline void 870 vm_map_entry_set_max_free(vm_map_entry_t entry) 871 { 872 873 entry->max_free = entry->adj_free; 874 if (entry->left != NULL && entry->left->max_free > entry->max_free) 875 entry->max_free = entry->left->max_free; 876 if (entry->right != NULL && entry->right->max_free > entry->max_free) 877 entry->max_free = entry->right->max_free; 878 } 879 880 /* 881 * vm_map_entry_splay: 882 * 883 * The Sleator and Tarjan top-down splay algorithm with the 884 * following variation. Max_free must be computed bottom-up, so 885 * on the downward pass, maintain the left and right spines in 886 * reverse order. Then, make a second pass up each side to fix 887 * the pointers and compute max_free. The time bound is O(log n) 888 * amortized. 889 * 890 * The new root is the vm_map_entry containing "addr", or else an 891 * adjacent entry (lower or higher) if addr is not in the tree. 892 * 893 * The map must be locked, and leaves it so. 894 * 895 * Returns: the new root. 896 */ 897 static vm_map_entry_t 898 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 899 { 900 vm_map_entry_t llist, rlist; 901 vm_map_entry_t ltree, rtree; 902 vm_map_entry_t y; 903 904 /* Special case of empty tree. */ 905 if (root == NULL) 906 return (root); 907 908 /* 909 * Pass One: Splay down the tree until we find addr or a NULL 910 * pointer where addr would go. llist and rlist are the two 911 * sides in reverse order (bottom-up), with llist linked by 912 * the right pointer and rlist linked by the left pointer in 913 * the vm_map_entry. Wait until Pass Two to set max_free on 914 * the two spines. 915 */ 916 llist = NULL; 917 rlist = NULL; 918 for (;;) { 919 /* root is never NULL in here. */ 920 if (addr < root->start) { 921 y = root->left; 922 if (y == NULL) 923 break; 924 if (addr < y->start && y->left != NULL) { 925 /* Rotate right and put y on rlist. */ 926 root->left = y->right; 927 y->right = root; 928 vm_map_entry_set_max_free(root); 929 root = y->left; 930 y->left = rlist; 931 rlist = y; 932 } else { 933 /* Put root on rlist. */ 934 root->left = rlist; 935 rlist = root; 936 root = y; 937 } 938 } else if (addr >= root->end) { 939 y = root->right; 940 if (y == NULL) 941 break; 942 if (addr >= y->end && y->right != NULL) { 943 /* Rotate left and put y on llist. */ 944 root->right = y->left; 945 y->left = root; 946 vm_map_entry_set_max_free(root); 947 root = y->right; 948 y->right = llist; 949 llist = y; 950 } else { 951 /* Put root on llist. */ 952 root->right = llist; 953 llist = root; 954 root = y; 955 } 956 } else 957 break; 958 } 959 960 /* 961 * Pass Two: Walk back up the two spines, flip the pointers 962 * and set max_free. The subtrees of the root go at the 963 * bottom of llist and rlist. 964 */ 965 ltree = root->left; 966 while (llist != NULL) { 967 y = llist->right; 968 llist->right = ltree; 969 vm_map_entry_set_max_free(llist); 970 ltree = llist; 971 llist = y; 972 } 973 rtree = root->right; 974 while (rlist != NULL) { 975 y = rlist->left; 976 rlist->left = rtree; 977 vm_map_entry_set_max_free(rlist); 978 rtree = rlist; 979 rlist = y; 980 } 981 982 /* 983 * Final assembly: add ltree and rtree as subtrees of root. 984 */ 985 root->left = ltree; 986 root->right = rtree; 987 vm_map_entry_set_max_free(root); 988 989 return (root); 990 } 991 992 /* 993 * vm_map_entry_{un,}link: 994 * 995 * Insert/remove entries from maps. 996 */ 997 static void 998 vm_map_entry_link(vm_map_t map, 999 vm_map_entry_t after_where, 1000 vm_map_entry_t entry) 1001 { 1002 1003 CTR4(KTR_VM, 1004 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 1005 map->nentries, entry, after_where); 1006 VM_MAP_ASSERT_LOCKED(map); 1007 KASSERT(after_where->end <= entry->start, 1008 ("vm_map_entry_link: prev end %jx new start %jx overlap", 1009 (uintmax_t)after_where->end, (uintmax_t)entry->start)); 1010 KASSERT(entry->end <= after_where->next->start, 1011 ("vm_map_entry_link: new end %jx next start %jx overlap", 1012 (uintmax_t)entry->end, (uintmax_t)after_where->next->start)); 1013 1014 map->nentries++; 1015 entry->prev = after_where; 1016 entry->next = after_where->next; 1017 entry->next->prev = entry; 1018 after_where->next = entry; 1019 1020 if (after_where != &map->header) { 1021 if (after_where != map->root) 1022 vm_map_entry_splay(after_where->start, map->root); 1023 entry->right = after_where->right; 1024 entry->left = after_where; 1025 after_where->right = NULL; 1026 after_where->adj_free = entry->start - after_where->end; 1027 vm_map_entry_set_max_free(after_where); 1028 } else { 1029 entry->right = map->root; 1030 entry->left = NULL; 1031 } 1032 entry->adj_free = entry->next->start - entry->end; 1033 vm_map_entry_set_max_free(entry); 1034 map->root = entry; 1035 } 1036 1037 static void 1038 vm_map_entry_unlink(vm_map_t map, 1039 vm_map_entry_t entry) 1040 { 1041 vm_map_entry_t next, prev, root; 1042 1043 VM_MAP_ASSERT_LOCKED(map); 1044 if (entry != map->root) 1045 vm_map_entry_splay(entry->start, map->root); 1046 if (entry->left == NULL) 1047 root = entry->right; 1048 else { 1049 root = vm_map_entry_splay(entry->start, entry->left); 1050 root->right = entry->right; 1051 root->adj_free = entry->next->start - root->end; 1052 vm_map_entry_set_max_free(root); 1053 } 1054 map->root = root; 1055 1056 prev = entry->prev; 1057 next = entry->next; 1058 next->prev = prev; 1059 prev->next = next; 1060 map->nentries--; 1061 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1062 map->nentries, entry); 1063 } 1064 1065 /* 1066 * vm_map_entry_resize_free: 1067 * 1068 * Recompute the amount of free space following a vm_map_entry 1069 * and propagate that value up the tree. Call this function after 1070 * resizing a map entry in-place, that is, without a call to 1071 * vm_map_entry_link() or _unlink(). 1072 * 1073 * The map must be locked, and leaves it so. 1074 */ 1075 static void 1076 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1077 { 1078 1079 /* 1080 * Using splay trees without parent pointers, propagating 1081 * max_free up the tree is done by moving the entry to the 1082 * root and making the change there. 1083 */ 1084 if (entry != map->root) 1085 map->root = vm_map_entry_splay(entry->start, map->root); 1086 1087 entry->adj_free = entry->next->start - entry->end; 1088 vm_map_entry_set_max_free(entry); 1089 } 1090 1091 /* 1092 * vm_map_lookup_entry: [ internal use only ] 1093 * 1094 * Finds the map entry containing (or 1095 * immediately preceding) the specified address 1096 * in the given map; the entry is returned 1097 * in the "entry" parameter. The boolean 1098 * result indicates whether the address is 1099 * actually contained in the map. 1100 */ 1101 boolean_t 1102 vm_map_lookup_entry( 1103 vm_map_t map, 1104 vm_offset_t address, 1105 vm_map_entry_t *entry) /* OUT */ 1106 { 1107 vm_map_entry_t cur; 1108 boolean_t locked; 1109 1110 /* 1111 * If the map is empty, then the map entry immediately preceding 1112 * "address" is the map's header. 1113 */ 1114 cur = map->root; 1115 if (cur == NULL) 1116 *entry = &map->header; 1117 else if (address >= cur->start && cur->end > address) { 1118 *entry = cur; 1119 return (TRUE); 1120 } else if ((locked = vm_map_locked(map)) || 1121 sx_try_upgrade(&map->lock)) { 1122 /* 1123 * Splay requires a write lock on the map. However, it only 1124 * restructures the binary search tree; it does not otherwise 1125 * change the map. Thus, the map's timestamp need not change 1126 * on a temporary upgrade. 1127 */ 1128 map->root = cur = vm_map_entry_splay(address, cur); 1129 if (!locked) 1130 sx_downgrade(&map->lock); 1131 1132 /* 1133 * If "address" is contained within a map entry, the new root 1134 * is that map entry. Otherwise, the new root is a map entry 1135 * immediately before or after "address". 1136 */ 1137 if (address >= cur->start) { 1138 *entry = cur; 1139 if (cur->end > address) 1140 return (TRUE); 1141 } else 1142 *entry = cur->prev; 1143 } else 1144 /* 1145 * Since the map is only locked for read access, perform a 1146 * standard binary search tree lookup for "address". 1147 */ 1148 for (;;) { 1149 if (address < cur->start) { 1150 if (cur->left == NULL) { 1151 *entry = cur->prev; 1152 break; 1153 } 1154 cur = cur->left; 1155 } else if (cur->end > address) { 1156 *entry = cur; 1157 return (TRUE); 1158 } else { 1159 if (cur->right == NULL) { 1160 *entry = cur; 1161 break; 1162 } 1163 cur = cur->right; 1164 } 1165 } 1166 return (FALSE); 1167 } 1168 1169 /* 1170 * vm_map_insert: 1171 * 1172 * Inserts the given whole VM object into the target 1173 * map at the specified address range. The object's 1174 * size should match that of the address range. 1175 * 1176 * Requires that the map be locked, and leaves it so. 1177 * 1178 * If object is non-NULL, ref count must be bumped by caller 1179 * prior to making call to account for the new entry. 1180 */ 1181 int 1182 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1183 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1184 { 1185 vm_map_entry_t new_entry, prev_entry, temp_entry; 1186 struct ucred *cred; 1187 vm_eflags_t protoeflags; 1188 vm_inherit_t inheritance; 1189 1190 VM_MAP_ASSERT_LOCKED(map); 1191 KASSERT(object != kernel_object || 1192 (cow & MAP_COPY_ON_WRITE) == 0, 1193 ("vm_map_insert: kernel object and COW")); 1194 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1195 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1196 KASSERT((prot & ~max) == 0, 1197 ("prot %#x is not subset of max_prot %#x", prot, max)); 1198 1199 /* 1200 * Check that the start and end points are not bogus. 1201 */ 1202 if (start < vm_map_min(map) || end > vm_map_max(map) || 1203 start >= end) 1204 return (KERN_INVALID_ADDRESS); 1205 1206 /* 1207 * Find the entry prior to the proposed starting address; if it's part 1208 * of an existing entry, this range is bogus. 1209 */ 1210 if (vm_map_lookup_entry(map, start, &temp_entry)) 1211 return (KERN_NO_SPACE); 1212 1213 prev_entry = temp_entry; 1214 1215 /* 1216 * Assert that the next entry doesn't overlap the end point. 1217 */ 1218 if (prev_entry->next->start < end) 1219 return (KERN_NO_SPACE); 1220 1221 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1222 max != VM_PROT_NONE)) 1223 return (KERN_INVALID_ARGUMENT); 1224 1225 protoeflags = 0; 1226 if (cow & MAP_COPY_ON_WRITE) 1227 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1228 if (cow & MAP_NOFAULT) 1229 protoeflags |= MAP_ENTRY_NOFAULT; 1230 if (cow & MAP_DISABLE_SYNCER) 1231 protoeflags |= MAP_ENTRY_NOSYNC; 1232 if (cow & MAP_DISABLE_COREDUMP) 1233 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1234 if (cow & MAP_STACK_GROWS_DOWN) 1235 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1236 if (cow & MAP_STACK_GROWS_UP) 1237 protoeflags |= MAP_ENTRY_GROWS_UP; 1238 if (cow & MAP_VN_WRITECOUNT) 1239 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1240 if ((cow & MAP_CREATE_GUARD) != 0) 1241 protoeflags |= MAP_ENTRY_GUARD; 1242 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1243 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1244 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1245 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1246 if (cow & MAP_INHERIT_SHARE) 1247 inheritance = VM_INHERIT_SHARE; 1248 else 1249 inheritance = VM_INHERIT_DEFAULT; 1250 1251 cred = NULL; 1252 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1253 goto charged; 1254 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1255 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1256 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1257 return (KERN_RESOURCE_SHORTAGE); 1258 KASSERT(object == NULL || 1259 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1260 object->cred == NULL, 1261 ("overcommit: vm_map_insert o %p", object)); 1262 cred = curthread->td_ucred; 1263 } 1264 1265 charged: 1266 /* Expand the kernel pmap, if necessary. */ 1267 if (map == kernel_map && end > kernel_vm_end) 1268 pmap_growkernel(end); 1269 if (object != NULL) { 1270 /* 1271 * OBJ_ONEMAPPING must be cleared unless this mapping 1272 * is trivially proven to be the only mapping for any 1273 * of the object's pages. (Object granularity 1274 * reference counting is insufficient to recognize 1275 * aliases with precision.) 1276 */ 1277 VM_OBJECT_WLOCK(object); 1278 if (object->ref_count > 1 || object->shadow_count != 0) 1279 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1280 VM_OBJECT_WUNLOCK(object); 1281 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1282 protoeflags && 1283 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 && 1284 prev_entry->end == start && (prev_entry->cred == cred || 1285 (prev_entry->object.vm_object != NULL && 1286 prev_entry->object.vm_object->cred == cred)) && 1287 vm_object_coalesce(prev_entry->object.vm_object, 1288 prev_entry->offset, 1289 (vm_size_t)(prev_entry->end - prev_entry->start), 1290 (vm_size_t)(end - prev_entry->end), cred != NULL && 1291 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1292 /* 1293 * We were able to extend the object. Determine if we 1294 * can extend the previous map entry to include the 1295 * new range as well. 1296 */ 1297 if (prev_entry->inheritance == inheritance && 1298 prev_entry->protection == prot && 1299 prev_entry->max_protection == max && 1300 prev_entry->wired_count == 0) { 1301 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1302 0, ("prev_entry %p has incoherent wiring", 1303 prev_entry)); 1304 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1305 map->size += end - prev_entry->end; 1306 prev_entry->end = end; 1307 vm_map_entry_resize_free(map, prev_entry); 1308 vm_map_simplify_entry(map, prev_entry); 1309 return (KERN_SUCCESS); 1310 } 1311 1312 /* 1313 * If we can extend the object but cannot extend the 1314 * map entry, we have to create a new map entry. We 1315 * must bump the ref count on the extended object to 1316 * account for it. object may be NULL. 1317 */ 1318 object = prev_entry->object.vm_object; 1319 offset = prev_entry->offset + 1320 (prev_entry->end - prev_entry->start); 1321 vm_object_reference(object); 1322 if (cred != NULL && object != NULL && object->cred != NULL && 1323 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1324 /* Object already accounts for this uid. */ 1325 cred = NULL; 1326 } 1327 } 1328 if (cred != NULL) 1329 crhold(cred); 1330 1331 /* 1332 * Create a new entry 1333 */ 1334 new_entry = vm_map_entry_create(map); 1335 new_entry->start = start; 1336 new_entry->end = end; 1337 new_entry->cred = NULL; 1338 1339 new_entry->eflags = protoeflags; 1340 new_entry->object.vm_object = object; 1341 new_entry->offset = offset; 1342 1343 new_entry->inheritance = inheritance; 1344 new_entry->protection = prot; 1345 new_entry->max_protection = max; 1346 new_entry->wired_count = 0; 1347 new_entry->wiring_thread = NULL; 1348 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1349 new_entry->next_read = start; 1350 1351 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1352 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1353 new_entry->cred = cred; 1354 1355 /* 1356 * Insert the new entry into the list 1357 */ 1358 vm_map_entry_link(map, prev_entry, new_entry); 1359 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1360 map->size += new_entry->end - new_entry->start; 1361 1362 /* 1363 * Try to coalesce the new entry with both the previous and next 1364 * entries in the list. Previously, we only attempted to coalesce 1365 * with the previous entry when object is NULL. Here, we handle the 1366 * other cases, which are less common. 1367 */ 1368 vm_map_simplify_entry(map, new_entry); 1369 1370 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1371 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1372 end - start, cow & MAP_PREFAULT_PARTIAL); 1373 } 1374 1375 return (KERN_SUCCESS); 1376 } 1377 1378 /* 1379 * vm_map_findspace: 1380 * 1381 * Find the first fit (lowest VM address) for "length" free bytes 1382 * beginning at address >= start in the given map. 1383 * 1384 * In a vm_map_entry, "adj_free" is the amount of free space 1385 * adjacent (higher address) to this entry, and "max_free" is the 1386 * maximum amount of contiguous free space in its subtree. This 1387 * allows finding a free region in one path down the tree, so 1388 * O(log n) amortized with splay trees. 1389 * 1390 * The map must be locked, and leaves it so. 1391 * 1392 * Returns: 0 on success, and starting address in *addr, 1393 * 1 if insufficient space. 1394 */ 1395 int 1396 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1397 vm_offset_t *addr) /* OUT */ 1398 { 1399 vm_map_entry_t entry; 1400 vm_offset_t st; 1401 1402 /* 1403 * Request must fit within min/max VM address and must avoid 1404 * address wrap. 1405 */ 1406 start = MAX(start, vm_map_min(map)); 1407 if (start + length > vm_map_max(map) || start + length < start) 1408 return (1); 1409 1410 /* Empty tree means wide open address space. */ 1411 if (map->root == NULL) { 1412 *addr = start; 1413 return (0); 1414 } 1415 1416 /* 1417 * After splay, if start comes before root node, then there 1418 * must be a gap from start to the root. 1419 */ 1420 map->root = vm_map_entry_splay(start, map->root); 1421 if (start + length <= map->root->start) { 1422 *addr = start; 1423 return (0); 1424 } 1425 1426 /* 1427 * Root is the last node that might begin its gap before 1428 * start, and this is the last comparison where address 1429 * wrap might be a problem. 1430 */ 1431 st = (start > map->root->end) ? start : map->root->end; 1432 if (length <= map->root->end + map->root->adj_free - st) { 1433 *addr = st; 1434 return (0); 1435 } 1436 1437 /* With max_free, can immediately tell if no solution. */ 1438 entry = map->root->right; 1439 if (entry == NULL || length > entry->max_free) 1440 return (1); 1441 1442 /* 1443 * Search the right subtree in the order: left subtree, root, 1444 * right subtree (first fit). The previous splay implies that 1445 * all regions in the right subtree have addresses > start. 1446 */ 1447 while (entry != NULL) { 1448 if (entry->left != NULL && entry->left->max_free >= length) 1449 entry = entry->left; 1450 else if (entry->adj_free >= length) { 1451 *addr = entry->end; 1452 return (0); 1453 } else 1454 entry = entry->right; 1455 } 1456 1457 /* Can't get here, so panic if we do. */ 1458 panic("vm_map_findspace: max_free corrupt"); 1459 } 1460 1461 int 1462 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1463 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1464 vm_prot_t max, int cow) 1465 { 1466 vm_offset_t end; 1467 int result; 1468 1469 end = start + length; 1470 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1471 object == NULL, 1472 ("vm_map_fixed: non-NULL backing object for stack")); 1473 vm_map_lock(map); 1474 VM_MAP_RANGE_CHECK(map, start, end); 1475 if ((cow & MAP_CHECK_EXCL) == 0) 1476 vm_map_delete(map, start, end); 1477 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1478 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1479 prot, max, cow); 1480 } else { 1481 result = vm_map_insert(map, object, offset, start, end, 1482 prot, max, cow); 1483 } 1484 vm_map_unlock(map); 1485 return (result); 1486 } 1487 1488 /* 1489 * Searches for the specified amount of free space in the given map with the 1490 * specified alignment. Performs an address-ordered, first-fit search from 1491 * the given address "*addr", with an optional upper bound "max_addr". If the 1492 * parameter "alignment" is zero, then the alignment is computed from the 1493 * given (object, offset) pair so as to enable the greatest possible use of 1494 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1495 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1496 * 1497 * The map must be locked. Initially, there must be at least "length" bytes 1498 * of free space at the given address. 1499 */ 1500 static int 1501 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1502 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1503 vm_offset_t alignment) 1504 { 1505 vm_offset_t aligned_addr, free_addr; 1506 1507 VM_MAP_ASSERT_LOCKED(map); 1508 free_addr = *addr; 1509 KASSERT(!vm_map_findspace(map, free_addr, length, addr) && 1510 free_addr == *addr, ("caller provided insufficient free space")); 1511 for (;;) { 1512 /* 1513 * At the start of every iteration, the free space at address 1514 * "*addr" is at least "length" bytes. 1515 */ 1516 if (alignment == 0) 1517 pmap_align_superpage(object, offset, addr, length); 1518 else if ((*addr & (alignment - 1)) != 0) { 1519 *addr &= ~(alignment - 1); 1520 *addr += alignment; 1521 } 1522 aligned_addr = *addr; 1523 if (aligned_addr == free_addr) { 1524 /* 1525 * Alignment did not change "*addr", so "*addr" must 1526 * still provide sufficient free space. 1527 */ 1528 return (KERN_SUCCESS); 1529 } 1530 1531 /* 1532 * Test for address wrap on "*addr". A wrapped "*addr" could 1533 * be a valid address, in which case vm_map_findspace() cannot 1534 * be relied upon to fail. 1535 */ 1536 if (aligned_addr < free_addr || 1537 vm_map_findspace(map, aligned_addr, length, addr) || 1538 (max_addr != 0 && *addr + length > max_addr)) 1539 return (KERN_NO_SPACE); 1540 free_addr = *addr; 1541 if (free_addr == aligned_addr) { 1542 /* 1543 * If a successful call to vm_map_findspace() did not 1544 * change "*addr", then "*addr" must still be aligned 1545 * and provide sufficient free space. 1546 */ 1547 return (KERN_SUCCESS); 1548 } 1549 } 1550 } 1551 1552 /* 1553 * vm_map_find finds an unallocated region in the target address 1554 * map with the given length. The search is defined to be 1555 * first-fit from the specified address; the region found is 1556 * returned in the same parameter. 1557 * 1558 * If object is non-NULL, ref count must be bumped by caller 1559 * prior to making call to account for the new entry. 1560 */ 1561 int 1562 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1563 vm_offset_t *addr, /* IN/OUT */ 1564 vm_size_t length, vm_offset_t max_addr, int find_space, 1565 vm_prot_t prot, vm_prot_t max, int cow) 1566 { 1567 vm_offset_t alignment, min_addr; 1568 int rv; 1569 1570 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1571 object == NULL, 1572 ("vm_map_find: non-NULL backing object for stack")); 1573 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1574 (object->flags & OBJ_COLORED) == 0)) 1575 find_space = VMFS_ANY_SPACE; 1576 if (find_space >> 8 != 0) { 1577 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1578 alignment = (vm_offset_t)1 << (find_space >> 8); 1579 } else 1580 alignment = 0; 1581 vm_map_lock(map); 1582 if (find_space != VMFS_NO_SPACE) { 1583 KASSERT(find_space == VMFS_ANY_SPACE || 1584 find_space == VMFS_OPTIMAL_SPACE || 1585 find_space == VMFS_SUPER_SPACE || 1586 alignment != 0, ("unexpected VMFS flag")); 1587 min_addr = *addr; 1588 again: 1589 if (vm_map_findspace(map, min_addr, length, addr) || 1590 (max_addr != 0 && *addr + length > max_addr)) { 1591 rv = KERN_NO_SPACE; 1592 goto done; 1593 } 1594 if (find_space != VMFS_ANY_SPACE && 1595 (rv = vm_map_alignspace(map, object, offset, addr, length, 1596 max_addr, alignment)) != KERN_SUCCESS) { 1597 if (find_space == VMFS_OPTIMAL_SPACE) { 1598 find_space = VMFS_ANY_SPACE; 1599 goto again; 1600 } 1601 goto done; 1602 } 1603 } 1604 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1605 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 1606 max, cow); 1607 } else { 1608 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 1609 prot, max, cow); 1610 } 1611 done: 1612 vm_map_unlock(map); 1613 return (rv); 1614 } 1615 1616 /* 1617 * vm_map_find_min() is a variant of vm_map_find() that takes an 1618 * additional parameter (min_addr) and treats the given address 1619 * (*addr) differently. Specifically, it treats *addr as a hint 1620 * and not as the minimum address where the mapping is created. 1621 * 1622 * This function works in two phases. First, it tries to 1623 * allocate above the hint. If that fails and the hint is 1624 * greater than min_addr, it performs a second pass, replacing 1625 * the hint with min_addr as the minimum address for the 1626 * allocation. 1627 */ 1628 int 1629 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1630 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 1631 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 1632 int cow) 1633 { 1634 vm_offset_t hint; 1635 int rv; 1636 1637 hint = *addr; 1638 for (;;) { 1639 rv = vm_map_find(map, object, offset, addr, length, max_addr, 1640 find_space, prot, max, cow); 1641 if (rv == KERN_SUCCESS || min_addr >= hint) 1642 return (rv); 1643 *addr = hint = min_addr; 1644 } 1645 } 1646 1647 /* 1648 * A map entry with any of the following flags set must not be merged with 1649 * another entry. 1650 */ 1651 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 1652 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP) 1653 1654 static bool 1655 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 1656 { 1657 1658 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 1659 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 1660 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 1661 prev, entry)); 1662 return (prev->end == entry->start && 1663 prev->object.vm_object == entry->object.vm_object && 1664 (prev->object.vm_object == NULL || 1665 prev->offset + (prev->end - prev->start) == entry->offset) && 1666 prev->eflags == entry->eflags && 1667 prev->protection == entry->protection && 1668 prev->max_protection == entry->max_protection && 1669 prev->inheritance == entry->inheritance && 1670 prev->wired_count == entry->wired_count && 1671 prev->cred == entry->cred); 1672 } 1673 1674 static void 1675 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 1676 { 1677 1678 /* 1679 * If the backing object is a vnode object, vm_object_deallocate() 1680 * calls vrele(). However, vrele() does not lock the vnode because 1681 * the vnode has additional references. Thus, the map lock can be 1682 * kept without causing a lock-order reversal with the vnode lock. 1683 * 1684 * Since we count the number of virtual page mappings in 1685 * object->un_pager.vnp.writemappings, the writemappings value 1686 * should not be adjusted when the entry is disposed of. 1687 */ 1688 if (entry->object.vm_object != NULL) 1689 vm_object_deallocate(entry->object.vm_object); 1690 if (entry->cred != NULL) 1691 crfree(entry->cred); 1692 vm_map_entry_dispose(map, entry); 1693 } 1694 1695 /* 1696 * vm_map_simplify_entry: 1697 * 1698 * Simplify the given map entry by merging with either neighbor. This 1699 * routine also has the ability to merge with both neighbors. 1700 * 1701 * The map must be locked. 1702 * 1703 * This routine guarantees that the passed entry remains valid (though 1704 * possibly extended). When merging, this routine may delete one or 1705 * both neighbors. 1706 */ 1707 void 1708 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1709 { 1710 vm_map_entry_t next, prev; 1711 1712 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0) 1713 return; 1714 prev = entry->prev; 1715 if (vm_map_mergeable_neighbors(prev, entry)) { 1716 vm_map_entry_unlink(map, prev); 1717 entry->start = prev->start; 1718 entry->offset = prev->offset; 1719 if (entry->prev != &map->header) 1720 vm_map_entry_resize_free(map, entry->prev); 1721 vm_map_merged_neighbor_dispose(map, prev); 1722 } 1723 next = entry->next; 1724 if (vm_map_mergeable_neighbors(entry, next)) { 1725 vm_map_entry_unlink(map, next); 1726 entry->end = next->end; 1727 vm_map_entry_resize_free(map, entry); 1728 vm_map_merged_neighbor_dispose(map, next); 1729 } 1730 } 1731 1732 /* 1733 * vm_map_clip_start: [ internal use only ] 1734 * 1735 * Asserts that the given entry begins at or after 1736 * the specified address; if necessary, 1737 * it splits the entry into two. 1738 */ 1739 #define vm_map_clip_start(map, entry, startaddr) \ 1740 { \ 1741 if (startaddr > entry->start) \ 1742 _vm_map_clip_start(map, entry, startaddr); \ 1743 } 1744 1745 /* 1746 * This routine is called only when it is known that 1747 * the entry must be split. 1748 */ 1749 static void 1750 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1751 { 1752 vm_map_entry_t new_entry; 1753 1754 VM_MAP_ASSERT_LOCKED(map); 1755 KASSERT(entry->end > start && entry->start < start, 1756 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 1757 1758 /* 1759 * Split off the front portion -- note that we must insert the new 1760 * entry BEFORE this one, so that this entry has the specified 1761 * starting address. 1762 */ 1763 vm_map_simplify_entry(map, entry); 1764 1765 /* 1766 * If there is no object backing this entry, we might as well create 1767 * one now. If we defer it, an object can get created after the map 1768 * is clipped, and individual objects will be created for the split-up 1769 * map. This is a bit of a hack, but is also about the best place to 1770 * put this improvement. 1771 */ 1772 if (entry->object.vm_object == NULL && !map->system_map && 1773 (entry->eflags & MAP_ENTRY_GUARD) == 0) { 1774 vm_object_t object; 1775 object = vm_object_allocate(OBJT_DEFAULT, 1776 atop(entry->end - entry->start)); 1777 entry->object.vm_object = object; 1778 entry->offset = 0; 1779 if (entry->cred != NULL) { 1780 object->cred = entry->cred; 1781 object->charge = entry->end - entry->start; 1782 entry->cred = NULL; 1783 } 1784 } else if (entry->object.vm_object != NULL && 1785 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1786 entry->cred != NULL) { 1787 VM_OBJECT_WLOCK(entry->object.vm_object); 1788 KASSERT(entry->object.vm_object->cred == NULL, 1789 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1790 entry->object.vm_object->cred = entry->cred; 1791 entry->object.vm_object->charge = entry->end - entry->start; 1792 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1793 entry->cred = NULL; 1794 } 1795 1796 new_entry = vm_map_entry_create(map); 1797 *new_entry = *entry; 1798 1799 new_entry->end = start; 1800 entry->offset += (start - entry->start); 1801 entry->start = start; 1802 if (new_entry->cred != NULL) 1803 crhold(entry->cred); 1804 1805 vm_map_entry_link(map, entry->prev, new_entry); 1806 1807 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1808 vm_object_reference(new_entry->object.vm_object); 1809 /* 1810 * The object->un_pager.vnp.writemappings for the 1811 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1812 * kept as is here. The virtual pages are 1813 * re-distributed among the clipped entries, so the sum is 1814 * left the same. 1815 */ 1816 } 1817 } 1818 1819 /* 1820 * vm_map_clip_end: [ internal use only ] 1821 * 1822 * Asserts that the given entry ends at or before 1823 * the specified address; if necessary, 1824 * it splits the entry into two. 1825 */ 1826 #define vm_map_clip_end(map, entry, endaddr) \ 1827 { \ 1828 if ((endaddr) < (entry->end)) \ 1829 _vm_map_clip_end((map), (entry), (endaddr)); \ 1830 } 1831 1832 /* 1833 * This routine is called only when it is known that 1834 * the entry must be split. 1835 */ 1836 static void 1837 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1838 { 1839 vm_map_entry_t new_entry; 1840 1841 VM_MAP_ASSERT_LOCKED(map); 1842 KASSERT(entry->start < end && entry->end > end, 1843 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 1844 1845 /* 1846 * If there is no object backing this entry, we might as well create 1847 * one now. If we defer it, an object can get created after the map 1848 * is clipped, and individual objects will be created for the split-up 1849 * map. This is a bit of a hack, but is also about the best place to 1850 * put this improvement. 1851 */ 1852 if (entry->object.vm_object == NULL && !map->system_map && 1853 (entry->eflags & MAP_ENTRY_GUARD) == 0) { 1854 vm_object_t object; 1855 object = vm_object_allocate(OBJT_DEFAULT, 1856 atop(entry->end - entry->start)); 1857 entry->object.vm_object = object; 1858 entry->offset = 0; 1859 if (entry->cred != NULL) { 1860 object->cred = entry->cred; 1861 object->charge = entry->end - entry->start; 1862 entry->cred = NULL; 1863 } 1864 } else if (entry->object.vm_object != NULL && 1865 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1866 entry->cred != NULL) { 1867 VM_OBJECT_WLOCK(entry->object.vm_object); 1868 KASSERT(entry->object.vm_object->cred == NULL, 1869 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1870 entry->object.vm_object->cred = entry->cred; 1871 entry->object.vm_object->charge = entry->end - entry->start; 1872 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1873 entry->cred = NULL; 1874 } 1875 1876 /* 1877 * Create a new entry and insert it AFTER the specified entry 1878 */ 1879 new_entry = vm_map_entry_create(map); 1880 *new_entry = *entry; 1881 1882 new_entry->start = entry->end = end; 1883 new_entry->offset += (end - entry->start); 1884 if (new_entry->cred != NULL) 1885 crhold(entry->cred); 1886 1887 vm_map_entry_link(map, entry, new_entry); 1888 1889 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1890 vm_object_reference(new_entry->object.vm_object); 1891 } 1892 } 1893 1894 /* 1895 * vm_map_submap: [ kernel use only ] 1896 * 1897 * Mark the given range as handled by a subordinate map. 1898 * 1899 * This range must have been created with vm_map_find, 1900 * and no other operations may have been performed on this 1901 * range prior to calling vm_map_submap. 1902 * 1903 * Only a limited number of operations can be performed 1904 * within this rage after calling vm_map_submap: 1905 * vm_fault 1906 * [Don't try vm_map_copy!] 1907 * 1908 * To remove a submapping, one must first remove the 1909 * range from the superior map, and then destroy the 1910 * submap (if desired). [Better yet, don't try it.] 1911 */ 1912 int 1913 vm_map_submap( 1914 vm_map_t map, 1915 vm_offset_t start, 1916 vm_offset_t end, 1917 vm_map_t submap) 1918 { 1919 vm_map_entry_t entry; 1920 int result = KERN_INVALID_ARGUMENT; 1921 1922 vm_map_lock(map); 1923 1924 VM_MAP_RANGE_CHECK(map, start, end); 1925 1926 if (vm_map_lookup_entry(map, start, &entry)) { 1927 vm_map_clip_start(map, entry, start); 1928 } else 1929 entry = entry->next; 1930 1931 vm_map_clip_end(map, entry, end); 1932 1933 if ((entry->start == start) && (entry->end == end) && 1934 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1935 (entry->object.vm_object == NULL)) { 1936 entry->object.sub_map = submap; 1937 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1938 result = KERN_SUCCESS; 1939 } 1940 vm_map_unlock(map); 1941 1942 return (result); 1943 } 1944 1945 /* 1946 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 1947 */ 1948 #define MAX_INIT_PT 96 1949 1950 /* 1951 * vm_map_pmap_enter: 1952 * 1953 * Preload the specified map's pmap with mappings to the specified 1954 * object's memory-resident pages. No further physical pages are 1955 * allocated, and no further virtual pages are retrieved from secondary 1956 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 1957 * limited number of page mappings are created at the low-end of the 1958 * specified address range. (For this purpose, a superpage mapping 1959 * counts as one page mapping.) Otherwise, all resident pages within 1960 * the specified address range are mapped. 1961 */ 1962 static void 1963 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1964 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1965 { 1966 vm_offset_t start; 1967 vm_page_t p, p_start; 1968 vm_pindex_t mask, psize, threshold, tmpidx; 1969 1970 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1971 return; 1972 VM_OBJECT_RLOCK(object); 1973 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1974 VM_OBJECT_RUNLOCK(object); 1975 VM_OBJECT_WLOCK(object); 1976 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1977 pmap_object_init_pt(map->pmap, addr, object, pindex, 1978 size); 1979 VM_OBJECT_WUNLOCK(object); 1980 return; 1981 } 1982 VM_OBJECT_LOCK_DOWNGRADE(object); 1983 } 1984 1985 psize = atop(size); 1986 if (psize + pindex > object->size) { 1987 if (object->size < pindex) { 1988 VM_OBJECT_RUNLOCK(object); 1989 return; 1990 } 1991 psize = object->size - pindex; 1992 } 1993 1994 start = 0; 1995 p_start = NULL; 1996 threshold = MAX_INIT_PT; 1997 1998 p = vm_page_find_least(object, pindex); 1999 /* 2000 * Assert: the variable p is either (1) the page with the 2001 * least pindex greater than or equal to the parameter pindex 2002 * or (2) NULL. 2003 */ 2004 for (; 2005 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2006 p = TAILQ_NEXT(p, listq)) { 2007 /* 2008 * don't allow an madvise to blow away our really 2009 * free pages allocating pv entries. 2010 */ 2011 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2012 vm_page_count_severe()) || 2013 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2014 tmpidx >= threshold)) { 2015 psize = tmpidx; 2016 break; 2017 } 2018 if (p->valid == VM_PAGE_BITS_ALL) { 2019 if (p_start == NULL) { 2020 start = addr + ptoa(tmpidx); 2021 p_start = p; 2022 } 2023 /* Jump ahead if a superpage mapping is possible. */ 2024 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2025 (pagesizes[p->psind] - 1)) == 0) { 2026 mask = atop(pagesizes[p->psind]) - 1; 2027 if (tmpidx + mask < psize && 2028 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2029 p += mask; 2030 threshold += mask; 2031 } 2032 } 2033 } else if (p_start != NULL) { 2034 pmap_enter_object(map->pmap, start, addr + 2035 ptoa(tmpidx), p_start, prot); 2036 p_start = NULL; 2037 } 2038 } 2039 if (p_start != NULL) 2040 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2041 p_start, prot); 2042 VM_OBJECT_RUNLOCK(object); 2043 } 2044 2045 /* 2046 * vm_map_protect: 2047 * 2048 * Sets the protection of the specified address 2049 * region in the target map. If "set_max" is 2050 * specified, the maximum protection is to be set; 2051 * otherwise, only the current protection is affected. 2052 */ 2053 int 2054 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2055 vm_prot_t new_prot, boolean_t set_max) 2056 { 2057 vm_map_entry_t current, entry; 2058 vm_object_t obj; 2059 struct ucred *cred; 2060 vm_prot_t old_prot; 2061 2062 if (start == end) 2063 return (KERN_SUCCESS); 2064 2065 vm_map_lock(map); 2066 2067 /* 2068 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2069 * need to fault pages into the map and will drop the map lock while 2070 * doing so, and the VM object may end up in an inconsistent state if we 2071 * update the protection on the map entry in between faults. 2072 */ 2073 vm_map_wait_busy(map); 2074 2075 VM_MAP_RANGE_CHECK(map, start, end); 2076 2077 if (vm_map_lookup_entry(map, start, &entry)) { 2078 vm_map_clip_start(map, entry, start); 2079 } else { 2080 entry = entry->next; 2081 } 2082 2083 /* 2084 * Make a first pass to check for protection violations. 2085 */ 2086 for (current = entry; current->start < end; current = current->next) { 2087 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2088 continue; 2089 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2090 vm_map_unlock(map); 2091 return (KERN_INVALID_ARGUMENT); 2092 } 2093 if ((new_prot & current->max_protection) != new_prot) { 2094 vm_map_unlock(map); 2095 return (KERN_PROTECTION_FAILURE); 2096 } 2097 } 2098 2099 /* 2100 * Do an accounting pass for private read-only mappings that 2101 * now will do cow due to allowed write (e.g. debugger sets 2102 * breakpoint on text segment) 2103 */ 2104 for (current = entry; current->start < end; current = current->next) { 2105 2106 vm_map_clip_end(map, current, end); 2107 2108 if (set_max || 2109 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 2110 ENTRY_CHARGED(current) || 2111 (current->eflags & MAP_ENTRY_GUARD) != 0) { 2112 continue; 2113 } 2114 2115 cred = curthread->td_ucred; 2116 obj = current->object.vm_object; 2117 2118 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 2119 if (!swap_reserve(current->end - current->start)) { 2120 vm_map_unlock(map); 2121 return (KERN_RESOURCE_SHORTAGE); 2122 } 2123 crhold(cred); 2124 current->cred = cred; 2125 continue; 2126 } 2127 2128 VM_OBJECT_WLOCK(obj); 2129 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2130 VM_OBJECT_WUNLOCK(obj); 2131 continue; 2132 } 2133 2134 /* 2135 * Charge for the whole object allocation now, since 2136 * we cannot distinguish between non-charged and 2137 * charged clipped mapping of the same object later. 2138 */ 2139 KASSERT(obj->charge == 0, 2140 ("vm_map_protect: object %p overcharged (entry %p)", 2141 obj, current)); 2142 if (!swap_reserve(ptoa(obj->size))) { 2143 VM_OBJECT_WUNLOCK(obj); 2144 vm_map_unlock(map); 2145 return (KERN_RESOURCE_SHORTAGE); 2146 } 2147 2148 crhold(cred); 2149 obj->cred = cred; 2150 obj->charge = ptoa(obj->size); 2151 VM_OBJECT_WUNLOCK(obj); 2152 } 2153 2154 /* 2155 * Go back and fix up protections. [Note that clipping is not 2156 * necessary the second time.] 2157 */ 2158 for (current = entry; current->start < end; current = current->next) { 2159 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2160 continue; 2161 2162 old_prot = current->protection; 2163 2164 if (set_max) 2165 current->protection = 2166 (current->max_protection = new_prot) & 2167 old_prot; 2168 else 2169 current->protection = new_prot; 2170 2171 /* 2172 * For user wired map entries, the normal lazy evaluation of 2173 * write access upgrades through soft page faults is 2174 * undesirable. Instead, immediately copy any pages that are 2175 * copy-on-write and enable write access in the physical map. 2176 */ 2177 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2178 (current->protection & VM_PROT_WRITE) != 0 && 2179 (old_prot & VM_PROT_WRITE) == 0) 2180 vm_fault_copy_entry(map, map, current, current, NULL); 2181 2182 /* 2183 * When restricting access, update the physical map. Worry 2184 * about copy-on-write here. 2185 */ 2186 if ((old_prot & ~current->protection) != 0) { 2187 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2188 VM_PROT_ALL) 2189 pmap_protect(map->pmap, current->start, 2190 current->end, 2191 current->protection & MASK(current)); 2192 #undef MASK 2193 } 2194 vm_map_simplify_entry(map, current); 2195 } 2196 vm_map_unlock(map); 2197 return (KERN_SUCCESS); 2198 } 2199 2200 /* 2201 * vm_map_madvise: 2202 * 2203 * This routine traverses a processes map handling the madvise 2204 * system call. Advisories are classified as either those effecting 2205 * the vm_map_entry structure, or those effecting the underlying 2206 * objects. 2207 */ 2208 int 2209 vm_map_madvise( 2210 vm_map_t map, 2211 vm_offset_t start, 2212 vm_offset_t end, 2213 int behav) 2214 { 2215 vm_map_entry_t current, entry; 2216 bool modify_map; 2217 2218 /* 2219 * Some madvise calls directly modify the vm_map_entry, in which case 2220 * we need to use an exclusive lock on the map and we need to perform 2221 * various clipping operations. Otherwise we only need a read-lock 2222 * on the map. 2223 */ 2224 switch(behav) { 2225 case MADV_NORMAL: 2226 case MADV_SEQUENTIAL: 2227 case MADV_RANDOM: 2228 case MADV_NOSYNC: 2229 case MADV_AUTOSYNC: 2230 case MADV_NOCORE: 2231 case MADV_CORE: 2232 if (start == end) 2233 return (0); 2234 modify_map = true; 2235 vm_map_lock(map); 2236 break; 2237 case MADV_WILLNEED: 2238 case MADV_DONTNEED: 2239 case MADV_FREE: 2240 if (start == end) 2241 return (0); 2242 modify_map = false; 2243 vm_map_lock_read(map); 2244 break; 2245 default: 2246 return (EINVAL); 2247 } 2248 2249 /* 2250 * Locate starting entry and clip if necessary. 2251 */ 2252 VM_MAP_RANGE_CHECK(map, start, end); 2253 2254 if (vm_map_lookup_entry(map, start, &entry)) { 2255 if (modify_map) 2256 vm_map_clip_start(map, entry, start); 2257 } else { 2258 entry = entry->next; 2259 } 2260 2261 if (modify_map) { 2262 /* 2263 * madvise behaviors that are implemented in the vm_map_entry. 2264 * 2265 * We clip the vm_map_entry so that behavioral changes are 2266 * limited to the specified address range. 2267 */ 2268 for (current = entry; current->start < end; 2269 current = current->next) { 2270 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2271 continue; 2272 2273 vm_map_clip_end(map, current, end); 2274 2275 switch (behav) { 2276 case MADV_NORMAL: 2277 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2278 break; 2279 case MADV_SEQUENTIAL: 2280 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2281 break; 2282 case MADV_RANDOM: 2283 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2284 break; 2285 case MADV_NOSYNC: 2286 current->eflags |= MAP_ENTRY_NOSYNC; 2287 break; 2288 case MADV_AUTOSYNC: 2289 current->eflags &= ~MAP_ENTRY_NOSYNC; 2290 break; 2291 case MADV_NOCORE: 2292 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2293 break; 2294 case MADV_CORE: 2295 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2296 break; 2297 default: 2298 break; 2299 } 2300 vm_map_simplify_entry(map, current); 2301 } 2302 vm_map_unlock(map); 2303 } else { 2304 vm_pindex_t pstart, pend; 2305 2306 /* 2307 * madvise behaviors that are implemented in the underlying 2308 * vm_object. 2309 * 2310 * Since we don't clip the vm_map_entry, we have to clip 2311 * the vm_object pindex and count. 2312 */ 2313 for (current = entry; current->start < end; 2314 current = current->next) { 2315 vm_offset_t useEnd, useStart; 2316 2317 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2318 continue; 2319 2320 pstart = OFF_TO_IDX(current->offset); 2321 pend = pstart + atop(current->end - current->start); 2322 useStart = current->start; 2323 useEnd = current->end; 2324 2325 if (current->start < start) { 2326 pstart += atop(start - current->start); 2327 useStart = start; 2328 } 2329 if (current->end > end) { 2330 pend -= atop(current->end - end); 2331 useEnd = end; 2332 } 2333 2334 if (pstart >= pend) 2335 continue; 2336 2337 /* 2338 * Perform the pmap_advise() before clearing 2339 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2340 * concurrent pmap operation, such as pmap_remove(), 2341 * could clear a reference in the pmap and set 2342 * PGA_REFERENCED on the page before the pmap_advise() 2343 * had completed. Consequently, the page would appear 2344 * referenced based upon an old reference that 2345 * occurred before this pmap_advise() ran. 2346 */ 2347 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2348 pmap_advise(map->pmap, useStart, useEnd, 2349 behav); 2350 2351 vm_object_madvise(current->object.vm_object, pstart, 2352 pend, behav); 2353 2354 /* 2355 * Pre-populate paging structures in the 2356 * WILLNEED case. For wired entries, the 2357 * paging structures are already populated. 2358 */ 2359 if (behav == MADV_WILLNEED && 2360 current->wired_count == 0) { 2361 vm_map_pmap_enter(map, 2362 useStart, 2363 current->protection, 2364 current->object.vm_object, 2365 pstart, 2366 ptoa(pend - pstart), 2367 MAP_PREFAULT_MADVISE 2368 ); 2369 } 2370 } 2371 vm_map_unlock_read(map); 2372 } 2373 return (0); 2374 } 2375 2376 2377 /* 2378 * vm_map_inherit: 2379 * 2380 * Sets the inheritance of the specified address 2381 * range in the target map. Inheritance 2382 * affects how the map will be shared with 2383 * child maps at the time of vmspace_fork. 2384 */ 2385 int 2386 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2387 vm_inherit_t new_inheritance) 2388 { 2389 vm_map_entry_t entry; 2390 vm_map_entry_t temp_entry; 2391 2392 switch (new_inheritance) { 2393 case VM_INHERIT_NONE: 2394 case VM_INHERIT_COPY: 2395 case VM_INHERIT_SHARE: 2396 case VM_INHERIT_ZERO: 2397 break; 2398 default: 2399 return (KERN_INVALID_ARGUMENT); 2400 } 2401 if (start == end) 2402 return (KERN_SUCCESS); 2403 vm_map_lock(map); 2404 VM_MAP_RANGE_CHECK(map, start, end); 2405 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2406 entry = temp_entry; 2407 vm_map_clip_start(map, entry, start); 2408 } else 2409 entry = temp_entry->next; 2410 while (entry->start < end) { 2411 vm_map_clip_end(map, entry, end); 2412 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 2413 new_inheritance != VM_INHERIT_ZERO) 2414 entry->inheritance = new_inheritance; 2415 vm_map_simplify_entry(map, entry); 2416 entry = entry->next; 2417 } 2418 vm_map_unlock(map); 2419 return (KERN_SUCCESS); 2420 } 2421 2422 /* 2423 * vm_map_unwire: 2424 * 2425 * Implements both kernel and user unwiring. 2426 */ 2427 int 2428 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2429 int flags) 2430 { 2431 vm_map_entry_t entry, first_entry, tmp_entry; 2432 vm_offset_t saved_start; 2433 unsigned int last_timestamp; 2434 int rv; 2435 boolean_t need_wakeup, result, user_unwire; 2436 2437 if (start == end) 2438 return (KERN_SUCCESS); 2439 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2440 vm_map_lock(map); 2441 VM_MAP_RANGE_CHECK(map, start, end); 2442 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2443 if (flags & VM_MAP_WIRE_HOLESOK) 2444 first_entry = first_entry->next; 2445 else { 2446 vm_map_unlock(map); 2447 return (KERN_INVALID_ADDRESS); 2448 } 2449 } 2450 last_timestamp = map->timestamp; 2451 entry = first_entry; 2452 while (entry->start < end) { 2453 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2454 /* 2455 * We have not yet clipped the entry. 2456 */ 2457 saved_start = (start >= entry->start) ? start : 2458 entry->start; 2459 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2460 if (vm_map_unlock_and_wait(map, 0)) { 2461 /* 2462 * Allow interruption of user unwiring? 2463 */ 2464 } 2465 vm_map_lock(map); 2466 if (last_timestamp+1 != map->timestamp) { 2467 /* 2468 * Look again for the entry because the map was 2469 * modified while it was unlocked. 2470 * Specifically, the entry may have been 2471 * clipped, merged, or deleted. 2472 */ 2473 if (!vm_map_lookup_entry(map, saved_start, 2474 &tmp_entry)) { 2475 if (flags & VM_MAP_WIRE_HOLESOK) 2476 tmp_entry = tmp_entry->next; 2477 else { 2478 if (saved_start == start) { 2479 /* 2480 * First_entry has been deleted. 2481 */ 2482 vm_map_unlock(map); 2483 return (KERN_INVALID_ADDRESS); 2484 } 2485 end = saved_start; 2486 rv = KERN_INVALID_ADDRESS; 2487 goto done; 2488 } 2489 } 2490 if (entry == first_entry) 2491 first_entry = tmp_entry; 2492 else 2493 first_entry = NULL; 2494 entry = tmp_entry; 2495 } 2496 last_timestamp = map->timestamp; 2497 continue; 2498 } 2499 vm_map_clip_start(map, entry, start); 2500 vm_map_clip_end(map, entry, end); 2501 /* 2502 * Mark the entry in case the map lock is released. (See 2503 * above.) 2504 */ 2505 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2506 entry->wiring_thread == NULL, 2507 ("owned map entry %p", entry)); 2508 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2509 entry->wiring_thread = curthread; 2510 /* 2511 * Check the map for holes in the specified region. 2512 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2513 */ 2514 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2515 (entry->end < end && entry->next->start > entry->end)) { 2516 end = entry->end; 2517 rv = KERN_INVALID_ADDRESS; 2518 goto done; 2519 } 2520 /* 2521 * If system unwiring, require that the entry is system wired. 2522 */ 2523 if (!user_unwire && 2524 vm_map_entry_system_wired_count(entry) == 0) { 2525 end = entry->end; 2526 rv = KERN_INVALID_ARGUMENT; 2527 goto done; 2528 } 2529 entry = entry->next; 2530 } 2531 rv = KERN_SUCCESS; 2532 done: 2533 need_wakeup = FALSE; 2534 if (first_entry == NULL) { 2535 result = vm_map_lookup_entry(map, start, &first_entry); 2536 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2537 first_entry = first_entry->next; 2538 else 2539 KASSERT(result, ("vm_map_unwire: lookup failed")); 2540 } 2541 for (entry = first_entry; entry->start < end; entry = entry->next) { 2542 /* 2543 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2544 * space in the unwired region could have been mapped 2545 * while the map lock was dropped for draining 2546 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2547 * could be simultaneously wiring this new mapping 2548 * entry. Detect these cases and skip any entries 2549 * marked as in transition by us. 2550 */ 2551 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2552 entry->wiring_thread != curthread) { 2553 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2554 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2555 continue; 2556 } 2557 2558 if (rv == KERN_SUCCESS && (!user_unwire || 2559 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2560 if (user_unwire) 2561 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2562 if (entry->wired_count == 1) 2563 vm_map_entry_unwire(map, entry); 2564 else 2565 entry->wired_count--; 2566 } 2567 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2568 ("vm_map_unwire: in-transition flag missing %p", entry)); 2569 KASSERT(entry->wiring_thread == curthread, 2570 ("vm_map_unwire: alien wire %p", entry)); 2571 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2572 entry->wiring_thread = NULL; 2573 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2574 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2575 need_wakeup = TRUE; 2576 } 2577 vm_map_simplify_entry(map, entry); 2578 } 2579 vm_map_unlock(map); 2580 if (need_wakeup) 2581 vm_map_wakeup(map); 2582 return (rv); 2583 } 2584 2585 /* 2586 * vm_map_wire_entry_failure: 2587 * 2588 * Handle a wiring failure on the given entry. 2589 * 2590 * The map should be locked. 2591 */ 2592 static void 2593 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 2594 vm_offset_t failed_addr) 2595 { 2596 2597 VM_MAP_ASSERT_LOCKED(map); 2598 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 2599 entry->wired_count == 1, 2600 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 2601 KASSERT(failed_addr < entry->end, 2602 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 2603 2604 /* 2605 * If any pages at the start of this entry were successfully wired, 2606 * then unwire them. 2607 */ 2608 if (failed_addr > entry->start) { 2609 pmap_unwire(map->pmap, entry->start, failed_addr); 2610 vm_object_unwire(entry->object.vm_object, entry->offset, 2611 failed_addr - entry->start, PQ_ACTIVE); 2612 } 2613 2614 /* 2615 * Assign an out-of-range value to represent the failure to wire this 2616 * entry. 2617 */ 2618 entry->wired_count = -1; 2619 } 2620 2621 /* 2622 * vm_map_wire: 2623 * 2624 * Implements both kernel and user wiring. 2625 */ 2626 int 2627 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2628 int flags) 2629 { 2630 vm_map_entry_t entry, first_entry, tmp_entry; 2631 vm_offset_t faddr, saved_end, saved_start; 2632 unsigned int last_timestamp; 2633 int rv; 2634 boolean_t need_wakeup, result, user_wire; 2635 vm_prot_t prot; 2636 2637 if (start == end) 2638 return (KERN_SUCCESS); 2639 prot = 0; 2640 if (flags & VM_MAP_WIRE_WRITE) 2641 prot |= VM_PROT_WRITE; 2642 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2643 vm_map_lock(map); 2644 VM_MAP_RANGE_CHECK(map, start, end); 2645 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2646 if (flags & VM_MAP_WIRE_HOLESOK) 2647 first_entry = first_entry->next; 2648 else { 2649 vm_map_unlock(map); 2650 return (KERN_INVALID_ADDRESS); 2651 } 2652 } 2653 last_timestamp = map->timestamp; 2654 entry = first_entry; 2655 while (entry->start < end) { 2656 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2657 /* 2658 * We have not yet clipped the entry. 2659 */ 2660 saved_start = (start >= entry->start) ? start : 2661 entry->start; 2662 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2663 if (vm_map_unlock_and_wait(map, 0)) { 2664 /* 2665 * Allow interruption of user wiring? 2666 */ 2667 } 2668 vm_map_lock(map); 2669 if (last_timestamp + 1 != map->timestamp) { 2670 /* 2671 * Look again for the entry because the map was 2672 * modified while it was unlocked. 2673 * Specifically, the entry may have been 2674 * clipped, merged, or deleted. 2675 */ 2676 if (!vm_map_lookup_entry(map, saved_start, 2677 &tmp_entry)) { 2678 if (flags & VM_MAP_WIRE_HOLESOK) 2679 tmp_entry = tmp_entry->next; 2680 else { 2681 if (saved_start == start) { 2682 /* 2683 * first_entry has been deleted. 2684 */ 2685 vm_map_unlock(map); 2686 return (KERN_INVALID_ADDRESS); 2687 } 2688 end = saved_start; 2689 rv = KERN_INVALID_ADDRESS; 2690 goto done; 2691 } 2692 } 2693 if (entry == first_entry) 2694 first_entry = tmp_entry; 2695 else 2696 first_entry = NULL; 2697 entry = tmp_entry; 2698 } 2699 last_timestamp = map->timestamp; 2700 continue; 2701 } 2702 vm_map_clip_start(map, entry, start); 2703 vm_map_clip_end(map, entry, end); 2704 /* 2705 * Mark the entry in case the map lock is released. (See 2706 * above.) 2707 */ 2708 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2709 entry->wiring_thread == NULL, 2710 ("owned map entry %p", entry)); 2711 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2712 entry->wiring_thread = curthread; 2713 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2714 || (entry->protection & prot) != prot) { 2715 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2716 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2717 end = entry->end; 2718 rv = KERN_INVALID_ADDRESS; 2719 goto done; 2720 } 2721 goto next_entry; 2722 } 2723 if (entry->wired_count == 0) { 2724 entry->wired_count++; 2725 saved_start = entry->start; 2726 saved_end = entry->end; 2727 2728 /* 2729 * Release the map lock, relying on the in-transition 2730 * mark. Mark the map busy for fork. 2731 */ 2732 vm_map_busy(map); 2733 vm_map_unlock(map); 2734 2735 faddr = saved_start; 2736 do { 2737 /* 2738 * Simulate a fault to get the page and enter 2739 * it into the physical map. 2740 */ 2741 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 2742 VM_FAULT_WIRE)) != KERN_SUCCESS) 2743 break; 2744 } while ((faddr += PAGE_SIZE) < saved_end); 2745 vm_map_lock(map); 2746 vm_map_unbusy(map); 2747 if (last_timestamp + 1 != map->timestamp) { 2748 /* 2749 * Look again for the entry because the map was 2750 * modified while it was unlocked. The entry 2751 * may have been clipped, but NOT merged or 2752 * deleted. 2753 */ 2754 result = vm_map_lookup_entry(map, saved_start, 2755 &tmp_entry); 2756 KASSERT(result, ("vm_map_wire: lookup failed")); 2757 if (entry == first_entry) 2758 first_entry = tmp_entry; 2759 else 2760 first_entry = NULL; 2761 entry = tmp_entry; 2762 while (entry->end < saved_end) { 2763 /* 2764 * In case of failure, handle entries 2765 * that were not fully wired here; 2766 * fully wired entries are handled 2767 * later. 2768 */ 2769 if (rv != KERN_SUCCESS && 2770 faddr < entry->end) 2771 vm_map_wire_entry_failure(map, 2772 entry, faddr); 2773 entry = entry->next; 2774 } 2775 } 2776 last_timestamp = map->timestamp; 2777 if (rv != KERN_SUCCESS) { 2778 vm_map_wire_entry_failure(map, entry, faddr); 2779 end = entry->end; 2780 goto done; 2781 } 2782 } else if (!user_wire || 2783 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2784 entry->wired_count++; 2785 } 2786 /* 2787 * Check the map for holes in the specified region. 2788 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2789 */ 2790 next_entry: 2791 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 && 2792 entry->end < end && entry->next->start > entry->end) { 2793 end = entry->end; 2794 rv = KERN_INVALID_ADDRESS; 2795 goto done; 2796 } 2797 entry = entry->next; 2798 } 2799 rv = KERN_SUCCESS; 2800 done: 2801 need_wakeup = FALSE; 2802 if (first_entry == NULL) { 2803 result = vm_map_lookup_entry(map, start, &first_entry); 2804 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2805 first_entry = first_entry->next; 2806 else 2807 KASSERT(result, ("vm_map_wire: lookup failed")); 2808 } 2809 for (entry = first_entry; entry->start < end; entry = entry->next) { 2810 /* 2811 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2812 * space in the unwired region could have been mapped 2813 * while the map lock was dropped for faulting in the 2814 * pages or draining MAP_ENTRY_IN_TRANSITION. 2815 * Moreover, another thread could be simultaneously 2816 * wiring this new mapping entry. Detect these cases 2817 * and skip any entries marked as in transition not by us. 2818 */ 2819 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2820 entry->wiring_thread != curthread) { 2821 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2822 ("vm_map_wire: !HOLESOK and new/changed entry")); 2823 continue; 2824 } 2825 2826 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2827 goto next_entry_done; 2828 2829 if (rv == KERN_SUCCESS) { 2830 if (user_wire) 2831 entry->eflags |= MAP_ENTRY_USER_WIRED; 2832 } else if (entry->wired_count == -1) { 2833 /* 2834 * Wiring failed on this entry. Thus, unwiring is 2835 * unnecessary. 2836 */ 2837 entry->wired_count = 0; 2838 } else if (!user_wire || 2839 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2840 /* 2841 * Undo the wiring. Wiring succeeded on this entry 2842 * but failed on a later entry. 2843 */ 2844 if (entry->wired_count == 1) 2845 vm_map_entry_unwire(map, entry); 2846 else 2847 entry->wired_count--; 2848 } 2849 next_entry_done: 2850 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2851 ("vm_map_wire: in-transition flag missing %p", entry)); 2852 KASSERT(entry->wiring_thread == curthread, 2853 ("vm_map_wire: alien wire %p", entry)); 2854 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2855 MAP_ENTRY_WIRE_SKIPPED); 2856 entry->wiring_thread = NULL; 2857 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2858 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2859 need_wakeup = TRUE; 2860 } 2861 vm_map_simplify_entry(map, entry); 2862 } 2863 vm_map_unlock(map); 2864 if (need_wakeup) 2865 vm_map_wakeup(map); 2866 return (rv); 2867 } 2868 2869 /* 2870 * vm_map_sync 2871 * 2872 * Push any dirty cached pages in the address range to their pager. 2873 * If syncio is TRUE, dirty pages are written synchronously. 2874 * If invalidate is TRUE, any cached pages are freed as well. 2875 * 2876 * If the size of the region from start to end is zero, we are 2877 * supposed to flush all modified pages within the region containing 2878 * start. Unfortunately, a region can be split or coalesced with 2879 * neighboring regions, making it difficult to determine what the 2880 * original region was. Therefore, we approximate this requirement by 2881 * flushing the current region containing start. 2882 * 2883 * Returns an error if any part of the specified range is not mapped. 2884 */ 2885 int 2886 vm_map_sync( 2887 vm_map_t map, 2888 vm_offset_t start, 2889 vm_offset_t end, 2890 boolean_t syncio, 2891 boolean_t invalidate) 2892 { 2893 vm_map_entry_t current; 2894 vm_map_entry_t entry; 2895 vm_size_t size; 2896 vm_object_t object; 2897 vm_ooffset_t offset; 2898 unsigned int last_timestamp; 2899 boolean_t failed; 2900 2901 vm_map_lock_read(map); 2902 VM_MAP_RANGE_CHECK(map, start, end); 2903 if (!vm_map_lookup_entry(map, start, &entry)) { 2904 vm_map_unlock_read(map); 2905 return (KERN_INVALID_ADDRESS); 2906 } else if (start == end) { 2907 start = entry->start; 2908 end = entry->end; 2909 } 2910 /* 2911 * Make a first pass to check for user-wired memory and holes. 2912 */ 2913 for (current = entry; current->start < end; current = current->next) { 2914 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2915 vm_map_unlock_read(map); 2916 return (KERN_INVALID_ARGUMENT); 2917 } 2918 if (end > current->end && 2919 current->end != current->next->start) { 2920 vm_map_unlock_read(map); 2921 return (KERN_INVALID_ADDRESS); 2922 } 2923 } 2924 2925 if (invalidate) 2926 pmap_remove(map->pmap, start, end); 2927 failed = FALSE; 2928 2929 /* 2930 * Make a second pass, cleaning/uncaching pages from the indicated 2931 * objects as we go. 2932 */ 2933 for (current = entry; current->start < end;) { 2934 offset = current->offset + (start - current->start); 2935 size = (end <= current->end ? end : current->end) - start; 2936 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2937 vm_map_t smap; 2938 vm_map_entry_t tentry; 2939 vm_size_t tsize; 2940 2941 smap = current->object.sub_map; 2942 vm_map_lock_read(smap); 2943 (void) vm_map_lookup_entry(smap, offset, &tentry); 2944 tsize = tentry->end - offset; 2945 if (tsize < size) 2946 size = tsize; 2947 object = tentry->object.vm_object; 2948 offset = tentry->offset + (offset - tentry->start); 2949 vm_map_unlock_read(smap); 2950 } else { 2951 object = current->object.vm_object; 2952 } 2953 vm_object_reference(object); 2954 last_timestamp = map->timestamp; 2955 vm_map_unlock_read(map); 2956 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2957 failed = TRUE; 2958 start += size; 2959 vm_object_deallocate(object); 2960 vm_map_lock_read(map); 2961 if (last_timestamp == map->timestamp || 2962 !vm_map_lookup_entry(map, start, ¤t)) 2963 current = current->next; 2964 } 2965 2966 vm_map_unlock_read(map); 2967 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2968 } 2969 2970 /* 2971 * vm_map_entry_unwire: [ internal use only ] 2972 * 2973 * Make the region specified by this entry pageable. 2974 * 2975 * The map in question should be locked. 2976 * [This is the reason for this routine's existence.] 2977 */ 2978 static void 2979 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2980 { 2981 2982 VM_MAP_ASSERT_LOCKED(map); 2983 KASSERT(entry->wired_count > 0, 2984 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 2985 pmap_unwire(map->pmap, entry->start, entry->end); 2986 vm_object_unwire(entry->object.vm_object, entry->offset, entry->end - 2987 entry->start, PQ_ACTIVE); 2988 entry->wired_count = 0; 2989 } 2990 2991 static void 2992 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2993 { 2994 2995 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2996 vm_object_deallocate(entry->object.vm_object); 2997 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2998 } 2999 3000 /* 3001 * vm_map_entry_delete: [ internal use only ] 3002 * 3003 * Deallocate the given entry from the target map. 3004 */ 3005 static void 3006 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3007 { 3008 vm_object_t object; 3009 vm_pindex_t offidxstart, offidxend, count, size1; 3010 vm_size_t size; 3011 3012 vm_map_entry_unlink(map, entry); 3013 object = entry->object.vm_object; 3014 3015 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3016 MPASS(entry->cred == NULL); 3017 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3018 MPASS(object == NULL); 3019 vm_map_entry_deallocate(entry, map->system_map); 3020 return; 3021 } 3022 3023 size = entry->end - entry->start; 3024 map->size -= size; 3025 3026 if (entry->cred != NULL) { 3027 swap_release_by_cred(size, entry->cred); 3028 crfree(entry->cred); 3029 } 3030 3031 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 3032 (object != NULL)) { 3033 KASSERT(entry->cred == NULL || object->cred == NULL || 3034 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3035 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3036 count = atop(size); 3037 offidxstart = OFF_TO_IDX(entry->offset); 3038 offidxend = offidxstart + count; 3039 VM_OBJECT_WLOCK(object); 3040 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT | 3041 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 3042 object == kernel_object)) { 3043 vm_object_collapse(object); 3044 3045 /* 3046 * The option OBJPR_NOTMAPPED can be passed here 3047 * because vm_map_delete() already performed 3048 * pmap_remove() on the only mapping to this range 3049 * of pages. 3050 */ 3051 vm_object_page_remove(object, offidxstart, offidxend, 3052 OBJPR_NOTMAPPED); 3053 if (object->type == OBJT_SWAP) 3054 swap_pager_freespace(object, offidxstart, 3055 count); 3056 if (offidxend >= object->size && 3057 offidxstart < object->size) { 3058 size1 = object->size; 3059 object->size = offidxstart; 3060 if (object->cred != NULL) { 3061 size1 -= object->size; 3062 KASSERT(object->charge >= ptoa(size1), 3063 ("object %p charge < 0", object)); 3064 swap_release_by_cred(ptoa(size1), 3065 object->cred); 3066 object->charge -= ptoa(size1); 3067 } 3068 } 3069 } 3070 VM_OBJECT_WUNLOCK(object); 3071 } else 3072 entry->object.vm_object = NULL; 3073 if (map->system_map) 3074 vm_map_entry_deallocate(entry, TRUE); 3075 else { 3076 entry->next = curthread->td_map_def_user; 3077 curthread->td_map_def_user = entry; 3078 } 3079 } 3080 3081 /* 3082 * vm_map_delete: [ internal use only ] 3083 * 3084 * Deallocates the given address range from the target 3085 * map. 3086 */ 3087 int 3088 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3089 { 3090 vm_map_entry_t entry; 3091 vm_map_entry_t first_entry; 3092 3093 VM_MAP_ASSERT_LOCKED(map); 3094 if (start == end) 3095 return (KERN_SUCCESS); 3096 3097 /* 3098 * Find the start of the region, and clip it 3099 */ 3100 if (!vm_map_lookup_entry(map, start, &first_entry)) 3101 entry = first_entry->next; 3102 else { 3103 entry = first_entry; 3104 vm_map_clip_start(map, entry, start); 3105 } 3106 3107 /* 3108 * Step through all entries in this region 3109 */ 3110 while (entry->start < end) { 3111 vm_map_entry_t next; 3112 3113 /* 3114 * Wait for wiring or unwiring of an entry to complete. 3115 * Also wait for any system wirings to disappear on 3116 * user maps. 3117 */ 3118 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3119 (vm_map_pmap(map) != kernel_pmap && 3120 vm_map_entry_system_wired_count(entry) != 0)) { 3121 unsigned int last_timestamp; 3122 vm_offset_t saved_start; 3123 vm_map_entry_t tmp_entry; 3124 3125 saved_start = entry->start; 3126 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3127 last_timestamp = map->timestamp; 3128 (void) vm_map_unlock_and_wait(map, 0); 3129 vm_map_lock(map); 3130 if (last_timestamp + 1 != map->timestamp) { 3131 /* 3132 * Look again for the entry because the map was 3133 * modified while it was unlocked. 3134 * Specifically, the entry may have been 3135 * clipped, merged, or deleted. 3136 */ 3137 if (!vm_map_lookup_entry(map, saved_start, 3138 &tmp_entry)) 3139 entry = tmp_entry->next; 3140 else { 3141 entry = tmp_entry; 3142 vm_map_clip_start(map, entry, 3143 saved_start); 3144 } 3145 } 3146 continue; 3147 } 3148 vm_map_clip_end(map, entry, end); 3149 3150 next = entry->next; 3151 3152 /* 3153 * Unwire before removing addresses from the pmap; otherwise, 3154 * unwiring will put the entries back in the pmap. 3155 */ 3156 if (entry->wired_count != 0) 3157 vm_map_entry_unwire(map, entry); 3158 3159 /* 3160 * Remove mappings for the pages, but only if the 3161 * mappings could exist. For instance, it does not 3162 * make sense to call pmap_remove() for guard entries. 3163 */ 3164 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3165 entry->object.vm_object != NULL) 3166 pmap_remove(map->pmap, entry->start, entry->end); 3167 3168 /* 3169 * Delete the entry only after removing all pmap 3170 * entries pointing to its pages. (Otherwise, its 3171 * page frames may be reallocated, and any modify bits 3172 * will be set in the wrong object!) 3173 */ 3174 vm_map_entry_delete(map, entry); 3175 entry = next; 3176 } 3177 return (KERN_SUCCESS); 3178 } 3179 3180 /* 3181 * vm_map_remove: 3182 * 3183 * Remove the given address range from the target map. 3184 * This is the exported form of vm_map_delete. 3185 */ 3186 int 3187 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3188 { 3189 int result; 3190 3191 vm_map_lock(map); 3192 VM_MAP_RANGE_CHECK(map, start, end); 3193 result = vm_map_delete(map, start, end); 3194 vm_map_unlock(map); 3195 return (result); 3196 } 3197 3198 /* 3199 * vm_map_check_protection: 3200 * 3201 * Assert that the target map allows the specified privilege on the 3202 * entire address region given. The entire region must be allocated. 3203 * 3204 * WARNING! This code does not and should not check whether the 3205 * contents of the region is accessible. For example a smaller file 3206 * might be mapped into a larger address space. 3207 * 3208 * NOTE! This code is also called by munmap(). 3209 * 3210 * The map must be locked. A read lock is sufficient. 3211 */ 3212 boolean_t 3213 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3214 vm_prot_t protection) 3215 { 3216 vm_map_entry_t entry; 3217 vm_map_entry_t tmp_entry; 3218 3219 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3220 return (FALSE); 3221 entry = tmp_entry; 3222 3223 while (start < end) { 3224 /* 3225 * No holes allowed! 3226 */ 3227 if (start < entry->start) 3228 return (FALSE); 3229 /* 3230 * Check protection associated with entry. 3231 */ 3232 if ((entry->protection & protection) != protection) 3233 return (FALSE); 3234 /* go to next entry */ 3235 start = entry->end; 3236 entry = entry->next; 3237 } 3238 return (TRUE); 3239 } 3240 3241 /* 3242 * vm_map_copy_entry: 3243 * 3244 * Copies the contents of the source entry to the destination 3245 * entry. The entries *must* be aligned properly. 3246 */ 3247 static void 3248 vm_map_copy_entry( 3249 vm_map_t src_map, 3250 vm_map_t dst_map, 3251 vm_map_entry_t src_entry, 3252 vm_map_entry_t dst_entry, 3253 vm_ooffset_t *fork_charge) 3254 { 3255 vm_object_t src_object; 3256 vm_map_entry_t fake_entry; 3257 vm_offset_t size; 3258 struct ucred *cred; 3259 int charged; 3260 3261 VM_MAP_ASSERT_LOCKED(dst_map); 3262 3263 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3264 return; 3265 3266 if (src_entry->wired_count == 0 || 3267 (src_entry->protection & VM_PROT_WRITE) == 0) { 3268 /* 3269 * If the source entry is marked needs_copy, it is already 3270 * write-protected. 3271 */ 3272 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3273 (src_entry->protection & VM_PROT_WRITE) != 0) { 3274 pmap_protect(src_map->pmap, 3275 src_entry->start, 3276 src_entry->end, 3277 src_entry->protection & ~VM_PROT_WRITE); 3278 } 3279 3280 /* 3281 * Make a copy of the object. 3282 */ 3283 size = src_entry->end - src_entry->start; 3284 if ((src_object = src_entry->object.vm_object) != NULL) { 3285 VM_OBJECT_WLOCK(src_object); 3286 charged = ENTRY_CHARGED(src_entry); 3287 if (src_object->handle == NULL && 3288 (src_object->type == OBJT_DEFAULT || 3289 src_object->type == OBJT_SWAP)) { 3290 vm_object_collapse(src_object); 3291 if ((src_object->flags & (OBJ_NOSPLIT | 3292 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3293 vm_object_split(src_entry); 3294 src_object = 3295 src_entry->object.vm_object; 3296 } 3297 } 3298 vm_object_reference_locked(src_object); 3299 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3300 if (src_entry->cred != NULL && 3301 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3302 KASSERT(src_object->cred == NULL, 3303 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3304 src_object)); 3305 src_object->cred = src_entry->cred; 3306 src_object->charge = size; 3307 } 3308 VM_OBJECT_WUNLOCK(src_object); 3309 dst_entry->object.vm_object = src_object; 3310 if (charged) { 3311 cred = curthread->td_ucred; 3312 crhold(cred); 3313 dst_entry->cred = cred; 3314 *fork_charge += size; 3315 if (!(src_entry->eflags & 3316 MAP_ENTRY_NEEDS_COPY)) { 3317 crhold(cred); 3318 src_entry->cred = cred; 3319 *fork_charge += size; 3320 } 3321 } 3322 src_entry->eflags |= MAP_ENTRY_COW | 3323 MAP_ENTRY_NEEDS_COPY; 3324 dst_entry->eflags |= MAP_ENTRY_COW | 3325 MAP_ENTRY_NEEDS_COPY; 3326 dst_entry->offset = src_entry->offset; 3327 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3328 /* 3329 * MAP_ENTRY_VN_WRITECNT cannot 3330 * indicate write reference from 3331 * src_entry, since the entry is 3332 * marked as needs copy. Allocate a 3333 * fake entry that is used to 3334 * decrement object->un_pager.vnp.writecount 3335 * at the appropriate time. Attach 3336 * fake_entry to the deferred list. 3337 */ 3338 fake_entry = vm_map_entry_create(dst_map); 3339 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3340 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3341 vm_object_reference(src_object); 3342 fake_entry->object.vm_object = src_object; 3343 fake_entry->start = src_entry->start; 3344 fake_entry->end = src_entry->end; 3345 fake_entry->next = curthread->td_map_def_user; 3346 curthread->td_map_def_user = fake_entry; 3347 } 3348 3349 pmap_copy(dst_map->pmap, src_map->pmap, 3350 dst_entry->start, dst_entry->end - dst_entry->start, 3351 src_entry->start); 3352 } else { 3353 dst_entry->object.vm_object = NULL; 3354 dst_entry->offset = 0; 3355 if (src_entry->cred != NULL) { 3356 dst_entry->cred = curthread->td_ucred; 3357 crhold(dst_entry->cred); 3358 *fork_charge += size; 3359 } 3360 } 3361 } else { 3362 /* 3363 * We don't want to make writeable wired pages copy-on-write. 3364 * Immediately copy these pages into the new map by simulating 3365 * page faults. The new pages are pageable. 3366 */ 3367 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3368 fork_charge); 3369 } 3370 } 3371 3372 /* 3373 * vmspace_map_entry_forked: 3374 * Update the newly-forked vmspace each time a map entry is inherited 3375 * or copied. The values for vm_dsize and vm_tsize are approximate 3376 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3377 */ 3378 static void 3379 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3380 vm_map_entry_t entry) 3381 { 3382 vm_size_t entrysize; 3383 vm_offset_t newend; 3384 3385 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 3386 return; 3387 entrysize = entry->end - entry->start; 3388 vm2->vm_map.size += entrysize; 3389 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3390 vm2->vm_ssize += btoc(entrysize); 3391 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3392 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3393 newend = MIN(entry->end, 3394 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3395 vm2->vm_dsize += btoc(newend - entry->start); 3396 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3397 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3398 newend = MIN(entry->end, 3399 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3400 vm2->vm_tsize += btoc(newend - entry->start); 3401 } 3402 } 3403 3404 /* 3405 * vmspace_fork: 3406 * Create a new process vmspace structure and vm_map 3407 * based on those of an existing process. The new map 3408 * is based on the old map, according to the inheritance 3409 * values on the regions in that map. 3410 * 3411 * XXX It might be worth coalescing the entries added to the new vmspace. 3412 * 3413 * The source map must not be locked. 3414 */ 3415 struct vmspace * 3416 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3417 { 3418 struct vmspace *vm2; 3419 vm_map_t new_map, old_map; 3420 vm_map_entry_t new_entry, old_entry; 3421 vm_object_t object; 3422 int locked; 3423 vm_inherit_t inh; 3424 3425 old_map = &vm1->vm_map; 3426 /* Copy immutable fields of vm1 to vm2. */ 3427 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), NULL); 3428 if (vm2 == NULL) 3429 return (NULL); 3430 vm2->vm_taddr = vm1->vm_taddr; 3431 vm2->vm_daddr = vm1->vm_daddr; 3432 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3433 vm_map_lock(old_map); 3434 if (old_map->busy) 3435 vm_map_wait_busy(old_map); 3436 new_map = &vm2->vm_map; 3437 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3438 KASSERT(locked, ("vmspace_fork: lock failed")); 3439 3440 old_entry = old_map->header.next; 3441 3442 while (old_entry != &old_map->header) { 3443 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3444 panic("vm_map_fork: encountered a submap"); 3445 3446 inh = old_entry->inheritance; 3447 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 3448 inh != VM_INHERIT_NONE) 3449 inh = VM_INHERIT_COPY; 3450 3451 switch (inh) { 3452 case VM_INHERIT_NONE: 3453 break; 3454 3455 case VM_INHERIT_SHARE: 3456 /* 3457 * Clone the entry, creating the shared object if necessary. 3458 */ 3459 object = old_entry->object.vm_object; 3460 if (object == NULL) { 3461 object = vm_object_allocate(OBJT_DEFAULT, 3462 atop(old_entry->end - old_entry->start)); 3463 old_entry->object.vm_object = object; 3464 old_entry->offset = 0; 3465 if (old_entry->cred != NULL) { 3466 object->cred = old_entry->cred; 3467 object->charge = old_entry->end - 3468 old_entry->start; 3469 old_entry->cred = NULL; 3470 } 3471 } 3472 3473 /* 3474 * Add the reference before calling vm_object_shadow 3475 * to insure that a shadow object is created. 3476 */ 3477 vm_object_reference(object); 3478 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3479 vm_object_shadow(&old_entry->object.vm_object, 3480 &old_entry->offset, 3481 old_entry->end - old_entry->start); 3482 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3483 /* Transfer the second reference too. */ 3484 vm_object_reference( 3485 old_entry->object.vm_object); 3486 3487 /* 3488 * As in vm_map_simplify_entry(), the 3489 * vnode lock will not be acquired in 3490 * this call to vm_object_deallocate(). 3491 */ 3492 vm_object_deallocate(object); 3493 object = old_entry->object.vm_object; 3494 } 3495 VM_OBJECT_WLOCK(object); 3496 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3497 if (old_entry->cred != NULL) { 3498 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3499 object->cred = old_entry->cred; 3500 object->charge = old_entry->end - old_entry->start; 3501 old_entry->cred = NULL; 3502 } 3503 3504 /* 3505 * Assert the correct state of the vnode 3506 * v_writecount while the object is locked, to 3507 * not relock it later for the assertion 3508 * correctness. 3509 */ 3510 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3511 object->type == OBJT_VNODE) { 3512 KASSERT(((struct vnode *)object->handle)-> 3513 v_writecount > 0, 3514 ("vmspace_fork: v_writecount %p", object)); 3515 KASSERT(object->un_pager.vnp.writemappings > 0, 3516 ("vmspace_fork: vnp.writecount %p", 3517 object)); 3518 } 3519 VM_OBJECT_WUNLOCK(object); 3520 3521 /* 3522 * Clone the entry, referencing the shared object. 3523 */ 3524 new_entry = vm_map_entry_create(new_map); 3525 *new_entry = *old_entry; 3526 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3527 MAP_ENTRY_IN_TRANSITION); 3528 new_entry->wiring_thread = NULL; 3529 new_entry->wired_count = 0; 3530 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3531 vnode_pager_update_writecount(object, 3532 new_entry->start, new_entry->end); 3533 } 3534 3535 /* 3536 * Insert the entry into the new map -- we know we're 3537 * inserting at the end of the new map. 3538 */ 3539 vm_map_entry_link(new_map, new_map->header.prev, 3540 new_entry); 3541 vmspace_map_entry_forked(vm1, vm2, new_entry); 3542 3543 /* 3544 * Update the physical map 3545 */ 3546 pmap_copy(new_map->pmap, old_map->pmap, 3547 new_entry->start, 3548 (old_entry->end - old_entry->start), 3549 old_entry->start); 3550 break; 3551 3552 case VM_INHERIT_COPY: 3553 /* 3554 * Clone the entry and link into the map. 3555 */ 3556 new_entry = vm_map_entry_create(new_map); 3557 *new_entry = *old_entry; 3558 /* 3559 * Copied entry is COW over the old object. 3560 */ 3561 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3562 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3563 new_entry->wiring_thread = NULL; 3564 new_entry->wired_count = 0; 3565 new_entry->object.vm_object = NULL; 3566 new_entry->cred = NULL; 3567 vm_map_entry_link(new_map, new_map->header.prev, 3568 new_entry); 3569 vmspace_map_entry_forked(vm1, vm2, new_entry); 3570 vm_map_copy_entry(old_map, new_map, old_entry, 3571 new_entry, fork_charge); 3572 break; 3573 3574 case VM_INHERIT_ZERO: 3575 /* 3576 * Create a new anonymous mapping entry modelled from 3577 * the old one. 3578 */ 3579 new_entry = vm_map_entry_create(new_map); 3580 memset(new_entry, 0, sizeof(*new_entry)); 3581 3582 new_entry->start = old_entry->start; 3583 new_entry->end = old_entry->end; 3584 new_entry->eflags = old_entry->eflags & 3585 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 3586 MAP_ENTRY_VN_WRITECNT); 3587 new_entry->protection = old_entry->protection; 3588 new_entry->max_protection = old_entry->max_protection; 3589 new_entry->inheritance = VM_INHERIT_ZERO; 3590 3591 vm_map_entry_link(new_map, new_map->header.prev, 3592 new_entry); 3593 vmspace_map_entry_forked(vm1, vm2, new_entry); 3594 3595 new_entry->cred = curthread->td_ucred; 3596 crhold(new_entry->cred); 3597 *fork_charge += (new_entry->end - new_entry->start); 3598 3599 break; 3600 } 3601 old_entry = old_entry->next; 3602 } 3603 /* 3604 * Use inlined vm_map_unlock() to postpone handling the deferred 3605 * map entries, which cannot be done until both old_map and 3606 * new_map locks are released. 3607 */ 3608 sx_xunlock(&old_map->lock); 3609 sx_xunlock(&new_map->lock); 3610 vm_map_process_deferred(); 3611 3612 return (vm2); 3613 } 3614 3615 /* 3616 * Create a process's stack for exec_new_vmspace(). This function is never 3617 * asked to wire the newly created stack. 3618 */ 3619 int 3620 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3621 vm_prot_t prot, vm_prot_t max, int cow) 3622 { 3623 vm_size_t growsize, init_ssize; 3624 rlim_t vmemlim; 3625 int rv; 3626 3627 MPASS((map->flags & MAP_WIREFUTURE) == 0); 3628 growsize = sgrowsiz; 3629 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3630 vm_map_lock(map); 3631 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 3632 /* If we would blow our VMEM resource limit, no go */ 3633 if (map->size + init_ssize > vmemlim) { 3634 rv = KERN_NO_SPACE; 3635 goto out; 3636 } 3637 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 3638 max, cow); 3639 out: 3640 vm_map_unlock(map); 3641 return (rv); 3642 } 3643 3644 static int stack_guard_page = 1; 3645 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 3646 &stack_guard_page, 0, 3647 "Specifies the number of guard pages for a stack that grows"); 3648 3649 static int 3650 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3651 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 3652 { 3653 vm_map_entry_t new_entry, prev_entry; 3654 vm_offset_t bot, gap_bot, gap_top, top; 3655 vm_size_t init_ssize, sgp; 3656 int orient, rv; 3657 3658 /* 3659 * The stack orientation is piggybacked with the cow argument. 3660 * Extract it into orient and mask the cow argument so that we 3661 * don't pass it around further. 3662 */ 3663 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 3664 KASSERT(orient != 0, ("No stack grow direction")); 3665 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 3666 ("bi-dir stack")); 3667 3668 if (addrbos < vm_map_min(map) || 3669 addrbos + max_ssize > vm_map_max(map) || 3670 addrbos + max_ssize <= addrbos) 3671 return (KERN_INVALID_ADDRESS); 3672 sgp = (vm_size_t)stack_guard_page * PAGE_SIZE; 3673 if (sgp >= max_ssize) 3674 return (KERN_INVALID_ARGUMENT); 3675 3676 init_ssize = growsize; 3677 if (max_ssize < init_ssize + sgp) 3678 init_ssize = max_ssize - sgp; 3679 3680 /* If addr is already mapped, no go */ 3681 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 3682 return (KERN_NO_SPACE); 3683 3684 /* 3685 * If we can't accommodate max_ssize in the current mapping, no go. 3686 */ 3687 if (prev_entry->next->start < addrbos + max_ssize) 3688 return (KERN_NO_SPACE); 3689 3690 /* 3691 * We initially map a stack of only init_ssize. We will grow as 3692 * needed later. Depending on the orientation of the stack (i.e. 3693 * the grow direction) we either map at the top of the range, the 3694 * bottom of the range or in the middle. 3695 * 3696 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3697 * and cow to be 0. Possibly we should eliminate these as input 3698 * parameters, and just pass these values here in the insert call. 3699 */ 3700 if (orient == MAP_STACK_GROWS_DOWN) { 3701 bot = addrbos + max_ssize - init_ssize; 3702 top = bot + init_ssize; 3703 gap_bot = addrbos; 3704 gap_top = bot; 3705 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 3706 bot = addrbos; 3707 top = bot + init_ssize; 3708 gap_bot = top; 3709 gap_top = addrbos + max_ssize; 3710 } 3711 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3712 if (rv != KERN_SUCCESS) 3713 return (rv); 3714 new_entry = prev_entry->next; 3715 KASSERT(new_entry->end == top || new_entry->start == bot, 3716 ("Bad entry start/end for new stack entry")); 3717 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 3718 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 3719 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 3720 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 3721 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 3722 ("new entry lacks MAP_ENTRY_GROWS_UP")); 3723 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 3724 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 3725 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 3726 if (rv != KERN_SUCCESS) 3727 (void)vm_map_delete(map, bot, top); 3728 return (rv); 3729 } 3730 3731 /* 3732 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 3733 * successfully grow the stack. 3734 */ 3735 static int 3736 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 3737 { 3738 vm_map_entry_t stack_entry; 3739 struct proc *p; 3740 struct vmspace *vm; 3741 struct ucred *cred; 3742 vm_offset_t gap_end, gap_start, grow_start; 3743 size_t grow_amount, guard, max_grow; 3744 rlim_t lmemlim, stacklim, vmemlim; 3745 int rv, rv1; 3746 bool gap_deleted, grow_down, is_procstack; 3747 #ifdef notyet 3748 uint64_t limit; 3749 #endif 3750 #ifdef RACCT 3751 int error; 3752 #endif 3753 3754 p = curproc; 3755 vm = p->p_vmspace; 3756 3757 /* 3758 * Disallow stack growth when the access is performed by a 3759 * debugger or AIO daemon. The reason is that the wrong 3760 * resource limits are applied. 3761 */ 3762 if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL) 3763 return (KERN_FAILURE); 3764 3765 MPASS(!map->system_map); 3766 3767 guard = stack_guard_page * PAGE_SIZE; 3768 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 3769 stacklim = lim_cur(curthread, RLIMIT_STACK); 3770 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 3771 retry: 3772 /* If addr is not in a hole for a stack grow area, no need to grow. */ 3773 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 3774 return (KERN_FAILURE); 3775 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 3776 return (KERN_SUCCESS); 3777 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 3778 stack_entry = gap_entry->next; 3779 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 3780 stack_entry->start != gap_entry->end) 3781 return (KERN_FAILURE); 3782 grow_amount = round_page(stack_entry->start - addr); 3783 grow_down = true; 3784 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 3785 stack_entry = gap_entry->prev; 3786 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 3787 stack_entry->end != gap_entry->start) 3788 return (KERN_FAILURE); 3789 grow_amount = round_page(addr + 1 - stack_entry->end); 3790 grow_down = false; 3791 } else { 3792 return (KERN_FAILURE); 3793 } 3794 max_grow = gap_entry->end - gap_entry->start; 3795 if (guard > max_grow) 3796 return (KERN_NO_SPACE); 3797 max_grow -= guard; 3798 if (grow_amount > max_grow) 3799 return (KERN_NO_SPACE); 3800 3801 /* 3802 * If this is the main process stack, see if we're over the stack 3803 * limit. 3804 */ 3805 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 3806 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 3807 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 3808 return (KERN_NO_SPACE); 3809 3810 #ifdef RACCT 3811 if (racct_enable) { 3812 PROC_LOCK(p); 3813 if (is_procstack && racct_set(p, RACCT_STACK, 3814 ctob(vm->vm_ssize) + grow_amount)) { 3815 PROC_UNLOCK(p); 3816 return (KERN_NO_SPACE); 3817 } 3818 PROC_UNLOCK(p); 3819 } 3820 #endif 3821 3822 grow_amount = roundup(grow_amount, sgrowsiz); 3823 if (grow_amount > max_grow) 3824 grow_amount = max_grow; 3825 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3826 grow_amount = trunc_page((vm_size_t)stacklim) - 3827 ctob(vm->vm_ssize); 3828 } 3829 3830 #ifdef notyet 3831 PROC_LOCK(p); 3832 limit = racct_get_available(p, RACCT_STACK); 3833 PROC_UNLOCK(p); 3834 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3835 grow_amount = limit - ctob(vm->vm_ssize); 3836 #endif 3837 3838 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 3839 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3840 rv = KERN_NO_SPACE; 3841 goto out; 3842 } 3843 #ifdef RACCT 3844 if (racct_enable) { 3845 PROC_LOCK(p); 3846 if (racct_set(p, RACCT_MEMLOCK, 3847 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3848 PROC_UNLOCK(p); 3849 rv = KERN_NO_SPACE; 3850 goto out; 3851 } 3852 PROC_UNLOCK(p); 3853 } 3854 #endif 3855 } 3856 3857 /* If we would blow our VMEM resource limit, no go */ 3858 if (map->size + grow_amount > vmemlim) { 3859 rv = KERN_NO_SPACE; 3860 goto out; 3861 } 3862 #ifdef RACCT 3863 if (racct_enable) { 3864 PROC_LOCK(p); 3865 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3866 PROC_UNLOCK(p); 3867 rv = KERN_NO_SPACE; 3868 goto out; 3869 } 3870 PROC_UNLOCK(p); 3871 } 3872 #endif 3873 3874 if (vm_map_lock_upgrade(map)) { 3875 gap_entry = NULL; 3876 vm_map_lock_read(map); 3877 goto retry; 3878 } 3879 3880 if (grow_down) { 3881 grow_start = gap_entry->end - grow_amount; 3882 if (gap_entry->start + grow_amount == gap_entry->end) { 3883 gap_start = gap_entry->start; 3884 gap_end = gap_entry->end; 3885 vm_map_entry_delete(map, gap_entry); 3886 gap_deleted = true; 3887 } else { 3888 MPASS(gap_entry->start < gap_entry->end - grow_amount); 3889 gap_entry->end -= grow_amount; 3890 vm_map_entry_resize_free(map, gap_entry); 3891 gap_deleted = false; 3892 } 3893 rv = vm_map_insert(map, NULL, 0, grow_start, 3894 grow_start + grow_amount, 3895 stack_entry->protection, stack_entry->max_protection, 3896 MAP_STACK_GROWS_DOWN); 3897 if (rv != KERN_SUCCESS) { 3898 if (gap_deleted) { 3899 rv1 = vm_map_insert(map, NULL, 0, gap_start, 3900 gap_end, VM_PROT_NONE, VM_PROT_NONE, 3901 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 3902 MPASS(rv1 == KERN_SUCCESS); 3903 } else { 3904 gap_entry->end += grow_amount; 3905 vm_map_entry_resize_free(map, gap_entry); 3906 } 3907 } 3908 } else { 3909 grow_start = stack_entry->end; 3910 cred = stack_entry->cred; 3911 if (cred == NULL && stack_entry->object.vm_object != NULL) 3912 cred = stack_entry->object.vm_object->cred; 3913 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3914 rv = KERN_NO_SPACE; 3915 /* Grow the underlying object if applicable. */ 3916 else if (stack_entry->object.vm_object == NULL || 3917 vm_object_coalesce(stack_entry->object.vm_object, 3918 stack_entry->offset, 3919 (vm_size_t)(stack_entry->end - stack_entry->start), 3920 (vm_size_t)grow_amount, cred != NULL)) { 3921 if (gap_entry->start + grow_amount == gap_entry->end) 3922 vm_map_entry_delete(map, gap_entry); 3923 else 3924 gap_entry->start += grow_amount; 3925 stack_entry->end += grow_amount; 3926 map->size += grow_amount; 3927 vm_map_entry_resize_free(map, stack_entry); 3928 rv = KERN_SUCCESS; 3929 } else 3930 rv = KERN_FAILURE; 3931 } 3932 if (rv == KERN_SUCCESS && is_procstack) 3933 vm->vm_ssize += btoc(grow_amount); 3934 3935 /* 3936 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3937 */ 3938 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 3939 vm_map_unlock(map); 3940 vm_map_wire(map, grow_start, grow_start + grow_amount, 3941 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 3942 vm_map_lock_read(map); 3943 } else 3944 vm_map_lock_downgrade(map); 3945 3946 out: 3947 #ifdef RACCT 3948 if (racct_enable && rv != KERN_SUCCESS) { 3949 PROC_LOCK(p); 3950 error = racct_set(p, RACCT_VMEM, map->size); 3951 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3952 if (!old_mlock) { 3953 error = racct_set(p, RACCT_MEMLOCK, 3954 ptoa(pmap_wired_count(map->pmap))); 3955 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3956 } 3957 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3958 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3959 PROC_UNLOCK(p); 3960 } 3961 #endif 3962 3963 return (rv); 3964 } 3965 3966 /* 3967 * Unshare the specified VM space for exec. If other processes are 3968 * mapped to it, then create a new one. The new vmspace is null. 3969 */ 3970 int 3971 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3972 { 3973 struct vmspace *oldvmspace = p->p_vmspace; 3974 struct vmspace *newvmspace; 3975 3976 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 3977 ("vmspace_exec recursed")); 3978 newvmspace = vmspace_alloc(minuser, maxuser, NULL); 3979 if (newvmspace == NULL) 3980 return (ENOMEM); 3981 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3982 /* 3983 * This code is written like this for prototype purposes. The 3984 * goal is to avoid running down the vmspace here, but let the 3985 * other process's that are still using the vmspace to finally 3986 * run it down. Even though there is little or no chance of blocking 3987 * here, it is a good idea to keep this form for future mods. 3988 */ 3989 PROC_VMSPACE_LOCK(p); 3990 p->p_vmspace = newvmspace; 3991 PROC_VMSPACE_UNLOCK(p); 3992 if (p == curthread->td_proc) 3993 pmap_activate(curthread); 3994 curthread->td_pflags |= TDP_EXECVMSPC; 3995 return (0); 3996 } 3997 3998 /* 3999 * Unshare the specified VM space for forcing COW. This 4000 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4001 */ 4002 int 4003 vmspace_unshare(struct proc *p) 4004 { 4005 struct vmspace *oldvmspace = p->p_vmspace; 4006 struct vmspace *newvmspace; 4007 vm_ooffset_t fork_charge; 4008 4009 if (oldvmspace->vm_refcnt == 1) 4010 return (0); 4011 fork_charge = 0; 4012 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4013 if (newvmspace == NULL) 4014 return (ENOMEM); 4015 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4016 vmspace_free(newvmspace); 4017 return (ENOMEM); 4018 } 4019 PROC_VMSPACE_LOCK(p); 4020 p->p_vmspace = newvmspace; 4021 PROC_VMSPACE_UNLOCK(p); 4022 if (p == curthread->td_proc) 4023 pmap_activate(curthread); 4024 vmspace_free(oldvmspace); 4025 return (0); 4026 } 4027 4028 /* 4029 * vm_map_lookup: 4030 * 4031 * Finds the VM object, offset, and 4032 * protection for a given virtual address in the 4033 * specified map, assuming a page fault of the 4034 * type specified. 4035 * 4036 * Leaves the map in question locked for read; return 4037 * values are guaranteed until a vm_map_lookup_done 4038 * call is performed. Note that the map argument 4039 * is in/out; the returned map must be used in 4040 * the call to vm_map_lookup_done. 4041 * 4042 * A handle (out_entry) is returned for use in 4043 * vm_map_lookup_done, to make that fast. 4044 * 4045 * If a lookup is requested with "write protection" 4046 * specified, the map may be changed to perform virtual 4047 * copying operations, although the data referenced will 4048 * remain the same. 4049 */ 4050 int 4051 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4052 vm_offset_t vaddr, 4053 vm_prot_t fault_typea, 4054 vm_map_entry_t *out_entry, /* OUT */ 4055 vm_object_t *object, /* OUT */ 4056 vm_pindex_t *pindex, /* OUT */ 4057 vm_prot_t *out_prot, /* OUT */ 4058 boolean_t *wired) /* OUT */ 4059 { 4060 vm_map_entry_t entry; 4061 vm_map_t map = *var_map; 4062 vm_prot_t prot; 4063 vm_prot_t fault_type = fault_typea; 4064 vm_object_t eobject; 4065 vm_size_t size; 4066 struct ucred *cred; 4067 4068 RetryLookup: 4069 4070 vm_map_lock_read(map); 4071 4072 RetryLookupLocked: 4073 /* 4074 * Lookup the faulting address. 4075 */ 4076 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4077 vm_map_unlock_read(map); 4078 return (KERN_INVALID_ADDRESS); 4079 } 4080 4081 entry = *out_entry; 4082 4083 /* 4084 * Handle submaps. 4085 */ 4086 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4087 vm_map_t old_map = map; 4088 4089 *var_map = map = entry->object.sub_map; 4090 vm_map_unlock_read(old_map); 4091 goto RetryLookup; 4092 } 4093 4094 /* 4095 * Check whether this task is allowed to have this page. 4096 */ 4097 prot = entry->protection; 4098 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4099 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4100 if (prot == VM_PROT_NONE && map != kernel_map && 4101 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4102 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4103 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4104 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4105 goto RetryLookupLocked; 4106 } 4107 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4108 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4109 vm_map_unlock_read(map); 4110 return (KERN_PROTECTION_FAILURE); 4111 } 4112 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4113 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4114 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4115 ("entry %p flags %x", entry, entry->eflags)); 4116 if ((fault_typea & VM_PROT_COPY) != 0 && 4117 (entry->max_protection & VM_PROT_WRITE) == 0 && 4118 (entry->eflags & MAP_ENTRY_COW) == 0) { 4119 vm_map_unlock_read(map); 4120 return (KERN_PROTECTION_FAILURE); 4121 } 4122 4123 /* 4124 * If this page is not pageable, we have to get it for all possible 4125 * accesses. 4126 */ 4127 *wired = (entry->wired_count != 0); 4128 if (*wired) 4129 fault_type = entry->protection; 4130 size = entry->end - entry->start; 4131 /* 4132 * If the entry was copy-on-write, we either ... 4133 */ 4134 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4135 /* 4136 * If we want to write the page, we may as well handle that 4137 * now since we've got the map locked. 4138 * 4139 * If we don't need to write the page, we just demote the 4140 * permissions allowed. 4141 */ 4142 if ((fault_type & VM_PROT_WRITE) != 0 || 4143 (fault_typea & VM_PROT_COPY) != 0) { 4144 /* 4145 * Make a new object, and place it in the object 4146 * chain. Note that no new references have appeared 4147 * -- one just moved from the map to the new 4148 * object. 4149 */ 4150 if (vm_map_lock_upgrade(map)) 4151 goto RetryLookup; 4152 4153 if (entry->cred == NULL) { 4154 /* 4155 * The debugger owner is charged for 4156 * the memory. 4157 */ 4158 cred = curthread->td_ucred; 4159 crhold(cred); 4160 if (!swap_reserve_by_cred(size, cred)) { 4161 crfree(cred); 4162 vm_map_unlock(map); 4163 return (KERN_RESOURCE_SHORTAGE); 4164 } 4165 entry->cred = cred; 4166 } 4167 vm_object_shadow(&entry->object.vm_object, 4168 &entry->offset, size); 4169 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4170 eobject = entry->object.vm_object; 4171 if (eobject->cred != NULL) { 4172 /* 4173 * The object was not shadowed. 4174 */ 4175 swap_release_by_cred(size, entry->cred); 4176 crfree(entry->cred); 4177 entry->cred = NULL; 4178 } else if (entry->cred != NULL) { 4179 VM_OBJECT_WLOCK(eobject); 4180 eobject->cred = entry->cred; 4181 eobject->charge = size; 4182 VM_OBJECT_WUNLOCK(eobject); 4183 entry->cred = NULL; 4184 } 4185 4186 vm_map_lock_downgrade(map); 4187 } else { 4188 /* 4189 * We're attempting to read a copy-on-write page -- 4190 * don't allow writes. 4191 */ 4192 prot &= ~VM_PROT_WRITE; 4193 } 4194 } 4195 4196 /* 4197 * Create an object if necessary. 4198 */ 4199 if (entry->object.vm_object == NULL && 4200 !map->system_map) { 4201 if (vm_map_lock_upgrade(map)) 4202 goto RetryLookup; 4203 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4204 atop(size)); 4205 entry->offset = 0; 4206 if (entry->cred != NULL) { 4207 VM_OBJECT_WLOCK(entry->object.vm_object); 4208 entry->object.vm_object->cred = entry->cred; 4209 entry->object.vm_object->charge = size; 4210 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4211 entry->cred = NULL; 4212 } 4213 vm_map_lock_downgrade(map); 4214 } 4215 4216 /* 4217 * Return the object/offset from this entry. If the entry was 4218 * copy-on-write or empty, it has been fixed up. 4219 */ 4220 *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset); 4221 *object = entry->object.vm_object; 4222 4223 *out_prot = prot; 4224 return (KERN_SUCCESS); 4225 } 4226 4227 /* 4228 * vm_map_lookup_locked: 4229 * 4230 * Lookup the faulting address. A version of vm_map_lookup that returns 4231 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4232 */ 4233 int 4234 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4235 vm_offset_t vaddr, 4236 vm_prot_t fault_typea, 4237 vm_map_entry_t *out_entry, /* OUT */ 4238 vm_object_t *object, /* OUT */ 4239 vm_pindex_t *pindex, /* OUT */ 4240 vm_prot_t *out_prot, /* OUT */ 4241 boolean_t *wired) /* OUT */ 4242 { 4243 vm_map_entry_t entry; 4244 vm_map_t map = *var_map; 4245 vm_prot_t prot; 4246 vm_prot_t fault_type = fault_typea; 4247 4248 /* 4249 * Lookup the faulting address. 4250 */ 4251 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4252 return (KERN_INVALID_ADDRESS); 4253 4254 entry = *out_entry; 4255 4256 /* 4257 * Fail if the entry refers to a submap. 4258 */ 4259 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4260 return (KERN_FAILURE); 4261 4262 /* 4263 * Check whether this task is allowed to have this page. 4264 */ 4265 prot = entry->protection; 4266 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4267 if ((fault_type & prot) != fault_type) 4268 return (KERN_PROTECTION_FAILURE); 4269 4270 /* 4271 * If this page is not pageable, we have to get it for all possible 4272 * accesses. 4273 */ 4274 *wired = (entry->wired_count != 0); 4275 if (*wired) 4276 fault_type = entry->protection; 4277 4278 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4279 /* 4280 * Fail if the entry was copy-on-write for a write fault. 4281 */ 4282 if (fault_type & VM_PROT_WRITE) 4283 return (KERN_FAILURE); 4284 /* 4285 * We're attempting to read a copy-on-write page -- 4286 * don't allow writes. 4287 */ 4288 prot &= ~VM_PROT_WRITE; 4289 } 4290 4291 /* 4292 * Fail if an object should be created. 4293 */ 4294 if (entry->object.vm_object == NULL && !map->system_map) 4295 return (KERN_FAILURE); 4296 4297 /* 4298 * Return the object/offset from this entry. If the entry was 4299 * copy-on-write or empty, it has been fixed up. 4300 */ 4301 *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset); 4302 *object = entry->object.vm_object; 4303 4304 *out_prot = prot; 4305 return (KERN_SUCCESS); 4306 } 4307 4308 /* 4309 * vm_map_lookup_done: 4310 * 4311 * Releases locks acquired by a vm_map_lookup 4312 * (according to the handle returned by that lookup). 4313 */ 4314 void 4315 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4316 { 4317 /* 4318 * Unlock the main-level map 4319 */ 4320 vm_map_unlock_read(map); 4321 } 4322 4323 vm_offset_t 4324 vm_map_max_KBI(const struct vm_map *map) 4325 { 4326 4327 return (vm_map_max(map)); 4328 } 4329 4330 vm_offset_t 4331 vm_map_min_KBI(const struct vm_map *map) 4332 { 4333 4334 return (vm_map_min(map)); 4335 } 4336 4337 pmap_t 4338 vm_map_pmap_KBI(vm_map_t map) 4339 { 4340 4341 return (map->pmap); 4342 } 4343 4344 #include "opt_ddb.h" 4345 #ifdef DDB 4346 #include <sys/kernel.h> 4347 4348 #include <ddb/ddb.h> 4349 4350 static void 4351 vm_map_print(vm_map_t map) 4352 { 4353 vm_map_entry_t entry; 4354 4355 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4356 (void *)map, 4357 (void *)map->pmap, map->nentries, map->timestamp); 4358 4359 db_indent += 2; 4360 for (entry = map->header.next; entry != &map->header; 4361 entry = entry->next) { 4362 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 4363 (void *)entry, (void *)entry->start, (void *)entry->end, 4364 entry->eflags); 4365 { 4366 static char *inheritance_name[4] = 4367 {"share", "copy", "none", "donate_copy"}; 4368 4369 db_iprintf(" prot=%x/%x/%s", 4370 entry->protection, 4371 entry->max_protection, 4372 inheritance_name[(int)(unsigned char)entry->inheritance]); 4373 if (entry->wired_count != 0) 4374 db_printf(", wired"); 4375 } 4376 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4377 db_printf(", share=%p, offset=0x%jx\n", 4378 (void *)entry->object.sub_map, 4379 (uintmax_t)entry->offset); 4380 if ((entry->prev == &map->header) || 4381 (entry->prev->object.sub_map != 4382 entry->object.sub_map)) { 4383 db_indent += 2; 4384 vm_map_print((vm_map_t)entry->object.sub_map); 4385 db_indent -= 2; 4386 } 4387 } else { 4388 if (entry->cred != NULL) 4389 db_printf(", ruid %d", entry->cred->cr_ruid); 4390 db_printf(", object=%p, offset=0x%jx", 4391 (void *)entry->object.vm_object, 4392 (uintmax_t)entry->offset); 4393 if (entry->object.vm_object && entry->object.vm_object->cred) 4394 db_printf(", obj ruid %d charge %jx", 4395 entry->object.vm_object->cred->cr_ruid, 4396 (uintmax_t)entry->object.vm_object->charge); 4397 if (entry->eflags & MAP_ENTRY_COW) 4398 db_printf(", copy (%s)", 4399 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4400 db_printf("\n"); 4401 4402 if ((entry->prev == &map->header) || 4403 (entry->prev->object.vm_object != 4404 entry->object.vm_object)) { 4405 db_indent += 2; 4406 vm_object_print((db_expr_t)(intptr_t) 4407 entry->object.vm_object, 4408 0, 0, (char *)0); 4409 db_indent -= 2; 4410 } 4411 } 4412 } 4413 db_indent -= 2; 4414 } 4415 4416 DB_SHOW_COMMAND(map, map) 4417 { 4418 4419 if (!have_addr) { 4420 db_printf("usage: show map <addr>\n"); 4421 return; 4422 } 4423 vm_map_print((vm_map_t)addr); 4424 } 4425 4426 DB_SHOW_COMMAND(procvm, procvm) 4427 { 4428 struct proc *p; 4429 4430 if (have_addr) { 4431 p = db_lookup_proc(addr); 4432 } else { 4433 p = curproc; 4434 } 4435 4436 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4437 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4438 (void *)vmspace_pmap(p->p_vmspace)); 4439 4440 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4441 } 4442 4443 #endif /* DDB */ 4444