xref: /freebsd/sys/vm/vm_map.c (revision f9218d3d4fd34f082473b3a021c6d4d109fb47cf)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Virtual memory mapping module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/sysent.h>
82 #include <sys/stdint.h>
83 #include <sys/shm.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/swap_pager.h>
95 #include <vm/uma.h>
96 
97 /*
98  *	Virtual memory maps provide for the mapping, protection,
99  *	and sharing of virtual memory objects.  In addition,
100  *	this module provides for an efficient virtual copy of
101  *	memory from one map to another.
102  *
103  *	Synchronization is required prior to most operations.
104  *
105  *	Maps consist of an ordered doubly-linked list of simple
106  *	entries; a single hint is used to speed up lookups.
107  *
108  *	Since portions of maps are specified by start/end addresses,
109  *	which may not align with existing map entries, all
110  *	routines merely "clip" entries to these start/end values.
111  *	[That is, an entry is split into two, bordering at a
112  *	start or end value.]  Note that these clippings may not
113  *	always be necessary (as the two resulting entries are then
114  *	not changed); however, the clipping is done for convenience.
115  *
116  *	As mentioned above, virtual copy operations are performed
117  *	by copying VM object references from one map to
118  *	another, and then marking both regions as copy-on-write.
119  */
120 
121 /*
122  *	vm_map_startup:
123  *
124  *	Initialize the vm_map module.  Must be called before
125  *	any other vm_map routines.
126  *
127  *	Map and entry structures are allocated from the general
128  *	purpose memory pool with some exceptions:
129  *
130  *	- The kernel map and kmem submap are allocated statically.
131  *	- Kernel map entries are allocated out of a static pool.
132  *
133  *	These restrictions are necessary since malloc() uses the
134  *	maps and requires map entries.
135  */
136 
137 static struct mtx map_sleep_mtx;
138 static uma_zone_t mapentzone;
139 static uma_zone_t kmapentzone;
140 static uma_zone_t mapzone;
141 static uma_zone_t vmspace_zone;
142 static struct vm_object kmapentobj;
143 static void vmspace_zinit(void *mem, int size);
144 static void vmspace_zfini(void *mem, int size);
145 static void vm_map_zinit(void *mem, int size);
146 static void vm_map_zfini(void *mem, int size);
147 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max);
148 
149 #ifdef INVARIANTS
150 static void vm_map_zdtor(void *mem, int size, void *arg);
151 static void vmspace_zdtor(void *mem, int size, void *arg);
152 #endif
153 
154 void
155 vm_map_startup(void)
156 {
157 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
158 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
159 #ifdef INVARIANTS
160 	    vm_map_zdtor,
161 #else
162 	    NULL,
163 #endif
164 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
165 	uma_prealloc(mapzone, MAX_KMAP);
166 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
167 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
168 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
169 	uma_prealloc(kmapentzone, MAX_KMAPENT);
170 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
171 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
172 	uma_prealloc(mapentzone, MAX_MAPENT);
173 }
174 
175 static void
176 vmspace_zfini(void *mem, int size)
177 {
178 	struct vmspace *vm;
179 
180 	vm = (struct vmspace *)mem;
181 
182 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
183 }
184 
185 static void
186 vmspace_zinit(void *mem, int size)
187 {
188 	struct vmspace *vm;
189 
190 	vm = (struct vmspace *)mem;
191 
192 	vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map));
193 }
194 
195 static void
196 vm_map_zfini(void *mem, int size)
197 {
198 	vm_map_t map;
199 
200 	map = (vm_map_t)mem;
201 	mtx_destroy(&map->system_mtx);
202 	lockdestroy(&map->lock);
203 }
204 
205 static void
206 vm_map_zinit(void *mem, int size)
207 {
208 	vm_map_t map;
209 
210 	map = (vm_map_t)mem;
211 	map->nentries = 0;
212 	map->size = 0;
213 	map->infork = 0;
214 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
215 	lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
216 }
217 
218 #ifdef INVARIANTS
219 static void
220 vmspace_zdtor(void *mem, int size, void *arg)
221 {
222 	struct vmspace *vm;
223 
224 	vm = (struct vmspace *)mem;
225 
226 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
227 }
228 static void
229 vm_map_zdtor(void *mem, int size, void *arg)
230 {
231 	vm_map_t map;
232 
233 	map = (vm_map_t)mem;
234 	KASSERT(map->nentries == 0,
235 	    ("map %p nentries == %d on free.",
236 	    map, map->nentries));
237 	KASSERT(map->size == 0,
238 	    ("map %p size == %lu on free.",
239 	    map, (unsigned long)map->size));
240 	KASSERT(map->infork == 0,
241 	    ("map %p infork == %d on free.",
242 	    map, map->infork));
243 }
244 #endif	/* INVARIANTS */
245 
246 /*
247  * Allocate a vmspace structure, including a vm_map and pmap,
248  * and initialize those structures.  The refcnt is set to 1.
249  * The remaining fields must be initialized by the caller.
250  */
251 struct vmspace *
252 vmspace_alloc(min, max)
253 	vm_offset_t min, max;
254 {
255 	struct vmspace *vm;
256 
257 	GIANT_REQUIRED;
258 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
259 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
260 	_vm_map_init(&vm->vm_map, min, max);
261 	pmap_pinit(vmspace_pmap(vm));
262 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
263 	vm->vm_refcnt = 1;
264 	vm->vm_shm = NULL;
265 	vm->vm_exitingcnt = 0;
266 	return (vm);
267 }
268 
269 void
270 vm_init2(void)
271 {
272 	uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
273 	    (VM_MAX_KERNEL_ADDRESS - KERNBASE) / PAGE_SIZE) / 8);
274 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
275 #ifdef INVARIANTS
276 	    vmspace_zdtor,
277 #else
278 	    NULL,
279 #endif
280 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
281 	pmap_init2();
282 }
283 
284 static __inline void
285 vmspace_dofree(struct vmspace *vm)
286 {
287 	CTR1(KTR_VM, "vmspace_free: %p", vm);
288 
289 	/*
290 	 * Make sure any SysV shm is freed, it might not have been in
291 	 * exit1().
292 	 */
293 	shmexit(vm);
294 
295 	/*
296 	 * Lock the map, to wait out all other references to it.
297 	 * Delete all of the mappings and pages they hold, then call
298 	 * the pmap module to reclaim anything left.
299 	 */
300 	vm_map_lock(&vm->vm_map);
301 	(void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
302 	    vm->vm_map.max_offset);
303 	vm_map_unlock(&vm->vm_map);
304 
305 	pmap_release(vmspace_pmap(vm));
306 	uma_zfree(vmspace_zone, vm);
307 }
308 
309 void
310 vmspace_free(struct vmspace *vm)
311 {
312 	GIANT_REQUIRED;
313 
314 	if (vm->vm_refcnt == 0)
315 		panic("vmspace_free: attempt to free already freed vmspace");
316 
317 	if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
318 		vmspace_dofree(vm);
319 }
320 
321 void
322 vmspace_exitfree(struct proc *p)
323 {
324 	struct vmspace *vm;
325 
326 	GIANT_REQUIRED;
327 	vm = p->p_vmspace;
328 	p->p_vmspace = NULL;
329 
330 	/*
331 	 * cleanup by parent process wait()ing on exiting child.  vm_refcnt
332 	 * may not be 0 (e.g. fork() and child exits without exec()ing).
333 	 * exitingcnt may increment above 0 and drop back down to zero
334 	 * several times while vm_refcnt is held non-zero.  vm_refcnt
335 	 * may also increment above 0 and drop back down to zero several
336 	 * times while vm_exitingcnt is held non-zero.
337 	 *
338 	 * The last wait on the exiting child's vmspace will clean up
339 	 * the remainder of the vmspace.
340 	 */
341 	if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
342 		vmspace_dofree(vm);
343 }
344 
345 /*
346  * vmspace_swap_count() - count the approximate swap useage in pages for a
347  *			  vmspace.
348  *
349  *	Swap useage is determined by taking the proportional swap used by
350  *	VM objects backing the VM map.  To make up for fractional losses,
351  *	if the VM object has any swap use at all the associated map entries
352  *	count for at least 1 swap page.
353  */
354 int
355 vmspace_swap_count(struct vmspace *vmspace)
356 {
357 	vm_map_t map = &vmspace->vm_map;
358 	vm_map_entry_t cur;
359 	int count = 0;
360 
361 	vm_map_lock_read(map);
362 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
363 		vm_object_t object;
364 
365 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
366 		    (object = cur->object.vm_object) != NULL &&
367 		    object->type == OBJT_SWAP
368 		) {
369 			int n = (cur->end - cur->start) / PAGE_SIZE;
370 
371 			if (object->un_pager.swp.swp_bcount) {
372 				count += object->un_pager.swp.swp_bcount *
373 				    SWAP_META_PAGES * n / object->size + 1;
374 			}
375 		}
376 	}
377 	vm_map_unlock_read(map);
378 	return (count);
379 }
380 
381 void
382 _vm_map_lock(vm_map_t map, const char *file, int line)
383 {
384 	int error;
385 
386 	if (map->system_map)
387 		_mtx_lock_flags(&map->system_mtx, 0, file, line);
388 	else {
389 		error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread);
390 		KASSERT(error == 0, ("%s: failed to get lock", __func__));
391 	}
392 	map->timestamp++;
393 }
394 
395 void
396 _vm_map_unlock(vm_map_t map, const char *file, int line)
397 {
398 
399 	if (map->system_map)
400 		_mtx_unlock_flags(&map->system_mtx, 0, file, line);
401 	else
402 		lockmgr(&map->lock, LK_RELEASE, NULL, curthread);
403 }
404 
405 void
406 _vm_map_lock_read(vm_map_t map, const char *file, int line)
407 {
408 	int error;
409 
410 	if (map->system_map)
411 		_mtx_lock_flags(&map->system_mtx, 0, file, line);
412 	else {
413 		error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread);
414 		KASSERT(error == 0, ("%s: failed to get lock", __func__));
415 	}
416 }
417 
418 void
419 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
420 {
421 
422 	if (map->system_map)
423 		_mtx_unlock_flags(&map->system_mtx, 0, file, line);
424 	else
425 		lockmgr(&map->lock, LK_RELEASE, NULL, curthread);
426 }
427 
428 int
429 _vm_map_trylock(vm_map_t map, const char *file, int line)
430 {
431 	int error;
432 
433 	error = map->system_map ?
434 	    !_mtx_trylock(&map->system_mtx, 0, file, line) :
435 	    lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread);
436 	if (error == 0)
437 		map->timestamp++;
438 	return (error == 0);
439 }
440 
441 int
442 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
443 {
444 
445 	if (map->system_map) {
446 #ifdef INVARIANTS
447 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
448 #endif
449 	} else
450 		KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE,
451 		    ("%s: lock not held", __func__));
452 	map->timestamp++;
453 	return (0);
454 }
455 
456 void
457 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
458 {
459 
460 	if (map->system_map) {
461 #ifdef INVARIANTS
462 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
463 #endif
464 	} else
465 		KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE,
466 		    ("%s: lock not held", __func__));
467 }
468 
469 /*
470  *	vm_map_unlock_and_wait:
471  */
472 int
473 vm_map_unlock_and_wait(vm_map_t map, boolean_t user_wait)
474 {
475 
476 	mtx_lock(&map_sleep_mtx);
477 	vm_map_unlock(map);
478 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 0));
479 }
480 
481 /*
482  *	vm_map_wakeup:
483  */
484 void
485 vm_map_wakeup(vm_map_t map)
486 {
487 
488 	/*
489 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
490 	 * from being performed (and lost) between the vm_map_unlock()
491 	 * and the msleep() in vm_map_unlock_and_wait().
492 	 */
493 	mtx_lock(&map_sleep_mtx);
494 	mtx_unlock(&map_sleep_mtx);
495 	wakeup(&map->root);
496 }
497 
498 long
499 vmspace_resident_count(struct vmspace *vmspace)
500 {
501 	return pmap_resident_count(vmspace_pmap(vmspace));
502 }
503 
504 /*
505  *	vm_map_create:
506  *
507  *	Creates and returns a new empty VM map with
508  *	the given physical map structure, and having
509  *	the given lower and upper address bounds.
510  */
511 vm_map_t
512 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
513 {
514 	vm_map_t result;
515 
516 	result = uma_zalloc(mapzone, M_WAITOK);
517 	CTR1(KTR_VM, "vm_map_create: %p", result);
518 	_vm_map_init(result, min, max);
519 	result->pmap = pmap;
520 	return (result);
521 }
522 
523 /*
524  * Initialize an existing vm_map structure
525  * such as that in the vmspace structure.
526  * The pmap is set elsewhere.
527  */
528 static void
529 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
530 {
531 
532 	map->header.next = map->header.prev = &map->header;
533 	map->needs_wakeup = FALSE;
534 	map->system_map = 0;
535 	map->min_offset = min;
536 	map->max_offset = max;
537 	map->first_free = &map->header;
538 	map->root = NULL;
539 	map->timestamp = 0;
540 }
541 
542 void
543 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
544 {
545 	_vm_map_init(map, min, max);
546 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
547 	lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
548 }
549 
550 /*
551  *	vm_map_entry_dispose:	[ internal use only ]
552  *
553  *	Inverse of vm_map_entry_create.
554  */
555 static void
556 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
557 {
558 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
559 }
560 
561 /*
562  *	vm_map_entry_create:	[ internal use only ]
563  *
564  *	Allocates a VM map entry for insertion.
565  *	No entry fields are filled in.
566  */
567 static vm_map_entry_t
568 vm_map_entry_create(vm_map_t map)
569 {
570 	vm_map_entry_t new_entry;
571 
572 	if (map->system_map)
573 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
574 	else
575 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
576 	if (new_entry == NULL)
577 		panic("vm_map_entry_create: kernel resources exhausted");
578 	return (new_entry);
579 }
580 
581 /*
582  *	vm_map_entry_set_behavior:
583  *
584  *	Set the expected access behavior, either normal, random, or
585  *	sequential.
586  */
587 static __inline void
588 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
589 {
590 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
591 	    (behavior & MAP_ENTRY_BEHAV_MASK);
592 }
593 
594 /*
595  *	vm_map_entry_splay:
596  *
597  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
598  *	the vm_map_entry containing the given address.  If, however, that
599  *	address is not found in the vm_map, returns a vm_map_entry that is
600  *	adjacent to the address, coming before or after it.
601  */
602 static vm_map_entry_t
603 vm_map_entry_splay(vm_offset_t address, vm_map_entry_t root)
604 {
605 	struct vm_map_entry dummy;
606 	vm_map_entry_t lefttreemax, righttreemin, y;
607 
608 	if (root == NULL)
609 		return (root);
610 	lefttreemax = righttreemin = &dummy;
611 	for (;; root = y) {
612 		if (address < root->start) {
613 			if ((y = root->left) == NULL)
614 				break;
615 			if (address < y->start) {
616 				/* Rotate right. */
617 				root->left = y->right;
618 				y->right = root;
619 				root = y;
620 				if ((y = root->left) == NULL)
621 					break;
622 			}
623 			/* Link into the new root's right tree. */
624 			righttreemin->left = root;
625 			righttreemin = root;
626 		} else if (address >= root->end) {
627 			if ((y = root->right) == NULL)
628 				break;
629 			if (address >= y->end) {
630 				/* Rotate left. */
631 				root->right = y->left;
632 				y->left = root;
633 				root = y;
634 				if ((y = root->right) == NULL)
635 					break;
636 			}
637 			/* Link into the new root's left tree. */
638 			lefttreemax->right = root;
639 			lefttreemax = root;
640 		} else
641 			break;
642 	}
643 	/* Assemble the new root. */
644 	lefttreemax->right = root->left;
645 	righttreemin->left = root->right;
646 	root->left = dummy.right;
647 	root->right = dummy.left;
648 	return (root);
649 }
650 
651 /*
652  *	vm_map_entry_{un,}link:
653  *
654  *	Insert/remove entries from maps.
655  */
656 static void
657 vm_map_entry_link(vm_map_t map,
658 		  vm_map_entry_t after_where,
659 		  vm_map_entry_t entry)
660 {
661 
662 	CTR4(KTR_VM,
663 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
664 	    map->nentries, entry, after_where);
665 	map->nentries++;
666 	entry->prev = after_where;
667 	entry->next = after_where->next;
668 	entry->next->prev = entry;
669 	after_where->next = entry;
670 
671 	if (after_where != &map->header) {
672 		if (after_where != map->root)
673 			vm_map_entry_splay(after_where->start, map->root);
674 		entry->right = after_where->right;
675 		entry->left = after_where;
676 		after_where->right = NULL;
677 	} else {
678 		entry->right = map->root;
679 		entry->left = NULL;
680 	}
681 	map->root = entry;
682 }
683 
684 static void
685 vm_map_entry_unlink(vm_map_t map,
686 		    vm_map_entry_t entry)
687 {
688 	vm_map_entry_t next, prev, root;
689 
690 	if (entry != map->root)
691 		vm_map_entry_splay(entry->start, map->root);
692 	if (entry->left == NULL)
693 		root = entry->right;
694 	else {
695 		root = vm_map_entry_splay(entry->start, entry->left);
696 		root->right = entry->right;
697 	}
698 	map->root = root;
699 
700 	prev = entry->prev;
701 	next = entry->next;
702 	next->prev = prev;
703 	prev->next = next;
704 	map->nentries--;
705 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
706 	    map->nentries, entry);
707 }
708 
709 /*
710  *	vm_map_lookup_entry:	[ internal use only ]
711  *
712  *	Finds the map entry containing (or
713  *	immediately preceding) the specified address
714  *	in the given map; the entry is returned
715  *	in the "entry" parameter.  The boolean
716  *	result indicates whether the address is
717  *	actually contained in the map.
718  */
719 boolean_t
720 vm_map_lookup_entry(
721 	vm_map_t map,
722 	vm_offset_t address,
723 	vm_map_entry_t *entry)	/* OUT */
724 {
725 	vm_map_entry_t cur;
726 
727 	cur = vm_map_entry_splay(address, map->root);
728 	if (cur == NULL)
729 		*entry = &map->header;
730 	else {
731 		map->root = cur;
732 
733 		if (address >= cur->start) {
734 			*entry = cur;
735 			if (cur->end > address)
736 				return (TRUE);
737 		} else
738 			*entry = cur->prev;
739 	}
740 	return (FALSE);
741 }
742 
743 /*
744  *	vm_map_insert:
745  *
746  *	Inserts the given whole VM object into the target
747  *	map at the specified address range.  The object's
748  *	size should match that of the address range.
749  *
750  *	Requires that the map be locked, and leaves it so.
751  *
752  *	If object is non-NULL, ref count must be bumped by caller
753  *	prior to making call to account for the new entry.
754  */
755 int
756 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
757 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
758 	      int cow)
759 {
760 	vm_map_entry_t new_entry;
761 	vm_map_entry_t prev_entry;
762 	vm_map_entry_t temp_entry;
763 	vm_eflags_t protoeflags;
764 
765 	/*
766 	 * Check that the start and end points are not bogus.
767 	 */
768 	if ((start < map->min_offset) || (end > map->max_offset) ||
769 	    (start >= end))
770 		return (KERN_INVALID_ADDRESS);
771 
772 	/*
773 	 * Find the entry prior to the proposed starting address; if it's part
774 	 * of an existing entry, this range is bogus.
775 	 */
776 	if (vm_map_lookup_entry(map, start, &temp_entry))
777 		return (KERN_NO_SPACE);
778 
779 	prev_entry = temp_entry;
780 
781 	/*
782 	 * Assert that the next entry doesn't overlap the end point.
783 	 */
784 	if ((prev_entry->next != &map->header) &&
785 	    (prev_entry->next->start < end))
786 		return (KERN_NO_SPACE);
787 
788 	protoeflags = 0;
789 
790 	if (cow & MAP_COPY_ON_WRITE)
791 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
792 
793 	if (cow & MAP_NOFAULT) {
794 		protoeflags |= MAP_ENTRY_NOFAULT;
795 
796 		KASSERT(object == NULL,
797 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
798 	}
799 	if (cow & MAP_DISABLE_SYNCER)
800 		protoeflags |= MAP_ENTRY_NOSYNC;
801 	if (cow & MAP_DISABLE_COREDUMP)
802 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
803 
804 	if (object) {
805 		/*
806 		 * When object is non-NULL, it could be shared with another
807 		 * process.  We have to set or clear OBJ_ONEMAPPING
808 		 * appropriately.
809 		 */
810 		vm_object_lock(object);
811 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
812 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
813 		}
814 		vm_object_unlock(object);
815 	}
816 	else if ((prev_entry != &map->header) &&
817 		 (prev_entry->eflags == protoeflags) &&
818 		 (prev_entry->end == start) &&
819 		 (prev_entry->wired_count == 0) &&
820 		 ((prev_entry->object.vm_object == NULL) ||
821 		  vm_object_coalesce(prev_entry->object.vm_object,
822 				     OFF_TO_IDX(prev_entry->offset),
823 				     (vm_size_t)(prev_entry->end - prev_entry->start),
824 				     (vm_size_t)(end - prev_entry->end)))) {
825 		/*
826 		 * We were able to extend the object.  Determine if we
827 		 * can extend the previous map entry to include the
828 		 * new range as well.
829 		 */
830 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
831 		    (prev_entry->protection == prot) &&
832 		    (prev_entry->max_protection == max)) {
833 			map->size += (end - prev_entry->end);
834 			prev_entry->end = end;
835 			vm_map_simplify_entry(map, prev_entry);
836 			return (KERN_SUCCESS);
837 		}
838 
839 		/*
840 		 * If we can extend the object but cannot extend the
841 		 * map entry, we have to create a new map entry.  We
842 		 * must bump the ref count on the extended object to
843 		 * account for it.  object may be NULL.
844 		 */
845 		object = prev_entry->object.vm_object;
846 		offset = prev_entry->offset +
847 			(prev_entry->end - prev_entry->start);
848 		vm_object_reference(object);
849 	}
850 
851 	/*
852 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
853 	 * in things like the buffer map where we manage kva but do not manage
854 	 * backing objects.
855 	 */
856 
857 	/*
858 	 * Create a new entry
859 	 */
860 	new_entry = vm_map_entry_create(map);
861 	new_entry->start = start;
862 	new_entry->end = end;
863 
864 	new_entry->eflags = protoeflags;
865 	new_entry->object.vm_object = object;
866 	new_entry->offset = offset;
867 	new_entry->avail_ssize = 0;
868 
869 	new_entry->inheritance = VM_INHERIT_DEFAULT;
870 	new_entry->protection = prot;
871 	new_entry->max_protection = max;
872 	new_entry->wired_count = 0;
873 
874 	/*
875 	 * Insert the new entry into the list
876 	 */
877 	vm_map_entry_link(map, prev_entry, new_entry);
878 	map->size += new_entry->end - new_entry->start;
879 
880 	/*
881 	 * Update the free space hint
882 	 */
883 	if ((map->first_free == prev_entry) &&
884 	    (prev_entry->end >= new_entry->start)) {
885 		map->first_free = new_entry;
886 	}
887 
888 #if 0
889 	/*
890 	 * Temporarily removed to avoid MAP_STACK panic, due to
891 	 * MAP_STACK being a huge hack.  Will be added back in
892 	 * when MAP_STACK (and the user stack mapping) is fixed.
893 	 */
894 	/*
895 	 * It may be possible to simplify the entry
896 	 */
897 	vm_map_simplify_entry(map, new_entry);
898 #endif
899 
900 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
901 		mtx_lock(&Giant);
902 		pmap_object_init_pt(map->pmap, start,
903 				    object, OFF_TO_IDX(offset), end - start,
904 				    cow & MAP_PREFAULT_PARTIAL);
905 		mtx_unlock(&Giant);
906 	}
907 
908 	return (KERN_SUCCESS);
909 }
910 
911 /*
912  * Find sufficient space for `length' bytes in the given map, starting at
913  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
914  */
915 int
916 vm_map_findspace(
917 	vm_map_t map,
918 	vm_offset_t start,
919 	vm_size_t length,
920 	vm_offset_t *addr)
921 {
922 	vm_map_entry_t entry, next;
923 	vm_offset_t end;
924 
925 	if (start < map->min_offset)
926 		start = map->min_offset;
927 	if (start > map->max_offset)
928 		return (1);
929 
930 	/*
931 	 * Look for the first possible address; if there's already something
932 	 * at this address, we have to start after it.
933 	 */
934 	if (start == map->min_offset) {
935 		if ((entry = map->first_free) != &map->header)
936 			start = entry->end;
937 	} else {
938 		vm_map_entry_t tmp;
939 
940 		if (vm_map_lookup_entry(map, start, &tmp))
941 			start = tmp->end;
942 		entry = tmp;
943 	}
944 
945 	/*
946 	 * Look through the rest of the map, trying to fit a new region in the
947 	 * gap between existing regions, or after the very last region.
948 	 */
949 	for (;; start = (entry = next)->end) {
950 		/*
951 		 * Find the end of the proposed new region.  Be sure we didn't
952 		 * go beyond the end of the map, or wrap around the address;
953 		 * if so, we lose.  Otherwise, if this is the last entry, or
954 		 * if the proposed new region fits before the next entry, we
955 		 * win.
956 		 */
957 		end = start + length;
958 		if (end > map->max_offset || end < start)
959 			return (1);
960 		next = entry->next;
961 		if (next == &map->header || next->start >= end)
962 			break;
963 	}
964 	*addr = start;
965 	if (map == kernel_map) {
966 		vm_offset_t ksize;
967 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
968 			pmap_growkernel(ksize);
969 		}
970 	}
971 	return (0);
972 }
973 
974 /*
975  *	vm_map_find finds an unallocated region in the target address
976  *	map with the given length.  The search is defined to be
977  *	first-fit from the specified address; the region found is
978  *	returned in the same parameter.
979  *
980  *	If object is non-NULL, ref count must be bumped by caller
981  *	prior to making call to account for the new entry.
982  */
983 int
984 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
985 	    vm_offset_t *addr,	/* IN/OUT */
986 	    vm_size_t length, boolean_t find_space, vm_prot_t prot,
987 	    vm_prot_t max, int cow)
988 {
989 	vm_offset_t start;
990 	int result, s = 0;
991 
992 	start = *addr;
993 
994 	if (map == kmem_map)
995 		s = splvm();
996 
997 	vm_map_lock(map);
998 	if (find_space) {
999 		if (vm_map_findspace(map, start, length, addr)) {
1000 			vm_map_unlock(map);
1001 			if (map == kmem_map)
1002 				splx(s);
1003 			return (KERN_NO_SPACE);
1004 		}
1005 		start = *addr;
1006 	}
1007 	result = vm_map_insert(map, object, offset,
1008 		start, start + length, prot, max, cow);
1009 	vm_map_unlock(map);
1010 
1011 	if (map == kmem_map)
1012 		splx(s);
1013 
1014 	return (result);
1015 }
1016 
1017 /*
1018  *	vm_map_simplify_entry:
1019  *
1020  *	Simplify the given map entry by merging with either neighbor.  This
1021  *	routine also has the ability to merge with both neighbors.
1022  *
1023  *	The map must be locked.
1024  *
1025  *	This routine guarentees that the passed entry remains valid (though
1026  *	possibly extended).  When merging, this routine may delete one or
1027  *	both neighbors.
1028  */
1029 void
1030 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1031 {
1032 	vm_map_entry_t next, prev;
1033 	vm_size_t prevsize, esize;
1034 
1035 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1036 		return;
1037 
1038 	prev = entry->prev;
1039 	if (prev != &map->header) {
1040 		prevsize = prev->end - prev->start;
1041 		if ( (prev->end == entry->start) &&
1042 		     (prev->object.vm_object == entry->object.vm_object) &&
1043 		     (!prev->object.vm_object ||
1044 			(prev->offset + prevsize == entry->offset)) &&
1045 		     (prev->eflags == entry->eflags) &&
1046 		     (prev->protection == entry->protection) &&
1047 		     (prev->max_protection == entry->max_protection) &&
1048 		     (prev->inheritance == entry->inheritance) &&
1049 		     (prev->wired_count == entry->wired_count)) {
1050 			if (map->first_free == prev)
1051 				map->first_free = entry;
1052 			vm_map_entry_unlink(map, prev);
1053 			entry->start = prev->start;
1054 			entry->offset = prev->offset;
1055 			if (prev->object.vm_object)
1056 				vm_object_deallocate(prev->object.vm_object);
1057 			vm_map_entry_dispose(map, prev);
1058 		}
1059 	}
1060 
1061 	next = entry->next;
1062 	if (next != &map->header) {
1063 		esize = entry->end - entry->start;
1064 		if ((entry->end == next->start) &&
1065 		    (next->object.vm_object == entry->object.vm_object) &&
1066 		     (!entry->object.vm_object ||
1067 			(entry->offset + esize == next->offset)) &&
1068 		    (next->eflags == entry->eflags) &&
1069 		    (next->protection == entry->protection) &&
1070 		    (next->max_protection == entry->max_protection) &&
1071 		    (next->inheritance == entry->inheritance) &&
1072 		    (next->wired_count == entry->wired_count)) {
1073 			if (map->first_free == next)
1074 				map->first_free = entry;
1075 			vm_map_entry_unlink(map, next);
1076 			entry->end = next->end;
1077 			if (next->object.vm_object)
1078 				vm_object_deallocate(next->object.vm_object);
1079 			vm_map_entry_dispose(map, next);
1080 	        }
1081 	}
1082 }
1083 /*
1084  *	vm_map_clip_start:	[ internal use only ]
1085  *
1086  *	Asserts that the given entry begins at or after
1087  *	the specified address; if necessary,
1088  *	it splits the entry into two.
1089  */
1090 #define vm_map_clip_start(map, entry, startaddr) \
1091 { \
1092 	if (startaddr > entry->start) \
1093 		_vm_map_clip_start(map, entry, startaddr); \
1094 }
1095 
1096 /*
1097  *	This routine is called only when it is known that
1098  *	the entry must be split.
1099  */
1100 static void
1101 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1102 {
1103 	vm_map_entry_t new_entry;
1104 
1105 	/*
1106 	 * Split off the front portion -- note that we must insert the new
1107 	 * entry BEFORE this one, so that this entry has the specified
1108 	 * starting address.
1109 	 */
1110 	vm_map_simplify_entry(map, entry);
1111 
1112 	/*
1113 	 * If there is no object backing this entry, we might as well create
1114 	 * one now.  If we defer it, an object can get created after the map
1115 	 * is clipped, and individual objects will be created for the split-up
1116 	 * map.  This is a bit of a hack, but is also about the best place to
1117 	 * put this improvement.
1118 	 */
1119 	if (entry->object.vm_object == NULL && !map->system_map) {
1120 		vm_object_t object;
1121 		object = vm_object_allocate(OBJT_DEFAULT,
1122 				atop(entry->end - entry->start));
1123 		entry->object.vm_object = object;
1124 		entry->offset = 0;
1125 	}
1126 
1127 	new_entry = vm_map_entry_create(map);
1128 	*new_entry = *entry;
1129 
1130 	new_entry->end = start;
1131 	entry->offset += (start - entry->start);
1132 	entry->start = start;
1133 
1134 	vm_map_entry_link(map, entry->prev, new_entry);
1135 
1136 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1137 		vm_object_reference(new_entry->object.vm_object);
1138 	}
1139 }
1140 
1141 /*
1142  *	vm_map_clip_end:	[ internal use only ]
1143  *
1144  *	Asserts that the given entry ends at or before
1145  *	the specified address; if necessary,
1146  *	it splits the entry into two.
1147  */
1148 #define vm_map_clip_end(map, entry, endaddr) \
1149 { \
1150 	if ((endaddr) < (entry->end)) \
1151 		_vm_map_clip_end((map), (entry), (endaddr)); \
1152 }
1153 
1154 /*
1155  *	This routine is called only when it is known that
1156  *	the entry must be split.
1157  */
1158 static void
1159 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1160 {
1161 	vm_map_entry_t new_entry;
1162 
1163 	/*
1164 	 * If there is no object backing this entry, we might as well create
1165 	 * one now.  If we defer it, an object can get created after the map
1166 	 * is clipped, and individual objects will be created for the split-up
1167 	 * map.  This is a bit of a hack, but is also about the best place to
1168 	 * put this improvement.
1169 	 */
1170 	if (entry->object.vm_object == NULL && !map->system_map) {
1171 		vm_object_t object;
1172 		object = vm_object_allocate(OBJT_DEFAULT,
1173 				atop(entry->end - entry->start));
1174 		entry->object.vm_object = object;
1175 		entry->offset = 0;
1176 	}
1177 
1178 	/*
1179 	 * Create a new entry and insert it AFTER the specified entry
1180 	 */
1181 	new_entry = vm_map_entry_create(map);
1182 	*new_entry = *entry;
1183 
1184 	new_entry->start = entry->end = end;
1185 	new_entry->offset += (end - entry->start);
1186 
1187 	vm_map_entry_link(map, entry, new_entry);
1188 
1189 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1190 		vm_object_reference(new_entry->object.vm_object);
1191 	}
1192 }
1193 
1194 /*
1195  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1196  *
1197  *	Asserts that the starting and ending region
1198  *	addresses fall within the valid range of the map.
1199  */
1200 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1201 		{					\
1202 		if (start < vm_map_min(map))		\
1203 			start = vm_map_min(map);	\
1204 		if (end > vm_map_max(map))		\
1205 			end = vm_map_max(map);		\
1206 		if (start > end)			\
1207 			start = end;			\
1208 		}
1209 
1210 /*
1211  *	vm_map_submap:		[ kernel use only ]
1212  *
1213  *	Mark the given range as handled by a subordinate map.
1214  *
1215  *	This range must have been created with vm_map_find,
1216  *	and no other operations may have been performed on this
1217  *	range prior to calling vm_map_submap.
1218  *
1219  *	Only a limited number of operations can be performed
1220  *	within this rage after calling vm_map_submap:
1221  *		vm_fault
1222  *	[Don't try vm_map_copy!]
1223  *
1224  *	To remove a submapping, one must first remove the
1225  *	range from the superior map, and then destroy the
1226  *	submap (if desired).  [Better yet, don't try it.]
1227  */
1228 int
1229 vm_map_submap(
1230 	vm_map_t map,
1231 	vm_offset_t start,
1232 	vm_offset_t end,
1233 	vm_map_t submap)
1234 {
1235 	vm_map_entry_t entry;
1236 	int result = KERN_INVALID_ARGUMENT;
1237 
1238 	vm_map_lock(map);
1239 
1240 	VM_MAP_RANGE_CHECK(map, start, end);
1241 
1242 	if (vm_map_lookup_entry(map, start, &entry)) {
1243 		vm_map_clip_start(map, entry, start);
1244 	} else
1245 		entry = entry->next;
1246 
1247 	vm_map_clip_end(map, entry, end);
1248 
1249 	if ((entry->start == start) && (entry->end == end) &&
1250 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1251 	    (entry->object.vm_object == NULL)) {
1252 		entry->object.sub_map = submap;
1253 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1254 		result = KERN_SUCCESS;
1255 	}
1256 	vm_map_unlock(map);
1257 
1258 	return (result);
1259 }
1260 
1261 /*
1262  *	vm_map_protect:
1263  *
1264  *	Sets the protection of the specified address
1265  *	region in the target map.  If "set_max" is
1266  *	specified, the maximum protection is to be set;
1267  *	otherwise, only the current protection is affected.
1268  */
1269 int
1270 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1271 	       vm_prot_t new_prot, boolean_t set_max)
1272 {
1273 	vm_map_entry_t current;
1274 	vm_map_entry_t entry;
1275 
1276 	vm_map_lock(map);
1277 
1278 	VM_MAP_RANGE_CHECK(map, start, end);
1279 
1280 	if (vm_map_lookup_entry(map, start, &entry)) {
1281 		vm_map_clip_start(map, entry, start);
1282 	} else {
1283 		entry = entry->next;
1284 	}
1285 
1286 	/*
1287 	 * Make a first pass to check for protection violations.
1288 	 */
1289 	current = entry;
1290 	while ((current != &map->header) && (current->start < end)) {
1291 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1292 			vm_map_unlock(map);
1293 			return (KERN_INVALID_ARGUMENT);
1294 		}
1295 		if ((new_prot & current->max_protection) != new_prot) {
1296 			vm_map_unlock(map);
1297 			return (KERN_PROTECTION_FAILURE);
1298 		}
1299 		current = current->next;
1300 	}
1301 
1302 	/*
1303 	 * Go back and fix up protections. [Note that clipping is not
1304 	 * necessary the second time.]
1305 	 */
1306 	current = entry;
1307 	while ((current != &map->header) && (current->start < end)) {
1308 		vm_prot_t old_prot;
1309 
1310 		vm_map_clip_end(map, current, end);
1311 
1312 		old_prot = current->protection;
1313 		if (set_max)
1314 			current->protection =
1315 			    (current->max_protection = new_prot) &
1316 			    old_prot;
1317 		else
1318 			current->protection = new_prot;
1319 
1320 		/*
1321 		 * Update physical map if necessary. Worry about copy-on-write
1322 		 * here -- CHECK THIS XXX
1323 		 */
1324 		if (current->protection != old_prot) {
1325 			mtx_lock(&Giant);
1326 			vm_page_lock_queues();
1327 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1328 							VM_PROT_ALL)
1329 			pmap_protect(map->pmap, current->start,
1330 			    current->end,
1331 			    current->protection & MASK(current));
1332 #undef	MASK
1333 			vm_page_unlock_queues();
1334 			mtx_unlock(&Giant);
1335 		}
1336 		vm_map_simplify_entry(map, current);
1337 		current = current->next;
1338 	}
1339 	vm_map_unlock(map);
1340 	return (KERN_SUCCESS);
1341 }
1342 
1343 /*
1344  *	vm_map_madvise:
1345  *
1346  * 	This routine traverses a processes map handling the madvise
1347  *	system call.  Advisories are classified as either those effecting
1348  *	the vm_map_entry structure, or those effecting the underlying
1349  *	objects.
1350  */
1351 int
1352 vm_map_madvise(
1353 	vm_map_t map,
1354 	vm_offset_t start,
1355 	vm_offset_t end,
1356 	int behav)
1357 {
1358 	vm_map_entry_t current, entry;
1359 	int modify_map = 0;
1360 
1361 	/*
1362 	 * Some madvise calls directly modify the vm_map_entry, in which case
1363 	 * we need to use an exclusive lock on the map and we need to perform
1364 	 * various clipping operations.  Otherwise we only need a read-lock
1365 	 * on the map.
1366 	 */
1367 	switch(behav) {
1368 	case MADV_NORMAL:
1369 	case MADV_SEQUENTIAL:
1370 	case MADV_RANDOM:
1371 	case MADV_NOSYNC:
1372 	case MADV_AUTOSYNC:
1373 	case MADV_NOCORE:
1374 	case MADV_CORE:
1375 		modify_map = 1;
1376 		vm_map_lock(map);
1377 		break;
1378 	case MADV_WILLNEED:
1379 	case MADV_DONTNEED:
1380 	case MADV_FREE:
1381 		vm_map_lock_read(map);
1382 		break;
1383 	default:
1384 		return (KERN_INVALID_ARGUMENT);
1385 	}
1386 
1387 	/*
1388 	 * Locate starting entry and clip if necessary.
1389 	 */
1390 	VM_MAP_RANGE_CHECK(map, start, end);
1391 
1392 	if (vm_map_lookup_entry(map, start, &entry)) {
1393 		if (modify_map)
1394 			vm_map_clip_start(map, entry, start);
1395 	} else {
1396 		entry = entry->next;
1397 	}
1398 
1399 	if (modify_map) {
1400 		/*
1401 		 * madvise behaviors that are implemented in the vm_map_entry.
1402 		 *
1403 		 * We clip the vm_map_entry so that behavioral changes are
1404 		 * limited to the specified address range.
1405 		 */
1406 		for (current = entry;
1407 		     (current != &map->header) && (current->start < end);
1408 		     current = current->next
1409 		) {
1410 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1411 				continue;
1412 
1413 			vm_map_clip_end(map, current, end);
1414 
1415 			switch (behav) {
1416 			case MADV_NORMAL:
1417 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1418 				break;
1419 			case MADV_SEQUENTIAL:
1420 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1421 				break;
1422 			case MADV_RANDOM:
1423 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1424 				break;
1425 			case MADV_NOSYNC:
1426 				current->eflags |= MAP_ENTRY_NOSYNC;
1427 				break;
1428 			case MADV_AUTOSYNC:
1429 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1430 				break;
1431 			case MADV_NOCORE:
1432 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1433 				break;
1434 			case MADV_CORE:
1435 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1436 				break;
1437 			default:
1438 				break;
1439 			}
1440 			vm_map_simplify_entry(map, current);
1441 		}
1442 		vm_map_unlock(map);
1443 	} else {
1444 		vm_pindex_t pindex;
1445 		int count;
1446 
1447 		/*
1448 		 * madvise behaviors that are implemented in the underlying
1449 		 * vm_object.
1450 		 *
1451 		 * Since we don't clip the vm_map_entry, we have to clip
1452 		 * the vm_object pindex and count.
1453 		 */
1454 		for (current = entry;
1455 		     (current != &map->header) && (current->start < end);
1456 		     current = current->next
1457 		) {
1458 			vm_offset_t useStart;
1459 
1460 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1461 				continue;
1462 
1463 			pindex = OFF_TO_IDX(current->offset);
1464 			count = atop(current->end - current->start);
1465 			useStart = current->start;
1466 
1467 			if (current->start < start) {
1468 				pindex += atop(start - current->start);
1469 				count -= atop(start - current->start);
1470 				useStart = start;
1471 			}
1472 			if (current->end > end)
1473 				count -= atop(current->end - end);
1474 
1475 			if (count <= 0)
1476 				continue;
1477 
1478 			vm_object_madvise(current->object.vm_object,
1479 					  pindex, count, behav);
1480 			if (behav == MADV_WILLNEED) {
1481 				mtx_lock(&Giant);
1482 				pmap_object_init_pt(
1483 				    map->pmap,
1484 				    useStart,
1485 				    current->object.vm_object,
1486 				    pindex,
1487 				    (count << PAGE_SHIFT),
1488 				    MAP_PREFAULT_MADVISE
1489 				);
1490 				mtx_unlock(&Giant);
1491 			}
1492 		}
1493 		vm_map_unlock_read(map);
1494 	}
1495 	return (0);
1496 }
1497 
1498 
1499 /*
1500  *	vm_map_inherit:
1501  *
1502  *	Sets the inheritance of the specified address
1503  *	range in the target map.  Inheritance
1504  *	affects how the map will be shared with
1505  *	child maps at the time of vm_map_fork.
1506  */
1507 int
1508 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1509 	       vm_inherit_t new_inheritance)
1510 {
1511 	vm_map_entry_t entry;
1512 	vm_map_entry_t temp_entry;
1513 
1514 	switch (new_inheritance) {
1515 	case VM_INHERIT_NONE:
1516 	case VM_INHERIT_COPY:
1517 	case VM_INHERIT_SHARE:
1518 		break;
1519 	default:
1520 		return (KERN_INVALID_ARGUMENT);
1521 	}
1522 	vm_map_lock(map);
1523 	VM_MAP_RANGE_CHECK(map, start, end);
1524 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1525 		entry = temp_entry;
1526 		vm_map_clip_start(map, entry, start);
1527 	} else
1528 		entry = temp_entry->next;
1529 	while ((entry != &map->header) && (entry->start < end)) {
1530 		vm_map_clip_end(map, entry, end);
1531 		entry->inheritance = new_inheritance;
1532 		vm_map_simplify_entry(map, entry);
1533 		entry = entry->next;
1534 	}
1535 	vm_map_unlock(map);
1536 	return (KERN_SUCCESS);
1537 }
1538 
1539 /*
1540  *	vm_map_unwire:
1541  *
1542  *	Implements both kernel and user unwiring.
1543  */
1544 int
1545 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1546 	boolean_t user_unwire)
1547 {
1548 	vm_map_entry_t entry, first_entry, tmp_entry;
1549 	vm_offset_t saved_start;
1550 	unsigned int last_timestamp;
1551 	int rv;
1552 	boolean_t need_wakeup, result;
1553 
1554 	vm_map_lock(map);
1555 	VM_MAP_RANGE_CHECK(map, start, end);
1556 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
1557 		vm_map_unlock(map);
1558 		return (KERN_INVALID_ADDRESS);
1559 	}
1560 	last_timestamp = map->timestamp;
1561 	entry = first_entry;
1562 	while (entry != &map->header && entry->start < end) {
1563 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1564 			/*
1565 			 * We have not yet clipped the entry.
1566 			 */
1567 			saved_start = (start >= entry->start) ? start :
1568 			    entry->start;
1569 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1570 			if (vm_map_unlock_and_wait(map, user_unwire)) {
1571 				/*
1572 				 * Allow interruption of user unwiring?
1573 				 */
1574 			}
1575 			vm_map_lock(map);
1576 			if (last_timestamp+1 != map->timestamp) {
1577 				/*
1578 				 * Look again for the entry because the map was
1579 				 * modified while it was unlocked.
1580 				 * Specifically, the entry may have been
1581 				 * clipped, merged, or deleted.
1582 				 */
1583 				if (!vm_map_lookup_entry(map, saved_start,
1584 				    &tmp_entry)) {
1585 					if (saved_start == start) {
1586 						/*
1587 						 * First_entry has been deleted.
1588 						 */
1589 						vm_map_unlock(map);
1590 						return (KERN_INVALID_ADDRESS);
1591 					}
1592 					end = saved_start;
1593 					rv = KERN_INVALID_ADDRESS;
1594 					goto done;
1595 				}
1596 				if (entry == first_entry)
1597 					first_entry = tmp_entry;
1598 				else
1599 					first_entry = NULL;
1600 				entry = tmp_entry;
1601 			}
1602 			last_timestamp = map->timestamp;
1603 			continue;
1604 		}
1605 		vm_map_clip_start(map, entry, start);
1606 		vm_map_clip_end(map, entry, end);
1607 		/*
1608 		 * Mark the entry in case the map lock is released.  (See
1609 		 * above.)
1610 		 */
1611 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1612 		/*
1613 		 * Check the map for holes in the specified region.
1614 		 */
1615 		if (entry->end < end && (entry->next == &map->header ||
1616 		    entry->next->start > entry->end)) {
1617 			end = entry->end;
1618 			rv = KERN_INVALID_ADDRESS;
1619 			goto done;
1620 		}
1621 		/*
1622 		 * Require that the entry is wired.
1623 		 */
1624 		if (entry->wired_count == 0 || (user_unwire &&
1625 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)) {
1626 			end = entry->end;
1627 			rv = KERN_INVALID_ARGUMENT;
1628 			goto done;
1629 		}
1630 		entry = entry->next;
1631 	}
1632 	rv = KERN_SUCCESS;
1633 done:
1634 	need_wakeup = FALSE;
1635 	if (first_entry == NULL) {
1636 		result = vm_map_lookup_entry(map, start, &first_entry);
1637 		KASSERT(result, ("vm_map_unwire: lookup failed"));
1638 	}
1639 	entry = first_entry;
1640 	while (entry != &map->header && entry->start < end) {
1641 		if (rv == KERN_SUCCESS) {
1642 			if (user_unwire)
1643 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1644 			entry->wired_count--;
1645 			if (entry->wired_count == 0) {
1646 				/*
1647 				 * Retain the map lock.
1648 				 */
1649 				vm_fault_unwire(map, entry->start, entry->end);
1650 			}
1651 		}
1652 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1653 			("vm_map_unwire: in-transition flag missing"));
1654 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1655 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1656 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1657 			need_wakeup = TRUE;
1658 		}
1659 		vm_map_simplify_entry(map, entry);
1660 		entry = entry->next;
1661 	}
1662 	vm_map_unlock(map);
1663 	if (need_wakeup)
1664 		vm_map_wakeup(map);
1665 	return (rv);
1666 }
1667 
1668 /*
1669  *	vm_map_wire:
1670  *
1671  *	Implements both kernel and user wiring.
1672  */
1673 int
1674 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1675 	boolean_t user_wire)
1676 {
1677 	vm_map_entry_t entry, first_entry, tmp_entry;
1678 	vm_offset_t saved_end, saved_start;
1679 	unsigned int last_timestamp;
1680 	int rv;
1681 	boolean_t need_wakeup, result;
1682 
1683 	vm_map_lock(map);
1684 	VM_MAP_RANGE_CHECK(map, start, end);
1685 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
1686 		vm_map_unlock(map);
1687 		return (KERN_INVALID_ADDRESS);
1688 	}
1689 	last_timestamp = map->timestamp;
1690 	entry = first_entry;
1691 	while (entry != &map->header && entry->start < end) {
1692 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1693 			/*
1694 			 * We have not yet clipped the entry.
1695 			 */
1696 			saved_start = (start >= entry->start) ? start :
1697 			    entry->start;
1698 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1699 			if (vm_map_unlock_and_wait(map, user_wire)) {
1700 				/*
1701 				 * Allow interruption of user wiring?
1702 				 */
1703 			}
1704 			vm_map_lock(map);
1705 			if (last_timestamp + 1 != map->timestamp) {
1706 				/*
1707 				 * Look again for the entry because the map was
1708 				 * modified while it was unlocked.
1709 				 * Specifically, the entry may have been
1710 				 * clipped, merged, or deleted.
1711 				 */
1712 				if (!vm_map_lookup_entry(map, saved_start,
1713 				    &tmp_entry)) {
1714 					if (saved_start == start) {
1715 						/*
1716 						 * first_entry has been deleted.
1717 						 */
1718 						vm_map_unlock(map);
1719 						return (KERN_INVALID_ADDRESS);
1720 					}
1721 					end = saved_start;
1722 					rv = KERN_INVALID_ADDRESS;
1723 					goto done;
1724 				}
1725 				if (entry == first_entry)
1726 					first_entry = tmp_entry;
1727 				else
1728 					first_entry = NULL;
1729 				entry = tmp_entry;
1730 			}
1731 			last_timestamp = map->timestamp;
1732 			continue;
1733 		}
1734 		vm_map_clip_start(map, entry, start);
1735 		vm_map_clip_end(map, entry, end);
1736 		/*
1737 		 * Mark the entry in case the map lock is released.  (See
1738 		 * above.)
1739 		 */
1740 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1741 		/*
1742 		 *
1743 		 */
1744 		if (entry->wired_count == 0) {
1745 			entry->wired_count++;
1746 			saved_start = entry->start;
1747 			saved_end = entry->end;
1748 			/*
1749 			 * Release the map lock, relying on the in-transition
1750 			 * mark.
1751 			 */
1752 			vm_map_unlock(map);
1753 			rv = vm_fault_wire(map, saved_start, saved_end,
1754 			    user_wire);
1755 			vm_map_lock(map);
1756 			if (last_timestamp + 1 != map->timestamp) {
1757 				/*
1758 				 * Look again for the entry because the map was
1759 				 * modified while it was unlocked.  The entry
1760 				 * may have been clipped, but NOT merged or
1761 				 * deleted.
1762 				 */
1763 				result = vm_map_lookup_entry(map, saved_start,
1764 				    &tmp_entry);
1765 				KASSERT(result, ("vm_map_wire: lookup failed"));
1766 				if (entry == first_entry)
1767 					first_entry = tmp_entry;
1768 				else
1769 					first_entry = NULL;
1770 				entry = tmp_entry;
1771 				while (entry->end < saved_end) {
1772 					if (rv != KERN_SUCCESS) {
1773 						KASSERT(entry->wired_count == 1,
1774 						    ("vm_map_wire: bad count"));
1775 						entry->wired_count = -1;
1776 					}
1777 					entry = entry->next;
1778 				}
1779 			}
1780 			last_timestamp = map->timestamp;
1781 			if (rv != KERN_SUCCESS) {
1782 				KASSERT(entry->wired_count == 1,
1783 				    ("vm_map_wire: bad count"));
1784 				/*
1785 				 * Assign an out-of-range value to represent
1786 				 * the failure to wire this entry.
1787 				 */
1788 				entry->wired_count = -1;
1789 				end = entry->end;
1790 				goto done;
1791 			}
1792 		} else if (!user_wire ||
1793 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1794 			entry->wired_count++;
1795 		}
1796 		/*
1797 		 * Check the map for holes in the specified region.
1798 		 */
1799 		if (entry->end < end && (entry->next == &map->header ||
1800 		    entry->next->start > entry->end)) {
1801 			end = entry->end;
1802 			rv = KERN_INVALID_ADDRESS;
1803 			goto done;
1804 		}
1805 		entry = entry->next;
1806 	}
1807 	rv = KERN_SUCCESS;
1808 done:
1809 	need_wakeup = FALSE;
1810 	if (first_entry == NULL) {
1811 		result = vm_map_lookup_entry(map, start, &first_entry);
1812 		KASSERT(result, ("vm_map_wire: lookup failed"));
1813 	}
1814 	entry = first_entry;
1815 	while (entry != &map->header && entry->start < end) {
1816 		if (rv == KERN_SUCCESS) {
1817 			if (user_wire)
1818 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1819 		} else if (entry->wired_count == -1) {
1820 			/*
1821 			 * Wiring failed on this entry.  Thus, unwiring is
1822 			 * unnecessary.
1823 			 */
1824 			entry->wired_count = 0;
1825 		} else {
1826 			if (!user_wire ||
1827 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
1828 				entry->wired_count--;
1829 			if (entry->wired_count == 0) {
1830 				/*
1831 				 * Retain the map lock.
1832 				 */
1833 				vm_fault_unwire(map, entry->start, entry->end);
1834 			}
1835 		}
1836 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1837 			("vm_map_wire: in-transition flag missing"));
1838 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1839 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1840 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1841 			need_wakeup = TRUE;
1842 		}
1843 		vm_map_simplify_entry(map, entry);
1844 		entry = entry->next;
1845 	}
1846 	vm_map_unlock(map);
1847 	if (need_wakeup)
1848 		vm_map_wakeup(map);
1849 	return (rv);
1850 }
1851 
1852 /*
1853  * vm_map_clean
1854  *
1855  * Push any dirty cached pages in the address range to their pager.
1856  * If syncio is TRUE, dirty pages are written synchronously.
1857  * If invalidate is TRUE, any cached pages are freed as well.
1858  *
1859  * Returns an error if any part of the specified range is not mapped.
1860  */
1861 int
1862 vm_map_clean(
1863 	vm_map_t map,
1864 	vm_offset_t start,
1865 	vm_offset_t end,
1866 	boolean_t syncio,
1867 	boolean_t invalidate)
1868 {
1869 	vm_map_entry_t current;
1870 	vm_map_entry_t entry;
1871 	vm_size_t size;
1872 	vm_object_t object;
1873 	vm_ooffset_t offset;
1874 
1875 	GIANT_REQUIRED;
1876 
1877 	vm_map_lock_read(map);
1878 	VM_MAP_RANGE_CHECK(map, start, end);
1879 	if (!vm_map_lookup_entry(map, start, &entry)) {
1880 		vm_map_unlock_read(map);
1881 		return (KERN_INVALID_ADDRESS);
1882 	}
1883 	/*
1884 	 * Make a first pass to check for holes.
1885 	 */
1886 	for (current = entry; current->start < end; current = current->next) {
1887 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1888 			vm_map_unlock_read(map);
1889 			return (KERN_INVALID_ARGUMENT);
1890 		}
1891 		if (end > current->end &&
1892 		    (current->next == &map->header ||
1893 			current->end != current->next->start)) {
1894 			vm_map_unlock_read(map);
1895 			return (KERN_INVALID_ADDRESS);
1896 		}
1897 	}
1898 
1899 	if (invalidate) {
1900 		vm_page_lock_queues();
1901 		pmap_remove(map->pmap, start, end);
1902 		vm_page_unlock_queues();
1903 	}
1904 	/*
1905 	 * Make a second pass, cleaning/uncaching pages from the indicated
1906 	 * objects as we go.
1907 	 */
1908 	for (current = entry; current->start < end; current = current->next) {
1909 		offset = current->offset + (start - current->start);
1910 		size = (end <= current->end ? end : current->end) - start;
1911 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1912 			vm_map_t smap;
1913 			vm_map_entry_t tentry;
1914 			vm_size_t tsize;
1915 
1916 			smap = current->object.sub_map;
1917 			vm_map_lock_read(smap);
1918 			(void) vm_map_lookup_entry(smap, offset, &tentry);
1919 			tsize = tentry->end - offset;
1920 			if (tsize < size)
1921 				size = tsize;
1922 			object = tentry->object.vm_object;
1923 			offset = tentry->offset + (offset - tentry->start);
1924 			vm_map_unlock_read(smap);
1925 		} else {
1926 			object = current->object.vm_object;
1927 		}
1928 		/*
1929 		 * Note that there is absolutely no sense in writing out
1930 		 * anonymous objects, so we track down the vnode object
1931 		 * to write out.
1932 		 * We invalidate (remove) all pages from the address space
1933 		 * anyway, for semantic correctness.
1934 		 *
1935 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
1936 		 * may start out with a NULL object.
1937 		 */
1938 		while (object && object->backing_object) {
1939 			object = object->backing_object;
1940 			offset += object->backing_object_offset;
1941 			if (object->size < OFF_TO_IDX(offset + size))
1942 				size = IDX_TO_OFF(object->size) - offset;
1943 		}
1944 		if (object && (object->type == OBJT_VNODE) &&
1945 		    (current->protection & VM_PROT_WRITE)) {
1946 			/*
1947 			 * Flush pages if writing is allowed, invalidate them
1948 			 * if invalidation requested.  Pages undergoing I/O
1949 			 * will be ignored by vm_object_page_remove().
1950 			 *
1951 			 * We cannot lock the vnode and then wait for paging
1952 			 * to complete without deadlocking against vm_fault.
1953 			 * Instead we simply call vm_object_page_remove() and
1954 			 * allow it to block internally on a page-by-page
1955 			 * basis when it encounters pages undergoing async
1956 			 * I/O.
1957 			 */
1958 			int flags;
1959 
1960 			vm_object_reference(object);
1961 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread);
1962 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1963 			flags |= invalidate ? OBJPC_INVAL : 0;
1964 			vm_object_page_clean(object,
1965 			    OFF_TO_IDX(offset),
1966 			    OFF_TO_IDX(offset + size + PAGE_MASK),
1967 			    flags);
1968 			VOP_UNLOCK(object->handle, 0, curthread);
1969 			vm_object_deallocate(object);
1970 		}
1971 		if (object && invalidate &&
1972 		    ((object->type == OBJT_VNODE) ||
1973 		     (object->type == OBJT_DEVICE))) {
1974 			vm_object_reference(object);
1975 			vm_object_lock(object);
1976 			vm_object_page_remove(object,
1977 			    OFF_TO_IDX(offset),
1978 			    OFF_TO_IDX(offset + size + PAGE_MASK),
1979 			    FALSE);
1980 			vm_object_unlock(object);
1981 			vm_object_deallocate(object);
1982                 }
1983 		start += size;
1984 	}
1985 
1986 	vm_map_unlock_read(map);
1987 	return (KERN_SUCCESS);
1988 }
1989 
1990 /*
1991  *	vm_map_entry_unwire:	[ internal use only ]
1992  *
1993  *	Make the region specified by this entry pageable.
1994  *
1995  *	The map in question should be locked.
1996  *	[This is the reason for this routine's existence.]
1997  */
1998 static void
1999 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2000 {
2001 	vm_fault_unwire(map, entry->start, entry->end);
2002 	entry->wired_count = 0;
2003 }
2004 
2005 /*
2006  *	vm_map_entry_delete:	[ internal use only ]
2007  *
2008  *	Deallocate the given entry from the target map.
2009  */
2010 static void
2011 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2012 {
2013 	vm_map_entry_unlink(map, entry);
2014 	map->size -= entry->end - entry->start;
2015 
2016 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2017 		vm_object_deallocate(entry->object.vm_object);
2018 	}
2019 
2020 	vm_map_entry_dispose(map, entry);
2021 }
2022 
2023 /*
2024  *	vm_map_delete:	[ internal use only ]
2025  *
2026  *	Deallocates the given address range from the target
2027  *	map.
2028  */
2029 int
2030 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2031 {
2032 	vm_object_t object;
2033 	vm_map_entry_t entry;
2034 	vm_map_entry_t first_entry;
2035 
2036 	/*
2037 	 * Find the start of the region, and clip it
2038 	 */
2039 	if (!vm_map_lookup_entry(map, start, &first_entry))
2040 		entry = first_entry->next;
2041 	else {
2042 		entry = first_entry;
2043 		vm_map_clip_start(map, entry, start);
2044 	}
2045 
2046 	/*
2047 	 * Save the free space hint
2048 	 */
2049 	if (entry == &map->header) {
2050 		map->first_free = &map->header;
2051 	} else if (map->first_free->start >= start) {
2052 		map->first_free = entry->prev;
2053 	}
2054 
2055 	/*
2056 	 * Step through all entries in this region
2057 	 */
2058 	while ((entry != &map->header) && (entry->start < end)) {
2059 		vm_map_entry_t next;
2060 		vm_offset_t s, e;
2061 		vm_pindex_t offidxstart, offidxend, count;
2062 
2063 		/*
2064 		 * Wait for wiring or unwiring of an entry to complete.
2065 		 */
2066 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) {
2067 			unsigned int last_timestamp;
2068 			vm_offset_t saved_start;
2069 			vm_map_entry_t tmp_entry;
2070 
2071 			saved_start = entry->start;
2072 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2073 			last_timestamp = map->timestamp;
2074 			(void) vm_map_unlock_and_wait(map, FALSE);
2075 			vm_map_lock(map);
2076 			if (last_timestamp + 1 != map->timestamp) {
2077 				/*
2078 				 * Look again for the entry because the map was
2079 				 * modified while it was unlocked.
2080 				 * Specifically, the entry may have been
2081 				 * clipped, merged, or deleted.
2082 				 */
2083 				if (!vm_map_lookup_entry(map, saved_start,
2084 							 &tmp_entry))
2085 					entry = tmp_entry->next;
2086 				else {
2087 					entry = tmp_entry;
2088 					vm_map_clip_start(map, entry,
2089 							  saved_start);
2090 				}
2091 			}
2092 			continue;
2093 		}
2094 		vm_map_clip_end(map, entry, end);
2095 
2096 		s = entry->start;
2097 		e = entry->end;
2098 		next = entry->next;
2099 
2100 		offidxstart = OFF_TO_IDX(entry->offset);
2101 		count = OFF_TO_IDX(e - s);
2102 		object = entry->object.vm_object;
2103 
2104 		/*
2105 		 * Unwire before removing addresses from the pmap; otherwise,
2106 		 * unwiring will put the entries back in the pmap.
2107 		 */
2108 		if (entry->wired_count != 0) {
2109 			vm_map_entry_unwire(map, entry);
2110 		}
2111 
2112 		offidxend = offidxstart + count;
2113 
2114 		if ((object == kernel_object) || (object == kmem_object)) {
2115 			vm_object_lock(object);
2116 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2117 			vm_object_unlock(object);
2118 		} else {
2119 			vm_object_lock(object);
2120 			vm_page_lock_queues();
2121 			pmap_remove(map->pmap, s, e);
2122 			vm_page_unlock_queues();
2123 			if (object != NULL &&
2124 			    object->ref_count != 1 &&
2125 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2126 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2127 				vm_object_collapse(object);
2128 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2129 				if (object->type == OBJT_SWAP) {
2130 					swap_pager_freespace(object, offidxstart, count);
2131 				}
2132 				if (offidxend >= object->size &&
2133 				    offidxstart < object->size) {
2134 					object->size = offidxstart;
2135 				}
2136 			}
2137 			vm_object_unlock(object);
2138 		}
2139 
2140 		/*
2141 		 * Delete the entry (which may delete the object) only after
2142 		 * removing all pmap entries pointing to its pages.
2143 		 * (Otherwise, its page frames may be reallocated, and any
2144 		 * modify bits will be set in the wrong object!)
2145 		 */
2146 		vm_map_entry_delete(map, entry);
2147 		entry = next;
2148 	}
2149 	return (KERN_SUCCESS);
2150 }
2151 
2152 /*
2153  *	vm_map_remove:
2154  *
2155  *	Remove the given address range from the target map.
2156  *	This is the exported form of vm_map_delete.
2157  */
2158 int
2159 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2160 {
2161 	int result, s = 0;
2162 
2163 	if (map == kmem_map)
2164 		s = splvm();
2165 
2166 	vm_map_lock(map);
2167 	VM_MAP_RANGE_CHECK(map, start, end);
2168 	result = vm_map_delete(map, start, end);
2169 	vm_map_unlock(map);
2170 
2171 	if (map == kmem_map)
2172 		splx(s);
2173 
2174 	return (result);
2175 }
2176 
2177 /*
2178  *	vm_map_check_protection:
2179  *
2180  *	Assert that the target map allows the specified privilege on the
2181  *	entire address region given.  The entire region must be allocated.
2182  *
2183  *	WARNING!  This code does not and should not check whether the
2184  *	contents of the region is accessible.  For example a smaller file
2185  *	might be mapped into a larger address space.
2186  *
2187  *	NOTE!  This code is also called by munmap().
2188  */
2189 boolean_t
2190 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2191 			vm_prot_t protection)
2192 {
2193 	vm_map_entry_t entry;
2194 	vm_map_entry_t tmp_entry;
2195 
2196 	vm_map_lock_read(map);
2197 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2198 		vm_map_unlock_read(map);
2199 		return (FALSE);
2200 	}
2201 	entry = tmp_entry;
2202 
2203 	while (start < end) {
2204 		if (entry == &map->header) {
2205 			vm_map_unlock_read(map);
2206 			return (FALSE);
2207 		}
2208 		/*
2209 		 * No holes allowed!
2210 		 */
2211 		if (start < entry->start) {
2212 			vm_map_unlock_read(map);
2213 			return (FALSE);
2214 		}
2215 		/*
2216 		 * Check protection associated with entry.
2217 		 */
2218 		if ((entry->protection & protection) != protection) {
2219 			vm_map_unlock_read(map);
2220 			return (FALSE);
2221 		}
2222 		/* go to next entry */
2223 		start = entry->end;
2224 		entry = entry->next;
2225 	}
2226 	vm_map_unlock_read(map);
2227 	return (TRUE);
2228 }
2229 
2230 /*
2231  *	vm_map_copy_entry:
2232  *
2233  *	Copies the contents of the source entry to the destination
2234  *	entry.  The entries *must* be aligned properly.
2235  */
2236 static void
2237 vm_map_copy_entry(
2238 	vm_map_t src_map,
2239 	vm_map_t dst_map,
2240 	vm_map_entry_t src_entry,
2241 	vm_map_entry_t dst_entry)
2242 {
2243 	vm_object_t src_object;
2244 
2245 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2246 		return;
2247 
2248 	if (src_entry->wired_count == 0) {
2249 
2250 		/*
2251 		 * If the source entry is marked needs_copy, it is already
2252 		 * write-protected.
2253 		 */
2254 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2255 			vm_page_lock_queues();
2256 			pmap_protect(src_map->pmap,
2257 			    src_entry->start,
2258 			    src_entry->end,
2259 			    src_entry->protection & ~VM_PROT_WRITE);
2260 			vm_page_unlock_queues();
2261 		}
2262 
2263 		/*
2264 		 * Make a copy of the object.
2265 		 */
2266 		if ((src_object = src_entry->object.vm_object) != NULL) {
2267 
2268 			if ((src_object->handle == NULL) &&
2269 				(src_object->type == OBJT_DEFAULT ||
2270 				 src_object->type == OBJT_SWAP)) {
2271 				vm_object_collapse(src_object);
2272 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2273 					vm_object_split(src_entry);
2274 					src_object = src_entry->object.vm_object;
2275 				}
2276 			}
2277 
2278 			vm_object_reference(src_object);
2279 			vm_object_lock(src_object);
2280 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2281 			vm_object_unlock(src_object);
2282 			dst_entry->object.vm_object = src_object;
2283 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2284 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2285 			dst_entry->offset = src_entry->offset;
2286 		} else {
2287 			dst_entry->object.vm_object = NULL;
2288 			dst_entry->offset = 0;
2289 		}
2290 
2291 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2292 		    dst_entry->end - dst_entry->start, src_entry->start);
2293 	} else {
2294 		/*
2295 		 * Of course, wired down pages can't be set copy-on-write.
2296 		 * Cause wired pages to be copied into the new map by
2297 		 * simulating faults (the new pages are pageable)
2298 		 */
2299 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2300 	}
2301 }
2302 
2303 /*
2304  * vmspace_fork:
2305  * Create a new process vmspace structure and vm_map
2306  * based on those of an existing process.  The new map
2307  * is based on the old map, according to the inheritance
2308  * values on the regions in that map.
2309  *
2310  * The source map must not be locked.
2311  */
2312 struct vmspace *
2313 vmspace_fork(struct vmspace *vm1)
2314 {
2315 	struct vmspace *vm2;
2316 	vm_map_t old_map = &vm1->vm_map;
2317 	vm_map_t new_map;
2318 	vm_map_entry_t old_entry;
2319 	vm_map_entry_t new_entry;
2320 	vm_object_t object;
2321 
2322 	GIANT_REQUIRED;
2323 
2324 	vm_map_lock(old_map);
2325 	old_map->infork = 1;
2326 
2327 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2328 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2329 	    (caddr_t) &vm1->vm_endcopy - (caddr_t) &vm1->vm_startcopy);
2330 	new_map = &vm2->vm_map;	/* XXX */
2331 	new_map->timestamp = 1;
2332 
2333 	old_entry = old_map->header.next;
2334 
2335 	while (old_entry != &old_map->header) {
2336 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2337 			panic("vm_map_fork: encountered a submap");
2338 
2339 		switch (old_entry->inheritance) {
2340 		case VM_INHERIT_NONE:
2341 			break;
2342 
2343 		case VM_INHERIT_SHARE:
2344 			/*
2345 			 * Clone the entry, creating the shared object if necessary.
2346 			 */
2347 			object = old_entry->object.vm_object;
2348 			if (object == NULL) {
2349 				object = vm_object_allocate(OBJT_DEFAULT,
2350 					atop(old_entry->end - old_entry->start));
2351 				old_entry->object.vm_object = object;
2352 				old_entry->offset = (vm_offset_t) 0;
2353 			}
2354 
2355 			/*
2356 			 * Add the reference before calling vm_object_shadow
2357 			 * to insure that a shadow object is created.
2358 			 */
2359 			vm_object_reference(object);
2360 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2361 				vm_object_shadow(&old_entry->object.vm_object,
2362 					&old_entry->offset,
2363 					atop(old_entry->end - old_entry->start));
2364 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2365 				/* Transfer the second reference too. */
2366 				vm_object_reference(
2367 				    old_entry->object.vm_object);
2368 				vm_object_deallocate(object);
2369 				object = old_entry->object.vm_object;
2370 			}
2371 			vm_object_lock(object);
2372 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2373 			vm_object_unlock(object);
2374 
2375 			/*
2376 			 * Clone the entry, referencing the shared object.
2377 			 */
2378 			new_entry = vm_map_entry_create(new_map);
2379 			*new_entry = *old_entry;
2380 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2381 			new_entry->wired_count = 0;
2382 
2383 			/*
2384 			 * Insert the entry into the new map -- we know we're
2385 			 * inserting at the end of the new map.
2386 			 */
2387 			vm_map_entry_link(new_map, new_map->header.prev,
2388 			    new_entry);
2389 
2390 			/*
2391 			 * Update the physical map
2392 			 */
2393 			pmap_copy(new_map->pmap, old_map->pmap,
2394 			    new_entry->start,
2395 			    (old_entry->end - old_entry->start),
2396 			    old_entry->start);
2397 			break;
2398 
2399 		case VM_INHERIT_COPY:
2400 			/*
2401 			 * Clone the entry and link into the map.
2402 			 */
2403 			new_entry = vm_map_entry_create(new_map);
2404 			*new_entry = *old_entry;
2405 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2406 			new_entry->wired_count = 0;
2407 			new_entry->object.vm_object = NULL;
2408 			vm_map_entry_link(new_map, new_map->header.prev,
2409 			    new_entry);
2410 			vm_map_copy_entry(old_map, new_map, old_entry,
2411 			    new_entry);
2412 			break;
2413 		}
2414 		old_entry = old_entry->next;
2415 	}
2416 
2417 	new_map->size = old_map->size;
2418 	old_map->infork = 0;
2419 	vm_map_unlock(old_map);
2420 
2421 	return (vm2);
2422 }
2423 
2424 int
2425 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2426 	      vm_prot_t prot, vm_prot_t max, int cow)
2427 {
2428 	vm_map_entry_t prev_entry;
2429 	vm_map_entry_t new_stack_entry;
2430 	vm_size_t      init_ssize;
2431 	int            rv;
2432 
2433 	if (addrbos < vm_map_min(map))
2434 		return (KERN_NO_SPACE);
2435 
2436 	if (max_ssize < sgrowsiz)
2437 		init_ssize = max_ssize;
2438 	else
2439 		init_ssize = sgrowsiz;
2440 
2441 	vm_map_lock(map);
2442 
2443 	/* If addr is already mapped, no go */
2444 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2445 		vm_map_unlock(map);
2446 		return (KERN_NO_SPACE);
2447 	}
2448 
2449 	/* If we would blow our VMEM resource limit, no go */
2450 	if (map->size + init_ssize >
2451 	    curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2452 		vm_map_unlock(map);
2453 		return (KERN_NO_SPACE);
2454 	}
2455 
2456 	/* If we can't accomodate max_ssize in the current mapping,
2457 	 * no go.  However, we need to be aware that subsequent user
2458 	 * mappings might map into the space we have reserved for
2459 	 * stack, and currently this space is not protected.
2460 	 *
2461 	 * Hopefully we will at least detect this condition
2462 	 * when we try to grow the stack.
2463 	 */
2464 	if ((prev_entry->next != &map->header) &&
2465 	    (prev_entry->next->start < addrbos + max_ssize)) {
2466 		vm_map_unlock(map);
2467 		return (KERN_NO_SPACE);
2468 	}
2469 
2470 	/* We initially map a stack of only init_ssize.  We will
2471 	 * grow as needed later.  Since this is to be a grow
2472 	 * down stack, we map at the top of the range.
2473 	 *
2474 	 * Note: we would normally expect prot and max to be
2475 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2476 	 * eliminate these as input parameters, and just
2477 	 * pass these values here in the insert call.
2478 	 */
2479 	rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize,
2480 	                   addrbos + max_ssize, prot, max, cow);
2481 
2482 	/* Now set the avail_ssize amount */
2483 	if (rv == KERN_SUCCESS){
2484 		if (prev_entry != &map->header)
2485 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize);
2486 		new_stack_entry = prev_entry->next;
2487 		if (new_stack_entry->end   != addrbos + max_ssize ||
2488 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2489 			panic ("Bad entry start/end for new stack entry");
2490 		else
2491 			new_stack_entry->avail_ssize = max_ssize - init_ssize;
2492 	}
2493 
2494 	vm_map_unlock(map);
2495 	return (rv);
2496 }
2497 
2498 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2499  * desired address is already mapped, or if we successfully grow
2500  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2501  * stack range (this is strange, but preserves compatibility with
2502  * the grow function in vm_machdep.c).
2503  */
2504 int
2505 vm_map_growstack (struct proc *p, vm_offset_t addr)
2506 {
2507 	vm_map_entry_t prev_entry;
2508 	vm_map_entry_t stack_entry;
2509 	vm_map_entry_t new_stack_entry;
2510 	struct vmspace *vm = p->p_vmspace;
2511 	vm_map_t map = &vm->vm_map;
2512 	vm_offset_t    end;
2513 	int      grow_amount;
2514 	int      rv;
2515 	int      is_procstack;
2516 
2517 	GIANT_REQUIRED;
2518 
2519 Retry:
2520 	vm_map_lock_read(map);
2521 
2522 	/* If addr is already in the entry range, no need to grow.*/
2523 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2524 		vm_map_unlock_read(map);
2525 		return (KERN_SUCCESS);
2526 	}
2527 
2528 	if ((stack_entry = prev_entry->next) == &map->header) {
2529 		vm_map_unlock_read(map);
2530 		return (KERN_SUCCESS);
2531 	}
2532 	if (prev_entry == &map->header)
2533 		end = stack_entry->start - stack_entry->avail_ssize;
2534 	else
2535 		end = prev_entry->end;
2536 
2537 	/* This next test mimics the old grow function in vm_machdep.c.
2538 	 * It really doesn't quite make sense, but we do it anyway
2539 	 * for compatibility.
2540 	 *
2541 	 * If not growable stack, return success.  This signals the
2542 	 * caller to proceed as he would normally with normal vm.
2543 	 */
2544 	if (stack_entry->avail_ssize < 1 ||
2545 	    addr >= stack_entry->start ||
2546 	    addr <  stack_entry->start - stack_entry->avail_ssize) {
2547 		vm_map_unlock_read(map);
2548 		return (KERN_SUCCESS);
2549 	}
2550 
2551 	/* Find the minimum grow amount */
2552 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2553 	if (grow_amount > stack_entry->avail_ssize) {
2554 		vm_map_unlock_read(map);
2555 		return (KERN_NO_SPACE);
2556 	}
2557 
2558 	/* If there is no longer enough space between the entries
2559 	 * nogo, and adjust the available space.  Note: this
2560 	 * should only happen if the user has mapped into the
2561 	 * stack area after the stack was created, and is
2562 	 * probably an error.
2563 	 *
2564 	 * This also effectively destroys any guard page the user
2565 	 * might have intended by limiting the stack size.
2566 	 */
2567 	if (grow_amount > stack_entry->start - end) {
2568 		if (vm_map_lock_upgrade(map))
2569 			goto Retry;
2570 
2571 		stack_entry->avail_ssize = stack_entry->start - end;
2572 
2573 		vm_map_unlock(map);
2574 		return (KERN_NO_SPACE);
2575 	}
2576 
2577 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2578 
2579 	/* If this is the main process stack, see if we're over the
2580 	 * stack limit.
2581 	 */
2582 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2583 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2584 		vm_map_unlock_read(map);
2585 		return (KERN_NO_SPACE);
2586 	}
2587 
2588 	/* Round up the grow amount modulo SGROWSIZ */
2589 	grow_amount = roundup (grow_amount, sgrowsiz);
2590 	if (grow_amount > stack_entry->avail_ssize) {
2591 		grow_amount = stack_entry->avail_ssize;
2592 	}
2593 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2594 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2595 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2596 		              ctob(vm->vm_ssize);
2597 	}
2598 
2599 	/* If we would blow our VMEM resource limit, no go */
2600 	if (map->size + grow_amount >
2601 	    curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2602 		vm_map_unlock_read(map);
2603 		return (KERN_NO_SPACE);
2604 	}
2605 
2606 	if (vm_map_lock_upgrade(map))
2607 		goto Retry;
2608 
2609 	/* Get the preliminary new entry start value */
2610 	addr = stack_entry->start - grow_amount;
2611 
2612 	/* If this puts us into the previous entry, cut back our growth
2613 	 * to the available space.  Also, see the note above.
2614 	 */
2615 	if (addr < end) {
2616 		stack_entry->avail_ssize = stack_entry->start - end;
2617 		addr = end;
2618 	}
2619 
2620 	rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2621 	    p->p_sysent->sv_stackprot, VM_PROT_ALL, 0);
2622 
2623 	/* Adjust the available stack space by the amount we grew. */
2624 	if (rv == KERN_SUCCESS) {
2625 		if (prev_entry != &map->header)
2626 			vm_map_clip_end(map, prev_entry, addr);
2627 		new_stack_entry = prev_entry->next;
2628 		if (new_stack_entry->end   != stack_entry->start  ||
2629 		    new_stack_entry->start != addr)
2630 			panic ("Bad stack grow start/end in new stack entry");
2631 		else {
2632 			new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2633 							(new_stack_entry->end -
2634 							 new_stack_entry->start);
2635 			if (is_procstack)
2636 				vm->vm_ssize += btoc(new_stack_entry->end -
2637 						     new_stack_entry->start);
2638 		}
2639 	}
2640 
2641 	vm_map_unlock(map);
2642 	return (rv);
2643 }
2644 
2645 /*
2646  * Unshare the specified VM space for exec.  If other processes are
2647  * mapped to it, then create a new one.  The new vmspace is null.
2648  */
2649 void
2650 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
2651 {
2652 	struct vmspace *oldvmspace = p->p_vmspace;
2653 	struct vmspace *newvmspace;
2654 
2655 	GIANT_REQUIRED;
2656 	newvmspace = vmspace_alloc(minuser, maxuser);
2657 	bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2658 	    (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2659 	/*
2660 	 * This code is written like this for prototype purposes.  The
2661 	 * goal is to avoid running down the vmspace here, but let the
2662 	 * other process's that are still using the vmspace to finally
2663 	 * run it down.  Even though there is little or no chance of blocking
2664 	 * here, it is a good idea to keep this form for future mods.
2665 	 */
2666 	p->p_vmspace = newvmspace;
2667 	pmap_pinit2(vmspace_pmap(newvmspace));
2668 	vmspace_free(oldvmspace);
2669 	if (p == curthread->td_proc)		/* XXXKSE ? */
2670 		pmap_activate(curthread);
2671 }
2672 
2673 /*
2674  * Unshare the specified VM space for forcing COW.  This
2675  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2676  */
2677 void
2678 vmspace_unshare(struct proc *p)
2679 {
2680 	struct vmspace *oldvmspace = p->p_vmspace;
2681 	struct vmspace *newvmspace;
2682 
2683 	GIANT_REQUIRED;
2684 	if (oldvmspace->vm_refcnt == 1)
2685 		return;
2686 	newvmspace = vmspace_fork(oldvmspace);
2687 	p->p_vmspace = newvmspace;
2688 	pmap_pinit2(vmspace_pmap(newvmspace));
2689 	vmspace_free(oldvmspace);
2690 	if (p == curthread->td_proc)		/* XXXKSE ? */
2691 		pmap_activate(curthread);
2692 }
2693 
2694 /*
2695  *	vm_map_lookup:
2696  *
2697  *	Finds the VM object, offset, and
2698  *	protection for a given virtual address in the
2699  *	specified map, assuming a page fault of the
2700  *	type specified.
2701  *
2702  *	Leaves the map in question locked for read; return
2703  *	values are guaranteed until a vm_map_lookup_done
2704  *	call is performed.  Note that the map argument
2705  *	is in/out; the returned map must be used in
2706  *	the call to vm_map_lookup_done.
2707  *
2708  *	A handle (out_entry) is returned for use in
2709  *	vm_map_lookup_done, to make that fast.
2710  *
2711  *	If a lookup is requested with "write protection"
2712  *	specified, the map may be changed to perform virtual
2713  *	copying operations, although the data referenced will
2714  *	remain the same.
2715  */
2716 int
2717 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
2718 	      vm_offset_t vaddr,
2719 	      vm_prot_t fault_typea,
2720 	      vm_map_entry_t *out_entry,	/* OUT */
2721 	      vm_object_t *object,		/* OUT */
2722 	      vm_pindex_t *pindex,		/* OUT */
2723 	      vm_prot_t *out_prot,		/* OUT */
2724 	      boolean_t *wired)			/* OUT */
2725 {
2726 	vm_map_entry_t entry;
2727 	vm_map_t map = *var_map;
2728 	vm_prot_t prot;
2729 	vm_prot_t fault_type = fault_typea;
2730 
2731 RetryLookup:;
2732 	/*
2733 	 * Lookup the faulting address.
2734 	 */
2735 
2736 	vm_map_lock_read(map);
2737 #define	RETURN(why) \
2738 		{ \
2739 		vm_map_unlock_read(map); \
2740 		return (why); \
2741 		}
2742 
2743 	/*
2744 	 * If the map has an interesting hint, try it before calling full
2745 	 * blown lookup routine.
2746 	 */
2747 	entry = map->root;
2748 	*out_entry = entry;
2749 	if (entry == NULL ||
2750 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
2751 		/*
2752 		 * Entry was either not a valid hint, or the vaddr was not
2753 		 * contained in the entry, so do a full lookup.
2754 		 */
2755 		if (!vm_map_lookup_entry(map, vaddr, out_entry))
2756 			RETURN(KERN_INVALID_ADDRESS);
2757 
2758 		entry = *out_entry;
2759 	}
2760 
2761 	/*
2762 	 * Handle submaps.
2763 	 */
2764 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2765 		vm_map_t old_map = map;
2766 
2767 		*var_map = map = entry->object.sub_map;
2768 		vm_map_unlock_read(old_map);
2769 		goto RetryLookup;
2770 	}
2771 
2772 	/*
2773 	 * Check whether this task is allowed to have this page.
2774 	 * Note the special case for MAP_ENTRY_COW
2775 	 * pages with an override.  This is to implement a forced
2776 	 * COW for debuggers.
2777 	 */
2778 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
2779 		prot = entry->max_protection;
2780 	else
2781 		prot = entry->protection;
2782 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
2783 	if ((fault_type & prot) != fault_type) {
2784 			RETURN(KERN_PROTECTION_FAILURE);
2785 	}
2786 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
2787 	    (entry->eflags & MAP_ENTRY_COW) &&
2788 	    (fault_type & VM_PROT_WRITE) &&
2789 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
2790 		RETURN(KERN_PROTECTION_FAILURE);
2791 	}
2792 
2793 	/*
2794 	 * If this page is not pageable, we have to get it for all possible
2795 	 * accesses.
2796 	 */
2797 	*wired = (entry->wired_count != 0);
2798 	if (*wired)
2799 		prot = fault_type = entry->protection;
2800 
2801 	/*
2802 	 * If the entry was copy-on-write, we either ...
2803 	 */
2804 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2805 		/*
2806 		 * If we want to write the page, we may as well handle that
2807 		 * now since we've got the map locked.
2808 		 *
2809 		 * If we don't need to write the page, we just demote the
2810 		 * permissions allowed.
2811 		 */
2812 		if (fault_type & VM_PROT_WRITE) {
2813 			/*
2814 			 * Make a new object, and place it in the object
2815 			 * chain.  Note that no new references have appeared
2816 			 * -- one just moved from the map to the new
2817 			 * object.
2818 			 */
2819 			if (vm_map_lock_upgrade(map))
2820 				goto RetryLookup;
2821 
2822 			vm_object_shadow(
2823 			    &entry->object.vm_object,
2824 			    &entry->offset,
2825 			    atop(entry->end - entry->start));
2826 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2827 
2828 			vm_map_lock_downgrade(map);
2829 		} else {
2830 			/*
2831 			 * We're attempting to read a copy-on-write page --
2832 			 * don't allow writes.
2833 			 */
2834 			prot &= ~VM_PROT_WRITE;
2835 		}
2836 	}
2837 
2838 	/*
2839 	 * Create an object if necessary.
2840 	 */
2841 	if (entry->object.vm_object == NULL &&
2842 	    !map->system_map) {
2843 		if (vm_map_lock_upgrade(map))
2844 			goto RetryLookup;
2845 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
2846 		    atop(entry->end - entry->start));
2847 		entry->offset = 0;
2848 		vm_map_lock_downgrade(map);
2849 	}
2850 
2851 	/*
2852 	 * Return the object/offset from this entry.  If the entry was
2853 	 * copy-on-write or empty, it has been fixed up.
2854 	 */
2855 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
2856 	*object = entry->object.vm_object;
2857 
2858 	/*
2859 	 * Return whether this is the only map sharing this data.
2860 	 */
2861 	*out_prot = prot;
2862 	return (KERN_SUCCESS);
2863 
2864 #undef	RETURN
2865 }
2866 
2867 /*
2868  *	vm_map_lookup_done:
2869  *
2870  *	Releases locks acquired by a vm_map_lookup
2871  *	(according to the handle returned by that lookup).
2872  */
2873 void
2874 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
2875 {
2876 	/*
2877 	 * Unlock the main-level map
2878 	 */
2879 	vm_map_unlock_read(map);
2880 }
2881 
2882 #ifdef ENABLE_VFS_IOOPT
2883 /*
2884  * Experimental support for zero-copy I/O
2885  *
2886  * Implement uiomove with VM operations.  This handles (and collateral changes)
2887  * support every combination of source object modification, and COW type
2888  * operations.
2889  */
2890 int
2891 vm_uiomove(
2892 	vm_map_t mapa,
2893 	vm_object_t srcobject,
2894 	off_t cp,
2895 	int cnta,
2896 	vm_offset_t uaddra,
2897 	int *npages)
2898 {
2899 	vm_map_t map;
2900 	vm_object_t first_object, oldobject, object;
2901 	vm_map_entry_t entry;
2902 	vm_prot_t prot;
2903 	boolean_t wired;
2904 	int tcnt, rv;
2905 	vm_offset_t uaddr, start, end, tend;
2906 	vm_pindex_t first_pindex, oindex;
2907 	vm_size_t osize;
2908 	off_t ooffset;
2909 	int cnt;
2910 
2911 	GIANT_REQUIRED;
2912 
2913 	if (npages)
2914 		*npages = 0;
2915 
2916 	cnt = cnta;
2917 	uaddr = uaddra;
2918 
2919 	while (cnt > 0) {
2920 		map = mapa;
2921 
2922 		if ((vm_map_lookup(&map, uaddr,
2923 			VM_PROT_READ, &entry, &first_object,
2924 			&first_pindex, &prot, &wired)) != KERN_SUCCESS) {
2925 			return EFAULT;
2926 		}
2927 
2928 		vm_map_clip_start(map, entry, uaddr);
2929 
2930 		tcnt = cnt;
2931 		tend = uaddr + tcnt;
2932 		if (tend > entry->end) {
2933 			tcnt = entry->end - uaddr;
2934 			tend = entry->end;
2935 		}
2936 
2937 		vm_map_clip_end(map, entry, tend);
2938 
2939 		start = entry->start;
2940 		end = entry->end;
2941 
2942 		osize = atop(tcnt);
2943 
2944 		oindex = OFF_TO_IDX(cp);
2945 		if (npages) {
2946 			vm_size_t idx;
2947 			for (idx = 0; idx < osize; idx++) {
2948 				vm_page_t m;
2949 				if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
2950 					vm_map_lookup_done(map, entry);
2951 					return 0;
2952 				}
2953 				/*
2954 				 * disallow busy or invalid pages, but allow
2955 				 * m->busy pages if they are entirely valid.
2956 				 */
2957 				if ((m->flags & PG_BUSY) ||
2958 					((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
2959 					vm_map_lookup_done(map, entry);
2960 					return 0;
2961 				}
2962 			}
2963 		}
2964 
2965 /*
2966  * If we are changing an existing map entry, just redirect
2967  * the object, and change mappings.
2968  */
2969 		if ((first_object->type == OBJT_VNODE) &&
2970 			((oldobject = entry->object.vm_object) == first_object)) {
2971 
2972 			if ((entry->offset != cp) || (oldobject != srcobject)) {
2973 				/*
2974    				* Remove old window into the file
2975    				*/
2976 				vm_page_lock_queues();
2977 				pmap_remove(map->pmap, uaddr, tend);
2978 				vm_page_unlock_queues();
2979 
2980 				/*
2981    				* Force copy on write for mmaped regions
2982    				*/
2983 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2984 
2985 				/*
2986    				* Point the object appropriately
2987    				*/
2988 				if (oldobject != srcobject) {
2989 
2990 				/*
2991    				* Set the object optimization hint flag
2992    				*/
2993 					vm_object_set_flag(srcobject, OBJ_OPT);
2994 					vm_object_reference(srcobject);
2995 					entry->object.vm_object = srcobject;
2996 
2997 					if (oldobject) {
2998 						vm_object_deallocate(oldobject);
2999 					}
3000 				}
3001 
3002 				entry->offset = cp;
3003 				map->timestamp++;
3004 			} else {
3005 				vm_page_lock_queues();
3006 				pmap_remove(map->pmap, uaddr, tend);
3007 				vm_page_unlock_queues();
3008 			}
3009 
3010 		} else if ((first_object->ref_count == 1) &&
3011 			(first_object->size == osize) &&
3012 			((first_object->type == OBJT_DEFAULT) ||
3013 				(first_object->type == OBJT_SWAP)) ) {
3014 
3015 			oldobject = first_object->backing_object;
3016 
3017 			if ((first_object->backing_object_offset != cp) ||
3018 				(oldobject != srcobject)) {
3019 				/*
3020    				* Remove old window into the file
3021    				*/
3022 				vm_page_lock_queues();
3023 				pmap_remove(map->pmap, uaddr, tend);
3024 				vm_page_unlock_queues();
3025 
3026 				/*
3027 				 * Remove unneeded old pages
3028 				 */
3029 				vm_object_lock(first_object);
3030 				vm_object_page_remove(first_object, 0, 0, 0);
3031 				vm_object_unlock(first_object);
3032 
3033 				/*
3034 				 * Invalidate swap space
3035 				 */
3036 				if (first_object->type == OBJT_SWAP) {
3037 					swap_pager_freespace(first_object,
3038 						0,
3039 						first_object->size);
3040 				}
3041 
3042 				/*
3043    				 * Force copy on write for mmaped regions
3044    				 */
3045 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3046 
3047 				/*
3048    				 * Point the object appropriately
3049    				 */
3050 				if (oldobject != srcobject) {
3051 					/*
3052    					 * Set the object optimization hint flag
3053    					 */
3054 					vm_object_set_flag(srcobject, OBJ_OPT);
3055 					vm_object_reference(srcobject);
3056 
3057 					if (oldobject) {
3058 						TAILQ_REMOVE(&oldobject->shadow_head,
3059 							first_object, shadow_list);
3060 						oldobject->shadow_count--;
3061 						/* XXX bump generation? */
3062 						vm_object_deallocate(oldobject);
3063 					}
3064 
3065 					TAILQ_INSERT_TAIL(&srcobject->shadow_head,
3066 						first_object, shadow_list);
3067 					srcobject->shadow_count++;
3068 					/* XXX bump generation? */
3069 
3070 					first_object->backing_object = srcobject;
3071 				}
3072 				first_object->backing_object_offset = cp;
3073 				map->timestamp++;
3074 			} else {
3075 				vm_page_lock_queues();
3076 				pmap_remove(map->pmap, uaddr, tend);
3077 				vm_page_unlock_queues();
3078 			}
3079 /*
3080  * Otherwise, we have to do a logical mmap.
3081  */
3082 		} else {
3083 
3084 			vm_object_set_flag(srcobject, OBJ_OPT);
3085 			vm_object_reference(srcobject);
3086 
3087 			vm_page_lock_queues();
3088 			pmap_remove(map->pmap, uaddr, tend);
3089 			vm_page_unlock_queues();
3090 
3091 			vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3092 			vm_map_lock_upgrade(map);
3093 
3094 			if (entry == &map->header) {
3095 				map->first_free = &map->header;
3096 			} else if (map->first_free->start >= start) {
3097 				map->first_free = entry->prev;
3098 			}
3099 
3100 			vm_map_entry_delete(map, entry);
3101 
3102 			object = srcobject;
3103 			ooffset = cp;
3104 
3105 			rv = vm_map_insert(map, object, ooffset, start, tend,
3106 				VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3107 
3108 			if (rv != KERN_SUCCESS)
3109 				panic("vm_uiomove: could not insert new entry: %d", rv);
3110 		}
3111 
3112 /*
3113  * Map the window directly, if it is already in memory
3114  */
3115 		pmap_object_init_pt(map->pmap, uaddr,
3116 			srcobject, oindex, tcnt, 0);
3117 
3118 		map->timestamp++;
3119 		vm_map_unlock(map);
3120 
3121 		cnt -= tcnt;
3122 		uaddr += tcnt;
3123 		cp += tcnt;
3124 		if (npages)
3125 			*npages += osize;
3126 	}
3127 	return 0;
3128 }
3129 #endif
3130 
3131 #include "opt_ddb.h"
3132 #ifdef DDB
3133 #include <sys/kernel.h>
3134 
3135 #include <ddb/ddb.h>
3136 
3137 /*
3138  *	vm_map_print:	[ debug ]
3139  */
3140 DB_SHOW_COMMAND(map, vm_map_print)
3141 {
3142 	static int nlines;
3143 	/* XXX convert args. */
3144 	vm_map_t map = (vm_map_t)addr;
3145 	boolean_t full = have_addr;
3146 
3147 	vm_map_entry_t entry;
3148 
3149 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3150 	    (void *)map,
3151 	    (void *)map->pmap, map->nentries, map->timestamp);
3152 	nlines++;
3153 
3154 	if (!full && db_indent)
3155 		return;
3156 
3157 	db_indent += 2;
3158 	for (entry = map->header.next; entry != &map->header;
3159 	    entry = entry->next) {
3160 		db_iprintf("map entry %p: start=%p, end=%p\n",
3161 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3162 		nlines++;
3163 		{
3164 			static char *inheritance_name[4] =
3165 			{"share", "copy", "none", "donate_copy"};
3166 
3167 			db_iprintf(" prot=%x/%x/%s",
3168 			    entry->protection,
3169 			    entry->max_protection,
3170 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3171 			if (entry->wired_count != 0)
3172 				db_printf(", wired");
3173 		}
3174 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3175 			db_printf(", share=%p, offset=0x%jx\n",
3176 			    (void *)entry->object.sub_map,
3177 			    (uintmax_t)entry->offset);
3178 			nlines++;
3179 			if ((entry->prev == &map->header) ||
3180 			    (entry->prev->object.sub_map !=
3181 				entry->object.sub_map)) {
3182 				db_indent += 2;
3183 				vm_map_print((db_expr_t)(intptr_t)
3184 					     entry->object.sub_map,
3185 					     full, 0, (char *)0);
3186 				db_indent -= 2;
3187 			}
3188 		} else {
3189 			db_printf(", object=%p, offset=0x%jx",
3190 			    (void *)entry->object.vm_object,
3191 			    (uintmax_t)entry->offset);
3192 			if (entry->eflags & MAP_ENTRY_COW)
3193 				db_printf(", copy (%s)",
3194 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3195 			db_printf("\n");
3196 			nlines++;
3197 
3198 			if ((entry->prev == &map->header) ||
3199 			    (entry->prev->object.vm_object !=
3200 				entry->object.vm_object)) {
3201 				db_indent += 2;
3202 				vm_object_print((db_expr_t)(intptr_t)
3203 						entry->object.vm_object,
3204 						full, 0, (char *)0);
3205 				nlines += 4;
3206 				db_indent -= 2;
3207 			}
3208 		}
3209 	}
3210 	db_indent -= 2;
3211 	if (db_indent == 0)
3212 		nlines = 0;
3213 }
3214 
3215 
3216 DB_SHOW_COMMAND(procvm, procvm)
3217 {
3218 	struct proc *p;
3219 
3220 	if (have_addr) {
3221 		p = (struct proc *) addr;
3222 	} else {
3223 		p = curproc;
3224 	}
3225 
3226 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3227 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3228 	    (void *)vmspace_pmap(p->p_vmspace));
3229 
3230 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3231 }
3232 
3233 #endif /* DDB */
3234