1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/elf.h> 73 #include <sys/kernel.h> 74 #include <sys/ktr.h> 75 #include <sys/lock.h> 76 #include <sys/mutex.h> 77 #include <sys/proc.h> 78 #include <sys/vmmeter.h> 79 #include <sys/mman.h> 80 #include <sys/vnode.h> 81 #include <sys/racct.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/file.h> 85 #include <sys/sysctl.h> 86 #include <sys/sysent.h> 87 #include <sys/shm.h> 88 89 #include <vm/vm.h> 90 #include <vm/vm_param.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/vm_object.h> 96 #include <vm/vm_pager.h> 97 #include <vm/vm_kern.h> 98 #include <vm/vm_extern.h> 99 #include <vm/vnode_pager.h> 100 #include <vm/swap_pager.h> 101 #include <vm/uma.h> 102 103 /* 104 * Virtual memory maps provide for the mapping, protection, 105 * and sharing of virtual memory objects. In addition, 106 * this module provides for an efficient virtual copy of 107 * memory from one map to another. 108 * 109 * Synchronization is required prior to most operations. 110 * 111 * Maps consist of an ordered doubly-linked list of simple 112 * entries; a self-adjusting binary search tree of these 113 * entries is used to speed up lookups. 114 * 115 * Since portions of maps are specified by start/end addresses, 116 * which may not align with existing map entries, all 117 * routines merely "clip" entries to these start/end values. 118 * [That is, an entry is split into two, bordering at a 119 * start or end value.] Note that these clippings may not 120 * always be necessary (as the two resulting entries are then 121 * not changed); however, the clipping is done for convenience. 122 * 123 * As mentioned above, virtual copy operations are performed 124 * by copying VM object references from one map to 125 * another, and then marking both regions as copy-on-write. 126 */ 127 128 static struct mtx map_sleep_mtx; 129 static uma_zone_t mapentzone; 130 static uma_zone_t kmapentzone; 131 static uma_zone_t vmspace_zone; 132 static int vmspace_zinit(void *mem, int size, int flags); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 139 vm_map_entry_t gap_entry); 140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 141 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 142 #ifdef INVARIANTS 143 static void vmspace_zdtor(void *mem, int size, void *arg); 144 #endif 145 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 146 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 147 int cow); 148 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 149 vm_offset_t failed_addr); 150 151 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 152 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 153 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 154 155 /* 156 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 157 * stable. 158 */ 159 #define PROC_VMSPACE_LOCK(p) do { } while (0) 160 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 161 162 /* 163 * VM_MAP_RANGE_CHECK: [ internal use only ] 164 * 165 * Asserts that the starting and ending region 166 * addresses fall within the valid range of the map. 167 */ 168 #define VM_MAP_RANGE_CHECK(map, start, end) \ 169 { \ 170 if (start < vm_map_min(map)) \ 171 start = vm_map_min(map); \ 172 if (end > vm_map_max(map)) \ 173 end = vm_map_max(map); \ 174 if (start > end) \ 175 start = end; \ 176 } 177 178 #ifndef UMA_MD_SMALL_ALLOC 179 180 /* 181 * Allocate a new slab for kernel map entries. The kernel map may be locked or 182 * unlocked, depending on whether the request is coming from the kernel map or a 183 * submap. This function allocates a virtual address range directly from the 184 * kernel map instead of the kmem_* layer to avoid recursion on the kernel map 185 * lock and also to avoid triggering allocator recursion in the vmem boundary 186 * tag allocator. 187 */ 188 static void * 189 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 190 int wait) 191 { 192 vm_offset_t addr; 193 int error, locked; 194 195 *pflag = UMA_SLAB_PRIV; 196 197 if (!(locked = vm_map_locked(kernel_map))) 198 vm_map_lock(kernel_map); 199 addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes); 200 if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map)) 201 panic("%s: kernel map is exhausted", __func__); 202 error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes, 203 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 204 if (error != KERN_SUCCESS) 205 panic("%s: vm_map_insert() failed: %d", __func__, error); 206 if (!locked) 207 vm_map_unlock(kernel_map); 208 error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT | 209 M_USE_RESERVE | (wait & M_ZERO)); 210 if (error == KERN_SUCCESS) { 211 return ((void *)addr); 212 } else { 213 if (!locked) 214 vm_map_lock(kernel_map); 215 vm_map_delete(kernel_map, addr, bytes); 216 if (!locked) 217 vm_map_unlock(kernel_map); 218 return (NULL); 219 } 220 } 221 222 static void 223 kmapent_free(void *item, vm_size_t size, uint8_t pflag) 224 { 225 vm_offset_t addr; 226 int error; 227 228 if ((pflag & UMA_SLAB_PRIV) == 0) 229 /* XXX leaked */ 230 return; 231 232 addr = (vm_offset_t)item; 233 kmem_unback(kernel_object, addr, size); 234 error = vm_map_remove(kernel_map, addr, addr + size); 235 KASSERT(error == KERN_SUCCESS, 236 ("%s: vm_map_remove failed: %d", __func__, error)); 237 } 238 239 /* 240 * The worst-case upper bound on the number of kernel map entries that may be 241 * created before the zone must be replenished in _vm_map_unlock(). 242 */ 243 #define KMAPENT_RESERVE 1 244 245 #endif /* !UMD_MD_SMALL_ALLOC */ 246 247 /* 248 * vm_map_startup: 249 * 250 * Initialize the vm_map module. Must be called before any other vm_map 251 * routines. 252 * 253 * User map and entry structures are allocated from the general purpose 254 * memory pool. Kernel maps are statically defined. Kernel map entries 255 * require special handling to avoid recursion; see the comments above 256 * kmapent_alloc() and in vm_map_entry_create(). 257 */ 258 void 259 vm_map_startup(void) 260 { 261 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 262 263 /* 264 * Disable the use of per-CPU buckets: map entry allocation is 265 * serialized by the kernel map lock. 266 */ 267 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 268 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 269 UMA_ZONE_VM | UMA_ZONE_NOBUCKET); 270 #ifndef UMA_MD_SMALL_ALLOC 271 /* Reserve an extra map entry for use when replenishing the reserve. */ 272 uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1); 273 uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1); 274 uma_zone_set_allocf(kmapentzone, kmapent_alloc); 275 uma_zone_set_freef(kmapentzone, kmapent_free); 276 #endif 277 278 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 279 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 280 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 281 #ifdef INVARIANTS 282 vmspace_zdtor, 283 #else 284 NULL, 285 #endif 286 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 287 } 288 289 static int 290 vmspace_zinit(void *mem, int size, int flags) 291 { 292 struct vmspace *vm; 293 vm_map_t map; 294 295 vm = (struct vmspace *)mem; 296 map = &vm->vm_map; 297 298 memset(map, 0, sizeof(*map)); 299 mtx_init(&map->system_mtx, "vm map (system)", NULL, 300 MTX_DEF | MTX_DUPOK); 301 sx_init(&map->lock, "vm map (user)"); 302 PMAP_LOCK_INIT(vmspace_pmap(vm)); 303 return (0); 304 } 305 306 #ifdef INVARIANTS 307 static void 308 vmspace_zdtor(void *mem, int size, void *arg) 309 { 310 struct vmspace *vm; 311 312 vm = (struct vmspace *)mem; 313 KASSERT(vm->vm_map.nentries == 0, 314 ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries)); 315 KASSERT(vm->vm_map.size == 0, 316 ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size)); 317 } 318 #endif /* INVARIANTS */ 319 320 /* 321 * Allocate a vmspace structure, including a vm_map and pmap, 322 * and initialize those structures. The refcnt is set to 1. 323 */ 324 struct vmspace * 325 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 326 { 327 struct vmspace *vm; 328 329 vm = uma_zalloc(vmspace_zone, M_WAITOK); 330 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 331 if (!pinit(vmspace_pmap(vm))) { 332 uma_zfree(vmspace_zone, vm); 333 return (NULL); 334 } 335 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 336 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 337 refcount_init(&vm->vm_refcnt, 1); 338 vm->vm_shm = NULL; 339 vm->vm_swrss = 0; 340 vm->vm_tsize = 0; 341 vm->vm_dsize = 0; 342 vm->vm_ssize = 0; 343 vm->vm_taddr = 0; 344 vm->vm_daddr = 0; 345 vm->vm_maxsaddr = 0; 346 vm->vm_stkgap = 0; 347 return (vm); 348 } 349 350 #ifdef RACCT 351 static void 352 vmspace_container_reset(struct proc *p) 353 { 354 355 PROC_LOCK(p); 356 racct_set(p, RACCT_DATA, 0); 357 racct_set(p, RACCT_STACK, 0); 358 racct_set(p, RACCT_RSS, 0); 359 racct_set(p, RACCT_MEMLOCK, 0); 360 racct_set(p, RACCT_VMEM, 0); 361 PROC_UNLOCK(p); 362 } 363 #endif 364 365 static inline void 366 vmspace_dofree(struct vmspace *vm) 367 { 368 369 CTR1(KTR_VM, "vmspace_free: %p", vm); 370 371 /* 372 * Make sure any SysV shm is freed, it might not have been in 373 * exit1(). 374 */ 375 shmexit(vm); 376 377 /* 378 * Lock the map, to wait out all other references to it. 379 * Delete all of the mappings and pages they hold, then call 380 * the pmap module to reclaim anything left. 381 */ 382 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 383 vm_map_max(&vm->vm_map)); 384 385 pmap_release(vmspace_pmap(vm)); 386 vm->vm_map.pmap = NULL; 387 uma_zfree(vmspace_zone, vm); 388 } 389 390 void 391 vmspace_free(struct vmspace *vm) 392 { 393 394 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 395 "vmspace_free() called"); 396 397 if (refcount_release(&vm->vm_refcnt)) 398 vmspace_dofree(vm); 399 } 400 401 void 402 vmspace_exitfree(struct proc *p) 403 { 404 struct vmspace *vm; 405 406 PROC_VMSPACE_LOCK(p); 407 vm = p->p_vmspace; 408 p->p_vmspace = NULL; 409 PROC_VMSPACE_UNLOCK(p); 410 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 411 vmspace_free(vm); 412 } 413 414 void 415 vmspace_exit(struct thread *td) 416 { 417 struct vmspace *vm; 418 struct proc *p; 419 bool released; 420 421 p = td->td_proc; 422 vm = p->p_vmspace; 423 424 /* 425 * Prepare to release the vmspace reference. The thread that releases 426 * the last reference is responsible for tearing down the vmspace. 427 * However, threads not releasing the final reference must switch to the 428 * kernel's vmspace0 before the decrement so that the subsequent pmap 429 * deactivation does not modify a freed vmspace. 430 */ 431 refcount_acquire(&vmspace0.vm_refcnt); 432 if (!(released = refcount_release_if_last(&vm->vm_refcnt))) { 433 if (p->p_vmspace != &vmspace0) { 434 PROC_VMSPACE_LOCK(p); 435 p->p_vmspace = &vmspace0; 436 PROC_VMSPACE_UNLOCK(p); 437 pmap_activate(td); 438 } 439 released = refcount_release(&vm->vm_refcnt); 440 } 441 if (released) { 442 /* 443 * pmap_remove_pages() expects the pmap to be active, so switch 444 * back first if necessary. 445 */ 446 if (p->p_vmspace != vm) { 447 PROC_VMSPACE_LOCK(p); 448 p->p_vmspace = vm; 449 PROC_VMSPACE_UNLOCK(p); 450 pmap_activate(td); 451 } 452 pmap_remove_pages(vmspace_pmap(vm)); 453 PROC_VMSPACE_LOCK(p); 454 p->p_vmspace = &vmspace0; 455 PROC_VMSPACE_UNLOCK(p); 456 pmap_activate(td); 457 vmspace_dofree(vm); 458 } 459 #ifdef RACCT 460 if (racct_enable) 461 vmspace_container_reset(p); 462 #endif 463 } 464 465 /* Acquire reference to vmspace owned by another process. */ 466 467 struct vmspace * 468 vmspace_acquire_ref(struct proc *p) 469 { 470 struct vmspace *vm; 471 472 PROC_VMSPACE_LOCK(p); 473 vm = p->p_vmspace; 474 if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) { 475 PROC_VMSPACE_UNLOCK(p); 476 return (NULL); 477 } 478 if (vm != p->p_vmspace) { 479 PROC_VMSPACE_UNLOCK(p); 480 vmspace_free(vm); 481 return (NULL); 482 } 483 PROC_VMSPACE_UNLOCK(p); 484 return (vm); 485 } 486 487 /* 488 * Switch between vmspaces in an AIO kernel process. 489 * 490 * The new vmspace is either the vmspace of a user process obtained 491 * from an active AIO request or the initial vmspace of the AIO kernel 492 * process (when it is idling). Because user processes will block to 493 * drain any active AIO requests before proceeding in exit() or 494 * execve(), the reference count for vmspaces from AIO requests can 495 * never be 0. Similarly, AIO kernel processes hold an extra 496 * reference on their initial vmspace for the life of the process. As 497 * a result, the 'newvm' vmspace always has a non-zero reference 498 * count. This permits an additional reference on 'newvm' to be 499 * acquired via a simple atomic increment rather than the loop in 500 * vmspace_acquire_ref() above. 501 */ 502 void 503 vmspace_switch_aio(struct vmspace *newvm) 504 { 505 struct vmspace *oldvm; 506 507 /* XXX: Need some way to assert that this is an aio daemon. */ 508 509 KASSERT(refcount_load(&newvm->vm_refcnt) > 0, 510 ("vmspace_switch_aio: newvm unreferenced")); 511 512 oldvm = curproc->p_vmspace; 513 if (oldvm == newvm) 514 return; 515 516 /* 517 * Point to the new address space and refer to it. 518 */ 519 curproc->p_vmspace = newvm; 520 refcount_acquire(&newvm->vm_refcnt); 521 522 /* Activate the new mapping. */ 523 pmap_activate(curthread); 524 525 vmspace_free(oldvm); 526 } 527 528 void 529 _vm_map_lock(vm_map_t map, const char *file, int line) 530 { 531 532 if (map->system_map) 533 mtx_lock_flags_(&map->system_mtx, 0, file, line); 534 else 535 sx_xlock_(&map->lock, file, line); 536 map->timestamp++; 537 } 538 539 void 540 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 541 { 542 vm_object_t object; 543 struct vnode *vp; 544 bool vp_held; 545 546 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 547 return; 548 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 549 ("Submap with execs")); 550 object = entry->object.vm_object; 551 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 552 if ((object->flags & OBJ_ANON) != 0) 553 object = object->handle; 554 else 555 KASSERT(object->backing_object == NULL, 556 ("non-anon object %p shadows", object)); 557 KASSERT(object != NULL, ("No content object for text, entry %p obj %p", 558 entry, entry->object.vm_object)); 559 560 /* 561 * Mostly, we do not lock the backing object. It is 562 * referenced by the entry we are processing, so it cannot go 563 * away. 564 */ 565 vm_pager_getvp(object, &vp, &vp_held); 566 if (vp != NULL) { 567 if (add) { 568 VOP_SET_TEXT_CHECKED(vp); 569 } else { 570 vn_lock(vp, LK_SHARED | LK_RETRY); 571 VOP_UNSET_TEXT_CHECKED(vp); 572 VOP_UNLOCK(vp); 573 } 574 if (vp_held) 575 vdrop(vp); 576 } 577 } 578 579 /* 580 * Use a different name for this vm_map_entry field when it's use 581 * is not consistent with its use as part of an ordered search tree. 582 */ 583 #define defer_next right 584 585 static void 586 vm_map_process_deferred(void) 587 { 588 struct thread *td; 589 vm_map_entry_t entry, next; 590 vm_object_t object; 591 592 td = curthread; 593 entry = td->td_map_def_user; 594 td->td_map_def_user = NULL; 595 while (entry != NULL) { 596 next = entry->defer_next; 597 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT | 598 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT | 599 MAP_ENTRY_VN_EXEC)); 600 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) { 601 /* 602 * Decrement the object's writemappings and 603 * possibly the vnode's v_writecount. 604 */ 605 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 606 ("Submap with writecount")); 607 object = entry->object.vm_object; 608 KASSERT(object != NULL, ("No object for writecount")); 609 vm_pager_release_writecount(object, entry->start, 610 entry->end); 611 } 612 vm_map_entry_set_vnode_text(entry, false); 613 vm_map_entry_deallocate(entry, FALSE); 614 entry = next; 615 } 616 } 617 618 #ifdef INVARIANTS 619 static void 620 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 621 { 622 623 if (map->system_map) 624 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 625 else 626 sx_assert_(&map->lock, SA_XLOCKED, file, line); 627 } 628 629 #define VM_MAP_ASSERT_LOCKED(map) \ 630 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 631 632 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL }; 633 #ifdef DIAGNOSTIC 634 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK; 635 #else 636 static int enable_vmmap_check = VMMAP_CHECK_NONE; 637 #endif 638 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 639 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 640 641 static void _vm_map_assert_consistent(vm_map_t map, int check); 642 643 #define VM_MAP_ASSERT_CONSISTENT(map) \ 644 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL) 645 #ifdef DIAGNOSTIC 646 #define VM_MAP_UNLOCK_CONSISTENT(map) do { \ 647 if (map->nupdates > map->nentries) { \ 648 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \ 649 map->nupdates = 0; \ 650 } \ 651 } while (0) 652 #else 653 #define VM_MAP_UNLOCK_CONSISTENT(map) 654 #endif 655 #else 656 #define VM_MAP_ASSERT_LOCKED(map) 657 #define VM_MAP_ASSERT_CONSISTENT(map) 658 #define VM_MAP_UNLOCK_CONSISTENT(map) 659 #endif /* INVARIANTS */ 660 661 void 662 _vm_map_unlock(vm_map_t map, const char *file, int line) 663 { 664 665 VM_MAP_UNLOCK_CONSISTENT(map); 666 if (map->system_map) { 667 #ifndef UMA_MD_SMALL_ALLOC 668 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) { 669 uma_prealloc(kmapentzone, 1); 670 map->flags &= ~MAP_REPLENISH; 671 } 672 #endif 673 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 674 } else { 675 sx_xunlock_(&map->lock, file, line); 676 vm_map_process_deferred(); 677 } 678 } 679 680 void 681 _vm_map_lock_read(vm_map_t map, const char *file, int line) 682 { 683 684 if (map->system_map) 685 mtx_lock_flags_(&map->system_mtx, 0, file, line); 686 else 687 sx_slock_(&map->lock, file, line); 688 } 689 690 void 691 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 692 { 693 694 if (map->system_map) { 695 KASSERT((map->flags & MAP_REPLENISH) == 0, 696 ("%s: MAP_REPLENISH leaked", __func__)); 697 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 698 } else { 699 sx_sunlock_(&map->lock, file, line); 700 vm_map_process_deferred(); 701 } 702 } 703 704 int 705 _vm_map_trylock(vm_map_t map, const char *file, int line) 706 { 707 int error; 708 709 error = map->system_map ? 710 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 711 !sx_try_xlock_(&map->lock, file, line); 712 if (error == 0) 713 map->timestamp++; 714 return (error == 0); 715 } 716 717 int 718 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 719 { 720 int error; 721 722 error = map->system_map ? 723 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 724 !sx_try_slock_(&map->lock, file, line); 725 return (error == 0); 726 } 727 728 /* 729 * _vm_map_lock_upgrade: [ internal use only ] 730 * 731 * Tries to upgrade a read (shared) lock on the specified map to a write 732 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 733 * non-zero value if the upgrade fails. If the upgrade fails, the map is 734 * returned without a read or write lock held. 735 * 736 * Requires that the map be read locked. 737 */ 738 int 739 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 740 { 741 unsigned int last_timestamp; 742 743 if (map->system_map) { 744 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 745 } else { 746 if (!sx_try_upgrade_(&map->lock, file, line)) { 747 last_timestamp = map->timestamp; 748 sx_sunlock_(&map->lock, file, line); 749 vm_map_process_deferred(); 750 /* 751 * If the map's timestamp does not change while the 752 * map is unlocked, then the upgrade succeeds. 753 */ 754 sx_xlock_(&map->lock, file, line); 755 if (last_timestamp != map->timestamp) { 756 sx_xunlock_(&map->lock, file, line); 757 return (1); 758 } 759 } 760 } 761 map->timestamp++; 762 return (0); 763 } 764 765 void 766 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 767 { 768 769 if (map->system_map) { 770 KASSERT((map->flags & MAP_REPLENISH) == 0, 771 ("%s: MAP_REPLENISH leaked", __func__)); 772 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 773 } else { 774 VM_MAP_UNLOCK_CONSISTENT(map); 775 sx_downgrade_(&map->lock, file, line); 776 } 777 } 778 779 /* 780 * vm_map_locked: 781 * 782 * Returns a non-zero value if the caller holds a write (exclusive) lock 783 * on the specified map and the value "0" otherwise. 784 */ 785 int 786 vm_map_locked(vm_map_t map) 787 { 788 789 if (map->system_map) 790 return (mtx_owned(&map->system_mtx)); 791 else 792 return (sx_xlocked(&map->lock)); 793 } 794 795 /* 796 * _vm_map_unlock_and_wait: 797 * 798 * Atomically releases the lock on the specified map and puts the calling 799 * thread to sleep. The calling thread will remain asleep until either 800 * vm_map_wakeup() is performed on the map or the specified timeout is 801 * exceeded. 802 * 803 * WARNING! This function does not perform deferred deallocations of 804 * objects and map entries. Therefore, the calling thread is expected to 805 * reacquire the map lock after reawakening and later perform an ordinary 806 * unlock operation, such as vm_map_unlock(), before completing its 807 * operation on the map. 808 */ 809 int 810 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 811 { 812 813 VM_MAP_UNLOCK_CONSISTENT(map); 814 mtx_lock(&map_sleep_mtx); 815 if (map->system_map) { 816 KASSERT((map->flags & MAP_REPLENISH) == 0, 817 ("%s: MAP_REPLENISH leaked", __func__)); 818 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 819 } else { 820 sx_xunlock_(&map->lock, file, line); 821 } 822 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 823 timo)); 824 } 825 826 /* 827 * vm_map_wakeup: 828 * 829 * Awaken any threads that have slept on the map using 830 * vm_map_unlock_and_wait(). 831 */ 832 void 833 vm_map_wakeup(vm_map_t map) 834 { 835 836 /* 837 * Acquire and release map_sleep_mtx to prevent a wakeup() 838 * from being performed (and lost) between the map unlock 839 * and the msleep() in _vm_map_unlock_and_wait(). 840 */ 841 mtx_lock(&map_sleep_mtx); 842 mtx_unlock(&map_sleep_mtx); 843 wakeup(&map->root); 844 } 845 846 void 847 vm_map_busy(vm_map_t map) 848 { 849 850 VM_MAP_ASSERT_LOCKED(map); 851 map->busy++; 852 } 853 854 void 855 vm_map_unbusy(vm_map_t map) 856 { 857 858 VM_MAP_ASSERT_LOCKED(map); 859 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 860 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 861 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 862 wakeup(&map->busy); 863 } 864 } 865 866 void 867 vm_map_wait_busy(vm_map_t map) 868 { 869 870 VM_MAP_ASSERT_LOCKED(map); 871 while (map->busy) { 872 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 873 if (map->system_map) 874 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 875 else 876 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 877 } 878 map->timestamp++; 879 } 880 881 long 882 vmspace_resident_count(struct vmspace *vmspace) 883 { 884 return pmap_resident_count(vmspace_pmap(vmspace)); 885 } 886 887 /* 888 * Initialize an existing vm_map structure 889 * such as that in the vmspace structure. 890 */ 891 static void 892 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 893 { 894 895 map->header.eflags = MAP_ENTRY_HEADER; 896 map->needs_wakeup = FALSE; 897 map->system_map = 0; 898 map->pmap = pmap; 899 map->header.end = min; 900 map->header.start = max; 901 map->flags = 0; 902 map->header.left = map->header.right = &map->header; 903 map->root = NULL; 904 map->timestamp = 0; 905 map->busy = 0; 906 map->anon_loc = 0; 907 #ifdef DIAGNOSTIC 908 map->nupdates = 0; 909 #endif 910 } 911 912 void 913 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 914 { 915 916 _vm_map_init(map, pmap, min, max); 917 mtx_init(&map->system_mtx, "vm map (system)", NULL, 918 MTX_DEF | MTX_DUPOK); 919 sx_init(&map->lock, "vm map (user)"); 920 } 921 922 /* 923 * vm_map_entry_dispose: [ internal use only ] 924 * 925 * Inverse of vm_map_entry_create. 926 */ 927 static void 928 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 929 { 930 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 931 } 932 933 /* 934 * vm_map_entry_create: [ internal use only ] 935 * 936 * Allocates a VM map entry for insertion. 937 * No entry fields are filled in. 938 */ 939 static vm_map_entry_t 940 vm_map_entry_create(vm_map_t map) 941 { 942 vm_map_entry_t new_entry; 943 944 #ifndef UMA_MD_SMALL_ALLOC 945 if (map == kernel_map) { 946 VM_MAP_ASSERT_LOCKED(map); 947 948 /* 949 * A new slab of kernel map entries cannot be allocated at this 950 * point because the kernel map has not yet been updated to 951 * reflect the caller's request. Therefore, we allocate a new 952 * map entry, dipping into the reserve if necessary, and set a 953 * flag indicating that the reserve must be replenished before 954 * the map is unlocked. 955 */ 956 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM); 957 if (new_entry == NULL) { 958 new_entry = uma_zalloc(kmapentzone, 959 M_NOWAIT | M_NOVM | M_USE_RESERVE); 960 kernel_map->flags |= MAP_REPLENISH; 961 } 962 } else 963 #endif 964 if (map->system_map) { 965 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 966 } else { 967 new_entry = uma_zalloc(mapentzone, M_WAITOK); 968 } 969 KASSERT(new_entry != NULL, 970 ("vm_map_entry_create: kernel resources exhausted")); 971 return (new_entry); 972 } 973 974 /* 975 * vm_map_entry_set_behavior: 976 * 977 * Set the expected access behavior, either normal, random, or 978 * sequential. 979 */ 980 static inline void 981 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 982 { 983 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 984 (behavior & MAP_ENTRY_BEHAV_MASK); 985 } 986 987 /* 988 * vm_map_entry_max_free_{left,right}: 989 * 990 * Compute the size of the largest free gap between two entries, 991 * one the root of a tree and the other the ancestor of that root 992 * that is the least or greatest ancestor found on the search path. 993 */ 994 static inline vm_size_t 995 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 996 { 997 998 return (root->left != left_ancestor ? 999 root->left->max_free : root->start - left_ancestor->end); 1000 } 1001 1002 static inline vm_size_t 1003 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 1004 { 1005 1006 return (root->right != right_ancestor ? 1007 root->right->max_free : right_ancestor->start - root->end); 1008 } 1009 1010 /* 1011 * vm_map_entry_{pred,succ}: 1012 * 1013 * Find the {predecessor, successor} of the entry by taking one step 1014 * in the appropriate direction and backtracking as much as necessary. 1015 * vm_map_entry_succ is defined in vm_map.h. 1016 */ 1017 static inline vm_map_entry_t 1018 vm_map_entry_pred(vm_map_entry_t entry) 1019 { 1020 vm_map_entry_t prior; 1021 1022 prior = entry->left; 1023 if (prior->right->start < entry->start) { 1024 do 1025 prior = prior->right; 1026 while (prior->right != entry); 1027 } 1028 return (prior); 1029 } 1030 1031 static inline vm_size_t 1032 vm_size_max(vm_size_t a, vm_size_t b) 1033 { 1034 1035 return (a > b ? a : b); 1036 } 1037 1038 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \ 1039 vm_map_entry_t z; \ 1040 vm_size_t max_free; \ 1041 \ 1042 /* \ 1043 * Infer root->right->max_free == root->max_free when \ 1044 * y->max_free < root->max_free || root->max_free == 0. \ 1045 * Otherwise, look right to find it. \ 1046 */ \ 1047 y = root->left; \ 1048 max_free = root->max_free; \ 1049 KASSERT(max_free == vm_size_max( \ 1050 vm_map_entry_max_free_left(root, llist), \ 1051 vm_map_entry_max_free_right(root, rlist)), \ 1052 ("%s: max_free invariant fails", __func__)); \ 1053 if (max_free - 1 < vm_map_entry_max_free_left(root, llist)) \ 1054 max_free = vm_map_entry_max_free_right(root, rlist); \ 1055 if (y != llist && (test)) { \ 1056 /* Rotate right and make y root. */ \ 1057 z = y->right; \ 1058 if (z != root) { \ 1059 root->left = z; \ 1060 y->right = root; \ 1061 if (max_free < y->max_free) \ 1062 root->max_free = max_free = \ 1063 vm_size_max(max_free, z->max_free); \ 1064 } else if (max_free < y->max_free) \ 1065 root->max_free = max_free = \ 1066 vm_size_max(max_free, root->start - y->end);\ 1067 root = y; \ 1068 y = root->left; \ 1069 } \ 1070 /* Copy right->max_free. Put root on rlist. */ \ 1071 root->max_free = max_free; \ 1072 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1073 ("%s: max_free not copied from right", __func__)); \ 1074 root->left = rlist; \ 1075 rlist = root; \ 1076 root = y != llist ? y : NULL; \ 1077 } while (0) 1078 1079 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \ 1080 vm_map_entry_t z; \ 1081 vm_size_t max_free; \ 1082 \ 1083 /* \ 1084 * Infer root->left->max_free == root->max_free when \ 1085 * y->max_free < root->max_free || root->max_free == 0. \ 1086 * Otherwise, look left to find it. \ 1087 */ \ 1088 y = root->right; \ 1089 max_free = root->max_free; \ 1090 KASSERT(max_free == vm_size_max( \ 1091 vm_map_entry_max_free_left(root, llist), \ 1092 vm_map_entry_max_free_right(root, rlist)), \ 1093 ("%s: max_free invariant fails", __func__)); \ 1094 if (max_free - 1 < vm_map_entry_max_free_right(root, rlist)) \ 1095 max_free = vm_map_entry_max_free_left(root, llist); \ 1096 if (y != rlist && (test)) { \ 1097 /* Rotate left and make y root. */ \ 1098 z = y->left; \ 1099 if (z != root) { \ 1100 root->right = z; \ 1101 y->left = root; \ 1102 if (max_free < y->max_free) \ 1103 root->max_free = max_free = \ 1104 vm_size_max(max_free, z->max_free); \ 1105 } else if (max_free < y->max_free) \ 1106 root->max_free = max_free = \ 1107 vm_size_max(max_free, y->start - root->end);\ 1108 root = y; \ 1109 y = root->right; \ 1110 } \ 1111 /* Copy left->max_free. Put root on llist. */ \ 1112 root->max_free = max_free; \ 1113 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1114 ("%s: max_free not copied from left", __func__)); \ 1115 root->right = llist; \ 1116 llist = root; \ 1117 root = y != rlist ? y : NULL; \ 1118 } while (0) 1119 1120 /* 1121 * Walk down the tree until we find addr or a gap where addr would go, breaking 1122 * off left and right subtrees of nodes less than, or greater than addr. Treat 1123 * subtrees with root->max_free < length as empty trees. llist and rlist are 1124 * the two sides in reverse order (bottom-up), with llist linked by the right 1125 * pointer and rlist linked by the left pointer in the vm_map_entry, and both 1126 * lists terminated by &map->header. This function, and the subsequent call to 1127 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address 1128 * values in &map->header. 1129 */ 1130 static __always_inline vm_map_entry_t 1131 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1132 vm_map_entry_t *llist, vm_map_entry_t *rlist) 1133 { 1134 vm_map_entry_t left, right, root, y; 1135 1136 left = right = &map->header; 1137 root = map->root; 1138 while (root != NULL && root->max_free >= length) { 1139 KASSERT(left->end <= root->start && 1140 root->end <= right->start, 1141 ("%s: root not within tree bounds", __func__)); 1142 if (addr < root->start) { 1143 SPLAY_LEFT_STEP(root, y, left, right, 1144 y->max_free >= length && addr < y->start); 1145 } else if (addr >= root->end) { 1146 SPLAY_RIGHT_STEP(root, y, left, right, 1147 y->max_free >= length && addr >= y->end); 1148 } else 1149 break; 1150 } 1151 *llist = left; 1152 *rlist = right; 1153 return (root); 1154 } 1155 1156 static __always_inline void 1157 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist) 1158 { 1159 vm_map_entry_t hi, right, y; 1160 1161 right = *rlist; 1162 hi = root->right == right ? NULL : root->right; 1163 if (hi == NULL) 1164 return; 1165 do 1166 SPLAY_LEFT_STEP(hi, y, root, right, true); 1167 while (hi != NULL); 1168 *rlist = right; 1169 } 1170 1171 static __always_inline void 1172 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist) 1173 { 1174 vm_map_entry_t left, lo, y; 1175 1176 left = *llist; 1177 lo = root->left == left ? NULL : root->left; 1178 if (lo == NULL) 1179 return; 1180 do 1181 SPLAY_RIGHT_STEP(lo, y, left, root, true); 1182 while (lo != NULL); 1183 *llist = left; 1184 } 1185 1186 static inline void 1187 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1188 { 1189 vm_map_entry_t tmp; 1190 1191 tmp = *b; 1192 *b = *a; 1193 *a = tmp; 1194 } 1195 1196 /* 1197 * Walk back up the two spines, flip the pointers and set max_free. The 1198 * subtrees of the root go at the bottom of llist and rlist. 1199 */ 1200 static vm_size_t 1201 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root, 1202 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist) 1203 { 1204 do { 1205 /* 1206 * The max_free values of the children of llist are in 1207 * llist->max_free and max_free. Update with the 1208 * max value. 1209 */ 1210 llist->max_free = max_free = 1211 vm_size_max(llist->max_free, max_free); 1212 vm_map_entry_swap(&llist->right, &tail); 1213 vm_map_entry_swap(&tail, &llist); 1214 } while (llist != header); 1215 root->left = tail; 1216 return (max_free); 1217 } 1218 1219 /* 1220 * When llist is known to be the predecessor of root. 1221 */ 1222 static inline vm_size_t 1223 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root, 1224 vm_map_entry_t llist) 1225 { 1226 vm_size_t max_free; 1227 1228 max_free = root->start - llist->end; 1229 if (llist != header) { 1230 max_free = vm_map_splay_merge_left_walk(header, root, 1231 root, max_free, llist); 1232 } else { 1233 root->left = header; 1234 header->right = root; 1235 } 1236 return (max_free); 1237 } 1238 1239 /* 1240 * When llist may or may not be the predecessor of root. 1241 */ 1242 static inline vm_size_t 1243 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root, 1244 vm_map_entry_t llist) 1245 { 1246 vm_size_t max_free; 1247 1248 max_free = vm_map_entry_max_free_left(root, llist); 1249 if (llist != header) { 1250 max_free = vm_map_splay_merge_left_walk(header, root, 1251 root->left == llist ? root : root->left, 1252 max_free, llist); 1253 } 1254 return (max_free); 1255 } 1256 1257 static vm_size_t 1258 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root, 1259 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist) 1260 { 1261 do { 1262 /* 1263 * The max_free values of the children of rlist are in 1264 * rlist->max_free and max_free. Update with the 1265 * max value. 1266 */ 1267 rlist->max_free = max_free = 1268 vm_size_max(rlist->max_free, max_free); 1269 vm_map_entry_swap(&rlist->left, &tail); 1270 vm_map_entry_swap(&tail, &rlist); 1271 } while (rlist != header); 1272 root->right = tail; 1273 return (max_free); 1274 } 1275 1276 /* 1277 * When rlist is known to be the succecessor of root. 1278 */ 1279 static inline vm_size_t 1280 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root, 1281 vm_map_entry_t rlist) 1282 { 1283 vm_size_t max_free; 1284 1285 max_free = rlist->start - root->end; 1286 if (rlist != header) { 1287 max_free = vm_map_splay_merge_right_walk(header, root, 1288 root, max_free, rlist); 1289 } else { 1290 root->right = header; 1291 header->left = root; 1292 } 1293 return (max_free); 1294 } 1295 1296 /* 1297 * When rlist may or may not be the succecessor of root. 1298 */ 1299 static inline vm_size_t 1300 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root, 1301 vm_map_entry_t rlist) 1302 { 1303 vm_size_t max_free; 1304 1305 max_free = vm_map_entry_max_free_right(root, rlist); 1306 if (rlist != header) { 1307 max_free = vm_map_splay_merge_right_walk(header, root, 1308 root->right == rlist ? root : root->right, 1309 max_free, rlist); 1310 } 1311 return (max_free); 1312 } 1313 1314 /* 1315 * vm_map_splay: 1316 * 1317 * The Sleator and Tarjan top-down splay algorithm with the 1318 * following variation. Max_free must be computed bottom-up, so 1319 * on the downward pass, maintain the left and right spines in 1320 * reverse order. Then, make a second pass up each side to fix 1321 * the pointers and compute max_free. The time bound is O(log n) 1322 * amortized. 1323 * 1324 * The tree is threaded, which means that there are no null pointers. 1325 * When a node has no left child, its left pointer points to its 1326 * predecessor, which the last ancestor on the search path from the root 1327 * where the search branched right. Likewise, when a node has no right 1328 * child, its right pointer points to its successor. The map header node 1329 * is the predecessor of the first map entry, and the successor of the 1330 * last. 1331 * 1332 * The new root is the vm_map_entry containing "addr", or else an 1333 * adjacent entry (lower if possible) if addr is not in the tree. 1334 * 1335 * The map must be locked, and leaves it so. 1336 * 1337 * Returns: the new root. 1338 */ 1339 static vm_map_entry_t 1340 vm_map_splay(vm_map_t map, vm_offset_t addr) 1341 { 1342 vm_map_entry_t header, llist, rlist, root; 1343 vm_size_t max_free_left, max_free_right; 1344 1345 header = &map->header; 1346 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1347 if (root != NULL) { 1348 max_free_left = vm_map_splay_merge_left(header, root, llist); 1349 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1350 } else if (llist != header) { 1351 /* 1352 * Recover the greatest node in the left 1353 * subtree and make it the root. 1354 */ 1355 root = llist; 1356 llist = root->right; 1357 max_free_left = vm_map_splay_merge_left(header, root, llist); 1358 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1359 } else if (rlist != header) { 1360 /* 1361 * Recover the least node in the right 1362 * subtree and make it the root. 1363 */ 1364 root = rlist; 1365 rlist = root->left; 1366 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1367 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1368 } else { 1369 /* There is no root. */ 1370 return (NULL); 1371 } 1372 root->max_free = vm_size_max(max_free_left, max_free_right); 1373 map->root = root; 1374 VM_MAP_ASSERT_CONSISTENT(map); 1375 return (root); 1376 } 1377 1378 /* 1379 * vm_map_entry_{un,}link: 1380 * 1381 * Insert/remove entries from maps. On linking, if new entry clips 1382 * existing entry, trim existing entry to avoid overlap, and manage 1383 * offsets. On unlinking, merge disappearing entry with neighbor, if 1384 * called for, and manage offsets. Callers should not modify fields in 1385 * entries already mapped. 1386 */ 1387 static void 1388 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1389 { 1390 vm_map_entry_t header, llist, rlist, root; 1391 vm_size_t max_free_left, max_free_right; 1392 1393 CTR3(KTR_VM, 1394 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1395 map->nentries, entry); 1396 VM_MAP_ASSERT_LOCKED(map); 1397 map->nentries++; 1398 header = &map->header; 1399 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1400 if (root == NULL) { 1401 /* 1402 * The new entry does not overlap any existing entry in the 1403 * map, so it becomes the new root of the map tree. 1404 */ 1405 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1406 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1407 } else if (entry->start == root->start) { 1408 /* 1409 * The new entry is a clone of root, with only the end field 1410 * changed. The root entry will be shrunk to abut the new 1411 * entry, and will be the right child of the new root entry in 1412 * the modified map. 1413 */ 1414 KASSERT(entry->end < root->end, 1415 ("%s: clip_start not within entry", __func__)); 1416 vm_map_splay_findprev(root, &llist); 1417 root->offset += entry->end - root->start; 1418 root->start = entry->end; 1419 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1420 max_free_right = root->max_free = vm_size_max( 1421 vm_map_splay_merge_pred(entry, root, entry), 1422 vm_map_splay_merge_right(header, root, rlist)); 1423 } else { 1424 /* 1425 * The new entry is a clone of root, with only the start field 1426 * changed. The root entry will be shrunk to abut the new 1427 * entry, and will be the left child of the new root entry in 1428 * the modified map. 1429 */ 1430 KASSERT(entry->end == root->end, 1431 ("%s: clip_start not within entry", __func__)); 1432 vm_map_splay_findnext(root, &rlist); 1433 entry->offset += entry->start - root->start; 1434 root->end = entry->start; 1435 max_free_left = root->max_free = vm_size_max( 1436 vm_map_splay_merge_left(header, root, llist), 1437 vm_map_splay_merge_succ(entry, root, entry)); 1438 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1439 } 1440 entry->max_free = vm_size_max(max_free_left, max_free_right); 1441 map->root = entry; 1442 VM_MAP_ASSERT_CONSISTENT(map); 1443 } 1444 1445 enum unlink_merge_type { 1446 UNLINK_MERGE_NONE, 1447 UNLINK_MERGE_NEXT 1448 }; 1449 1450 static void 1451 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1452 enum unlink_merge_type op) 1453 { 1454 vm_map_entry_t header, llist, rlist, root; 1455 vm_size_t max_free_left, max_free_right; 1456 1457 VM_MAP_ASSERT_LOCKED(map); 1458 header = &map->header; 1459 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1460 KASSERT(root != NULL, 1461 ("vm_map_entry_unlink: unlink object not mapped")); 1462 1463 vm_map_splay_findprev(root, &llist); 1464 vm_map_splay_findnext(root, &rlist); 1465 if (op == UNLINK_MERGE_NEXT) { 1466 rlist->start = root->start; 1467 rlist->offset = root->offset; 1468 } 1469 if (llist != header) { 1470 root = llist; 1471 llist = root->right; 1472 max_free_left = vm_map_splay_merge_left(header, root, llist); 1473 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1474 } else if (rlist != header) { 1475 root = rlist; 1476 rlist = root->left; 1477 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1478 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1479 } else { 1480 header->left = header->right = header; 1481 root = NULL; 1482 } 1483 if (root != NULL) 1484 root->max_free = vm_size_max(max_free_left, max_free_right); 1485 map->root = root; 1486 VM_MAP_ASSERT_CONSISTENT(map); 1487 map->nentries--; 1488 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1489 map->nentries, entry); 1490 } 1491 1492 /* 1493 * vm_map_entry_resize: 1494 * 1495 * Resize a vm_map_entry, recompute the amount of free space that 1496 * follows it and propagate that value up the tree. 1497 * 1498 * The map must be locked, and leaves it so. 1499 */ 1500 static void 1501 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1502 { 1503 vm_map_entry_t header, llist, rlist, root; 1504 1505 VM_MAP_ASSERT_LOCKED(map); 1506 header = &map->header; 1507 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1508 KASSERT(root != NULL, ("%s: resize object not mapped", __func__)); 1509 vm_map_splay_findnext(root, &rlist); 1510 entry->end += grow_amount; 1511 root->max_free = vm_size_max( 1512 vm_map_splay_merge_left(header, root, llist), 1513 vm_map_splay_merge_succ(header, root, rlist)); 1514 map->root = root; 1515 VM_MAP_ASSERT_CONSISTENT(map); 1516 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1517 __func__, map, map->nentries, entry); 1518 } 1519 1520 /* 1521 * vm_map_lookup_entry: [ internal use only ] 1522 * 1523 * Finds the map entry containing (or 1524 * immediately preceding) the specified address 1525 * in the given map; the entry is returned 1526 * in the "entry" parameter. The boolean 1527 * result indicates whether the address is 1528 * actually contained in the map. 1529 */ 1530 boolean_t 1531 vm_map_lookup_entry( 1532 vm_map_t map, 1533 vm_offset_t address, 1534 vm_map_entry_t *entry) /* OUT */ 1535 { 1536 vm_map_entry_t cur, header, lbound, ubound; 1537 boolean_t locked; 1538 1539 /* 1540 * If the map is empty, then the map entry immediately preceding 1541 * "address" is the map's header. 1542 */ 1543 header = &map->header; 1544 cur = map->root; 1545 if (cur == NULL) { 1546 *entry = header; 1547 return (FALSE); 1548 } 1549 if (address >= cur->start && cur->end > address) { 1550 *entry = cur; 1551 return (TRUE); 1552 } 1553 if ((locked = vm_map_locked(map)) || 1554 sx_try_upgrade(&map->lock)) { 1555 /* 1556 * Splay requires a write lock on the map. However, it only 1557 * restructures the binary search tree; it does not otherwise 1558 * change the map. Thus, the map's timestamp need not change 1559 * on a temporary upgrade. 1560 */ 1561 cur = vm_map_splay(map, address); 1562 if (!locked) { 1563 VM_MAP_UNLOCK_CONSISTENT(map); 1564 sx_downgrade(&map->lock); 1565 } 1566 1567 /* 1568 * If "address" is contained within a map entry, the new root 1569 * is that map entry. Otherwise, the new root is a map entry 1570 * immediately before or after "address". 1571 */ 1572 if (address < cur->start) { 1573 *entry = header; 1574 return (FALSE); 1575 } 1576 *entry = cur; 1577 return (address < cur->end); 1578 } 1579 /* 1580 * Since the map is only locked for read access, perform a 1581 * standard binary search tree lookup for "address". 1582 */ 1583 lbound = ubound = header; 1584 for (;;) { 1585 if (address < cur->start) { 1586 ubound = cur; 1587 cur = cur->left; 1588 if (cur == lbound) 1589 break; 1590 } else if (cur->end <= address) { 1591 lbound = cur; 1592 cur = cur->right; 1593 if (cur == ubound) 1594 break; 1595 } else { 1596 *entry = cur; 1597 return (TRUE); 1598 } 1599 } 1600 *entry = lbound; 1601 return (FALSE); 1602 } 1603 1604 /* 1605 * vm_map_insert: 1606 * 1607 * Inserts the given whole VM object into the target 1608 * map at the specified address range. The object's 1609 * size should match that of the address range. 1610 * 1611 * Requires that the map be locked, and leaves it so. 1612 * 1613 * If object is non-NULL, ref count must be bumped by caller 1614 * prior to making call to account for the new entry. 1615 */ 1616 int 1617 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1618 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1619 { 1620 vm_map_entry_t new_entry, next_entry, prev_entry; 1621 struct ucred *cred; 1622 vm_eflags_t protoeflags; 1623 vm_inherit_t inheritance; 1624 u_long bdry; 1625 u_int bidx; 1626 1627 VM_MAP_ASSERT_LOCKED(map); 1628 KASSERT(object != kernel_object || 1629 (cow & MAP_COPY_ON_WRITE) == 0, 1630 ("vm_map_insert: kernel object and COW")); 1631 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 || 1632 (cow & MAP_SPLIT_BOUNDARY_MASK) != 0, 1633 ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x", 1634 object, cow)); 1635 KASSERT((prot & ~max) == 0, 1636 ("prot %#x is not subset of max_prot %#x", prot, max)); 1637 1638 /* 1639 * Check that the start and end points are not bogus. 1640 */ 1641 if (start == end || !vm_map_range_valid(map, start, end)) 1642 return (KERN_INVALID_ADDRESS); 1643 1644 if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE | 1645 VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE)) 1646 return (KERN_PROTECTION_FAILURE); 1647 1648 /* 1649 * Find the entry prior to the proposed starting address; if it's part 1650 * of an existing entry, this range is bogus. 1651 */ 1652 if (vm_map_lookup_entry(map, start, &prev_entry)) 1653 return (KERN_NO_SPACE); 1654 1655 /* 1656 * Assert that the next entry doesn't overlap the end point. 1657 */ 1658 next_entry = vm_map_entry_succ(prev_entry); 1659 if (next_entry->start < end) 1660 return (KERN_NO_SPACE); 1661 1662 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1663 max != VM_PROT_NONE)) 1664 return (KERN_INVALID_ARGUMENT); 1665 1666 protoeflags = 0; 1667 if (cow & MAP_COPY_ON_WRITE) 1668 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1669 if (cow & MAP_NOFAULT) 1670 protoeflags |= MAP_ENTRY_NOFAULT; 1671 if (cow & MAP_DISABLE_SYNCER) 1672 protoeflags |= MAP_ENTRY_NOSYNC; 1673 if (cow & MAP_DISABLE_COREDUMP) 1674 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1675 if (cow & MAP_STACK_GROWS_DOWN) 1676 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1677 if (cow & MAP_STACK_GROWS_UP) 1678 protoeflags |= MAP_ENTRY_GROWS_UP; 1679 if (cow & MAP_WRITECOUNT) 1680 protoeflags |= MAP_ENTRY_WRITECNT; 1681 if (cow & MAP_VN_EXEC) 1682 protoeflags |= MAP_ENTRY_VN_EXEC; 1683 if ((cow & MAP_CREATE_GUARD) != 0) 1684 protoeflags |= MAP_ENTRY_GUARD; 1685 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1686 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1687 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1688 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1689 if (cow & MAP_INHERIT_SHARE) 1690 inheritance = VM_INHERIT_SHARE; 1691 else 1692 inheritance = VM_INHERIT_DEFAULT; 1693 if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) { 1694 /* This magically ignores index 0, for usual page size. */ 1695 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >> 1696 MAP_SPLIT_BOUNDARY_SHIFT; 1697 if (bidx >= MAXPAGESIZES) 1698 return (KERN_INVALID_ARGUMENT); 1699 bdry = pagesizes[bidx] - 1; 1700 if ((start & bdry) != 0 || (end & bdry) != 0) 1701 return (KERN_INVALID_ARGUMENT); 1702 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 1703 } 1704 1705 cred = NULL; 1706 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1707 goto charged; 1708 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1709 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1710 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1711 return (KERN_RESOURCE_SHORTAGE); 1712 KASSERT(object == NULL || 1713 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1714 object->cred == NULL, 1715 ("overcommit: vm_map_insert o %p", object)); 1716 cred = curthread->td_ucred; 1717 } 1718 1719 charged: 1720 /* Expand the kernel pmap, if necessary. */ 1721 if (map == kernel_map && end > kernel_vm_end) 1722 pmap_growkernel(end); 1723 if (object != NULL) { 1724 /* 1725 * OBJ_ONEMAPPING must be cleared unless this mapping 1726 * is trivially proven to be the only mapping for any 1727 * of the object's pages. (Object granularity 1728 * reference counting is insufficient to recognize 1729 * aliases with precision.) 1730 */ 1731 if ((object->flags & OBJ_ANON) != 0) { 1732 VM_OBJECT_WLOCK(object); 1733 if (object->ref_count > 1 || object->shadow_count != 0) 1734 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1735 VM_OBJECT_WUNLOCK(object); 1736 } 1737 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1738 protoeflags && 1739 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1740 MAP_VN_EXEC)) == 0 && 1741 prev_entry->end == start && (prev_entry->cred == cred || 1742 (prev_entry->object.vm_object != NULL && 1743 prev_entry->object.vm_object->cred == cred)) && 1744 vm_object_coalesce(prev_entry->object.vm_object, 1745 prev_entry->offset, 1746 (vm_size_t)(prev_entry->end - prev_entry->start), 1747 (vm_size_t)(end - prev_entry->end), cred != NULL && 1748 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1749 /* 1750 * We were able to extend the object. Determine if we 1751 * can extend the previous map entry to include the 1752 * new range as well. 1753 */ 1754 if (prev_entry->inheritance == inheritance && 1755 prev_entry->protection == prot && 1756 prev_entry->max_protection == max && 1757 prev_entry->wired_count == 0) { 1758 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1759 0, ("prev_entry %p has incoherent wiring", 1760 prev_entry)); 1761 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1762 map->size += end - prev_entry->end; 1763 vm_map_entry_resize(map, prev_entry, 1764 end - prev_entry->end); 1765 vm_map_try_merge_entries(map, prev_entry, next_entry); 1766 return (KERN_SUCCESS); 1767 } 1768 1769 /* 1770 * If we can extend the object but cannot extend the 1771 * map entry, we have to create a new map entry. We 1772 * must bump the ref count on the extended object to 1773 * account for it. object may be NULL. 1774 */ 1775 object = prev_entry->object.vm_object; 1776 offset = prev_entry->offset + 1777 (prev_entry->end - prev_entry->start); 1778 vm_object_reference(object); 1779 if (cred != NULL && object != NULL && object->cred != NULL && 1780 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1781 /* Object already accounts for this uid. */ 1782 cred = NULL; 1783 } 1784 } 1785 if (cred != NULL) 1786 crhold(cred); 1787 1788 /* 1789 * Create a new entry 1790 */ 1791 new_entry = vm_map_entry_create(map); 1792 new_entry->start = start; 1793 new_entry->end = end; 1794 new_entry->cred = NULL; 1795 1796 new_entry->eflags = protoeflags; 1797 new_entry->object.vm_object = object; 1798 new_entry->offset = offset; 1799 1800 new_entry->inheritance = inheritance; 1801 new_entry->protection = prot; 1802 new_entry->max_protection = max; 1803 new_entry->wired_count = 0; 1804 new_entry->wiring_thread = NULL; 1805 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1806 new_entry->next_read = start; 1807 1808 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1809 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1810 new_entry->cred = cred; 1811 1812 /* 1813 * Insert the new entry into the list 1814 */ 1815 vm_map_entry_link(map, new_entry); 1816 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1817 map->size += new_entry->end - new_entry->start; 1818 1819 /* 1820 * Try to coalesce the new entry with both the previous and next 1821 * entries in the list. Previously, we only attempted to coalesce 1822 * with the previous entry when object is NULL. Here, we handle the 1823 * other cases, which are less common. 1824 */ 1825 vm_map_try_merge_entries(map, prev_entry, new_entry); 1826 vm_map_try_merge_entries(map, new_entry, next_entry); 1827 1828 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1829 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1830 end - start, cow & MAP_PREFAULT_PARTIAL); 1831 } 1832 1833 return (KERN_SUCCESS); 1834 } 1835 1836 /* 1837 * vm_map_findspace: 1838 * 1839 * Find the first fit (lowest VM address) for "length" free bytes 1840 * beginning at address >= start in the given map. 1841 * 1842 * In a vm_map_entry, "max_free" is the maximum amount of 1843 * contiguous free space between an entry in its subtree and a 1844 * neighbor of that entry. This allows finding a free region in 1845 * one path down the tree, so O(log n) amortized with splay 1846 * trees. 1847 * 1848 * The map must be locked, and leaves it so. 1849 * 1850 * Returns: starting address if sufficient space, 1851 * vm_map_max(map)-length+1 if insufficient space. 1852 */ 1853 vm_offset_t 1854 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1855 { 1856 vm_map_entry_t header, llist, rlist, root, y; 1857 vm_size_t left_length, max_free_left, max_free_right; 1858 vm_offset_t gap_end; 1859 1860 VM_MAP_ASSERT_LOCKED(map); 1861 1862 /* 1863 * Request must fit within min/max VM address and must avoid 1864 * address wrap. 1865 */ 1866 start = MAX(start, vm_map_min(map)); 1867 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1868 return (vm_map_max(map) - length + 1); 1869 1870 /* Empty tree means wide open address space. */ 1871 if (map->root == NULL) 1872 return (start); 1873 1874 /* 1875 * After splay_split, if start is within an entry, push it to the start 1876 * of the following gap. If rlist is at the end of the gap containing 1877 * start, save the end of that gap in gap_end to see if the gap is big 1878 * enough; otherwise set gap_end to start skip gap-checking and move 1879 * directly to a search of the right subtree. 1880 */ 1881 header = &map->header; 1882 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1883 gap_end = rlist->start; 1884 if (root != NULL) { 1885 start = root->end; 1886 if (root->right != rlist) 1887 gap_end = start; 1888 max_free_left = vm_map_splay_merge_left(header, root, llist); 1889 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1890 } else if (rlist != header) { 1891 root = rlist; 1892 rlist = root->left; 1893 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1894 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1895 } else { 1896 root = llist; 1897 llist = root->right; 1898 max_free_left = vm_map_splay_merge_left(header, root, llist); 1899 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1900 } 1901 root->max_free = vm_size_max(max_free_left, max_free_right); 1902 map->root = root; 1903 VM_MAP_ASSERT_CONSISTENT(map); 1904 if (length <= gap_end - start) 1905 return (start); 1906 1907 /* With max_free, can immediately tell if no solution. */ 1908 if (root->right == header || length > root->right->max_free) 1909 return (vm_map_max(map) - length + 1); 1910 1911 /* 1912 * Splay for the least large-enough gap in the right subtree. 1913 */ 1914 llist = rlist = header; 1915 for (left_length = 0;; 1916 left_length = vm_map_entry_max_free_left(root, llist)) { 1917 if (length <= left_length) 1918 SPLAY_LEFT_STEP(root, y, llist, rlist, 1919 length <= vm_map_entry_max_free_left(y, llist)); 1920 else 1921 SPLAY_RIGHT_STEP(root, y, llist, rlist, 1922 length > vm_map_entry_max_free_left(y, root)); 1923 if (root == NULL) 1924 break; 1925 } 1926 root = llist; 1927 llist = root->right; 1928 max_free_left = vm_map_splay_merge_left(header, root, llist); 1929 if (rlist == header) { 1930 root->max_free = vm_size_max(max_free_left, 1931 vm_map_splay_merge_succ(header, root, rlist)); 1932 } else { 1933 y = rlist; 1934 rlist = y->left; 1935 y->max_free = vm_size_max( 1936 vm_map_splay_merge_pred(root, y, root), 1937 vm_map_splay_merge_right(header, y, rlist)); 1938 root->max_free = vm_size_max(max_free_left, y->max_free); 1939 } 1940 map->root = root; 1941 VM_MAP_ASSERT_CONSISTENT(map); 1942 return (root->end); 1943 } 1944 1945 int 1946 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1947 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1948 vm_prot_t max, int cow) 1949 { 1950 vm_offset_t end; 1951 int result; 1952 1953 end = start + length; 1954 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1955 object == NULL, 1956 ("vm_map_fixed: non-NULL backing object for stack")); 1957 vm_map_lock(map); 1958 VM_MAP_RANGE_CHECK(map, start, end); 1959 if ((cow & MAP_CHECK_EXCL) == 0) { 1960 result = vm_map_delete(map, start, end); 1961 if (result != KERN_SUCCESS) 1962 goto out; 1963 } 1964 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1965 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1966 prot, max, cow); 1967 } else { 1968 result = vm_map_insert(map, object, offset, start, end, 1969 prot, max, cow); 1970 } 1971 out: 1972 vm_map_unlock(map); 1973 return (result); 1974 } 1975 1976 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1977 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1978 1979 static int cluster_anon = 1; 1980 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1981 &cluster_anon, 0, 1982 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 1983 1984 static bool 1985 clustering_anon_allowed(vm_offset_t addr) 1986 { 1987 1988 switch (cluster_anon) { 1989 case 0: 1990 return (false); 1991 case 1: 1992 return (addr == 0); 1993 case 2: 1994 default: 1995 return (true); 1996 } 1997 } 1998 1999 static long aslr_restarts; 2000 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 2001 &aslr_restarts, 0, 2002 "Number of aslr failures"); 2003 2004 /* 2005 * Searches for the specified amount of free space in the given map with the 2006 * specified alignment. Performs an address-ordered, first-fit search from 2007 * the given address "*addr", with an optional upper bound "max_addr". If the 2008 * parameter "alignment" is zero, then the alignment is computed from the 2009 * given (object, offset) pair so as to enable the greatest possible use of 2010 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 2011 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 2012 * 2013 * The map must be locked. Initially, there must be at least "length" bytes 2014 * of free space at the given address. 2015 */ 2016 static int 2017 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2018 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 2019 vm_offset_t alignment) 2020 { 2021 vm_offset_t aligned_addr, free_addr; 2022 2023 VM_MAP_ASSERT_LOCKED(map); 2024 free_addr = *addr; 2025 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 2026 ("caller failed to provide space %#jx at address %p", 2027 (uintmax_t)length, (void *)free_addr)); 2028 for (;;) { 2029 /* 2030 * At the start of every iteration, the free space at address 2031 * "*addr" is at least "length" bytes. 2032 */ 2033 if (alignment == 0) 2034 pmap_align_superpage(object, offset, addr, length); 2035 else if ((*addr & (alignment - 1)) != 0) { 2036 *addr &= ~(alignment - 1); 2037 *addr += alignment; 2038 } 2039 aligned_addr = *addr; 2040 if (aligned_addr == free_addr) { 2041 /* 2042 * Alignment did not change "*addr", so "*addr" must 2043 * still provide sufficient free space. 2044 */ 2045 return (KERN_SUCCESS); 2046 } 2047 2048 /* 2049 * Test for address wrap on "*addr". A wrapped "*addr" could 2050 * be a valid address, in which case vm_map_findspace() cannot 2051 * be relied upon to fail. 2052 */ 2053 if (aligned_addr < free_addr) 2054 return (KERN_NO_SPACE); 2055 *addr = vm_map_findspace(map, aligned_addr, length); 2056 if (*addr + length > vm_map_max(map) || 2057 (max_addr != 0 && *addr + length > max_addr)) 2058 return (KERN_NO_SPACE); 2059 free_addr = *addr; 2060 if (free_addr == aligned_addr) { 2061 /* 2062 * If a successful call to vm_map_findspace() did not 2063 * change "*addr", then "*addr" must still be aligned 2064 * and provide sufficient free space. 2065 */ 2066 return (KERN_SUCCESS); 2067 } 2068 } 2069 } 2070 2071 int 2072 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length, 2073 vm_offset_t max_addr, vm_offset_t alignment) 2074 { 2075 /* XXXKIB ASLR eh ? */ 2076 *addr = vm_map_findspace(map, *addr, length); 2077 if (*addr + length > vm_map_max(map) || 2078 (max_addr != 0 && *addr + length > max_addr)) 2079 return (KERN_NO_SPACE); 2080 return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr, 2081 alignment)); 2082 } 2083 2084 /* 2085 * vm_map_find finds an unallocated region in the target address 2086 * map with the given length. The search is defined to be 2087 * first-fit from the specified address; the region found is 2088 * returned in the same parameter. 2089 * 2090 * If object is non-NULL, ref count must be bumped by caller 2091 * prior to making call to account for the new entry. 2092 */ 2093 int 2094 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2095 vm_offset_t *addr, /* IN/OUT */ 2096 vm_size_t length, vm_offset_t max_addr, int find_space, 2097 vm_prot_t prot, vm_prot_t max, int cow) 2098 { 2099 vm_offset_t alignment, curr_min_addr, min_addr; 2100 int gap, pidx, rv, try; 2101 bool cluster, en_aslr, update_anon; 2102 2103 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 2104 object == NULL, 2105 ("vm_map_find: non-NULL backing object for stack")); 2106 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 2107 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 2108 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 2109 (object->flags & OBJ_COLORED) == 0)) 2110 find_space = VMFS_ANY_SPACE; 2111 if (find_space >> 8 != 0) { 2112 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 2113 alignment = (vm_offset_t)1 << (find_space >> 8); 2114 } else 2115 alignment = 0; 2116 en_aslr = (map->flags & MAP_ASLR) != 0; 2117 update_anon = cluster = clustering_anon_allowed(*addr) && 2118 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 2119 find_space != VMFS_NO_SPACE && object == NULL && 2120 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 2121 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 2122 curr_min_addr = min_addr = *addr; 2123 if (en_aslr && min_addr == 0 && !cluster && 2124 find_space != VMFS_NO_SPACE && 2125 (map->flags & MAP_ASLR_IGNSTART) != 0) 2126 curr_min_addr = min_addr = vm_map_min(map); 2127 try = 0; 2128 vm_map_lock(map); 2129 if (cluster) { 2130 curr_min_addr = map->anon_loc; 2131 if (curr_min_addr == 0) 2132 cluster = false; 2133 } 2134 if (find_space != VMFS_NO_SPACE) { 2135 KASSERT(find_space == VMFS_ANY_SPACE || 2136 find_space == VMFS_OPTIMAL_SPACE || 2137 find_space == VMFS_SUPER_SPACE || 2138 alignment != 0, ("unexpected VMFS flag")); 2139 again: 2140 /* 2141 * When creating an anonymous mapping, try clustering 2142 * with an existing anonymous mapping first. 2143 * 2144 * We make up to two attempts to find address space 2145 * for a given find_space value. The first attempt may 2146 * apply randomization or may cluster with an existing 2147 * anonymous mapping. If this first attempt fails, 2148 * perform a first-fit search of the available address 2149 * space. 2150 * 2151 * If all tries failed, and find_space is 2152 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 2153 * Again enable clustering and randomization. 2154 */ 2155 try++; 2156 MPASS(try <= 2); 2157 2158 if (try == 2) { 2159 /* 2160 * Second try: we failed either to find a 2161 * suitable region for randomizing the 2162 * allocation, or to cluster with an existing 2163 * mapping. Retry with free run. 2164 */ 2165 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 2166 vm_map_min(map) : min_addr; 2167 atomic_add_long(&aslr_restarts, 1); 2168 } 2169 2170 if (try == 1 && en_aslr && !cluster) { 2171 /* 2172 * Find space for allocation, including 2173 * gap needed for later randomization. 2174 */ 2175 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 2176 (find_space == VMFS_SUPER_SPACE || find_space == 2177 VMFS_OPTIMAL_SPACE) ? 1 : 0; 2178 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 2179 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 2180 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 2181 *addr = vm_map_findspace(map, curr_min_addr, 2182 length + gap * pagesizes[pidx]); 2183 if (*addr + length + gap * pagesizes[pidx] > 2184 vm_map_max(map)) 2185 goto again; 2186 /* And randomize the start address. */ 2187 *addr += (arc4random() % gap) * pagesizes[pidx]; 2188 if (max_addr != 0 && *addr + length > max_addr) 2189 goto again; 2190 } else { 2191 *addr = vm_map_findspace(map, curr_min_addr, length); 2192 if (*addr + length > vm_map_max(map) || 2193 (max_addr != 0 && *addr + length > max_addr)) { 2194 if (cluster) { 2195 cluster = false; 2196 MPASS(try == 1); 2197 goto again; 2198 } 2199 rv = KERN_NO_SPACE; 2200 goto done; 2201 } 2202 } 2203 2204 if (find_space != VMFS_ANY_SPACE && 2205 (rv = vm_map_alignspace(map, object, offset, addr, length, 2206 max_addr, alignment)) != KERN_SUCCESS) { 2207 if (find_space == VMFS_OPTIMAL_SPACE) { 2208 find_space = VMFS_ANY_SPACE; 2209 curr_min_addr = min_addr; 2210 cluster = update_anon; 2211 try = 0; 2212 goto again; 2213 } 2214 goto done; 2215 } 2216 } else if ((cow & MAP_REMAP) != 0) { 2217 if (!vm_map_range_valid(map, *addr, *addr + length)) { 2218 rv = KERN_INVALID_ADDRESS; 2219 goto done; 2220 } 2221 rv = vm_map_delete(map, *addr, *addr + length); 2222 if (rv != KERN_SUCCESS) 2223 goto done; 2224 } 2225 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 2226 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 2227 max, cow); 2228 } else { 2229 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 2230 prot, max, cow); 2231 } 2232 if (rv == KERN_SUCCESS && update_anon) 2233 map->anon_loc = *addr + length; 2234 done: 2235 vm_map_unlock(map); 2236 return (rv); 2237 } 2238 2239 /* 2240 * vm_map_find_min() is a variant of vm_map_find() that takes an 2241 * additional parameter (min_addr) and treats the given address 2242 * (*addr) differently. Specifically, it treats *addr as a hint 2243 * and not as the minimum address where the mapping is created. 2244 * 2245 * This function works in two phases. First, it tries to 2246 * allocate above the hint. If that fails and the hint is 2247 * greater than min_addr, it performs a second pass, replacing 2248 * the hint with min_addr as the minimum address for the 2249 * allocation. 2250 */ 2251 int 2252 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2253 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 2254 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2255 int cow) 2256 { 2257 vm_offset_t hint; 2258 int rv; 2259 2260 hint = *addr; 2261 for (;;) { 2262 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2263 find_space, prot, max, cow); 2264 if (rv == KERN_SUCCESS || min_addr >= hint) 2265 return (rv); 2266 *addr = hint = min_addr; 2267 } 2268 } 2269 2270 /* 2271 * A map entry with any of the following flags set must not be merged with 2272 * another entry. 2273 */ 2274 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 2275 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC) 2276 2277 static bool 2278 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2279 { 2280 2281 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2282 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2283 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2284 prev, entry)); 2285 return (prev->end == entry->start && 2286 prev->object.vm_object == entry->object.vm_object && 2287 (prev->object.vm_object == NULL || 2288 prev->offset + (prev->end - prev->start) == entry->offset) && 2289 prev->eflags == entry->eflags && 2290 prev->protection == entry->protection && 2291 prev->max_protection == entry->max_protection && 2292 prev->inheritance == entry->inheritance && 2293 prev->wired_count == entry->wired_count && 2294 prev->cred == entry->cred); 2295 } 2296 2297 static void 2298 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2299 { 2300 2301 /* 2302 * If the backing object is a vnode object, vm_object_deallocate() 2303 * calls vrele(). However, vrele() does not lock the vnode because 2304 * the vnode has additional references. Thus, the map lock can be 2305 * kept without causing a lock-order reversal with the vnode lock. 2306 * 2307 * Since we count the number of virtual page mappings in 2308 * object->un_pager.vnp.writemappings, the writemappings value 2309 * should not be adjusted when the entry is disposed of. 2310 */ 2311 if (entry->object.vm_object != NULL) 2312 vm_object_deallocate(entry->object.vm_object); 2313 if (entry->cred != NULL) 2314 crfree(entry->cred); 2315 vm_map_entry_dispose(map, entry); 2316 } 2317 2318 /* 2319 * vm_map_try_merge_entries: 2320 * 2321 * Compare the given map entry to its predecessor, and merge its precessor 2322 * into it if possible. The entry remains valid, and may be extended. 2323 * The predecessor may be deleted. 2324 * 2325 * The map must be locked. 2326 */ 2327 void 2328 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry, 2329 vm_map_entry_t entry) 2330 { 2331 2332 VM_MAP_ASSERT_LOCKED(map); 2333 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 && 2334 vm_map_mergeable_neighbors(prev_entry, entry)) { 2335 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT); 2336 vm_map_merged_neighbor_dispose(map, prev_entry); 2337 } 2338 } 2339 2340 /* 2341 * vm_map_entry_back: 2342 * 2343 * Allocate an object to back a map entry. 2344 */ 2345 static inline void 2346 vm_map_entry_back(vm_map_entry_t entry) 2347 { 2348 vm_object_t object; 2349 2350 KASSERT(entry->object.vm_object == NULL, 2351 ("map entry %p has backing object", entry)); 2352 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2353 ("map entry %p is a submap", entry)); 2354 object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL, 2355 entry->cred, entry->end - entry->start); 2356 entry->object.vm_object = object; 2357 entry->offset = 0; 2358 entry->cred = NULL; 2359 } 2360 2361 /* 2362 * vm_map_entry_charge_object 2363 * 2364 * If there is no object backing this entry, create one. Otherwise, if 2365 * the entry has cred, give it to the backing object. 2366 */ 2367 static inline void 2368 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2369 { 2370 2371 VM_MAP_ASSERT_LOCKED(map); 2372 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2373 ("map entry %p is a submap", entry)); 2374 if (entry->object.vm_object == NULL && !map->system_map && 2375 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2376 vm_map_entry_back(entry); 2377 else if (entry->object.vm_object != NULL && 2378 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2379 entry->cred != NULL) { 2380 VM_OBJECT_WLOCK(entry->object.vm_object); 2381 KASSERT(entry->object.vm_object->cred == NULL, 2382 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2383 entry->object.vm_object->cred = entry->cred; 2384 entry->object.vm_object->charge = entry->end - entry->start; 2385 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2386 entry->cred = NULL; 2387 } 2388 } 2389 2390 /* 2391 * vm_map_entry_clone 2392 * 2393 * Create a duplicate map entry for clipping. 2394 */ 2395 static vm_map_entry_t 2396 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry) 2397 { 2398 vm_map_entry_t new_entry; 2399 2400 VM_MAP_ASSERT_LOCKED(map); 2401 2402 /* 2403 * Create a backing object now, if none exists, so that more individual 2404 * objects won't be created after the map entry is split. 2405 */ 2406 vm_map_entry_charge_object(map, entry); 2407 2408 /* Clone the entry. */ 2409 new_entry = vm_map_entry_create(map); 2410 *new_entry = *entry; 2411 if (new_entry->cred != NULL) 2412 crhold(entry->cred); 2413 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2414 vm_object_reference(new_entry->object.vm_object); 2415 vm_map_entry_set_vnode_text(new_entry, true); 2416 /* 2417 * The object->un_pager.vnp.writemappings for the object of 2418 * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The 2419 * virtual pages are re-distributed among the clipped entries, 2420 * so the sum is left the same. 2421 */ 2422 } 2423 return (new_entry); 2424 } 2425 2426 /* 2427 * vm_map_clip_start: [ internal use only ] 2428 * 2429 * Asserts that the given entry begins at or after 2430 * the specified address; if necessary, 2431 * it splits the entry into two. 2432 */ 2433 static int 2434 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr) 2435 { 2436 vm_map_entry_t new_entry; 2437 int bdry_idx; 2438 2439 if (!map->system_map) 2440 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2441 "%s: map %p entry %p start 0x%jx", __func__, map, entry, 2442 (uintmax_t)startaddr); 2443 2444 if (startaddr <= entry->start) 2445 return (KERN_SUCCESS); 2446 2447 VM_MAP_ASSERT_LOCKED(map); 2448 KASSERT(entry->end > startaddr && entry->start < startaddr, 2449 ("%s: invalid clip of entry %p", __func__, entry)); 2450 2451 bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >> 2452 MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 2453 if (bdry_idx != 0) { 2454 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0) 2455 return (KERN_INVALID_ARGUMENT); 2456 } 2457 2458 new_entry = vm_map_entry_clone(map, entry); 2459 2460 /* 2461 * Split off the front portion. Insert the new entry BEFORE this one, 2462 * so that this entry has the specified starting address. 2463 */ 2464 new_entry->end = startaddr; 2465 vm_map_entry_link(map, new_entry); 2466 return (KERN_SUCCESS); 2467 } 2468 2469 /* 2470 * vm_map_lookup_clip_start: 2471 * 2472 * Find the entry at or just after 'start', and clip it if 'start' is in 2473 * the interior of the entry. Return entry after 'start', and in 2474 * prev_entry set the entry before 'start'. 2475 */ 2476 static int 2477 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start, 2478 vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry) 2479 { 2480 vm_map_entry_t entry; 2481 int rv; 2482 2483 if (!map->system_map) 2484 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2485 "%s: map %p start 0x%jx prev %p", __func__, map, 2486 (uintmax_t)start, prev_entry); 2487 2488 if (vm_map_lookup_entry(map, start, prev_entry)) { 2489 entry = *prev_entry; 2490 rv = vm_map_clip_start(map, entry, start); 2491 if (rv != KERN_SUCCESS) 2492 return (rv); 2493 *prev_entry = vm_map_entry_pred(entry); 2494 } else 2495 entry = vm_map_entry_succ(*prev_entry); 2496 *res_entry = entry; 2497 return (KERN_SUCCESS); 2498 } 2499 2500 /* 2501 * vm_map_clip_end: [ internal use only ] 2502 * 2503 * Asserts that the given entry ends at or before 2504 * the specified address; if necessary, 2505 * it splits the entry into two. 2506 */ 2507 static int 2508 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr) 2509 { 2510 vm_map_entry_t new_entry; 2511 int bdry_idx; 2512 2513 if (!map->system_map) 2514 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2515 "%s: map %p entry %p end 0x%jx", __func__, map, entry, 2516 (uintmax_t)endaddr); 2517 2518 if (endaddr >= entry->end) 2519 return (KERN_SUCCESS); 2520 2521 VM_MAP_ASSERT_LOCKED(map); 2522 KASSERT(entry->start < endaddr && entry->end > endaddr, 2523 ("%s: invalid clip of entry %p", __func__, entry)); 2524 2525 bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >> 2526 MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 2527 if (bdry_idx != 0) { 2528 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0) 2529 return (KERN_INVALID_ARGUMENT); 2530 } 2531 2532 new_entry = vm_map_entry_clone(map, entry); 2533 2534 /* 2535 * Split off the back portion. Insert the new entry AFTER this one, 2536 * so that this entry has the specified ending address. 2537 */ 2538 new_entry->start = endaddr; 2539 vm_map_entry_link(map, new_entry); 2540 2541 return (KERN_SUCCESS); 2542 } 2543 2544 /* 2545 * vm_map_submap: [ kernel use only ] 2546 * 2547 * Mark the given range as handled by a subordinate map. 2548 * 2549 * This range must have been created with vm_map_find, 2550 * and no other operations may have been performed on this 2551 * range prior to calling vm_map_submap. 2552 * 2553 * Only a limited number of operations can be performed 2554 * within this rage after calling vm_map_submap: 2555 * vm_fault 2556 * [Don't try vm_map_copy!] 2557 * 2558 * To remove a submapping, one must first remove the 2559 * range from the superior map, and then destroy the 2560 * submap (if desired). [Better yet, don't try it.] 2561 */ 2562 int 2563 vm_map_submap( 2564 vm_map_t map, 2565 vm_offset_t start, 2566 vm_offset_t end, 2567 vm_map_t submap) 2568 { 2569 vm_map_entry_t entry; 2570 int result; 2571 2572 result = KERN_INVALID_ARGUMENT; 2573 2574 vm_map_lock(submap); 2575 submap->flags |= MAP_IS_SUB_MAP; 2576 vm_map_unlock(submap); 2577 2578 vm_map_lock(map); 2579 VM_MAP_RANGE_CHECK(map, start, end); 2580 if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end && 2581 (entry->eflags & MAP_ENTRY_COW) == 0 && 2582 entry->object.vm_object == NULL) { 2583 result = vm_map_clip_start(map, entry, start); 2584 if (result != KERN_SUCCESS) 2585 goto unlock; 2586 result = vm_map_clip_end(map, entry, end); 2587 if (result != KERN_SUCCESS) 2588 goto unlock; 2589 entry->object.sub_map = submap; 2590 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2591 result = KERN_SUCCESS; 2592 } 2593 unlock: 2594 vm_map_unlock(map); 2595 2596 if (result != KERN_SUCCESS) { 2597 vm_map_lock(submap); 2598 submap->flags &= ~MAP_IS_SUB_MAP; 2599 vm_map_unlock(submap); 2600 } 2601 return (result); 2602 } 2603 2604 /* 2605 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2606 */ 2607 #define MAX_INIT_PT 96 2608 2609 /* 2610 * vm_map_pmap_enter: 2611 * 2612 * Preload the specified map's pmap with mappings to the specified 2613 * object's memory-resident pages. No further physical pages are 2614 * allocated, and no further virtual pages are retrieved from secondary 2615 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2616 * limited number of page mappings are created at the low-end of the 2617 * specified address range. (For this purpose, a superpage mapping 2618 * counts as one page mapping.) Otherwise, all resident pages within 2619 * the specified address range are mapped. 2620 */ 2621 static void 2622 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2623 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2624 { 2625 vm_offset_t start; 2626 vm_page_t p, p_start; 2627 vm_pindex_t mask, psize, threshold, tmpidx; 2628 2629 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2630 return; 2631 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2632 VM_OBJECT_WLOCK(object); 2633 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2634 pmap_object_init_pt(map->pmap, addr, object, pindex, 2635 size); 2636 VM_OBJECT_WUNLOCK(object); 2637 return; 2638 } 2639 VM_OBJECT_LOCK_DOWNGRADE(object); 2640 } else 2641 VM_OBJECT_RLOCK(object); 2642 2643 psize = atop(size); 2644 if (psize + pindex > object->size) { 2645 if (pindex >= object->size) { 2646 VM_OBJECT_RUNLOCK(object); 2647 return; 2648 } 2649 psize = object->size - pindex; 2650 } 2651 2652 start = 0; 2653 p_start = NULL; 2654 threshold = MAX_INIT_PT; 2655 2656 p = vm_page_find_least(object, pindex); 2657 /* 2658 * Assert: the variable p is either (1) the page with the 2659 * least pindex greater than or equal to the parameter pindex 2660 * or (2) NULL. 2661 */ 2662 for (; 2663 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2664 p = TAILQ_NEXT(p, listq)) { 2665 /* 2666 * don't allow an madvise to blow away our really 2667 * free pages allocating pv entries. 2668 */ 2669 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2670 vm_page_count_severe()) || 2671 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2672 tmpidx >= threshold)) { 2673 psize = tmpidx; 2674 break; 2675 } 2676 if (vm_page_all_valid(p)) { 2677 if (p_start == NULL) { 2678 start = addr + ptoa(tmpidx); 2679 p_start = p; 2680 } 2681 /* Jump ahead if a superpage mapping is possible. */ 2682 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2683 (pagesizes[p->psind] - 1)) == 0) { 2684 mask = atop(pagesizes[p->psind]) - 1; 2685 if (tmpidx + mask < psize && 2686 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2687 p += mask; 2688 threshold += mask; 2689 } 2690 } 2691 } else if (p_start != NULL) { 2692 pmap_enter_object(map->pmap, start, addr + 2693 ptoa(tmpidx), p_start, prot); 2694 p_start = NULL; 2695 } 2696 } 2697 if (p_start != NULL) 2698 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2699 p_start, prot); 2700 VM_OBJECT_RUNLOCK(object); 2701 } 2702 2703 /* 2704 * vm_map_protect: 2705 * 2706 * Sets the protection and/or the maximum protection of the 2707 * specified address region in the target map. 2708 */ 2709 int 2710 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2711 vm_prot_t new_prot, vm_prot_t new_maxprot, int flags) 2712 { 2713 vm_map_entry_t entry, first_entry, in_tran, prev_entry; 2714 vm_object_t obj; 2715 struct ucred *cred; 2716 vm_prot_t old_prot; 2717 int rv; 2718 2719 if (start == end) 2720 return (KERN_SUCCESS); 2721 2722 if ((flags & (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT)) == 2723 (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT) && 2724 (new_prot & new_maxprot) != new_prot) 2725 return (KERN_OUT_OF_BOUNDS); 2726 2727 again: 2728 in_tran = NULL; 2729 vm_map_lock(map); 2730 2731 if ((map->flags & MAP_WXORX) != 0 && 2732 (flags & VM_MAP_PROTECT_SET_PROT) != 0 && 2733 (new_prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE | 2734 VM_PROT_EXECUTE)) { 2735 vm_map_unlock(map); 2736 return (KERN_PROTECTION_FAILURE); 2737 } 2738 2739 /* 2740 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2741 * need to fault pages into the map and will drop the map lock while 2742 * doing so, and the VM object may end up in an inconsistent state if we 2743 * update the protection on the map entry in between faults. 2744 */ 2745 vm_map_wait_busy(map); 2746 2747 VM_MAP_RANGE_CHECK(map, start, end); 2748 2749 if (!vm_map_lookup_entry(map, start, &first_entry)) 2750 first_entry = vm_map_entry_succ(first_entry); 2751 2752 /* 2753 * Make a first pass to check for protection violations. 2754 */ 2755 for (entry = first_entry; entry->start < end; 2756 entry = vm_map_entry_succ(entry)) { 2757 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 2758 continue; 2759 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 2760 vm_map_unlock(map); 2761 return (KERN_INVALID_ARGUMENT); 2762 } 2763 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0) 2764 new_prot = entry->protection; 2765 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) == 0) 2766 new_maxprot = entry->max_protection; 2767 if ((new_prot & entry->max_protection) != new_prot || 2768 (new_maxprot & entry->max_protection) != new_maxprot) { 2769 vm_map_unlock(map); 2770 return (KERN_PROTECTION_FAILURE); 2771 } 2772 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2773 in_tran = entry; 2774 } 2775 2776 /* 2777 * Postpone the operation until all in-transition map entries have 2778 * stabilized. An in-transition entry might already have its pages 2779 * wired and wired_count incremented, but not yet have its 2780 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call 2781 * vm_fault_copy_entry() in the final loop below. 2782 */ 2783 if (in_tran != NULL) { 2784 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2785 vm_map_unlock_and_wait(map, 0); 2786 goto again; 2787 } 2788 2789 /* 2790 * Before changing the protections, try to reserve swap space for any 2791 * private (i.e., copy-on-write) mappings that are transitioning from 2792 * read-only to read/write access. If a reservation fails, break out 2793 * of this loop early and let the next loop simplify the entries, since 2794 * some may now be mergeable. 2795 */ 2796 rv = vm_map_clip_start(map, first_entry, start); 2797 if (rv != KERN_SUCCESS) { 2798 vm_map_unlock(map); 2799 return (rv); 2800 } 2801 for (entry = first_entry; entry->start < end; 2802 entry = vm_map_entry_succ(entry)) { 2803 rv = vm_map_clip_end(map, entry, end); 2804 if (rv != KERN_SUCCESS) { 2805 vm_map_unlock(map); 2806 return (rv); 2807 } 2808 2809 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 || 2810 ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 || 2811 ENTRY_CHARGED(entry) || 2812 (entry->eflags & MAP_ENTRY_GUARD) != 0) 2813 continue; 2814 2815 cred = curthread->td_ucred; 2816 obj = entry->object.vm_object; 2817 2818 if (obj == NULL || 2819 (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) { 2820 if (!swap_reserve(entry->end - entry->start)) { 2821 rv = KERN_RESOURCE_SHORTAGE; 2822 end = entry->end; 2823 break; 2824 } 2825 crhold(cred); 2826 entry->cred = cred; 2827 continue; 2828 } 2829 2830 if (obj->type != OBJT_DEFAULT && 2831 (obj->flags & OBJ_SWAP) == 0) 2832 continue; 2833 VM_OBJECT_WLOCK(obj); 2834 if (obj->type != OBJT_DEFAULT && 2835 (obj->flags & OBJ_SWAP) == 0) { 2836 VM_OBJECT_WUNLOCK(obj); 2837 continue; 2838 } 2839 2840 /* 2841 * Charge for the whole object allocation now, since 2842 * we cannot distinguish between non-charged and 2843 * charged clipped mapping of the same object later. 2844 */ 2845 KASSERT(obj->charge == 0, 2846 ("vm_map_protect: object %p overcharged (entry %p)", 2847 obj, entry)); 2848 if (!swap_reserve(ptoa(obj->size))) { 2849 VM_OBJECT_WUNLOCK(obj); 2850 rv = KERN_RESOURCE_SHORTAGE; 2851 end = entry->end; 2852 break; 2853 } 2854 2855 crhold(cred); 2856 obj->cred = cred; 2857 obj->charge = ptoa(obj->size); 2858 VM_OBJECT_WUNLOCK(obj); 2859 } 2860 2861 /* 2862 * If enough swap space was available, go back and fix up protections. 2863 * Otherwise, just simplify entries, since some may have been modified. 2864 * [Note that clipping is not necessary the second time.] 2865 */ 2866 for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry; 2867 entry->start < end; 2868 vm_map_try_merge_entries(map, prev_entry, entry), 2869 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2870 if (rv != KERN_SUCCESS || 2871 (entry->eflags & MAP_ENTRY_GUARD) != 0) 2872 continue; 2873 2874 old_prot = entry->protection; 2875 2876 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) { 2877 entry->max_protection = new_maxprot; 2878 entry->protection = new_maxprot & old_prot; 2879 } 2880 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) 2881 entry->protection = new_prot; 2882 2883 /* 2884 * For user wired map entries, the normal lazy evaluation of 2885 * write access upgrades through soft page faults is 2886 * undesirable. Instead, immediately copy any pages that are 2887 * copy-on-write and enable write access in the physical map. 2888 */ 2889 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2890 (entry->protection & VM_PROT_WRITE) != 0 && 2891 (old_prot & VM_PROT_WRITE) == 0) 2892 vm_fault_copy_entry(map, map, entry, entry, NULL); 2893 2894 /* 2895 * When restricting access, update the physical map. Worry 2896 * about copy-on-write here. 2897 */ 2898 if ((old_prot & ~entry->protection) != 0) { 2899 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2900 VM_PROT_ALL) 2901 pmap_protect(map->pmap, entry->start, 2902 entry->end, 2903 entry->protection & MASK(entry)); 2904 #undef MASK 2905 } 2906 } 2907 vm_map_try_merge_entries(map, prev_entry, entry); 2908 vm_map_unlock(map); 2909 return (rv); 2910 } 2911 2912 /* 2913 * vm_map_madvise: 2914 * 2915 * This routine traverses a processes map handling the madvise 2916 * system call. Advisories are classified as either those effecting 2917 * the vm_map_entry structure, or those effecting the underlying 2918 * objects. 2919 */ 2920 int 2921 vm_map_madvise( 2922 vm_map_t map, 2923 vm_offset_t start, 2924 vm_offset_t end, 2925 int behav) 2926 { 2927 vm_map_entry_t entry, prev_entry; 2928 int rv; 2929 bool modify_map; 2930 2931 /* 2932 * Some madvise calls directly modify the vm_map_entry, in which case 2933 * we need to use an exclusive lock on the map and we need to perform 2934 * various clipping operations. Otherwise we only need a read-lock 2935 * on the map. 2936 */ 2937 switch(behav) { 2938 case MADV_NORMAL: 2939 case MADV_SEQUENTIAL: 2940 case MADV_RANDOM: 2941 case MADV_NOSYNC: 2942 case MADV_AUTOSYNC: 2943 case MADV_NOCORE: 2944 case MADV_CORE: 2945 if (start == end) 2946 return (0); 2947 modify_map = true; 2948 vm_map_lock(map); 2949 break; 2950 case MADV_WILLNEED: 2951 case MADV_DONTNEED: 2952 case MADV_FREE: 2953 if (start == end) 2954 return (0); 2955 modify_map = false; 2956 vm_map_lock_read(map); 2957 break; 2958 default: 2959 return (EINVAL); 2960 } 2961 2962 /* 2963 * Locate starting entry and clip if necessary. 2964 */ 2965 VM_MAP_RANGE_CHECK(map, start, end); 2966 2967 if (modify_map) { 2968 /* 2969 * madvise behaviors that are implemented in the vm_map_entry. 2970 * 2971 * We clip the vm_map_entry so that behavioral changes are 2972 * limited to the specified address range. 2973 */ 2974 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry); 2975 if (rv != KERN_SUCCESS) { 2976 vm_map_unlock(map); 2977 return (vm_mmap_to_errno(rv)); 2978 } 2979 2980 for (; entry->start < end; prev_entry = entry, 2981 entry = vm_map_entry_succ(entry)) { 2982 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 2983 continue; 2984 2985 rv = vm_map_clip_end(map, entry, end); 2986 if (rv != KERN_SUCCESS) { 2987 vm_map_unlock(map); 2988 return (vm_mmap_to_errno(rv)); 2989 } 2990 2991 switch (behav) { 2992 case MADV_NORMAL: 2993 vm_map_entry_set_behavior(entry, 2994 MAP_ENTRY_BEHAV_NORMAL); 2995 break; 2996 case MADV_SEQUENTIAL: 2997 vm_map_entry_set_behavior(entry, 2998 MAP_ENTRY_BEHAV_SEQUENTIAL); 2999 break; 3000 case MADV_RANDOM: 3001 vm_map_entry_set_behavior(entry, 3002 MAP_ENTRY_BEHAV_RANDOM); 3003 break; 3004 case MADV_NOSYNC: 3005 entry->eflags |= MAP_ENTRY_NOSYNC; 3006 break; 3007 case MADV_AUTOSYNC: 3008 entry->eflags &= ~MAP_ENTRY_NOSYNC; 3009 break; 3010 case MADV_NOCORE: 3011 entry->eflags |= MAP_ENTRY_NOCOREDUMP; 3012 break; 3013 case MADV_CORE: 3014 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP; 3015 break; 3016 default: 3017 break; 3018 } 3019 vm_map_try_merge_entries(map, prev_entry, entry); 3020 } 3021 vm_map_try_merge_entries(map, prev_entry, entry); 3022 vm_map_unlock(map); 3023 } else { 3024 vm_pindex_t pstart, pend; 3025 3026 /* 3027 * madvise behaviors that are implemented in the underlying 3028 * vm_object. 3029 * 3030 * Since we don't clip the vm_map_entry, we have to clip 3031 * the vm_object pindex and count. 3032 */ 3033 if (!vm_map_lookup_entry(map, start, &entry)) 3034 entry = vm_map_entry_succ(entry); 3035 for (; entry->start < end; 3036 entry = vm_map_entry_succ(entry)) { 3037 vm_offset_t useEnd, useStart; 3038 3039 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 3040 continue; 3041 3042 /* 3043 * MADV_FREE would otherwise rewind time to 3044 * the creation of the shadow object. Because 3045 * we hold the VM map read-locked, neither the 3046 * entry's object nor the presence of a 3047 * backing object can change. 3048 */ 3049 if (behav == MADV_FREE && 3050 entry->object.vm_object != NULL && 3051 entry->object.vm_object->backing_object != NULL) 3052 continue; 3053 3054 pstart = OFF_TO_IDX(entry->offset); 3055 pend = pstart + atop(entry->end - entry->start); 3056 useStart = entry->start; 3057 useEnd = entry->end; 3058 3059 if (entry->start < start) { 3060 pstart += atop(start - entry->start); 3061 useStart = start; 3062 } 3063 if (entry->end > end) { 3064 pend -= atop(entry->end - end); 3065 useEnd = end; 3066 } 3067 3068 if (pstart >= pend) 3069 continue; 3070 3071 /* 3072 * Perform the pmap_advise() before clearing 3073 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 3074 * concurrent pmap operation, such as pmap_remove(), 3075 * could clear a reference in the pmap and set 3076 * PGA_REFERENCED on the page before the pmap_advise() 3077 * had completed. Consequently, the page would appear 3078 * referenced based upon an old reference that 3079 * occurred before this pmap_advise() ran. 3080 */ 3081 if (behav == MADV_DONTNEED || behav == MADV_FREE) 3082 pmap_advise(map->pmap, useStart, useEnd, 3083 behav); 3084 3085 vm_object_madvise(entry->object.vm_object, pstart, 3086 pend, behav); 3087 3088 /* 3089 * Pre-populate paging structures in the 3090 * WILLNEED case. For wired entries, the 3091 * paging structures are already populated. 3092 */ 3093 if (behav == MADV_WILLNEED && 3094 entry->wired_count == 0) { 3095 vm_map_pmap_enter(map, 3096 useStart, 3097 entry->protection, 3098 entry->object.vm_object, 3099 pstart, 3100 ptoa(pend - pstart), 3101 MAP_PREFAULT_MADVISE 3102 ); 3103 } 3104 } 3105 vm_map_unlock_read(map); 3106 } 3107 return (0); 3108 } 3109 3110 /* 3111 * vm_map_inherit: 3112 * 3113 * Sets the inheritance of the specified address 3114 * range in the target map. Inheritance 3115 * affects how the map will be shared with 3116 * child maps at the time of vmspace_fork. 3117 */ 3118 int 3119 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 3120 vm_inherit_t new_inheritance) 3121 { 3122 vm_map_entry_t entry, lentry, prev_entry, start_entry; 3123 int rv; 3124 3125 switch (new_inheritance) { 3126 case VM_INHERIT_NONE: 3127 case VM_INHERIT_COPY: 3128 case VM_INHERIT_SHARE: 3129 case VM_INHERIT_ZERO: 3130 break; 3131 default: 3132 return (KERN_INVALID_ARGUMENT); 3133 } 3134 if (start == end) 3135 return (KERN_SUCCESS); 3136 vm_map_lock(map); 3137 VM_MAP_RANGE_CHECK(map, start, end); 3138 rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry); 3139 if (rv != KERN_SUCCESS) 3140 goto unlock; 3141 if (vm_map_lookup_entry(map, end - 1, &lentry)) { 3142 rv = vm_map_clip_end(map, lentry, end); 3143 if (rv != KERN_SUCCESS) 3144 goto unlock; 3145 } 3146 if (new_inheritance == VM_INHERIT_COPY) { 3147 for (entry = start_entry; entry->start < end; 3148 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3149 if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) 3150 != 0) { 3151 rv = KERN_INVALID_ARGUMENT; 3152 goto unlock; 3153 } 3154 } 3155 } 3156 for (entry = start_entry; entry->start < end; prev_entry = entry, 3157 entry = vm_map_entry_succ(entry)) { 3158 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx", 3159 entry, (uintmax_t)entry->end, (uintmax_t)end)); 3160 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 3161 new_inheritance != VM_INHERIT_ZERO) 3162 entry->inheritance = new_inheritance; 3163 vm_map_try_merge_entries(map, prev_entry, entry); 3164 } 3165 vm_map_try_merge_entries(map, prev_entry, entry); 3166 unlock: 3167 vm_map_unlock(map); 3168 return (rv); 3169 } 3170 3171 /* 3172 * vm_map_entry_in_transition: 3173 * 3174 * Release the map lock, and sleep until the entry is no longer in 3175 * transition. Awake and acquire the map lock. If the map changed while 3176 * another held the lock, lookup a possibly-changed entry at or after the 3177 * 'start' position of the old entry. 3178 */ 3179 static vm_map_entry_t 3180 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, 3181 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) 3182 { 3183 vm_map_entry_t entry; 3184 vm_offset_t start; 3185 u_int last_timestamp; 3186 3187 VM_MAP_ASSERT_LOCKED(map); 3188 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3189 ("not in-tranition map entry %p", in_entry)); 3190 /* 3191 * We have not yet clipped the entry. 3192 */ 3193 start = MAX(in_start, in_entry->start); 3194 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3195 last_timestamp = map->timestamp; 3196 if (vm_map_unlock_and_wait(map, 0)) { 3197 /* 3198 * Allow interruption of user wiring/unwiring? 3199 */ 3200 } 3201 vm_map_lock(map); 3202 if (last_timestamp + 1 == map->timestamp) 3203 return (in_entry); 3204 3205 /* 3206 * Look again for the entry because the map was modified while it was 3207 * unlocked. Specifically, the entry may have been clipped, merged, or 3208 * deleted. 3209 */ 3210 if (!vm_map_lookup_entry(map, start, &entry)) { 3211 if (!holes_ok) { 3212 *io_end = start; 3213 return (NULL); 3214 } 3215 entry = vm_map_entry_succ(entry); 3216 } 3217 return (entry); 3218 } 3219 3220 /* 3221 * vm_map_unwire: 3222 * 3223 * Implements both kernel and user unwiring. 3224 */ 3225 int 3226 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 3227 int flags) 3228 { 3229 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3230 int rv; 3231 bool holes_ok, need_wakeup, user_unwire; 3232 3233 if (start == end) 3234 return (KERN_SUCCESS); 3235 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3236 user_unwire = (flags & VM_MAP_WIRE_USER) != 0; 3237 vm_map_lock(map); 3238 VM_MAP_RANGE_CHECK(map, start, end); 3239 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3240 if (holes_ok) 3241 first_entry = vm_map_entry_succ(first_entry); 3242 else { 3243 vm_map_unlock(map); 3244 return (KERN_INVALID_ADDRESS); 3245 } 3246 } 3247 rv = KERN_SUCCESS; 3248 for (entry = first_entry; entry->start < end; entry = next_entry) { 3249 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3250 /* 3251 * We have not yet clipped the entry. 3252 */ 3253 next_entry = vm_map_entry_in_transition(map, start, 3254 &end, holes_ok, entry); 3255 if (next_entry == NULL) { 3256 if (entry == first_entry) { 3257 vm_map_unlock(map); 3258 return (KERN_INVALID_ADDRESS); 3259 } 3260 rv = KERN_INVALID_ADDRESS; 3261 break; 3262 } 3263 first_entry = (entry == first_entry) ? 3264 next_entry : NULL; 3265 continue; 3266 } 3267 rv = vm_map_clip_start(map, entry, start); 3268 if (rv != KERN_SUCCESS) 3269 break; 3270 rv = vm_map_clip_end(map, entry, end); 3271 if (rv != KERN_SUCCESS) 3272 break; 3273 3274 /* 3275 * Mark the entry in case the map lock is released. (See 3276 * above.) 3277 */ 3278 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3279 entry->wiring_thread == NULL, 3280 ("owned map entry %p", entry)); 3281 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3282 entry->wiring_thread = curthread; 3283 next_entry = vm_map_entry_succ(entry); 3284 /* 3285 * Check the map for holes in the specified region. 3286 * If holes_ok, skip this check. 3287 */ 3288 if (!holes_ok && 3289 entry->end < end && next_entry->start > entry->end) { 3290 end = entry->end; 3291 rv = KERN_INVALID_ADDRESS; 3292 break; 3293 } 3294 /* 3295 * If system unwiring, require that the entry is system wired. 3296 */ 3297 if (!user_unwire && 3298 vm_map_entry_system_wired_count(entry) == 0) { 3299 end = entry->end; 3300 rv = KERN_INVALID_ARGUMENT; 3301 break; 3302 } 3303 } 3304 need_wakeup = false; 3305 if (first_entry == NULL && 3306 !vm_map_lookup_entry(map, start, &first_entry)) { 3307 KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); 3308 prev_entry = first_entry; 3309 entry = vm_map_entry_succ(first_entry); 3310 } else { 3311 prev_entry = vm_map_entry_pred(first_entry); 3312 entry = first_entry; 3313 } 3314 for (; entry->start < end; 3315 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3316 /* 3317 * If holes_ok was specified, an empty 3318 * space in the unwired region could have been mapped 3319 * while the map lock was dropped for draining 3320 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 3321 * could be simultaneously wiring this new mapping 3322 * entry. Detect these cases and skip any entries 3323 * marked as in transition by us. 3324 */ 3325 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3326 entry->wiring_thread != curthread) { 3327 KASSERT(holes_ok, 3328 ("vm_map_unwire: !HOLESOK and new/changed entry")); 3329 continue; 3330 } 3331 3332 if (rv == KERN_SUCCESS && (!user_unwire || 3333 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 3334 if (entry->wired_count == 1) 3335 vm_map_entry_unwire(map, entry); 3336 else 3337 entry->wired_count--; 3338 if (user_unwire) 3339 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3340 } 3341 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3342 ("vm_map_unwire: in-transition flag missing %p", entry)); 3343 KASSERT(entry->wiring_thread == curthread, 3344 ("vm_map_unwire: alien wire %p", entry)); 3345 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 3346 entry->wiring_thread = NULL; 3347 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3348 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3349 need_wakeup = true; 3350 } 3351 vm_map_try_merge_entries(map, prev_entry, entry); 3352 } 3353 vm_map_try_merge_entries(map, prev_entry, entry); 3354 vm_map_unlock(map); 3355 if (need_wakeup) 3356 vm_map_wakeup(map); 3357 return (rv); 3358 } 3359 3360 static void 3361 vm_map_wire_user_count_sub(u_long npages) 3362 { 3363 3364 atomic_subtract_long(&vm_user_wire_count, npages); 3365 } 3366 3367 static bool 3368 vm_map_wire_user_count_add(u_long npages) 3369 { 3370 u_long wired; 3371 3372 wired = vm_user_wire_count; 3373 do { 3374 if (npages + wired > vm_page_max_user_wired) 3375 return (false); 3376 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3377 npages + wired)); 3378 3379 return (true); 3380 } 3381 3382 /* 3383 * vm_map_wire_entry_failure: 3384 * 3385 * Handle a wiring failure on the given entry. 3386 * 3387 * The map should be locked. 3388 */ 3389 static void 3390 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3391 vm_offset_t failed_addr) 3392 { 3393 3394 VM_MAP_ASSERT_LOCKED(map); 3395 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3396 entry->wired_count == 1, 3397 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3398 KASSERT(failed_addr < entry->end, 3399 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3400 3401 /* 3402 * If any pages at the start of this entry were successfully wired, 3403 * then unwire them. 3404 */ 3405 if (failed_addr > entry->start) { 3406 pmap_unwire(map->pmap, entry->start, failed_addr); 3407 vm_object_unwire(entry->object.vm_object, entry->offset, 3408 failed_addr - entry->start, PQ_ACTIVE); 3409 } 3410 3411 /* 3412 * Assign an out-of-range value to represent the failure to wire this 3413 * entry. 3414 */ 3415 entry->wired_count = -1; 3416 } 3417 3418 int 3419 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3420 { 3421 int rv; 3422 3423 vm_map_lock(map); 3424 rv = vm_map_wire_locked(map, start, end, flags); 3425 vm_map_unlock(map); 3426 return (rv); 3427 } 3428 3429 /* 3430 * vm_map_wire_locked: 3431 * 3432 * Implements both kernel and user wiring. Returns with the map locked, 3433 * the map lock may be dropped. 3434 */ 3435 int 3436 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3437 { 3438 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3439 vm_offset_t faddr, saved_end, saved_start; 3440 u_long incr, npages; 3441 u_int bidx, last_timestamp; 3442 int rv; 3443 bool holes_ok, need_wakeup, user_wire; 3444 vm_prot_t prot; 3445 3446 VM_MAP_ASSERT_LOCKED(map); 3447 3448 if (start == end) 3449 return (KERN_SUCCESS); 3450 prot = 0; 3451 if (flags & VM_MAP_WIRE_WRITE) 3452 prot |= VM_PROT_WRITE; 3453 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3454 user_wire = (flags & VM_MAP_WIRE_USER) != 0; 3455 VM_MAP_RANGE_CHECK(map, start, end); 3456 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3457 if (holes_ok) 3458 first_entry = vm_map_entry_succ(first_entry); 3459 else 3460 return (KERN_INVALID_ADDRESS); 3461 } 3462 for (entry = first_entry; entry->start < end; entry = next_entry) { 3463 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3464 /* 3465 * We have not yet clipped the entry. 3466 */ 3467 next_entry = vm_map_entry_in_transition(map, start, 3468 &end, holes_ok, entry); 3469 if (next_entry == NULL) { 3470 if (entry == first_entry) 3471 return (KERN_INVALID_ADDRESS); 3472 rv = KERN_INVALID_ADDRESS; 3473 goto done; 3474 } 3475 first_entry = (entry == first_entry) ? 3476 next_entry : NULL; 3477 continue; 3478 } 3479 rv = vm_map_clip_start(map, entry, start); 3480 if (rv != KERN_SUCCESS) 3481 goto done; 3482 rv = vm_map_clip_end(map, entry, end); 3483 if (rv != KERN_SUCCESS) 3484 goto done; 3485 3486 /* 3487 * Mark the entry in case the map lock is released. (See 3488 * above.) 3489 */ 3490 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3491 entry->wiring_thread == NULL, 3492 ("owned map entry %p", entry)); 3493 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3494 entry->wiring_thread = curthread; 3495 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3496 || (entry->protection & prot) != prot) { 3497 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3498 if (!holes_ok) { 3499 end = entry->end; 3500 rv = KERN_INVALID_ADDRESS; 3501 goto done; 3502 } 3503 } else if (entry->wired_count == 0) { 3504 entry->wired_count++; 3505 3506 npages = atop(entry->end - entry->start); 3507 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3508 vm_map_wire_entry_failure(map, entry, 3509 entry->start); 3510 end = entry->end; 3511 rv = KERN_RESOURCE_SHORTAGE; 3512 goto done; 3513 } 3514 3515 /* 3516 * Release the map lock, relying on the in-transition 3517 * mark. Mark the map busy for fork. 3518 */ 3519 saved_start = entry->start; 3520 saved_end = entry->end; 3521 last_timestamp = map->timestamp; 3522 bidx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) 3523 >> MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 3524 incr = pagesizes[bidx]; 3525 vm_map_busy(map); 3526 vm_map_unlock(map); 3527 3528 for (faddr = saved_start; faddr < saved_end; 3529 faddr += incr) { 3530 /* 3531 * Simulate a fault to get the page and enter 3532 * it into the physical map. 3533 */ 3534 rv = vm_fault(map, faddr, VM_PROT_NONE, 3535 VM_FAULT_WIRE, NULL); 3536 if (rv != KERN_SUCCESS) 3537 break; 3538 } 3539 vm_map_lock(map); 3540 vm_map_unbusy(map); 3541 if (last_timestamp + 1 != map->timestamp) { 3542 /* 3543 * Look again for the entry because the map was 3544 * modified while it was unlocked. The entry 3545 * may have been clipped, but NOT merged or 3546 * deleted. 3547 */ 3548 if (!vm_map_lookup_entry(map, saved_start, 3549 &next_entry)) 3550 KASSERT(false, 3551 ("vm_map_wire: lookup failed")); 3552 first_entry = (entry == first_entry) ? 3553 next_entry : NULL; 3554 for (entry = next_entry; entry->end < saved_end; 3555 entry = vm_map_entry_succ(entry)) { 3556 /* 3557 * In case of failure, handle entries 3558 * that were not fully wired here; 3559 * fully wired entries are handled 3560 * later. 3561 */ 3562 if (rv != KERN_SUCCESS && 3563 faddr < entry->end) 3564 vm_map_wire_entry_failure(map, 3565 entry, faddr); 3566 } 3567 } 3568 if (rv != KERN_SUCCESS) { 3569 vm_map_wire_entry_failure(map, entry, faddr); 3570 if (user_wire) 3571 vm_map_wire_user_count_sub(npages); 3572 end = entry->end; 3573 goto done; 3574 } 3575 } else if (!user_wire || 3576 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3577 entry->wired_count++; 3578 } 3579 /* 3580 * Check the map for holes in the specified region. 3581 * If holes_ok was specified, skip this check. 3582 */ 3583 next_entry = vm_map_entry_succ(entry); 3584 if (!holes_ok && 3585 entry->end < end && next_entry->start > entry->end) { 3586 end = entry->end; 3587 rv = KERN_INVALID_ADDRESS; 3588 goto done; 3589 } 3590 } 3591 rv = KERN_SUCCESS; 3592 done: 3593 need_wakeup = false; 3594 if (first_entry == NULL && 3595 !vm_map_lookup_entry(map, start, &first_entry)) { 3596 KASSERT(holes_ok, ("vm_map_wire: lookup failed")); 3597 prev_entry = first_entry; 3598 entry = vm_map_entry_succ(first_entry); 3599 } else { 3600 prev_entry = vm_map_entry_pred(first_entry); 3601 entry = first_entry; 3602 } 3603 for (; entry->start < end; 3604 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3605 /* 3606 * If holes_ok was specified, an empty 3607 * space in the unwired region could have been mapped 3608 * while the map lock was dropped for faulting in the 3609 * pages or draining MAP_ENTRY_IN_TRANSITION. 3610 * Moreover, another thread could be simultaneously 3611 * wiring this new mapping entry. Detect these cases 3612 * and skip any entries marked as in transition not by us. 3613 * 3614 * Another way to get an entry not marked with 3615 * MAP_ENTRY_IN_TRANSITION is after failed clipping, 3616 * which set rv to KERN_INVALID_ARGUMENT. 3617 */ 3618 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3619 entry->wiring_thread != curthread) { 3620 KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT, 3621 ("vm_map_wire: !HOLESOK and new/changed entry")); 3622 continue; 3623 } 3624 3625 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { 3626 /* do nothing */ 3627 } else if (rv == KERN_SUCCESS) { 3628 if (user_wire) 3629 entry->eflags |= MAP_ENTRY_USER_WIRED; 3630 } else if (entry->wired_count == -1) { 3631 /* 3632 * Wiring failed on this entry. Thus, unwiring is 3633 * unnecessary. 3634 */ 3635 entry->wired_count = 0; 3636 } else if (!user_wire || 3637 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3638 /* 3639 * Undo the wiring. Wiring succeeded on this entry 3640 * but failed on a later entry. 3641 */ 3642 if (entry->wired_count == 1) { 3643 vm_map_entry_unwire(map, entry); 3644 if (user_wire) 3645 vm_map_wire_user_count_sub( 3646 atop(entry->end - entry->start)); 3647 } else 3648 entry->wired_count--; 3649 } 3650 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3651 ("vm_map_wire: in-transition flag missing %p", entry)); 3652 KASSERT(entry->wiring_thread == curthread, 3653 ("vm_map_wire: alien wire %p", entry)); 3654 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3655 MAP_ENTRY_WIRE_SKIPPED); 3656 entry->wiring_thread = NULL; 3657 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3658 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3659 need_wakeup = true; 3660 } 3661 vm_map_try_merge_entries(map, prev_entry, entry); 3662 } 3663 vm_map_try_merge_entries(map, prev_entry, entry); 3664 if (need_wakeup) 3665 vm_map_wakeup(map); 3666 return (rv); 3667 } 3668 3669 /* 3670 * vm_map_sync 3671 * 3672 * Push any dirty cached pages in the address range to their pager. 3673 * If syncio is TRUE, dirty pages are written synchronously. 3674 * If invalidate is TRUE, any cached pages are freed as well. 3675 * 3676 * If the size of the region from start to end is zero, we are 3677 * supposed to flush all modified pages within the region containing 3678 * start. Unfortunately, a region can be split or coalesced with 3679 * neighboring regions, making it difficult to determine what the 3680 * original region was. Therefore, we approximate this requirement by 3681 * flushing the current region containing start. 3682 * 3683 * Returns an error if any part of the specified range is not mapped. 3684 */ 3685 int 3686 vm_map_sync( 3687 vm_map_t map, 3688 vm_offset_t start, 3689 vm_offset_t end, 3690 boolean_t syncio, 3691 boolean_t invalidate) 3692 { 3693 vm_map_entry_t entry, first_entry, next_entry; 3694 vm_size_t size; 3695 vm_object_t object; 3696 vm_ooffset_t offset; 3697 unsigned int last_timestamp; 3698 int bdry_idx; 3699 boolean_t failed; 3700 3701 vm_map_lock_read(map); 3702 VM_MAP_RANGE_CHECK(map, start, end); 3703 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3704 vm_map_unlock_read(map); 3705 return (KERN_INVALID_ADDRESS); 3706 } else if (start == end) { 3707 start = first_entry->start; 3708 end = first_entry->end; 3709 } 3710 3711 /* 3712 * Make a first pass to check for user-wired memory, holes, 3713 * and partial invalidation of largepage mappings. 3714 */ 3715 for (entry = first_entry; entry->start < end; entry = next_entry) { 3716 if (invalidate) { 3717 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) { 3718 vm_map_unlock_read(map); 3719 return (KERN_INVALID_ARGUMENT); 3720 } 3721 bdry_idx = (entry->eflags & 3722 MAP_ENTRY_SPLIT_BOUNDARY_MASK) >> 3723 MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 3724 if (bdry_idx != 0 && 3725 ((start & (pagesizes[bdry_idx] - 1)) != 0 || 3726 (end & (pagesizes[bdry_idx] - 1)) != 0)) { 3727 vm_map_unlock_read(map); 3728 return (KERN_INVALID_ARGUMENT); 3729 } 3730 } 3731 next_entry = vm_map_entry_succ(entry); 3732 if (end > entry->end && 3733 entry->end != next_entry->start) { 3734 vm_map_unlock_read(map); 3735 return (KERN_INVALID_ADDRESS); 3736 } 3737 } 3738 3739 if (invalidate) 3740 pmap_remove(map->pmap, start, end); 3741 failed = FALSE; 3742 3743 /* 3744 * Make a second pass, cleaning/uncaching pages from the indicated 3745 * objects as we go. 3746 */ 3747 for (entry = first_entry; entry->start < end;) { 3748 offset = entry->offset + (start - entry->start); 3749 size = (end <= entry->end ? end : entry->end) - start; 3750 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 3751 vm_map_t smap; 3752 vm_map_entry_t tentry; 3753 vm_size_t tsize; 3754 3755 smap = entry->object.sub_map; 3756 vm_map_lock_read(smap); 3757 (void) vm_map_lookup_entry(smap, offset, &tentry); 3758 tsize = tentry->end - offset; 3759 if (tsize < size) 3760 size = tsize; 3761 object = tentry->object.vm_object; 3762 offset = tentry->offset + (offset - tentry->start); 3763 vm_map_unlock_read(smap); 3764 } else { 3765 object = entry->object.vm_object; 3766 } 3767 vm_object_reference(object); 3768 last_timestamp = map->timestamp; 3769 vm_map_unlock_read(map); 3770 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3771 failed = TRUE; 3772 start += size; 3773 vm_object_deallocate(object); 3774 vm_map_lock_read(map); 3775 if (last_timestamp == map->timestamp || 3776 !vm_map_lookup_entry(map, start, &entry)) 3777 entry = vm_map_entry_succ(entry); 3778 } 3779 3780 vm_map_unlock_read(map); 3781 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3782 } 3783 3784 /* 3785 * vm_map_entry_unwire: [ internal use only ] 3786 * 3787 * Make the region specified by this entry pageable. 3788 * 3789 * The map in question should be locked. 3790 * [This is the reason for this routine's existence.] 3791 */ 3792 static void 3793 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3794 { 3795 vm_size_t size; 3796 3797 VM_MAP_ASSERT_LOCKED(map); 3798 KASSERT(entry->wired_count > 0, 3799 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3800 3801 size = entry->end - entry->start; 3802 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3803 vm_map_wire_user_count_sub(atop(size)); 3804 pmap_unwire(map->pmap, entry->start, entry->end); 3805 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3806 PQ_ACTIVE); 3807 entry->wired_count = 0; 3808 } 3809 3810 static void 3811 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3812 { 3813 3814 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3815 vm_object_deallocate(entry->object.vm_object); 3816 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3817 } 3818 3819 /* 3820 * vm_map_entry_delete: [ internal use only ] 3821 * 3822 * Deallocate the given entry from the target map. 3823 */ 3824 static void 3825 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3826 { 3827 vm_object_t object; 3828 vm_pindex_t offidxstart, offidxend, size1; 3829 vm_size_t size; 3830 3831 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3832 object = entry->object.vm_object; 3833 3834 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3835 MPASS(entry->cred == NULL); 3836 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3837 MPASS(object == NULL); 3838 vm_map_entry_deallocate(entry, map->system_map); 3839 return; 3840 } 3841 3842 size = entry->end - entry->start; 3843 map->size -= size; 3844 3845 if (entry->cred != NULL) { 3846 swap_release_by_cred(size, entry->cred); 3847 crfree(entry->cred); 3848 } 3849 3850 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) { 3851 entry->object.vm_object = NULL; 3852 } else if ((object->flags & OBJ_ANON) != 0 || 3853 object == kernel_object) { 3854 KASSERT(entry->cred == NULL || object->cred == NULL || 3855 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3856 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3857 offidxstart = OFF_TO_IDX(entry->offset); 3858 offidxend = offidxstart + atop(size); 3859 VM_OBJECT_WLOCK(object); 3860 if (object->ref_count != 1 && 3861 ((object->flags & OBJ_ONEMAPPING) != 0 || 3862 object == kernel_object)) { 3863 vm_object_collapse(object); 3864 3865 /* 3866 * The option OBJPR_NOTMAPPED can be passed here 3867 * because vm_map_delete() already performed 3868 * pmap_remove() on the only mapping to this range 3869 * of pages. 3870 */ 3871 vm_object_page_remove(object, offidxstart, offidxend, 3872 OBJPR_NOTMAPPED); 3873 if (offidxend >= object->size && 3874 offidxstart < object->size) { 3875 size1 = object->size; 3876 object->size = offidxstart; 3877 if (object->cred != NULL) { 3878 size1 -= object->size; 3879 KASSERT(object->charge >= ptoa(size1), 3880 ("object %p charge < 0", object)); 3881 swap_release_by_cred(ptoa(size1), 3882 object->cred); 3883 object->charge -= ptoa(size1); 3884 } 3885 } 3886 } 3887 VM_OBJECT_WUNLOCK(object); 3888 } 3889 if (map->system_map) 3890 vm_map_entry_deallocate(entry, TRUE); 3891 else { 3892 entry->defer_next = curthread->td_map_def_user; 3893 curthread->td_map_def_user = entry; 3894 } 3895 } 3896 3897 /* 3898 * vm_map_delete: [ internal use only ] 3899 * 3900 * Deallocates the given address range from the target 3901 * map. 3902 */ 3903 int 3904 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3905 { 3906 vm_map_entry_t entry, next_entry, scratch_entry; 3907 int rv; 3908 3909 VM_MAP_ASSERT_LOCKED(map); 3910 3911 if (start == end) 3912 return (KERN_SUCCESS); 3913 3914 /* 3915 * Find the start of the region, and clip it. 3916 * Step through all entries in this region. 3917 */ 3918 rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry); 3919 if (rv != KERN_SUCCESS) 3920 return (rv); 3921 for (; entry->start < end; entry = next_entry) { 3922 /* 3923 * Wait for wiring or unwiring of an entry to complete. 3924 * Also wait for any system wirings to disappear on 3925 * user maps. 3926 */ 3927 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3928 (vm_map_pmap(map) != kernel_pmap && 3929 vm_map_entry_system_wired_count(entry) != 0)) { 3930 unsigned int last_timestamp; 3931 vm_offset_t saved_start; 3932 3933 saved_start = entry->start; 3934 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3935 last_timestamp = map->timestamp; 3936 (void) vm_map_unlock_and_wait(map, 0); 3937 vm_map_lock(map); 3938 if (last_timestamp + 1 != map->timestamp) { 3939 /* 3940 * Look again for the entry because the map was 3941 * modified while it was unlocked. 3942 * Specifically, the entry may have been 3943 * clipped, merged, or deleted. 3944 */ 3945 rv = vm_map_lookup_clip_start(map, saved_start, 3946 &next_entry, &scratch_entry); 3947 if (rv != KERN_SUCCESS) 3948 break; 3949 } else 3950 next_entry = entry; 3951 continue; 3952 } 3953 3954 /* XXXKIB or delete to the upper superpage boundary ? */ 3955 rv = vm_map_clip_end(map, entry, end); 3956 if (rv != KERN_SUCCESS) 3957 break; 3958 next_entry = vm_map_entry_succ(entry); 3959 3960 /* 3961 * Unwire before removing addresses from the pmap; otherwise, 3962 * unwiring will put the entries back in the pmap. 3963 */ 3964 if (entry->wired_count != 0) 3965 vm_map_entry_unwire(map, entry); 3966 3967 /* 3968 * Remove mappings for the pages, but only if the 3969 * mappings could exist. For instance, it does not 3970 * make sense to call pmap_remove() for guard entries. 3971 */ 3972 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3973 entry->object.vm_object != NULL) 3974 pmap_remove(map->pmap, entry->start, entry->end); 3975 3976 if (entry->end == map->anon_loc) 3977 map->anon_loc = entry->start; 3978 3979 /* 3980 * Delete the entry only after removing all pmap 3981 * entries pointing to its pages. (Otherwise, its 3982 * page frames may be reallocated, and any modify bits 3983 * will be set in the wrong object!) 3984 */ 3985 vm_map_entry_delete(map, entry); 3986 } 3987 return (rv); 3988 } 3989 3990 /* 3991 * vm_map_remove: 3992 * 3993 * Remove the given address range from the target map. 3994 * This is the exported form of vm_map_delete. 3995 */ 3996 int 3997 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3998 { 3999 int result; 4000 4001 vm_map_lock(map); 4002 VM_MAP_RANGE_CHECK(map, start, end); 4003 result = vm_map_delete(map, start, end); 4004 vm_map_unlock(map); 4005 return (result); 4006 } 4007 4008 /* 4009 * vm_map_check_protection: 4010 * 4011 * Assert that the target map allows the specified privilege on the 4012 * entire address region given. The entire region must be allocated. 4013 * 4014 * WARNING! This code does not and should not check whether the 4015 * contents of the region is accessible. For example a smaller file 4016 * might be mapped into a larger address space. 4017 * 4018 * NOTE! This code is also called by munmap(). 4019 * 4020 * The map must be locked. A read lock is sufficient. 4021 */ 4022 boolean_t 4023 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 4024 vm_prot_t protection) 4025 { 4026 vm_map_entry_t entry; 4027 vm_map_entry_t tmp_entry; 4028 4029 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 4030 return (FALSE); 4031 entry = tmp_entry; 4032 4033 while (start < end) { 4034 /* 4035 * No holes allowed! 4036 */ 4037 if (start < entry->start) 4038 return (FALSE); 4039 /* 4040 * Check protection associated with entry. 4041 */ 4042 if ((entry->protection & protection) != protection) 4043 return (FALSE); 4044 /* go to next entry */ 4045 start = entry->end; 4046 entry = vm_map_entry_succ(entry); 4047 } 4048 return (TRUE); 4049 } 4050 4051 /* 4052 * 4053 * vm_map_copy_swap_object: 4054 * 4055 * Copies a swap-backed object from an existing map entry to a 4056 * new one. Carries forward the swap charge. May change the 4057 * src object on return. 4058 */ 4059 static void 4060 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry, 4061 vm_offset_t size, vm_ooffset_t *fork_charge) 4062 { 4063 vm_object_t src_object; 4064 struct ucred *cred; 4065 int charged; 4066 4067 src_object = src_entry->object.vm_object; 4068 charged = ENTRY_CHARGED(src_entry); 4069 if ((src_object->flags & OBJ_ANON) != 0) { 4070 VM_OBJECT_WLOCK(src_object); 4071 vm_object_collapse(src_object); 4072 if ((src_object->flags & OBJ_ONEMAPPING) != 0) { 4073 vm_object_split(src_entry); 4074 src_object = src_entry->object.vm_object; 4075 } 4076 vm_object_reference_locked(src_object); 4077 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 4078 VM_OBJECT_WUNLOCK(src_object); 4079 } else 4080 vm_object_reference(src_object); 4081 if (src_entry->cred != NULL && 4082 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4083 KASSERT(src_object->cred == NULL, 4084 ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p", 4085 src_object)); 4086 src_object->cred = src_entry->cred; 4087 src_object->charge = size; 4088 } 4089 dst_entry->object.vm_object = src_object; 4090 if (charged) { 4091 cred = curthread->td_ucred; 4092 crhold(cred); 4093 dst_entry->cred = cred; 4094 *fork_charge += size; 4095 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4096 crhold(cred); 4097 src_entry->cred = cred; 4098 *fork_charge += size; 4099 } 4100 } 4101 } 4102 4103 /* 4104 * vm_map_copy_entry: 4105 * 4106 * Copies the contents of the source entry to the destination 4107 * entry. The entries *must* be aligned properly. 4108 */ 4109 static void 4110 vm_map_copy_entry( 4111 vm_map_t src_map, 4112 vm_map_t dst_map, 4113 vm_map_entry_t src_entry, 4114 vm_map_entry_t dst_entry, 4115 vm_ooffset_t *fork_charge) 4116 { 4117 vm_object_t src_object; 4118 vm_map_entry_t fake_entry; 4119 vm_offset_t size; 4120 4121 VM_MAP_ASSERT_LOCKED(dst_map); 4122 4123 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 4124 return; 4125 4126 if (src_entry->wired_count == 0 || 4127 (src_entry->protection & VM_PROT_WRITE) == 0) { 4128 /* 4129 * If the source entry is marked needs_copy, it is already 4130 * write-protected. 4131 */ 4132 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 4133 (src_entry->protection & VM_PROT_WRITE) != 0) { 4134 pmap_protect(src_map->pmap, 4135 src_entry->start, 4136 src_entry->end, 4137 src_entry->protection & ~VM_PROT_WRITE); 4138 } 4139 4140 /* 4141 * Make a copy of the object. 4142 */ 4143 size = src_entry->end - src_entry->start; 4144 if ((src_object = src_entry->object.vm_object) != NULL) { 4145 if (src_object->type == OBJT_DEFAULT || 4146 (src_object->flags & OBJ_SWAP) != 0) { 4147 vm_map_copy_swap_object(src_entry, dst_entry, 4148 size, fork_charge); 4149 /* May have split/collapsed, reload obj. */ 4150 src_object = src_entry->object.vm_object; 4151 } else { 4152 vm_object_reference(src_object); 4153 dst_entry->object.vm_object = src_object; 4154 } 4155 src_entry->eflags |= MAP_ENTRY_COW | 4156 MAP_ENTRY_NEEDS_COPY; 4157 dst_entry->eflags |= MAP_ENTRY_COW | 4158 MAP_ENTRY_NEEDS_COPY; 4159 dst_entry->offset = src_entry->offset; 4160 if (src_entry->eflags & MAP_ENTRY_WRITECNT) { 4161 /* 4162 * MAP_ENTRY_WRITECNT cannot 4163 * indicate write reference from 4164 * src_entry, since the entry is 4165 * marked as needs copy. Allocate a 4166 * fake entry that is used to 4167 * decrement object->un_pager writecount 4168 * at the appropriate time. Attach 4169 * fake_entry to the deferred list. 4170 */ 4171 fake_entry = vm_map_entry_create(dst_map); 4172 fake_entry->eflags = MAP_ENTRY_WRITECNT; 4173 src_entry->eflags &= ~MAP_ENTRY_WRITECNT; 4174 vm_object_reference(src_object); 4175 fake_entry->object.vm_object = src_object; 4176 fake_entry->start = src_entry->start; 4177 fake_entry->end = src_entry->end; 4178 fake_entry->defer_next = 4179 curthread->td_map_def_user; 4180 curthread->td_map_def_user = fake_entry; 4181 } 4182 4183 pmap_copy(dst_map->pmap, src_map->pmap, 4184 dst_entry->start, dst_entry->end - dst_entry->start, 4185 src_entry->start); 4186 } else { 4187 dst_entry->object.vm_object = NULL; 4188 dst_entry->offset = 0; 4189 if (src_entry->cred != NULL) { 4190 dst_entry->cred = curthread->td_ucred; 4191 crhold(dst_entry->cred); 4192 *fork_charge += size; 4193 } 4194 } 4195 } else { 4196 /* 4197 * We don't want to make writeable wired pages copy-on-write. 4198 * Immediately copy these pages into the new map by simulating 4199 * page faults. The new pages are pageable. 4200 */ 4201 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 4202 fork_charge); 4203 } 4204 } 4205 4206 /* 4207 * vmspace_map_entry_forked: 4208 * Update the newly-forked vmspace each time a map entry is inherited 4209 * or copied. The values for vm_dsize and vm_tsize are approximate 4210 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 4211 */ 4212 static void 4213 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 4214 vm_map_entry_t entry) 4215 { 4216 vm_size_t entrysize; 4217 vm_offset_t newend; 4218 4219 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 4220 return; 4221 entrysize = entry->end - entry->start; 4222 vm2->vm_map.size += entrysize; 4223 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 4224 vm2->vm_ssize += btoc(entrysize); 4225 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 4226 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 4227 newend = MIN(entry->end, 4228 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 4229 vm2->vm_dsize += btoc(newend - entry->start); 4230 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 4231 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 4232 newend = MIN(entry->end, 4233 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 4234 vm2->vm_tsize += btoc(newend - entry->start); 4235 } 4236 } 4237 4238 /* 4239 * vmspace_fork: 4240 * Create a new process vmspace structure and vm_map 4241 * based on those of an existing process. The new map 4242 * is based on the old map, according to the inheritance 4243 * values on the regions in that map. 4244 * 4245 * XXX It might be worth coalescing the entries added to the new vmspace. 4246 * 4247 * The source map must not be locked. 4248 */ 4249 struct vmspace * 4250 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 4251 { 4252 struct vmspace *vm2; 4253 vm_map_t new_map, old_map; 4254 vm_map_entry_t new_entry, old_entry; 4255 vm_object_t object; 4256 int error, locked; 4257 vm_inherit_t inh; 4258 4259 old_map = &vm1->vm_map; 4260 /* Copy immutable fields of vm1 to vm2. */ 4261 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 4262 pmap_pinit); 4263 if (vm2 == NULL) 4264 return (NULL); 4265 4266 vm2->vm_taddr = vm1->vm_taddr; 4267 vm2->vm_daddr = vm1->vm_daddr; 4268 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 4269 vm2->vm_stkgap = vm1->vm_stkgap; 4270 vm_map_lock(old_map); 4271 if (old_map->busy) 4272 vm_map_wait_busy(old_map); 4273 new_map = &vm2->vm_map; 4274 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 4275 KASSERT(locked, ("vmspace_fork: lock failed")); 4276 4277 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 4278 if (error != 0) { 4279 sx_xunlock(&old_map->lock); 4280 sx_xunlock(&new_map->lock); 4281 vm_map_process_deferred(); 4282 vmspace_free(vm2); 4283 return (NULL); 4284 } 4285 4286 new_map->anon_loc = old_map->anon_loc; 4287 new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART | 4288 MAP_WXORX); 4289 4290 VM_MAP_ENTRY_FOREACH(old_entry, old_map) { 4291 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 4292 panic("vm_map_fork: encountered a submap"); 4293 4294 inh = old_entry->inheritance; 4295 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 4296 inh != VM_INHERIT_NONE) 4297 inh = VM_INHERIT_COPY; 4298 4299 switch (inh) { 4300 case VM_INHERIT_NONE: 4301 break; 4302 4303 case VM_INHERIT_SHARE: 4304 /* 4305 * Clone the entry, creating the shared object if 4306 * necessary. 4307 */ 4308 object = old_entry->object.vm_object; 4309 if (object == NULL) { 4310 vm_map_entry_back(old_entry); 4311 object = old_entry->object.vm_object; 4312 } 4313 4314 /* 4315 * Add the reference before calling vm_object_shadow 4316 * to insure that a shadow object is created. 4317 */ 4318 vm_object_reference(object); 4319 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4320 vm_object_shadow(&old_entry->object.vm_object, 4321 &old_entry->offset, 4322 old_entry->end - old_entry->start, 4323 old_entry->cred, 4324 /* Transfer the second reference too. */ 4325 true); 4326 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4327 old_entry->cred = NULL; 4328 4329 /* 4330 * As in vm_map_merged_neighbor_dispose(), 4331 * the vnode lock will not be acquired in 4332 * this call to vm_object_deallocate(). 4333 */ 4334 vm_object_deallocate(object); 4335 object = old_entry->object.vm_object; 4336 } else { 4337 VM_OBJECT_WLOCK(object); 4338 vm_object_clear_flag(object, OBJ_ONEMAPPING); 4339 if (old_entry->cred != NULL) { 4340 KASSERT(object->cred == NULL, 4341 ("vmspace_fork both cred")); 4342 object->cred = old_entry->cred; 4343 object->charge = old_entry->end - 4344 old_entry->start; 4345 old_entry->cred = NULL; 4346 } 4347 4348 /* 4349 * Assert the correct state of the vnode 4350 * v_writecount while the object is locked, to 4351 * not relock it later for the assertion 4352 * correctness. 4353 */ 4354 if (old_entry->eflags & MAP_ENTRY_WRITECNT && 4355 object->type == OBJT_VNODE) { 4356 KASSERT(((struct vnode *)object-> 4357 handle)->v_writecount > 0, 4358 ("vmspace_fork: v_writecount %p", 4359 object)); 4360 KASSERT(object->un_pager.vnp. 4361 writemappings > 0, 4362 ("vmspace_fork: vnp.writecount %p", 4363 object)); 4364 } 4365 VM_OBJECT_WUNLOCK(object); 4366 } 4367 4368 /* 4369 * Clone the entry, referencing the shared object. 4370 */ 4371 new_entry = vm_map_entry_create(new_map); 4372 *new_entry = *old_entry; 4373 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4374 MAP_ENTRY_IN_TRANSITION); 4375 new_entry->wiring_thread = NULL; 4376 new_entry->wired_count = 0; 4377 if (new_entry->eflags & MAP_ENTRY_WRITECNT) { 4378 vm_pager_update_writecount(object, 4379 new_entry->start, new_entry->end); 4380 } 4381 vm_map_entry_set_vnode_text(new_entry, true); 4382 4383 /* 4384 * Insert the entry into the new map -- we know we're 4385 * inserting at the end of the new map. 4386 */ 4387 vm_map_entry_link(new_map, new_entry); 4388 vmspace_map_entry_forked(vm1, vm2, new_entry); 4389 4390 /* 4391 * Update the physical map 4392 */ 4393 pmap_copy(new_map->pmap, old_map->pmap, 4394 new_entry->start, 4395 (old_entry->end - old_entry->start), 4396 old_entry->start); 4397 break; 4398 4399 case VM_INHERIT_COPY: 4400 /* 4401 * Clone the entry and link into the map. 4402 */ 4403 new_entry = vm_map_entry_create(new_map); 4404 *new_entry = *old_entry; 4405 /* 4406 * Copied entry is COW over the old object. 4407 */ 4408 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4409 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT); 4410 new_entry->wiring_thread = NULL; 4411 new_entry->wired_count = 0; 4412 new_entry->object.vm_object = NULL; 4413 new_entry->cred = NULL; 4414 vm_map_entry_link(new_map, new_entry); 4415 vmspace_map_entry_forked(vm1, vm2, new_entry); 4416 vm_map_copy_entry(old_map, new_map, old_entry, 4417 new_entry, fork_charge); 4418 vm_map_entry_set_vnode_text(new_entry, true); 4419 break; 4420 4421 case VM_INHERIT_ZERO: 4422 /* 4423 * Create a new anonymous mapping entry modelled from 4424 * the old one. 4425 */ 4426 new_entry = vm_map_entry_create(new_map); 4427 memset(new_entry, 0, sizeof(*new_entry)); 4428 4429 new_entry->start = old_entry->start; 4430 new_entry->end = old_entry->end; 4431 new_entry->eflags = old_entry->eflags & 4432 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4433 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC | 4434 MAP_ENTRY_SPLIT_BOUNDARY_MASK); 4435 new_entry->protection = old_entry->protection; 4436 new_entry->max_protection = old_entry->max_protection; 4437 new_entry->inheritance = VM_INHERIT_ZERO; 4438 4439 vm_map_entry_link(new_map, new_entry); 4440 vmspace_map_entry_forked(vm1, vm2, new_entry); 4441 4442 new_entry->cred = curthread->td_ucred; 4443 crhold(new_entry->cred); 4444 *fork_charge += (new_entry->end - new_entry->start); 4445 4446 break; 4447 } 4448 } 4449 /* 4450 * Use inlined vm_map_unlock() to postpone handling the deferred 4451 * map entries, which cannot be done until both old_map and 4452 * new_map locks are released. 4453 */ 4454 sx_xunlock(&old_map->lock); 4455 sx_xunlock(&new_map->lock); 4456 vm_map_process_deferred(); 4457 4458 return (vm2); 4459 } 4460 4461 /* 4462 * Create a process's stack for exec_new_vmspace(). This function is never 4463 * asked to wire the newly created stack. 4464 */ 4465 int 4466 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4467 vm_prot_t prot, vm_prot_t max, int cow) 4468 { 4469 vm_size_t growsize, init_ssize; 4470 rlim_t vmemlim; 4471 int rv; 4472 4473 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4474 growsize = sgrowsiz; 4475 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4476 vm_map_lock(map); 4477 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4478 /* If we would blow our VMEM resource limit, no go */ 4479 if (map->size + init_ssize > vmemlim) { 4480 rv = KERN_NO_SPACE; 4481 goto out; 4482 } 4483 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4484 max, cow); 4485 out: 4486 vm_map_unlock(map); 4487 return (rv); 4488 } 4489 4490 static int stack_guard_page = 1; 4491 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4492 &stack_guard_page, 0, 4493 "Specifies the number of guard pages for a stack that grows"); 4494 4495 static int 4496 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4497 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4498 { 4499 vm_map_entry_t new_entry, prev_entry; 4500 vm_offset_t bot, gap_bot, gap_top, top; 4501 vm_size_t init_ssize, sgp; 4502 int orient, rv; 4503 4504 /* 4505 * The stack orientation is piggybacked with the cow argument. 4506 * Extract it into orient and mask the cow argument so that we 4507 * don't pass it around further. 4508 */ 4509 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4510 KASSERT(orient != 0, ("No stack grow direction")); 4511 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4512 ("bi-dir stack")); 4513 4514 if (max_ssize == 0 || 4515 !vm_map_range_valid(map, addrbos, addrbos + max_ssize)) 4516 return (KERN_INVALID_ADDRESS); 4517 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4518 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4519 (vm_size_t)stack_guard_page * PAGE_SIZE; 4520 if (sgp >= max_ssize) 4521 return (KERN_INVALID_ARGUMENT); 4522 4523 init_ssize = growsize; 4524 if (max_ssize < init_ssize + sgp) 4525 init_ssize = max_ssize - sgp; 4526 4527 /* If addr is already mapped, no go */ 4528 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4529 return (KERN_NO_SPACE); 4530 4531 /* 4532 * If we can't accommodate max_ssize in the current mapping, no go. 4533 */ 4534 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize) 4535 return (KERN_NO_SPACE); 4536 4537 /* 4538 * We initially map a stack of only init_ssize. We will grow as 4539 * needed later. Depending on the orientation of the stack (i.e. 4540 * the grow direction) we either map at the top of the range, the 4541 * bottom of the range or in the middle. 4542 * 4543 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4544 * and cow to be 0. Possibly we should eliminate these as input 4545 * parameters, and just pass these values here in the insert call. 4546 */ 4547 if (orient == MAP_STACK_GROWS_DOWN) { 4548 bot = addrbos + max_ssize - init_ssize; 4549 top = bot + init_ssize; 4550 gap_bot = addrbos; 4551 gap_top = bot; 4552 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4553 bot = addrbos; 4554 top = bot + init_ssize; 4555 gap_bot = top; 4556 gap_top = addrbos + max_ssize; 4557 } 4558 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 4559 if (rv != KERN_SUCCESS) 4560 return (rv); 4561 new_entry = vm_map_entry_succ(prev_entry); 4562 KASSERT(new_entry->end == top || new_entry->start == bot, 4563 ("Bad entry start/end for new stack entry")); 4564 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4565 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4566 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4567 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4568 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4569 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4570 if (gap_bot == gap_top) 4571 return (KERN_SUCCESS); 4572 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4573 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4574 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 4575 if (rv == KERN_SUCCESS) { 4576 /* 4577 * Gap can never successfully handle a fault, so 4578 * read-ahead logic is never used for it. Re-use 4579 * next_read of the gap entry to store 4580 * stack_guard_page for vm_map_growstack(). 4581 */ 4582 if (orient == MAP_STACK_GROWS_DOWN) 4583 vm_map_entry_pred(new_entry)->next_read = sgp; 4584 else 4585 vm_map_entry_succ(new_entry)->next_read = sgp; 4586 } else { 4587 (void)vm_map_delete(map, bot, top); 4588 } 4589 return (rv); 4590 } 4591 4592 /* 4593 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4594 * successfully grow the stack. 4595 */ 4596 static int 4597 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4598 { 4599 vm_map_entry_t stack_entry; 4600 struct proc *p; 4601 struct vmspace *vm; 4602 struct ucred *cred; 4603 vm_offset_t gap_end, gap_start, grow_start; 4604 vm_size_t grow_amount, guard, max_grow; 4605 rlim_t lmemlim, stacklim, vmemlim; 4606 int rv, rv1; 4607 bool gap_deleted, grow_down, is_procstack; 4608 #ifdef notyet 4609 uint64_t limit; 4610 #endif 4611 #ifdef RACCT 4612 int error; 4613 #endif 4614 4615 p = curproc; 4616 vm = p->p_vmspace; 4617 4618 /* 4619 * Disallow stack growth when the access is performed by a 4620 * debugger or AIO daemon. The reason is that the wrong 4621 * resource limits are applied. 4622 */ 4623 if (p != initproc && (map != &p->p_vmspace->vm_map || 4624 p->p_textvp == NULL)) 4625 return (KERN_FAILURE); 4626 4627 MPASS(!map->system_map); 4628 4629 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4630 stacklim = lim_cur(curthread, RLIMIT_STACK); 4631 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4632 retry: 4633 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4634 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4635 return (KERN_FAILURE); 4636 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4637 return (KERN_SUCCESS); 4638 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4639 stack_entry = vm_map_entry_succ(gap_entry); 4640 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4641 stack_entry->start != gap_entry->end) 4642 return (KERN_FAILURE); 4643 grow_amount = round_page(stack_entry->start - addr); 4644 grow_down = true; 4645 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4646 stack_entry = vm_map_entry_pred(gap_entry); 4647 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4648 stack_entry->end != gap_entry->start) 4649 return (KERN_FAILURE); 4650 grow_amount = round_page(addr + 1 - stack_entry->end); 4651 grow_down = false; 4652 } else { 4653 return (KERN_FAILURE); 4654 } 4655 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4656 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4657 gap_entry->next_read; 4658 max_grow = gap_entry->end - gap_entry->start; 4659 if (guard > max_grow) 4660 return (KERN_NO_SPACE); 4661 max_grow -= guard; 4662 if (grow_amount > max_grow) 4663 return (KERN_NO_SPACE); 4664 4665 /* 4666 * If this is the main process stack, see if we're over the stack 4667 * limit. 4668 */ 4669 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4670 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 4671 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4672 return (KERN_NO_SPACE); 4673 4674 #ifdef RACCT 4675 if (racct_enable) { 4676 PROC_LOCK(p); 4677 if (is_procstack && racct_set(p, RACCT_STACK, 4678 ctob(vm->vm_ssize) + grow_amount)) { 4679 PROC_UNLOCK(p); 4680 return (KERN_NO_SPACE); 4681 } 4682 PROC_UNLOCK(p); 4683 } 4684 #endif 4685 4686 grow_amount = roundup(grow_amount, sgrowsiz); 4687 if (grow_amount > max_grow) 4688 grow_amount = max_grow; 4689 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4690 grow_amount = trunc_page((vm_size_t)stacklim) - 4691 ctob(vm->vm_ssize); 4692 } 4693 4694 #ifdef notyet 4695 PROC_LOCK(p); 4696 limit = racct_get_available(p, RACCT_STACK); 4697 PROC_UNLOCK(p); 4698 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4699 grow_amount = limit - ctob(vm->vm_ssize); 4700 #endif 4701 4702 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4703 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4704 rv = KERN_NO_SPACE; 4705 goto out; 4706 } 4707 #ifdef RACCT 4708 if (racct_enable) { 4709 PROC_LOCK(p); 4710 if (racct_set(p, RACCT_MEMLOCK, 4711 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4712 PROC_UNLOCK(p); 4713 rv = KERN_NO_SPACE; 4714 goto out; 4715 } 4716 PROC_UNLOCK(p); 4717 } 4718 #endif 4719 } 4720 4721 /* If we would blow our VMEM resource limit, no go */ 4722 if (map->size + grow_amount > vmemlim) { 4723 rv = KERN_NO_SPACE; 4724 goto out; 4725 } 4726 #ifdef RACCT 4727 if (racct_enable) { 4728 PROC_LOCK(p); 4729 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4730 PROC_UNLOCK(p); 4731 rv = KERN_NO_SPACE; 4732 goto out; 4733 } 4734 PROC_UNLOCK(p); 4735 } 4736 #endif 4737 4738 if (vm_map_lock_upgrade(map)) { 4739 gap_entry = NULL; 4740 vm_map_lock_read(map); 4741 goto retry; 4742 } 4743 4744 if (grow_down) { 4745 grow_start = gap_entry->end - grow_amount; 4746 if (gap_entry->start + grow_amount == gap_entry->end) { 4747 gap_start = gap_entry->start; 4748 gap_end = gap_entry->end; 4749 vm_map_entry_delete(map, gap_entry); 4750 gap_deleted = true; 4751 } else { 4752 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4753 vm_map_entry_resize(map, gap_entry, -grow_amount); 4754 gap_deleted = false; 4755 } 4756 rv = vm_map_insert(map, NULL, 0, grow_start, 4757 grow_start + grow_amount, 4758 stack_entry->protection, stack_entry->max_protection, 4759 MAP_STACK_GROWS_DOWN); 4760 if (rv != KERN_SUCCESS) { 4761 if (gap_deleted) { 4762 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4763 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4764 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4765 MPASS(rv1 == KERN_SUCCESS); 4766 } else 4767 vm_map_entry_resize(map, gap_entry, 4768 grow_amount); 4769 } 4770 } else { 4771 grow_start = stack_entry->end; 4772 cred = stack_entry->cred; 4773 if (cred == NULL && stack_entry->object.vm_object != NULL) 4774 cred = stack_entry->object.vm_object->cred; 4775 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4776 rv = KERN_NO_SPACE; 4777 /* Grow the underlying object if applicable. */ 4778 else if (stack_entry->object.vm_object == NULL || 4779 vm_object_coalesce(stack_entry->object.vm_object, 4780 stack_entry->offset, 4781 (vm_size_t)(stack_entry->end - stack_entry->start), 4782 grow_amount, cred != NULL)) { 4783 if (gap_entry->start + grow_amount == gap_entry->end) { 4784 vm_map_entry_delete(map, gap_entry); 4785 vm_map_entry_resize(map, stack_entry, 4786 grow_amount); 4787 } else { 4788 gap_entry->start += grow_amount; 4789 stack_entry->end += grow_amount; 4790 } 4791 map->size += grow_amount; 4792 rv = KERN_SUCCESS; 4793 } else 4794 rv = KERN_FAILURE; 4795 } 4796 if (rv == KERN_SUCCESS && is_procstack) 4797 vm->vm_ssize += btoc(grow_amount); 4798 4799 /* 4800 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4801 */ 4802 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4803 rv = vm_map_wire_locked(map, grow_start, 4804 grow_start + grow_amount, 4805 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4806 } 4807 vm_map_lock_downgrade(map); 4808 4809 out: 4810 #ifdef RACCT 4811 if (racct_enable && rv != KERN_SUCCESS) { 4812 PROC_LOCK(p); 4813 error = racct_set(p, RACCT_VMEM, map->size); 4814 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4815 if (!old_mlock) { 4816 error = racct_set(p, RACCT_MEMLOCK, 4817 ptoa(pmap_wired_count(map->pmap))); 4818 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4819 } 4820 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4821 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4822 PROC_UNLOCK(p); 4823 } 4824 #endif 4825 4826 return (rv); 4827 } 4828 4829 /* 4830 * Unshare the specified VM space for exec. If other processes are 4831 * mapped to it, then create a new one. The new vmspace is null. 4832 */ 4833 int 4834 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4835 { 4836 struct vmspace *oldvmspace = p->p_vmspace; 4837 struct vmspace *newvmspace; 4838 4839 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4840 ("vmspace_exec recursed")); 4841 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4842 if (newvmspace == NULL) 4843 return (ENOMEM); 4844 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4845 /* 4846 * This code is written like this for prototype purposes. The 4847 * goal is to avoid running down the vmspace here, but let the 4848 * other process's that are still using the vmspace to finally 4849 * run it down. Even though there is little or no chance of blocking 4850 * here, it is a good idea to keep this form for future mods. 4851 */ 4852 PROC_VMSPACE_LOCK(p); 4853 p->p_vmspace = newvmspace; 4854 PROC_VMSPACE_UNLOCK(p); 4855 if (p == curthread->td_proc) 4856 pmap_activate(curthread); 4857 curthread->td_pflags |= TDP_EXECVMSPC; 4858 return (0); 4859 } 4860 4861 /* 4862 * Unshare the specified VM space for forcing COW. This 4863 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4864 */ 4865 int 4866 vmspace_unshare(struct proc *p) 4867 { 4868 struct vmspace *oldvmspace = p->p_vmspace; 4869 struct vmspace *newvmspace; 4870 vm_ooffset_t fork_charge; 4871 4872 /* 4873 * The caller is responsible for ensuring that the reference count 4874 * cannot concurrently transition 1 -> 2. 4875 */ 4876 if (refcount_load(&oldvmspace->vm_refcnt) == 1) 4877 return (0); 4878 fork_charge = 0; 4879 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4880 if (newvmspace == NULL) 4881 return (ENOMEM); 4882 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4883 vmspace_free(newvmspace); 4884 return (ENOMEM); 4885 } 4886 PROC_VMSPACE_LOCK(p); 4887 p->p_vmspace = newvmspace; 4888 PROC_VMSPACE_UNLOCK(p); 4889 if (p == curthread->td_proc) 4890 pmap_activate(curthread); 4891 vmspace_free(oldvmspace); 4892 return (0); 4893 } 4894 4895 /* 4896 * vm_map_lookup: 4897 * 4898 * Finds the VM object, offset, and 4899 * protection for a given virtual address in the 4900 * specified map, assuming a page fault of the 4901 * type specified. 4902 * 4903 * Leaves the map in question locked for read; return 4904 * values are guaranteed until a vm_map_lookup_done 4905 * call is performed. Note that the map argument 4906 * is in/out; the returned map must be used in 4907 * the call to vm_map_lookup_done. 4908 * 4909 * A handle (out_entry) is returned for use in 4910 * vm_map_lookup_done, to make that fast. 4911 * 4912 * If a lookup is requested with "write protection" 4913 * specified, the map may be changed to perform virtual 4914 * copying operations, although the data referenced will 4915 * remain the same. 4916 */ 4917 int 4918 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4919 vm_offset_t vaddr, 4920 vm_prot_t fault_typea, 4921 vm_map_entry_t *out_entry, /* OUT */ 4922 vm_object_t *object, /* OUT */ 4923 vm_pindex_t *pindex, /* OUT */ 4924 vm_prot_t *out_prot, /* OUT */ 4925 boolean_t *wired) /* OUT */ 4926 { 4927 vm_map_entry_t entry; 4928 vm_map_t map = *var_map; 4929 vm_prot_t prot; 4930 vm_prot_t fault_type; 4931 vm_object_t eobject; 4932 vm_size_t size; 4933 struct ucred *cred; 4934 4935 RetryLookup: 4936 4937 vm_map_lock_read(map); 4938 4939 RetryLookupLocked: 4940 /* 4941 * Lookup the faulting address. 4942 */ 4943 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4944 vm_map_unlock_read(map); 4945 return (KERN_INVALID_ADDRESS); 4946 } 4947 4948 entry = *out_entry; 4949 4950 /* 4951 * Handle submaps. 4952 */ 4953 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4954 vm_map_t old_map = map; 4955 4956 *var_map = map = entry->object.sub_map; 4957 vm_map_unlock_read(old_map); 4958 goto RetryLookup; 4959 } 4960 4961 /* 4962 * Check whether this task is allowed to have this page. 4963 */ 4964 prot = entry->protection; 4965 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4966 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4967 if (prot == VM_PROT_NONE && map != kernel_map && 4968 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4969 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4970 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4971 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4972 goto RetryLookupLocked; 4973 } 4974 fault_type = fault_typea & VM_PROT_ALL; 4975 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4976 vm_map_unlock_read(map); 4977 return (KERN_PROTECTION_FAILURE); 4978 } 4979 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4980 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4981 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4982 ("entry %p flags %x", entry, entry->eflags)); 4983 if ((fault_typea & VM_PROT_COPY) != 0 && 4984 (entry->max_protection & VM_PROT_WRITE) == 0 && 4985 (entry->eflags & MAP_ENTRY_COW) == 0) { 4986 vm_map_unlock_read(map); 4987 return (KERN_PROTECTION_FAILURE); 4988 } 4989 4990 /* 4991 * If this page is not pageable, we have to get it for all possible 4992 * accesses. 4993 */ 4994 *wired = (entry->wired_count != 0); 4995 if (*wired) 4996 fault_type = entry->protection; 4997 size = entry->end - entry->start; 4998 4999 /* 5000 * If the entry was copy-on-write, we either ... 5001 */ 5002 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5003 /* 5004 * If we want to write the page, we may as well handle that 5005 * now since we've got the map locked. 5006 * 5007 * If we don't need to write the page, we just demote the 5008 * permissions allowed. 5009 */ 5010 if ((fault_type & VM_PROT_WRITE) != 0 || 5011 (fault_typea & VM_PROT_COPY) != 0) { 5012 /* 5013 * Make a new object, and place it in the object 5014 * chain. Note that no new references have appeared 5015 * -- one just moved from the map to the new 5016 * object. 5017 */ 5018 if (vm_map_lock_upgrade(map)) 5019 goto RetryLookup; 5020 5021 if (entry->cred == NULL) { 5022 /* 5023 * The debugger owner is charged for 5024 * the memory. 5025 */ 5026 cred = curthread->td_ucred; 5027 crhold(cred); 5028 if (!swap_reserve_by_cred(size, cred)) { 5029 crfree(cred); 5030 vm_map_unlock(map); 5031 return (KERN_RESOURCE_SHORTAGE); 5032 } 5033 entry->cred = cred; 5034 } 5035 eobject = entry->object.vm_object; 5036 vm_object_shadow(&entry->object.vm_object, 5037 &entry->offset, size, entry->cred, false); 5038 if (eobject == entry->object.vm_object) { 5039 /* 5040 * The object was not shadowed. 5041 */ 5042 swap_release_by_cred(size, entry->cred); 5043 crfree(entry->cred); 5044 } 5045 entry->cred = NULL; 5046 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 5047 5048 vm_map_lock_downgrade(map); 5049 } else { 5050 /* 5051 * We're attempting to read a copy-on-write page -- 5052 * don't allow writes. 5053 */ 5054 prot &= ~VM_PROT_WRITE; 5055 } 5056 } 5057 5058 /* 5059 * Create an object if necessary. 5060 */ 5061 if (entry->object.vm_object == NULL && !map->system_map) { 5062 if (vm_map_lock_upgrade(map)) 5063 goto RetryLookup; 5064 entry->object.vm_object = vm_object_allocate_anon(atop(size), 5065 NULL, entry->cred, entry->cred != NULL ? size : 0); 5066 entry->offset = 0; 5067 entry->cred = NULL; 5068 vm_map_lock_downgrade(map); 5069 } 5070 5071 /* 5072 * Return the object/offset from this entry. If the entry was 5073 * copy-on-write or empty, it has been fixed up. 5074 */ 5075 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5076 *object = entry->object.vm_object; 5077 5078 *out_prot = prot; 5079 return (KERN_SUCCESS); 5080 } 5081 5082 /* 5083 * vm_map_lookup_locked: 5084 * 5085 * Lookup the faulting address. A version of vm_map_lookup that returns 5086 * KERN_FAILURE instead of blocking on map lock or memory allocation. 5087 */ 5088 int 5089 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 5090 vm_offset_t vaddr, 5091 vm_prot_t fault_typea, 5092 vm_map_entry_t *out_entry, /* OUT */ 5093 vm_object_t *object, /* OUT */ 5094 vm_pindex_t *pindex, /* OUT */ 5095 vm_prot_t *out_prot, /* OUT */ 5096 boolean_t *wired) /* OUT */ 5097 { 5098 vm_map_entry_t entry; 5099 vm_map_t map = *var_map; 5100 vm_prot_t prot; 5101 vm_prot_t fault_type = fault_typea; 5102 5103 /* 5104 * Lookup the faulting address. 5105 */ 5106 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 5107 return (KERN_INVALID_ADDRESS); 5108 5109 entry = *out_entry; 5110 5111 /* 5112 * Fail if the entry refers to a submap. 5113 */ 5114 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 5115 return (KERN_FAILURE); 5116 5117 /* 5118 * Check whether this task is allowed to have this page. 5119 */ 5120 prot = entry->protection; 5121 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 5122 if ((fault_type & prot) != fault_type) 5123 return (KERN_PROTECTION_FAILURE); 5124 5125 /* 5126 * If this page is not pageable, we have to get it for all possible 5127 * accesses. 5128 */ 5129 *wired = (entry->wired_count != 0); 5130 if (*wired) 5131 fault_type = entry->protection; 5132 5133 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5134 /* 5135 * Fail if the entry was copy-on-write for a write fault. 5136 */ 5137 if (fault_type & VM_PROT_WRITE) 5138 return (KERN_FAILURE); 5139 /* 5140 * We're attempting to read a copy-on-write page -- 5141 * don't allow writes. 5142 */ 5143 prot &= ~VM_PROT_WRITE; 5144 } 5145 5146 /* 5147 * Fail if an object should be created. 5148 */ 5149 if (entry->object.vm_object == NULL && !map->system_map) 5150 return (KERN_FAILURE); 5151 5152 /* 5153 * Return the object/offset from this entry. If the entry was 5154 * copy-on-write or empty, it has been fixed up. 5155 */ 5156 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5157 *object = entry->object.vm_object; 5158 5159 *out_prot = prot; 5160 return (KERN_SUCCESS); 5161 } 5162 5163 /* 5164 * vm_map_lookup_done: 5165 * 5166 * Releases locks acquired by a vm_map_lookup 5167 * (according to the handle returned by that lookup). 5168 */ 5169 void 5170 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 5171 { 5172 /* 5173 * Unlock the main-level map 5174 */ 5175 vm_map_unlock_read(map); 5176 } 5177 5178 vm_offset_t 5179 vm_map_max_KBI(const struct vm_map *map) 5180 { 5181 5182 return (vm_map_max(map)); 5183 } 5184 5185 vm_offset_t 5186 vm_map_min_KBI(const struct vm_map *map) 5187 { 5188 5189 return (vm_map_min(map)); 5190 } 5191 5192 pmap_t 5193 vm_map_pmap_KBI(vm_map_t map) 5194 { 5195 5196 return (map->pmap); 5197 } 5198 5199 bool 5200 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end) 5201 { 5202 5203 return (vm_map_range_valid(map, start, end)); 5204 } 5205 5206 #ifdef INVARIANTS 5207 static void 5208 _vm_map_assert_consistent(vm_map_t map, int check) 5209 { 5210 vm_map_entry_t entry, prev; 5211 vm_map_entry_t cur, header, lbound, ubound; 5212 vm_size_t max_left, max_right; 5213 5214 #ifdef DIAGNOSTIC 5215 ++map->nupdates; 5216 #endif 5217 if (enable_vmmap_check != check) 5218 return; 5219 5220 header = prev = &map->header; 5221 VM_MAP_ENTRY_FOREACH(entry, map) { 5222 KASSERT(prev->end <= entry->start, 5223 ("map %p prev->end = %jx, start = %jx", map, 5224 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5225 KASSERT(entry->start < entry->end, 5226 ("map %p start = %jx, end = %jx", map, 5227 (uintmax_t)entry->start, (uintmax_t)entry->end)); 5228 KASSERT(entry->left == header || 5229 entry->left->start < entry->start, 5230 ("map %p left->start = %jx, start = %jx", map, 5231 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 5232 KASSERT(entry->right == header || 5233 entry->start < entry->right->start, 5234 ("map %p start = %jx, right->start = %jx", map, 5235 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 5236 cur = map->root; 5237 lbound = ubound = header; 5238 for (;;) { 5239 if (entry->start < cur->start) { 5240 ubound = cur; 5241 cur = cur->left; 5242 KASSERT(cur != lbound, 5243 ("map %p cannot find %jx", 5244 map, (uintmax_t)entry->start)); 5245 } else if (cur->end <= entry->start) { 5246 lbound = cur; 5247 cur = cur->right; 5248 KASSERT(cur != ubound, 5249 ("map %p cannot find %jx", 5250 map, (uintmax_t)entry->start)); 5251 } else { 5252 KASSERT(cur == entry, 5253 ("map %p cannot find %jx", 5254 map, (uintmax_t)entry->start)); 5255 break; 5256 } 5257 } 5258 max_left = vm_map_entry_max_free_left(entry, lbound); 5259 max_right = vm_map_entry_max_free_right(entry, ubound); 5260 KASSERT(entry->max_free == vm_size_max(max_left, max_right), 5261 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 5262 (uintmax_t)entry->max_free, 5263 (uintmax_t)max_left, (uintmax_t)max_right)); 5264 prev = entry; 5265 } 5266 KASSERT(prev->end <= entry->start, 5267 ("map %p prev->end = %jx, start = %jx", map, 5268 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5269 } 5270 #endif 5271 5272 #include "opt_ddb.h" 5273 #ifdef DDB 5274 #include <sys/kernel.h> 5275 5276 #include <ddb/ddb.h> 5277 5278 static void 5279 vm_map_print(vm_map_t map) 5280 { 5281 vm_map_entry_t entry, prev; 5282 5283 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 5284 (void *)map, 5285 (void *)map->pmap, map->nentries, map->timestamp); 5286 5287 db_indent += 2; 5288 prev = &map->header; 5289 VM_MAP_ENTRY_FOREACH(entry, map) { 5290 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 5291 (void *)entry, (void *)entry->start, (void *)entry->end, 5292 entry->eflags); 5293 { 5294 static const char * const inheritance_name[4] = 5295 {"share", "copy", "none", "donate_copy"}; 5296 5297 db_iprintf(" prot=%x/%x/%s", 5298 entry->protection, 5299 entry->max_protection, 5300 inheritance_name[(int)(unsigned char) 5301 entry->inheritance]); 5302 if (entry->wired_count != 0) 5303 db_printf(", wired"); 5304 } 5305 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5306 db_printf(", share=%p, offset=0x%jx\n", 5307 (void *)entry->object.sub_map, 5308 (uintmax_t)entry->offset); 5309 if (prev == &map->header || 5310 prev->object.sub_map != 5311 entry->object.sub_map) { 5312 db_indent += 2; 5313 vm_map_print((vm_map_t)entry->object.sub_map); 5314 db_indent -= 2; 5315 } 5316 } else { 5317 if (entry->cred != NULL) 5318 db_printf(", ruid %d", entry->cred->cr_ruid); 5319 db_printf(", object=%p, offset=0x%jx", 5320 (void *)entry->object.vm_object, 5321 (uintmax_t)entry->offset); 5322 if (entry->object.vm_object && entry->object.vm_object->cred) 5323 db_printf(", obj ruid %d charge %jx", 5324 entry->object.vm_object->cred->cr_ruid, 5325 (uintmax_t)entry->object.vm_object->charge); 5326 if (entry->eflags & MAP_ENTRY_COW) 5327 db_printf(", copy (%s)", 5328 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 5329 db_printf("\n"); 5330 5331 if (prev == &map->header || 5332 prev->object.vm_object != 5333 entry->object.vm_object) { 5334 db_indent += 2; 5335 vm_object_print((db_expr_t)(intptr_t) 5336 entry->object.vm_object, 5337 0, 0, (char *)0); 5338 db_indent -= 2; 5339 } 5340 } 5341 prev = entry; 5342 } 5343 db_indent -= 2; 5344 } 5345 5346 DB_SHOW_COMMAND(map, map) 5347 { 5348 5349 if (!have_addr) { 5350 db_printf("usage: show map <addr>\n"); 5351 return; 5352 } 5353 vm_map_print((vm_map_t)addr); 5354 } 5355 5356 DB_SHOW_COMMAND(procvm, procvm) 5357 { 5358 struct proc *p; 5359 5360 if (have_addr) { 5361 p = db_lookup_proc(addr); 5362 } else { 5363 p = curproc; 5364 } 5365 5366 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 5367 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 5368 (void *)vmspace_pmap(p->p_vmspace)); 5369 5370 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 5371 } 5372 5373 #endif /* DDB */ 5374