xref: /freebsd/sys/vm/vm_map.c (revision f68801df100565820b35631a8709229141537baa)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vnode_pager.h>
99 #include <vm/swap_pager.h>
100 #include <vm/uma.h>
101 
102 /*
103  *	Virtual memory maps provide for the mapping, protection,
104  *	and sharing of virtual memory objects.  In addition,
105  *	this module provides for an efficient virtual copy of
106  *	memory from one map to another.
107  *
108  *	Synchronization is required prior to most operations.
109  *
110  *	Maps consist of an ordered doubly-linked list of simple
111  *	entries; a self-adjusting binary search tree of these
112  *	entries is used to speed up lookups.
113  *
114  *	Since portions of maps are specified by start/end addresses,
115  *	which may not align with existing map entries, all
116  *	routines merely "clip" entries to these start/end values.
117  *	[That is, an entry is split into two, bordering at a
118  *	start or end value.]  Note that these clippings may not
119  *	always be necessary (as the two resulting entries are then
120  *	not changed); however, the clipping is done for convenience.
121  *
122  *	As mentioned above, virtual copy operations are performed
123  *	by copying VM object references from one map to
124  *	another, and then marking both regions as copy-on-write.
125  */
126 
127 static struct mtx map_sleep_mtx;
128 static uma_zone_t mapentzone;
129 static uma_zone_t kmapentzone;
130 static uma_zone_t mapzone;
131 static uma_zone_t vmspace_zone;
132 static int vmspace_zinit(void *mem, int size, int flags);
133 static int vm_map_zinit(void *mem, int ize, int flags);
134 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
135     vm_offset_t max);
136 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
137 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
138 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
139 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
140     vm_map_entry_t gap_entry);
141 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
142     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
143 #ifdef INVARIANTS
144 static void vm_map_zdtor(void *mem, int size, void *arg);
145 static void vmspace_zdtor(void *mem, int size, void *arg);
146 #endif
147 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
148     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
149     int cow);
150 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
151     vm_offset_t failed_addr);
152 
153 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
154     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
155      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
156 
157 /*
158  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
159  * stable.
160  */
161 #define PROC_VMSPACE_LOCK(p) do { } while (0)
162 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
163 
164 /*
165  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
166  *
167  *	Asserts that the starting and ending region
168  *	addresses fall within the valid range of the map.
169  */
170 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
171 		{					\
172 		if (start < vm_map_min(map))		\
173 			start = vm_map_min(map);	\
174 		if (end > vm_map_max(map))		\
175 			end = vm_map_max(map);		\
176 		if (start > end)			\
177 			start = end;			\
178 		}
179 
180 /*
181  *	vm_map_startup:
182  *
183  *	Initialize the vm_map module.  Must be called before
184  *	any other vm_map routines.
185  *
186  *	Map and entry structures are allocated from the general
187  *	purpose memory pool with some exceptions:
188  *
189  *	- The kernel map and kmem submap are allocated statically.
190  *	- Kernel map entries are allocated out of a static pool.
191  *
192  *	These restrictions are necessary since malloc() uses the
193  *	maps and requires map entries.
194  */
195 
196 void
197 vm_map_startup(void)
198 {
199 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
200 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
201 #ifdef INVARIANTS
202 	    vm_map_zdtor,
203 #else
204 	    NULL,
205 #endif
206 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
207 	uma_prealloc(mapzone, MAX_KMAP);
208 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
209 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
210 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
211 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
212 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
213 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
214 #ifdef INVARIANTS
215 	    vmspace_zdtor,
216 #else
217 	    NULL,
218 #endif
219 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
220 }
221 
222 static int
223 vmspace_zinit(void *mem, int size, int flags)
224 {
225 	struct vmspace *vm;
226 
227 	vm = (struct vmspace *)mem;
228 
229 	vm->vm_map.pmap = NULL;
230 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
231 	PMAP_LOCK_INIT(vmspace_pmap(vm));
232 	return (0);
233 }
234 
235 static int
236 vm_map_zinit(void *mem, int size, int flags)
237 {
238 	vm_map_t map;
239 
240 	map = (vm_map_t)mem;
241 	memset(map, 0, sizeof(*map));
242 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
243 	sx_init(&map->lock, "vm map (user)");
244 	return (0);
245 }
246 
247 #ifdef INVARIANTS
248 static void
249 vmspace_zdtor(void *mem, int size, void *arg)
250 {
251 	struct vmspace *vm;
252 
253 	vm = (struct vmspace *)mem;
254 
255 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
256 }
257 static void
258 vm_map_zdtor(void *mem, int size, void *arg)
259 {
260 	vm_map_t map;
261 
262 	map = (vm_map_t)mem;
263 	KASSERT(map->nentries == 0,
264 	    ("map %p nentries == %d on free.",
265 	    map, map->nentries));
266 	KASSERT(map->size == 0,
267 	    ("map %p size == %lu on free.",
268 	    map, (unsigned long)map->size));
269 }
270 #endif	/* INVARIANTS */
271 
272 /*
273  * Allocate a vmspace structure, including a vm_map and pmap,
274  * and initialize those structures.  The refcnt is set to 1.
275  *
276  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
277  */
278 struct vmspace *
279 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
280 {
281 	struct vmspace *vm;
282 
283 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
284 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
285 	if (!pinit(vmspace_pmap(vm))) {
286 		uma_zfree(vmspace_zone, vm);
287 		return (NULL);
288 	}
289 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291 	vm->vm_refcnt = 1;
292 	vm->vm_shm = NULL;
293 	vm->vm_swrss = 0;
294 	vm->vm_tsize = 0;
295 	vm->vm_dsize = 0;
296 	vm->vm_ssize = 0;
297 	vm->vm_taddr = 0;
298 	vm->vm_daddr = 0;
299 	vm->vm_maxsaddr = 0;
300 	return (vm);
301 }
302 
303 #ifdef RACCT
304 static void
305 vmspace_container_reset(struct proc *p)
306 {
307 
308 	PROC_LOCK(p);
309 	racct_set(p, RACCT_DATA, 0);
310 	racct_set(p, RACCT_STACK, 0);
311 	racct_set(p, RACCT_RSS, 0);
312 	racct_set(p, RACCT_MEMLOCK, 0);
313 	racct_set(p, RACCT_VMEM, 0);
314 	PROC_UNLOCK(p);
315 }
316 #endif
317 
318 static inline void
319 vmspace_dofree(struct vmspace *vm)
320 {
321 
322 	CTR1(KTR_VM, "vmspace_free: %p", vm);
323 
324 	/*
325 	 * Make sure any SysV shm is freed, it might not have been in
326 	 * exit1().
327 	 */
328 	shmexit(vm);
329 
330 	/*
331 	 * Lock the map, to wait out all other references to it.
332 	 * Delete all of the mappings and pages they hold, then call
333 	 * the pmap module to reclaim anything left.
334 	 */
335 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
336 	    vm_map_max(&vm->vm_map));
337 
338 	pmap_release(vmspace_pmap(vm));
339 	vm->vm_map.pmap = NULL;
340 	uma_zfree(vmspace_zone, vm);
341 }
342 
343 void
344 vmspace_free(struct vmspace *vm)
345 {
346 
347 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
348 	    "vmspace_free() called");
349 
350 	if (vm->vm_refcnt == 0)
351 		panic("vmspace_free: attempt to free already freed vmspace");
352 
353 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
354 		vmspace_dofree(vm);
355 }
356 
357 void
358 vmspace_exitfree(struct proc *p)
359 {
360 	struct vmspace *vm;
361 
362 	PROC_VMSPACE_LOCK(p);
363 	vm = p->p_vmspace;
364 	p->p_vmspace = NULL;
365 	PROC_VMSPACE_UNLOCK(p);
366 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
367 	vmspace_free(vm);
368 }
369 
370 void
371 vmspace_exit(struct thread *td)
372 {
373 	int refcnt;
374 	struct vmspace *vm;
375 	struct proc *p;
376 
377 	/*
378 	 * Release user portion of address space.
379 	 * This releases references to vnodes,
380 	 * which could cause I/O if the file has been unlinked.
381 	 * Need to do this early enough that we can still sleep.
382 	 *
383 	 * The last exiting process to reach this point releases as
384 	 * much of the environment as it can. vmspace_dofree() is the
385 	 * slower fallback in case another process had a temporary
386 	 * reference to the vmspace.
387 	 */
388 
389 	p = td->td_proc;
390 	vm = p->p_vmspace;
391 	atomic_add_int(&vmspace0.vm_refcnt, 1);
392 	refcnt = vm->vm_refcnt;
393 	do {
394 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
395 			/* Switch now since other proc might free vmspace */
396 			PROC_VMSPACE_LOCK(p);
397 			p->p_vmspace = &vmspace0;
398 			PROC_VMSPACE_UNLOCK(p);
399 			pmap_activate(td);
400 		}
401 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
402 	if (refcnt == 1) {
403 		if (p->p_vmspace != vm) {
404 			/* vmspace not yet freed, switch back */
405 			PROC_VMSPACE_LOCK(p);
406 			p->p_vmspace = vm;
407 			PROC_VMSPACE_UNLOCK(p);
408 			pmap_activate(td);
409 		}
410 		pmap_remove_pages(vmspace_pmap(vm));
411 		/* Switch now since this proc will free vmspace */
412 		PROC_VMSPACE_LOCK(p);
413 		p->p_vmspace = &vmspace0;
414 		PROC_VMSPACE_UNLOCK(p);
415 		pmap_activate(td);
416 		vmspace_dofree(vm);
417 	}
418 #ifdef RACCT
419 	if (racct_enable)
420 		vmspace_container_reset(p);
421 #endif
422 }
423 
424 /* Acquire reference to vmspace owned by another process. */
425 
426 struct vmspace *
427 vmspace_acquire_ref(struct proc *p)
428 {
429 	struct vmspace *vm;
430 	int refcnt;
431 
432 	PROC_VMSPACE_LOCK(p);
433 	vm = p->p_vmspace;
434 	if (vm == NULL) {
435 		PROC_VMSPACE_UNLOCK(p);
436 		return (NULL);
437 	}
438 	refcnt = vm->vm_refcnt;
439 	do {
440 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
441 			PROC_VMSPACE_UNLOCK(p);
442 			return (NULL);
443 		}
444 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
445 	if (vm != p->p_vmspace) {
446 		PROC_VMSPACE_UNLOCK(p);
447 		vmspace_free(vm);
448 		return (NULL);
449 	}
450 	PROC_VMSPACE_UNLOCK(p);
451 	return (vm);
452 }
453 
454 /*
455  * Switch between vmspaces in an AIO kernel process.
456  *
457  * The new vmspace is either the vmspace of a user process obtained
458  * from an active AIO request or the initial vmspace of the AIO kernel
459  * process (when it is idling).  Because user processes will block to
460  * drain any active AIO requests before proceeding in exit() or
461  * execve(), the reference count for vmspaces from AIO requests can
462  * never be 0.  Similarly, AIO kernel processes hold an extra
463  * reference on their initial vmspace for the life of the process.  As
464  * a result, the 'newvm' vmspace always has a non-zero reference
465  * count.  This permits an additional reference on 'newvm' to be
466  * acquired via a simple atomic increment rather than the loop in
467  * vmspace_acquire_ref() above.
468  */
469 void
470 vmspace_switch_aio(struct vmspace *newvm)
471 {
472 	struct vmspace *oldvm;
473 
474 	/* XXX: Need some way to assert that this is an aio daemon. */
475 
476 	KASSERT(newvm->vm_refcnt > 0,
477 	    ("vmspace_switch_aio: newvm unreferenced"));
478 
479 	oldvm = curproc->p_vmspace;
480 	if (oldvm == newvm)
481 		return;
482 
483 	/*
484 	 * Point to the new address space and refer to it.
485 	 */
486 	curproc->p_vmspace = newvm;
487 	atomic_add_int(&newvm->vm_refcnt, 1);
488 
489 	/* Activate the new mapping. */
490 	pmap_activate(curthread);
491 
492 	vmspace_free(oldvm);
493 }
494 
495 void
496 _vm_map_lock(vm_map_t map, const char *file, int line)
497 {
498 
499 	if (map->system_map)
500 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
501 	else
502 		sx_xlock_(&map->lock, file, line);
503 	map->timestamp++;
504 }
505 
506 void
507 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
508 {
509 	vm_object_t object, object1;
510 	struct vnode *vp;
511 
512 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
513 		return;
514 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
515 	    ("Submap with execs"));
516 	object = entry->object.vm_object;
517 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
518 	VM_OBJECT_RLOCK(object);
519 	while ((object1 = object->backing_object) != NULL) {
520 		VM_OBJECT_RLOCK(object1);
521 		VM_OBJECT_RUNLOCK(object);
522 		object = object1;
523 	}
524 
525 	vp = NULL;
526 	if (object->type == OBJT_DEAD) {
527 		/*
528 		 * For OBJT_DEAD objects, v_writecount was handled in
529 		 * vnode_pager_dealloc().
530 		 */
531 	} else if (object->type == OBJT_VNODE) {
532 		vp = object->handle;
533 	} else if (object->type == OBJT_SWAP) {
534 		KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
535 		    ("vm_map_entry_set_vnode_text: swap and !TMPFS "
536 		    "entry %p, object %p, add %d", entry, object, add));
537 		/*
538 		 * Tmpfs VREG node, which was reclaimed, has
539 		 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
540 		 * this case there is no v_writecount to adjust.
541 		 */
542 		if ((object->flags & OBJ_TMPFS) != 0)
543 			vp = object->un_pager.swp.swp_tmpfs;
544 	} else {
545 		KASSERT(0,
546 		    ("vm_map_entry_set_vnode_text: wrong object type, "
547 		    "entry %p, object %p, add %d", entry, object, add));
548 	}
549 	if (vp != NULL) {
550 		if (add)
551 			VOP_SET_TEXT_CHECKED(vp);
552 		else
553 			VOP_UNSET_TEXT_CHECKED(vp);
554 	}
555 	VM_OBJECT_RUNLOCK(object);
556 }
557 
558 static void
559 vm_map_process_deferred(void)
560 {
561 	struct thread *td;
562 	vm_map_entry_t entry, next;
563 	vm_object_t object;
564 
565 	td = curthread;
566 	entry = td->td_map_def_user;
567 	td->td_map_def_user = NULL;
568 	while (entry != NULL) {
569 		next = entry->next;
570 		MPASS((entry->eflags & (MAP_ENTRY_VN_WRITECNT |
571 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_VN_WRITECNT |
572 		    MAP_ENTRY_VN_EXEC));
573 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
574 			/*
575 			 * Decrement the object's writemappings and
576 			 * possibly the vnode's v_writecount.
577 			 */
578 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
579 			    ("Submap with writecount"));
580 			object = entry->object.vm_object;
581 			KASSERT(object != NULL, ("No object for writecount"));
582 			vnode_pager_release_writecount(object, entry->start,
583 			    entry->end);
584 		}
585 		vm_map_entry_set_vnode_text(entry, false);
586 		vm_map_entry_deallocate(entry, FALSE);
587 		entry = next;
588 	}
589 }
590 
591 void
592 _vm_map_unlock(vm_map_t map, const char *file, int line)
593 {
594 
595 	if (map->system_map)
596 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
597 	else {
598 		sx_xunlock_(&map->lock, file, line);
599 		vm_map_process_deferred();
600 	}
601 }
602 
603 void
604 _vm_map_lock_read(vm_map_t map, const char *file, int line)
605 {
606 
607 	if (map->system_map)
608 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
609 	else
610 		sx_slock_(&map->lock, file, line);
611 }
612 
613 void
614 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
615 {
616 
617 	if (map->system_map)
618 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
619 	else {
620 		sx_sunlock_(&map->lock, file, line);
621 		vm_map_process_deferred();
622 	}
623 }
624 
625 int
626 _vm_map_trylock(vm_map_t map, const char *file, int line)
627 {
628 	int error;
629 
630 	error = map->system_map ?
631 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
632 	    !sx_try_xlock_(&map->lock, file, line);
633 	if (error == 0)
634 		map->timestamp++;
635 	return (error == 0);
636 }
637 
638 int
639 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
640 {
641 	int error;
642 
643 	error = map->system_map ?
644 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
645 	    !sx_try_slock_(&map->lock, file, line);
646 	return (error == 0);
647 }
648 
649 /*
650  *	_vm_map_lock_upgrade:	[ internal use only ]
651  *
652  *	Tries to upgrade a read (shared) lock on the specified map to a write
653  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
654  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
655  *	returned without a read or write lock held.
656  *
657  *	Requires that the map be read locked.
658  */
659 int
660 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
661 {
662 	unsigned int last_timestamp;
663 
664 	if (map->system_map) {
665 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
666 	} else {
667 		if (!sx_try_upgrade_(&map->lock, file, line)) {
668 			last_timestamp = map->timestamp;
669 			sx_sunlock_(&map->lock, file, line);
670 			vm_map_process_deferred();
671 			/*
672 			 * If the map's timestamp does not change while the
673 			 * map is unlocked, then the upgrade succeeds.
674 			 */
675 			sx_xlock_(&map->lock, file, line);
676 			if (last_timestamp != map->timestamp) {
677 				sx_xunlock_(&map->lock, file, line);
678 				return (1);
679 			}
680 		}
681 	}
682 	map->timestamp++;
683 	return (0);
684 }
685 
686 void
687 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
688 {
689 
690 	if (map->system_map) {
691 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
692 	} else
693 		sx_downgrade_(&map->lock, file, line);
694 }
695 
696 /*
697  *	vm_map_locked:
698  *
699  *	Returns a non-zero value if the caller holds a write (exclusive) lock
700  *	on the specified map and the value "0" otherwise.
701  */
702 int
703 vm_map_locked(vm_map_t map)
704 {
705 
706 	if (map->system_map)
707 		return (mtx_owned(&map->system_mtx));
708 	else
709 		return (sx_xlocked(&map->lock));
710 }
711 
712 #ifdef INVARIANTS
713 static void
714 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
715 {
716 
717 	if (map->system_map)
718 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
719 	else
720 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
721 }
722 
723 #define	VM_MAP_ASSERT_LOCKED(map) \
724     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
725 
726 #ifdef DIAGNOSTIC
727 static int enable_vmmap_check = 1;
728 #else
729 static int enable_vmmap_check = 0;
730 #endif
731 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
732     &enable_vmmap_check, 0, "Enable vm map consistency checking");
733 
734 static void
735 _vm_map_assert_consistent(vm_map_t map)
736 {
737 	vm_map_entry_t entry;
738 	vm_map_entry_t child;
739 	vm_size_t max_left, max_right;
740 
741 	if (!enable_vmmap_check)
742 		return;
743 
744 	for (entry = map->header.next; entry != &map->header;
745 	    entry = entry->next) {
746 		KASSERT(entry->prev->end <= entry->start,
747 		    ("map %p prev->end = %jx, start = %jx", map,
748 		    (uintmax_t)entry->prev->end, (uintmax_t)entry->start));
749 		KASSERT(entry->start < entry->end,
750 		    ("map %p start = %jx, end = %jx", map,
751 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
752 		KASSERT(entry->end <= entry->next->start,
753 		    ("map %p end = %jx, next->start = %jx", map,
754 		    (uintmax_t)entry->end, (uintmax_t)entry->next->start));
755 		KASSERT(entry->left == NULL ||
756 		    entry->left->start < entry->start,
757 		    ("map %p left->start = %jx, start = %jx", map,
758 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
759 		KASSERT(entry->right == NULL ||
760 		    entry->start < entry->right->start,
761 		    ("map %p start = %jx, right->start = %jx", map,
762 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
763 		child = entry->left;
764 		max_left = (child != NULL) ? child->max_free :
765 			entry->start - entry->prev->end;
766 		child = entry->right;
767 		max_right = (child != NULL) ? child->max_free :
768 			entry->next->start - entry->end;
769 		KASSERT(entry->max_free == MAX(max_left, max_right),
770 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
771 		     (uintmax_t)entry->max_free,
772 		     (uintmax_t)max_left, (uintmax_t)max_right));
773 	}
774 }
775 
776 #define VM_MAP_ASSERT_CONSISTENT(map) \
777     _vm_map_assert_consistent(map)
778 #else
779 #define	VM_MAP_ASSERT_LOCKED(map)
780 #define VM_MAP_ASSERT_CONSISTENT(map)
781 #endif /* INVARIANTS */
782 
783 /*
784  *	_vm_map_unlock_and_wait:
785  *
786  *	Atomically releases the lock on the specified map and puts the calling
787  *	thread to sleep.  The calling thread will remain asleep until either
788  *	vm_map_wakeup() is performed on the map or the specified timeout is
789  *	exceeded.
790  *
791  *	WARNING!  This function does not perform deferred deallocations of
792  *	objects and map	entries.  Therefore, the calling thread is expected to
793  *	reacquire the map lock after reawakening and later perform an ordinary
794  *	unlock operation, such as vm_map_unlock(), before completing its
795  *	operation on the map.
796  */
797 int
798 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
799 {
800 
801 	mtx_lock(&map_sleep_mtx);
802 	if (map->system_map)
803 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
804 	else
805 		sx_xunlock_(&map->lock, file, line);
806 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
807 	    timo));
808 }
809 
810 /*
811  *	vm_map_wakeup:
812  *
813  *	Awaken any threads that have slept on the map using
814  *	vm_map_unlock_and_wait().
815  */
816 void
817 vm_map_wakeup(vm_map_t map)
818 {
819 
820 	/*
821 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
822 	 * from being performed (and lost) between the map unlock
823 	 * and the msleep() in _vm_map_unlock_and_wait().
824 	 */
825 	mtx_lock(&map_sleep_mtx);
826 	mtx_unlock(&map_sleep_mtx);
827 	wakeup(&map->root);
828 }
829 
830 void
831 vm_map_busy(vm_map_t map)
832 {
833 
834 	VM_MAP_ASSERT_LOCKED(map);
835 	map->busy++;
836 }
837 
838 void
839 vm_map_unbusy(vm_map_t map)
840 {
841 
842 	VM_MAP_ASSERT_LOCKED(map);
843 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
844 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
845 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
846 		wakeup(&map->busy);
847 	}
848 }
849 
850 void
851 vm_map_wait_busy(vm_map_t map)
852 {
853 
854 	VM_MAP_ASSERT_LOCKED(map);
855 	while (map->busy) {
856 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
857 		if (map->system_map)
858 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
859 		else
860 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
861 	}
862 	map->timestamp++;
863 }
864 
865 long
866 vmspace_resident_count(struct vmspace *vmspace)
867 {
868 	return pmap_resident_count(vmspace_pmap(vmspace));
869 }
870 
871 /*
872  *	vm_map_create:
873  *
874  *	Creates and returns a new empty VM map with
875  *	the given physical map structure, and having
876  *	the given lower and upper address bounds.
877  */
878 vm_map_t
879 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
880 {
881 	vm_map_t result;
882 
883 	result = uma_zalloc(mapzone, M_WAITOK);
884 	CTR1(KTR_VM, "vm_map_create: %p", result);
885 	_vm_map_init(result, pmap, min, max);
886 	return (result);
887 }
888 
889 /*
890  * Initialize an existing vm_map structure
891  * such as that in the vmspace structure.
892  */
893 static void
894 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
895 {
896 
897 	map->header.next = map->header.prev = &map->header;
898 	map->header.eflags = MAP_ENTRY_HEADER;
899 	map->needs_wakeup = FALSE;
900 	map->system_map = 0;
901 	map->pmap = pmap;
902 	map->header.end = min;
903 	map->header.start = max;
904 	map->flags = 0;
905 	map->root = NULL;
906 	map->timestamp = 0;
907 	map->busy = 0;
908 	map->anon_loc = 0;
909 }
910 
911 void
912 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
913 {
914 
915 	_vm_map_init(map, pmap, min, max);
916 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
917 	sx_init(&map->lock, "user map");
918 }
919 
920 /*
921  *	vm_map_entry_dispose:	[ internal use only ]
922  *
923  *	Inverse of vm_map_entry_create.
924  */
925 static void
926 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
927 {
928 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
929 }
930 
931 /*
932  *	vm_map_entry_create:	[ internal use only ]
933  *
934  *	Allocates a VM map entry for insertion.
935  *	No entry fields are filled in.
936  */
937 static vm_map_entry_t
938 vm_map_entry_create(vm_map_t map)
939 {
940 	vm_map_entry_t new_entry;
941 
942 	if (map->system_map)
943 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
944 	else
945 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
946 	if (new_entry == NULL)
947 		panic("vm_map_entry_create: kernel resources exhausted");
948 	return (new_entry);
949 }
950 
951 /*
952  *	vm_map_entry_set_behavior:
953  *
954  *	Set the expected access behavior, either normal, random, or
955  *	sequential.
956  */
957 static inline void
958 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
959 {
960 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
961 	    (behavior & MAP_ENTRY_BEHAV_MASK);
962 }
963 
964 /*
965  *	vm_map_entry_max_free_{left,right}:
966  *
967  *	Compute the size of the largest free gap between two entries,
968  *	one the root of a tree and the other the ancestor of that root
969  *	that is the least or greatest ancestor found on the search path.
970  */
971 static inline vm_size_t
972 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
973 {
974 
975 	return (root->left != NULL ?
976 	    root->left->max_free : root->start - left_ancestor->end);
977 }
978 
979 static inline vm_size_t
980 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
981 {
982 
983 	return (root->right != NULL ?
984 	    root->right->max_free : right_ancestor->start - root->end);
985 }
986 
987 #define SPLAY_LEFT_STEP(root, y, rlist, test) do {			\
988 	vm_size_t max_free;						\
989 									\
990 	/*								\
991 	 * Infer root->right->max_free == root->max_free when		\
992 	 * y->max_free < root->max_free || root->max_free == 0.		\
993 	 * Otherwise, look right to find it.				\
994 	 */								\
995 	y = root->left;							\
996 	max_free = root->max_free;					\
997 	KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist),	\
998 	    ("%s: max_free invariant fails", __func__));		\
999 	if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)	\
1000 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1001 	if (y != NULL && (test)) {					\
1002 		/* Rotate right and make y root. */			\
1003 		root->left = y->right;					\
1004 		y->right = root;					\
1005 		if (max_free < y->max_free)				\
1006 			root->max_free = max_free = MAX(max_free,	\
1007 			    vm_map_entry_max_free_left(root, y));	\
1008 		root = y;						\
1009 		y = root->left;						\
1010 	}								\
1011 	/* Copy right->max_free.  Put root on rlist. */			\
1012 	root->max_free = max_free;					\
1013 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1014 	    ("%s: max_free not copied from right", __func__));		\
1015 	root->left = rlist;						\
1016 	rlist = root;							\
1017 	root = y;							\
1018 } while (0)
1019 
1020 #define SPLAY_RIGHT_STEP(root, y, llist, test) do {			\
1021 	vm_size_t max_free;						\
1022 									\
1023 	/*								\
1024 	 * Infer root->left->max_free == root->max_free when		\
1025 	 * y->max_free < root->max_free || root->max_free == 0.		\
1026 	 * Otherwise, look left to find it.				\
1027 	 */								\
1028 	y = root->right;						\
1029 	max_free = root->max_free;					\
1030 	KASSERT(max_free >= vm_map_entry_max_free_left(root, llist),	\
1031 	    ("%s: max_free invariant fails", __func__));		\
1032 	if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)	\
1033 		max_free = vm_map_entry_max_free_left(root, llist);	\
1034 	if (y != NULL && (test)) {					\
1035 		/* Rotate left and make y root. */			\
1036 		root->right = y->left;					\
1037 		y->left = root;						\
1038 		if (max_free < y->max_free)				\
1039 			root->max_free = max_free = MAX(max_free,	\
1040 			    vm_map_entry_max_free_right(root, y));	\
1041 		root = y;						\
1042 		y = root->right;					\
1043 	}								\
1044 	/* Copy left->max_free.  Put root on llist. */			\
1045 	root->max_free = max_free;					\
1046 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1047 	    ("%s: max_free not copied from left", __func__));		\
1048 	root->right = llist;						\
1049 	llist = root;							\
1050 	root = y;							\
1051 } while (0)
1052 
1053 /*
1054  * Walk down the tree until we find addr or a NULL pointer where addr would go,
1055  * breaking off left and right subtrees of nodes less than, or greater than
1056  * addr.  Treat pointers to nodes with max_free < length as NULL pointers.
1057  * llist and rlist are the two sides in reverse order (bottom-up), with llist
1058  * linked by the right pointer and rlist linked by the left pointer in the
1059  * vm_map_entry, and both lists terminated by &map->header.  This function, and
1060  * the subsequent call to vm_map_splay_merge, rely on the start and end address
1061  * values in &map->header.
1062  */
1063 static vm_map_entry_t
1064 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1065     vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist)
1066 {
1067 	vm_map_entry_t llist, rlist, root, y;
1068 
1069 	llist = rlist = &map->header;
1070 	root = map->root;
1071 	while (root != NULL && root->max_free >= length) {
1072 		KASSERT(llist->end <= root->start && root->end <= rlist->start,
1073 		    ("%s: root not within tree bounds", __func__));
1074 		if (addr < root->start) {
1075 			SPLAY_LEFT_STEP(root, y, rlist,
1076 			    y->max_free >= length && addr < y->start);
1077 		} else if (addr >= root->end) {
1078 			SPLAY_RIGHT_STEP(root, y, llist,
1079 			    y->max_free >= length && addr >= y->end);
1080 		} else
1081 			break;
1082 	}
1083 	*out_llist = llist;
1084 	*out_rlist = rlist;
1085 	return (root);
1086 }
1087 
1088 static void
1089 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist)
1090 {
1091 	vm_map_entry_t rlist, y;
1092 
1093 	root = root->right;
1094 	rlist = *iolist;
1095 	while (root != NULL)
1096 		SPLAY_LEFT_STEP(root, y, rlist, true);
1097 	*iolist = rlist;
1098 }
1099 
1100 static void
1101 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist)
1102 {
1103 	vm_map_entry_t llist, y;
1104 
1105 	root = root->left;
1106 	llist = *iolist;
1107 	while (root != NULL)
1108 		SPLAY_RIGHT_STEP(root, y, llist, true);
1109 	*iolist = llist;
1110 }
1111 
1112 static inline void
1113 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1114 {
1115 	vm_map_entry_t tmp;
1116 
1117 	tmp = *b;
1118 	*b = *a;
1119 	*a = tmp;
1120 }
1121 
1122 /*
1123  * Walk back up the two spines, flip the pointers and set max_free.  The
1124  * subtrees of the root go at the bottom of llist and rlist.
1125  */
1126 static void
1127 vm_map_splay_merge(vm_map_t map, vm_map_entry_t root,
1128     vm_map_entry_t llist, vm_map_entry_t rlist)
1129 {
1130 	vm_map_entry_t prev;
1131 	vm_size_t max_free_left, max_free_right;
1132 
1133 	max_free_left = vm_map_entry_max_free_left(root, llist);
1134 	if (llist != &map->header) {
1135 		prev = root->left;
1136 		do {
1137 			/*
1138 			 * The max_free values of the children of llist are in
1139 			 * llist->max_free and max_free_left.  Update with the
1140 			 * max value.
1141 			 */
1142 			llist->max_free = max_free_left =
1143 			    MAX(llist->max_free, max_free_left);
1144 			vm_map_entry_swap(&llist->right, &prev);
1145 			vm_map_entry_swap(&prev, &llist);
1146 		} while (llist != &map->header);
1147 		root->left = prev;
1148 	}
1149 	max_free_right = vm_map_entry_max_free_right(root, rlist);
1150 	if (rlist != &map->header) {
1151 		prev = root->right;
1152 		do {
1153 			/*
1154 			 * The max_free values of the children of rlist are in
1155 			 * rlist->max_free and max_free_right.  Update with the
1156 			 * max value.
1157 			 */
1158 			rlist->max_free = max_free_right =
1159 			    MAX(rlist->max_free, max_free_right);
1160 			vm_map_entry_swap(&rlist->left, &prev);
1161 			vm_map_entry_swap(&prev, &rlist);
1162 		} while (rlist != &map->header);
1163 		root->right = prev;
1164 	}
1165 	root->max_free = MAX(max_free_left, max_free_right);
1166 	map->root = root;
1167 }
1168 
1169 /*
1170  *	vm_map_splay:
1171  *
1172  *	The Sleator and Tarjan top-down splay algorithm with the
1173  *	following variation.  Max_free must be computed bottom-up, so
1174  *	on the downward pass, maintain the left and right spines in
1175  *	reverse order.  Then, make a second pass up each side to fix
1176  *	the pointers and compute max_free.  The time bound is O(log n)
1177  *	amortized.
1178  *
1179  *	The new root is the vm_map_entry containing "addr", or else an
1180  *	adjacent entry (lower if possible) if addr is not in the tree.
1181  *
1182  *	The map must be locked, and leaves it so.
1183  *
1184  *	Returns: the new root.
1185  */
1186 static vm_map_entry_t
1187 vm_map_splay(vm_map_t map, vm_offset_t addr)
1188 {
1189 	vm_map_entry_t llist, rlist, root;
1190 
1191 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1192 	if (root != NULL) {
1193 		/* do nothing */
1194 	} else if (llist != &map->header) {
1195 		/*
1196 		 * Recover the greatest node in the left
1197 		 * subtree and make it the root.
1198 		 */
1199 		root = llist;
1200 		llist = root->right;
1201 		root->right = NULL;
1202 	} else if (rlist != &map->header) {
1203 		/*
1204 		 * Recover the least node in the right
1205 		 * subtree and make it the root.
1206 		 */
1207 		root = rlist;
1208 		rlist = root->left;
1209 		root->left = NULL;
1210 	} else {
1211 		/* There is no root. */
1212 		return (NULL);
1213 	}
1214 	vm_map_splay_merge(map, root, llist, rlist);
1215 	VM_MAP_ASSERT_CONSISTENT(map);
1216 	return (root);
1217 }
1218 
1219 /*
1220  *	vm_map_entry_{un,}link:
1221  *
1222  *	Insert/remove entries from maps.
1223  */
1224 static void
1225 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1226 {
1227 	vm_map_entry_t llist, rlist, root;
1228 
1229 	CTR3(KTR_VM,
1230 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1231 	    map->nentries, entry);
1232 	VM_MAP_ASSERT_LOCKED(map);
1233 	map->nentries++;
1234 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1235 	KASSERT(root == NULL,
1236 	    ("vm_map_entry_link: link object already mapped"));
1237 	entry->prev = llist;
1238 	entry->next = rlist;
1239 	llist->next = rlist->prev = entry;
1240 	entry->left = entry->right = NULL;
1241 	vm_map_splay_merge(map, entry, llist, rlist);
1242 	VM_MAP_ASSERT_CONSISTENT(map);
1243 }
1244 
1245 enum unlink_merge_type {
1246 	UNLINK_MERGE_PREV,
1247 	UNLINK_MERGE_NONE,
1248 	UNLINK_MERGE_NEXT
1249 };
1250 
1251 static void
1252 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1253     enum unlink_merge_type op)
1254 {
1255 	vm_map_entry_t llist, rlist, root, y;
1256 
1257 	VM_MAP_ASSERT_LOCKED(map);
1258 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1259 	KASSERT(root != NULL,
1260 	    ("vm_map_entry_unlink: unlink object not mapped"));
1261 
1262 	switch (op) {
1263 	case UNLINK_MERGE_PREV:
1264 		vm_map_splay_findprev(root, &llist);
1265 		llist->end = root->end;
1266 		y = root->right;
1267 		root = llist;
1268 		llist = root->right;
1269 		root->right = y;
1270 		break;
1271 	case UNLINK_MERGE_NEXT:
1272 		vm_map_splay_findnext(root, &rlist);
1273 		rlist->start = root->start;
1274 		rlist->offset = root->offset;
1275 		y = root->left;
1276 		root = rlist;
1277 		rlist = root->left;
1278 		root->left = y;
1279 		break;
1280 	case UNLINK_MERGE_NONE:
1281 		vm_map_splay_findprev(root, &llist);
1282 		vm_map_splay_findnext(root, &rlist);
1283 		if (llist != &map->header) {
1284 			root = llist;
1285 			llist = root->right;
1286 			root->right = NULL;
1287 		} else if (rlist != &map->header) {
1288 			root = rlist;
1289 			rlist = root->left;
1290 			root->left = NULL;
1291 		} else
1292 			root = NULL;
1293 		break;
1294 	}
1295 	y = entry->next;
1296 	y->prev = entry->prev;
1297 	y->prev->next = y;
1298 	if (root != NULL)
1299 		vm_map_splay_merge(map, root, llist, rlist);
1300 	else
1301 		map->root = NULL;
1302 	VM_MAP_ASSERT_CONSISTENT(map);
1303 	map->nentries--;
1304 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1305 	    map->nentries, entry);
1306 }
1307 
1308 /*
1309  *	vm_map_entry_resize:
1310  *
1311  *	Resize a vm_map_entry, recompute the amount of free space that
1312  *	follows it and propagate that value up the tree.
1313  *
1314  *	The map must be locked, and leaves it so.
1315  */
1316 static void
1317 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1318 {
1319 	vm_map_entry_t llist, rlist, root;
1320 
1321 	VM_MAP_ASSERT_LOCKED(map);
1322 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1323 	KASSERT(root != NULL,
1324 	    ("%s: resize object not mapped", __func__));
1325 	vm_map_splay_findnext(root, &rlist);
1326 	root->right = NULL;
1327 	entry->end += grow_amount;
1328 	vm_map_splay_merge(map, root, llist, rlist);
1329 	VM_MAP_ASSERT_CONSISTENT(map);
1330 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1331 	    __func__, map, map->nentries, entry);
1332 }
1333 
1334 /*
1335  *	vm_map_lookup_entry:	[ internal use only ]
1336  *
1337  *	Finds the map entry containing (or
1338  *	immediately preceding) the specified address
1339  *	in the given map; the entry is returned
1340  *	in the "entry" parameter.  The boolean
1341  *	result indicates whether the address is
1342  *	actually contained in the map.
1343  */
1344 boolean_t
1345 vm_map_lookup_entry(
1346 	vm_map_t map,
1347 	vm_offset_t address,
1348 	vm_map_entry_t *entry)	/* OUT */
1349 {
1350 	vm_map_entry_t cur, lbound;
1351 	boolean_t locked;
1352 
1353 	/*
1354 	 * If the map is empty, then the map entry immediately preceding
1355 	 * "address" is the map's header.
1356 	 */
1357 	cur = map->root;
1358 	if (cur == NULL) {
1359 		*entry = &map->header;
1360 		return (FALSE);
1361 	}
1362 	if (address >= cur->start && cur->end > address) {
1363 		*entry = cur;
1364 		return (TRUE);
1365 	}
1366 	if ((locked = vm_map_locked(map)) ||
1367 	    sx_try_upgrade(&map->lock)) {
1368 		/*
1369 		 * Splay requires a write lock on the map.  However, it only
1370 		 * restructures the binary search tree; it does not otherwise
1371 		 * change the map.  Thus, the map's timestamp need not change
1372 		 * on a temporary upgrade.
1373 		 */
1374 		cur = vm_map_splay(map, address);
1375 		if (!locked)
1376 			sx_downgrade(&map->lock);
1377 
1378 		/*
1379 		 * If "address" is contained within a map entry, the new root
1380 		 * is that map entry.  Otherwise, the new root is a map entry
1381 		 * immediately before or after "address".
1382 		 */
1383 		if (address < cur->start) {
1384 			*entry = &map->header;
1385 			return (FALSE);
1386 		}
1387 		*entry = cur;
1388 		return (address < cur->end);
1389 	}
1390 	/*
1391 	 * Since the map is only locked for read access, perform a
1392 	 * standard binary search tree lookup for "address".
1393 	 */
1394 	lbound = &map->header;
1395 	do {
1396 		if (address < cur->start) {
1397 			cur = cur->left;
1398 		} else if (cur->end <= address) {
1399 			lbound = cur;
1400 			cur = cur->right;
1401 		} else {
1402 			*entry = cur;
1403 			return (TRUE);
1404 		}
1405 	} while (cur != NULL);
1406 	*entry = lbound;
1407 	return (FALSE);
1408 }
1409 
1410 /*
1411  *	vm_map_insert:
1412  *
1413  *	Inserts the given whole VM object into the target
1414  *	map at the specified address range.  The object's
1415  *	size should match that of the address range.
1416  *
1417  *	Requires that the map be locked, and leaves it so.
1418  *
1419  *	If object is non-NULL, ref count must be bumped by caller
1420  *	prior to making call to account for the new entry.
1421  */
1422 int
1423 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1424     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1425 {
1426 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1427 	struct ucred *cred;
1428 	vm_eflags_t protoeflags;
1429 	vm_inherit_t inheritance;
1430 
1431 	VM_MAP_ASSERT_LOCKED(map);
1432 	KASSERT(object != kernel_object ||
1433 	    (cow & MAP_COPY_ON_WRITE) == 0,
1434 	    ("vm_map_insert: kernel object and COW"));
1435 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1436 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1437 	KASSERT((prot & ~max) == 0,
1438 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1439 
1440 	/*
1441 	 * Check that the start and end points are not bogus.
1442 	 */
1443 	if (start < vm_map_min(map) || end > vm_map_max(map) ||
1444 	    start >= end)
1445 		return (KERN_INVALID_ADDRESS);
1446 
1447 	/*
1448 	 * Find the entry prior to the proposed starting address; if it's part
1449 	 * of an existing entry, this range is bogus.
1450 	 */
1451 	if (vm_map_lookup_entry(map, start, &temp_entry))
1452 		return (KERN_NO_SPACE);
1453 
1454 	prev_entry = temp_entry;
1455 
1456 	/*
1457 	 * Assert that the next entry doesn't overlap the end point.
1458 	 */
1459 	if (prev_entry->next->start < end)
1460 		return (KERN_NO_SPACE);
1461 
1462 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1463 	    max != VM_PROT_NONE))
1464 		return (KERN_INVALID_ARGUMENT);
1465 
1466 	protoeflags = 0;
1467 	if (cow & MAP_COPY_ON_WRITE)
1468 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1469 	if (cow & MAP_NOFAULT)
1470 		protoeflags |= MAP_ENTRY_NOFAULT;
1471 	if (cow & MAP_DISABLE_SYNCER)
1472 		protoeflags |= MAP_ENTRY_NOSYNC;
1473 	if (cow & MAP_DISABLE_COREDUMP)
1474 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1475 	if (cow & MAP_STACK_GROWS_DOWN)
1476 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1477 	if (cow & MAP_STACK_GROWS_UP)
1478 		protoeflags |= MAP_ENTRY_GROWS_UP;
1479 	if (cow & MAP_VN_WRITECOUNT)
1480 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1481 	if (cow & MAP_VN_EXEC)
1482 		protoeflags |= MAP_ENTRY_VN_EXEC;
1483 	if ((cow & MAP_CREATE_GUARD) != 0)
1484 		protoeflags |= MAP_ENTRY_GUARD;
1485 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1486 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1487 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1488 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1489 	if (cow & MAP_INHERIT_SHARE)
1490 		inheritance = VM_INHERIT_SHARE;
1491 	else
1492 		inheritance = VM_INHERIT_DEFAULT;
1493 
1494 	cred = NULL;
1495 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1496 		goto charged;
1497 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1498 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1499 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1500 			return (KERN_RESOURCE_SHORTAGE);
1501 		KASSERT(object == NULL ||
1502 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1503 		    object->cred == NULL,
1504 		    ("overcommit: vm_map_insert o %p", object));
1505 		cred = curthread->td_ucred;
1506 	}
1507 
1508 charged:
1509 	/* Expand the kernel pmap, if necessary. */
1510 	if (map == kernel_map && end > kernel_vm_end)
1511 		pmap_growkernel(end);
1512 	if (object != NULL) {
1513 		/*
1514 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1515 		 * is trivially proven to be the only mapping for any
1516 		 * of the object's pages.  (Object granularity
1517 		 * reference counting is insufficient to recognize
1518 		 * aliases with precision.)
1519 		 */
1520 		VM_OBJECT_WLOCK(object);
1521 		if (object->ref_count > 1 || object->shadow_count != 0)
1522 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1523 		VM_OBJECT_WUNLOCK(object);
1524 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1525 	    protoeflags &&
1526 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1527 	    MAP_VN_EXEC)) == 0 &&
1528 	    prev_entry->end == start && (prev_entry->cred == cred ||
1529 	    (prev_entry->object.vm_object != NULL &&
1530 	    prev_entry->object.vm_object->cred == cred)) &&
1531 	    vm_object_coalesce(prev_entry->object.vm_object,
1532 	    prev_entry->offset,
1533 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1534 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1535 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1536 		/*
1537 		 * We were able to extend the object.  Determine if we
1538 		 * can extend the previous map entry to include the
1539 		 * new range as well.
1540 		 */
1541 		if (prev_entry->inheritance == inheritance &&
1542 		    prev_entry->protection == prot &&
1543 		    prev_entry->max_protection == max &&
1544 		    prev_entry->wired_count == 0) {
1545 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1546 			    0, ("prev_entry %p has incoherent wiring",
1547 			    prev_entry));
1548 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1549 				map->size += end - prev_entry->end;
1550 			vm_map_entry_resize(map, prev_entry,
1551 			    end - prev_entry->end);
1552 			vm_map_simplify_entry(map, prev_entry);
1553 			return (KERN_SUCCESS);
1554 		}
1555 
1556 		/*
1557 		 * If we can extend the object but cannot extend the
1558 		 * map entry, we have to create a new map entry.  We
1559 		 * must bump the ref count on the extended object to
1560 		 * account for it.  object may be NULL.
1561 		 */
1562 		object = prev_entry->object.vm_object;
1563 		offset = prev_entry->offset +
1564 		    (prev_entry->end - prev_entry->start);
1565 		vm_object_reference(object);
1566 		if (cred != NULL && object != NULL && object->cred != NULL &&
1567 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1568 			/* Object already accounts for this uid. */
1569 			cred = NULL;
1570 		}
1571 	}
1572 	if (cred != NULL)
1573 		crhold(cred);
1574 
1575 	/*
1576 	 * Create a new entry
1577 	 */
1578 	new_entry = vm_map_entry_create(map);
1579 	new_entry->start = start;
1580 	new_entry->end = end;
1581 	new_entry->cred = NULL;
1582 
1583 	new_entry->eflags = protoeflags;
1584 	new_entry->object.vm_object = object;
1585 	new_entry->offset = offset;
1586 
1587 	new_entry->inheritance = inheritance;
1588 	new_entry->protection = prot;
1589 	new_entry->max_protection = max;
1590 	new_entry->wired_count = 0;
1591 	new_entry->wiring_thread = NULL;
1592 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1593 	new_entry->next_read = start;
1594 
1595 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1596 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1597 	new_entry->cred = cred;
1598 
1599 	/*
1600 	 * Insert the new entry into the list
1601 	 */
1602 	vm_map_entry_link(map, new_entry);
1603 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1604 		map->size += new_entry->end - new_entry->start;
1605 
1606 	/*
1607 	 * Try to coalesce the new entry with both the previous and next
1608 	 * entries in the list.  Previously, we only attempted to coalesce
1609 	 * with the previous entry when object is NULL.  Here, we handle the
1610 	 * other cases, which are less common.
1611 	 */
1612 	vm_map_simplify_entry(map, new_entry);
1613 
1614 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1615 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1616 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1617 	}
1618 
1619 	return (KERN_SUCCESS);
1620 }
1621 
1622 /*
1623  *	vm_map_findspace:
1624  *
1625  *	Find the first fit (lowest VM address) for "length" free bytes
1626  *	beginning at address >= start in the given map.
1627  *
1628  *	In a vm_map_entry, "max_free" is the maximum amount of
1629  *	contiguous free space between an entry in its subtree and a
1630  *	neighbor of that entry.  This allows finding a free region in
1631  *	one path down the tree, so O(log n) amortized with splay
1632  *	trees.
1633  *
1634  *	The map must be locked, and leaves it so.
1635  *
1636  *	Returns: starting address if sufficient space,
1637  *		 vm_map_max(map)-length+1 if insufficient space.
1638  */
1639 vm_offset_t
1640 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1641 {
1642 	vm_map_entry_t llist, rlist, root, y;
1643 	vm_size_t left_length;
1644 	vm_offset_t gap_end;
1645 
1646 	/*
1647 	 * Request must fit within min/max VM address and must avoid
1648 	 * address wrap.
1649 	 */
1650 	start = MAX(start, vm_map_min(map));
1651 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1652 		return (vm_map_max(map) - length + 1);
1653 
1654 	/* Empty tree means wide open address space. */
1655 	if (map->root == NULL)
1656 		return (start);
1657 
1658 	/*
1659 	 * After splay_split, if start is within an entry, push it to the start
1660 	 * of the following gap.  If rlist is at the end of the gap containing
1661 	 * start, save the end of that gap in gap_end to see if the gap is big
1662 	 * enough; otherwise set gap_end to start skip gap-checking and move
1663 	 * directly to a search of the right subtree.
1664 	 */
1665 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1666 	gap_end = rlist->start;
1667 	if (root != NULL) {
1668 		start = root->end;
1669 		if (root->right != NULL)
1670 			gap_end = start;
1671 	} else if (rlist != &map->header) {
1672 		root = rlist;
1673 		rlist = root->left;
1674 		root->left = NULL;
1675 	} else {
1676 		root = llist;
1677 		llist = root->right;
1678 		root->right = NULL;
1679 	}
1680 	vm_map_splay_merge(map, root, llist, rlist);
1681 	VM_MAP_ASSERT_CONSISTENT(map);
1682 	if (length <= gap_end - start)
1683 		return (start);
1684 
1685 	/* With max_free, can immediately tell if no solution. */
1686 	if (root->right == NULL || length > root->right->max_free)
1687 		return (vm_map_max(map) - length + 1);
1688 
1689 	/*
1690 	 * Splay for the least large-enough gap in the right subtree.
1691 	 */
1692 	llist = rlist = &map->header;
1693 	for (left_length = 0;;
1694 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1695 		if (length <= left_length)
1696 			SPLAY_LEFT_STEP(root, y, rlist,
1697 			    length <= vm_map_entry_max_free_left(y, llist));
1698 		else
1699 			SPLAY_RIGHT_STEP(root, y, llist,
1700 			    length > vm_map_entry_max_free_left(y, root));
1701 		if (root == NULL)
1702 			break;
1703 	}
1704 	root = llist;
1705 	llist = root->right;
1706 	root->right = NULL;
1707 	if (rlist != &map->header) {
1708 		y = rlist;
1709 		rlist = y->left;
1710 		y->left = NULL;
1711 		vm_map_splay_merge(map, y, &map->header, rlist);
1712 		y->max_free = MAX(
1713 		    vm_map_entry_max_free_left(y, root),
1714 		    vm_map_entry_max_free_right(y, &map->header));
1715 		root->right = y;
1716 	}
1717 	vm_map_splay_merge(map, root, llist, &map->header);
1718 	VM_MAP_ASSERT_CONSISTENT(map);
1719 	return (root->end);
1720 }
1721 
1722 int
1723 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1724     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1725     vm_prot_t max, int cow)
1726 {
1727 	vm_offset_t end;
1728 	int result;
1729 
1730 	end = start + length;
1731 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1732 	    object == NULL,
1733 	    ("vm_map_fixed: non-NULL backing object for stack"));
1734 	vm_map_lock(map);
1735 	VM_MAP_RANGE_CHECK(map, start, end);
1736 	if ((cow & MAP_CHECK_EXCL) == 0)
1737 		vm_map_delete(map, start, end);
1738 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1739 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1740 		    prot, max, cow);
1741 	} else {
1742 		result = vm_map_insert(map, object, offset, start, end,
1743 		    prot, max, cow);
1744 	}
1745 	vm_map_unlock(map);
1746 	return (result);
1747 }
1748 
1749 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1750 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1751 
1752 static int cluster_anon = 1;
1753 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1754     &cluster_anon, 0,
1755     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1756 
1757 static bool
1758 clustering_anon_allowed(vm_offset_t addr)
1759 {
1760 
1761 	switch (cluster_anon) {
1762 	case 0:
1763 		return (false);
1764 	case 1:
1765 		return (addr == 0);
1766 	case 2:
1767 	default:
1768 		return (true);
1769 	}
1770 }
1771 
1772 static long aslr_restarts;
1773 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1774     &aslr_restarts, 0,
1775     "Number of aslr failures");
1776 
1777 #define	MAP_32BIT_MAX_ADDR	((vm_offset_t)1 << 31)
1778 
1779 /*
1780  * Searches for the specified amount of free space in the given map with the
1781  * specified alignment.  Performs an address-ordered, first-fit search from
1782  * the given address "*addr", with an optional upper bound "max_addr".  If the
1783  * parameter "alignment" is zero, then the alignment is computed from the
1784  * given (object, offset) pair so as to enable the greatest possible use of
1785  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1786  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1787  *
1788  * The map must be locked.  Initially, there must be at least "length" bytes
1789  * of free space at the given address.
1790  */
1791 static int
1792 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1793     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1794     vm_offset_t alignment)
1795 {
1796 	vm_offset_t aligned_addr, free_addr;
1797 
1798 	VM_MAP_ASSERT_LOCKED(map);
1799 	free_addr = *addr;
1800 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1801 	    ("caller failed to provide space %#jx at address %p",
1802 	     (uintmax_t)length, (void *)free_addr));
1803 	for (;;) {
1804 		/*
1805 		 * At the start of every iteration, the free space at address
1806 		 * "*addr" is at least "length" bytes.
1807 		 */
1808 		if (alignment == 0)
1809 			pmap_align_superpage(object, offset, addr, length);
1810 		else if ((*addr & (alignment - 1)) != 0) {
1811 			*addr &= ~(alignment - 1);
1812 			*addr += alignment;
1813 		}
1814 		aligned_addr = *addr;
1815 		if (aligned_addr == free_addr) {
1816 			/*
1817 			 * Alignment did not change "*addr", so "*addr" must
1818 			 * still provide sufficient free space.
1819 			 */
1820 			return (KERN_SUCCESS);
1821 		}
1822 
1823 		/*
1824 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
1825 		 * be a valid address, in which case vm_map_findspace() cannot
1826 		 * be relied upon to fail.
1827 		 */
1828 		if (aligned_addr < free_addr)
1829 			return (KERN_NO_SPACE);
1830 		*addr = vm_map_findspace(map, aligned_addr, length);
1831 		if (*addr + length > vm_map_max(map) ||
1832 		    (max_addr != 0 && *addr + length > max_addr))
1833 			return (KERN_NO_SPACE);
1834 		free_addr = *addr;
1835 		if (free_addr == aligned_addr) {
1836 			/*
1837 			 * If a successful call to vm_map_findspace() did not
1838 			 * change "*addr", then "*addr" must still be aligned
1839 			 * and provide sufficient free space.
1840 			 */
1841 			return (KERN_SUCCESS);
1842 		}
1843 	}
1844 }
1845 
1846 /*
1847  *	vm_map_find finds an unallocated region in the target address
1848  *	map with the given length.  The search is defined to be
1849  *	first-fit from the specified address; the region found is
1850  *	returned in the same parameter.
1851  *
1852  *	If object is non-NULL, ref count must be bumped by caller
1853  *	prior to making call to account for the new entry.
1854  */
1855 int
1856 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1857 	    vm_offset_t *addr,	/* IN/OUT */
1858 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1859 	    vm_prot_t prot, vm_prot_t max, int cow)
1860 {
1861 	vm_offset_t alignment, curr_min_addr, min_addr;
1862 	int gap, pidx, rv, try;
1863 	bool cluster, en_aslr, update_anon;
1864 
1865 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1866 	    object == NULL,
1867 	    ("vm_map_find: non-NULL backing object for stack"));
1868 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1869 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1870 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1871 	    (object->flags & OBJ_COLORED) == 0))
1872 		find_space = VMFS_ANY_SPACE;
1873 	if (find_space >> 8 != 0) {
1874 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1875 		alignment = (vm_offset_t)1 << (find_space >> 8);
1876 	} else
1877 		alignment = 0;
1878 	en_aslr = (map->flags & MAP_ASLR) != 0;
1879 	update_anon = cluster = clustering_anon_allowed(*addr) &&
1880 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
1881 	    find_space != VMFS_NO_SPACE && object == NULL &&
1882 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
1883 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
1884 	curr_min_addr = min_addr = *addr;
1885 	if (en_aslr && min_addr == 0 && !cluster &&
1886 	    find_space != VMFS_NO_SPACE &&
1887 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
1888 		curr_min_addr = min_addr = vm_map_min(map);
1889 	try = 0;
1890 	vm_map_lock(map);
1891 	if (cluster) {
1892 		curr_min_addr = map->anon_loc;
1893 		if (curr_min_addr == 0)
1894 			cluster = false;
1895 	}
1896 	if (find_space != VMFS_NO_SPACE) {
1897 		KASSERT(find_space == VMFS_ANY_SPACE ||
1898 		    find_space == VMFS_OPTIMAL_SPACE ||
1899 		    find_space == VMFS_SUPER_SPACE ||
1900 		    alignment != 0, ("unexpected VMFS flag"));
1901 again:
1902 		/*
1903 		 * When creating an anonymous mapping, try clustering
1904 		 * with an existing anonymous mapping first.
1905 		 *
1906 		 * We make up to two attempts to find address space
1907 		 * for a given find_space value. The first attempt may
1908 		 * apply randomization or may cluster with an existing
1909 		 * anonymous mapping. If this first attempt fails,
1910 		 * perform a first-fit search of the available address
1911 		 * space.
1912 		 *
1913 		 * If all tries failed, and find_space is
1914 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
1915 		 * Again enable clustering and randomization.
1916 		 */
1917 		try++;
1918 		MPASS(try <= 2);
1919 
1920 		if (try == 2) {
1921 			/*
1922 			 * Second try: we failed either to find a
1923 			 * suitable region for randomizing the
1924 			 * allocation, or to cluster with an existing
1925 			 * mapping.  Retry with free run.
1926 			 */
1927 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
1928 			    vm_map_min(map) : min_addr;
1929 			atomic_add_long(&aslr_restarts, 1);
1930 		}
1931 
1932 		if (try == 1 && en_aslr && !cluster) {
1933 			/*
1934 			 * Find space for allocation, including
1935 			 * gap needed for later randomization.
1936 			 */
1937 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
1938 			    (find_space == VMFS_SUPER_SPACE || find_space ==
1939 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
1940 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
1941 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
1942 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
1943 			*addr = vm_map_findspace(map, curr_min_addr,
1944 			    length + gap * pagesizes[pidx]);
1945 			if (*addr + length + gap * pagesizes[pidx] >
1946 			    vm_map_max(map))
1947 				goto again;
1948 			/* And randomize the start address. */
1949 			*addr += (arc4random() % gap) * pagesizes[pidx];
1950 			if (max_addr != 0 && *addr + length > max_addr)
1951 				goto again;
1952 		} else {
1953 			*addr = vm_map_findspace(map, curr_min_addr, length);
1954 			if (*addr + length > vm_map_max(map) ||
1955 			    (max_addr != 0 && *addr + length > max_addr)) {
1956 				if (cluster) {
1957 					cluster = false;
1958 					MPASS(try == 1);
1959 					goto again;
1960 				}
1961 				rv = KERN_NO_SPACE;
1962 				goto done;
1963 			}
1964 		}
1965 
1966 		if (find_space != VMFS_ANY_SPACE &&
1967 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
1968 		    max_addr, alignment)) != KERN_SUCCESS) {
1969 			if (find_space == VMFS_OPTIMAL_SPACE) {
1970 				find_space = VMFS_ANY_SPACE;
1971 				curr_min_addr = min_addr;
1972 				cluster = update_anon;
1973 				try = 0;
1974 				goto again;
1975 			}
1976 			goto done;
1977 		}
1978 	} else if ((cow & MAP_REMAP) != 0) {
1979 		if (*addr < vm_map_min(map) ||
1980 		    *addr + length > vm_map_max(map) ||
1981 		    *addr + length <= length) {
1982 			rv = KERN_INVALID_ADDRESS;
1983 			goto done;
1984 		}
1985 		vm_map_delete(map, *addr, *addr + length);
1986 	}
1987 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1988 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1989 		    max, cow);
1990 	} else {
1991 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1992 		    prot, max, cow);
1993 	}
1994 	if (rv == KERN_SUCCESS && update_anon)
1995 		map->anon_loc = *addr + length;
1996 done:
1997 	vm_map_unlock(map);
1998 	return (rv);
1999 }
2000 
2001 /*
2002  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2003  *	additional parameter (min_addr) and treats the given address
2004  *	(*addr) differently.  Specifically, it treats *addr as a hint
2005  *	and not as the minimum address where the mapping is created.
2006  *
2007  *	This function works in two phases.  First, it tries to
2008  *	allocate above the hint.  If that fails and the hint is
2009  *	greater than min_addr, it performs a second pass, replacing
2010  *	the hint with min_addr as the minimum address for the
2011  *	allocation.
2012  */
2013 int
2014 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2015     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2016     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2017     int cow)
2018 {
2019 	vm_offset_t hint;
2020 	int rv;
2021 
2022 	hint = *addr;
2023 	for (;;) {
2024 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2025 		    find_space, prot, max, cow);
2026 		if (rv == KERN_SUCCESS || min_addr >= hint)
2027 			return (rv);
2028 		*addr = hint = min_addr;
2029 	}
2030 }
2031 
2032 /*
2033  * A map entry with any of the following flags set must not be merged with
2034  * another entry.
2035  */
2036 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2037 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2038 
2039 static bool
2040 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2041 {
2042 
2043 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2044 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2045 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2046 	    prev, entry));
2047 	return (prev->end == entry->start &&
2048 	    prev->object.vm_object == entry->object.vm_object &&
2049 	    (prev->object.vm_object == NULL ||
2050 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2051 	    prev->eflags == entry->eflags &&
2052 	    prev->protection == entry->protection &&
2053 	    prev->max_protection == entry->max_protection &&
2054 	    prev->inheritance == entry->inheritance &&
2055 	    prev->wired_count == entry->wired_count &&
2056 	    prev->cred == entry->cred);
2057 }
2058 
2059 static void
2060 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2061 {
2062 
2063 	/*
2064 	 * If the backing object is a vnode object, vm_object_deallocate()
2065 	 * calls vrele().  However, vrele() does not lock the vnode because
2066 	 * the vnode has additional references.  Thus, the map lock can be
2067 	 * kept without causing a lock-order reversal with the vnode lock.
2068 	 *
2069 	 * Since we count the number of virtual page mappings in
2070 	 * object->un_pager.vnp.writemappings, the writemappings value
2071 	 * should not be adjusted when the entry is disposed of.
2072 	 */
2073 	if (entry->object.vm_object != NULL)
2074 		vm_object_deallocate(entry->object.vm_object);
2075 	if (entry->cred != NULL)
2076 		crfree(entry->cred);
2077 	vm_map_entry_dispose(map, entry);
2078 }
2079 
2080 /*
2081  *	vm_map_simplify_entry:
2082  *
2083  *	Simplify the given map entry by merging with either neighbor.  This
2084  *	routine also has the ability to merge with both neighbors.
2085  *
2086  *	The map must be locked.
2087  *
2088  *	This routine guarantees that the passed entry remains valid (though
2089  *	possibly extended).  When merging, this routine may delete one or
2090  *	both neighbors.
2091  */
2092 void
2093 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
2094 {
2095 	vm_map_entry_t next, prev;
2096 
2097 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0)
2098 		return;
2099 	prev = entry->prev;
2100 	if (vm_map_mergeable_neighbors(prev, entry)) {
2101 		vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT);
2102 		vm_map_merged_neighbor_dispose(map, prev);
2103 	}
2104 	next = entry->next;
2105 	if (vm_map_mergeable_neighbors(entry, next)) {
2106 		vm_map_entry_unlink(map, next, UNLINK_MERGE_PREV);
2107 		vm_map_merged_neighbor_dispose(map, next);
2108 	}
2109 }
2110 
2111 /*
2112  *	vm_map_clip_start:	[ internal use only ]
2113  *
2114  *	Asserts that the given entry begins at or after
2115  *	the specified address; if necessary,
2116  *	it splits the entry into two.
2117  */
2118 #define vm_map_clip_start(map, entry, startaddr) \
2119 { \
2120 	if (startaddr > entry->start) \
2121 		_vm_map_clip_start(map, entry, startaddr); \
2122 }
2123 
2124 /*
2125  *	This routine is called only when it is known that
2126  *	the entry must be split.
2127  */
2128 static void
2129 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2130 {
2131 	vm_map_entry_t new_entry;
2132 
2133 	VM_MAP_ASSERT_LOCKED(map);
2134 	KASSERT(entry->end > start && entry->start < start,
2135 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
2136 
2137 	/*
2138 	 * Split off the front portion -- note that we must insert the new
2139 	 * entry BEFORE this one, so that this entry has the specified
2140 	 * starting address.
2141 	 */
2142 	vm_map_simplify_entry(map, entry);
2143 
2144 	/*
2145 	 * If there is no object backing this entry, we might as well create
2146 	 * one now.  If we defer it, an object can get created after the map
2147 	 * is clipped, and individual objects will be created for the split-up
2148 	 * map.  This is a bit of a hack, but is also about the best place to
2149 	 * put this improvement.
2150 	 */
2151 	if (entry->object.vm_object == NULL && !map->system_map &&
2152 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
2153 		vm_object_t object;
2154 		object = vm_object_allocate(OBJT_DEFAULT,
2155 				atop(entry->end - entry->start));
2156 		entry->object.vm_object = object;
2157 		entry->offset = 0;
2158 		if (entry->cred != NULL) {
2159 			object->cred = entry->cred;
2160 			object->charge = entry->end - entry->start;
2161 			entry->cred = NULL;
2162 		}
2163 	} else if (entry->object.vm_object != NULL &&
2164 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2165 		   entry->cred != NULL) {
2166 		VM_OBJECT_WLOCK(entry->object.vm_object);
2167 		KASSERT(entry->object.vm_object->cred == NULL,
2168 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
2169 		entry->object.vm_object->cred = entry->cred;
2170 		entry->object.vm_object->charge = entry->end - entry->start;
2171 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2172 		entry->cred = NULL;
2173 	}
2174 
2175 	new_entry = vm_map_entry_create(map);
2176 	*new_entry = *entry;
2177 
2178 	new_entry->end = start;
2179 	entry->offset += (start - entry->start);
2180 	entry->start = start;
2181 	if (new_entry->cred != NULL)
2182 		crhold(entry->cred);
2183 
2184 	vm_map_entry_link(map, new_entry);
2185 
2186 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2187 		vm_object_reference(new_entry->object.vm_object);
2188 		vm_map_entry_set_vnode_text(new_entry, true);
2189 		/*
2190 		 * The object->un_pager.vnp.writemappings for the
2191 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
2192 		 * kept as is here.  The virtual pages are
2193 		 * re-distributed among the clipped entries, so the sum is
2194 		 * left the same.
2195 		 */
2196 	}
2197 }
2198 
2199 /*
2200  *	vm_map_clip_end:	[ internal use only ]
2201  *
2202  *	Asserts that the given entry ends at or before
2203  *	the specified address; if necessary,
2204  *	it splits the entry into two.
2205  */
2206 #define vm_map_clip_end(map, entry, endaddr) \
2207 { \
2208 	if ((endaddr) < (entry->end)) \
2209 		_vm_map_clip_end((map), (entry), (endaddr)); \
2210 }
2211 
2212 /*
2213  *	This routine is called only when it is known that
2214  *	the entry must be split.
2215  */
2216 static void
2217 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2218 {
2219 	vm_map_entry_t new_entry;
2220 
2221 	VM_MAP_ASSERT_LOCKED(map);
2222 	KASSERT(entry->start < end && entry->end > end,
2223 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
2224 
2225 	/*
2226 	 * If there is no object backing this entry, we might as well create
2227 	 * one now.  If we defer it, an object can get created after the map
2228 	 * is clipped, and individual objects will be created for the split-up
2229 	 * map.  This is a bit of a hack, but is also about the best place to
2230 	 * put this improvement.
2231 	 */
2232 	if (entry->object.vm_object == NULL && !map->system_map &&
2233 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
2234 		vm_object_t object;
2235 		object = vm_object_allocate(OBJT_DEFAULT,
2236 				atop(entry->end - entry->start));
2237 		entry->object.vm_object = object;
2238 		entry->offset = 0;
2239 		if (entry->cred != NULL) {
2240 			object->cred = entry->cred;
2241 			object->charge = entry->end - entry->start;
2242 			entry->cred = NULL;
2243 		}
2244 	} else if (entry->object.vm_object != NULL &&
2245 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2246 		   entry->cred != NULL) {
2247 		VM_OBJECT_WLOCK(entry->object.vm_object);
2248 		KASSERT(entry->object.vm_object->cred == NULL,
2249 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
2250 		entry->object.vm_object->cred = entry->cred;
2251 		entry->object.vm_object->charge = entry->end - entry->start;
2252 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2253 		entry->cred = NULL;
2254 	}
2255 
2256 	/*
2257 	 * Create a new entry and insert it AFTER the specified entry
2258 	 */
2259 	new_entry = vm_map_entry_create(map);
2260 	*new_entry = *entry;
2261 
2262 	new_entry->start = entry->end = end;
2263 	new_entry->offset += (end - entry->start);
2264 	if (new_entry->cred != NULL)
2265 		crhold(entry->cred);
2266 
2267 	vm_map_entry_link(map, new_entry);
2268 
2269 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2270 		vm_object_reference(new_entry->object.vm_object);
2271 		vm_map_entry_set_vnode_text(new_entry, true);
2272 	}
2273 }
2274 
2275 /*
2276  *	vm_map_submap:		[ kernel use only ]
2277  *
2278  *	Mark the given range as handled by a subordinate map.
2279  *
2280  *	This range must have been created with vm_map_find,
2281  *	and no other operations may have been performed on this
2282  *	range prior to calling vm_map_submap.
2283  *
2284  *	Only a limited number of operations can be performed
2285  *	within this rage after calling vm_map_submap:
2286  *		vm_fault
2287  *	[Don't try vm_map_copy!]
2288  *
2289  *	To remove a submapping, one must first remove the
2290  *	range from the superior map, and then destroy the
2291  *	submap (if desired).  [Better yet, don't try it.]
2292  */
2293 int
2294 vm_map_submap(
2295 	vm_map_t map,
2296 	vm_offset_t start,
2297 	vm_offset_t end,
2298 	vm_map_t submap)
2299 {
2300 	vm_map_entry_t entry;
2301 	int result;
2302 
2303 	result = KERN_INVALID_ARGUMENT;
2304 
2305 	vm_map_lock(submap);
2306 	submap->flags |= MAP_IS_SUB_MAP;
2307 	vm_map_unlock(submap);
2308 
2309 	vm_map_lock(map);
2310 
2311 	VM_MAP_RANGE_CHECK(map, start, end);
2312 
2313 	if (vm_map_lookup_entry(map, start, &entry)) {
2314 		vm_map_clip_start(map, entry, start);
2315 	} else
2316 		entry = entry->next;
2317 
2318 	vm_map_clip_end(map, entry, end);
2319 
2320 	if ((entry->start == start) && (entry->end == end) &&
2321 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2322 	    (entry->object.vm_object == NULL)) {
2323 		entry->object.sub_map = submap;
2324 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2325 		result = KERN_SUCCESS;
2326 	}
2327 	vm_map_unlock(map);
2328 
2329 	if (result != KERN_SUCCESS) {
2330 		vm_map_lock(submap);
2331 		submap->flags &= ~MAP_IS_SUB_MAP;
2332 		vm_map_unlock(submap);
2333 	}
2334 	return (result);
2335 }
2336 
2337 /*
2338  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2339  */
2340 #define	MAX_INIT_PT	96
2341 
2342 /*
2343  *	vm_map_pmap_enter:
2344  *
2345  *	Preload the specified map's pmap with mappings to the specified
2346  *	object's memory-resident pages.  No further physical pages are
2347  *	allocated, and no further virtual pages are retrieved from secondary
2348  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2349  *	limited number of page mappings are created at the low-end of the
2350  *	specified address range.  (For this purpose, a superpage mapping
2351  *	counts as one page mapping.)  Otherwise, all resident pages within
2352  *	the specified address range are mapped.
2353  */
2354 static void
2355 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2356     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2357 {
2358 	vm_offset_t start;
2359 	vm_page_t p, p_start;
2360 	vm_pindex_t mask, psize, threshold, tmpidx;
2361 
2362 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2363 		return;
2364 	VM_OBJECT_RLOCK(object);
2365 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2366 		VM_OBJECT_RUNLOCK(object);
2367 		VM_OBJECT_WLOCK(object);
2368 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2369 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2370 			    size);
2371 			VM_OBJECT_WUNLOCK(object);
2372 			return;
2373 		}
2374 		VM_OBJECT_LOCK_DOWNGRADE(object);
2375 	}
2376 
2377 	psize = atop(size);
2378 	if (psize + pindex > object->size) {
2379 		if (object->size < pindex) {
2380 			VM_OBJECT_RUNLOCK(object);
2381 			return;
2382 		}
2383 		psize = object->size - pindex;
2384 	}
2385 
2386 	start = 0;
2387 	p_start = NULL;
2388 	threshold = MAX_INIT_PT;
2389 
2390 	p = vm_page_find_least(object, pindex);
2391 	/*
2392 	 * Assert: the variable p is either (1) the page with the
2393 	 * least pindex greater than or equal to the parameter pindex
2394 	 * or (2) NULL.
2395 	 */
2396 	for (;
2397 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2398 	     p = TAILQ_NEXT(p, listq)) {
2399 		/*
2400 		 * don't allow an madvise to blow away our really
2401 		 * free pages allocating pv entries.
2402 		 */
2403 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2404 		    vm_page_count_severe()) ||
2405 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2406 		    tmpidx >= threshold)) {
2407 			psize = tmpidx;
2408 			break;
2409 		}
2410 		if (p->valid == VM_PAGE_BITS_ALL) {
2411 			if (p_start == NULL) {
2412 				start = addr + ptoa(tmpidx);
2413 				p_start = p;
2414 			}
2415 			/* Jump ahead if a superpage mapping is possible. */
2416 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2417 			    (pagesizes[p->psind] - 1)) == 0) {
2418 				mask = atop(pagesizes[p->psind]) - 1;
2419 				if (tmpidx + mask < psize &&
2420 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2421 					p += mask;
2422 					threshold += mask;
2423 				}
2424 			}
2425 		} else if (p_start != NULL) {
2426 			pmap_enter_object(map->pmap, start, addr +
2427 			    ptoa(tmpidx), p_start, prot);
2428 			p_start = NULL;
2429 		}
2430 	}
2431 	if (p_start != NULL)
2432 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2433 		    p_start, prot);
2434 	VM_OBJECT_RUNLOCK(object);
2435 }
2436 
2437 /*
2438  *	vm_map_protect:
2439  *
2440  *	Sets the protection of the specified address
2441  *	region in the target map.  If "set_max" is
2442  *	specified, the maximum protection is to be set;
2443  *	otherwise, only the current protection is affected.
2444  */
2445 int
2446 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2447 	       vm_prot_t new_prot, boolean_t set_max)
2448 {
2449 	vm_map_entry_t current, entry, in_tran;
2450 	vm_object_t obj;
2451 	struct ucred *cred;
2452 	vm_prot_t old_prot;
2453 
2454 	if (start == end)
2455 		return (KERN_SUCCESS);
2456 
2457 again:
2458 	in_tran = NULL;
2459 	vm_map_lock(map);
2460 
2461 	/*
2462 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2463 	 * need to fault pages into the map and will drop the map lock while
2464 	 * doing so, and the VM object may end up in an inconsistent state if we
2465 	 * update the protection on the map entry in between faults.
2466 	 */
2467 	vm_map_wait_busy(map);
2468 
2469 	VM_MAP_RANGE_CHECK(map, start, end);
2470 
2471 	if (vm_map_lookup_entry(map, start, &entry)) {
2472 		vm_map_clip_start(map, entry, start);
2473 	} else {
2474 		entry = entry->next;
2475 	}
2476 
2477 	/*
2478 	 * Make a first pass to check for protection violations.
2479 	 */
2480 	for (current = entry; current->start < end; current = current->next) {
2481 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2482 			continue;
2483 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2484 			vm_map_unlock(map);
2485 			return (KERN_INVALID_ARGUMENT);
2486 		}
2487 		if ((new_prot & current->max_protection) != new_prot) {
2488 			vm_map_unlock(map);
2489 			return (KERN_PROTECTION_FAILURE);
2490 		}
2491 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2492 			in_tran = entry;
2493 	}
2494 
2495 	/*
2496 	 * Postpone the operation until all in transition map entries
2497 	 * are stabilized.  In-transition entry might already have its
2498 	 * pages wired and wired_count incremented, but
2499 	 * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other
2500 	 * threads because the map lock is dropped.  In this case we
2501 	 * would miss our call to vm_fault_copy_entry().
2502 	 */
2503 	if (in_tran != NULL) {
2504 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2505 		vm_map_unlock_and_wait(map, 0);
2506 		goto again;
2507 	}
2508 
2509 	/*
2510 	 * Do an accounting pass for private read-only mappings that
2511 	 * now will do cow due to allowed write (e.g. debugger sets
2512 	 * breakpoint on text segment)
2513 	 */
2514 	for (current = entry; current->start < end; current = current->next) {
2515 
2516 		vm_map_clip_end(map, current, end);
2517 
2518 		if (set_max ||
2519 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2520 		    ENTRY_CHARGED(current) ||
2521 		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
2522 			continue;
2523 		}
2524 
2525 		cred = curthread->td_ucred;
2526 		obj = current->object.vm_object;
2527 
2528 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2529 			if (!swap_reserve(current->end - current->start)) {
2530 				vm_map_unlock(map);
2531 				return (KERN_RESOURCE_SHORTAGE);
2532 			}
2533 			crhold(cred);
2534 			current->cred = cred;
2535 			continue;
2536 		}
2537 
2538 		VM_OBJECT_WLOCK(obj);
2539 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2540 			VM_OBJECT_WUNLOCK(obj);
2541 			continue;
2542 		}
2543 
2544 		/*
2545 		 * Charge for the whole object allocation now, since
2546 		 * we cannot distinguish between non-charged and
2547 		 * charged clipped mapping of the same object later.
2548 		 */
2549 		KASSERT(obj->charge == 0,
2550 		    ("vm_map_protect: object %p overcharged (entry %p)",
2551 		    obj, current));
2552 		if (!swap_reserve(ptoa(obj->size))) {
2553 			VM_OBJECT_WUNLOCK(obj);
2554 			vm_map_unlock(map);
2555 			return (KERN_RESOURCE_SHORTAGE);
2556 		}
2557 
2558 		crhold(cred);
2559 		obj->cred = cred;
2560 		obj->charge = ptoa(obj->size);
2561 		VM_OBJECT_WUNLOCK(obj);
2562 	}
2563 
2564 	/*
2565 	 * Go back and fix up protections. [Note that clipping is not
2566 	 * necessary the second time.]
2567 	 */
2568 	for (current = entry; current->start < end; current = current->next) {
2569 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2570 			continue;
2571 
2572 		old_prot = current->protection;
2573 
2574 		if (set_max)
2575 			current->protection =
2576 			    (current->max_protection = new_prot) &
2577 			    old_prot;
2578 		else
2579 			current->protection = new_prot;
2580 
2581 		/*
2582 		 * For user wired map entries, the normal lazy evaluation of
2583 		 * write access upgrades through soft page faults is
2584 		 * undesirable.  Instead, immediately copy any pages that are
2585 		 * copy-on-write and enable write access in the physical map.
2586 		 */
2587 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2588 		    (current->protection & VM_PROT_WRITE) != 0 &&
2589 		    (old_prot & VM_PROT_WRITE) == 0)
2590 			vm_fault_copy_entry(map, map, current, current, NULL);
2591 
2592 		/*
2593 		 * When restricting access, update the physical map.  Worry
2594 		 * about copy-on-write here.
2595 		 */
2596 		if ((old_prot & ~current->protection) != 0) {
2597 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2598 							VM_PROT_ALL)
2599 			pmap_protect(map->pmap, current->start,
2600 			    current->end,
2601 			    current->protection & MASK(current));
2602 #undef	MASK
2603 		}
2604 		vm_map_simplify_entry(map, current);
2605 	}
2606 	vm_map_unlock(map);
2607 	return (KERN_SUCCESS);
2608 }
2609 
2610 /*
2611  *	vm_map_madvise:
2612  *
2613  *	This routine traverses a processes map handling the madvise
2614  *	system call.  Advisories are classified as either those effecting
2615  *	the vm_map_entry structure, or those effecting the underlying
2616  *	objects.
2617  */
2618 int
2619 vm_map_madvise(
2620 	vm_map_t map,
2621 	vm_offset_t start,
2622 	vm_offset_t end,
2623 	int behav)
2624 {
2625 	vm_map_entry_t current, entry;
2626 	bool modify_map;
2627 
2628 	/*
2629 	 * Some madvise calls directly modify the vm_map_entry, in which case
2630 	 * we need to use an exclusive lock on the map and we need to perform
2631 	 * various clipping operations.  Otherwise we only need a read-lock
2632 	 * on the map.
2633 	 */
2634 	switch(behav) {
2635 	case MADV_NORMAL:
2636 	case MADV_SEQUENTIAL:
2637 	case MADV_RANDOM:
2638 	case MADV_NOSYNC:
2639 	case MADV_AUTOSYNC:
2640 	case MADV_NOCORE:
2641 	case MADV_CORE:
2642 		if (start == end)
2643 			return (0);
2644 		modify_map = true;
2645 		vm_map_lock(map);
2646 		break;
2647 	case MADV_WILLNEED:
2648 	case MADV_DONTNEED:
2649 	case MADV_FREE:
2650 		if (start == end)
2651 			return (0);
2652 		modify_map = false;
2653 		vm_map_lock_read(map);
2654 		break;
2655 	default:
2656 		return (EINVAL);
2657 	}
2658 
2659 	/*
2660 	 * Locate starting entry and clip if necessary.
2661 	 */
2662 	VM_MAP_RANGE_CHECK(map, start, end);
2663 
2664 	if (vm_map_lookup_entry(map, start, &entry)) {
2665 		if (modify_map)
2666 			vm_map_clip_start(map, entry, start);
2667 	} else {
2668 		entry = entry->next;
2669 	}
2670 
2671 	if (modify_map) {
2672 		/*
2673 		 * madvise behaviors that are implemented in the vm_map_entry.
2674 		 *
2675 		 * We clip the vm_map_entry so that behavioral changes are
2676 		 * limited to the specified address range.
2677 		 */
2678 		for (current = entry; current->start < end;
2679 		    current = current->next) {
2680 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2681 				continue;
2682 
2683 			vm_map_clip_end(map, current, end);
2684 
2685 			switch (behav) {
2686 			case MADV_NORMAL:
2687 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2688 				break;
2689 			case MADV_SEQUENTIAL:
2690 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2691 				break;
2692 			case MADV_RANDOM:
2693 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2694 				break;
2695 			case MADV_NOSYNC:
2696 				current->eflags |= MAP_ENTRY_NOSYNC;
2697 				break;
2698 			case MADV_AUTOSYNC:
2699 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2700 				break;
2701 			case MADV_NOCORE:
2702 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2703 				break;
2704 			case MADV_CORE:
2705 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2706 				break;
2707 			default:
2708 				break;
2709 			}
2710 			vm_map_simplify_entry(map, current);
2711 		}
2712 		vm_map_unlock(map);
2713 	} else {
2714 		vm_pindex_t pstart, pend;
2715 
2716 		/*
2717 		 * madvise behaviors that are implemented in the underlying
2718 		 * vm_object.
2719 		 *
2720 		 * Since we don't clip the vm_map_entry, we have to clip
2721 		 * the vm_object pindex and count.
2722 		 */
2723 		for (current = entry; current->start < end;
2724 		    current = current->next) {
2725 			vm_offset_t useEnd, useStart;
2726 
2727 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2728 				continue;
2729 
2730 			pstart = OFF_TO_IDX(current->offset);
2731 			pend = pstart + atop(current->end - current->start);
2732 			useStart = current->start;
2733 			useEnd = current->end;
2734 
2735 			if (current->start < start) {
2736 				pstart += atop(start - current->start);
2737 				useStart = start;
2738 			}
2739 			if (current->end > end) {
2740 				pend -= atop(current->end - end);
2741 				useEnd = end;
2742 			}
2743 
2744 			if (pstart >= pend)
2745 				continue;
2746 
2747 			/*
2748 			 * Perform the pmap_advise() before clearing
2749 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2750 			 * concurrent pmap operation, such as pmap_remove(),
2751 			 * could clear a reference in the pmap and set
2752 			 * PGA_REFERENCED on the page before the pmap_advise()
2753 			 * had completed.  Consequently, the page would appear
2754 			 * referenced based upon an old reference that
2755 			 * occurred before this pmap_advise() ran.
2756 			 */
2757 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2758 				pmap_advise(map->pmap, useStart, useEnd,
2759 				    behav);
2760 
2761 			vm_object_madvise(current->object.vm_object, pstart,
2762 			    pend, behav);
2763 
2764 			/*
2765 			 * Pre-populate paging structures in the
2766 			 * WILLNEED case.  For wired entries, the
2767 			 * paging structures are already populated.
2768 			 */
2769 			if (behav == MADV_WILLNEED &&
2770 			    current->wired_count == 0) {
2771 				vm_map_pmap_enter(map,
2772 				    useStart,
2773 				    current->protection,
2774 				    current->object.vm_object,
2775 				    pstart,
2776 				    ptoa(pend - pstart),
2777 				    MAP_PREFAULT_MADVISE
2778 				);
2779 			}
2780 		}
2781 		vm_map_unlock_read(map);
2782 	}
2783 	return (0);
2784 }
2785 
2786 
2787 /*
2788  *	vm_map_inherit:
2789  *
2790  *	Sets the inheritance of the specified address
2791  *	range in the target map.  Inheritance
2792  *	affects how the map will be shared with
2793  *	child maps at the time of vmspace_fork.
2794  */
2795 int
2796 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2797 	       vm_inherit_t new_inheritance)
2798 {
2799 	vm_map_entry_t entry;
2800 	vm_map_entry_t temp_entry;
2801 
2802 	switch (new_inheritance) {
2803 	case VM_INHERIT_NONE:
2804 	case VM_INHERIT_COPY:
2805 	case VM_INHERIT_SHARE:
2806 	case VM_INHERIT_ZERO:
2807 		break;
2808 	default:
2809 		return (KERN_INVALID_ARGUMENT);
2810 	}
2811 	if (start == end)
2812 		return (KERN_SUCCESS);
2813 	vm_map_lock(map);
2814 	VM_MAP_RANGE_CHECK(map, start, end);
2815 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2816 		entry = temp_entry;
2817 		vm_map_clip_start(map, entry, start);
2818 	} else
2819 		entry = temp_entry->next;
2820 	while (entry->start < end) {
2821 		vm_map_clip_end(map, entry, end);
2822 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2823 		    new_inheritance != VM_INHERIT_ZERO)
2824 			entry->inheritance = new_inheritance;
2825 		vm_map_simplify_entry(map, entry);
2826 		entry = entry->next;
2827 	}
2828 	vm_map_unlock(map);
2829 	return (KERN_SUCCESS);
2830 }
2831 
2832 /*
2833  *	vm_map_unwire:
2834  *
2835  *	Implements both kernel and user unwiring.
2836  */
2837 int
2838 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2839     int flags)
2840 {
2841 	vm_map_entry_t entry, first_entry, tmp_entry;
2842 	vm_offset_t saved_start;
2843 	unsigned int last_timestamp;
2844 	int rv;
2845 	boolean_t need_wakeup, result, user_unwire;
2846 
2847 	if (start == end)
2848 		return (KERN_SUCCESS);
2849 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2850 	vm_map_lock(map);
2851 	VM_MAP_RANGE_CHECK(map, start, end);
2852 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2853 		if (flags & VM_MAP_WIRE_HOLESOK)
2854 			first_entry = first_entry->next;
2855 		else {
2856 			vm_map_unlock(map);
2857 			return (KERN_INVALID_ADDRESS);
2858 		}
2859 	}
2860 	last_timestamp = map->timestamp;
2861 	entry = first_entry;
2862 	while (entry->start < end) {
2863 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2864 			/*
2865 			 * We have not yet clipped the entry.
2866 			 */
2867 			saved_start = (start >= entry->start) ? start :
2868 			    entry->start;
2869 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2870 			if (vm_map_unlock_and_wait(map, 0)) {
2871 				/*
2872 				 * Allow interruption of user unwiring?
2873 				 */
2874 			}
2875 			vm_map_lock(map);
2876 			if (last_timestamp+1 != map->timestamp) {
2877 				/*
2878 				 * Look again for the entry because the map was
2879 				 * modified while it was unlocked.
2880 				 * Specifically, the entry may have been
2881 				 * clipped, merged, or deleted.
2882 				 */
2883 				if (!vm_map_lookup_entry(map, saved_start,
2884 				    &tmp_entry)) {
2885 					if (flags & VM_MAP_WIRE_HOLESOK)
2886 						tmp_entry = tmp_entry->next;
2887 					else {
2888 						if (saved_start == start) {
2889 							/*
2890 							 * First_entry has been deleted.
2891 							 */
2892 							vm_map_unlock(map);
2893 							return (KERN_INVALID_ADDRESS);
2894 						}
2895 						end = saved_start;
2896 						rv = KERN_INVALID_ADDRESS;
2897 						goto done;
2898 					}
2899 				}
2900 				if (entry == first_entry)
2901 					first_entry = tmp_entry;
2902 				else
2903 					first_entry = NULL;
2904 				entry = tmp_entry;
2905 			}
2906 			last_timestamp = map->timestamp;
2907 			continue;
2908 		}
2909 		vm_map_clip_start(map, entry, start);
2910 		vm_map_clip_end(map, entry, end);
2911 		/*
2912 		 * Mark the entry in case the map lock is released.  (See
2913 		 * above.)
2914 		 */
2915 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2916 		    entry->wiring_thread == NULL,
2917 		    ("owned map entry %p", entry));
2918 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2919 		entry->wiring_thread = curthread;
2920 		/*
2921 		 * Check the map for holes in the specified region.
2922 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2923 		 */
2924 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2925 		    (entry->end < end && entry->next->start > entry->end)) {
2926 			end = entry->end;
2927 			rv = KERN_INVALID_ADDRESS;
2928 			goto done;
2929 		}
2930 		/*
2931 		 * If system unwiring, require that the entry is system wired.
2932 		 */
2933 		if (!user_unwire &&
2934 		    vm_map_entry_system_wired_count(entry) == 0) {
2935 			end = entry->end;
2936 			rv = KERN_INVALID_ARGUMENT;
2937 			goto done;
2938 		}
2939 		entry = entry->next;
2940 	}
2941 	rv = KERN_SUCCESS;
2942 done:
2943 	need_wakeup = FALSE;
2944 	if (first_entry == NULL) {
2945 		result = vm_map_lookup_entry(map, start, &first_entry);
2946 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2947 			first_entry = first_entry->next;
2948 		else
2949 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2950 	}
2951 	for (entry = first_entry; entry->start < end; entry = entry->next) {
2952 		/*
2953 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2954 		 * space in the unwired region could have been mapped
2955 		 * while the map lock was dropped for draining
2956 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2957 		 * could be simultaneously wiring this new mapping
2958 		 * entry.  Detect these cases and skip any entries
2959 		 * marked as in transition by us.
2960 		 */
2961 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2962 		    entry->wiring_thread != curthread) {
2963 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2964 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2965 			continue;
2966 		}
2967 
2968 		if (rv == KERN_SUCCESS && (!user_unwire ||
2969 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2970 			if (entry->wired_count == 1)
2971 				vm_map_entry_unwire(map, entry);
2972 			else
2973 				entry->wired_count--;
2974 			if (user_unwire)
2975 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2976 		}
2977 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2978 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2979 		KASSERT(entry->wiring_thread == curthread,
2980 		    ("vm_map_unwire: alien wire %p", entry));
2981 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2982 		entry->wiring_thread = NULL;
2983 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2984 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2985 			need_wakeup = TRUE;
2986 		}
2987 		vm_map_simplify_entry(map, entry);
2988 	}
2989 	vm_map_unlock(map);
2990 	if (need_wakeup)
2991 		vm_map_wakeup(map);
2992 	return (rv);
2993 }
2994 
2995 static void
2996 vm_map_wire_user_count_sub(u_long npages)
2997 {
2998 
2999 	atomic_subtract_long(&vm_user_wire_count, npages);
3000 }
3001 
3002 static bool
3003 vm_map_wire_user_count_add(u_long npages)
3004 {
3005 	u_long wired;
3006 
3007 	wired = vm_user_wire_count;
3008 	do {
3009 		if (npages + wired > vm_page_max_user_wired)
3010 			return (false);
3011 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3012 	    npages + wired));
3013 
3014 	return (true);
3015 }
3016 
3017 /*
3018  *	vm_map_wire_entry_failure:
3019  *
3020  *	Handle a wiring failure on the given entry.
3021  *
3022  *	The map should be locked.
3023  */
3024 static void
3025 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3026     vm_offset_t failed_addr)
3027 {
3028 
3029 	VM_MAP_ASSERT_LOCKED(map);
3030 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3031 	    entry->wired_count == 1,
3032 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3033 	KASSERT(failed_addr < entry->end,
3034 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3035 
3036 	/*
3037 	 * If any pages at the start of this entry were successfully wired,
3038 	 * then unwire them.
3039 	 */
3040 	if (failed_addr > entry->start) {
3041 		pmap_unwire(map->pmap, entry->start, failed_addr);
3042 		vm_object_unwire(entry->object.vm_object, entry->offset,
3043 		    failed_addr - entry->start, PQ_ACTIVE);
3044 	}
3045 
3046 	/*
3047 	 * Assign an out-of-range value to represent the failure to wire this
3048 	 * entry.
3049 	 */
3050 	entry->wired_count = -1;
3051 }
3052 
3053 int
3054 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3055 {
3056 	int rv;
3057 
3058 	vm_map_lock(map);
3059 	rv = vm_map_wire_locked(map, start, end, flags);
3060 	vm_map_unlock(map);
3061 	return (rv);
3062 }
3063 
3064 
3065 /*
3066  *	vm_map_wire_locked:
3067  *
3068  *	Implements both kernel and user wiring.  Returns with the map locked,
3069  *	the map lock may be dropped.
3070  */
3071 int
3072 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3073 {
3074 	vm_map_entry_t entry, first_entry, tmp_entry;
3075 	vm_offset_t faddr, saved_end, saved_start;
3076 	u_long npages;
3077 	u_int last_timestamp;
3078 	int rv;
3079 	boolean_t need_wakeup, result, user_wire;
3080 	vm_prot_t prot;
3081 
3082 	VM_MAP_ASSERT_LOCKED(map);
3083 
3084 	if (start == end)
3085 		return (KERN_SUCCESS);
3086 	prot = 0;
3087 	if (flags & VM_MAP_WIRE_WRITE)
3088 		prot |= VM_PROT_WRITE;
3089 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
3090 	VM_MAP_RANGE_CHECK(map, start, end);
3091 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3092 		if (flags & VM_MAP_WIRE_HOLESOK)
3093 			first_entry = first_entry->next;
3094 		else
3095 			return (KERN_INVALID_ADDRESS);
3096 	}
3097 	last_timestamp = map->timestamp;
3098 	entry = first_entry;
3099 	while (entry->start < end) {
3100 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3101 			/*
3102 			 * We have not yet clipped the entry.
3103 			 */
3104 			saved_start = (start >= entry->start) ? start :
3105 			    entry->start;
3106 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3107 			if (vm_map_unlock_and_wait(map, 0)) {
3108 				/*
3109 				 * Allow interruption of user wiring?
3110 				 */
3111 			}
3112 			vm_map_lock(map);
3113 			if (last_timestamp + 1 != map->timestamp) {
3114 				/*
3115 				 * Look again for the entry because the map was
3116 				 * modified while it was unlocked.
3117 				 * Specifically, the entry may have been
3118 				 * clipped, merged, or deleted.
3119 				 */
3120 				if (!vm_map_lookup_entry(map, saved_start,
3121 				    &tmp_entry)) {
3122 					if (flags & VM_MAP_WIRE_HOLESOK)
3123 						tmp_entry = tmp_entry->next;
3124 					else {
3125 						if (saved_start == start) {
3126 							/*
3127 							 * first_entry has been deleted.
3128 							 */
3129 							return (KERN_INVALID_ADDRESS);
3130 						}
3131 						end = saved_start;
3132 						rv = KERN_INVALID_ADDRESS;
3133 						goto done;
3134 					}
3135 				}
3136 				if (entry == first_entry)
3137 					first_entry = tmp_entry;
3138 				else
3139 					first_entry = NULL;
3140 				entry = tmp_entry;
3141 			}
3142 			last_timestamp = map->timestamp;
3143 			continue;
3144 		}
3145 		vm_map_clip_start(map, entry, start);
3146 		vm_map_clip_end(map, entry, end);
3147 		/*
3148 		 * Mark the entry in case the map lock is released.  (See
3149 		 * above.)
3150 		 */
3151 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3152 		    entry->wiring_thread == NULL,
3153 		    ("owned map entry %p", entry));
3154 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3155 		entry->wiring_thread = curthread;
3156 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3157 		    || (entry->protection & prot) != prot) {
3158 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3159 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
3160 				end = entry->end;
3161 				rv = KERN_INVALID_ADDRESS;
3162 				goto done;
3163 			}
3164 			goto next_entry;
3165 		}
3166 		if (entry->wired_count == 0) {
3167 			entry->wired_count++;
3168 
3169 			npages = atop(entry->end - entry->start);
3170 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3171 				vm_map_wire_entry_failure(map, entry,
3172 				    entry->start);
3173 				end = entry->end;
3174 				rv = KERN_RESOURCE_SHORTAGE;
3175 				goto done;
3176 			}
3177 
3178 			/*
3179 			 * Release the map lock, relying on the in-transition
3180 			 * mark.  Mark the map busy for fork.
3181 			 */
3182 			saved_start = entry->start;
3183 			saved_end = entry->end;
3184 			vm_map_busy(map);
3185 			vm_map_unlock(map);
3186 
3187 			faddr = saved_start;
3188 			do {
3189 				/*
3190 				 * Simulate a fault to get the page and enter
3191 				 * it into the physical map.
3192 				 */
3193 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
3194 				    VM_FAULT_WIRE)) != KERN_SUCCESS)
3195 					break;
3196 			} while ((faddr += PAGE_SIZE) < saved_end);
3197 			vm_map_lock(map);
3198 			vm_map_unbusy(map);
3199 			if (last_timestamp + 1 != map->timestamp) {
3200 				/*
3201 				 * Look again for the entry because the map was
3202 				 * modified while it was unlocked.  The entry
3203 				 * may have been clipped, but NOT merged or
3204 				 * deleted.
3205 				 */
3206 				result = vm_map_lookup_entry(map, saved_start,
3207 				    &tmp_entry);
3208 				KASSERT(result, ("vm_map_wire: lookup failed"));
3209 				if (entry == first_entry)
3210 					first_entry = tmp_entry;
3211 				else
3212 					first_entry = NULL;
3213 				entry = tmp_entry;
3214 				while (entry->end < saved_end) {
3215 					/*
3216 					 * In case of failure, handle entries
3217 					 * that were not fully wired here;
3218 					 * fully wired entries are handled
3219 					 * later.
3220 					 */
3221 					if (rv != KERN_SUCCESS &&
3222 					    faddr < entry->end)
3223 						vm_map_wire_entry_failure(map,
3224 						    entry, faddr);
3225 					entry = entry->next;
3226 				}
3227 			}
3228 			last_timestamp = map->timestamp;
3229 			if (rv != KERN_SUCCESS) {
3230 				vm_map_wire_entry_failure(map, entry, faddr);
3231 				if (user_wire)
3232 					vm_map_wire_user_count_sub(npages);
3233 				end = entry->end;
3234 				goto done;
3235 			}
3236 		} else if (!user_wire ||
3237 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3238 			entry->wired_count++;
3239 		}
3240 		/*
3241 		 * Check the map for holes in the specified region.
3242 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
3243 		 */
3244 	next_entry:
3245 		if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
3246 		    entry->end < end && entry->next->start > entry->end) {
3247 			end = entry->end;
3248 			rv = KERN_INVALID_ADDRESS;
3249 			goto done;
3250 		}
3251 		entry = entry->next;
3252 	}
3253 	rv = KERN_SUCCESS;
3254 done:
3255 	need_wakeup = FALSE;
3256 	if (first_entry == NULL) {
3257 		result = vm_map_lookup_entry(map, start, &first_entry);
3258 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
3259 			first_entry = first_entry->next;
3260 		else
3261 			KASSERT(result, ("vm_map_wire: lookup failed"));
3262 	}
3263 	for (entry = first_entry; entry->start < end; entry = entry->next) {
3264 		/*
3265 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
3266 		 * space in the unwired region could have been mapped
3267 		 * while the map lock was dropped for faulting in the
3268 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3269 		 * Moreover, another thread could be simultaneously
3270 		 * wiring this new mapping entry.  Detect these cases
3271 		 * and skip any entries marked as in transition not by us.
3272 		 */
3273 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3274 		    entry->wiring_thread != curthread) {
3275 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
3276 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3277 			continue;
3278 		}
3279 
3280 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
3281 			goto next_entry_done;
3282 
3283 		if (rv == KERN_SUCCESS) {
3284 			if (user_wire)
3285 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3286 		} else if (entry->wired_count == -1) {
3287 			/*
3288 			 * Wiring failed on this entry.  Thus, unwiring is
3289 			 * unnecessary.
3290 			 */
3291 			entry->wired_count = 0;
3292 		} else if (!user_wire ||
3293 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3294 			/*
3295 			 * Undo the wiring.  Wiring succeeded on this entry
3296 			 * but failed on a later entry.
3297 			 */
3298 			if (entry->wired_count == 1) {
3299 				vm_map_entry_unwire(map, entry);
3300 				if (user_wire)
3301 					vm_map_wire_user_count_sub(
3302 					    atop(entry->end - entry->start));
3303 			} else
3304 				entry->wired_count--;
3305 		}
3306 	next_entry_done:
3307 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3308 		    ("vm_map_wire: in-transition flag missing %p", entry));
3309 		KASSERT(entry->wiring_thread == curthread,
3310 		    ("vm_map_wire: alien wire %p", entry));
3311 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3312 		    MAP_ENTRY_WIRE_SKIPPED);
3313 		entry->wiring_thread = NULL;
3314 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3315 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3316 			need_wakeup = TRUE;
3317 		}
3318 		vm_map_simplify_entry(map, entry);
3319 	}
3320 	if (need_wakeup)
3321 		vm_map_wakeup(map);
3322 	return (rv);
3323 }
3324 
3325 /*
3326  * vm_map_sync
3327  *
3328  * Push any dirty cached pages in the address range to their pager.
3329  * If syncio is TRUE, dirty pages are written synchronously.
3330  * If invalidate is TRUE, any cached pages are freed as well.
3331  *
3332  * If the size of the region from start to end is zero, we are
3333  * supposed to flush all modified pages within the region containing
3334  * start.  Unfortunately, a region can be split or coalesced with
3335  * neighboring regions, making it difficult to determine what the
3336  * original region was.  Therefore, we approximate this requirement by
3337  * flushing the current region containing start.
3338  *
3339  * Returns an error if any part of the specified range is not mapped.
3340  */
3341 int
3342 vm_map_sync(
3343 	vm_map_t map,
3344 	vm_offset_t start,
3345 	vm_offset_t end,
3346 	boolean_t syncio,
3347 	boolean_t invalidate)
3348 {
3349 	vm_map_entry_t current;
3350 	vm_map_entry_t entry;
3351 	vm_size_t size;
3352 	vm_object_t object;
3353 	vm_ooffset_t offset;
3354 	unsigned int last_timestamp;
3355 	boolean_t failed;
3356 
3357 	vm_map_lock_read(map);
3358 	VM_MAP_RANGE_CHECK(map, start, end);
3359 	if (!vm_map_lookup_entry(map, start, &entry)) {
3360 		vm_map_unlock_read(map);
3361 		return (KERN_INVALID_ADDRESS);
3362 	} else if (start == end) {
3363 		start = entry->start;
3364 		end = entry->end;
3365 	}
3366 	/*
3367 	 * Make a first pass to check for user-wired memory and holes.
3368 	 */
3369 	for (current = entry; current->start < end; current = current->next) {
3370 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
3371 			vm_map_unlock_read(map);
3372 			return (KERN_INVALID_ARGUMENT);
3373 		}
3374 		if (end > current->end &&
3375 		    current->end != current->next->start) {
3376 			vm_map_unlock_read(map);
3377 			return (KERN_INVALID_ADDRESS);
3378 		}
3379 	}
3380 
3381 	if (invalidate)
3382 		pmap_remove(map->pmap, start, end);
3383 	failed = FALSE;
3384 
3385 	/*
3386 	 * Make a second pass, cleaning/uncaching pages from the indicated
3387 	 * objects as we go.
3388 	 */
3389 	for (current = entry; current->start < end;) {
3390 		offset = current->offset + (start - current->start);
3391 		size = (end <= current->end ? end : current->end) - start;
3392 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
3393 			vm_map_t smap;
3394 			vm_map_entry_t tentry;
3395 			vm_size_t tsize;
3396 
3397 			smap = current->object.sub_map;
3398 			vm_map_lock_read(smap);
3399 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3400 			tsize = tentry->end - offset;
3401 			if (tsize < size)
3402 				size = tsize;
3403 			object = tentry->object.vm_object;
3404 			offset = tentry->offset + (offset - tentry->start);
3405 			vm_map_unlock_read(smap);
3406 		} else {
3407 			object = current->object.vm_object;
3408 		}
3409 		vm_object_reference(object);
3410 		last_timestamp = map->timestamp;
3411 		vm_map_unlock_read(map);
3412 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3413 			failed = TRUE;
3414 		start += size;
3415 		vm_object_deallocate(object);
3416 		vm_map_lock_read(map);
3417 		if (last_timestamp == map->timestamp ||
3418 		    !vm_map_lookup_entry(map, start, &current))
3419 			current = current->next;
3420 	}
3421 
3422 	vm_map_unlock_read(map);
3423 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3424 }
3425 
3426 /*
3427  *	vm_map_entry_unwire:	[ internal use only ]
3428  *
3429  *	Make the region specified by this entry pageable.
3430  *
3431  *	The map in question should be locked.
3432  *	[This is the reason for this routine's existence.]
3433  */
3434 static void
3435 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3436 {
3437 	vm_size_t size;
3438 
3439 	VM_MAP_ASSERT_LOCKED(map);
3440 	KASSERT(entry->wired_count > 0,
3441 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3442 
3443 	size = entry->end - entry->start;
3444 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3445 		vm_map_wire_user_count_sub(atop(size));
3446 	pmap_unwire(map->pmap, entry->start, entry->end);
3447 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3448 	    PQ_ACTIVE);
3449 	entry->wired_count = 0;
3450 }
3451 
3452 static void
3453 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3454 {
3455 
3456 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3457 		vm_object_deallocate(entry->object.vm_object);
3458 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3459 }
3460 
3461 /*
3462  *	vm_map_entry_delete:	[ internal use only ]
3463  *
3464  *	Deallocate the given entry from the target map.
3465  */
3466 static void
3467 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3468 {
3469 	vm_object_t object;
3470 	vm_pindex_t offidxstart, offidxend, count, size1;
3471 	vm_size_t size;
3472 
3473 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3474 	object = entry->object.vm_object;
3475 
3476 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3477 		MPASS(entry->cred == NULL);
3478 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3479 		MPASS(object == NULL);
3480 		vm_map_entry_deallocate(entry, map->system_map);
3481 		return;
3482 	}
3483 
3484 	size = entry->end - entry->start;
3485 	map->size -= size;
3486 
3487 	if (entry->cred != NULL) {
3488 		swap_release_by_cred(size, entry->cred);
3489 		crfree(entry->cred);
3490 	}
3491 
3492 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3493 	    (object != NULL)) {
3494 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3495 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3496 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3497 		count = atop(size);
3498 		offidxstart = OFF_TO_IDX(entry->offset);
3499 		offidxend = offidxstart + count;
3500 		VM_OBJECT_WLOCK(object);
3501 		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3502 		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3503 		    object == kernel_object)) {
3504 			vm_object_collapse(object);
3505 
3506 			/*
3507 			 * The option OBJPR_NOTMAPPED can be passed here
3508 			 * because vm_map_delete() already performed
3509 			 * pmap_remove() on the only mapping to this range
3510 			 * of pages.
3511 			 */
3512 			vm_object_page_remove(object, offidxstart, offidxend,
3513 			    OBJPR_NOTMAPPED);
3514 			if (object->type == OBJT_SWAP)
3515 				swap_pager_freespace(object, offidxstart,
3516 				    count);
3517 			if (offidxend >= object->size &&
3518 			    offidxstart < object->size) {
3519 				size1 = object->size;
3520 				object->size = offidxstart;
3521 				if (object->cred != NULL) {
3522 					size1 -= object->size;
3523 					KASSERT(object->charge >= ptoa(size1),
3524 					    ("object %p charge < 0", object));
3525 					swap_release_by_cred(ptoa(size1),
3526 					    object->cred);
3527 					object->charge -= ptoa(size1);
3528 				}
3529 			}
3530 		}
3531 		VM_OBJECT_WUNLOCK(object);
3532 	} else
3533 		entry->object.vm_object = NULL;
3534 	if (map->system_map)
3535 		vm_map_entry_deallocate(entry, TRUE);
3536 	else {
3537 		entry->next = curthread->td_map_def_user;
3538 		curthread->td_map_def_user = entry;
3539 	}
3540 }
3541 
3542 /*
3543  *	vm_map_delete:	[ internal use only ]
3544  *
3545  *	Deallocates the given address range from the target
3546  *	map.
3547  */
3548 int
3549 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3550 {
3551 	vm_map_entry_t entry;
3552 	vm_map_entry_t first_entry;
3553 
3554 	VM_MAP_ASSERT_LOCKED(map);
3555 	if (start == end)
3556 		return (KERN_SUCCESS);
3557 
3558 	/*
3559 	 * Find the start of the region, and clip it
3560 	 */
3561 	if (!vm_map_lookup_entry(map, start, &first_entry))
3562 		entry = first_entry->next;
3563 	else {
3564 		entry = first_entry;
3565 		vm_map_clip_start(map, entry, start);
3566 	}
3567 
3568 	/*
3569 	 * Step through all entries in this region
3570 	 */
3571 	while (entry->start < end) {
3572 		vm_map_entry_t next;
3573 
3574 		/*
3575 		 * Wait for wiring or unwiring of an entry to complete.
3576 		 * Also wait for any system wirings to disappear on
3577 		 * user maps.
3578 		 */
3579 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3580 		    (vm_map_pmap(map) != kernel_pmap &&
3581 		    vm_map_entry_system_wired_count(entry) != 0)) {
3582 			unsigned int last_timestamp;
3583 			vm_offset_t saved_start;
3584 			vm_map_entry_t tmp_entry;
3585 
3586 			saved_start = entry->start;
3587 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3588 			last_timestamp = map->timestamp;
3589 			(void) vm_map_unlock_and_wait(map, 0);
3590 			vm_map_lock(map);
3591 			if (last_timestamp + 1 != map->timestamp) {
3592 				/*
3593 				 * Look again for the entry because the map was
3594 				 * modified while it was unlocked.
3595 				 * Specifically, the entry may have been
3596 				 * clipped, merged, or deleted.
3597 				 */
3598 				if (!vm_map_lookup_entry(map, saved_start,
3599 							 &tmp_entry))
3600 					entry = tmp_entry->next;
3601 				else {
3602 					entry = tmp_entry;
3603 					vm_map_clip_start(map, entry,
3604 							  saved_start);
3605 				}
3606 			}
3607 			continue;
3608 		}
3609 		vm_map_clip_end(map, entry, end);
3610 
3611 		next = entry->next;
3612 
3613 		/*
3614 		 * Unwire before removing addresses from the pmap; otherwise,
3615 		 * unwiring will put the entries back in the pmap.
3616 		 */
3617 		if (entry->wired_count != 0)
3618 			vm_map_entry_unwire(map, entry);
3619 
3620 		/*
3621 		 * Remove mappings for the pages, but only if the
3622 		 * mappings could exist.  For instance, it does not
3623 		 * make sense to call pmap_remove() for guard entries.
3624 		 */
3625 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3626 		    entry->object.vm_object != NULL)
3627 			pmap_remove(map->pmap, entry->start, entry->end);
3628 
3629 		if (entry->end == map->anon_loc)
3630 			map->anon_loc = entry->start;
3631 
3632 		/*
3633 		 * Delete the entry only after removing all pmap
3634 		 * entries pointing to its pages.  (Otherwise, its
3635 		 * page frames may be reallocated, and any modify bits
3636 		 * will be set in the wrong object!)
3637 		 */
3638 		vm_map_entry_delete(map, entry);
3639 		entry = next;
3640 	}
3641 	return (KERN_SUCCESS);
3642 }
3643 
3644 /*
3645  *	vm_map_remove:
3646  *
3647  *	Remove the given address range from the target map.
3648  *	This is the exported form of vm_map_delete.
3649  */
3650 int
3651 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3652 {
3653 	int result;
3654 
3655 	vm_map_lock(map);
3656 	VM_MAP_RANGE_CHECK(map, start, end);
3657 	result = vm_map_delete(map, start, end);
3658 	vm_map_unlock(map);
3659 	return (result);
3660 }
3661 
3662 /*
3663  *	vm_map_check_protection:
3664  *
3665  *	Assert that the target map allows the specified privilege on the
3666  *	entire address region given.  The entire region must be allocated.
3667  *
3668  *	WARNING!  This code does not and should not check whether the
3669  *	contents of the region is accessible.  For example a smaller file
3670  *	might be mapped into a larger address space.
3671  *
3672  *	NOTE!  This code is also called by munmap().
3673  *
3674  *	The map must be locked.  A read lock is sufficient.
3675  */
3676 boolean_t
3677 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3678 			vm_prot_t protection)
3679 {
3680 	vm_map_entry_t entry;
3681 	vm_map_entry_t tmp_entry;
3682 
3683 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3684 		return (FALSE);
3685 	entry = tmp_entry;
3686 
3687 	while (start < end) {
3688 		/*
3689 		 * No holes allowed!
3690 		 */
3691 		if (start < entry->start)
3692 			return (FALSE);
3693 		/*
3694 		 * Check protection associated with entry.
3695 		 */
3696 		if ((entry->protection & protection) != protection)
3697 			return (FALSE);
3698 		/* go to next entry */
3699 		start = entry->end;
3700 		entry = entry->next;
3701 	}
3702 	return (TRUE);
3703 }
3704 
3705 /*
3706  *	vm_map_copy_entry:
3707  *
3708  *	Copies the contents of the source entry to the destination
3709  *	entry.  The entries *must* be aligned properly.
3710  */
3711 static void
3712 vm_map_copy_entry(
3713 	vm_map_t src_map,
3714 	vm_map_t dst_map,
3715 	vm_map_entry_t src_entry,
3716 	vm_map_entry_t dst_entry,
3717 	vm_ooffset_t *fork_charge)
3718 {
3719 	vm_object_t src_object;
3720 	vm_map_entry_t fake_entry;
3721 	vm_offset_t size;
3722 	struct ucred *cred;
3723 	int charged;
3724 
3725 	VM_MAP_ASSERT_LOCKED(dst_map);
3726 
3727 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3728 		return;
3729 
3730 	if (src_entry->wired_count == 0 ||
3731 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3732 		/*
3733 		 * If the source entry is marked needs_copy, it is already
3734 		 * write-protected.
3735 		 */
3736 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3737 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3738 			pmap_protect(src_map->pmap,
3739 			    src_entry->start,
3740 			    src_entry->end,
3741 			    src_entry->protection & ~VM_PROT_WRITE);
3742 		}
3743 
3744 		/*
3745 		 * Make a copy of the object.
3746 		 */
3747 		size = src_entry->end - src_entry->start;
3748 		if ((src_object = src_entry->object.vm_object) != NULL) {
3749 			VM_OBJECT_WLOCK(src_object);
3750 			charged = ENTRY_CHARGED(src_entry);
3751 			if (src_object->handle == NULL &&
3752 			    (src_object->type == OBJT_DEFAULT ||
3753 			    src_object->type == OBJT_SWAP)) {
3754 				vm_object_collapse(src_object);
3755 				if ((src_object->flags & (OBJ_NOSPLIT |
3756 				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3757 					vm_object_split(src_entry);
3758 					src_object =
3759 					    src_entry->object.vm_object;
3760 				}
3761 			}
3762 			vm_object_reference_locked(src_object);
3763 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3764 			if (src_entry->cred != NULL &&
3765 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3766 				KASSERT(src_object->cred == NULL,
3767 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3768 				     src_object));
3769 				src_object->cred = src_entry->cred;
3770 				src_object->charge = size;
3771 			}
3772 			VM_OBJECT_WUNLOCK(src_object);
3773 			dst_entry->object.vm_object = src_object;
3774 			if (charged) {
3775 				cred = curthread->td_ucred;
3776 				crhold(cred);
3777 				dst_entry->cred = cred;
3778 				*fork_charge += size;
3779 				if (!(src_entry->eflags &
3780 				      MAP_ENTRY_NEEDS_COPY)) {
3781 					crhold(cred);
3782 					src_entry->cred = cred;
3783 					*fork_charge += size;
3784 				}
3785 			}
3786 			src_entry->eflags |= MAP_ENTRY_COW |
3787 			    MAP_ENTRY_NEEDS_COPY;
3788 			dst_entry->eflags |= MAP_ENTRY_COW |
3789 			    MAP_ENTRY_NEEDS_COPY;
3790 			dst_entry->offset = src_entry->offset;
3791 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3792 				/*
3793 				 * MAP_ENTRY_VN_WRITECNT cannot
3794 				 * indicate write reference from
3795 				 * src_entry, since the entry is
3796 				 * marked as needs copy.  Allocate a
3797 				 * fake entry that is used to
3798 				 * decrement object->un_pager.vnp.writecount
3799 				 * at the appropriate time.  Attach
3800 				 * fake_entry to the deferred list.
3801 				 */
3802 				fake_entry = vm_map_entry_create(dst_map);
3803 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3804 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3805 				vm_object_reference(src_object);
3806 				fake_entry->object.vm_object = src_object;
3807 				fake_entry->start = src_entry->start;
3808 				fake_entry->end = src_entry->end;
3809 				fake_entry->next = curthread->td_map_def_user;
3810 				curthread->td_map_def_user = fake_entry;
3811 			}
3812 
3813 			pmap_copy(dst_map->pmap, src_map->pmap,
3814 			    dst_entry->start, dst_entry->end - dst_entry->start,
3815 			    src_entry->start);
3816 		} else {
3817 			dst_entry->object.vm_object = NULL;
3818 			dst_entry->offset = 0;
3819 			if (src_entry->cred != NULL) {
3820 				dst_entry->cred = curthread->td_ucred;
3821 				crhold(dst_entry->cred);
3822 				*fork_charge += size;
3823 			}
3824 		}
3825 	} else {
3826 		/*
3827 		 * We don't want to make writeable wired pages copy-on-write.
3828 		 * Immediately copy these pages into the new map by simulating
3829 		 * page faults.  The new pages are pageable.
3830 		 */
3831 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3832 		    fork_charge);
3833 	}
3834 }
3835 
3836 /*
3837  * vmspace_map_entry_forked:
3838  * Update the newly-forked vmspace each time a map entry is inherited
3839  * or copied.  The values for vm_dsize and vm_tsize are approximate
3840  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3841  */
3842 static void
3843 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3844     vm_map_entry_t entry)
3845 {
3846 	vm_size_t entrysize;
3847 	vm_offset_t newend;
3848 
3849 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3850 		return;
3851 	entrysize = entry->end - entry->start;
3852 	vm2->vm_map.size += entrysize;
3853 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3854 		vm2->vm_ssize += btoc(entrysize);
3855 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3856 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3857 		newend = MIN(entry->end,
3858 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3859 		vm2->vm_dsize += btoc(newend - entry->start);
3860 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3861 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3862 		newend = MIN(entry->end,
3863 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3864 		vm2->vm_tsize += btoc(newend - entry->start);
3865 	}
3866 }
3867 
3868 /*
3869  * vmspace_fork:
3870  * Create a new process vmspace structure and vm_map
3871  * based on those of an existing process.  The new map
3872  * is based on the old map, according to the inheritance
3873  * values on the regions in that map.
3874  *
3875  * XXX It might be worth coalescing the entries added to the new vmspace.
3876  *
3877  * The source map must not be locked.
3878  */
3879 struct vmspace *
3880 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3881 {
3882 	struct vmspace *vm2;
3883 	vm_map_t new_map, old_map;
3884 	vm_map_entry_t new_entry, old_entry;
3885 	vm_object_t object;
3886 	int error, locked;
3887 	vm_inherit_t inh;
3888 
3889 	old_map = &vm1->vm_map;
3890 	/* Copy immutable fields of vm1 to vm2. */
3891 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3892 	    pmap_pinit);
3893 	if (vm2 == NULL)
3894 		return (NULL);
3895 
3896 	vm2->vm_taddr = vm1->vm_taddr;
3897 	vm2->vm_daddr = vm1->vm_daddr;
3898 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3899 	vm_map_lock(old_map);
3900 	if (old_map->busy)
3901 		vm_map_wait_busy(old_map);
3902 	new_map = &vm2->vm_map;
3903 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3904 	KASSERT(locked, ("vmspace_fork: lock failed"));
3905 
3906 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
3907 	if (error != 0) {
3908 		sx_xunlock(&old_map->lock);
3909 		sx_xunlock(&new_map->lock);
3910 		vm_map_process_deferred();
3911 		vmspace_free(vm2);
3912 		return (NULL);
3913 	}
3914 
3915 	new_map->anon_loc = old_map->anon_loc;
3916 
3917 	old_entry = old_map->header.next;
3918 
3919 	while (old_entry != &old_map->header) {
3920 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3921 			panic("vm_map_fork: encountered a submap");
3922 
3923 		inh = old_entry->inheritance;
3924 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3925 		    inh != VM_INHERIT_NONE)
3926 			inh = VM_INHERIT_COPY;
3927 
3928 		switch (inh) {
3929 		case VM_INHERIT_NONE:
3930 			break;
3931 
3932 		case VM_INHERIT_SHARE:
3933 			/*
3934 			 * Clone the entry, creating the shared object if necessary.
3935 			 */
3936 			object = old_entry->object.vm_object;
3937 			if (object == NULL) {
3938 				object = vm_object_allocate(OBJT_DEFAULT,
3939 					atop(old_entry->end - old_entry->start));
3940 				old_entry->object.vm_object = object;
3941 				old_entry->offset = 0;
3942 				if (old_entry->cred != NULL) {
3943 					object->cred = old_entry->cred;
3944 					object->charge = old_entry->end -
3945 					    old_entry->start;
3946 					old_entry->cred = NULL;
3947 				}
3948 			}
3949 
3950 			/*
3951 			 * Add the reference before calling vm_object_shadow
3952 			 * to insure that a shadow object is created.
3953 			 */
3954 			vm_object_reference(object);
3955 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3956 				vm_object_shadow(&old_entry->object.vm_object,
3957 				    &old_entry->offset,
3958 				    old_entry->end - old_entry->start);
3959 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3960 				/* Transfer the second reference too. */
3961 				vm_object_reference(
3962 				    old_entry->object.vm_object);
3963 
3964 				/*
3965 				 * As in vm_map_simplify_entry(), the
3966 				 * vnode lock will not be acquired in
3967 				 * this call to vm_object_deallocate().
3968 				 */
3969 				vm_object_deallocate(object);
3970 				object = old_entry->object.vm_object;
3971 			}
3972 			VM_OBJECT_WLOCK(object);
3973 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3974 			if (old_entry->cred != NULL) {
3975 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3976 				object->cred = old_entry->cred;
3977 				object->charge = old_entry->end - old_entry->start;
3978 				old_entry->cred = NULL;
3979 			}
3980 
3981 			/*
3982 			 * Assert the correct state of the vnode
3983 			 * v_writecount while the object is locked, to
3984 			 * not relock it later for the assertion
3985 			 * correctness.
3986 			 */
3987 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3988 			    object->type == OBJT_VNODE) {
3989 				KASSERT(((struct vnode *)object->handle)->
3990 				    v_writecount > 0,
3991 				    ("vmspace_fork: v_writecount %p", object));
3992 				KASSERT(object->un_pager.vnp.writemappings > 0,
3993 				    ("vmspace_fork: vnp.writecount %p",
3994 				    object));
3995 			}
3996 			VM_OBJECT_WUNLOCK(object);
3997 
3998 			/*
3999 			 * Clone the entry, referencing the shared object.
4000 			 */
4001 			new_entry = vm_map_entry_create(new_map);
4002 			*new_entry = *old_entry;
4003 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4004 			    MAP_ENTRY_IN_TRANSITION);
4005 			new_entry->wiring_thread = NULL;
4006 			new_entry->wired_count = 0;
4007 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
4008 				vnode_pager_update_writecount(object,
4009 				    new_entry->start, new_entry->end);
4010 			}
4011 			vm_map_entry_set_vnode_text(new_entry, true);
4012 
4013 			/*
4014 			 * Insert the entry into the new map -- we know we're
4015 			 * inserting at the end of the new map.
4016 			 */
4017 			vm_map_entry_link(new_map, new_entry);
4018 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4019 
4020 			/*
4021 			 * Update the physical map
4022 			 */
4023 			pmap_copy(new_map->pmap, old_map->pmap,
4024 			    new_entry->start,
4025 			    (old_entry->end - old_entry->start),
4026 			    old_entry->start);
4027 			break;
4028 
4029 		case VM_INHERIT_COPY:
4030 			/*
4031 			 * Clone the entry and link into the map.
4032 			 */
4033 			new_entry = vm_map_entry_create(new_map);
4034 			*new_entry = *old_entry;
4035 			/*
4036 			 * Copied entry is COW over the old object.
4037 			 */
4038 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4039 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
4040 			new_entry->wiring_thread = NULL;
4041 			new_entry->wired_count = 0;
4042 			new_entry->object.vm_object = NULL;
4043 			new_entry->cred = NULL;
4044 			vm_map_entry_link(new_map, new_entry);
4045 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4046 			vm_map_copy_entry(old_map, new_map, old_entry,
4047 			    new_entry, fork_charge);
4048 			vm_map_entry_set_vnode_text(new_entry, true);
4049 			break;
4050 
4051 		case VM_INHERIT_ZERO:
4052 			/*
4053 			 * Create a new anonymous mapping entry modelled from
4054 			 * the old one.
4055 			 */
4056 			new_entry = vm_map_entry_create(new_map);
4057 			memset(new_entry, 0, sizeof(*new_entry));
4058 
4059 			new_entry->start = old_entry->start;
4060 			new_entry->end = old_entry->end;
4061 			new_entry->eflags = old_entry->eflags &
4062 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4063 			    MAP_ENTRY_VN_WRITECNT | MAP_ENTRY_VN_EXEC);
4064 			new_entry->protection = old_entry->protection;
4065 			new_entry->max_protection = old_entry->max_protection;
4066 			new_entry->inheritance = VM_INHERIT_ZERO;
4067 
4068 			vm_map_entry_link(new_map, new_entry);
4069 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4070 
4071 			new_entry->cred = curthread->td_ucred;
4072 			crhold(new_entry->cred);
4073 			*fork_charge += (new_entry->end - new_entry->start);
4074 
4075 			break;
4076 		}
4077 		old_entry = old_entry->next;
4078 	}
4079 	/*
4080 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4081 	 * map entries, which cannot be done until both old_map and
4082 	 * new_map locks are released.
4083 	 */
4084 	sx_xunlock(&old_map->lock);
4085 	sx_xunlock(&new_map->lock);
4086 	vm_map_process_deferred();
4087 
4088 	return (vm2);
4089 }
4090 
4091 /*
4092  * Create a process's stack for exec_new_vmspace().  This function is never
4093  * asked to wire the newly created stack.
4094  */
4095 int
4096 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4097     vm_prot_t prot, vm_prot_t max, int cow)
4098 {
4099 	vm_size_t growsize, init_ssize;
4100 	rlim_t vmemlim;
4101 	int rv;
4102 
4103 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4104 	growsize = sgrowsiz;
4105 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4106 	vm_map_lock(map);
4107 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4108 	/* If we would blow our VMEM resource limit, no go */
4109 	if (map->size + init_ssize > vmemlim) {
4110 		rv = KERN_NO_SPACE;
4111 		goto out;
4112 	}
4113 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4114 	    max, cow);
4115 out:
4116 	vm_map_unlock(map);
4117 	return (rv);
4118 }
4119 
4120 static int stack_guard_page = 1;
4121 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4122     &stack_guard_page, 0,
4123     "Specifies the number of guard pages for a stack that grows");
4124 
4125 static int
4126 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4127     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4128 {
4129 	vm_map_entry_t new_entry, prev_entry;
4130 	vm_offset_t bot, gap_bot, gap_top, top;
4131 	vm_size_t init_ssize, sgp;
4132 	int orient, rv;
4133 
4134 	/*
4135 	 * The stack orientation is piggybacked with the cow argument.
4136 	 * Extract it into orient and mask the cow argument so that we
4137 	 * don't pass it around further.
4138 	 */
4139 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4140 	KASSERT(orient != 0, ("No stack grow direction"));
4141 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4142 	    ("bi-dir stack"));
4143 
4144 	if (addrbos < vm_map_min(map) ||
4145 	    addrbos + max_ssize > vm_map_max(map) ||
4146 	    addrbos + max_ssize <= addrbos)
4147 		return (KERN_INVALID_ADDRESS);
4148 	sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
4149 	if (sgp >= max_ssize)
4150 		return (KERN_INVALID_ARGUMENT);
4151 
4152 	init_ssize = growsize;
4153 	if (max_ssize < init_ssize + sgp)
4154 		init_ssize = max_ssize - sgp;
4155 
4156 	/* If addr is already mapped, no go */
4157 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4158 		return (KERN_NO_SPACE);
4159 
4160 	/*
4161 	 * If we can't accommodate max_ssize in the current mapping, no go.
4162 	 */
4163 	if (prev_entry->next->start < addrbos + max_ssize)
4164 		return (KERN_NO_SPACE);
4165 
4166 	/*
4167 	 * We initially map a stack of only init_ssize.  We will grow as
4168 	 * needed later.  Depending on the orientation of the stack (i.e.
4169 	 * the grow direction) we either map at the top of the range, the
4170 	 * bottom of the range or in the middle.
4171 	 *
4172 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4173 	 * and cow to be 0.  Possibly we should eliminate these as input
4174 	 * parameters, and just pass these values here in the insert call.
4175 	 */
4176 	if (orient == MAP_STACK_GROWS_DOWN) {
4177 		bot = addrbos + max_ssize - init_ssize;
4178 		top = bot + init_ssize;
4179 		gap_bot = addrbos;
4180 		gap_top = bot;
4181 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4182 		bot = addrbos;
4183 		top = bot + init_ssize;
4184 		gap_bot = top;
4185 		gap_top = addrbos + max_ssize;
4186 	}
4187 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4188 	if (rv != KERN_SUCCESS)
4189 		return (rv);
4190 	new_entry = prev_entry->next;
4191 	KASSERT(new_entry->end == top || new_entry->start == bot,
4192 	    ("Bad entry start/end for new stack entry"));
4193 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4194 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4195 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4196 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4197 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4198 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4199 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4200 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4201 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4202 	if (rv != KERN_SUCCESS)
4203 		(void)vm_map_delete(map, bot, top);
4204 	return (rv);
4205 }
4206 
4207 /*
4208  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4209  * successfully grow the stack.
4210  */
4211 static int
4212 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4213 {
4214 	vm_map_entry_t stack_entry;
4215 	struct proc *p;
4216 	struct vmspace *vm;
4217 	struct ucred *cred;
4218 	vm_offset_t gap_end, gap_start, grow_start;
4219 	vm_size_t grow_amount, guard, max_grow;
4220 	rlim_t lmemlim, stacklim, vmemlim;
4221 	int rv, rv1;
4222 	bool gap_deleted, grow_down, is_procstack;
4223 #ifdef notyet
4224 	uint64_t limit;
4225 #endif
4226 #ifdef RACCT
4227 	int error;
4228 #endif
4229 
4230 	p = curproc;
4231 	vm = p->p_vmspace;
4232 
4233 	/*
4234 	 * Disallow stack growth when the access is performed by a
4235 	 * debugger or AIO daemon.  The reason is that the wrong
4236 	 * resource limits are applied.
4237 	 */
4238 	if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
4239 		return (KERN_FAILURE);
4240 
4241 	MPASS(!map->system_map);
4242 
4243 	guard = stack_guard_page * PAGE_SIZE;
4244 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4245 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4246 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4247 retry:
4248 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4249 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4250 		return (KERN_FAILURE);
4251 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4252 		return (KERN_SUCCESS);
4253 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4254 		stack_entry = gap_entry->next;
4255 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4256 		    stack_entry->start != gap_entry->end)
4257 			return (KERN_FAILURE);
4258 		grow_amount = round_page(stack_entry->start - addr);
4259 		grow_down = true;
4260 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4261 		stack_entry = gap_entry->prev;
4262 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4263 		    stack_entry->end != gap_entry->start)
4264 			return (KERN_FAILURE);
4265 		grow_amount = round_page(addr + 1 - stack_entry->end);
4266 		grow_down = false;
4267 	} else {
4268 		return (KERN_FAILURE);
4269 	}
4270 	max_grow = gap_entry->end - gap_entry->start;
4271 	if (guard > max_grow)
4272 		return (KERN_NO_SPACE);
4273 	max_grow -= guard;
4274 	if (grow_amount > max_grow)
4275 		return (KERN_NO_SPACE);
4276 
4277 	/*
4278 	 * If this is the main process stack, see if we're over the stack
4279 	 * limit.
4280 	 */
4281 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4282 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4283 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4284 		return (KERN_NO_SPACE);
4285 
4286 #ifdef RACCT
4287 	if (racct_enable) {
4288 		PROC_LOCK(p);
4289 		if (is_procstack && racct_set(p, RACCT_STACK,
4290 		    ctob(vm->vm_ssize) + grow_amount)) {
4291 			PROC_UNLOCK(p);
4292 			return (KERN_NO_SPACE);
4293 		}
4294 		PROC_UNLOCK(p);
4295 	}
4296 #endif
4297 
4298 	grow_amount = roundup(grow_amount, sgrowsiz);
4299 	if (grow_amount > max_grow)
4300 		grow_amount = max_grow;
4301 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4302 		grow_amount = trunc_page((vm_size_t)stacklim) -
4303 		    ctob(vm->vm_ssize);
4304 	}
4305 
4306 #ifdef notyet
4307 	PROC_LOCK(p);
4308 	limit = racct_get_available(p, RACCT_STACK);
4309 	PROC_UNLOCK(p);
4310 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4311 		grow_amount = limit - ctob(vm->vm_ssize);
4312 #endif
4313 
4314 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4315 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4316 			rv = KERN_NO_SPACE;
4317 			goto out;
4318 		}
4319 #ifdef RACCT
4320 		if (racct_enable) {
4321 			PROC_LOCK(p);
4322 			if (racct_set(p, RACCT_MEMLOCK,
4323 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4324 				PROC_UNLOCK(p);
4325 				rv = KERN_NO_SPACE;
4326 				goto out;
4327 			}
4328 			PROC_UNLOCK(p);
4329 		}
4330 #endif
4331 	}
4332 
4333 	/* If we would blow our VMEM resource limit, no go */
4334 	if (map->size + grow_amount > vmemlim) {
4335 		rv = KERN_NO_SPACE;
4336 		goto out;
4337 	}
4338 #ifdef RACCT
4339 	if (racct_enable) {
4340 		PROC_LOCK(p);
4341 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4342 			PROC_UNLOCK(p);
4343 			rv = KERN_NO_SPACE;
4344 			goto out;
4345 		}
4346 		PROC_UNLOCK(p);
4347 	}
4348 #endif
4349 
4350 	if (vm_map_lock_upgrade(map)) {
4351 		gap_entry = NULL;
4352 		vm_map_lock_read(map);
4353 		goto retry;
4354 	}
4355 
4356 	if (grow_down) {
4357 		grow_start = gap_entry->end - grow_amount;
4358 		if (gap_entry->start + grow_amount == gap_entry->end) {
4359 			gap_start = gap_entry->start;
4360 			gap_end = gap_entry->end;
4361 			vm_map_entry_delete(map, gap_entry);
4362 			gap_deleted = true;
4363 		} else {
4364 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4365 			vm_map_entry_resize(map, gap_entry, -grow_amount);
4366 			gap_deleted = false;
4367 		}
4368 		rv = vm_map_insert(map, NULL, 0, grow_start,
4369 		    grow_start + grow_amount,
4370 		    stack_entry->protection, stack_entry->max_protection,
4371 		    MAP_STACK_GROWS_DOWN);
4372 		if (rv != KERN_SUCCESS) {
4373 			if (gap_deleted) {
4374 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
4375 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4376 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4377 				MPASS(rv1 == KERN_SUCCESS);
4378 			} else
4379 				vm_map_entry_resize(map, gap_entry,
4380 				    grow_amount);
4381 		}
4382 	} else {
4383 		grow_start = stack_entry->end;
4384 		cred = stack_entry->cred;
4385 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4386 			cred = stack_entry->object.vm_object->cred;
4387 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4388 			rv = KERN_NO_SPACE;
4389 		/* Grow the underlying object if applicable. */
4390 		else if (stack_entry->object.vm_object == NULL ||
4391 		    vm_object_coalesce(stack_entry->object.vm_object,
4392 		    stack_entry->offset,
4393 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4394 		    grow_amount, cred != NULL)) {
4395 			if (gap_entry->start + grow_amount == gap_entry->end) {
4396 				vm_map_entry_delete(map, gap_entry);
4397 				vm_map_entry_resize(map, stack_entry,
4398 				    grow_amount);
4399 			} else {
4400 				gap_entry->start += grow_amount;
4401 				stack_entry->end += grow_amount;
4402 			}
4403 			map->size += grow_amount;
4404 			rv = KERN_SUCCESS;
4405 		} else
4406 			rv = KERN_FAILURE;
4407 	}
4408 	if (rv == KERN_SUCCESS && is_procstack)
4409 		vm->vm_ssize += btoc(grow_amount);
4410 
4411 	/*
4412 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4413 	 */
4414 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4415 		rv = vm_map_wire_locked(map, grow_start,
4416 		    grow_start + grow_amount,
4417 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4418 	}
4419 	vm_map_lock_downgrade(map);
4420 
4421 out:
4422 #ifdef RACCT
4423 	if (racct_enable && rv != KERN_SUCCESS) {
4424 		PROC_LOCK(p);
4425 		error = racct_set(p, RACCT_VMEM, map->size);
4426 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4427 		if (!old_mlock) {
4428 			error = racct_set(p, RACCT_MEMLOCK,
4429 			    ptoa(pmap_wired_count(map->pmap)));
4430 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4431 		}
4432 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4433 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4434 		PROC_UNLOCK(p);
4435 	}
4436 #endif
4437 
4438 	return (rv);
4439 }
4440 
4441 /*
4442  * Unshare the specified VM space for exec.  If other processes are
4443  * mapped to it, then create a new one.  The new vmspace is null.
4444  */
4445 int
4446 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4447 {
4448 	struct vmspace *oldvmspace = p->p_vmspace;
4449 	struct vmspace *newvmspace;
4450 
4451 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4452 	    ("vmspace_exec recursed"));
4453 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4454 	if (newvmspace == NULL)
4455 		return (ENOMEM);
4456 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4457 	/*
4458 	 * This code is written like this for prototype purposes.  The
4459 	 * goal is to avoid running down the vmspace here, but let the
4460 	 * other process's that are still using the vmspace to finally
4461 	 * run it down.  Even though there is little or no chance of blocking
4462 	 * here, it is a good idea to keep this form for future mods.
4463 	 */
4464 	PROC_VMSPACE_LOCK(p);
4465 	p->p_vmspace = newvmspace;
4466 	PROC_VMSPACE_UNLOCK(p);
4467 	if (p == curthread->td_proc)
4468 		pmap_activate(curthread);
4469 	curthread->td_pflags |= TDP_EXECVMSPC;
4470 	return (0);
4471 }
4472 
4473 /*
4474  * Unshare the specified VM space for forcing COW.  This
4475  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4476  */
4477 int
4478 vmspace_unshare(struct proc *p)
4479 {
4480 	struct vmspace *oldvmspace = p->p_vmspace;
4481 	struct vmspace *newvmspace;
4482 	vm_ooffset_t fork_charge;
4483 
4484 	if (oldvmspace->vm_refcnt == 1)
4485 		return (0);
4486 	fork_charge = 0;
4487 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4488 	if (newvmspace == NULL)
4489 		return (ENOMEM);
4490 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4491 		vmspace_free(newvmspace);
4492 		return (ENOMEM);
4493 	}
4494 	PROC_VMSPACE_LOCK(p);
4495 	p->p_vmspace = newvmspace;
4496 	PROC_VMSPACE_UNLOCK(p);
4497 	if (p == curthread->td_proc)
4498 		pmap_activate(curthread);
4499 	vmspace_free(oldvmspace);
4500 	return (0);
4501 }
4502 
4503 /*
4504  *	vm_map_lookup:
4505  *
4506  *	Finds the VM object, offset, and
4507  *	protection for a given virtual address in the
4508  *	specified map, assuming a page fault of the
4509  *	type specified.
4510  *
4511  *	Leaves the map in question locked for read; return
4512  *	values are guaranteed until a vm_map_lookup_done
4513  *	call is performed.  Note that the map argument
4514  *	is in/out; the returned map must be used in
4515  *	the call to vm_map_lookup_done.
4516  *
4517  *	A handle (out_entry) is returned for use in
4518  *	vm_map_lookup_done, to make that fast.
4519  *
4520  *	If a lookup is requested with "write protection"
4521  *	specified, the map may be changed to perform virtual
4522  *	copying operations, although the data referenced will
4523  *	remain the same.
4524  */
4525 int
4526 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4527 	      vm_offset_t vaddr,
4528 	      vm_prot_t fault_typea,
4529 	      vm_map_entry_t *out_entry,	/* OUT */
4530 	      vm_object_t *object,		/* OUT */
4531 	      vm_pindex_t *pindex,		/* OUT */
4532 	      vm_prot_t *out_prot,		/* OUT */
4533 	      boolean_t *wired)			/* OUT */
4534 {
4535 	vm_map_entry_t entry;
4536 	vm_map_t map = *var_map;
4537 	vm_prot_t prot;
4538 	vm_prot_t fault_type = fault_typea;
4539 	vm_object_t eobject;
4540 	vm_size_t size;
4541 	struct ucred *cred;
4542 
4543 RetryLookup:
4544 
4545 	vm_map_lock_read(map);
4546 
4547 RetryLookupLocked:
4548 	/*
4549 	 * Lookup the faulting address.
4550 	 */
4551 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4552 		vm_map_unlock_read(map);
4553 		return (KERN_INVALID_ADDRESS);
4554 	}
4555 
4556 	entry = *out_entry;
4557 
4558 	/*
4559 	 * Handle submaps.
4560 	 */
4561 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4562 		vm_map_t old_map = map;
4563 
4564 		*var_map = map = entry->object.sub_map;
4565 		vm_map_unlock_read(old_map);
4566 		goto RetryLookup;
4567 	}
4568 
4569 	/*
4570 	 * Check whether this task is allowed to have this page.
4571 	 */
4572 	prot = entry->protection;
4573 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4574 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4575 		if (prot == VM_PROT_NONE && map != kernel_map &&
4576 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4577 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4578 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4579 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4580 			goto RetryLookupLocked;
4581 	}
4582 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4583 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4584 		vm_map_unlock_read(map);
4585 		return (KERN_PROTECTION_FAILURE);
4586 	}
4587 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4588 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4589 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4590 	    ("entry %p flags %x", entry, entry->eflags));
4591 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4592 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4593 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4594 		vm_map_unlock_read(map);
4595 		return (KERN_PROTECTION_FAILURE);
4596 	}
4597 
4598 	/*
4599 	 * If this page is not pageable, we have to get it for all possible
4600 	 * accesses.
4601 	 */
4602 	*wired = (entry->wired_count != 0);
4603 	if (*wired)
4604 		fault_type = entry->protection;
4605 	size = entry->end - entry->start;
4606 	/*
4607 	 * If the entry was copy-on-write, we either ...
4608 	 */
4609 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4610 		/*
4611 		 * If we want to write the page, we may as well handle that
4612 		 * now since we've got the map locked.
4613 		 *
4614 		 * If we don't need to write the page, we just demote the
4615 		 * permissions allowed.
4616 		 */
4617 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4618 		    (fault_typea & VM_PROT_COPY) != 0) {
4619 			/*
4620 			 * Make a new object, and place it in the object
4621 			 * chain.  Note that no new references have appeared
4622 			 * -- one just moved from the map to the new
4623 			 * object.
4624 			 */
4625 			if (vm_map_lock_upgrade(map))
4626 				goto RetryLookup;
4627 
4628 			if (entry->cred == NULL) {
4629 				/*
4630 				 * The debugger owner is charged for
4631 				 * the memory.
4632 				 */
4633 				cred = curthread->td_ucred;
4634 				crhold(cred);
4635 				if (!swap_reserve_by_cred(size, cred)) {
4636 					crfree(cred);
4637 					vm_map_unlock(map);
4638 					return (KERN_RESOURCE_SHORTAGE);
4639 				}
4640 				entry->cred = cred;
4641 			}
4642 			vm_object_shadow(&entry->object.vm_object,
4643 			    &entry->offset, size);
4644 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4645 			eobject = entry->object.vm_object;
4646 			if (eobject->cred != NULL) {
4647 				/*
4648 				 * The object was not shadowed.
4649 				 */
4650 				swap_release_by_cred(size, entry->cred);
4651 				crfree(entry->cred);
4652 				entry->cred = NULL;
4653 			} else if (entry->cred != NULL) {
4654 				VM_OBJECT_WLOCK(eobject);
4655 				eobject->cred = entry->cred;
4656 				eobject->charge = size;
4657 				VM_OBJECT_WUNLOCK(eobject);
4658 				entry->cred = NULL;
4659 			}
4660 
4661 			vm_map_lock_downgrade(map);
4662 		} else {
4663 			/*
4664 			 * We're attempting to read a copy-on-write page --
4665 			 * don't allow writes.
4666 			 */
4667 			prot &= ~VM_PROT_WRITE;
4668 		}
4669 	}
4670 
4671 	/*
4672 	 * Create an object if necessary.
4673 	 */
4674 	if (entry->object.vm_object == NULL &&
4675 	    !map->system_map) {
4676 		if (vm_map_lock_upgrade(map))
4677 			goto RetryLookup;
4678 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4679 		    atop(size));
4680 		entry->offset = 0;
4681 		if (entry->cred != NULL) {
4682 			VM_OBJECT_WLOCK(entry->object.vm_object);
4683 			entry->object.vm_object->cred = entry->cred;
4684 			entry->object.vm_object->charge = size;
4685 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4686 			entry->cred = NULL;
4687 		}
4688 		vm_map_lock_downgrade(map);
4689 	}
4690 
4691 	/*
4692 	 * Return the object/offset from this entry.  If the entry was
4693 	 * copy-on-write or empty, it has been fixed up.
4694 	 */
4695 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4696 	*object = entry->object.vm_object;
4697 
4698 	*out_prot = prot;
4699 	return (KERN_SUCCESS);
4700 }
4701 
4702 /*
4703  *	vm_map_lookup_locked:
4704  *
4705  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4706  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4707  */
4708 int
4709 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4710 		     vm_offset_t vaddr,
4711 		     vm_prot_t fault_typea,
4712 		     vm_map_entry_t *out_entry,	/* OUT */
4713 		     vm_object_t *object,	/* OUT */
4714 		     vm_pindex_t *pindex,	/* OUT */
4715 		     vm_prot_t *out_prot,	/* OUT */
4716 		     boolean_t *wired)		/* OUT */
4717 {
4718 	vm_map_entry_t entry;
4719 	vm_map_t map = *var_map;
4720 	vm_prot_t prot;
4721 	vm_prot_t fault_type = fault_typea;
4722 
4723 	/*
4724 	 * Lookup the faulting address.
4725 	 */
4726 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4727 		return (KERN_INVALID_ADDRESS);
4728 
4729 	entry = *out_entry;
4730 
4731 	/*
4732 	 * Fail if the entry refers to a submap.
4733 	 */
4734 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4735 		return (KERN_FAILURE);
4736 
4737 	/*
4738 	 * Check whether this task is allowed to have this page.
4739 	 */
4740 	prot = entry->protection;
4741 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4742 	if ((fault_type & prot) != fault_type)
4743 		return (KERN_PROTECTION_FAILURE);
4744 
4745 	/*
4746 	 * If this page is not pageable, we have to get it for all possible
4747 	 * accesses.
4748 	 */
4749 	*wired = (entry->wired_count != 0);
4750 	if (*wired)
4751 		fault_type = entry->protection;
4752 
4753 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4754 		/*
4755 		 * Fail if the entry was copy-on-write for a write fault.
4756 		 */
4757 		if (fault_type & VM_PROT_WRITE)
4758 			return (KERN_FAILURE);
4759 		/*
4760 		 * We're attempting to read a copy-on-write page --
4761 		 * don't allow writes.
4762 		 */
4763 		prot &= ~VM_PROT_WRITE;
4764 	}
4765 
4766 	/*
4767 	 * Fail if an object should be created.
4768 	 */
4769 	if (entry->object.vm_object == NULL && !map->system_map)
4770 		return (KERN_FAILURE);
4771 
4772 	/*
4773 	 * Return the object/offset from this entry.  If the entry was
4774 	 * copy-on-write or empty, it has been fixed up.
4775 	 */
4776 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4777 	*object = entry->object.vm_object;
4778 
4779 	*out_prot = prot;
4780 	return (KERN_SUCCESS);
4781 }
4782 
4783 /*
4784  *	vm_map_lookup_done:
4785  *
4786  *	Releases locks acquired by a vm_map_lookup
4787  *	(according to the handle returned by that lookup).
4788  */
4789 void
4790 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4791 {
4792 	/*
4793 	 * Unlock the main-level map
4794 	 */
4795 	vm_map_unlock_read(map);
4796 }
4797 
4798 vm_offset_t
4799 vm_map_max_KBI(const struct vm_map *map)
4800 {
4801 
4802 	return (vm_map_max(map));
4803 }
4804 
4805 vm_offset_t
4806 vm_map_min_KBI(const struct vm_map *map)
4807 {
4808 
4809 	return (vm_map_min(map));
4810 }
4811 
4812 pmap_t
4813 vm_map_pmap_KBI(vm_map_t map)
4814 {
4815 
4816 	return (map->pmap);
4817 }
4818 
4819 #include "opt_ddb.h"
4820 #ifdef DDB
4821 #include <sys/kernel.h>
4822 
4823 #include <ddb/ddb.h>
4824 
4825 static void
4826 vm_map_print(vm_map_t map)
4827 {
4828 	vm_map_entry_t entry;
4829 
4830 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4831 	    (void *)map,
4832 	    (void *)map->pmap, map->nentries, map->timestamp);
4833 
4834 	db_indent += 2;
4835 	for (entry = map->header.next; entry != &map->header;
4836 	    entry = entry->next) {
4837 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4838 		    (void *)entry, (void *)entry->start, (void *)entry->end,
4839 		    entry->eflags);
4840 		{
4841 			static char *inheritance_name[4] =
4842 			{"share", "copy", "none", "donate_copy"};
4843 
4844 			db_iprintf(" prot=%x/%x/%s",
4845 			    entry->protection,
4846 			    entry->max_protection,
4847 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4848 			if (entry->wired_count != 0)
4849 				db_printf(", wired");
4850 		}
4851 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4852 			db_printf(", share=%p, offset=0x%jx\n",
4853 			    (void *)entry->object.sub_map,
4854 			    (uintmax_t)entry->offset);
4855 			if ((entry->prev == &map->header) ||
4856 			    (entry->prev->object.sub_map !=
4857 				entry->object.sub_map)) {
4858 				db_indent += 2;
4859 				vm_map_print((vm_map_t)entry->object.sub_map);
4860 				db_indent -= 2;
4861 			}
4862 		} else {
4863 			if (entry->cred != NULL)
4864 				db_printf(", ruid %d", entry->cred->cr_ruid);
4865 			db_printf(", object=%p, offset=0x%jx",
4866 			    (void *)entry->object.vm_object,
4867 			    (uintmax_t)entry->offset);
4868 			if (entry->object.vm_object && entry->object.vm_object->cred)
4869 				db_printf(", obj ruid %d charge %jx",
4870 				    entry->object.vm_object->cred->cr_ruid,
4871 				    (uintmax_t)entry->object.vm_object->charge);
4872 			if (entry->eflags & MAP_ENTRY_COW)
4873 				db_printf(", copy (%s)",
4874 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4875 			db_printf("\n");
4876 
4877 			if ((entry->prev == &map->header) ||
4878 			    (entry->prev->object.vm_object !=
4879 				entry->object.vm_object)) {
4880 				db_indent += 2;
4881 				vm_object_print((db_expr_t)(intptr_t)
4882 						entry->object.vm_object,
4883 						0, 0, (char *)0);
4884 				db_indent -= 2;
4885 			}
4886 		}
4887 	}
4888 	db_indent -= 2;
4889 }
4890 
4891 DB_SHOW_COMMAND(map, map)
4892 {
4893 
4894 	if (!have_addr) {
4895 		db_printf("usage: show map <addr>\n");
4896 		return;
4897 	}
4898 	vm_map_print((vm_map_t)addr);
4899 }
4900 
4901 DB_SHOW_COMMAND(procvm, procvm)
4902 {
4903 	struct proc *p;
4904 
4905 	if (have_addr) {
4906 		p = db_lookup_proc(addr);
4907 	} else {
4908 		p = curproc;
4909 	}
4910 
4911 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4912 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4913 	    (void *)vmspace_pmap(p->p_vmspace));
4914 
4915 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4916 }
4917 
4918 #endif /* DDB */
4919