1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/racct.h> 81 #include <sys/resourcevar.h> 82 #include <sys/rwlock.h> 83 #include <sys/file.h> 84 #include <sys/sysctl.h> 85 #include <sys/sysent.h> 86 #include <sys/shm.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_pageout.h> 94 #include <vm/vm_object.h> 95 #include <vm/vm_pager.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_extern.h> 98 #include <vm/vnode_pager.h> 99 #include <vm/swap_pager.h> 100 #include <vm/uma.h> 101 102 /* 103 * Virtual memory maps provide for the mapping, protection, 104 * and sharing of virtual memory objects. In addition, 105 * this module provides for an efficient virtual copy of 106 * memory from one map to another. 107 * 108 * Synchronization is required prior to most operations. 109 * 110 * Maps consist of an ordered doubly-linked list of simple 111 * entries; a self-adjusting binary search tree of these 112 * entries is used to speed up lookups. 113 * 114 * Since portions of maps are specified by start/end addresses, 115 * which may not align with existing map entries, all 116 * routines merely "clip" entries to these start/end values. 117 * [That is, an entry is split into two, bordering at a 118 * start or end value.] Note that these clippings may not 119 * always be necessary (as the two resulting entries are then 120 * not changed); however, the clipping is done for convenience. 121 * 122 * As mentioned above, virtual copy operations are performed 123 * by copying VM object references from one map to 124 * another, and then marking both regions as copy-on-write. 125 */ 126 127 static struct mtx map_sleep_mtx; 128 static uma_zone_t mapentzone; 129 static uma_zone_t kmapentzone; 130 static uma_zone_t mapzone; 131 static uma_zone_t vmspace_zone; 132 static int vmspace_zinit(void *mem, int size, int flags); 133 static int vm_map_zinit(void *mem, int ize, int flags); 134 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 135 vm_offset_t max); 136 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 137 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 138 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 139 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 140 vm_map_entry_t gap_entry); 141 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 142 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 143 #ifdef INVARIANTS 144 static void vm_map_zdtor(void *mem, int size, void *arg); 145 static void vmspace_zdtor(void *mem, int size, void *arg); 146 #endif 147 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 148 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 149 int cow); 150 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 151 vm_offset_t failed_addr); 152 153 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 154 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 155 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 156 157 /* 158 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 159 * stable. 160 */ 161 #define PROC_VMSPACE_LOCK(p) do { } while (0) 162 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 163 164 /* 165 * VM_MAP_RANGE_CHECK: [ internal use only ] 166 * 167 * Asserts that the starting and ending region 168 * addresses fall within the valid range of the map. 169 */ 170 #define VM_MAP_RANGE_CHECK(map, start, end) \ 171 { \ 172 if (start < vm_map_min(map)) \ 173 start = vm_map_min(map); \ 174 if (end > vm_map_max(map)) \ 175 end = vm_map_max(map); \ 176 if (start > end) \ 177 start = end; \ 178 } 179 180 /* 181 * vm_map_startup: 182 * 183 * Initialize the vm_map module. Must be called before 184 * any other vm_map routines. 185 * 186 * Map and entry structures are allocated from the general 187 * purpose memory pool with some exceptions: 188 * 189 * - The kernel map and kmem submap are allocated statically. 190 * - Kernel map entries are allocated out of a static pool. 191 * 192 * These restrictions are necessary since malloc() uses the 193 * maps and requires map entries. 194 */ 195 196 void 197 vm_map_startup(void) 198 { 199 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 200 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 201 #ifdef INVARIANTS 202 vm_map_zdtor, 203 #else 204 NULL, 205 #endif 206 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 207 uma_prealloc(mapzone, MAX_KMAP); 208 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 209 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 210 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 211 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 212 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 213 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 214 #ifdef INVARIANTS 215 vmspace_zdtor, 216 #else 217 NULL, 218 #endif 219 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 220 } 221 222 static int 223 vmspace_zinit(void *mem, int size, int flags) 224 { 225 struct vmspace *vm; 226 227 vm = (struct vmspace *)mem; 228 229 vm->vm_map.pmap = NULL; 230 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 231 PMAP_LOCK_INIT(vmspace_pmap(vm)); 232 return (0); 233 } 234 235 static int 236 vm_map_zinit(void *mem, int size, int flags) 237 { 238 vm_map_t map; 239 240 map = (vm_map_t)mem; 241 memset(map, 0, sizeof(*map)); 242 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 243 sx_init(&map->lock, "vm map (user)"); 244 return (0); 245 } 246 247 #ifdef INVARIANTS 248 static void 249 vmspace_zdtor(void *mem, int size, void *arg) 250 { 251 struct vmspace *vm; 252 253 vm = (struct vmspace *)mem; 254 255 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 256 } 257 static void 258 vm_map_zdtor(void *mem, int size, void *arg) 259 { 260 vm_map_t map; 261 262 map = (vm_map_t)mem; 263 KASSERT(map->nentries == 0, 264 ("map %p nentries == %d on free.", 265 map, map->nentries)); 266 KASSERT(map->size == 0, 267 ("map %p size == %lu on free.", 268 map, (unsigned long)map->size)); 269 } 270 #endif /* INVARIANTS */ 271 272 /* 273 * Allocate a vmspace structure, including a vm_map and pmap, 274 * and initialize those structures. The refcnt is set to 1. 275 * 276 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 277 */ 278 struct vmspace * 279 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 280 { 281 struct vmspace *vm; 282 283 vm = uma_zalloc(vmspace_zone, M_WAITOK); 284 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 285 if (!pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 #ifdef RACCT 304 static void 305 vmspace_container_reset(struct proc *p) 306 { 307 308 PROC_LOCK(p); 309 racct_set(p, RACCT_DATA, 0); 310 racct_set(p, RACCT_STACK, 0); 311 racct_set(p, RACCT_RSS, 0); 312 racct_set(p, RACCT_MEMLOCK, 0); 313 racct_set(p, RACCT_VMEM, 0); 314 PROC_UNLOCK(p); 315 } 316 #endif 317 318 static inline void 319 vmspace_dofree(struct vmspace *vm) 320 { 321 322 CTR1(KTR_VM, "vmspace_free: %p", vm); 323 324 /* 325 * Make sure any SysV shm is freed, it might not have been in 326 * exit1(). 327 */ 328 shmexit(vm); 329 330 /* 331 * Lock the map, to wait out all other references to it. 332 * Delete all of the mappings and pages they hold, then call 333 * the pmap module to reclaim anything left. 334 */ 335 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 336 vm_map_max(&vm->vm_map)); 337 338 pmap_release(vmspace_pmap(vm)); 339 vm->vm_map.pmap = NULL; 340 uma_zfree(vmspace_zone, vm); 341 } 342 343 void 344 vmspace_free(struct vmspace *vm) 345 { 346 347 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 348 "vmspace_free() called"); 349 350 if (vm->vm_refcnt == 0) 351 panic("vmspace_free: attempt to free already freed vmspace"); 352 353 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 354 vmspace_dofree(vm); 355 } 356 357 void 358 vmspace_exitfree(struct proc *p) 359 { 360 struct vmspace *vm; 361 362 PROC_VMSPACE_LOCK(p); 363 vm = p->p_vmspace; 364 p->p_vmspace = NULL; 365 PROC_VMSPACE_UNLOCK(p); 366 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 367 vmspace_free(vm); 368 } 369 370 void 371 vmspace_exit(struct thread *td) 372 { 373 int refcnt; 374 struct vmspace *vm; 375 struct proc *p; 376 377 /* 378 * Release user portion of address space. 379 * This releases references to vnodes, 380 * which could cause I/O if the file has been unlinked. 381 * Need to do this early enough that we can still sleep. 382 * 383 * The last exiting process to reach this point releases as 384 * much of the environment as it can. vmspace_dofree() is the 385 * slower fallback in case another process had a temporary 386 * reference to the vmspace. 387 */ 388 389 p = td->td_proc; 390 vm = p->p_vmspace; 391 atomic_add_int(&vmspace0.vm_refcnt, 1); 392 refcnt = vm->vm_refcnt; 393 do { 394 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 395 /* Switch now since other proc might free vmspace */ 396 PROC_VMSPACE_LOCK(p); 397 p->p_vmspace = &vmspace0; 398 PROC_VMSPACE_UNLOCK(p); 399 pmap_activate(td); 400 } 401 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1)); 402 if (refcnt == 1) { 403 if (p->p_vmspace != vm) { 404 /* vmspace not yet freed, switch back */ 405 PROC_VMSPACE_LOCK(p); 406 p->p_vmspace = vm; 407 PROC_VMSPACE_UNLOCK(p); 408 pmap_activate(td); 409 } 410 pmap_remove_pages(vmspace_pmap(vm)); 411 /* Switch now since this proc will free vmspace */ 412 PROC_VMSPACE_LOCK(p); 413 p->p_vmspace = &vmspace0; 414 PROC_VMSPACE_UNLOCK(p); 415 pmap_activate(td); 416 vmspace_dofree(vm); 417 } 418 #ifdef RACCT 419 if (racct_enable) 420 vmspace_container_reset(p); 421 #endif 422 } 423 424 /* Acquire reference to vmspace owned by another process. */ 425 426 struct vmspace * 427 vmspace_acquire_ref(struct proc *p) 428 { 429 struct vmspace *vm; 430 int refcnt; 431 432 PROC_VMSPACE_LOCK(p); 433 vm = p->p_vmspace; 434 if (vm == NULL) { 435 PROC_VMSPACE_UNLOCK(p); 436 return (NULL); 437 } 438 refcnt = vm->vm_refcnt; 439 do { 440 if (refcnt <= 0) { /* Avoid 0->1 transition */ 441 PROC_VMSPACE_UNLOCK(p); 442 return (NULL); 443 } 444 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1)); 445 if (vm != p->p_vmspace) { 446 PROC_VMSPACE_UNLOCK(p); 447 vmspace_free(vm); 448 return (NULL); 449 } 450 PROC_VMSPACE_UNLOCK(p); 451 return (vm); 452 } 453 454 /* 455 * Switch between vmspaces in an AIO kernel process. 456 * 457 * The new vmspace is either the vmspace of a user process obtained 458 * from an active AIO request or the initial vmspace of the AIO kernel 459 * process (when it is idling). Because user processes will block to 460 * drain any active AIO requests before proceeding in exit() or 461 * execve(), the reference count for vmspaces from AIO requests can 462 * never be 0. Similarly, AIO kernel processes hold an extra 463 * reference on their initial vmspace for the life of the process. As 464 * a result, the 'newvm' vmspace always has a non-zero reference 465 * count. This permits an additional reference on 'newvm' to be 466 * acquired via a simple atomic increment rather than the loop in 467 * vmspace_acquire_ref() above. 468 */ 469 void 470 vmspace_switch_aio(struct vmspace *newvm) 471 { 472 struct vmspace *oldvm; 473 474 /* XXX: Need some way to assert that this is an aio daemon. */ 475 476 KASSERT(newvm->vm_refcnt > 0, 477 ("vmspace_switch_aio: newvm unreferenced")); 478 479 oldvm = curproc->p_vmspace; 480 if (oldvm == newvm) 481 return; 482 483 /* 484 * Point to the new address space and refer to it. 485 */ 486 curproc->p_vmspace = newvm; 487 atomic_add_int(&newvm->vm_refcnt, 1); 488 489 /* Activate the new mapping. */ 490 pmap_activate(curthread); 491 492 vmspace_free(oldvm); 493 } 494 495 void 496 _vm_map_lock(vm_map_t map, const char *file, int line) 497 { 498 499 if (map->system_map) 500 mtx_lock_flags_(&map->system_mtx, 0, file, line); 501 else 502 sx_xlock_(&map->lock, file, line); 503 map->timestamp++; 504 } 505 506 void 507 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 508 { 509 vm_object_t object, object1; 510 struct vnode *vp; 511 512 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 513 return; 514 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 515 ("Submap with execs")); 516 object = entry->object.vm_object; 517 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 518 VM_OBJECT_RLOCK(object); 519 while ((object1 = object->backing_object) != NULL) { 520 VM_OBJECT_RLOCK(object1); 521 VM_OBJECT_RUNLOCK(object); 522 object = object1; 523 } 524 525 vp = NULL; 526 if (object->type == OBJT_DEAD) { 527 /* 528 * For OBJT_DEAD objects, v_writecount was handled in 529 * vnode_pager_dealloc(). 530 */ 531 } else if (object->type == OBJT_VNODE) { 532 vp = object->handle; 533 } else if (object->type == OBJT_SWAP) { 534 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0, 535 ("vm_map_entry_set_vnode_text: swap and !TMPFS " 536 "entry %p, object %p, add %d", entry, object, add)); 537 /* 538 * Tmpfs VREG node, which was reclaimed, has 539 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS. In 540 * this case there is no v_writecount to adjust. 541 */ 542 if ((object->flags & OBJ_TMPFS) != 0) 543 vp = object->un_pager.swp.swp_tmpfs; 544 } else { 545 KASSERT(0, 546 ("vm_map_entry_set_vnode_text: wrong object type, " 547 "entry %p, object %p, add %d", entry, object, add)); 548 } 549 if (vp != NULL) { 550 if (add) 551 VOP_SET_TEXT_CHECKED(vp); 552 else 553 VOP_UNSET_TEXT_CHECKED(vp); 554 } 555 VM_OBJECT_RUNLOCK(object); 556 } 557 558 static void 559 vm_map_process_deferred(void) 560 { 561 struct thread *td; 562 vm_map_entry_t entry, next; 563 vm_object_t object; 564 565 td = curthread; 566 entry = td->td_map_def_user; 567 td->td_map_def_user = NULL; 568 while (entry != NULL) { 569 next = entry->next; 570 MPASS((entry->eflags & (MAP_ENTRY_VN_WRITECNT | 571 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_VN_WRITECNT | 572 MAP_ENTRY_VN_EXEC)); 573 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 574 /* 575 * Decrement the object's writemappings and 576 * possibly the vnode's v_writecount. 577 */ 578 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 579 ("Submap with writecount")); 580 object = entry->object.vm_object; 581 KASSERT(object != NULL, ("No object for writecount")); 582 vnode_pager_release_writecount(object, entry->start, 583 entry->end); 584 } 585 vm_map_entry_set_vnode_text(entry, false); 586 vm_map_entry_deallocate(entry, FALSE); 587 entry = next; 588 } 589 } 590 591 void 592 _vm_map_unlock(vm_map_t map, const char *file, int line) 593 { 594 595 if (map->system_map) 596 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 597 else { 598 sx_xunlock_(&map->lock, file, line); 599 vm_map_process_deferred(); 600 } 601 } 602 603 void 604 _vm_map_lock_read(vm_map_t map, const char *file, int line) 605 { 606 607 if (map->system_map) 608 mtx_lock_flags_(&map->system_mtx, 0, file, line); 609 else 610 sx_slock_(&map->lock, file, line); 611 } 612 613 void 614 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 615 { 616 617 if (map->system_map) 618 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 619 else { 620 sx_sunlock_(&map->lock, file, line); 621 vm_map_process_deferred(); 622 } 623 } 624 625 int 626 _vm_map_trylock(vm_map_t map, const char *file, int line) 627 { 628 int error; 629 630 error = map->system_map ? 631 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 632 !sx_try_xlock_(&map->lock, file, line); 633 if (error == 0) 634 map->timestamp++; 635 return (error == 0); 636 } 637 638 int 639 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 640 { 641 int error; 642 643 error = map->system_map ? 644 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 645 !sx_try_slock_(&map->lock, file, line); 646 return (error == 0); 647 } 648 649 /* 650 * _vm_map_lock_upgrade: [ internal use only ] 651 * 652 * Tries to upgrade a read (shared) lock on the specified map to a write 653 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 654 * non-zero value if the upgrade fails. If the upgrade fails, the map is 655 * returned without a read or write lock held. 656 * 657 * Requires that the map be read locked. 658 */ 659 int 660 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 661 { 662 unsigned int last_timestamp; 663 664 if (map->system_map) { 665 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 666 } else { 667 if (!sx_try_upgrade_(&map->lock, file, line)) { 668 last_timestamp = map->timestamp; 669 sx_sunlock_(&map->lock, file, line); 670 vm_map_process_deferred(); 671 /* 672 * If the map's timestamp does not change while the 673 * map is unlocked, then the upgrade succeeds. 674 */ 675 sx_xlock_(&map->lock, file, line); 676 if (last_timestamp != map->timestamp) { 677 sx_xunlock_(&map->lock, file, line); 678 return (1); 679 } 680 } 681 } 682 map->timestamp++; 683 return (0); 684 } 685 686 void 687 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 688 { 689 690 if (map->system_map) { 691 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 692 } else 693 sx_downgrade_(&map->lock, file, line); 694 } 695 696 /* 697 * vm_map_locked: 698 * 699 * Returns a non-zero value if the caller holds a write (exclusive) lock 700 * on the specified map and the value "0" otherwise. 701 */ 702 int 703 vm_map_locked(vm_map_t map) 704 { 705 706 if (map->system_map) 707 return (mtx_owned(&map->system_mtx)); 708 else 709 return (sx_xlocked(&map->lock)); 710 } 711 712 #ifdef INVARIANTS 713 static void 714 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 715 { 716 717 if (map->system_map) 718 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 719 else 720 sx_assert_(&map->lock, SA_XLOCKED, file, line); 721 } 722 723 #define VM_MAP_ASSERT_LOCKED(map) \ 724 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 725 726 #ifdef DIAGNOSTIC 727 static int enable_vmmap_check = 1; 728 #else 729 static int enable_vmmap_check = 0; 730 #endif 731 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 732 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 733 734 static void 735 _vm_map_assert_consistent(vm_map_t map) 736 { 737 vm_map_entry_t entry; 738 vm_map_entry_t child; 739 vm_size_t max_left, max_right; 740 741 if (!enable_vmmap_check) 742 return; 743 744 for (entry = map->header.next; entry != &map->header; 745 entry = entry->next) { 746 KASSERT(entry->prev->end <= entry->start, 747 ("map %p prev->end = %jx, start = %jx", map, 748 (uintmax_t)entry->prev->end, (uintmax_t)entry->start)); 749 KASSERT(entry->start < entry->end, 750 ("map %p start = %jx, end = %jx", map, 751 (uintmax_t)entry->start, (uintmax_t)entry->end)); 752 KASSERT(entry->end <= entry->next->start, 753 ("map %p end = %jx, next->start = %jx", map, 754 (uintmax_t)entry->end, (uintmax_t)entry->next->start)); 755 KASSERT(entry->left == NULL || 756 entry->left->start < entry->start, 757 ("map %p left->start = %jx, start = %jx", map, 758 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 759 KASSERT(entry->right == NULL || 760 entry->start < entry->right->start, 761 ("map %p start = %jx, right->start = %jx", map, 762 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 763 child = entry->left; 764 max_left = (child != NULL) ? child->max_free : 765 entry->start - entry->prev->end; 766 child = entry->right; 767 max_right = (child != NULL) ? child->max_free : 768 entry->next->start - entry->end; 769 KASSERT(entry->max_free == MAX(max_left, max_right), 770 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 771 (uintmax_t)entry->max_free, 772 (uintmax_t)max_left, (uintmax_t)max_right)); 773 } 774 } 775 776 #define VM_MAP_ASSERT_CONSISTENT(map) \ 777 _vm_map_assert_consistent(map) 778 #else 779 #define VM_MAP_ASSERT_LOCKED(map) 780 #define VM_MAP_ASSERT_CONSISTENT(map) 781 #endif /* INVARIANTS */ 782 783 /* 784 * _vm_map_unlock_and_wait: 785 * 786 * Atomically releases the lock on the specified map and puts the calling 787 * thread to sleep. The calling thread will remain asleep until either 788 * vm_map_wakeup() is performed on the map or the specified timeout is 789 * exceeded. 790 * 791 * WARNING! This function does not perform deferred deallocations of 792 * objects and map entries. Therefore, the calling thread is expected to 793 * reacquire the map lock after reawakening and later perform an ordinary 794 * unlock operation, such as vm_map_unlock(), before completing its 795 * operation on the map. 796 */ 797 int 798 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 799 { 800 801 mtx_lock(&map_sleep_mtx); 802 if (map->system_map) 803 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 804 else 805 sx_xunlock_(&map->lock, file, line); 806 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 807 timo)); 808 } 809 810 /* 811 * vm_map_wakeup: 812 * 813 * Awaken any threads that have slept on the map using 814 * vm_map_unlock_and_wait(). 815 */ 816 void 817 vm_map_wakeup(vm_map_t map) 818 { 819 820 /* 821 * Acquire and release map_sleep_mtx to prevent a wakeup() 822 * from being performed (and lost) between the map unlock 823 * and the msleep() in _vm_map_unlock_and_wait(). 824 */ 825 mtx_lock(&map_sleep_mtx); 826 mtx_unlock(&map_sleep_mtx); 827 wakeup(&map->root); 828 } 829 830 void 831 vm_map_busy(vm_map_t map) 832 { 833 834 VM_MAP_ASSERT_LOCKED(map); 835 map->busy++; 836 } 837 838 void 839 vm_map_unbusy(vm_map_t map) 840 { 841 842 VM_MAP_ASSERT_LOCKED(map); 843 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 844 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 845 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 846 wakeup(&map->busy); 847 } 848 } 849 850 void 851 vm_map_wait_busy(vm_map_t map) 852 { 853 854 VM_MAP_ASSERT_LOCKED(map); 855 while (map->busy) { 856 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 857 if (map->system_map) 858 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 859 else 860 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 861 } 862 map->timestamp++; 863 } 864 865 long 866 vmspace_resident_count(struct vmspace *vmspace) 867 { 868 return pmap_resident_count(vmspace_pmap(vmspace)); 869 } 870 871 /* 872 * vm_map_create: 873 * 874 * Creates and returns a new empty VM map with 875 * the given physical map structure, and having 876 * the given lower and upper address bounds. 877 */ 878 vm_map_t 879 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 880 { 881 vm_map_t result; 882 883 result = uma_zalloc(mapzone, M_WAITOK); 884 CTR1(KTR_VM, "vm_map_create: %p", result); 885 _vm_map_init(result, pmap, min, max); 886 return (result); 887 } 888 889 /* 890 * Initialize an existing vm_map structure 891 * such as that in the vmspace structure. 892 */ 893 static void 894 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 895 { 896 897 map->header.next = map->header.prev = &map->header; 898 map->header.eflags = MAP_ENTRY_HEADER; 899 map->needs_wakeup = FALSE; 900 map->system_map = 0; 901 map->pmap = pmap; 902 map->header.end = min; 903 map->header.start = max; 904 map->flags = 0; 905 map->root = NULL; 906 map->timestamp = 0; 907 map->busy = 0; 908 map->anon_loc = 0; 909 } 910 911 void 912 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 913 { 914 915 _vm_map_init(map, pmap, min, max); 916 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 917 sx_init(&map->lock, "user map"); 918 } 919 920 /* 921 * vm_map_entry_dispose: [ internal use only ] 922 * 923 * Inverse of vm_map_entry_create. 924 */ 925 static void 926 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 927 { 928 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 929 } 930 931 /* 932 * vm_map_entry_create: [ internal use only ] 933 * 934 * Allocates a VM map entry for insertion. 935 * No entry fields are filled in. 936 */ 937 static vm_map_entry_t 938 vm_map_entry_create(vm_map_t map) 939 { 940 vm_map_entry_t new_entry; 941 942 if (map->system_map) 943 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 944 else 945 new_entry = uma_zalloc(mapentzone, M_WAITOK); 946 if (new_entry == NULL) 947 panic("vm_map_entry_create: kernel resources exhausted"); 948 return (new_entry); 949 } 950 951 /* 952 * vm_map_entry_set_behavior: 953 * 954 * Set the expected access behavior, either normal, random, or 955 * sequential. 956 */ 957 static inline void 958 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 959 { 960 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 961 (behavior & MAP_ENTRY_BEHAV_MASK); 962 } 963 964 /* 965 * vm_map_entry_max_free_{left,right}: 966 * 967 * Compute the size of the largest free gap between two entries, 968 * one the root of a tree and the other the ancestor of that root 969 * that is the least or greatest ancestor found on the search path. 970 */ 971 static inline vm_size_t 972 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 973 { 974 975 return (root->left != NULL ? 976 root->left->max_free : root->start - left_ancestor->end); 977 } 978 979 static inline vm_size_t 980 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 981 { 982 983 return (root->right != NULL ? 984 root->right->max_free : right_ancestor->start - root->end); 985 } 986 987 #define SPLAY_LEFT_STEP(root, y, rlist, test) do { \ 988 vm_size_t max_free; \ 989 \ 990 /* \ 991 * Infer root->right->max_free == root->max_free when \ 992 * y->max_free < root->max_free || root->max_free == 0. \ 993 * Otherwise, look right to find it. \ 994 */ \ 995 y = root->left; \ 996 max_free = root->max_free; \ 997 KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist), \ 998 ("%s: max_free invariant fails", __func__)); \ 999 if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free) \ 1000 max_free = vm_map_entry_max_free_right(root, rlist); \ 1001 if (y != NULL && (test)) { \ 1002 /* Rotate right and make y root. */ \ 1003 root->left = y->right; \ 1004 y->right = root; \ 1005 if (max_free < y->max_free) \ 1006 root->max_free = max_free = MAX(max_free, \ 1007 vm_map_entry_max_free_left(root, y)); \ 1008 root = y; \ 1009 y = root->left; \ 1010 } \ 1011 /* Copy right->max_free. Put root on rlist. */ \ 1012 root->max_free = max_free; \ 1013 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1014 ("%s: max_free not copied from right", __func__)); \ 1015 root->left = rlist; \ 1016 rlist = root; \ 1017 root = y; \ 1018 } while (0) 1019 1020 #define SPLAY_RIGHT_STEP(root, y, llist, test) do { \ 1021 vm_size_t max_free; \ 1022 \ 1023 /* \ 1024 * Infer root->left->max_free == root->max_free when \ 1025 * y->max_free < root->max_free || root->max_free == 0. \ 1026 * Otherwise, look left to find it. \ 1027 */ \ 1028 y = root->right; \ 1029 max_free = root->max_free; \ 1030 KASSERT(max_free >= vm_map_entry_max_free_left(root, llist), \ 1031 ("%s: max_free invariant fails", __func__)); \ 1032 if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free) \ 1033 max_free = vm_map_entry_max_free_left(root, llist); \ 1034 if (y != NULL && (test)) { \ 1035 /* Rotate left and make y root. */ \ 1036 root->right = y->left; \ 1037 y->left = root; \ 1038 if (max_free < y->max_free) \ 1039 root->max_free = max_free = MAX(max_free, \ 1040 vm_map_entry_max_free_right(root, y)); \ 1041 root = y; \ 1042 y = root->right; \ 1043 } \ 1044 /* Copy left->max_free. Put root on llist. */ \ 1045 root->max_free = max_free; \ 1046 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1047 ("%s: max_free not copied from left", __func__)); \ 1048 root->right = llist; \ 1049 llist = root; \ 1050 root = y; \ 1051 } while (0) 1052 1053 /* 1054 * Walk down the tree until we find addr or a NULL pointer where addr would go, 1055 * breaking off left and right subtrees of nodes less than, or greater than 1056 * addr. Treat pointers to nodes with max_free < length as NULL pointers. 1057 * llist and rlist are the two sides in reverse order (bottom-up), with llist 1058 * linked by the right pointer and rlist linked by the left pointer in the 1059 * vm_map_entry, and both lists terminated by &map->header. This function, and 1060 * the subsequent call to vm_map_splay_merge, rely on the start and end address 1061 * values in &map->header. 1062 */ 1063 static vm_map_entry_t 1064 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1065 vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist) 1066 { 1067 vm_map_entry_t llist, rlist, root, y; 1068 1069 llist = rlist = &map->header; 1070 root = map->root; 1071 while (root != NULL && root->max_free >= length) { 1072 KASSERT(llist->end <= root->start && root->end <= rlist->start, 1073 ("%s: root not within tree bounds", __func__)); 1074 if (addr < root->start) { 1075 SPLAY_LEFT_STEP(root, y, rlist, 1076 y->max_free >= length && addr < y->start); 1077 } else if (addr >= root->end) { 1078 SPLAY_RIGHT_STEP(root, y, llist, 1079 y->max_free >= length && addr >= y->end); 1080 } else 1081 break; 1082 } 1083 *out_llist = llist; 1084 *out_rlist = rlist; 1085 return (root); 1086 } 1087 1088 static void 1089 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist) 1090 { 1091 vm_map_entry_t rlist, y; 1092 1093 root = root->right; 1094 rlist = *iolist; 1095 while (root != NULL) 1096 SPLAY_LEFT_STEP(root, y, rlist, true); 1097 *iolist = rlist; 1098 } 1099 1100 static void 1101 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist) 1102 { 1103 vm_map_entry_t llist, y; 1104 1105 root = root->left; 1106 llist = *iolist; 1107 while (root != NULL) 1108 SPLAY_RIGHT_STEP(root, y, llist, true); 1109 *iolist = llist; 1110 } 1111 1112 static inline void 1113 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1114 { 1115 vm_map_entry_t tmp; 1116 1117 tmp = *b; 1118 *b = *a; 1119 *a = tmp; 1120 } 1121 1122 /* 1123 * Walk back up the two spines, flip the pointers and set max_free. The 1124 * subtrees of the root go at the bottom of llist and rlist. 1125 */ 1126 static void 1127 vm_map_splay_merge(vm_map_t map, vm_map_entry_t root, 1128 vm_map_entry_t llist, vm_map_entry_t rlist) 1129 { 1130 vm_map_entry_t prev; 1131 vm_size_t max_free_left, max_free_right; 1132 1133 max_free_left = vm_map_entry_max_free_left(root, llist); 1134 if (llist != &map->header) { 1135 prev = root->left; 1136 do { 1137 /* 1138 * The max_free values of the children of llist are in 1139 * llist->max_free and max_free_left. Update with the 1140 * max value. 1141 */ 1142 llist->max_free = max_free_left = 1143 MAX(llist->max_free, max_free_left); 1144 vm_map_entry_swap(&llist->right, &prev); 1145 vm_map_entry_swap(&prev, &llist); 1146 } while (llist != &map->header); 1147 root->left = prev; 1148 } 1149 max_free_right = vm_map_entry_max_free_right(root, rlist); 1150 if (rlist != &map->header) { 1151 prev = root->right; 1152 do { 1153 /* 1154 * The max_free values of the children of rlist are in 1155 * rlist->max_free and max_free_right. Update with the 1156 * max value. 1157 */ 1158 rlist->max_free = max_free_right = 1159 MAX(rlist->max_free, max_free_right); 1160 vm_map_entry_swap(&rlist->left, &prev); 1161 vm_map_entry_swap(&prev, &rlist); 1162 } while (rlist != &map->header); 1163 root->right = prev; 1164 } 1165 root->max_free = MAX(max_free_left, max_free_right); 1166 map->root = root; 1167 } 1168 1169 /* 1170 * vm_map_splay: 1171 * 1172 * The Sleator and Tarjan top-down splay algorithm with the 1173 * following variation. Max_free must be computed bottom-up, so 1174 * on the downward pass, maintain the left and right spines in 1175 * reverse order. Then, make a second pass up each side to fix 1176 * the pointers and compute max_free. The time bound is O(log n) 1177 * amortized. 1178 * 1179 * The new root is the vm_map_entry containing "addr", or else an 1180 * adjacent entry (lower if possible) if addr is not in the tree. 1181 * 1182 * The map must be locked, and leaves it so. 1183 * 1184 * Returns: the new root. 1185 */ 1186 static vm_map_entry_t 1187 vm_map_splay(vm_map_t map, vm_offset_t addr) 1188 { 1189 vm_map_entry_t llist, rlist, root; 1190 1191 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1192 if (root != NULL) { 1193 /* do nothing */ 1194 } else if (llist != &map->header) { 1195 /* 1196 * Recover the greatest node in the left 1197 * subtree and make it the root. 1198 */ 1199 root = llist; 1200 llist = root->right; 1201 root->right = NULL; 1202 } else if (rlist != &map->header) { 1203 /* 1204 * Recover the least node in the right 1205 * subtree and make it the root. 1206 */ 1207 root = rlist; 1208 rlist = root->left; 1209 root->left = NULL; 1210 } else { 1211 /* There is no root. */ 1212 return (NULL); 1213 } 1214 vm_map_splay_merge(map, root, llist, rlist); 1215 VM_MAP_ASSERT_CONSISTENT(map); 1216 return (root); 1217 } 1218 1219 /* 1220 * vm_map_entry_{un,}link: 1221 * 1222 * Insert/remove entries from maps. 1223 */ 1224 static void 1225 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1226 { 1227 vm_map_entry_t llist, rlist, root; 1228 1229 CTR3(KTR_VM, 1230 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1231 map->nentries, entry); 1232 VM_MAP_ASSERT_LOCKED(map); 1233 map->nentries++; 1234 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1235 KASSERT(root == NULL, 1236 ("vm_map_entry_link: link object already mapped")); 1237 entry->prev = llist; 1238 entry->next = rlist; 1239 llist->next = rlist->prev = entry; 1240 entry->left = entry->right = NULL; 1241 vm_map_splay_merge(map, entry, llist, rlist); 1242 VM_MAP_ASSERT_CONSISTENT(map); 1243 } 1244 1245 enum unlink_merge_type { 1246 UNLINK_MERGE_PREV, 1247 UNLINK_MERGE_NONE, 1248 UNLINK_MERGE_NEXT 1249 }; 1250 1251 static void 1252 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1253 enum unlink_merge_type op) 1254 { 1255 vm_map_entry_t llist, rlist, root, y; 1256 1257 VM_MAP_ASSERT_LOCKED(map); 1258 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1259 KASSERT(root != NULL, 1260 ("vm_map_entry_unlink: unlink object not mapped")); 1261 1262 switch (op) { 1263 case UNLINK_MERGE_PREV: 1264 vm_map_splay_findprev(root, &llist); 1265 llist->end = root->end; 1266 y = root->right; 1267 root = llist; 1268 llist = root->right; 1269 root->right = y; 1270 break; 1271 case UNLINK_MERGE_NEXT: 1272 vm_map_splay_findnext(root, &rlist); 1273 rlist->start = root->start; 1274 rlist->offset = root->offset; 1275 y = root->left; 1276 root = rlist; 1277 rlist = root->left; 1278 root->left = y; 1279 break; 1280 case UNLINK_MERGE_NONE: 1281 vm_map_splay_findprev(root, &llist); 1282 vm_map_splay_findnext(root, &rlist); 1283 if (llist != &map->header) { 1284 root = llist; 1285 llist = root->right; 1286 root->right = NULL; 1287 } else if (rlist != &map->header) { 1288 root = rlist; 1289 rlist = root->left; 1290 root->left = NULL; 1291 } else 1292 root = NULL; 1293 break; 1294 } 1295 y = entry->next; 1296 y->prev = entry->prev; 1297 y->prev->next = y; 1298 if (root != NULL) 1299 vm_map_splay_merge(map, root, llist, rlist); 1300 else 1301 map->root = NULL; 1302 VM_MAP_ASSERT_CONSISTENT(map); 1303 map->nentries--; 1304 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1305 map->nentries, entry); 1306 } 1307 1308 /* 1309 * vm_map_entry_resize: 1310 * 1311 * Resize a vm_map_entry, recompute the amount of free space that 1312 * follows it and propagate that value up the tree. 1313 * 1314 * The map must be locked, and leaves it so. 1315 */ 1316 static void 1317 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1318 { 1319 vm_map_entry_t llist, rlist, root; 1320 1321 VM_MAP_ASSERT_LOCKED(map); 1322 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1323 KASSERT(root != NULL, 1324 ("%s: resize object not mapped", __func__)); 1325 vm_map_splay_findnext(root, &rlist); 1326 root->right = NULL; 1327 entry->end += grow_amount; 1328 vm_map_splay_merge(map, root, llist, rlist); 1329 VM_MAP_ASSERT_CONSISTENT(map); 1330 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1331 __func__, map, map->nentries, entry); 1332 } 1333 1334 /* 1335 * vm_map_lookup_entry: [ internal use only ] 1336 * 1337 * Finds the map entry containing (or 1338 * immediately preceding) the specified address 1339 * in the given map; the entry is returned 1340 * in the "entry" parameter. The boolean 1341 * result indicates whether the address is 1342 * actually contained in the map. 1343 */ 1344 boolean_t 1345 vm_map_lookup_entry( 1346 vm_map_t map, 1347 vm_offset_t address, 1348 vm_map_entry_t *entry) /* OUT */ 1349 { 1350 vm_map_entry_t cur, lbound; 1351 boolean_t locked; 1352 1353 /* 1354 * If the map is empty, then the map entry immediately preceding 1355 * "address" is the map's header. 1356 */ 1357 cur = map->root; 1358 if (cur == NULL) { 1359 *entry = &map->header; 1360 return (FALSE); 1361 } 1362 if (address >= cur->start && cur->end > address) { 1363 *entry = cur; 1364 return (TRUE); 1365 } 1366 if ((locked = vm_map_locked(map)) || 1367 sx_try_upgrade(&map->lock)) { 1368 /* 1369 * Splay requires a write lock on the map. However, it only 1370 * restructures the binary search tree; it does not otherwise 1371 * change the map. Thus, the map's timestamp need not change 1372 * on a temporary upgrade. 1373 */ 1374 cur = vm_map_splay(map, address); 1375 if (!locked) 1376 sx_downgrade(&map->lock); 1377 1378 /* 1379 * If "address" is contained within a map entry, the new root 1380 * is that map entry. Otherwise, the new root is a map entry 1381 * immediately before or after "address". 1382 */ 1383 if (address < cur->start) { 1384 *entry = &map->header; 1385 return (FALSE); 1386 } 1387 *entry = cur; 1388 return (address < cur->end); 1389 } 1390 /* 1391 * Since the map is only locked for read access, perform a 1392 * standard binary search tree lookup for "address". 1393 */ 1394 lbound = &map->header; 1395 do { 1396 if (address < cur->start) { 1397 cur = cur->left; 1398 } else if (cur->end <= address) { 1399 lbound = cur; 1400 cur = cur->right; 1401 } else { 1402 *entry = cur; 1403 return (TRUE); 1404 } 1405 } while (cur != NULL); 1406 *entry = lbound; 1407 return (FALSE); 1408 } 1409 1410 /* 1411 * vm_map_insert: 1412 * 1413 * Inserts the given whole VM object into the target 1414 * map at the specified address range. The object's 1415 * size should match that of the address range. 1416 * 1417 * Requires that the map be locked, and leaves it so. 1418 * 1419 * If object is non-NULL, ref count must be bumped by caller 1420 * prior to making call to account for the new entry. 1421 */ 1422 int 1423 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1424 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1425 { 1426 vm_map_entry_t new_entry, prev_entry, temp_entry; 1427 struct ucred *cred; 1428 vm_eflags_t protoeflags; 1429 vm_inherit_t inheritance; 1430 1431 VM_MAP_ASSERT_LOCKED(map); 1432 KASSERT(object != kernel_object || 1433 (cow & MAP_COPY_ON_WRITE) == 0, 1434 ("vm_map_insert: kernel object and COW")); 1435 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1436 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1437 KASSERT((prot & ~max) == 0, 1438 ("prot %#x is not subset of max_prot %#x", prot, max)); 1439 1440 /* 1441 * Check that the start and end points are not bogus. 1442 */ 1443 if (start < vm_map_min(map) || end > vm_map_max(map) || 1444 start >= end) 1445 return (KERN_INVALID_ADDRESS); 1446 1447 /* 1448 * Find the entry prior to the proposed starting address; if it's part 1449 * of an existing entry, this range is bogus. 1450 */ 1451 if (vm_map_lookup_entry(map, start, &temp_entry)) 1452 return (KERN_NO_SPACE); 1453 1454 prev_entry = temp_entry; 1455 1456 /* 1457 * Assert that the next entry doesn't overlap the end point. 1458 */ 1459 if (prev_entry->next->start < end) 1460 return (KERN_NO_SPACE); 1461 1462 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1463 max != VM_PROT_NONE)) 1464 return (KERN_INVALID_ARGUMENT); 1465 1466 protoeflags = 0; 1467 if (cow & MAP_COPY_ON_WRITE) 1468 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1469 if (cow & MAP_NOFAULT) 1470 protoeflags |= MAP_ENTRY_NOFAULT; 1471 if (cow & MAP_DISABLE_SYNCER) 1472 protoeflags |= MAP_ENTRY_NOSYNC; 1473 if (cow & MAP_DISABLE_COREDUMP) 1474 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1475 if (cow & MAP_STACK_GROWS_DOWN) 1476 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1477 if (cow & MAP_STACK_GROWS_UP) 1478 protoeflags |= MAP_ENTRY_GROWS_UP; 1479 if (cow & MAP_VN_WRITECOUNT) 1480 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1481 if (cow & MAP_VN_EXEC) 1482 protoeflags |= MAP_ENTRY_VN_EXEC; 1483 if ((cow & MAP_CREATE_GUARD) != 0) 1484 protoeflags |= MAP_ENTRY_GUARD; 1485 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1486 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1487 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1488 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1489 if (cow & MAP_INHERIT_SHARE) 1490 inheritance = VM_INHERIT_SHARE; 1491 else 1492 inheritance = VM_INHERIT_DEFAULT; 1493 1494 cred = NULL; 1495 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1496 goto charged; 1497 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1498 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1499 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1500 return (KERN_RESOURCE_SHORTAGE); 1501 KASSERT(object == NULL || 1502 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1503 object->cred == NULL, 1504 ("overcommit: vm_map_insert o %p", object)); 1505 cred = curthread->td_ucred; 1506 } 1507 1508 charged: 1509 /* Expand the kernel pmap, if necessary. */ 1510 if (map == kernel_map && end > kernel_vm_end) 1511 pmap_growkernel(end); 1512 if (object != NULL) { 1513 /* 1514 * OBJ_ONEMAPPING must be cleared unless this mapping 1515 * is trivially proven to be the only mapping for any 1516 * of the object's pages. (Object granularity 1517 * reference counting is insufficient to recognize 1518 * aliases with precision.) 1519 */ 1520 VM_OBJECT_WLOCK(object); 1521 if (object->ref_count > 1 || object->shadow_count != 0) 1522 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1523 VM_OBJECT_WUNLOCK(object); 1524 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1525 protoeflags && 1526 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1527 MAP_VN_EXEC)) == 0 && 1528 prev_entry->end == start && (prev_entry->cred == cred || 1529 (prev_entry->object.vm_object != NULL && 1530 prev_entry->object.vm_object->cred == cred)) && 1531 vm_object_coalesce(prev_entry->object.vm_object, 1532 prev_entry->offset, 1533 (vm_size_t)(prev_entry->end - prev_entry->start), 1534 (vm_size_t)(end - prev_entry->end), cred != NULL && 1535 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1536 /* 1537 * We were able to extend the object. Determine if we 1538 * can extend the previous map entry to include the 1539 * new range as well. 1540 */ 1541 if (prev_entry->inheritance == inheritance && 1542 prev_entry->protection == prot && 1543 prev_entry->max_protection == max && 1544 prev_entry->wired_count == 0) { 1545 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1546 0, ("prev_entry %p has incoherent wiring", 1547 prev_entry)); 1548 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1549 map->size += end - prev_entry->end; 1550 vm_map_entry_resize(map, prev_entry, 1551 end - prev_entry->end); 1552 vm_map_simplify_entry(map, prev_entry); 1553 return (KERN_SUCCESS); 1554 } 1555 1556 /* 1557 * If we can extend the object but cannot extend the 1558 * map entry, we have to create a new map entry. We 1559 * must bump the ref count on the extended object to 1560 * account for it. object may be NULL. 1561 */ 1562 object = prev_entry->object.vm_object; 1563 offset = prev_entry->offset + 1564 (prev_entry->end - prev_entry->start); 1565 vm_object_reference(object); 1566 if (cred != NULL && object != NULL && object->cred != NULL && 1567 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1568 /* Object already accounts for this uid. */ 1569 cred = NULL; 1570 } 1571 } 1572 if (cred != NULL) 1573 crhold(cred); 1574 1575 /* 1576 * Create a new entry 1577 */ 1578 new_entry = vm_map_entry_create(map); 1579 new_entry->start = start; 1580 new_entry->end = end; 1581 new_entry->cred = NULL; 1582 1583 new_entry->eflags = protoeflags; 1584 new_entry->object.vm_object = object; 1585 new_entry->offset = offset; 1586 1587 new_entry->inheritance = inheritance; 1588 new_entry->protection = prot; 1589 new_entry->max_protection = max; 1590 new_entry->wired_count = 0; 1591 new_entry->wiring_thread = NULL; 1592 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1593 new_entry->next_read = start; 1594 1595 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1596 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1597 new_entry->cred = cred; 1598 1599 /* 1600 * Insert the new entry into the list 1601 */ 1602 vm_map_entry_link(map, new_entry); 1603 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1604 map->size += new_entry->end - new_entry->start; 1605 1606 /* 1607 * Try to coalesce the new entry with both the previous and next 1608 * entries in the list. Previously, we only attempted to coalesce 1609 * with the previous entry when object is NULL. Here, we handle the 1610 * other cases, which are less common. 1611 */ 1612 vm_map_simplify_entry(map, new_entry); 1613 1614 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1615 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1616 end - start, cow & MAP_PREFAULT_PARTIAL); 1617 } 1618 1619 return (KERN_SUCCESS); 1620 } 1621 1622 /* 1623 * vm_map_findspace: 1624 * 1625 * Find the first fit (lowest VM address) for "length" free bytes 1626 * beginning at address >= start in the given map. 1627 * 1628 * In a vm_map_entry, "max_free" is the maximum amount of 1629 * contiguous free space between an entry in its subtree and a 1630 * neighbor of that entry. This allows finding a free region in 1631 * one path down the tree, so O(log n) amortized with splay 1632 * trees. 1633 * 1634 * The map must be locked, and leaves it so. 1635 * 1636 * Returns: starting address if sufficient space, 1637 * vm_map_max(map)-length+1 if insufficient space. 1638 */ 1639 vm_offset_t 1640 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1641 { 1642 vm_map_entry_t llist, rlist, root, y; 1643 vm_size_t left_length; 1644 vm_offset_t gap_end; 1645 1646 /* 1647 * Request must fit within min/max VM address and must avoid 1648 * address wrap. 1649 */ 1650 start = MAX(start, vm_map_min(map)); 1651 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1652 return (vm_map_max(map) - length + 1); 1653 1654 /* Empty tree means wide open address space. */ 1655 if (map->root == NULL) 1656 return (start); 1657 1658 /* 1659 * After splay_split, if start is within an entry, push it to the start 1660 * of the following gap. If rlist is at the end of the gap containing 1661 * start, save the end of that gap in gap_end to see if the gap is big 1662 * enough; otherwise set gap_end to start skip gap-checking and move 1663 * directly to a search of the right subtree. 1664 */ 1665 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1666 gap_end = rlist->start; 1667 if (root != NULL) { 1668 start = root->end; 1669 if (root->right != NULL) 1670 gap_end = start; 1671 } else if (rlist != &map->header) { 1672 root = rlist; 1673 rlist = root->left; 1674 root->left = NULL; 1675 } else { 1676 root = llist; 1677 llist = root->right; 1678 root->right = NULL; 1679 } 1680 vm_map_splay_merge(map, root, llist, rlist); 1681 VM_MAP_ASSERT_CONSISTENT(map); 1682 if (length <= gap_end - start) 1683 return (start); 1684 1685 /* With max_free, can immediately tell if no solution. */ 1686 if (root->right == NULL || length > root->right->max_free) 1687 return (vm_map_max(map) - length + 1); 1688 1689 /* 1690 * Splay for the least large-enough gap in the right subtree. 1691 */ 1692 llist = rlist = &map->header; 1693 for (left_length = 0;; 1694 left_length = vm_map_entry_max_free_left(root, llist)) { 1695 if (length <= left_length) 1696 SPLAY_LEFT_STEP(root, y, rlist, 1697 length <= vm_map_entry_max_free_left(y, llist)); 1698 else 1699 SPLAY_RIGHT_STEP(root, y, llist, 1700 length > vm_map_entry_max_free_left(y, root)); 1701 if (root == NULL) 1702 break; 1703 } 1704 root = llist; 1705 llist = root->right; 1706 root->right = NULL; 1707 if (rlist != &map->header) { 1708 y = rlist; 1709 rlist = y->left; 1710 y->left = NULL; 1711 vm_map_splay_merge(map, y, &map->header, rlist); 1712 y->max_free = MAX( 1713 vm_map_entry_max_free_left(y, root), 1714 vm_map_entry_max_free_right(y, &map->header)); 1715 root->right = y; 1716 } 1717 vm_map_splay_merge(map, root, llist, &map->header); 1718 VM_MAP_ASSERT_CONSISTENT(map); 1719 return (root->end); 1720 } 1721 1722 int 1723 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1724 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1725 vm_prot_t max, int cow) 1726 { 1727 vm_offset_t end; 1728 int result; 1729 1730 end = start + length; 1731 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1732 object == NULL, 1733 ("vm_map_fixed: non-NULL backing object for stack")); 1734 vm_map_lock(map); 1735 VM_MAP_RANGE_CHECK(map, start, end); 1736 if ((cow & MAP_CHECK_EXCL) == 0) 1737 vm_map_delete(map, start, end); 1738 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1739 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1740 prot, max, cow); 1741 } else { 1742 result = vm_map_insert(map, object, offset, start, end, 1743 prot, max, cow); 1744 } 1745 vm_map_unlock(map); 1746 return (result); 1747 } 1748 1749 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1750 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1751 1752 static int cluster_anon = 1; 1753 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1754 &cluster_anon, 0, 1755 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 1756 1757 static bool 1758 clustering_anon_allowed(vm_offset_t addr) 1759 { 1760 1761 switch (cluster_anon) { 1762 case 0: 1763 return (false); 1764 case 1: 1765 return (addr == 0); 1766 case 2: 1767 default: 1768 return (true); 1769 } 1770 } 1771 1772 static long aslr_restarts; 1773 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 1774 &aslr_restarts, 0, 1775 "Number of aslr failures"); 1776 1777 #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) 1778 1779 /* 1780 * Searches for the specified amount of free space in the given map with the 1781 * specified alignment. Performs an address-ordered, first-fit search from 1782 * the given address "*addr", with an optional upper bound "max_addr". If the 1783 * parameter "alignment" is zero, then the alignment is computed from the 1784 * given (object, offset) pair so as to enable the greatest possible use of 1785 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1786 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1787 * 1788 * The map must be locked. Initially, there must be at least "length" bytes 1789 * of free space at the given address. 1790 */ 1791 static int 1792 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1793 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1794 vm_offset_t alignment) 1795 { 1796 vm_offset_t aligned_addr, free_addr; 1797 1798 VM_MAP_ASSERT_LOCKED(map); 1799 free_addr = *addr; 1800 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 1801 ("caller failed to provide space %#jx at address %p", 1802 (uintmax_t)length, (void *)free_addr)); 1803 for (;;) { 1804 /* 1805 * At the start of every iteration, the free space at address 1806 * "*addr" is at least "length" bytes. 1807 */ 1808 if (alignment == 0) 1809 pmap_align_superpage(object, offset, addr, length); 1810 else if ((*addr & (alignment - 1)) != 0) { 1811 *addr &= ~(alignment - 1); 1812 *addr += alignment; 1813 } 1814 aligned_addr = *addr; 1815 if (aligned_addr == free_addr) { 1816 /* 1817 * Alignment did not change "*addr", so "*addr" must 1818 * still provide sufficient free space. 1819 */ 1820 return (KERN_SUCCESS); 1821 } 1822 1823 /* 1824 * Test for address wrap on "*addr". A wrapped "*addr" could 1825 * be a valid address, in which case vm_map_findspace() cannot 1826 * be relied upon to fail. 1827 */ 1828 if (aligned_addr < free_addr) 1829 return (KERN_NO_SPACE); 1830 *addr = vm_map_findspace(map, aligned_addr, length); 1831 if (*addr + length > vm_map_max(map) || 1832 (max_addr != 0 && *addr + length > max_addr)) 1833 return (KERN_NO_SPACE); 1834 free_addr = *addr; 1835 if (free_addr == aligned_addr) { 1836 /* 1837 * If a successful call to vm_map_findspace() did not 1838 * change "*addr", then "*addr" must still be aligned 1839 * and provide sufficient free space. 1840 */ 1841 return (KERN_SUCCESS); 1842 } 1843 } 1844 } 1845 1846 /* 1847 * vm_map_find finds an unallocated region in the target address 1848 * map with the given length. The search is defined to be 1849 * first-fit from the specified address; the region found is 1850 * returned in the same parameter. 1851 * 1852 * If object is non-NULL, ref count must be bumped by caller 1853 * prior to making call to account for the new entry. 1854 */ 1855 int 1856 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1857 vm_offset_t *addr, /* IN/OUT */ 1858 vm_size_t length, vm_offset_t max_addr, int find_space, 1859 vm_prot_t prot, vm_prot_t max, int cow) 1860 { 1861 vm_offset_t alignment, curr_min_addr, min_addr; 1862 int gap, pidx, rv, try; 1863 bool cluster, en_aslr, update_anon; 1864 1865 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1866 object == NULL, 1867 ("vm_map_find: non-NULL backing object for stack")); 1868 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 1869 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 1870 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1871 (object->flags & OBJ_COLORED) == 0)) 1872 find_space = VMFS_ANY_SPACE; 1873 if (find_space >> 8 != 0) { 1874 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1875 alignment = (vm_offset_t)1 << (find_space >> 8); 1876 } else 1877 alignment = 0; 1878 en_aslr = (map->flags & MAP_ASLR) != 0; 1879 update_anon = cluster = clustering_anon_allowed(*addr) && 1880 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 1881 find_space != VMFS_NO_SPACE && object == NULL && 1882 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 1883 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 1884 curr_min_addr = min_addr = *addr; 1885 if (en_aslr && min_addr == 0 && !cluster && 1886 find_space != VMFS_NO_SPACE && 1887 (map->flags & MAP_ASLR_IGNSTART) != 0) 1888 curr_min_addr = min_addr = vm_map_min(map); 1889 try = 0; 1890 vm_map_lock(map); 1891 if (cluster) { 1892 curr_min_addr = map->anon_loc; 1893 if (curr_min_addr == 0) 1894 cluster = false; 1895 } 1896 if (find_space != VMFS_NO_SPACE) { 1897 KASSERT(find_space == VMFS_ANY_SPACE || 1898 find_space == VMFS_OPTIMAL_SPACE || 1899 find_space == VMFS_SUPER_SPACE || 1900 alignment != 0, ("unexpected VMFS flag")); 1901 again: 1902 /* 1903 * When creating an anonymous mapping, try clustering 1904 * with an existing anonymous mapping first. 1905 * 1906 * We make up to two attempts to find address space 1907 * for a given find_space value. The first attempt may 1908 * apply randomization or may cluster with an existing 1909 * anonymous mapping. If this first attempt fails, 1910 * perform a first-fit search of the available address 1911 * space. 1912 * 1913 * If all tries failed, and find_space is 1914 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 1915 * Again enable clustering and randomization. 1916 */ 1917 try++; 1918 MPASS(try <= 2); 1919 1920 if (try == 2) { 1921 /* 1922 * Second try: we failed either to find a 1923 * suitable region for randomizing the 1924 * allocation, or to cluster with an existing 1925 * mapping. Retry with free run. 1926 */ 1927 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 1928 vm_map_min(map) : min_addr; 1929 atomic_add_long(&aslr_restarts, 1); 1930 } 1931 1932 if (try == 1 && en_aslr && !cluster) { 1933 /* 1934 * Find space for allocation, including 1935 * gap needed for later randomization. 1936 */ 1937 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 1938 (find_space == VMFS_SUPER_SPACE || find_space == 1939 VMFS_OPTIMAL_SPACE) ? 1 : 0; 1940 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 1941 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 1942 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 1943 *addr = vm_map_findspace(map, curr_min_addr, 1944 length + gap * pagesizes[pidx]); 1945 if (*addr + length + gap * pagesizes[pidx] > 1946 vm_map_max(map)) 1947 goto again; 1948 /* And randomize the start address. */ 1949 *addr += (arc4random() % gap) * pagesizes[pidx]; 1950 if (max_addr != 0 && *addr + length > max_addr) 1951 goto again; 1952 } else { 1953 *addr = vm_map_findspace(map, curr_min_addr, length); 1954 if (*addr + length > vm_map_max(map) || 1955 (max_addr != 0 && *addr + length > max_addr)) { 1956 if (cluster) { 1957 cluster = false; 1958 MPASS(try == 1); 1959 goto again; 1960 } 1961 rv = KERN_NO_SPACE; 1962 goto done; 1963 } 1964 } 1965 1966 if (find_space != VMFS_ANY_SPACE && 1967 (rv = vm_map_alignspace(map, object, offset, addr, length, 1968 max_addr, alignment)) != KERN_SUCCESS) { 1969 if (find_space == VMFS_OPTIMAL_SPACE) { 1970 find_space = VMFS_ANY_SPACE; 1971 curr_min_addr = min_addr; 1972 cluster = update_anon; 1973 try = 0; 1974 goto again; 1975 } 1976 goto done; 1977 } 1978 } else if ((cow & MAP_REMAP) != 0) { 1979 if (*addr < vm_map_min(map) || 1980 *addr + length > vm_map_max(map) || 1981 *addr + length <= length) { 1982 rv = KERN_INVALID_ADDRESS; 1983 goto done; 1984 } 1985 vm_map_delete(map, *addr, *addr + length); 1986 } 1987 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1988 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 1989 max, cow); 1990 } else { 1991 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 1992 prot, max, cow); 1993 } 1994 if (rv == KERN_SUCCESS && update_anon) 1995 map->anon_loc = *addr + length; 1996 done: 1997 vm_map_unlock(map); 1998 return (rv); 1999 } 2000 2001 /* 2002 * vm_map_find_min() is a variant of vm_map_find() that takes an 2003 * additional parameter (min_addr) and treats the given address 2004 * (*addr) differently. Specifically, it treats *addr as a hint 2005 * and not as the minimum address where the mapping is created. 2006 * 2007 * This function works in two phases. First, it tries to 2008 * allocate above the hint. If that fails and the hint is 2009 * greater than min_addr, it performs a second pass, replacing 2010 * the hint with min_addr as the minimum address for the 2011 * allocation. 2012 */ 2013 int 2014 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2015 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 2016 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2017 int cow) 2018 { 2019 vm_offset_t hint; 2020 int rv; 2021 2022 hint = *addr; 2023 for (;;) { 2024 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2025 find_space, prot, max, cow); 2026 if (rv == KERN_SUCCESS || min_addr >= hint) 2027 return (rv); 2028 *addr = hint = min_addr; 2029 } 2030 } 2031 2032 /* 2033 * A map entry with any of the following flags set must not be merged with 2034 * another entry. 2035 */ 2036 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 2037 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC) 2038 2039 static bool 2040 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2041 { 2042 2043 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2044 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2045 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2046 prev, entry)); 2047 return (prev->end == entry->start && 2048 prev->object.vm_object == entry->object.vm_object && 2049 (prev->object.vm_object == NULL || 2050 prev->offset + (prev->end - prev->start) == entry->offset) && 2051 prev->eflags == entry->eflags && 2052 prev->protection == entry->protection && 2053 prev->max_protection == entry->max_protection && 2054 prev->inheritance == entry->inheritance && 2055 prev->wired_count == entry->wired_count && 2056 prev->cred == entry->cred); 2057 } 2058 2059 static void 2060 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2061 { 2062 2063 /* 2064 * If the backing object is a vnode object, vm_object_deallocate() 2065 * calls vrele(). However, vrele() does not lock the vnode because 2066 * the vnode has additional references. Thus, the map lock can be 2067 * kept without causing a lock-order reversal with the vnode lock. 2068 * 2069 * Since we count the number of virtual page mappings in 2070 * object->un_pager.vnp.writemappings, the writemappings value 2071 * should not be adjusted when the entry is disposed of. 2072 */ 2073 if (entry->object.vm_object != NULL) 2074 vm_object_deallocate(entry->object.vm_object); 2075 if (entry->cred != NULL) 2076 crfree(entry->cred); 2077 vm_map_entry_dispose(map, entry); 2078 } 2079 2080 /* 2081 * vm_map_simplify_entry: 2082 * 2083 * Simplify the given map entry by merging with either neighbor. This 2084 * routine also has the ability to merge with both neighbors. 2085 * 2086 * The map must be locked. 2087 * 2088 * This routine guarantees that the passed entry remains valid (though 2089 * possibly extended). When merging, this routine may delete one or 2090 * both neighbors. 2091 */ 2092 void 2093 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 2094 { 2095 vm_map_entry_t next, prev; 2096 2097 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0) 2098 return; 2099 prev = entry->prev; 2100 if (vm_map_mergeable_neighbors(prev, entry)) { 2101 vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT); 2102 vm_map_merged_neighbor_dispose(map, prev); 2103 } 2104 next = entry->next; 2105 if (vm_map_mergeable_neighbors(entry, next)) { 2106 vm_map_entry_unlink(map, next, UNLINK_MERGE_PREV); 2107 vm_map_merged_neighbor_dispose(map, next); 2108 } 2109 } 2110 2111 /* 2112 * vm_map_clip_start: [ internal use only ] 2113 * 2114 * Asserts that the given entry begins at or after 2115 * the specified address; if necessary, 2116 * it splits the entry into two. 2117 */ 2118 #define vm_map_clip_start(map, entry, startaddr) \ 2119 { \ 2120 if (startaddr > entry->start) \ 2121 _vm_map_clip_start(map, entry, startaddr); \ 2122 } 2123 2124 /* 2125 * This routine is called only when it is known that 2126 * the entry must be split. 2127 */ 2128 static void 2129 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 2130 { 2131 vm_map_entry_t new_entry; 2132 2133 VM_MAP_ASSERT_LOCKED(map); 2134 KASSERT(entry->end > start && entry->start < start, 2135 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 2136 2137 /* 2138 * Split off the front portion -- note that we must insert the new 2139 * entry BEFORE this one, so that this entry has the specified 2140 * starting address. 2141 */ 2142 vm_map_simplify_entry(map, entry); 2143 2144 /* 2145 * If there is no object backing this entry, we might as well create 2146 * one now. If we defer it, an object can get created after the map 2147 * is clipped, and individual objects will be created for the split-up 2148 * map. This is a bit of a hack, but is also about the best place to 2149 * put this improvement. 2150 */ 2151 if (entry->object.vm_object == NULL && !map->system_map && 2152 (entry->eflags & MAP_ENTRY_GUARD) == 0) { 2153 vm_object_t object; 2154 object = vm_object_allocate(OBJT_DEFAULT, 2155 atop(entry->end - entry->start)); 2156 entry->object.vm_object = object; 2157 entry->offset = 0; 2158 if (entry->cred != NULL) { 2159 object->cred = entry->cred; 2160 object->charge = entry->end - entry->start; 2161 entry->cred = NULL; 2162 } 2163 } else if (entry->object.vm_object != NULL && 2164 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2165 entry->cred != NULL) { 2166 VM_OBJECT_WLOCK(entry->object.vm_object); 2167 KASSERT(entry->object.vm_object->cred == NULL, 2168 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 2169 entry->object.vm_object->cred = entry->cred; 2170 entry->object.vm_object->charge = entry->end - entry->start; 2171 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2172 entry->cred = NULL; 2173 } 2174 2175 new_entry = vm_map_entry_create(map); 2176 *new_entry = *entry; 2177 2178 new_entry->end = start; 2179 entry->offset += (start - entry->start); 2180 entry->start = start; 2181 if (new_entry->cred != NULL) 2182 crhold(entry->cred); 2183 2184 vm_map_entry_link(map, new_entry); 2185 2186 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2187 vm_object_reference(new_entry->object.vm_object); 2188 vm_map_entry_set_vnode_text(new_entry, true); 2189 /* 2190 * The object->un_pager.vnp.writemappings for the 2191 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 2192 * kept as is here. The virtual pages are 2193 * re-distributed among the clipped entries, so the sum is 2194 * left the same. 2195 */ 2196 } 2197 } 2198 2199 /* 2200 * vm_map_clip_end: [ internal use only ] 2201 * 2202 * Asserts that the given entry ends at or before 2203 * the specified address; if necessary, 2204 * it splits the entry into two. 2205 */ 2206 #define vm_map_clip_end(map, entry, endaddr) \ 2207 { \ 2208 if ((endaddr) < (entry->end)) \ 2209 _vm_map_clip_end((map), (entry), (endaddr)); \ 2210 } 2211 2212 /* 2213 * This routine is called only when it is known that 2214 * the entry must be split. 2215 */ 2216 static void 2217 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 2218 { 2219 vm_map_entry_t new_entry; 2220 2221 VM_MAP_ASSERT_LOCKED(map); 2222 KASSERT(entry->start < end && entry->end > end, 2223 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 2224 2225 /* 2226 * If there is no object backing this entry, we might as well create 2227 * one now. If we defer it, an object can get created after the map 2228 * is clipped, and individual objects will be created for the split-up 2229 * map. This is a bit of a hack, but is also about the best place to 2230 * put this improvement. 2231 */ 2232 if (entry->object.vm_object == NULL && !map->system_map && 2233 (entry->eflags & MAP_ENTRY_GUARD) == 0) { 2234 vm_object_t object; 2235 object = vm_object_allocate(OBJT_DEFAULT, 2236 atop(entry->end - entry->start)); 2237 entry->object.vm_object = object; 2238 entry->offset = 0; 2239 if (entry->cred != NULL) { 2240 object->cred = entry->cred; 2241 object->charge = entry->end - entry->start; 2242 entry->cred = NULL; 2243 } 2244 } else if (entry->object.vm_object != NULL && 2245 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2246 entry->cred != NULL) { 2247 VM_OBJECT_WLOCK(entry->object.vm_object); 2248 KASSERT(entry->object.vm_object->cred == NULL, 2249 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 2250 entry->object.vm_object->cred = entry->cred; 2251 entry->object.vm_object->charge = entry->end - entry->start; 2252 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2253 entry->cred = NULL; 2254 } 2255 2256 /* 2257 * Create a new entry and insert it AFTER the specified entry 2258 */ 2259 new_entry = vm_map_entry_create(map); 2260 *new_entry = *entry; 2261 2262 new_entry->start = entry->end = end; 2263 new_entry->offset += (end - entry->start); 2264 if (new_entry->cred != NULL) 2265 crhold(entry->cred); 2266 2267 vm_map_entry_link(map, new_entry); 2268 2269 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2270 vm_object_reference(new_entry->object.vm_object); 2271 vm_map_entry_set_vnode_text(new_entry, true); 2272 } 2273 } 2274 2275 /* 2276 * vm_map_submap: [ kernel use only ] 2277 * 2278 * Mark the given range as handled by a subordinate map. 2279 * 2280 * This range must have been created with vm_map_find, 2281 * and no other operations may have been performed on this 2282 * range prior to calling vm_map_submap. 2283 * 2284 * Only a limited number of operations can be performed 2285 * within this rage after calling vm_map_submap: 2286 * vm_fault 2287 * [Don't try vm_map_copy!] 2288 * 2289 * To remove a submapping, one must first remove the 2290 * range from the superior map, and then destroy the 2291 * submap (if desired). [Better yet, don't try it.] 2292 */ 2293 int 2294 vm_map_submap( 2295 vm_map_t map, 2296 vm_offset_t start, 2297 vm_offset_t end, 2298 vm_map_t submap) 2299 { 2300 vm_map_entry_t entry; 2301 int result; 2302 2303 result = KERN_INVALID_ARGUMENT; 2304 2305 vm_map_lock(submap); 2306 submap->flags |= MAP_IS_SUB_MAP; 2307 vm_map_unlock(submap); 2308 2309 vm_map_lock(map); 2310 2311 VM_MAP_RANGE_CHECK(map, start, end); 2312 2313 if (vm_map_lookup_entry(map, start, &entry)) { 2314 vm_map_clip_start(map, entry, start); 2315 } else 2316 entry = entry->next; 2317 2318 vm_map_clip_end(map, entry, end); 2319 2320 if ((entry->start == start) && (entry->end == end) && 2321 ((entry->eflags & MAP_ENTRY_COW) == 0) && 2322 (entry->object.vm_object == NULL)) { 2323 entry->object.sub_map = submap; 2324 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2325 result = KERN_SUCCESS; 2326 } 2327 vm_map_unlock(map); 2328 2329 if (result != KERN_SUCCESS) { 2330 vm_map_lock(submap); 2331 submap->flags &= ~MAP_IS_SUB_MAP; 2332 vm_map_unlock(submap); 2333 } 2334 return (result); 2335 } 2336 2337 /* 2338 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2339 */ 2340 #define MAX_INIT_PT 96 2341 2342 /* 2343 * vm_map_pmap_enter: 2344 * 2345 * Preload the specified map's pmap with mappings to the specified 2346 * object's memory-resident pages. No further physical pages are 2347 * allocated, and no further virtual pages are retrieved from secondary 2348 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2349 * limited number of page mappings are created at the low-end of the 2350 * specified address range. (For this purpose, a superpage mapping 2351 * counts as one page mapping.) Otherwise, all resident pages within 2352 * the specified address range are mapped. 2353 */ 2354 static void 2355 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2356 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2357 { 2358 vm_offset_t start; 2359 vm_page_t p, p_start; 2360 vm_pindex_t mask, psize, threshold, tmpidx; 2361 2362 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2363 return; 2364 VM_OBJECT_RLOCK(object); 2365 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2366 VM_OBJECT_RUNLOCK(object); 2367 VM_OBJECT_WLOCK(object); 2368 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2369 pmap_object_init_pt(map->pmap, addr, object, pindex, 2370 size); 2371 VM_OBJECT_WUNLOCK(object); 2372 return; 2373 } 2374 VM_OBJECT_LOCK_DOWNGRADE(object); 2375 } 2376 2377 psize = atop(size); 2378 if (psize + pindex > object->size) { 2379 if (object->size < pindex) { 2380 VM_OBJECT_RUNLOCK(object); 2381 return; 2382 } 2383 psize = object->size - pindex; 2384 } 2385 2386 start = 0; 2387 p_start = NULL; 2388 threshold = MAX_INIT_PT; 2389 2390 p = vm_page_find_least(object, pindex); 2391 /* 2392 * Assert: the variable p is either (1) the page with the 2393 * least pindex greater than or equal to the parameter pindex 2394 * or (2) NULL. 2395 */ 2396 for (; 2397 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2398 p = TAILQ_NEXT(p, listq)) { 2399 /* 2400 * don't allow an madvise to blow away our really 2401 * free pages allocating pv entries. 2402 */ 2403 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2404 vm_page_count_severe()) || 2405 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2406 tmpidx >= threshold)) { 2407 psize = tmpidx; 2408 break; 2409 } 2410 if (p->valid == VM_PAGE_BITS_ALL) { 2411 if (p_start == NULL) { 2412 start = addr + ptoa(tmpidx); 2413 p_start = p; 2414 } 2415 /* Jump ahead if a superpage mapping is possible. */ 2416 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2417 (pagesizes[p->psind] - 1)) == 0) { 2418 mask = atop(pagesizes[p->psind]) - 1; 2419 if (tmpidx + mask < psize && 2420 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2421 p += mask; 2422 threshold += mask; 2423 } 2424 } 2425 } else if (p_start != NULL) { 2426 pmap_enter_object(map->pmap, start, addr + 2427 ptoa(tmpidx), p_start, prot); 2428 p_start = NULL; 2429 } 2430 } 2431 if (p_start != NULL) 2432 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2433 p_start, prot); 2434 VM_OBJECT_RUNLOCK(object); 2435 } 2436 2437 /* 2438 * vm_map_protect: 2439 * 2440 * Sets the protection of the specified address 2441 * region in the target map. If "set_max" is 2442 * specified, the maximum protection is to be set; 2443 * otherwise, only the current protection is affected. 2444 */ 2445 int 2446 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2447 vm_prot_t new_prot, boolean_t set_max) 2448 { 2449 vm_map_entry_t current, entry, in_tran; 2450 vm_object_t obj; 2451 struct ucred *cred; 2452 vm_prot_t old_prot; 2453 2454 if (start == end) 2455 return (KERN_SUCCESS); 2456 2457 again: 2458 in_tran = NULL; 2459 vm_map_lock(map); 2460 2461 /* 2462 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2463 * need to fault pages into the map and will drop the map lock while 2464 * doing so, and the VM object may end up in an inconsistent state if we 2465 * update the protection on the map entry in between faults. 2466 */ 2467 vm_map_wait_busy(map); 2468 2469 VM_MAP_RANGE_CHECK(map, start, end); 2470 2471 if (vm_map_lookup_entry(map, start, &entry)) { 2472 vm_map_clip_start(map, entry, start); 2473 } else { 2474 entry = entry->next; 2475 } 2476 2477 /* 2478 * Make a first pass to check for protection violations. 2479 */ 2480 for (current = entry; current->start < end; current = current->next) { 2481 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2482 continue; 2483 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2484 vm_map_unlock(map); 2485 return (KERN_INVALID_ARGUMENT); 2486 } 2487 if ((new_prot & current->max_protection) != new_prot) { 2488 vm_map_unlock(map); 2489 return (KERN_PROTECTION_FAILURE); 2490 } 2491 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2492 in_tran = entry; 2493 } 2494 2495 /* 2496 * Postpone the operation until all in transition map entries 2497 * are stabilized. In-transition entry might already have its 2498 * pages wired and wired_count incremented, but 2499 * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other 2500 * threads because the map lock is dropped. In this case we 2501 * would miss our call to vm_fault_copy_entry(). 2502 */ 2503 if (in_tran != NULL) { 2504 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2505 vm_map_unlock_and_wait(map, 0); 2506 goto again; 2507 } 2508 2509 /* 2510 * Do an accounting pass for private read-only mappings that 2511 * now will do cow due to allowed write (e.g. debugger sets 2512 * breakpoint on text segment) 2513 */ 2514 for (current = entry; current->start < end; current = current->next) { 2515 2516 vm_map_clip_end(map, current, end); 2517 2518 if (set_max || 2519 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 2520 ENTRY_CHARGED(current) || 2521 (current->eflags & MAP_ENTRY_GUARD) != 0) { 2522 continue; 2523 } 2524 2525 cred = curthread->td_ucred; 2526 obj = current->object.vm_object; 2527 2528 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 2529 if (!swap_reserve(current->end - current->start)) { 2530 vm_map_unlock(map); 2531 return (KERN_RESOURCE_SHORTAGE); 2532 } 2533 crhold(cred); 2534 current->cred = cred; 2535 continue; 2536 } 2537 2538 VM_OBJECT_WLOCK(obj); 2539 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2540 VM_OBJECT_WUNLOCK(obj); 2541 continue; 2542 } 2543 2544 /* 2545 * Charge for the whole object allocation now, since 2546 * we cannot distinguish between non-charged and 2547 * charged clipped mapping of the same object later. 2548 */ 2549 KASSERT(obj->charge == 0, 2550 ("vm_map_protect: object %p overcharged (entry %p)", 2551 obj, current)); 2552 if (!swap_reserve(ptoa(obj->size))) { 2553 VM_OBJECT_WUNLOCK(obj); 2554 vm_map_unlock(map); 2555 return (KERN_RESOURCE_SHORTAGE); 2556 } 2557 2558 crhold(cred); 2559 obj->cred = cred; 2560 obj->charge = ptoa(obj->size); 2561 VM_OBJECT_WUNLOCK(obj); 2562 } 2563 2564 /* 2565 * Go back and fix up protections. [Note that clipping is not 2566 * necessary the second time.] 2567 */ 2568 for (current = entry; current->start < end; current = current->next) { 2569 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2570 continue; 2571 2572 old_prot = current->protection; 2573 2574 if (set_max) 2575 current->protection = 2576 (current->max_protection = new_prot) & 2577 old_prot; 2578 else 2579 current->protection = new_prot; 2580 2581 /* 2582 * For user wired map entries, the normal lazy evaluation of 2583 * write access upgrades through soft page faults is 2584 * undesirable. Instead, immediately copy any pages that are 2585 * copy-on-write and enable write access in the physical map. 2586 */ 2587 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2588 (current->protection & VM_PROT_WRITE) != 0 && 2589 (old_prot & VM_PROT_WRITE) == 0) 2590 vm_fault_copy_entry(map, map, current, current, NULL); 2591 2592 /* 2593 * When restricting access, update the physical map. Worry 2594 * about copy-on-write here. 2595 */ 2596 if ((old_prot & ~current->protection) != 0) { 2597 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2598 VM_PROT_ALL) 2599 pmap_protect(map->pmap, current->start, 2600 current->end, 2601 current->protection & MASK(current)); 2602 #undef MASK 2603 } 2604 vm_map_simplify_entry(map, current); 2605 } 2606 vm_map_unlock(map); 2607 return (KERN_SUCCESS); 2608 } 2609 2610 /* 2611 * vm_map_madvise: 2612 * 2613 * This routine traverses a processes map handling the madvise 2614 * system call. Advisories are classified as either those effecting 2615 * the vm_map_entry structure, or those effecting the underlying 2616 * objects. 2617 */ 2618 int 2619 vm_map_madvise( 2620 vm_map_t map, 2621 vm_offset_t start, 2622 vm_offset_t end, 2623 int behav) 2624 { 2625 vm_map_entry_t current, entry; 2626 bool modify_map; 2627 2628 /* 2629 * Some madvise calls directly modify the vm_map_entry, in which case 2630 * we need to use an exclusive lock on the map and we need to perform 2631 * various clipping operations. Otherwise we only need a read-lock 2632 * on the map. 2633 */ 2634 switch(behav) { 2635 case MADV_NORMAL: 2636 case MADV_SEQUENTIAL: 2637 case MADV_RANDOM: 2638 case MADV_NOSYNC: 2639 case MADV_AUTOSYNC: 2640 case MADV_NOCORE: 2641 case MADV_CORE: 2642 if (start == end) 2643 return (0); 2644 modify_map = true; 2645 vm_map_lock(map); 2646 break; 2647 case MADV_WILLNEED: 2648 case MADV_DONTNEED: 2649 case MADV_FREE: 2650 if (start == end) 2651 return (0); 2652 modify_map = false; 2653 vm_map_lock_read(map); 2654 break; 2655 default: 2656 return (EINVAL); 2657 } 2658 2659 /* 2660 * Locate starting entry and clip if necessary. 2661 */ 2662 VM_MAP_RANGE_CHECK(map, start, end); 2663 2664 if (vm_map_lookup_entry(map, start, &entry)) { 2665 if (modify_map) 2666 vm_map_clip_start(map, entry, start); 2667 } else { 2668 entry = entry->next; 2669 } 2670 2671 if (modify_map) { 2672 /* 2673 * madvise behaviors that are implemented in the vm_map_entry. 2674 * 2675 * We clip the vm_map_entry so that behavioral changes are 2676 * limited to the specified address range. 2677 */ 2678 for (current = entry; current->start < end; 2679 current = current->next) { 2680 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2681 continue; 2682 2683 vm_map_clip_end(map, current, end); 2684 2685 switch (behav) { 2686 case MADV_NORMAL: 2687 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2688 break; 2689 case MADV_SEQUENTIAL: 2690 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2691 break; 2692 case MADV_RANDOM: 2693 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2694 break; 2695 case MADV_NOSYNC: 2696 current->eflags |= MAP_ENTRY_NOSYNC; 2697 break; 2698 case MADV_AUTOSYNC: 2699 current->eflags &= ~MAP_ENTRY_NOSYNC; 2700 break; 2701 case MADV_NOCORE: 2702 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2703 break; 2704 case MADV_CORE: 2705 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2706 break; 2707 default: 2708 break; 2709 } 2710 vm_map_simplify_entry(map, current); 2711 } 2712 vm_map_unlock(map); 2713 } else { 2714 vm_pindex_t pstart, pend; 2715 2716 /* 2717 * madvise behaviors that are implemented in the underlying 2718 * vm_object. 2719 * 2720 * Since we don't clip the vm_map_entry, we have to clip 2721 * the vm_object pindex and count. 2722 */ 2723 for (current = entry; current->start < end; 2724 current = current->next) { 2725 vm_offset_t useEnd, useStart; 2726 2727 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2728 continue; 2729 2730 pstart = OFF_TO_IDX(current->offset); 2731 pend = pstart + atop(current->end - current->start); 2732 useStart = current->start; 2733 useEnd = current->end; 2734 2735 if (current->start < start) { 2736 pstart += atop(start - current->start); 2737 useStart = start; 2738 } 2739 if (current->end > end) { 2740 pend -= atop(current->end - end); 2741 useEnd = end; 2742 } 2743 2744 if (pstart >= pend) 2745 continue; 2746 2747 /* 2748 * Perform the pmap_advise() before clearing 2749 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2750 * concurrent pmap operation, such as pmap_remove(), 2751 * could clear a reference in the pmap and set 2752 * PGA_REFERENCED on the page before the pmap_advise() 2753 * had completed. Consequently, the page would appear 2754 * referenced based upon an old reference that 2755 * occurred before this pmap_advise() ran. 2756 */ 2757 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2758 pmap_advise(map->pmap, useStart, useEnd, 2759 behav); 2760 2761 vm_object_madvise(current->object.vm_object, pstart, 2762 pend, behav); 2763 2764 /* 2765 * Pre-populate paging structures in the 2766 * WILLNEED case. For wired entries, the 2767 * paging structures are already populated. 2768 */ 2769 if (behav == MADV_WILLNEED && 2770 current->wired_count == 0) { 2771 vm_map_pmap_enter(map, 2772 useStart, 2773 current->protection, 2774 current->object.vm_object, 2775 pstart, 2776 ptoa(pend - pstart), 2777 MAP_PREFAULT_MADVISE 2778 ); 2779 } 2780 } 2781 vm_map_unlock_read(map); 2782 } 2783 return (0); 2784 } 2785 2786 2787 /* 2788 * vm_map_inherit: 2789 * 2790 * Sets the inheritance of the specified address 2791 * range in the target map. Inheritance 2792 * affects how the map will be shared with 2793 * child maps at the time of vmspace_fork. 2794 */ 2795 int 2796 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2797 vm_inherit_t new_inheritance) 2798 { 2799 vm_map_entry_t entry; 2800 vm_map_entry_t temp_entry; 2801 2802 switch (new_inheritance) { 2803 case VM_INHERIT_NONE: 2804 case VM_INHERIT_COPY: 2805 case VM_INHERIT_SHARE: 2806 case VM_INHERIT_ZERO: 2807 break; 2808 default: 2809 return (KERN_INVALID_ARGUMENT); 2810 } 2811 if (start == end) 2812 return (KERN_SUCCESS); 2813 vm_map_lock(map); 2814 VM_MAP_RANGE_CHECK(map, start, end); 2815 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2816 entry = temp_entry; 2817 vm_map_clip_start(map, entry, start); 2818 } else 2819 entry = temp_entry->next; 2820 while (entry->start < end) { 2821 vm_map_clip_end(map, entry, end); 2822 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 2823 new_inheritance != VM_INHERIT_ZERO) 2824 entry->inheritance = new_inheritance; 2825 vm_map_simplify_entry(map, entry); 2826 entry = entry->next; 2827 } 2828 vm_map_unlock(map); 2829 return (KERN_SUCCESS); 2830 } 2831 2832 /* 2833 * vm_map_unwire: 2834 * 2835 * Implements both kernel and user unwiring. 2836 */ 2837 int 2838 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2839 int flags) 2840 { 2841 vm_map_entry_t entry, first_entry, tmp_entry; 2842 vm_offset_t saved_start; 2843 unsigned int last_timestamp; 2844 int rv; 2845 boolean_t need_wakeup, result, user_unwire; 2846 2847 if (start == end) 2848 return (KERN_SUCCESS); 2849 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2850 vm_map_lock(map); 2851 VM_MAP_RANGE_CHECK(map, start, end); 2852 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2853 if (flags & VM_MAP_WIRE_HOLESOK) 2854 first_entry = first_entry->next; 2855 else { 2856 vm_map_unlock(map); 2857 return (KERN_INVALID_ADDRESS); 2858 } 2859 } 2860 last_timestamp = map->timestamp; 2861 entry = first_entry; 2862 while (entry->start < end) { 2863 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2864 /* 2865 * We have not yet clipped the entry. 2866 */ 2867 saved_start = (start >= entry->start) ? start : 2868 entry->start; 2869 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2870 if (vm_map_unlock_and_wait(map, 0)) { 2871 /* 2872 * Allow interruption of user unwiring? 2873 */ 2874 } 2875 vm_map_lock(map); 2876 if (last_timestamp+1 != map->timestamp) { 2877 /* 2878 * Look again for the entry because the map was 2879 * modified while it was unlocked. 2880 * Specifically, the entry may have been 2881 * clipped, merged, or deleted. 2882 */ 2883 if (!vm_map_lookup_entry(map, saved_start, 2884 &tmp_entry)) { 2885 if (flags & VM_MAP_WIRE_HOLESOK) 2886 tmp_entry = tmp_entry->next; 2887 else { 2888 if (saved_start == start) { 2889 /* 2890 * First_entry has been deleted. 2891 */ 2892 vm_map_unlock(map); 2893 return (KERN_INVALID_ADDRESS); 2894 } 2895 end = saved_start; 2896 rv = KERN_INVALID_ADDRESS; 2897 goto done; 2898 } 2899 } 2900 if (entry == first_entry) 2901 first_entry = tmp_entry; 2902 else 2903 first_entry = NULL; 2904 entry = tmp_entry; 2905 } 2906 last_timestamp = map->timestamp; 2907 continue; 2908 } 2909 vm_map_clip_start(map, entry, start); 2910 vm_map_clip_end(map, entry, end); 2911 /* 2912 * Mark the entry in case the map lock is released. (See 2913 * above.) 2914 */ 2915 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2916 entry->wiring_thread == NULL, 2917 ("owned map entry %p", entry)); 2918 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2919 entry->wiring_thread = curthread; 2920 /* 2921 * Check the map for holes in the specified region. 2922 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2923 */ 2924 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2925 (entry->end < end && entry->next->start > entry->end)) { 2926 end = entry->end; 2927 rv = KERN_INVALID_ADDRESS; 2928 goto done; 2929 } 2930 /* 2931 * If system unwiring, require that the entry is system wired. 2932 */ 2933 if (!user_unwire && 2934 vm_map_entry_system_wired_count(entry) == 0) { 2935 end = entry->end; 2936 rv = KERN_INVALID_ARGUMENT; 2937 goto done; 2938 } 2939 entry = entry->next; 2940 } 2941 rv = KERN_SUCCESS; 2942 done: 2943 need_wakeup = FALSE; 2944 if (first_entry == NULL) { 2945 result = vm_map_lookup_entry(map, start, &first_entry); 2946 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2947 first_entry = first_entry->next; 2948 else 2949 KASSERT(result, ("vm_map_unwire: lookup failed")); 2950 } 2951 for (entry = first_entry; entry->start < end; entry = entry->next) { 2952 /* 2953 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2954 * space in the unwired region could have been mapped 2955 * while the map lock was dropped for draining 2956 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2957 * could be simultaneously wiring this new mapping 2958 * entry. Detect these cases and skip any entries 2959 * marked as in transition by us. 2960 */ 2961 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2962 entry->wiring_thread != curthread) { 2963 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2964 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2965 continue; 2966 } 2967 2968 if (rv == KERN_SUCCESS && (!user_unwire || 2969 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2970 if (entry->wired_count == 1) 2971 vm_map_entry_unwire(map, entry); 2972 else 2973 entry->wired_count--; 2974 if (user_unwire) 2975 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2976 } 2977 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2978 ("vm_map_unwire: in-transition flag missing %p", entry)); 2979 KASSERT(entry->wiring_thread == curthread, 2980 ("vm_map_unwire: alien wire %p", entry)); 2981 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2982 entry->wiring_thread = NULL; 2983 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2984 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2985 need_wakeup = TRUE; 2986 } 2987 vm_map_simplify_entry(map, entry); 2988 } 2989 vm_map_unlock(map); 2990 if (need_wakeup) 2991 vm_map_wakeup(map); 2992 return (rv); 2993 } 2994 2995 static void 2996 vm_map_wire_user_count_sub(u_long npages) 2997 { 2998 2999 atomic_subtract_long(&vm_user_wire_count, npages); 3000 } 3001 3002 static bool 3003 vm_map_wire_user_count_add(u_long npages) 3004 { 3005 u_long wired; 3006 3007 wired = vm_user_wire_count; 3008 do { 3009 if (npages + wired > vm_page_max_user_wired) 3010 return (false); 3011 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3012 npages + wired)); 3013 3014 return (true); 3015 } 3016 3017 /* 3018 * vm_map_wire_entry_failure: 3019 * 3020 * Handle a wiring failure on the given entry. 3021 * 3022 * The map should be locked. 3023 */ 3024 static void 3025 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3026 vm_offset_t failed_addr) 3027 { 3028 3029 VM_MAP_ASSERT_LOCKED(map); 3030 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3031 entry->wired_count == 1, 3032 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3033 KASSERT(failed_addr < entry->end, 3034 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3035 3036 /* 3037 * If any pages at the start of this entry were successfully wired, 3038 * then unwire them. 3039 */ 3040 if (failed_addr > entry->start) { 3041 pmap_unwire(map->pmap, entry->start, failed_addr); 3042 vm_object_unwire(entry->object.vm_object, entry->offset, 3043 failed_addr - entry->start, PQ_ACTIVE); 3044 } 3045 3046 /* 3047 * Assign an out-of-range value to represent the failure to wire this 3048 * entry. 3049 */ 3050 entry->wired_count = -1; 3051 } 3052 3053 int 3054 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3055 { 3056 int rv; 3057 3058 vm_map_lock(map); 3059 rv = vm_map_wire_locked(map, start, end, flags); 3060 vm_map_unlock(map); 3061 return (rv); 3062 } 3063 3064 3065 /* 3066 * vm_map_wire_locked: 3067 * 3068 * Implements both kernel and user wiring. Returns with the map locked, 3069 * the map lock may be dropped. 3070 */ 3071 int 3072 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3073 { 3074 vm_map_entry_t entry, first_entry, tmp_entry; 3075 vm_offset_t faddr, saved_end, saved_start; 3076 u_long npages; 3077 u_int last_timestamp; 3078 int rv; 3079 boolean_t need_wakeup, result, user_wire; 3080 vm_prot_t prot; 3081 3082 VM_MAP_ASSERT_LOCKED(map); 3083 3084 if (start == end) 3085 return (KERN_SUCCESS); 3086 prot = 0; 3087 if (flags & VM_MAP_WIRE_WRITE) 3088 prot |= VM_PROT_WRITE; 3089 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 3090 VM_MAP_RANGE_CHECK(map, start, end); 3091 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3092 if (flags & VM_MAP_WIRE_HOLESOK) 3093 first_entry = first_entry->next; 3094 else 3095 return (KERN_INVALID_ADDRESS); 3096 } 3097 last_timestamp = map->timestamp; 3098 entry = first_entry; 3099 while (entry->start < end) { 3100 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3101 /* 3102 * We have not yet clipped the entry. 3103 */ 3104 saved_start = (start >= entry->start) ? start : 3105 entry->start; 3106 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3107 if (vm_map_unlock_and_wait(map, 0)) { 3108 /* 3109 * Allow interruption of user wiring? 3110 */ 3111 } 3112 vm_map_lock(map); 3113 if (last_timestamp + 1 != map->timestamp) { 3114 /* 3115 * Look again for the entry because the map was 3116 * modified while it was unlocked. 3117 * Specifically, the entry may have been 3118 * clipped, merged, or deleted. 3119 */ 3120 if (!vm_map_lookup_entry(map, saved_start, 3121 &tmp_entry)) { 3122 if (flags & VM_MAP_WIRE_HOLESOK) 3123 tmp_entry = tmp_entry->next; 3124 else { 3125 if (saved_start == start) { 3126 /* 3127 * first_entry has been deleted. 3128 */ 3129 return (KERN_INVALID_ADDRESS); 3130 } 3131 end = saved_start; 3132 rv = KERN_INVALID_ADDRESS; 3133 goto done; 3134 } 3135 } 3136 if (entry == first_entry) 3137 first_entry = tmp_entry; 3138 else 3139 first_entry = NULL; 3140 entry = tmp_entry; 3141 } 3142 last_timestamp = map->timestamp; 3143 continue; 3144 } 3145 vm_map_clip_start(map, entry, start); 3146 vm_map_clip_end(map, entry, end); 3147 /* 3148 * Mark the entry in case the map lock is released. (See 3149 * above.) 3150 */ 3151 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3152 entry->wiring_thread == NULL, 3153 ("owned map entry %p", entry)); 3154 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3155 entry->wiring_thread = curthread; 3156 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3157 || (entry->protection & prot) != prot) { 3158 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3159 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 3160 end = entry->end; 3161 rv = KERN_INVALID_ADDRESS; 3162 goto done; 3163 } 3164 goto next_entry; 3165 } 3166 if (entry->wired_count == 0) { 3167 entry->wired_count++; 3168 3169 npages = atop(entry->end - entry->start); 3170 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3171 vm_map_wire_entry_failure(map, entry, 3172 entry->start); 3173 end = entry->end; 3174 rv = KERN_RESOURCE_SHORTAGE; 3175 goto done; 3176 } 3177 3178 /* 3179 * Release the map lock, relying on the in-transition 3180 * mark. Mark the map busy for fork. 3181 */ 3182 saved_start = entry->start; 3183 saved_end = entry->end; 3184 vm_map_busy(map); 3185 vm_map_unlock(map); 3186 3187 faddr = saved_start; 3188 do { 3189 /* 3190 * Simulate a fault to get the page and enter 3191 * it into the physical map. 3192 */ 3193 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 3194 VM_FAULT_WIRE)) != KERN_SUCCESS) 3195 break; 3196 } while ((faddr += PAGE_SIZE) < saved_end); 3197 vm_map_lock(map); 3198 vm_map_unbusy(map); 3199 if (last_timestamp + 1 != map->timestamp) { 3200 /* 3201 * Look again for the entry because the map was 3202 * modified while it was unlocked. The entry 3203 * may have been clipped, but NOT merged or 3204 * deleted. 3205 */ 3206 result = vm_map_lookup_entry(map, saved_start, 3207 &tmp_entry); 3208 KASSERT(result, ("vm_map_wire: lookup failed")); 3209 if (entry == first_entry) 3210 first_entry = tmp_entry; 3211 else 3212 first_entry = NULL; 3213 entry = tmp_entry; 3214 while (entry->end < saved_end) { 3215 /* 3216 * In case of failure, handle entries 3217 * that were not fully wired here; 3218 * fully wired entries are handled 3219 * later. 3220 */ 3221 if (rv != KERN_SUCCESS && 3222 faddr < entry->end) 3223 vm_map_wire_entry_failure(map, 3224 entry, faddr); 3225 entry = entry->next; 3226 } 3227 } 3228 last_timestamp = map->timestamp; 3229 if (rv != KERN_SUCCESS) { 3230 vm_map_wire_entry_failure(map, entry, faddr); 3231 if (user_wire) 3232 vm_map_wire_user_count_sub(npages); 3233 end = entry->end; 3234 goto done; 3235 } 3236 } else if (!user_wire || 3237 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3238 entry->wired_count++; 3239 } 3240 /* 3241 * Check the map for holes in the specified region. 3242 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 3243 */ 3244 next_entry: 3245 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 && 3246 entry->end < end && entry->next->start > entry->end) { 3247 end = entry->end; 3248 rv = KERN_INVALID_ADDRESS; 3249 goto done; 3250 } 3251 entry = entry->next; 3252 } 3253 rv = KERN_SUCCESS; 3254 done: 3255 need_wakeup = FALSE; 3256 if (first_entry == NULL) { 3257 result = vm_map_lookup_entry(map, start, &first_entry); 3258 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 3259 first_entry = first_entry->next; 3260 else 3261 KASSERT(result, ("vm_map_wire: lookup failed")); 3262 } 3263 for (entry = first_entry; entry->start < end; entry = entry->next) { 3264 /* 3265 * If VM_MAP_WIRE_HOLESOK was specified, an empty 3266 * space in the unwired region could have been mapped 3267 * while the map lock was dropped for faulting in the 3268 * pages or draining MAP_ENTRY_IN_TRANSITION. 3269 * Moreover, another thread could be simultaneously 3270 * wiring this new mapping entry. Detect these cases 3271 * and skip any entries marked as in transition not by us. 3272 */ 3273 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3274 entry->wiring_thread != curthread) { 3275 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 3276 ("vm_map_wire: !HOLESOK and new/changed entry")); 3277 continue; 3278 } 3279 3280 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 3281 goto next_entry_done; 3282 3283 if (rv == KERN_SUCCESS) { 3284 if (user_wire) 3285 entry->eflags |= MAP_ENTRY_USER_WIRED; 3286 } else if (entry->wired_count == -1) { 3287 /* 3288 * Wiring failed on this entry. Thus, unwiring is 3289 * unnecessary. 3290 */ 3291 entry->wired_count = 0; 3292 } else if (!user_wire || 3293 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3294 /* 3295 * Undo the wiring. Wiring succeeded on this entry 3296 * but failed on a later entry. 3297 */ 3298 if (entry->wired_count == 1) { 3299 vm_map_entry_unwire(map, entry); 3300 if (user_wire) 3301 vm_map_wire_user_count_sub( 3302 atop(entry->end - entry->start)); 3303 } else 3304 entry->wired_count--; 3305 } 3306 next_entry_done: 3307 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3308 ("vm_map_wire: in-transition flag missing %p", entry)); 3309 KASSERT(entry->wiring_thread == curthread, 3310 ("vm_map_wire: alien wire %p", entry)); 3311 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3312 MAP_ENTRY_WIRE_SKIPPED); 3313 entry->wiring_thread = NULL; 3314 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3315 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3316 need_wakeup = TRUE; 3317 } 3318 vm_map_simplify_entry(map, entry); 3319 } 3320 if (need_wakeup) 3321 vm_map_wakeup(map); 3322 return (rv); 3323 } 3324 3325 /* 3326 * vm_map_sync 3327 * 3328 * Push any dirty cached pages in the address range to their pager. 3329 * If syncio is TRUE, dirty pages are written synchronously. 3330 * If invalidate is TRUE, any cached pages are freed as well. 3331 * 3332 * If the size of the region from start to end is zero, we are 3333 * supposed to flush all modified pages within the region containing 3334 * start. Unfortunately, a region can be split or coalesced with 3335 * neighboring regions, making it difficult to determine what the 3336 * original region was. Therefore, we approximate this requirement by 3337 * flushing the current region containing start. 3338 * 3339 * Returns an error if any part of the specified range is not mapped. 3340 */ 3341 int 3342 vm_map_sync( 3343 vm_map_t map, 3344 vm_offset_t start, 3345 vm_offset_t end, 3346 boolean_t syncio, 3347 boolean_t invalidate) 3348 { 3349 vm_map_entry_t current; 3350 vm_map_entry_t entry; 3351 vm_size_t size; 3352 vm_object_t object; 3353 vm_ooffset_t offset; 3354 unsigned int last_timestamp; 3355 boolean_t failed; 3356 3357 vm_map_lock_read(map); 3358 VM_MAP_RANGE_CHECK(map, start, end); 3359 if (!vm_map_lookup_entry(map, start, &entry)) { 3360 vm_map_unlock_read(map); 3361 return (KERN_INVALID_ADDRESS); 3362 } else if (start == end) { 3363 start = entry->start; 3364 end = entry->end; 3365 } 3366 /* 3367 * Make a first pass to check for user-wired memory and holes. 3368 */ 3369 for (current = entry; current->start < end; current = current->next) { 3370 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 3371 vm_map_unlock_read(map); 3372 return (KERN_INVALID_ARGUMENT); 3373 } 3374 if (end > current->end && 3375 current->end != current->next->start) { 3376 vm_map_unlock_read(map); 3377 return (KERN_INVALID_ADDRESS); 3378 } 3379 } 3380 3381 if (invalidate) 3382 pmap_remove(map->pmap, start, end); 3383 failed = FALSE; 3384 3385 /* 3386 * Make a second pass, cleaning/uncaching pages from the indicated 3387 * objects as we go. 3388 */ 3389 for (current = entry; current->start < end;) { 3390 offset = current->offset + (start - current->start); 3391 size = (end <= current->end ? end : current->end) - start; 3392 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 3393 vm_map_t smap; 3394 vm_map_entry_t tentry; 3395 vm_size_t tsize; 3396 3397 smap = current->object.sub_map; 3398 vm_map_lock_read(smap); 3399 (void) vm_map_lookup_entry(smap, offset, &tentry); 3400 tsize = tentry->end - offset; 3401 if (tsize < size) 3402 size = tsize; 3403 object = tentry->object.vm_object; 3404 offset = tentry->offset + (offset - tentry->start); 3405 vm_map_unlock_read(smap); 3406 } else { 3407 object = current->object.vm_object; 3408 } 3409 vm_object_reference(object); 3410 last_timestamp = map->timestamp; 3411 vm_map_unlock_read(map); 3412 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3413 failed = TRUE; 3414 start += size; 3415 vm_object_deallocate(object); 3416 vm_map_lock_read(map); 3417 if (last_timestamp == map->timestamp || 3418 !vm_map_lookup_entry(map, start, ¤t)) 3419 current = current->next; 3420 } 3421 3422 vm_map_unlock_read(map); 3423 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3424 } 3425 3426 /* 3427 * vm_map_entry_unwire: [ internal use only ] 3428 * 3429 * Make the region specified by this entry pageable. 3430 * 3431 * The map in question should be locked. 3432 * [This is the reason for this routine's existence.] 3433 */ 3434 static void 3435 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3436 { 3437 vm_size_t size; 3438 3439 VM_MAP_ASSERT_LOCKED(map); 3440 KASSERT(entry->wired_count > 0, 3441 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3442 3443 size = entry->end - entry->start; 3444 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3445 vm_map_wire_user_count_sub(atop(size)); 3446 pmap_unwire(map->pmap, entry->start, entry->end); 3447 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3448 PQ_ACTIVE); 3449 entry->wired_count = 0; 3450 } 3451 3452 static void 3453 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3454 { 3455 3456 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3457 vm_object_deallocate(entry->object.vm_object); 3458 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3459 } 3460 3461 /* 3462 * vm_map_entry_delete: [ internal use only ] 3463 * 3464 * Deallocate the given entry from the target map. 3465 */ 3466 static void 3467 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3468 { 3469 vm_object_t object; 3470 vm_pindex_t offidxstart, offidxend, count, size1; 3471 vm_size_t size; 3472 3473 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3474 object = entry->object.vm_object; 3475 3476 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3477 MPASS(entry->cred == NULL); 3478 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3479 MPASS(object == NULL); 3480 vm_map_entry_deallocate(entry, map->system_map); 3481 return; 3482 } 3483 3484 size = entry->end - entry->start; 3485 map->size -= size; 3486 3487 if (entry->cred != NULL) { 3488 swap_release_by_cred(size, entry->cred); 3489 crfree(entry->cred); 3490 } 3491 3492 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 3493 (object != NULL)) { 3494 KASSERT(entry->cred == NULL || object->cred == NULL || 3495 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3496 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3497 count = atop(size); 3498 offidxstart = OFF_TO_IDX(entry->offset); 3499 offidxend = offidxstart + count; 3500 VM_OBJECT_WLOCK(object); 3501 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT | 3502 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 3503 object == kernel_object)) { 3504 vm_object_collapse(object); 3505 3506 /* 3507 * The option OBJPR_NOTMAPPED can be passed here 3508 * because vm_map_delete() already performed 3509 * pmap_remove() on the only mapping to this range 3510 * of pages. 3511 */ 3512 vm_object_page_remove(object, offidxstart, offidxend, 3513 OBJPR_NOTMAPPED); 3514 if (object->type == OBJT_SWAP) 3515 swap_pager_freespace(object, offidxstart, 3516 count); 3517 if (offidxend >= object->size && 3518 offidxstart < object->size) { 3519 size1 = object->size; 3520 object->size = offidxstart; 3521 if (object->cred != NULL) { 3522 size1 -= object->size; 3523 KASSERT(object->charge >= ptoa(size1), 3524 ("object %p charge < 0", object)); 3525 swap_release_by_cred(ptoa(size1), 3526 object->cred); 3527 object->charge -= ptoa(size1); 3528 } 3529 } 3530 } 3531 VM_OBJECT_WUNLOCK(object); 3532 } else 3533 entry->object.vm_object = NULL; 3534 if (map->system_map) 3535 vm_map_entry_deallocate(entry, TRUE); 3536 else { 3537 entry->next = curthread->td_map_def_user; 3538 curthread->td_map_def_user = entry; 3539 } 3540 } 3541 3542 /* 3543 * vm_map_delete: [ internal use only ] 3544 * 3545 * Deallocates the given address range from the target 3546 * map. 3547 */ 3548 int 3549 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3550 { 3551 vm_map_entry_t entry; 3552 vm_map_entry_t first_entry; 3553 3554 VM_MAP_ASSERT_LOCKED(map); 3555 if (start == end) 3556 return (KERN_SUCCESS); 3557 3558 /* 3559 * Find the start of the region, and clip it 3560 */ 3561 if (!vm_map_lookup_entry(map, start, &first_entry)) 3562 entry = first_entry->next; 3563 else { 3564 entry = first_entry; 3565 vm_map_clip_start(map, entry, start); 3566 } 3567 3568 /* 3569 * Step through all entries in this region 3570 */ 3571 while (entry->start < end) { 3572 vm_map_entry_t next; 3573 3574 /* 3575 * Wait for wiring or unwiring of an entry to complete. 3576 * Also wait for any system wirings to disappear on 3577 * user maps. 3578 */ 3579 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3580 (vm_map_pmap(map) != kernel_pmap && 3581 vm_map_entry_system_wired_count(entry) != 0)) { 3582 unsigned int last_timestamp; 3583 vm_offset_t saved_start; 3584 vm_map_entry_t tmp_entry; 3585 3586 saved_start = entry->start; 3587 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3588 last_timestamp = map->timestamp; 3589 (void) vm_map_unlock_and_wait(map, 0); 3590 vm_map_lock(map); 3591 if (last_timestamp + 1 != map->timestamp) { 3592 /* 3593 * Look again for the entry because the map was 3594 * modified while it was unlocked. 3595 * Specifically, the entry may have been 3596 * clipped, merged, or deleted. 3597 */ 3598 if (!vm_map_lookup_entry(map, saved_start, 3599 &tmp_entry)) 3600 entry = tmp_entry->next; 3601 else { 3602 entry = tmp_entry; 3603 vm_map_clip_start(map, entry, 3604 saved_start); 3605 } 3606 } 3607 continue; 3608 } 3609 vm_map_clip_end(map, entry, end); 3610 3611 next = entry->next; 3612 3613 /* 3614 * Unwire before removing addresses from the pmap; otherwise, 3615 * unwiring will put the entries back in the pmap. 3616 */ 3617 if (entry->wired_count != 0) 3618 vm_map_entry_unwire(map, entry); 3619 3620 /* 3621 * Remove mappings for the pages, but only if the 3622 * mappings could exist. For instance, it does not 3623 * make sense to call pmap_remove() for guard entries. 3624 */ 3625 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3626 entry->object.vm_object != NULL) 3627 pmap_remove(map->pmap, entry->start, entry->end); 3628 3629 if (entry->end == map->anon_loc) 3630 map->anon_loc = entry->start; 3631 3632 /* 3633 * Delete the entry only after removing all pmap 3634 * entries pointing to its pages. (Otherwise, its 3635 * page frames may be reallocated, and any modify bits 3636 * will be set in the wrong object!) 3637 */ 3638 vm_map_entry_delete(map, entry); 3639 entry = next; 3640 } 3641 return (KERN_SUCCESS); 3642 } 3643 3644 /* 3645 * vm_map_remove: 3646 * 3647 * Remove the given address range from the target map. 3648 * This is the exported form of vm_map_delete. 3649 */ 3650 int 3651 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3652 { 3653 int result; 3654 3655 vm_map_lock(map); 3656 VM_MAP_RANGE_CHECK(map, start, end); 3657 result = vm_map_delete(map, start, end); 3658 vm_map_unlock(map); 3659 return (result); 3660 } 3661 3662 /* 3663 * vm_map_check_protection: 3664 * 3665 * Assert that the target map allows the specified privilege on the 3666 * entire address region given. The entire region must be allocated. 3667 * 3668 * WARNING! This code does not and should not check whether the 3669 * contents of the region is accessible. For example a smaller file 3670 * might be mapped into a larger address space. 3671 * 3672 * NOTE! This code is also called by munmap(). 3673 * 3674 * The map must be locked. A read lock is sufficient. 3675 */ 3676 boolean_t 3677 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3678 vm_prot_t protection) 3679 { 3680 vm_map_entry_t entry; 3681 vm_map_entry_t tmp_entry; 3682 3683 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3684 return (FALSE); 3685 entry = tmp_entry; 3686 3687 while (start < end) { 3688 /* 3689 * No holes allowed! 3690 */ 3691 if (start < entry->start) 3692 return (FALSE); 3693 /* 3694 * Check protection associated with entry. 3695 */ 3696 if ((entry->protection & protection) != protection) 3697 return (FALSE); 3698 /* go to next entry */ 3699 start = entry->end; 3700 entry = entry->next; 3701 } 3702 return (TRUE); 3703 } 3704 3705 /* 3706 * vm_map_copy_entry: 3707 * 3708 * Copies the contents of the source entry to the destination 3709 * entry. The entries *must* be aligned properly. 3710 */ 3711 static void 3712 vm_map_copy_entry( 3713 vm_map_t src_map, 3714 vm_map_t dst_map, 3715 vm_map_entry_t src_entry, 3716 vm_map_entry_t dst_entry, 3717 vm_ooffset_t *fork_charge) 3718 { 3719 vm_object_t src_object; 3720 vm_map_entry_t fake_entry; 3721 vm_offset_t size; 3722 struct ucred *cred; 3723 int charged; 3724 3725 VM_MAP_ASSERT_LOCKED(dst_map); 3726 3727 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3728 return; 3729 3730 if (src_entry->wired_count == 0 || 3731 (src_entry->protection & VM_PROT_WRITE) == 0) { 3732 /* 3733 * If the source entry is marked needs_copy, it is already 3734 * write-protected. 3735 */ 3736 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3737 (src_entry->protection & VM_PROT_WRITE) != 0) { 3738 pmap_protect(src_map->pmap, 3739 src_entry->start, 3740 src_entry->end, 3741 src_entry->protection & ~VM_PROT_WRITE); 3742 } 3743 3744 /* 3745 * Make a copy of the object. 3746 */ 3747 size = src_entry->end - src_entry->start; 3748 if ((src_object = src_entry->object.vm_object) != NULL) { 3749 VM_OBJECT_WLOCK(src_object); 3750 charged = ENTRY_CHARGED(src_entry); 3751 if (src_object->handle == NULL && 3752 (src_object->type == OBJT_DEFAULT || 3753 src_object->type == OBJT_SWAP)) { 3754 vm_object_collapse(src_object); 3755 if ((src_object->flags & (OBJ_NOSPLIT | 3756 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3757 vm_object_split(src_entry); 3758 src_object = 3759 src_entry->object.vm_object; 3760 } 3761 } 3762 vm_object_reference_locked(src_object); 3763 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3764 if (src_entry->cred != NULL && 3765 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3766 KASSERT(src_object->cred == NULL, 3767 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3768 src_object)); 3769 src_object->cred = src_entry->cred; 3770 src_object->charge = size; 3771 } 3772 VM_OBJECT_WUNLOCK(src_object); 3773 dst_entry->object.vm_object = src_object; 3774 if (charged) { 3775 cred = curthread->td_ucred; 3776 crhold(cred); 3777 dst_entry->cred = cred; 3778 *fork_charge += size; 3779 if (!(src_entry->eflags & 3780 MAP_ENTRY_NEEDS_COPY)) { 3781 crhold(cred); 3782 src_entry->cred = cred; 3783 *fork_charge += size; 3784 } 3785 } 3786 src_entry->eflags |= MAP_ENTRY_COW | 3787 MAP_ENTRY_NEEDS_COPY; 3788 dst_entry->eflags |= MAP_ENTRY_COW | 3789 MAP_ENTRY_NEEDS_COPY; 3790 dst_entry->offset = src_entry->offset; 3791 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3792 /* 3793 * MAP_ENTRY_VN_WRITECNT cannot 3794 * indicate write reference from 3795 * src_entry, since the entry is 3796 * marked as needs copy. Allocate a 3797 * fake entry that is used to 3798 * decrement object->un_pager.vnp.writecount 3799 * at the appropriate time. Attach 3800 * fake_entry to the deferred list. 3801 */ 3802 fake_entry = vm_map_entry_create(dst_map); 3803 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3804 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3805 vm_object_reference(src_object); 3806 fake_entry->object.vm_object = src_object; 3807 fake_entry->start = src_entry->start; 3808 fake_entry->end = src_entry->end; 3809 fake_entry->next = curthread->td_map_def_user; 3810 curthread->td_map_def_user = fake_entry; 3811 } 3812 3813 pmap_copy(dst_map->pmap, src_map->pmap, 3814 dst_entry->start, dst_entry->end - dst_entry->start, 3815 src_entry->start); 3816 } else { 3817 dst_entry->object.vm_object = NULL; 3818 dst_entry->offset = 0; 3819 if (src_entry->cred != NULL) { 3820 dst_entry->cred = curthread->td_ucred; 3821 crhold(dst_entry->cred); 3822 *fork_charge += size; 3823 } 3824 } 3825 } else { 3826 /* 3827 * We don't want to make writeable wired pages copy-on-write. 3828 * Immediately copy these pages into the new map by simulating 3829 * page faults. The new pages are pageable. 3830 */ 3831 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3832 fork_charge); 3833 } 3834 } 3835 3836 /* 3837 * vmspace_map_entry_forked: 3838 * Update the newly-forked vmspace each time a map entry is inherited 3839 * or copied. The values for vm_dsize and vm_tsize are approximate 3840 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3841 */ 3842 static void 3843 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3844 vm_map_entry_t entry) 3845 { 3846 vm_size_t entrysize; 3847 vm_offset_t newend; 3848 3849 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 3850 return; 3851 entrysize = entry->end - entry->start; 3852 vm2->vm_map.size += entrysize; 3853 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3854 vm2->vm_ssize += btoc(entrysize); 3855 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3856 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3857 newend = MIN(entry->end, 3858 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3859 vm2->vm_dsize += btoc(newend - entry->start); 3860 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3861 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3862 newend = MIN(entry->end, 3863 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3864 vm2->vm_tsize += btoc(newend - entry->start); 3865 } 3866 } 3867 3868 /* 3869 * vmspace_fork: 3870 * Create a new process vmspace structure and vm_map 3871 * based on those of an existing process. The new map 3872 * is based on the old map, according to the inheritance 3873 * values on the regions in that map. 3874 * 3875 * XXX It might be worth coalescing the entries added to the new vmspace. 3876 * 3877 * The source map must not be locked. 3878 */ 3879 struct vmspace * 3880 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3881 { 3882 struct vmspace *vm2; 3883 vm_map_t new_map, old_map; 3884 vm_map_entry_t new_entry, old_entry; 3885 vm_object_t object; 3886 int error, locked; 3887 vm_inherit_t inh; 3888 3889 old_map = &vm1->vm_map; 3890 /* Copy immutable fields of vm1 to vm2. */ 3891 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 3892 pmap_pinit); 3893 if (vm2 == NULL) 3894 return (NULL); 3895 3896 vm2->vm_taddr = vm1->vm_taddr; 3897 vm2->vm_daddr = vm1->vm_daddr; 3898 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3899 vm_map_lock(old_map); 3900 if (old_map->busy) 3901 vm_map_wait_busy(old_map); 3902 new_map = &vm2->vm_map; 3903 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3904 KASSERT(locked, ("vmspace_fork: lock failed")); 3905 3906 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 3907 if (error != 0) { 3908 sx_xunlock(&old_map->lock); 3909 sx_xunlock(&new_map->lock); 3910 vm_map_process_deferred(); 3911 vmspace_free(vm2); 3912 return (NULL); 3913 } 3914 3915 new_map->anon_loc = old_map->anon_loc; 3916 3917 old_entry = old_map->header.next; 3918 3919 while (old_entry != &old_map->header) { 3920 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3921 panic("vm_map_fork: encountered a submap"); 3922 3923 inh = old_entry->inheritance; 3924 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 3925 inh != VM_INHERIT_NONE) 3926 inh = VM_INHERIT_COPY; 3927 3928 switch (inh) { 3929 case VM_INHERIT_NONE: 3930 break; 3931 3932 case VM_INHERIT_SHARE: 3933 /* 3934 * Clone the entry, creating the shared object if necessary. 3935 */ 3936 object = old_entry->object.vm_object; 3937 if (object == NULL) { 3938 object = vm_object_allocate(OBJT_DEFAULT, 3939 atop(old_entry->end - old_entry->start)); 3940 old_entry->object.vm_object = object; 3941 old_entry->offset = 0; 3942 if (old_entry->cred != NULL) { 3943 object->cred = old_entry->cred; 3944 object->charge = old_entry->end - 3945 old_entry->start; 3946 old_entry->cred = NULL; 3947 } 3948 } 3949 3950 /* 3951 * Add the reference before calling vm_object_shadow 3952 * to insure that a shadow object is created. 3953 */ 3954 vm_object_reference(object); 3955 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3956 vm_object_shadow(&old_entry->object.vm_object, 3957 &old_entry->offset, 3958 old_entry->end - old_entry->start); 3959 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3960 /* Transfer the second reference too. */ 3961 vm_object_reference( 3962 old_entry->object.vm_object); 3963 3964 /* 3965 * As in vm_map_simplify_entry(), the 3966 * vnode lock will not be acquired in 3967 * this call to vm_object_deallocate(). 3968 */ 3969 vm_object_deallocate(object); 3970 object = old_entry->object.vm_object; 3971 } 3972 VM_OBJECT_WLOCK(object); 3973 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3974 if (old_entry->cred != NULL) { 3975 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3976 object->cred = old_entry->cred; 3977 object->charge = old_entry->end - old_entry->start; 3978 old_entry->cred = NULL; 3979 } 3980 3981 /* 3982 * Assert the correct state of the vnode 3983 * v_writecount while the object is locked, to 3984 * not relock it later for the assertion 3985 * correctness. 3986 */ 3987 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3988 object->type == OBJT_VNODE) { 3989 KASSERT(((struct vnode *)object->handle)-> 3990 v_writecount > 0, 3991 ("vmspace_fork: v_writecount %p", object)); 3992 KASSERT(object->un_pager.vnp.writemappings > 0, 3993 ("vmspace_fork: vnp.writecount %p", 3994 object)); 3995 } 3996 VM_OBJECT_WUNLOCK(object); 3997 3998 /* 3999 * Clone the entry, referencing the shared object. 4000 */ 4001 new_entry = vm_map_entry_create(new_map); 4002 *new_entry = *old_entry; 4003 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4004 MAP_ENTRY_IN_TRANSITION); 4005 new_entry->wiring_thread = NULL; 4006 new_entry->wired_count = 0; 4007 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 4008 vnode_pager_update_writecount(object, 4009 new_entry->start, new_entry->end); 4010 } 4011 vm_map_entry_set_vnode_text(new_entry, true); 4012 4013 /* 4014 * Insert the entry into the new map -- we know we're 4015 * inserting at the end of the new map. 4016 */ 4017 vm_map_entry_link(new_map, new_entry); 4018 vmspace_map_entry_forked(vm1, vm2, new_entry); 4019 4020 /* 4021 * Update the physical map 4022 */ 4023 pmap_copy(new_map->pmap, old_map->pmap, 4024 new_entry->start, 4025 (old_entry->end - old_entry->start), 4026 old_entry->start); 4027 break; 4028 4029 case VM_INHERIT_COPY: 4030 /* 4031 * Clone the entry and link into the map. 4032 */ 4033 new_entry = vm_map_entry_create(new_map); 4034 *new_entry = *old_entry; 4035 /* 4036 * Copied entry is COW over the old object. 4037 */ 4038 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4039 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 4040 new_entry->wiring_thread = NULL; 4041 new_entry->wired_count = 0; 4042 new_entry->object.vm_object = NULL; 4043 new_entry->cred = NULL; 4044 vm_map_entry_link(new_map, new_entry); 4045 vmspace_map_entry_forked(vm1, vm2, new_entry); 4046 vm_map_copy_entry(old_map, new_map, old_entry, 4047 new_entry, fork_charge); 4048 vm_map_entry_set_vnode_text(new_entry, true); 4049 break; 4050 4051 case VM_INHERIT_ZERO: 4052 /* 4053 * Create a new anonymous mapping entry modelled from 4054 * the old one. 4055 */ 4056 new_entry = vm_map_entry_create(new_map); 4057 memset(new_entry, 0, sizeof(*new_entry)); 4058 4059 new_entry->start = old_entry->start; 4060 new_entry->end = old_entry->end; 4061 new_entry->eflags = old_entry->eflags & 4062 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4063 MAP_ENTRY_VN_WRITECNT | MAP_ENTRY_VN_EXEC); 4064 new_entry->protection = old_entry->protection; 4065 new_entry->max_protection = old_entry->max_protection; 4066 new_entry->inheritance = VM_INHERIT_ZERO; 4067 4068 vm_map_entry_link(new_map, new_entry); 4069 vmspace_map_entry_forked(vm1, vm2, new_entry); 4070 4071 new_entry->cred = curthread->td_ucred; 4072 crhold(new_entry->cred); 4073 *fork_charge += (new_entry->end - new_entry->start); 4074 4075 break; 4076 } 4077 old_entry = old_entry->next; 4078 } 4079 /* 4080 * Use inlined vm_map_unlock() to postpone handling the deferred 4081 * map entries, which cannot be done until both old_map and 4082 * new_map locks are released. 4083 */ 4084 sx_xunlock(&old_map->lock); 4085 sx_xunlock(&new_map->lock); 4086 vm_map_process_deferred(); 4087 4088 return (vm2); 4089 } 4090 4091 /* 4092 * Create a process's stack for exec_new_vmspace(). This function is never 4093 * asked to wire the newly created stack. 4094 */ 4095 int 4096 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4097 vm_prot_t prot, vm_prot_t max, int cow) 4098 { 4099 vm_size_t growsize, init_ssize; 4100 rlim_t vmemlim; 4101 int rv; 4102 4103 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4104 growsize = sgrowsiz; 4105 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4106 vm_map_lock(map); 4107 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4108 /* If we would blow our VMEM resource limit, no go */ 4109 if (map->size + init_ssize > vmemlim) { 4110 rv = KERN_NO_SPACE; 4111 goto out; 4112 } 4113 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4114 max, cow); 4115 out: 4116 vm_map_unlock(map); 4117 return (rv); 4118 } 4119 4120 static int stack_guard_page = 1; 4121 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4122 &stack_guard_page, 0, 4123 "Specifies the number of guard pages for a stack that grows"); 4124 4125 static int 4126 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4127 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4128 { 4129 vm_map_entry_t new_entry, prev_entry; 4130 vm_offset_t bot, gap_bot, gap_top, top; 4131 vm_size_t init_ssize, sgp; 4132 int orient, rv; 4133 4134 /* 4135 * The stack orientation is piggybacked with the cow argument. 4136 * Extract it into orient and mask the cow argument so that we 4137 * don't pass it around further. 4138 */ 4139 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4140 KASSERT(orient != 0, ("No stack grow direction")); 4141 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4142 ("bi-dir stack")); 4143 4144 if (addrbos < vm_map_min(map) || 4145 addrbos + max_ssize > vm_map_max(map) || 4146 addrbos + max_ssize <= addrbos) 4147 return (KERN_INVALID_ADDRESS); 4148 sgp = (vm_size_t)stack_guard_page * PAGE_SIZE; 4149 if (sgp >= max_ssize) 4150 return (KERN_INVALID_ARGUMENT); 4151 4152 init_ssize = growsize; 4153 if (max_ssize < init_ssize + sgp) 4154 init_ssize = max_ssize - sgp; 4155 4156 /* If addr is already mapped, no go */ 4157 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4158 return (KERN_NO_SPACE); 4159 4160 /* 4161 * If we can't accommodate max_ssize in the current mapping, no go. 4162 */ 4163 if (prev_entry->next->start < addrbos + max_ssize) 4164 return (KERN_NO_SPACE); 4165 4166 /* 4167 * We initially map a stack of only init_ssize. We will grow as 4168 * needed later. Depending on the orientation of the stack (i.e. 4169 * the grow direction) we either map at the top of the range, the 4170 * bottom of the range or in the middle. 4171 * 4172 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4173 * and cow to be 0. Possibly we should eliminate these as input 4174 * parameters, and just pass these values here in the insert call. 4175 */ 4176 if (orient == MAP_STACK_GROWS_DOWN) { 4177 bot = addrbos + max_ssize - init_ssize; 4178 top = bot + init_ssize; 4179 gap_bot = addrbos; 4180 gap_top = bot; 4181 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4182 bot = addrbos; 4183 top = bot + init_ssize; 4184 gap_bot = top; 4185 gap_top = addrbos + max_ssize; 4186 } 4187 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 4188 if (rv != KERN_SUCCESS) 4189 return (rv); 4190 new_entry = prev_entry->next; 4191 KASSERT(new_entry->end == top || new_entry->start == bot, 4192 ("Bad entry start/end for new stack entry")); 4193 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4194 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4195 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4196 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4197 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4198 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4199 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4200 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4201 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 4202 if (rv != KERN_SUCCESS) 4203 (void)vm_map_delete(map, bot, top); 4204 return (rv); 4205 } 4206 4207 /* 4208 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4209 * successfully grow the stack. 4210 */ 4211 static int 4212 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4213 { 4214 vm_map_entry_t stack_entry; 4215 struct proc *p; 4216 struct vmspace *vm; 4217 struct ucred *cred; 4218 vm_offset_t gap_end, gap_start, grow_start; 4219 vm_size_t grow_amount, guard, max_grow; 4220 rlim_t lmemlim, stacklim, vmemlim; 4221 int rv, rv1; 4222 bool gap_deleted, grow_down, is_procstack; 4223 #ifdef notyet 4224 uint64_t limit; 4225 #endif 4226 #ifdef RACCT 4227 int error; 4228 #endif 4229 4230 p = curproc; 4231 vm = p->p_vmspace; 4232 4233 /* 4234 * Disallow stack growth when the access is performed by a 4235 * debugger or AIO daemon. The reason is that the wrong 4236 * resource limits are applied. 4237 */ 4238 if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL) 4239 return (KERN_FAILURE); 4240 4241 MPASS(!map->system_map); 4242 4243 guard = stack_guard_page * PAGE_SIZE; 4244 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4245 stacklim = lim_cur(curthread, RLIMIT_STACK); 4246 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4247 retry: 4248 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4249 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4250 return (KERN_FAILURE); 4251 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4252 return (KERN_SUCCESS); 4253 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4254 stack_entry = gap_entry->next; 4255 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4256 stack_entry->start != gap_entry->end) 4257 return (KERN_FAILURE); 4258 grow_amount = round_page(stack_entry->start - addr); 4259 grow_down = true; 4260 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4261 stack_entry = gap_entry->prev; 4262 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4263 stack_entry->end != gap_entry->start) 4264 return (KERN_FAILURE); 4265 grow_amount = round_page(addr + 1 - stack_entry->end); 4266 grow_down = false; 4267 } else { 4268 return (KERN_FAILURE); 4269 } 4270 max_grow = gap_entry->end - gap_entry->start; 4271 if (guard > max_grow) 4272 return (KERN_NO_SPACE); 4273 max_grow -= guard; 4274 if (grow_amount > max_grow) 4275 return (KERN_NO_SPACE); 4276 4277 /* 4278 * If this is the main process stack, see if we're over the stack 4279 * limit. 4280 */ 4281 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4282 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 4283 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4284 return (KERN_NO_SPACE); 4285 4286 #ifdef RACCT 4287 if (racct_enable) { 4288 PROC_LOCK(p); 4289 if (is_procstack && racct_set(p, RACCT_STACK, 4290 ctob(vm->vm_ssize) + grow_amount)) { 4291 PROC_UNLOCK(p); 4292 return (KERN_NO_SPACE); 4293 } 4294 PROC_UNLOCK(p); 4295 } 4296 #endif 4297 4298 grow_amount = roundup(grow_amount, sgrowsiz); 4299 if (grow_amount > max_grow) 4300 grow_amount = max_grow; 4301 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4302 grow_amount = trunc_page((vm_size_t)stacklim) - 4303 ctob(vm->vm_ssize); 4304 } 4305 4306 #ifdef notyet 4307 PROC_LOCK(p); 4308 limit = racct_get_available(p, RACCT_STACK); 4309 PROC_UNLOCK(p); 4310 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4311 grow_amount = limit - ctob(vm->vm_ssize); 4312 #endif 4313 4314 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4315 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4316 rv = KERN_NO_SPACE; 4317 goto out; 4318 } 4319 #ifdef RACCT 4320 if (racct_enable) { 4321 PROC_LOCK(p); 4322 if (racct_set(p, RACCT_MEMLOCK, 4323 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4324 PROC_UNLOCK(p); 4325 rv = KERN_NO_SPACE; 4326 goto out; 4327 } 4328 PROC_UNLOCK(p); 4329 } 4330 #endif 4331 } 4332 4333 /* If we would blow our VMEM resource limit, no go */ 4334 if (map->size + grow_amount > vmemlim) { 4335 rv = KERN_NO_SPACE; 4336 goto out; 4337 } 4338 #ifdef RACCT 4339 if (racct_enable) { 4340 PROC_LOCK(p); 4341 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4342 PROC_UNLOCK(p); 4343 rv = KERN_NO_SPACE; 4344 goto out; 4345 } 4346 PROC_UNLOCK(p); 4347 } 4348 #endif 4349 4350 if (vm_map_lock_upgrade(map)) { 4351 gap_entry = NULL; 4352 vm_map_lock_read(map); 4353 goto retry; 4354 } 4355 4356 if (grow_down) { 4357 grow_start = gap_entry->end - grow_amount; 4358 if (gap_entry->start + grow_amount == gap_entry->end) { 4359 gap_start = gap_entry->start; 4360 gap_end = gap_entry->end; 4361 vm_map_entry_delete(map, gap_entry); 4362 gap_deleted = true; 4363 } else { 4364 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4365 vm_map_entry_resize(map, gap_entry, -grow_amount); 4366 gap_deleted = false; 4367 } 4368 rv = vm_map_insert(map, NULL, 0, grow_start, 4369 grow_start + grow_amount, 4370 stack_entry->protection, stack_entry->max_protection, 4371 MAP_STACK_GROWS_DOWN); 4372 if (rv != KERN_SUCCESS) { 4373 if (gap_deleted) { 4374 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4375 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4376 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4377 MPASS(rv1 == KERN_SUCCESS); 4378 } else 4379 vm_map_entry_resize(map, gap_entry, 4380 grow_amount); 4381 } 4382 } else { 4383 grow_start = stack_entry->end; 4384 cred = stack_entry->cred; 4385 if (cred == NULL && stack_entry->object.vm_object != NULL) 4386 cred = stack_entry->object.vm_object->cred; 4387 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4388 rv = KERN_NO_SPACE; 4389 /* Grow the underlying object if applicable. */ 4390 else if (stack_entry->object.vm_object == NULL || 4391 vm_object_coalesce(stack_entry->object.vm_object, 4392 stack_entry->offset, 4393 (vm_size_t)(stack_entry->end - stack_entry->start), 4394 grow_amount, cred != NULL)) { 4395 if (gap_entry->start + grow_amount == gap_entry->end) { 4396 vm_map_entry_delete(map, gap_entry); 4397 vm_map_entry_resize(map, stack_entry, 4398 grow_amount); 4399 } else { 4400 gap_entry->start += grow_amount; 4401 stack_entry->end += grow_amount; 4402 } 4403 map->size += grow_amount; 4404 rv = KERN_SUCCESS; 4405 } else 4406 rv = KERN_FAILURE; 4407 } 4408 if (rv == KERN_SUCCESS && is_procstack) 4409 vm->vm_ssize += btoc(grow_amount); 4410 4411 /* 4412 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4413 */ 4414 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4415 rv = vm_map_wire_locked(map, grow_start, 4416 grow_start + grow_amount, 4417 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4418 } 4419 vm_map_lock_downgrade(map); 4420 4421 out: 4422 #ifdef RACCT 4423 if (racct_enable && rv != KERN_SUCCESS) { 4424 PROC_LOCK(p); 4425 error = racct_set(p, RACCT_VMEM, map->size); 4426 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4427 if (!old_mlock) { 4428 error = racct_set(p, RACCT_MEMLOCK, 4429 ptoa(pmap_wired_count(map->pmap))); 4430 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4431 } 4432 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4433 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4434 PROC_UNLOCK(p); 4435 } 4436 #endif 4437 4438 return (rv); 4439 } 4440 4441 /* 4442 * Unshare the specified VM space for exec. If other processes are 4443 * mapped to it, then create a new one. The new vmspace is null. 4444 */ 4445 int 4446 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4447 { 4448 struct vmspace *oldvmspace = p->p_vmspace; 4449 struct vmspace *newvmspace; 4450 4451 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4452 ("vmspace_exec recursed")); 4453 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4454 if (newvmspace == NULL) 4455 return (ENOMEM); 4456 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4457 /* 4458 * This code is written like this for prototype purposes. The 4459 * goal is to avoid running down the vmspace here, but let the 4460 * other process's that are still using the vmspace to finally 4461 * run it down. Even though there is little or no chance of blocking 4462 * here, it is a good idea to keep this form for future mods. 4463 */ 4464 PROC_VMSPACE_LOCK(p); 4465 p->p_vmspace = newvmspace; 4466 PROC_VMSPACE_UNLOCK(p); 4467 if (p == curthread->td_proc) 4468 pmap_activate(curthread); 4469 curthread->td_pflags |= TDP_EXECVMSPC; 4470 return (0); 4471 } 4472 4473 /* 4474 * Unshare the specified VM space for forcing COW. This 4475 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4476 */ 4477 int 4478 vmspace_unshare(struct proc *p) 4479 { 4480 struct vmspace *oldvmspace = p->p_vmspace; 4481 struct vmspace *newvmspace; 4482 vm_ooffset_t fork_charge; 4483 4484 if (oldvmspace->vm_refcnt == 1) 4485 return (0); 4486 fork_charge = 0; 4487 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4488 if (newvmspace == NULL) 4489 return (ENOMEM); 4490 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4491 vmspace_free(newvmspace); 4492 return (ENOMEM); 4493 } 4494 PROC_VMSPACE_LOCK(p); 4495 p->p_vmspace = newvmspace; 4496 PROC_VMSPACE_UNLOCK(p); 4497 if (p == curthread->td_proc) 4498 pmap_activate(curthread); 4499 vmspace_free(oldvmspace); 4500 return (0); 4501 } 4502 4503 /* 4504 * vm_map_lookup: 4505 * 4506 * Finds the VM object, offset, and 4507 * protection for a given virtual address in the 4508 * specified map, assuming a page fault of the 4509 * type specified. 4510 * 4511 * Leaves the map in question locked for read; return 4512 * values are guaranteed until a vm_map_lookup_done 4513 * call is performed. Note that the map argument 4514 * is in/out; the returned map must be used in 4515 * the call to vm_map_lookup_done. 4516 * 4517 * A handle (out_entry) is returned for use in 4518 * vm_map_lookup_done, to make that fast. 4519 * 4520 * If a lookup is requested with "write protection" 4521 * specified, the map may be changed to perform virtual 4522 * copying operations, although the data referenced will 4523 * remain the same. 4524 */ 4525 int 4526 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4527 vm_offset_t vaddr, 4528 vm_prot_t fault_typea, 4529 vm_map_entry_t *out_entry, /* OUT */ 4530 vm_object_t *object, /* OUT */ 4531 vm_pindex_t *pindex, /* OUT */ 4532 vm_prot_t *out_prot, /* OUT */ 4533 boolean_t *wired) /* OUT */ 4534 { 4535 vm_map_entry_t entry; 4536 vm_map_t map = *var_map; 4537 vm_prot_t prot; 4538 vm_prot_t fault_type = fault_typea; 4539 vm_object_t eobject; 4540 vm_size_t size; 4541 struct ucred *cred; 4542 4543 RetryLookup: 4544 4545 vm_map_lock_read(map); 4546 4547 RetryLookupLocked: 4548 /* 4549 * Lookup the faulting address. 4550 */ 4551 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4552 vm_map_unlock_read(map); 4553 return (KERN_INVALID_ADDRESS); 4554 } 4555 4556 entry = *out_entry; 4557 4558 /* 4559 * Handle submaps. 4560 */ 4561 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4562 vm_map_t old_map = map; 4563 4564 *var_map = map = entry->object.sub_map; 4565 vm_map_unlock_read(old_map); 4566 goto RetryLookup; 4567 } 4568 4569 /* 4570 * Check whether this task is allowed to have this page. 4571 */ 4572 prot = entry->protection; 4573 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4574 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4575 if (prot == VM_PROT_NONE && map != kernel_map && 4576 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4577 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4578 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4579 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4580 goto RetryLookupLocked; 4581 } 4582 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4583 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4584 vm_map_unlock_read(map); 4585 return (KERN_PROTECTION_FAILURE); 4586 } 4587 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4588 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4589 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4590 ("entry %p flags %x", entry, entry->eflags)); 4591 if ((fault_typea & VM_PROT_COPY) != 0 && 4592 (entry->max_protection & VM_PROT_WRITE) == 0 && 4593 (entry->eflags & MAP_ENTRY_COW) == 0) { 4594 vm_map_unlock_read(map); 4595 return (KERN_PROTECTION_FAILURE); 4596 } 4597 4598 /* 4599 * If this page is not pageable, we have to get it for all possible 4600 * accesses. 4601 */ 4602 *wired = (entry->wired_count != 0); 4603 if (*wired) 4604 fault_type = entry->protection; 4605 size = entry->end - entry->start; 4606 /* 4607 * If the entry was copy-on-write, we either ... 4608 */ 4609 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4610 /* 4611 * If we want to write the page, we may as well handle that 4612 * now since we've got the map locked. 4613 * 4614 * If we don't need to write the page, we just demote the 4615 * permissions allowed. 4616 */ 4617 if ((fault_type & VM_PROT_WRITE) != 0 || 4618 (fault_typea & VM_PROT_COPY) != 0) { 4619 /* 4620 * Make a new object, and place it in the object 4621 * chain. Note that no new references have appeared 4622 * -- one just moved from the map to the new 4623 * object. 4624 */ 4625 if (vm_map_lock_upgrade(map)) 4626 goto RetryLookup; 4627 4628 if (entry->cred == NULL) { 4629 /* 4630 * The debugger owner is charged for 4631 * the memory. 4632 */ 4633 cred = curthread->td_ucred; 4634 crhold(cred); 4635 if (!swap_reserve_by_cred(size, cred)) { 4636 crfree(cred); 4637 vm_map_unlock(map); 4638 return (KERN_RESOURCE_SHORTAGE); 4639 } 4640 entry->cred = cred; 4641 } 4642 vm_object_shadow(&entry->object.vm_object, 4643 &entry->offset, size); 4644 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4645 eobject = entry->object.vm_object; 4646 if (eobject->cred != NULL) { 4647 /* 4648 * The object was not shadowed. 4649 */ 4650 swap_release_by_cred(size, entry->cred); 4651 crfree(entry->cred); 4652 entry->cred = NULL; 4653 } else if (entry->cred != NULL) { 4654 VM_OBJECT_WLOCK(eobject); 4655 eobject->cred = entry->cred; 4656 eobject->charge = size; 4657 VM_OBJECT_WUNLOCK(eobject); 4658 entry->cred = NULL; 4659 } 4660 4661 vm_map_lock_downgrade(map); 4662 } else { 4663 /* 4664 * We're attempting to read a copy-on-write page -- 4665 * don't allow writes. 4666 */ 4667 prot &= ~VM_PROT_WRITE; 4668 } 4669 } 4670 4671 /* 4672 * Create an object if necessary. 4673 */ 4674 if (entry->object.vm_object == NULL && 4675 !map->system_map) { 4676 if (vm_map_lock_upgrade(map)) 4677 goto RetryLookup; 4678 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4679 atop(size)); 4680 entry->offset = 0; 4681 if (entry->cred != NULL) { 4682 VM_OBJECT_WLOCK(entry->object.vm_object); 4683 entry->object.vm_object->cred = entry->cred; 4684 entry->object.vm_object->charge = size; 4685 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4686 entry->cred = NULL; 4687 } 4688 vm_map_lock_downgrade(map); 4689 } 4690 4691 /* 4692 * Return the object/offset from this entry. If the entry was 4693 * copy-on-write or empty, it has been fixed up. 4694 */ 4695 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4696 *object = entry->object.vm_object; 4697 4698 *out_prot = prot; 4699 return (KERN_SUCCESS); 4700 } 4701 4702 /* 4703 * vm_map_lookup_locked: 4704 * 4705 * Lookup the faulting address. A version of vm_map_lookup that returns 4706 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4707 */ 4708 int 4709 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4710 vm_offset_t vaddr, 4711 vm_prot_t fault_typea, 4712 vm_map_entry_t *out_entry, /* OUT */ 4713 vm_object_t *object, /* OUT */ 4714 vm_pindex_t *pindex, /* OUT */ 4715 vm_prot_t *out_prot, /* OUT */ 4716 boolean_t *wired) /* OUT */ 4717 { 4718 vm_map_entry_t entry; 4719 vm_map_t map = *var_map; 4720 vm_prot_t prot; 4721 vm_prot_t fault_type = fault_typea; 4722 4723 /* 4724 * Lookup the faulting address. 4725 */ 4726 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4727 return (KERN_INVALID_ADDRESS); 4728 4729 entry = *out_entry; 4730 4731 /* 4732 * Fail if the entry refers to a submap. 4733 */ 4734 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4735 return (KERN_FAILURE); 4736 4737 /* 4738 * Check whether this task is allowed to have this page. 4739 */ 4740 prot = entry->protection; 4741 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4742 if ((fault_type & prot) != fault_type) 4743 return (KERN_PROTECTION_FAILURE); 4744 4745 /* 4746 * If this page is not pageable, we have to get it for all possible 4747 * accesses. 4748 */ 4749 *wired = (entry->wired_count != 0); 4750 if (*wired) 4751 fault_type = entry->protection; 4752 4753 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4754 /* 4755 * Fail if the entry was copy-on-write for a write fault. 4756 */ 4757 if (fault_type & VM_PROT_WRITE) 4758 return (KERN_FAILURE); 4759 /* 4760 * We're attempting to read a copy-on-write page -- 4761 * don't allow writes. 4762 */ 4763 prot &= ~VM_PROT_WRITE; 4764 } 4765 4766 /* 4767 * Fail if an object should be created. 4768 */ 4769 if (entry->object.vm_object == NULL && !map->system_map) 4770 return (KERN_FAILURE); 4771 4772 /* 4773 * Return the object/offset from this entry. If the entry was 4774 * copy-on-write or empty, it has been fixed up. 4775 */ 4776 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4777 *object = entry->object.vm_object; 4778 4779 *out_prot = prot; 4780 return (KERN_SUCCESS); 4781 } 4782 4783 /* 4784 * vm_map_lookup_done: 4785 * 4786 * Releases locks acquired by a vm_map_lookup 4787 * (according to the handle returned by that lookup). 4788 */ 4789 void 4790 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4791 { 4792 /* 4793 * Unlock the main-level map 4794 */ 4795 vm_map_unlock_read(map); 4796 } 4797 4798 vm_offset_t 4799 vm_map_max_KBI(const struct vm_map *map) 4800 { 4801 4802 return (vm_map_max(map)); 4803 } 4804 4805 vm_offset_t 4806 vm_map_min_KBI(const struct vm_map *map) 4807 { 4808 4809 return (vm_map_min(map)); 4810 } 4811 4812 pmap_t 4813 vm_map_pmap_KBI(vm_map_t map) 4814 { 4815 4816 return (map->pmap); 4817 } 4818 4819 #include "opt_ddb.h" 4820 #ifdef DDB 4821 #include <sys/kernel.h> 4822 4823 #include <ddb/ddb.h> 4824 4825 static void 4826 vm_map_print(vm_map_t map) 4827 { 4828 vm_map_entry_t entry; 4829 4830 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4831 (void *)map, 4832 (void *)map->pmap, map->nentries, map->timestamp); 4833 4834 db_indent += 2; 4835 for (entry = map->header.next; entry != &map->header; 4836 entry = entry->next) { 4837 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 4838 (void *)entry, (void *)entry->start, (void *)entry->end, 4839 entry->eflags); 4840 { 4841 static char *inheritance_name[4] = 4842 {"share", "copy", "none", "donate_copy"}; 4843 4844 db_iprintf(" prot=%x/%x/%s", 4845 entry->protection, 4846 entry->max_protection, 4847 inheritance_name[(int)(unsigned char)entry->inheritance]); 4848 if (entry->wired_count != 0) 4849 db_printf(", wired"); 4850 } 4851 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4852 db_printf(", share=%p, offset=0x%jx\n", 4853 (void *)entry->object.sub_map, 4854 (uintmax_t)entry->offset); 4855 if ((entry->prev == &map->header) || 4856 (entry->prev->object.sub_map != 4857 entry->object.sub_map)) { 4858 db_indent += 2; 4859 vm_map_print((vm_map_t)entry->object.sub_map); 4860 db_indent -= 2; 4861 } 4862 } else { 4863 if (entry->cred != NULL) 4864 db_printf(", ruid %d", entry->cred->cr_ruid); 4865 db_printf(", object=%p, offset=0x%jx", 4866 (void *)entry->object.vm_object, 4867 (uintmax_t)entry->offset); 4868 if (entry->object.vm_object && entry->object.vm_object->cred) 4869 db_printf(", obj ruid %d charge %jx", 4870 entry->object.vm_object->cred->cr_ruid, 4871 (uintmax_t)entry->object.vm_object->charge); 4872 if (entry->eflags & MAP_ENTRY_COW) 4873 db_printf(", copy (%s)", 4874 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4875 db_printf("\n"); 4876 4877 if ((entry->prev == &map->header) || 4878 (entry->prev->object.vm_object != 4879 entry->object.vm_object)) { 4880 db_indent += 2; 4881 vm_object_print((db_expr_t)(intptr_t) 4882 entry->object.vm_object, 4883 0, 0, (char *)0); 4884 db_indent -= 2; 4885 } 4886 } 4887 } 4888 db_indent -= 2; 4889 } 4890 4891 DB_SHOW_COMMAND(map, map) 4892 { 4893 4894 if (!have_addr) { 4895 db_printf("usage: show map <addr>\n"); 4896 return; 4897 } 4898 vm_map_print((vm_map_t)addr); 4899 } 4900 4901 DB_SHOW_COMMAND(procvm, procvm) 4902 { 4903 struct proc *p; 4904 4905 if (have_addr) { 4906 p = db_lookup_proc(addr); 4907 } else { 4908 p = curproc; 4909 } 4910 4911 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4912 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4913 (void *)vmspace_pmap(p->p_vmspace)); 4914 4915 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4916 } 4917 4918 #endif /* DDB */ 4919