1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/param.h> 66 #include <sys/systm.h> 67 #include <sys/elf.h> 68 #include <sys/kernel.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/vmmeter.h> 74 #include <sys/mman.h> 75 #include <sys/vnode.h> 76 #include <sys/racct.h> 77 #include <sys/resourcevar.h> 78 #include <sys/rwlock.h> 79 #include <sys/file.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/shm.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_param.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_pageout.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_kern.h> 93 #include <vm/vm_extern.h> 94 #include <vm/vnode_pager.h> 95 #include <vm/swap_pager.h> 96 #include <vm/uma.h> 97 98 /* 99 * Virtual memory maps provide for the mapping, protection, 100 * and sharing of virtual memory objects. In addition, 101 * this module provides for an efficient virtual copy of 102 * memory from one map to another. 103 * 104 * Synchronization is required prior to most operations. 105 * 106 * Maps consist of an ordered doubly-linked list of simple 107 * entries; a self-adjusting binary search tree of these 108 * entries is used to speed up lookups. 109 * 110 * Since portions of maps are specified by start/end addresses, 111 * which may not align with existing map entries, all 112 * routines merely "clip" entries to these start/end values. 113 * [That is, an entry is split into two, bordering at a 114 * start or end value.] Note that these clippings may not 115 * always be necessary (as the two resulting entries are then 116 * not changed); however, the clipping is done for convenience. 117 * 118 * As mentioned above, virtual copy operations are performed 119 * by copying VM object references from one map to 120 * another, and then marking both regions as copy-on-write. 121 */ 122 123 static struct mtx map_sleep_mtx; 124 static uma_zone_t mapentzone; 125 static uma_zone_t kmapentzone; 126 static uma_zone_t vmspace_zone; 127 static int vmspace_zinit(void *mem, int size, int flags); 128 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 129 vm_offset_t max); 130 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 131 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 132 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 133 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 134 vm_map_entry_t gap_entry); 135 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 136 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 137 #ifdef INVARIANTS 138 static void vmspace_zdtor(void *mem, int size, void *arg); 139 #endif 140 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 141 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 142 int cow); 143 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 144 vm_offset_t failed_addr); 145 146 #define CONTAINS_BITS(set, bits) ((~(set) & (bits)) == 0) 147 148 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 149 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 150 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 151 152 /* 153 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 154 * stable. 155 */ 156 #define PROC_VMSPACE_LOCK(p) do { } while (0) 157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 158 159 /* 160 * VM_MAP_RANGE_CHECK: [ internal use only ] 161 * 162 * Asserts that the starting and ending region 163 * addresses fall within the valid range of the map. 164 */ 165 #define VM_MAP_RANGE_CHECK(map, start, end) \ 166 { \ 167 if (start < vm_map_min(map)) \ 168 start = vm_map_min(map); \ 169 if (end > vm_map_max(map)) \ 170 end = vm_map_max(map); \ 171 if (start > end) \ 172 start = end; \ 173 } 174 175 #ifndef UMA_USE_DMAP 176 177 /* 178 * Allocate a new slab for kernel map entries. The kernel map may be locked or 179 * unlocked, depending on whether the request is coming from the kernel map or a 180 * submap. This function allocates a virtual address range directly from the 181 * kernel map instead of the kmem_* layer to avoid recursion on the kernel map 182 * lock and also to avoid triggering allocator recursion in the vmem boundary 183 * tag allocator. 184 */ 185 static void * 186 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 187 int wait) 188 { 189 vm_offset_t addr; 190 int error, locked; 191 192 *pflag = UMA_SLAB_PRIV; 193 194 if (!(locked = vm_map_locked(kernel_map))) 195 vm_map_lock(kernel_map); 196 addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes); 197 if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map)) 198 panic("%s: kernel map is exhausted", __func__); 199 error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes, 200 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 201 if (error != KERN_SUCCESS) 202 panic("%s: vm_map_insert() failed: %d", __func__, error); 203 if (!locked) 204 vm_map_unlock(kernel_map); 205 error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT | 206 M_USE_RESERVE | (wait & M_ZERO)); 207 if (error == KERN_SUCCESS) { 208 return ((void *)addr); 209 } else { 210 if (!locked) 211 vm_map_lock(kernel_map); 212 vm_map_delete(kernel_map, addr, bytes); 213 if (!locked) 214 vm_map_unlock(kernel_map); 215 return (NULL); 216 } 217 } 218 219 static void 220 kmapent_free(void *item, vm_size_t size, uint8_t pflag) 221 { 222 vm_offset_t addr; 223 int error __diagused; 224 225 if ((pflag & UMA_SLAB_PRIV) == 0) 226 /* XXX leaked */ 227 return; 228 229 addr = (vm_offset_t)item; 230 kmem_unback(kernel_object, addr, size); 231 error = vm_map_remove(kernel_map, addr, addr + size); 232 KASSERT(error == KERN_SUCCESS, 233 ("%s: vm_map_remove failed: %d", __func__, error)); 234 } 235 236 /* 237 * The worst-case upper bound on the number of kernel map entries that may be 238 * created before the zone must be replenished in _vm_map_unlock(). 239 */ 240 #define KMAPENT_RESERVE 1 241 242 #endif /* !UMD_MD_SMALL_ALLOC */ 243 244 /* 245 * vm_map_startup: 246 * 247 * Initialize the vm_map module. Must be called before any other vm_map 248 * routines. 249 * 250 * User map and entry structures are allocated from the general purpose 251 * memory pool. Kernel maps are statically defined. Kernel map entries 252 * require special handling to avoid recursion; see the comments above 253 * kmapent_alloc() and in vm_map_entry_create(). 254 */ 255 void 256 vm_map_startup(void) 257 { 258 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 259 260 /* 261 * Disable the use of per-CPU buckets: map entry allocation is 262 * serialized by the kernel map lock. 263 */ 264 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 265 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 266 UMA_ZONE_VM | UMA_ZONE_NOBUCKET); 267 #ifndef UMA_USE_DMAP 268 /* Reserve an extra map entry for use when replenishing the reserve. */ 269 uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1); 270 uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1); 271 uma_zone_set_allocf(kmapentzone, kmapent_alloc); 272 uma_zone_set_freef(kmapentzone, kmapent_free); 273 #endif 274 275 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 276 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 277 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 278 #ifdef INVARIANTS 279 vmspace_zdtor, 280 #else 281 NULL, 282 #endif 283 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 284 } 285 286 static int 287 vmspace_zinit(void *mem, int size, int flags) 288 { 289 struct vmspace *vm; 290 vm_map_t map; 291 292 vm = (struct vmspace *)mem; 293 map = &vm->vm_map; 294 295 memset(map, 0, sizeof(*map)); 296 mtx_init(&map->system_mtx, "vm map (system)", NULL, 297 MTX_DEF | MTX_DUPOK); 298 sx_init(&map->lock, "vm map (user)"); 299 PMAP_LOCK_INIT(vmspace_pmap(vm)); 300 return (0); 301 } 302 303 #ifdef INVARIANTS 304 static void 305 vmspace_zdtor(void *mem, int size, void *arg) 306 { 307 struct vmspace *vm; 308 309 vm = (struct vmspace *)mem; 310 KASSERT(vm->vm_map.nentries == 0, 311 ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries)); 312 KASSERT(vm->vm_map.size == 0, 313 ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size)); 314 } 315 #endif /* INVARIANTS */ 316 317 /* 318 * Allocate a vmspace structure, including a vm_map and pmap, 319 * and initialize those structures. The refcnt is set to 1. 320 */ 321 struct vmspace * 322 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 323 { 324 struct vmspace *vm; 325 326 vm = uma_zalloc(vmspace_zone, M_WAITOK); 327 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 328 if (!pinit(vmspace_pmap(vm))) { 329 uma_zfree(vmspace_zone, vm); 330 return (NULL); 331 } 332 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 333 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 334 refcount_init(&vm->vm_refcnt, 1); 335 vm->vm_shm = NULL; 336 vm->vm_swrss = 0; 337 vm->vm_tsize = 0; 338 vm->vm_dsize = 0; 339 vm->vm_ssize = 0; 340 vm->vm_taddr = 0; 341 vm->vm_daddr = 0; 342 vm->vm_maxsaddr = 0; 343 return (vm); 344 } 345 346 #ifdef RACCT 347 static void 348 vmspace_container_reset(struct proc *p) 349 { 350 351 PROC_LOCK(p); 352 racct_set(p, RACCT_DATA, 0); 353 racct_set(p, RACCT_STACK, 0); 354 racct_set(p, RACCT_RSS, 0); 355 racct_set(p, RACCT_MEMLOCK, 0); 356 racct_set(p, RACCT_VMEM, 0); 357 PROC_UNLOCK(p); 358 } 359 #endif 360 361 static inline void 362 vmspace_dofree(struct vmspace *vm) 363 { 364 365 CTR1(KTR_VM, "vmspace_free: %p", vm); 366 367 /* 368 * Make sure any SysV shm is freed, it might not have been in 369 * exit1(). 370 */ 371 shmexit(vm); 372 373 /* 374 * Lock the map, to wait out all other references to it. 375 * Delete all of the mappings and pages they hold, then call 376 * the pmap module to reclaim anything left. 377 */ 378 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 379 vm_map_max(&vm->vm_map)); 380 381 pmap_release(vmspace_pmap(vm)); 382 vm->vm_map.pmap = NULL; 383 uma_zfree(vmspace_zone, vm); 384 } 385 386 void 387 vmspace_free(struct vmspace *vm) 388 { 389 390 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 391 "vmspace_free() called"); 392 393 if (refcount_release(&vm->vm_refcnt)) 394 vmspace_dofree(vm); 395 } 396 397 void 398 vmspace_exitfree(struct proc *p) 399 { 400 struct vmspace *vm; 401 402 PROC_VMSPACE_LOCK(p); 403 vm = p->p_vmspace; 404 p->p_vmspace = NULL; 405 PROC_VMSPACE_UNLOCK(p); 406 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 407 vmspace_free(vm); 408 } 409 410 void 411 vmspace_exit(struct thread *td) 412 { 413 struct vmspace *vm; 414 struct proc *p; 415 bool released; 416 417 p = td->td_proc; 418 vm = p->p_vmspace; 419 420 /* 421 * Prepare to release the vmspace reference. The thread that releases 422 * the last reference is responsible for tearing down the vmspace. 423 * However, threads not releasing the final reference must switch to the 424 * kernel's vmspace0 before the decrement so that the subsequent pmap 425 * deactivation does not modify a freed vmspace. 426 */ 427 refcount_acquire(&vmspace0.vm_refcnt); 428 if (!(released = refcount_release_if_last(&vm->vm_refcnt))) { 429 if (p->p_vmspace != &vmspace0) { 430 PROC_VMSPACE_LOCK(p); 431 p->p_vmspace = &vmspace0; 432 PROC_VMSPACE_UNLOCK(p); 433 pmap_activate(td); 434 } 435 released = refcount_release(&vm->vm_refcnt); 436 } 437 if (released) { 438 /* 439 * pmap_remove_pages() expects the pmap to be active, so switch 440 * back first if necessary. 441 */ 442 if (p->p_vmspace != vm) { 443 PROC_VMSPACE_LOCK(p); 444 p->p_vmspace = vm; 445 PROC_VMSPACE_UNLOCK(p); 446 pmap_activate(td); 447 } 448 pmap_remove_pages(vmspace_pmap(vm)); 449 PROC_VMSPACE_LOCK(p); 450 p->p_vmspace = &vmspace0; 451 PROC_VMSPACE_UNLOCK(p); 452 pmap_activate(td); 453 vmspace_dofree(vm); 454 } 455 #ifdef RACCT 456 if (racct_enable) 457 vmspace_container_reset(p); 458 #endif 459 } 460 461 /* Acquire reference to vmspace owned by another process. */ 462 463 struct vmspace * 464 vmspace_acquire_ref(struct proc *p) 465 { 466 struct vmspace *vm; 467 468 PROC_VMSPACE_LOCK(p); 469 vm = p->p_vmspace; 470 if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) { 471 PROC_VMSPACE_UNLOCK(p); 472 return (NULL); 473 } 474 if (vm != p->p_vmspace) { 475 PROC_VMSPACE_UNLOCK(p); 476 vmspace_free(vm); 477 return (NULL); 478 } 479 PROC_VMSPACE_UNLOCK(p); 480 return (vm); 481 } 482 483 /* 484 * Switch between vmspaces in an AIO kernel process. 485 * 486 * The new vmspace is either the vmspace of a user process obtained 487 * from an active AIO request or the initial vmspace of the AIO kernel 488 * process (when it is idling). Because user processes will block to 489 * drain any active AIO requests before proceeding in exit() or 490 * execve(), the reference count for vmspaces from AIO requests can 491 * never be 0. Similarly, AIO kernel processes hold an extra 492 * reference on their initial vmspace for the life of the process. As 493 * a result, the 'newvm' vmspace always has a non-zero reference 494 * count. This permits an additional reference on 'newvm' to be 495 * acquired via a simple atomic increment rather than the loop in 496 * vmspace_acquire_ref() above. 497 */ 498 void 499 vmspace_switch_aio(struct vmspace *newvm) 500 { 501 struct vmspace *oldvm; 502 503 /* XXX: Need some way to assert that this is an aio daemon. */ 504 505 KASSERT(refcount_load(&newvm->vm_refcnt) > 0, 506 ("vmspace_switch_aio: newvm unreferenced")); 507 508 oldvm = curproc->p_vmspace; 509 if (oldvm == newvm) 510 return; 511 512 /* 513 * Point to the new address space and refer to it. 514 */ 515 curproc->p_vmspace = newvm; 516 refcount_acquire(&newvm->vm_refcnt); 517 518 /* Activate the new mapping. */ 519 pmap_activate(curthread); 520 521 vmspace_free(oldvm); 522 } 523 524 void 525 _vm_map_lock(vm_map_t map, const char *file, int line) 526 { 527 528 if (map->system_map) 529 mtx_lock_flags_(&map->system_mtx, 0, file, line); 530 else 531 sx_xlock_(&map->lock, file, line); 532 map->timestamp++; 533 } 534 535 void 536 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 537 { 538 vm_object_t object; 539 struct vnode *vp; 540 bool vp_held; 541 542 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 543 return; 544 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 545 ("Submap with execs")); 546 object = entry->object.vm_object; 547 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 548 if ((object->flags & OBJ_ANON) != 0) 549 object = object->handle; 550 else 551 KASSERT(object->backing_object == NULL, 552 ("non-anon object %p shadows", object)); 553 KASSERT(object != NULL, ("No content object for text, entry %p obj %p", 554 entry, entry->object.vm_object)); 555 556 /* 557 * Mostly, we do not lock the backing object. It is 558 * referenced by the entry we are processing, so it cannot go 559 * away. 560 */ 561 vm_pager_getvp(object, &vp, &vp_held); 562 if (vp != NULL) { 563 if (add) { 564 VOP_SET_TEXT_CHECKED(vp); 565 } else { 566 vn_lock(vp, LK_SHARED | LK_RETRY); 567 VOP_UNSET_TEXT_CHECKED(vp); 568 VOP_UNLOCK(vp); 569 } 570 if (vp_held) 571 vdrop(vp); 572 } 573 } 574 575 /* 576 * Use a different name for this vm_map_entry field when it's use 577 * is not consistent with its use as part of an ordered search tree. 578 */ 579 #define defer_next right 580 581 static void 582 vm_map_process_deferred(void) 583 { 584 struct thread *td; 585 vm_map_entry_t entry, next; 586 vm_object_t object; 587 588 td = curthread; 589 entry = td->td_map_def_user; 590 td->td_map_def_user = NULL; 591 while (entry != NULL) { 592 next = entry->defer_next; 593 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT | 594 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT | 595 MAP_ENTRY_VN_EXEC)); 596 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) { 597 /* 598 * Decrement the object's writemappings and 599 * possibly the vnode's v_writecount. 600 */ 601 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 602 ("Submap with writecount")); 603 object = entry->object.vm_object; 604 KASSERT(object != NULL, ("No object for writecount")); 605 vm_pager_release_writecount(object, entry->start, 606 entry->end); 607 } 608 vm_map_entry_set_vnode_text(entry, false); 609 vm_map_entry_deallocate(entry, FALSE); 610 entry = next; 611 } 612 } 613 614 #ifdef INVARIANTS 615 static void 616 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 617 { 618 619 if (map->system_map) 620 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 621 else 622 sx_assert_(&map->lock, SA_XLOCKED, file, line); 623 } 624 625 #define VM_MAP_ASSERT_LOCKED(map) \ 626 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 627 628 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL }; 629 #ifdef DIAGNOSTIC 630 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK; 631 #else 632 static int enable_vmmap_check = VMMAP_CHECK_NONE; 633 #endif 634 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 635 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 636 637 static void _vm_map_assert_consistent(vm_map_t map, int check); 638 639 #define VM_MAP_ASSERT_CONSISTENT(map) \ 640 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL) 641 #ifdef DIAGNOSTIC 642 #define VM_MAP_UNLOCK_CONSISTENT(map) do { \ 643 if (map->nupdates > map->nentries) { \ 644 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \ 645 map->nupdates = 0; \ 646 } \ 647 } while (0) 648 #else 649 #define VM_MAP_UNLOCK_CONSISTENT(map) 650 #endif 651 #else 652 #define VM_MAP_ASSERT_LOCKED(map) 653 #define VM_MAP_ASSERT_CONSISTENT(map) 654 #define VM_MAP_UNLOCK_CONSISTENT(map) 655 #endif /* INVARIANTS */ 656 657 void 658 _vm_map_unlock(vm_map_t map, const char *file, int line) 659 { 660 661 VM_MAP_UNLOCK_CONSISTENT(map); 662 if (map->system_map) { 663 #ifndef UMA_USE_DMAP 664 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) { 665 uma_prealloc(kmapentzone, 1); 666 map->flags &= ~MAP_REPLENISH; 667 } 668 #endif 669 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 670 } else { 671 sx_xunlock_(&map->lock, file, line); 672 vm_map_process_deferred(); 673 } 674 } 675 676 void 677 _vm_map_lock_read(vm_map_t map, const char *file, int line) 678 { 679 680 if (map->system_map) 681 mtx_lock_flags_(&map->system_mtx, 0, file, line); 682 else 683 sx_slock_(&map->lock, file, line); 684 } 685 686 void 687 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 688 { 689 690 if (map->system_map) { 691 KASSERT((map->flags & MAP_REPLENISH) == 0, 692 ("%s: MAP_REPLENISH leaked", __func__)); 693 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 694 } else { 695 sx_sunlock_(&map->lock, file, line); 696 vm_map_process_deferred(); 697 } 698 } 699 700 int 701 _vm_map_trylock(vm_map_t map, const char *file, int line) 702 { 703 int error; 704 705 error = map->system_map ? 706 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 707 !sx_try_xlock_(&map->lock, file, line); 708 if (error == 0) 709 map->timestamp++; 710 return (error == 0); 711 } 712 713 int 714 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 715 { 716 int error; 717 718 error = map->system_map ? 719 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 720 !sx_try_slock_(&map->lock, file, line); 721 return (error == 0); 722 } 723 724 /* 725 * _vm_map_lock_upgrade: [ internal use only ] 726 * 727 * Tries to upgrade a read (shared) lock on the specified map to a write 728 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 729 * non-zero value if the upgrade fails. If the upgrade fails, the map is 730 * returned without a read or write lock held. 731 * 732 * Requires that the map be read locked. 733 */ 734 int 735 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 736 { 737 unsigned int last_timestamp; 738 739 if (map->system_map) { 740 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 741 } else { 742 if (!sx_try_upgrade_(&map->lock, file, line)) { 743 last_timestamp = map->timestamp; 744 sx_sunlock_(&map->lock, file, line); 745 vm_map_process_deferred(); 746 /* 747 * If the map's timestamp does not change while the 748 * map is unlocked, then the upgrade succeeds. 749 */ 750 sx_xlock_(&map->lock, file, line); 751 if (last_timestamp != map->timestamp) { 752 sx_xunlock_(&map->lock, file, line); 753 return (1); 754 } 755 } 756 } 757 map->timestamp++; 758 return (0); 759 } 760 761 void 762 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 763 { 764 765 if (map->system_map) { 766 KASSERT((map->flags & MAP_REPLENISH) == 0, 767 ("%s: MAP_REPLENISH leaked", __func__)); 768 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 769 } else { 770 VM_MAP_UNLOCK_CONSISTENT(map); 771 sx_downgrade_(&map->lock, file, line); 772 } 773 } 774 775 /* 776 * vm_map_locked: 777 * 778 * Returns a non-zero value if the caller holds a write (exclusive) lock 779 * on the specified map and the value "0" otherwise. 780 */ 781 int 782 vm_map_locked(vm_map_t map) 783 { 784 785 if (map->system_map) 786 return (mtx_owned(&map->system_mtx)); 787 else 788 return (sx_xlocked(&map->lock)); 789 } 790 791 /* 792 * _vm_map_unlock_and_wait: 793 * 794 * Atomically releases the lock on the specified map and puts the calling 795 * thread to sleep. The calling thread will remain asleep until either 796 * vm_map_wakeup() is performed on the map or the specified timeout is 797 * exceeded. 798 * 799 * WARNING! This function does not perform deferred deallocations of 800 * objects and map entries. Therefore, the calling thread is expected to 801 * reacquire the map lock after reawakening and later perform an ordinary 802 * unlock operation, such as vm_map_unlock(), before completing its 803 * operation on the map. 804 */ 805 int 806 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 807 { 808 809 VM_MAP_UNLOCK_CONSISTENT(map); 810 mtx_lock(&map_sleep_mtx); 811 if (map->system_map) { 812 KASSERT((map->flags & MAP_REPLENISH) == 0, 813 ("%s: MAP_REPLENISH leaked", __func__)); 814 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 815 } else { 816 sx_xunlock_(&map->lock, file, line); 817 } 818 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 819 timo)); 820 } 821 822 /* 823 * vm_map_wakeup: 824 * 825 * Awaken any threads that have slept on the map using 826 * vm_map_unlock_and_wait(). 827 */ 828 void 829 vm_map_wakeup(vm_map_t map) 830 { 831 832 /* 833 * Acquire and release map_sleep_mtx to prevent a wakeup() 834 * from being performed (and lost) between the map unlock 835 * and the msleep() in _vm_map_unlock_and_wait(). 836 */ 837 mtx_lock(&map_sleep_mtx); 838 mtx_unlock(&map_sleep_mtx); 839 wakeup(&map->root); 840 } 841 842 void 843 vm_map_busy(vm_map_t map) 844 { 845 846 VM_MAP_ASSERT_LOCKED(map); 847 map->busy++; 848 } 849 850 void 851 vm_map_unbusy(vm_map_t map) 852 { 853 854 VM_MAP_ASSERT_LOCKED(map); 855 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 856 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 857 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 858 wakeup(&map->busy); 859 } 860 } 861 862 void 863 vm_map_wait_busy(vm_map_t map) 864 { 865 866 VM_MAP_ASSERT_LOCKED(map); 867 while (map->busy) { 868 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 869 if (map->system_map) 870 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 871 else 872 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 873 } 874 map->timestamp++; 875 } 876 877 long 878 vmspace_resident_count(struct vmspace *vmspace) 879 { 880 return pmap_resident_count(vmspace_pmap(vmspace)); 881 } 882 883 /* 884 * Initialize an existing vm_map structure 885 * such as that in the vmspace structure. 886 */ 887 static void 888 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 889 { 890 891 map->header.eflags = MAP_ENTRY_HEADER; 892 map->needs_wakeup = FALSE; 893 map->system_map = 0; 894 map->pmap = pmap; 895 map->header.end = min; 896 map->header.start = max; 897 map->flags = 0; 898 map->header.left = map->header.right = &map->header; 899 map->root = NULL; 900 map->timestamp = 0; 901 map->busy = 0; 902 map->anon_loc = 0; 903 #ifdef DIAGNOSTIC 904 map->nupdates = 0; 905 #endif 906 } 907 908 void 909 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 910 { 911 912 _vm_map_init(map, pmap, min, max); 913 mtx_init(&map->system_mtx, "vm map (system)", NULL, 914 MTX_DEF | MTX_DUPOK); 915 sx_init(&map->lock, "vm map (user)"); 916 } 917 918 /* 919 * vm_map_entry_dispose: [ internal use only ] 920 * 921 * Inverse of vm_map_entry_create. 922 */ 923 static void 924 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 925 { 926 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 927 } 928 929 /* 930 * vm_map_entry_create: [ internal use only ] 931 * 932 * Allocates a VM map entry for insertion. 933 * No entry fields are filled in. 934 */ 935 static vm_map_entry_t 936 vm_map_entry_create(vm_map_t map) 937 { 938 vm_map_entry_t new_entry; 939 940 #ifndef UMA_USE_DMAP 941 if (map == kernel_map) { 942 VM_MAP_ASSERT_LOCKED(map); 943 944 /* 945 * A new slab of kernel map entries cannot be allocated at this 946 * point because the kernel map has not yet been updated to 947 * reflect the caller's request. Therefore, we allocate a new 948 * map entry, dipping into the reserve if necessary, and set a 949 * flag indicating that the reserve must be replenished before 950 * the map is unlocked. 951 */ 952 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM); 953 if (new_entry == NULL) { 954 new_entry = uma_zalloc(kmapentzone, 955 M_NOWAIT | M_NOVM | M_USE_RESERVE); 956 kernel_map->flags |= MAP_REPLENISH; 957 } 958 } else 959 #endif 960 if (map->system_map) { 961 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 962 } else { 963 new_entry = uma_zalloc(mapentzone, M_WAITOK); 964 } 965 KASSERT(new_entry != NULL, 966 ("vm_map_entry_create: kernel resources exhausted")); 967 return (new_entry); 968 } 969 970 /* 971 * vm_map_entry_set_behavior: 972 * 973 * Set the expected access behavior, either normal, random, or 974 * sequential. 975 */ 976 static inline void 977 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 978 { 979 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 980 (behavior & MAP_ENTRY_BEHAV_MASK); 981 } 982 983 /* 984 * vm_map_entry_max_free_{left,right}: 985 * 986 * Compute the size of the largest free gap between two entries, 987 * one the root of a tree and the other the ancestor of that root 988 * that is the least or greatest ancestor found on the search path. 989 */ 990 static inline vm_size_t 991 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 992 { 993 994 return (root->left != left_ancestor ? 995 root->left->max_free : root->start - left_ancestor->end); 996 } 997 998 static inline vm_size_t 999 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 1000 { 1001 1002 return (root->right != right_ancestor ? 1003 root->right->max_free : right_ancestor->start - root->end); 1004 } 1005 1006 /* 1007 * vm_map_entry_{pred,succ}: 1008 * 1009 * Find the {predecessor, successor} of the entry by taking one step 1010 * in the appropriate direction and backtracking as much as necessary. 1011 * vm_map_entry_succ is defined in vm_map.h. 1012 */ 1013 static inline vm_map_entry_t 1014 vm_map_entry_pred(vm_map_entry_t entry) 1015 { 1016 vm_map_entry_t prior; 1017 1018 prior = entry->left; 1019 if (prior->right->start < entry->start) { 1020 do 1021 prior = prior->right; 1022 while (prior->right != entry); 1023 } 1024 return (prior); 1025 } 1026 1027 static inline vm_size_t 1028 vm_size_max(vm_size_t a, vm_size_t b) 1029 { 1030 1031 return (a > b ? a : b); 1032 } 1033 1034 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \ 1035 vm_map_entry_t z; \ 1036 vm_size_t max_free; \ 1037 \ 1038 /* \ 1039 * Infer root->right->max_free == root->max_free when \ 1040 * y->max_free < root->max_free || root->max_free == 0. \ 1041 * Otherwise, look right to find it. \ 1042 */ \ 1043 y = root->left; \ 1044 max_free = root->max_free; \ 1045 KASSERT(max_free == vm_size_max( \ 1046 vm_map_entry_max_free_left(root, llist), \ 1047 vm_map_entry_max_free_right(root, rlist)), \ 1048 ("%s: max_free invariant fails", __func__)); \ 1049 if (max_free - 1 < vm_map_entry_max_free_left(root, llist)) \ 1050 max_free = vm_map_entry_max_free_right(root, rlist); \ 1051 if (y != llist && (test)) { \ 1052 /* Rotate right and make y root. */ \ 1053 z = y->right; \ 1054 if (z != root) { \ 1055 root->left = z; \ 1056 y->right = root; \ 1057 if (max_free < y->max_free) \ 1058 root->max_free = max_free = \ 1059 vm_size_max(max_free, z->max_free); \ 1060 } else if (max_free < y->max_free) \ 1061 root->max_free = max_free = \ 1062 vm_size_max(max_free, root->start - y->end);\ 1063 root = y; \ 1064 y = root->left; \ 1065 } \ 1066 /* Copy right->max_free. Put root on rlist. */ \ 1067 root->max_free = max_free; \ 1068 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1069 ("%s: max_free not copied from right", __func__)); \ 1070 root->left = rlist; \ 1071 rlist = root; \ 1072 root = y != llist ? y : NULL; \ 1073 } while (0) 1074 1075 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \ 1076 vm_map_entry_t z; \ 1077 vm_size_t max_free; \ 1078 \ 1079 /* \ 1080 * Infer root->left->max_free == root->max_free when \ 1081 * y->max_free < root->max_free || root->max_free == 0. \ 1082 * Otherwise, look left to find it. \ 1083 */ \ 1084 y = root->right; \ 1085 max_free = root->max_free; \ 1086 KASSERT(max_free == vm_size_max( \ 1087 vm_map_entry_max_free_left(root, llist), \ 1088 vm_map_entry_max_free_right(root, rlist)), \ 1089 ("%s: max_free invariant fails", __func__)); \ 1090 if (max_free - 1 < vm_map_entry_max_free_right(root, rlist)) \ 1091 max_free = vm_map_entry_max_free_left(root, llist); \ 1092 if (y != rlist && (test)) { \ 1093 /* Rotate left and make y root. */ \ 1094 z = y->left; \ 1095 if (z != root) { \ 1096 root->right = z; \ 1097 y->left = root; \ 1098 if (max_free < y->max_free) \ 1099 root->max_free = max_free = \ 1100 vm_size_max(max_free, z->max_free); \ 1101 } else if (max_free < y->max_free) \ 1102 root->max_free = max_free = \ 1103 vm_size_max(max_free, y->start - root->end);\ 1104 root = y; \ 1105 y = root->right; \ 1106 } \ 1107 /* Copy left->max_free. Put root on llist. */ \ 1108 root->max_free = max_free; \ 1109 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1110 ("%s: max_free not copied from left", __func__)); \ 1111 root->right = llist; \ 1112 llist = root; \ 1113 root = y != rlist ? y : NULL; \ 1114 } while (0) 1115 1116 /* 1117 * Walk down the tree until we find addr or a gap where addr would go, breaking 1118 * off left and right subtrees of nodes less than, or greater than addr. Treat 1119 * subtrees with root->max_free < length as empty trees. llist and rlist are 1120 * the two sides in reverse order (bottom-up), with llist linked by the right 1121 * pointer and rlist linked by the left pointer in the vm_map_entry, and both 1122 * lists terminated by &map->header. This function, and the subsequent call to 1123 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address 1124 * values in &map->header. 1125 */ 1126 static __always_inline vm_map_entry_t 1127 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1128 vm_map_entry_t *llist, vm_map_entry_t *rlist) 1129 { 1130 vm_map_entry_t left, right, root, y; 1131 1132 left = right = &map->header; 1133 root = map->root; 1134 while (root != NULL && root->max_free >= length) { 1135 KASSERT(left->end <= root->start && 1136 root->end <= right->start, 1137 ("%s: root not within tree bounds", __func__)); 1138 if (addr < root->start) { 1139 SPLAY_LEFT_STEP(root, y, left, right, 1140 y->max_free >= length && addr < y->start); 1141 } else if (addr >= root->end) { 1142 SPLAY_RIGHT_STEP(root, y, left, right, 1143 y->max_free >= length && addr >= y->end); 1144 } else 1145 break; 1146 } 1147 *llist = left; 1148 *rlist = right; 1149 return (root); 1150 } 1151 1152 static __always_inline void 1153 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist) 1154 { 1155 vm_map_entry_t hi, right, y; 1156 1157 right = *rlist; 1158 hi = root->right == right ? NULL : root->right; 1159 if (hi == NULL) 1160 return; 1161 do 1162 SPLAY_LEFT_STEP(hi, y, root, right, true); 1163 while (hi != NULL); 1164 *rlist = right; 1165 } 1166 1167 static __always_inline void 1168 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist) 1169 { 1170 vm_map_entry_t left, lo, y; 1171 1172 left = *llist; 1173 lo = root->left == left ? NULL : root->left; 1174 if (lo == NULL) 1175 return; 1176 do 1177 SPLAY_RIGHT_STEP(lo, y, left, root, true); 1178 while (lo != NULL); 1179 *llist = left; 1180 } 1181 1182 static inline void 1183 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1184 { 1185 vm_map_entry_t tmp; 1186 1187 tmp = *b; 1188 *b = *a; 1189 *a = tmp; 1190 } 1191 1192 /* 1193 * Walk back up the two spines, flip the pointers and set max_free. The 1194 * subtrees of the root go at the bottom of llist and rlist. 1195 */ 1196 static vm_size_t 1197 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root, 1198 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist) 1199 { 1200 do { 1201 /* 1202 * The max_free values of the children of llist are in 1203 * llist->max_free and max_free. Update with the 1204 * max value. 1205 */ 1206 llist->max_free = max_free = 1207 vm_size_max(llist->max_free, max_free); 1208 vm_map_entry_swap(&llist->right, &tail); 1209 vm_map_entry_swap(&tail, &llist); 1210 } while (llist != header); 1211 root->left = tail; 1212 return (max_free); 1213 } 1214 1215 /* 1216 * When llist is known to be the predecessor of root. 1217 */ 1218 static inline vm_size_t 1219 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root, 1220 vm_map_entry_t llist) 1221 { 1222 vm_size_t max_free; 1223 1224 max_free = root->start - llist->end; 1225 if (llist != header) { 1226 max_free = vm_map_splay_merge_left_walk(header, root, 1227 root, max_free, llist); 1228 } else { 1229 root->left = header; 1230 header->right = root; 1231 } 1232 return (max_free); 1233 } 1234 1235 /* 1236 * When llist may or may not be the predecessor of root. 1237 */ 1238 static inline vm_size_t 1239 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root, 1240 vm_map_entry_t llist) 1241 { 1242 vm_size_t max_free; 1243 1244 max_free = vm_map_entry_max_free_left(root, llist); 1245 if (llist != header) { 1246 max_free = vm_map_splay_merge_left_walk(header, root, 1247 root->left == llist ? root : root->left, 1248 max_free, llist); 1249 } 1250 return (max_free); 1251 } 1252 1253 static vm_size_t 1254 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root, 1255 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist) 1256 { 1257 do { 1258 /* 1259 * The max_free values of the children of rlist are in 1260 * rlist->max_free and max_free. Update with the 1261 * max value. 1262 */ 1263 rlist->max_free = max_free = 1264 vm_size_max(rlist->max_free, max_free); 1265 vm_map_entry_swap(&rlist->left, &tail); 1266 vm_map_entry_swap(&tail, &rlist); 1267 } while (rlist != header); 1268 root->right = tail; 1269 return (max_free); 1270 } 1271 1272 /* 1273 * When rlist is known to be the succecessor of root. 1274 */ 1275 static inline vm_size_t 1276 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root, 1277 vm_map_entry_t rlist) 1278 { 1279 vm_size_t max_free; 1280 1281 max_free = rlist->start - root->end; 1282 if (rlist != header) { 1283 max_free = vm_map_splay_merge_right_walk(header, root, 1284 root, max_free, rlist); 1285 } else { 1286 root->right = header; 1287 header->left = root; 1288 } 1289 return (max_free); 1290 } 1291 1292 /* 1293 * When rlist may or may not be the succecessor of root. 1294 */ 1295 static inline vm_size_t 1296 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root, 1297 vm_map_entry_t rlist) 1298 { 1299 vm_size_t max_free; 1300 1301 max_free = vm_map_entry_max_free_right(root, rlist); 1302 if (rlist != header) { 1303 max_free = vm_map_splay_merge_right_walk(header, root, 1304 root->right == rlist ? root : root->right, 1305 max_free, rlist); 1306 } 1307 return (max_free); 1308 } 1309 1310 /* 1311 * vm_map_splay: 1312 * 1313 * The Sleator and Tarjan top-down splay algorithm with the 1314 * following variation. Max_free must be computed bottom-up, so 1315 * on the downward pass, maintain the left and right spines in 1316 * reverse order. Then, make a second pass up each side to fix 1317 * the pointers and compute max_free. The time bound is O(log n) 1318 * amortized. 1319 * 1320 * The tree is threaded, which means that there are no null pointers. 1321 * When a node has no left child, its left pointer points to its 1322 * predecessor, which the last ancestor on the search path from the root 1323 * where the search branched right. Likewise, when a node has no right 1324 * child, its right pointer points to its successor. The map header node 1325 * is the predecessor of the first map entry, and the successor of the 1326 * last. 1327 * 1328 * The new root is the vm_map_entry containing "addr", or else an 1329 * adjacent entry (lower if possible) if addr is not in the tree. 1330 * 1331 * The map must be locked, and leaves it so. 1332 * 1333 * Returns: the new root. 1334 */ 1335 static vm_map_entry_t 1336 vm_map_splay(vm_map_t map, vm_offset_t addr) 1337 { 1338 vm_map_entry_t header, llist, rlist, root; 1339 vm_size_t max_free_left, max_free_right; 1340 1341 header = &map->header; 1342 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1343 if (root != NULL) { 1344 max_free_left = vm_map_splay_merge_left(header, root, llist); 1345 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1346 } else if (llist != header) { 1347 /* 1348 * Recover the greatest node in the left 1349 * subtree and make it the root. 1350 */ 1351 root = llist; 1352 llist = root->right; 1353 max_free_left = vm_map_splay_merge_left(header, root, llist); 1354 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1355 } else if (rlist != header) { 1356 /* 1357 * Recover the least node in the right 1358 * subtree and make it the root. 1359 */ 1360 root = rlist; 1361 rlist = root->left; 1362 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1363 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1364 } else { 1365 /* There is no root. */ 1366 return (NULL); 1367 } 1368 root->max_free = vm_size_max(max_free_left, max_free_right); 1369 map->root = root; 1370 VM_MAP_ASSERT_CONSISTENT(map); 1371 return (root); 1372 } 1373 1374 /* 1375 * vm_map_entry_{un,}link: 1376 * 1377 * Insert/remove entries from maps. On linking, if new entry clips 1378 * existing entry, trim existing entry to avoid overlap, and manage 1379 * offsets. On unlinking, merge disappearing entry with neighbor, if 1380 * called for, and manage offsets. Callers should not modify fields in 1381 * entries already mapped. 1382 */ 1383 static void 1384 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1385 { 1386 vm_map_entry_t header, llist, rlist, root; 1387 vm_size_t max_free_left, max_free_right; 1388 1389 CTR3(KTR_VM, 1390 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1391 map->nentries, entry); 1392 VM_MAP_ASSERT_LOCKED(map); 1393 map->nentries++; 1394 header = &map->header; 1395 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1396 if (root == NULL) { 1397 /* 1398 * The new entry does not overlap any existing entry in the 1399 * map, so it becomes the new root of the map tree. 1400 */ 1401 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1402 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1403 } else if (entry->start == root->start) { 1404 /* 1405 * The new entry is a clone of root, with only the end field 1406 * changed. The root entry will be shrunk to abut the new 1407 * entry, and will be the right child of the new root entry in 1408 * the modified map. 1409 */ 1410 KASSERT(entry->end < root->end, 1411 ("%s: clip_start not within entry", __func__)); 1412 vm_map_splay_findprev(root, &llist); 1413 if ((root->eflags & (MAP_ENTRY_STACK_GAP_DN | 1414 MAP_ENTRY_STACK_GAP_UP)) == 0) 1415 root->offset += entry->end - root->start; 1416 root->start = entry->end; 1417 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1418 max_free_right = root->max_free = vm_size_max( 1419 vm_map_splay_merge_pred(entry, root, entry), 1420 vm_map_splay_merge_right(header, root, rlist)); 1421 } else { 1422 /* 1423 * The new entry is a clone of root, with only the start field 1424 * changed. The root entry will be shrunk to abut the new 1425 * entry, and will be the left child of the new root entry in 1426 * the modified map. 1427 */ 1428 KASSERT(entry->end == root->end, 1429 ("%s: clip_start not within entry", __func__)); 1430 vm_map_splay_findnext(root, &rlist); 1431 if ((entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 1432 MAP_ENTRY_STACK_GAP_UP)) == 0) 1433 entry->offset += entry->start - root->start; 1434 root->end = entry->start; 1435 max_free_left = root->max_free = vm_size_max( 1436 vm_map_splay_merge_left(header, root, llist), 1437 vm_map_splay_merge_succ(entry, root, entry)); 1438 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1439 } 1440 entry->max_free = vm_size_max(max_free_left, max_free_right); 1441 map->root = entry; 1442 VM_MAP_ASSERT_CONSISTENT(map); 1443 } 1444 1445 enum unlink_merge_type { 1446 UNLINK_MERGE_NONE, 1447 UNLINK_MERGE_NEXT 1448 }; 1449 1450 static void 1451 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1452 enum unlink_merge_type op) 1453 { 1454 vm_map_entry_t header, llist, rlist, root; 1455 vm_size_t max_free_left, max_free_right; 1456 1457 VM_MAP_ASSERT_LOCKED(map); 1458 header = &map->header; 1459 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1460 KASSERT(root != NULL, 1461 ("vm_map_entry_unlink: unlink object not mapped")); 1462 1463 vm_map_splay_findprev(root, &llist); 1464 vm_map_splay_findnext(root, &rlist); 1465 if (op == UNLINK_MERGE_NEXT) { 1466 rlist->start = root->start; 1467 MPASS((rlist->eflags & (MAP_ENTRY_STACK_GAP_DN | 1468 MAP_ENTRY_STACK_GAP_UP)) == 0); 1469 rlist->offset = root->offset; 1470 } 1471 if (llist != header) { 1472 root = llist; 1473 llist = root->right; 1474 max_free_left = vm_map_splay_merge_left(header, root, llist); 1475 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1476 } else if (rlist != header) { 1477 root = rlist; 1478 rlist = root->left; 1479 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1480 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1481 } else { 1482 header->left = header->right = header; 1483 root = NULL; 1484 } 1485 if (root != NULL) 1486 root->max_free = vm_size_max(max_free_left, max_free_right); 1487 map->root = root; 1488 VM_MAP_ASSERT_CONSISTENT(map); 1489 map->nentries--; 1490 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1491 map->nentries, entry); 1492 } 1493 1494 /* 1495 * vm_map_entry_resize: 1496 * 1497 * Resize a vm_map_entry, recompute the amount of free space that 1498 * follows it and propagate that value up the tree. 1499 * 1500 * The map must be locked, and leaves it so. 1501 */ 1502 static void 1503 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1504 { 1505 vm_map_entry_t header, llist, rlist, root; 1506 1507 VM_MAP_ASSERT_LOCKED(map); 1508 header = &map->header; 1509 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1510 KASSERT(root != NULL, ("%s: resize object not mapped", __func__)); 1511 vm_map_splay_findnext(root, &rlist); 1512 entry->end += grow_amount; 1513 root->max_free = vm_size_max( 1514 vm_map_splay_merge_left(header, root, llist), 1515 vm_map_splay_merge_succ(header, root, rlist)); 1516 map->root = root; 1517 VM_MAP_ASSERT_CONSISTENT(map); 1518 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1519 __func__, map, map->nentries, entry); 1520 } 1521 1522 /* 1523 * vm_map_lookup_entry: [ internal use only ] 1524 * 1525 * Finds the map entry containing (or 1526 * immediately preceding) the specified address 1527 * in the given map; the entry is returned 1528 * in the "entry" parameter. The boolean 1529 * result indicates whether the address is 1530 * actually contained in the map. 1531 */ 1532 boolean_t 1533 vm_map_lookup_entry( 1534 vm_map_t map, 1535 vm_offset_t address, 1536 vm_map_entry_t *entry) /* OUT */ 1537 { 1538 vm_map_entry_t cur, header, lbound, ubound; 1539 boolean_t locked; 1540 1541 /* 1542 * If the map is empty, then the map entry immediately preceding 1543 * "address" is the map's header. 1544 */ 1545 header = &map->header; 1546 cur = map->root; 1547 if (cur == NULL) { 1548 *entry = header; 1549 return (FALSE); 1550 } 1551 if (address >= cur->start && cur->end > address) { 1552 *entry = cur; 1553 return (TRUE); 1554 } 1555 if ((locked = vm_map_locked(map)) || 1556 sx_try_upgrade(&map->lock)) { 1557 /* 1558 * Splay requires a write lock on the map. However, it only 1559 * restructures the binary search tree; it does not otherwise 1560 * change the map. Thus, the map's timestamp need not change 1561 * on a temporary upgrade. 1562 */ 1563 cur = vm_map_splay(map, address); 1564 if (!locked) { 1565 VM_MAP_UNLOCK_CONSISTENT(map); 1566 sx_downgrade(&map->lock); 1567 } 1568 1569 /* 1570 * If "address" is contained within a map entry, the new root 1571 * is that map entry. Otherwise, the new root is a map entry 1572 * immediately before or after "address". 1573 */ 1574 if (address < cur->start) { 1575 *entry = header; 1576 return (FALSE); 1577 } 1578 *entry = cur; 1579 return (address < cur->end); 1580 } 1581 /* 1582 * Since the map is only locked for read access, perform a 1583 * standard binary search tree lookup for "address". 1584 */ 1585 lbound = ubound = header; 1586 for (;;) { 1587 if (address < cur->start) { 1588 ubound = cur; 1589 cur = cur->left; 1590 if (cur == lbound) 1591 break; 1592 } else if (cur->end <= address) { 1593 lbound = cur; 1594 cur = cur->right; 1595 if (cur == ubound) 1596 break; 1597 } else { 1598 *entry = cur; 1599 return (TRUE); 1600 } 1601 } 1602 *entry = lbound; 1603 return (FALSE); 1604 } 1605 1606 /* 1607 * vm_map_insert1() is identical to vm_map_insert() except that it 1608 * returns the newly inserted map entry in '*res'. In case the new 1609 * entry is coalesced with a neighbor or an existing entry was 1610 * resized, that entry is returned. In any case, the returned entry 1611 * covers the specified address range. 1612 */ 1613 static int 1614 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1615 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow, 1616 vm_map_entry_t *res) 1617 { 1618 vm_map_entry_t new_entry, next_entry, prev_entry; 1619 struct ucred *cred; 1620 vm_eflags_t protoeflags; 1621 vm_inherit_t inheritance; 1622 u_long bdry; 1623 u_int bidx; 1624 1625 VM_MAP_ASSERT_LOCKED(map); 1626 KASSERT(object != kernel_object || 1627 (cow & MAP_COPY_ON_WRITE) == 0, 1628 ("vm_map_insert: kernel object and COW")); 1629 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 || 1630 (cow & MAP_SPLIT_BOUNDARY_MASK) != 0, 1631 ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x", 1632 object, cow)); 1633 KASSERT((prot & ~max) == 0, 1634 ("prot %#x is not subset of max_prot %#x", prot, max)); 1635 1636 /* 1637 * Check that the start and end points are not bogus. 1638 */ 1639 if (start == end || !vm_map_range_valid(map, start, end)) 1640 return (KERN_INVALID_ADDRESS); 1641 1642 if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE | 1643 VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE)) 1644 return (KERN_PROTECTION_FAILURE); 1645 1646 /* 1647 * Find the entry prior to the proposed starting address; if it's part 1648 * of an existing entry, this range is bogus. 1649 */ 1650 if (vm_map_lookup_entry(map, start, &prev_entry)) 1651 return (KERN_NO_SPACE); 1652 1653 /* 1654 * Assert that the next entry doesn't overlap the end point. 1655 */ 1656 next_entry = vm_map_entry_succ(prev_entry); 1657 if (next_entry->start < end) 1658 return (KERN_NO_SPACE); 1659 1660 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1661 max != VM_PROT_NONE)) 1662 return (KERN_INVALID_ARGUMENT); 1663 1664 protoeflags = 0; 1665 if (cow & MAP_COPY_ON_WRITE) 1666 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1667 if (cow & MAP_NOFAULT) 1668 protoeflags |= MAP_ENTRY_NOFAULT; 1669 if (cow & MAP_DISABLE_SYNCER) 1670 protoeflags |= MAP_ENTRY_NOSYNC; 1671 if (cow & MAP_DISABLE_COREDUMP) 1672 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1673 if (cow & MAP_STACK_GROWS_DOWN) 1674 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1675 if (cow & MAP_STACK_GROWS_UP) 1676 protoeflags |= MAP_ENTRY_GROWS_UP; 1677 if (cow & MAP_WRITECOUNT) 1678 protoeflags |= MAP_ENTRY_WRITECNT; 1679 if (cow & MAP_VN_EXEC) 1680 protoeflags |= MAP_ENTRY_VN_EXEC; 1681 if ((cow & MAP_CREATE_GUARD) != 0) 1682 protoeflags |= MAP_ENTRY_GUARD; 1683 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1684 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1685 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1686 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1687 if (cow & MAP_INHERIT_SHARE) 1688 inheritance = VM_INHERIT_SHARE; 1689 else 1690 inheritance = VM_INHERIT_DEFAULT; 1691 if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) { 1692 /* This magically ignores index 0, for usual page size. */ 1693 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >> 1694 MAP_SPLIT_BOUNDARY_SHIFT; 1695 if (bidx >= MAXPAGESIZES) 1696 return (KERN_INVALID_ARGUMENT); 1697 bdry = pagesizes[bidx] - 1; 1698 if ((start & bdry) != 0 || (end & bdry) != 0) 1699 return (KERN_INVALID_ARGUMENT); 1700 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 1701 } 1702 1703 cred = NULL; 1704 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1705 goto charged; 1706 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1707 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1708 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1709 return (KERN_RESOURCE_SHORTAGE); 1710 KASSERT(object == NULL || 1711 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1712 object->cred == NULL, 1713 ("overcommit: vm_map_insert o %p", object)); 1714 cred = curthread->td_ucred; 1715 } 1716 1717 charged: 1718 /* Expand the kernel pmap, if necessary. */ 1719 if (map == kernel_map && end > kernel_vm_end) 1720 pmap_growkernel(end); 1721 if (object != NULL) { 1722 /* 1723 * OBJ_ONEMAPPING must be cleared unless this mapping 1724 * is trivially proven to be the only mapping for any 1725 * of the object's pages. (Object granularity 1726 * reference counting is insufficient to recognize 1727 * aliases with precision.) 1728 */ 1729 if ((object->flags & OBJ_ANON) != 0) { 1730 VM_OBJECT_WLOCK(object); 1731 if (object->ref_count > 1 || object->shadow_count != 0) 1732 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1733 VM_OBJECT_WUNLOCK(object); 1734 } 1735 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1736 protoeflags && 1737 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1738 MAP_VN_EXEC)) == 0 && 1739 prev_entry->end == start && (prev_entry->cred == cred || 1740 (prev_entry->object.vm_object != NULL && 1741 prev_entry->object.vm_object->cred == cred)) && 1742 vm_object_coalesce(prev_entry->object.vm_object, 1743 prev_entry->offset, 1744 (vm_size_t)(prev_entry->end - prev_entry->start), 1745 (vm_size_t)(end - prev_entry->end), cred != NULL && 1746 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1747 /* 1748 * We were able to extend the object. Determine if we 1749 * can extend the previous map entry to include the 1750 * new range as well. 1751 */ 1752 if (prev_entry->inheritance == inheritance && 1753 prev_entry->protection == prot && 1754 prev_entry->max_protection == max && 1755 prev_entry->wired_count == 0) { 1756 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1757 0, ("prev_entry %p has incoherent wiring", 1758 prev_entry)); 1759 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1760 map->size += end - prev_entry->end; 1761 vm_map_entry_resize(map, prev_entry, 1762 end - prev_entry->end); 1763 *res = vm_map_try_merge_entries(map, prev_entry, 1764 next_entry); 1765 return (KERN_SUCCESS); 1766 } 1767 1768 /* 1769 * If we can extend the object but cannot extend the 1770 * map entry, we have to create a new map entry. We 1771 * must bump the ref count on the extended object to 1772 * account for it. object may be NULL. 1773 */ 1774 object = prev_entry->object.vm_object; 1775 offset = prev_entry->offset + 1776 (prev_entry->end - prev_entry->start); 1777 vm_object_reference(object); 1778 if (cred != NULL && object != NULL && object->cred != NULL && 1779 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1780 /* Object already accounts for this uid. */ 1781 cred = NULL; 1782 } 1783 } 1784 if (cred != NULL) 1785 crhold(cred); 1786 1787 /* 1788 * Create a new entry 1789 */ 1790 new_entry = vm_map_entry_create(map); 1791 new_entry->start = start; 1792 new_entry->end = end; 1793 new_entry->cred = NULL; 1794 1795 new_entry->eflags = protoeflags; 1796 new_entry->object.vm_object = object; 1797 new_entry->offset = offset; 1798 1799 new_entry->inheritance = inheritance; 1800 new_entry->protection = prot; 1801 new_entry->max_protection = max; 1802 new_entry->wired_count = 0; 1803 new_entry->wiring_thread = NULL; 1804 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1805 new_entry->next_read = start; 1806 1807 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1808 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1809 new_entry->cred = cred; 1810 1811 /* 1812 * Insert the new entry into the list 1813 */ 1814 vm_map_entry_link(map, new_entry); 1815 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1816 map->size += new_entry->end - new_entry->start; 1817 1818 /* 1819 * Try to coalesce the new entry with both the previous and next 1820 * entries in the list. Previously, we only attempted to coalesce 1821 * with the previous entry when object is NULL. Here, we handle the 1822 * other cases, which are less common. 1823 */ 1824 vm_map_try_merge_entries(map, prev_entry, new_entry); 1825 *res = vm_map_try_merge_entries(map, new_entry, next_entry); 1826 1827 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1828 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1829 end - start, cow & MAP_PREFAULT_PARTIAL); 1830 } 1831 1832 return (KERN_SUCCESS); 1833 } 1834 1835 /* 1836 * vm_map_insert: 1837 * 1838 * Inserts the given VM object into the target map at the 1839 * specified address range. 1840 * 1841 * Requires that the map be locked, and leaves it so. 1842 * 1843 * If object is non-NULL, ref count must be bumped by caller 1844 * prior to making call to account for the new entry. 1845 */ 1846 int 1847 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1848 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1849 { 1850 vm_map_entry_t res; 1851 1852 return (vm_map_insert1(map, object, offset, start, end, prot, max, 1853 cow, &res)); 1854 } 1855 1856 /* 1857 * vm_map_findspace: 1858 * 1859 * Find the first fit (lowest VM address) for "length" free bytes 1860 * beginning at address >= start in the given map. 1861 * 1862 * In a vm_map_entry, "max_free" is the maximum amount of 1863 * contiguous free space between an entry in its subtree and a 1864 * neighbor of that entry. This allows finding a free region in 1865 * one path down the tree, so O(log n) amortized with splay 1866 * trees. 1867 * 1868 * The map must be locked, and leaves it so. 1869 * 1870 * Returns: starting address if sufficient space, 1871 * vm_map_max(map)-length+1 if insufficient space. 1872 */ 1873 vm_offset_t 1874 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1875 { 1876 vm_map_entry_t header, llist, rlist, root, y; 1877 vm_size_t left_length, max_free_left, max_free_right; 1878 vm_offset_t gap_end; 1879 1880 VM_MAP_ASSERT_LOCKED(map); 1881 1882 /* 1883 * Request must fit within min/max VM address and must avoid 1884 * address wrap. 1885 */ 1886 start = MAX(start, vm_map_min(map)); 1887 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1888 return (vm_map_max(map) - length + 1); 1889 1890 /* Empty tree means wide open address space. */ 1891 if (map->root == NULL) 1892 return (start); 1893 1894 /* 1895 * After splay_split, if start is within an entry, push it to the start 1896 * of the following gap. If rlist is at the end of the gap containing 1897 * start, save the end of that gap in gap_end to see if the gap is big 1898 * enough; otherwise set gap_end to start skip gap-checking and move 1899 * directly to a search of the right subtree. 1900 */ 1901 header = &map->header; 1902 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1903 gap_end = rlist->start; 1904 if (root != NULL) { 1905 start = root->end; 1906 if (root->right != rlist) 1907 gap_end = start; 1908 max_free_left = vm_map_splay_merge_left(header, root, llist); 1909 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1910 } else if (rlist != header) { 1911 root = rlist; 1912 rlist = root->left; 1913 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1914 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1915 } else { 1916 root = llist; 1917 llist = root->right; 1918 max_free_left = vm_map_splay_merge_left(header, root, llist); 1919 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1920 } 1921 root->max_free = vm_size_max(max_free_left, max_free_right); 1922 map->root = root; 1923 VM_MAP_ASSERT_CONSISTENT(map); 1924 if (length <= gap_end - start) 1925 return (start); 1926 1927 /* With max_free, can immediately tell if no solution. */ 1928 if (root->right == header || length > root->right->max_free) 1929 return (vm_map_max(map) - length + 1); 1930 1931 /* 1932 * Splay for the least large-enough gap in the right subtree. 1933 */ 1934 llist = rlist = header; 1935 for (left_length = 0;; 1936 left_length = vm_map_entry_max_free_left(root, llist)) { 1937 if (length <= left_length) 1938 SPLAY_LEFT_STEP(root, y, llist, rlist, 1939 length <= vm_map_entry_max_free_left(y, llist)); 1940 else 1941 SPLAY_RIGHT_STEP(root, y, llist, rlist, 1942 length > vm_map_entry_max_free_left(y, root)); 1943 if (root == NULL) 1944 break; 1945 } 1946 root = llist; 1947 llist = root->right; 1948 max_free_left = vm_map_splay_merge_left(header, root, llist); 1949 if (rlist == header) { 1950 root->max_free = vm_size_max(max_free_left, 1951 vm_map_splay_merge_succ(header, root, rlist)); 1952 } else { 1953 y = rlist; 1954 rlist = y->left; 1955 y->max_free = vm_size_max( 1956 vm_map_splay_merge_pred(root, y, root), 1957 vm_map_splay_merge_right(header, y, rlist)); 1958 root->max_free = vm_size_max(max_free_left, y->max_free); 1959 } 1960 map->root = root; 1961 VM_MAP_ASSERT_CONSISTENT(map); 1962 return (root->end); 1963 } 1964 1965 int 1966 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1967 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1968 vm_prot_t max, int cow) 1969 { 1970 vm_offset_t end; 1971 int result; 1972 1973 end = start + length; 1974 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1975 object == NULL, 1976 ("vm_map_fixed: non-NULL backing object for stack")); 1977 vm_map_lock(map); 1978 VM_MAP_RANGE_CHECK(map, start, end); 1979 if ((cow & MAP_CHECK_EXCL) == 0) { 1980 result = vm_map_delete(map, start, end); 1981 if (result != KERN_SUCCESS) 1982 goto out; 1983 } 1984 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1985 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1986 prot, max, cow); 1987 } else { 1988 result = vm_map_insert(map, object, offset, start, end, 1989 prot, max, cow); 1990 } 1991 out: 1992 vm_map_unlock(map); 1993 return (result); 1994 } 1995 1996 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1997 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1998 1999 static int cluster_anon = 1; 2000 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 2001 &cluster_anon, 0, 2002 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 2003 2004 static bool 2005 clustering_anon_allowed(vm_offset_t addr, int cow) 2006 { 2007 2008 switch (cluster_anon) { 2009 case 0: 2010 return (false); 2011 case 1: 2012 return (addr == 0 || (cow & MAP_NO_HINT) != 0); 2013 case 2: 2014 default: 2015 return (true); 2016 } 2017 } 2018 2019 static long aslr_restarts; 2020 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 2021 &aslr_restarts, 0, 2022 "Number of aslr failures"); 2023 2024 /* 2025 * Searches for the specified amount of free space in the given map with the 2026 * specified alignment. Performs an address-ordered, first-fit search from 2027 * the given address "*addr", with an optional upper bound "max_addr". If the 2028 * parameter "alignment" is zero, then the alignment is computed from the 2029 * given (object, offset) pair so as to enable the greatest possible use of 2030 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 2031 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 2032 * 2033 * The map must be locked. Initially, there must be at least "length" bytes 2034 * of free space at the given address. 2035 */ 2036 static int 2037 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2038 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 2039 vm_offset_t alignment) 2040 { 2041 vm_offset_t aligned_addr, free_addr; 2042 2043 VM_MAP_ASSERT_LOCKED(map); 2044 free_addr = *addr; 2045 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 2046 ("caller failed to provide space %#jx at address %p", 2047 (uintmax_t)length, (void *)free_addr)); 2048 for (;;) { 2049 /* 2050 * At the start of every iteration, the free space at address 2051 * "*addr" is at least "length" bytes. 2052 */ 2053 if (alignment == 0) 2054 pmap_align_superpage(object, offset, addr, length); 2055 else 2056 *addr = roundup2(*addr, alignment); 2057 aligned_addr = *addr; 2058 if (aligned_addr == free_addr) { 2059 /* 2060 * Alignment did not change "*addr", so "*addr" must 2061 * still provide sufficient free space. 2062 */ 2063 return (KERN_SUCCESS); 2064 } 2065 2066 /* 2067 * Test for address wrap on "*addr". A wrapped "*addr" could 2068 * be a valid address, in which case vm_map_findspace() cannot 2069 * be relied upon to fail. 2070 */ 2071 if (aligned_addr < free_addr) 2072 return (KERN_NO_SPACE); 2073 *addr = vm_map_findspace(map, aligned_addr, length); 2074 if (*addr + length > vm_map_max(map) || 2075 (max_addr != 0 && *addr + length > max_addr)) 2076 return (KERN_NO_SPACE); 2077 free_addr = *addr; 2078 if (free_addr == aligned_addr) { 2079 /* 2080 * If a successful call to vm_map_findspace() did not 2081 * change "*addr", then "*addr" must still be aligned 2082 * and provide sufficient free space. 2083 */ 2084 return (KERN_SUCCESS); 2085 } 2086 } 2087 } 2088 2089 int 2090 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length, 2091 vm_offset_t max_addr, vm_offset_t alignment) 2092 { 2093 /* XXXKIB ASLR eh ? */ 2094 *addr = vm_map_findspace(map, *addr, length); 2095 if (*addr + length > vm_map_max(map) || 2096 (max_addr != 0 && *addr + length > max_addr)) 2097 return (KERN_NO_SPACE); 2098 return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr, 2099 alignment)); 2100 } 2101 2102 /* 2103 * vm_map_find finds an unallocated region in the target address 2104 * map with the given length. The search is defined to be 2105 * first-fit from the specified address; the region found is 2106 * returned in the same parameter. 2107 * 2108 * If object is non-NULL, ref count must be bumped by caller 2109 * prior to making call to account for the new entry. 2110 */ 2111 int 2112 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2113 vm_offset_t *addr, /* IN/OUT */ 2114 vm_size_t length, vm_offset_t max_addr, int find_space, 2115 vm_prot_t prot, vm_prot_t max, int cow) 2116 { 2117 vm_offset_t alignment, curr_min_addr, min_addr; 2118 int gap, pidx, rv, try; 2119 bool cluster, en_aslr, update_anon; 2120 2121 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 2122 object == NULL, 2123 ("vm_map_find: non-NULL backing object for stack")); 2124 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 2125 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 2126 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 2127 (object->flags & OBJ_COLORED) == 0)) 2128 find_space = VMFS_ANY_SPACE; 2129 if (find_space >> 8 != 0) { 2130 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 2131 alignment = (vm_offset_t)1 << (find_space >> 8); 2132 } else 2133 alignment = 0; 2134 en_aslr = (map->flags & MAP_ASLR) != 0; 2135 update_anon = cluster = clustering_anon_allowed(*addr, cow) && 2136 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 2137 find_space != VMFS_NO_SPACE && object == NULL && 2138 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 2139 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 2140 curr_min_addr = min_addr = *addr; 2141 if (en_aslr && min_addr == 0 && !cluster && 2142 find_space != VMFS_NO_SPACE && 2143 (map->flags & MAP_ASLR_IGNSTART) != 0) 2144 curr_min_addr = min_addr = vm_map_min(map); 2145 try = 0; 2146 vm_map_lock(map); 2147 if (cluster) { 2148 curr_min_addr = map->anon_loc; 2149 if (curr_min_addr == 0) 2150 cluster = false; 2151 } 2152 if (find_space != VMFS_NO_SPACE) { 2153 KASSERT(find_space == VMFS_ANY_SPACE || 2154 find_space == VMFS_OPTIMAL_SPACE || 2155 find_space == VMFS_SUPER_SPACE || 2156 alignment != 0, ("unexpected VMFS flag")); 2157 again: 2158 /* 2159 * When creating an anonymous mapping, try clustering 2160 * with an existing anonymous mapping first. 2161 * 2162 * We make up to two attempts to find address space 2163 * for a given find_space value. The first attempt may 2164 * apply randomization or may cluster with an existing 2165 * anonymous mapping. If this first attempt fails, 2166 * perform a first-fit search of the available address 2167 * space. 2168 * 2169 * If all tries failed, and find_space is 2170 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 2171 * Again enable clustering and randomization. 2172 */ 2173 try++; 2174 MPASS(try <= 2); 2175 2176 if (try == 2) { 2177 /* 2178 * Second try: we failed either to find a 2179 * suitable region for randomizing the 2180 * allocation, or to cluster with an existing 2181 * mapping. Retry with free run. 2182 */ 2183 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 2184 vm_map_min(map) : min_addr; 2185 atomic_add_long(&aslr_restarts, 1); 2186 } 2187 2188 if (try == 1 && en_aslr && !cluster) { 2189 /* 2190 * Find space for allocation, including 2191 * gap needed for later randomization. 2192 */ 2193 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 2194 (find_space == VMFS_SUPER_SPACE || find_space == 2195 VMFS_OPTIMAL_SPACE) ? 1 : 0; 2196 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 2197 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 2198 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 2199 *addr = vm_map_findspace(map, curr_min_addr, 2200 length + gap * pagesizes[pidx]); 2201 if (*addr + length + gap * pagesizes[pidx] > 2202 vm_map_max(map)) 2203 goto again; 2204 /* And randomize the start address. */ 2205 *addr += (arc4random() % gap) * pagesizes[pidx]; 2206 if (max_addr != 0 && *addr + length > max_addr) 2207 goto again; 2208 } else { 2209 *addr = vm_map_findspace(map, curr_min_addr, length); 2210 if (*addr + length > vm_map_max(map) || 2211 (max_addr != 0 && *addr + length > max_addr)) { 2212 if (cluster) { 2213 cluster = false; 2214 MPASS(try == 1); 2215 goto again; 2216 } 2217 rv = KERN_NO_SPACE; 2218 goto done; 2219 } 2220 } 2221 2222 if (find_space != VMFS_ANY_SPACE && 2223 (rv = vm_map_alignspace(map, object, offset, addr, length, 2224 max_addr, alignment)) != KERN_SUCCESS) { 2225 if (find_space == VMFS_OPTIMAL_SPACE) { 2226 find_space = VMFS_ANY_SPACE; 2227 curr_min_addr = min_addr; 2228 cluster = update_anon; 2229 try = 0; 2230 goto again; 2231 } 2232 goto done; 2233 } 2234 } else if ((cow & MAP_REMAP) != 0) { 2235 if (!vm_map_range_valid(map, *addr, *addr + length)) { 2236 rv = KERN_INVALID_ADDRESS; 2237 goto done; 2238 } 2239 rv = vm_map_delete(map, *addr, *addr + length); 2240 if (rv != KERN_SUCCESS) 2241 goto done; 2242 } 2243 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 2244 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 2245 max, cow); 2246 } else { 2247 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 2248 prot, max, cow); 2249 } 2250 if (rv == KERN_SUCCESS && update_anon) 2251 map->anon_loc = *addr + length; 2252 done: 2253 vm_map_unlock(map); 2254 return (rv); 2255 } 2256 2257 /* 2258 * vm_map_find_min() is a variant of vm_map_find() that takes an 2259 * additional parameter ("default_addr") and treats the given address 2260 * ("*addr") differently. Specifically, it treats "*addr" as a hint 2261 * and not as the minimum address where the mapping is created. 2262 * 2263 * This function works in two phases. First, it tries to 2264 * allocate above the hint. If that fails and the hint is 2265 * greater than "default_addr", it performs a second pass, replacing 2266 * the hint with "default_addr" as the minimum address for the 2267 * allocation. 2268 */ 2269 int 2270 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2271 vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr, 2272 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2273 int cow) 2274 { 2275 vm_offset_t hint; 2276 int rv; 2277 2278 hint = *addr; 2279 if (hint == 0) { 2280 cow |= MAP_NO_HINT; 2281 *addr = hint = default_addr; 2282 } 2283 for (;;) { 2284 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2285 find_space, prot, max, cow); 2286 if (rv == KERN_SUCCESS || default_addr >= hint) 2287 return (rv); 2288 *addr = hint = default_addr; 2289 } 2290 } 2291 2292 /* 2293 * A map entry with any of the following flags set must not be merged with 2294 * another entry. 2295 */ 2296 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 2297 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \ 2298 MAP_ENTRY_STACK_GAP_UP | MAP_ENTRY_STACK_GAP_DN) 2299 2300 static bool 2301 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2302 { 2303 2304 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2305 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2306 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2307 prev, entry)); 2308 return (prev->end == entry->start && 2309 prev->object.vm_object == entry->object.vm_object && 2310 (prev->object.vm_object == NULL || 2311 prev->offset + (prev->end - prev->start) == entry->offset) && 2312 prev->eflags == entry->eflags && 2313 prev->protection == entry->protection && 2314 prev->max_protection == entry->max_protection && 2315 prev->inheritance == entry->inheritance && 2316 prev->wired_count == entry->wired_count && 2317 prev->cred == entry->cred); 2318 } 2319 2320 static void 2321 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2322 { 2323 2324 /* 2325 * If the backing object is a vnode object, vm_object_deallocate() 2326 * calls vrele(). However, vrele() does not lock the vnode because 2327 * the vnode has additional references. Thus, the map lock can be 2328 * kept without causing a lock-order reversal with the vnode lock. 2329 * 2330 * Since we count the number of virtual page mappings in 2331 * object->un_pager.vnp.writemappings, the writemappings value 2332 * should not be adjusted when the entry is disposed of. 2333 */ 2334 if (entry->object.vm_object != NULL) 2335 vm_object_deallocate(entry->object.vm_object); 2336 if (entry->cred != NULL) 2337 crfree(entry->cred); 2338 vm_map_entry_dispose(map, entry); 2339 } 2340 2341 /* 2342 * vm_map_try_merge_entries: 2343 * 2344 * Compare two map entries that represent consecutive ranges. If 2345 * the entries can be merged, expand the range of the second to 2346 * cover the range of the first and delete the first. Then return 2347 * the map entry that includes the first range. 2348 * 2349 * The map must be locked. 2350 */ 2351 vm_map_entry_t 2352 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry, 2353 vm_map_entry_t entry) 2354 { 2355 2356 VM_MAP_ASSERT_LOCKED(map); 2357 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 && 2358 vm_map_mergeable_neighbors(prev_entry, entry)) { 2359 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT); 2360 vm_map_merged_neighbor_dispose(map, prev_entry); 2361 return (entry); 2362 } 2363 return (prev_entry); 2364 } 2365 2366 /* 2367 * vm_map_entry_back: 2368 * 2369 * Allocate an object to back a map entry. 2370 */ 2371 static inline void 2372 vm_map_entry_back(vm_map_entry_t entry) 2373 { 2374 vm_object_t object; 2375 2376 KASSERT(entry->object.vm_object == NULL, 2377 ("map entry %p has backing object", entry)); 2378 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2379 ("map entry %p is a submap", entry)); 2380 object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL, 2381 entry->cred, entry->end - entry->start); 2382 entry->object.vm_object = object; 2383 entry->offset = 0; 2384 entry->cred = NULL; 2385 } 2386 2387 /* 2388 * vm_map_entry_charge_object 2389 * 2390 * If there is no object backing this entry, create one. Otherwise, if 2391 * the entry has cred, give it to the backing object. 2392 */ 2393 static inline void 2394 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2395 { 2396 2397 VM_MAP_ASSERT_LOCKED(map); 2398 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2399 ("map entry %p is a submap", entry)); 2400 if (entry->object.vm_object == NULL && !map->system_map && 2401 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2402 vm_map_entry_back(entry); 2403 else if (entry->object.vm_object != NULL && 2404 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2405 entry->cred != NULL) { 2406 VM_OBJECT_WLOCK(entry->object.vm_object); 2407 KASSERT(entry->object.vm_object->cred == NULL, 2408 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2409 entry->object.vm_object->cred = entry->cred; 2410 entry->object.vm_object->charge = entry->end - entry->start; 2411 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2412 entry->cred = NULL; 2413 } 2414 } 2415 2416 /* 2417 * vm_map_entry_clone 2418 * 2419 * Create a duplicate map entry for clipping. 2420 */ 2421 static vm_map_entry_t 2422 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry) 2423 { 2424 vm_map_entry_t new_entry; 2425 2426 VM_MAP_ASSERT_LOCKED(map); 2427 2428 /* 2429 * Create a backing object now, if none exists, so that more individual 2430 * objects won't be created after the map entry is split. 2431 */ 2432 vm_map_entry_charge_object(map, entry); 2433 2434 /* Clone the entry. */ 2435 new_entry = vm_map_entry_create(map); 2436 *new_entry = *entry; 2437 if (new_entry->cred != NULL) 2438 crhold(entry->cred); 2439 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2440 vm_object_reference(new_entry->object.vm_object); 2441 vm_map_entry_set_vnode_text(new_entry, true); 2442 /* 2443 * The object->un_pager.vnp.writemappings for the object of 2444 * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The 2445 * virtual pages are re-distributed among the clipped entries, 2446 * so the sum is left the same. 2447 */ 2448 } 2449 return (new_entry); 2450 } 2451 2452 /* 2453 * vm_map_clip_start: [ internal use only ] 2454 * 2455 * Asserts that the given entry begins at or after 2456 * the specified address; if necessary, 2457 * it splits the entry into two. 2458 */ 2459 static int 2460 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr) 2461 { 2462 vm_map_entry_t new_entry; 2463 int bdry_idx; 2464 2465 if (!map->system_map) 2466 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2467 "%s: map %p entry %p start 0x%jx", __func__, map, entry, 2468 (uintmax_t)startaddr); 2469 2470 if (startaddr <= entry->start) 2471 return (KERN_SUCCESS); 2472 2473 VM_MAP_ASSERT_LOCKED(map); 2474 KASSERT(entry->end > startaddr && entry->start < startaddr, 2475 ("%s: invalid clip of entry %p", __func__, entry)); 2476 2477 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 2478 if (bdry_idx != 0) { 2479 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0) 2480 return (KERN_INVALID_ARGUMENT); 2481 } 2482 2483 new_entry = vm_map_entry_clone(map, entry); 2484 2485 /* 2486 * Split off the front portion. Insert the new entry BEFORE this one, 2487 * so that this entry has the specified starting address. 2488 */ 2489 new_entry->end = startaddr; 2490 vm_map_entry_link(map, new_entry); 2491 return (KERN_SUCCESS); 2492 } 2493 2494 /* 2495 * vm_map_lookup_clip_start: 2496 * 2497 * Find the entry at or just after 'start', and clip it if 'start' is in 2498 * the interior of the entry. Return entry after 'start', and in 2499 * prev_entry set the entry before 'start'. 2500 */ 2501 static int 2502 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start, 2503 vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry) 2504 { 2505 vm_map_entry_t entry; 2506 int rv; 2507 2508 if (!map->system_map) 2509 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2510 "%s: map %p start 0x%jx prev %p", __func__, map, 2511 (uintmax_t)start, prev_entry); 2512 2513 if (vm_map_lookup_entry(map, start, prev_entry)) { 2514 entry = *prev_entry; 2515 rv = vm_map_clip_start(map, entry, start); 2516 if (rv != KERN_SUCCESS) 2517 return (rv); 2518 *prev_entry = vm_map_entry_pred(entry); 2519 } else 2520 entry = vm_map_entry_succ(*prev_entry); 2521 *res_entry = entry; 2522 return (KERN_SUCCESS); 2523 } 2524 2525 /* 2526 * vm_map_clip_end: [ internal use only ] 2527 * 2528 * Asserts that the given entry ends at or before 2529 * the specified address; if necessary, 2530 * it splits the entry into two. 2531 */ 2532 static int 2533 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr) 2534 { 2535 vm_map_entry_t new_entry; 2536 int bdry_idx; 2537 2538 if (!map->system_map) 2539 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2540 "%s: map %p entry %p end 0x%jx", __func__, map, entry, 2541 (uintmax_t)endaddr); 2542 2543 if (endaddr >= entry->end) 2544 return (KERN_SUCCESS); 2545 2546 VM_MAP_ASSERT_LOCKED(map); 2547 KASSERT(entry->start < endaddr && entry->end > endaddr, 2548 ("%s: invalid clip of entry %p", __func__, entry)); 2549 2550 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 2551 if (bdry_idx != 0) { 2552 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0) 2553 return (KERN_INVALID_ARGUMENT); 2554 } 2555 2556 new_entry = vm_map_entry_clone(map, entry); 2557 2558 /* 2559 * Split off the back portion. Insert the new entry AFTER this one, 2560 * so that this entry has the specified ending address. 2561 */ 2562 new_entry->start = endaddr; 2563 vm_map_entry_link(map, new_entry); 2564 2565 return (KERN_SUCCESS); 2566 } 2567 2568 /* 2569 * vm_map_submap: [ kernel use only ] 2570 * 2571 * Mark the given range as handled by a subordinate map. 2572 * 2573 * This range must have been created with vm_map_find, 2574 * and no other operations may have been performed on this 2575 * range prior to calling vm_map_submap. 2576 * 2577 * Only a limited number of operations can be performed 2578 * within this rage after calling vm_map_submap: 2579 * vm_fault 2580 * [Don't try vm_map_copy!] 2581 * 2582 * To remove a submapping, one must first remove the 2583 * range from the superior map, and then destroy the 2584 * submap (if desired). [Better yet, don't try it.] 2585 */ 2586 int 2587 vm_map_submap( 2588 vm_map_t map, 2589 vm_offset_t start, 2590 vm_offset_t end, 2591 vm_map_t submap) 2592 { 2593 vm_map_entry_t entry; 2594 int result; 2595 2596 result = KERN_INVALID_ARGUMENT; 2597 2598 vm_map_lock(submap); 2599 submap->flags |= MAP_IS_SUB_MAP; 2600 vm_map_unlock(submap); 2601 2602 vm_map_lock(map); 2603 VM_MAP_RANGE_CHECK(map, start, end); 2604 if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end && 2605 (entry->eflags & MAP_ENTRY_COW) == 0 && 2606 entry->object.vm_object == NULL) { 2607 result = vm_map_clip_start(map, entry, start); 2608 if (result != KERN_SUCCESS) 2609 goto unlock; 2610 result = vm_map_clip_end(map, entry, end); 2611 if (result != KERN_SUCCESS) 2612 goto unlock; 2613 entry->object.sub_map = submap; 2614 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2615 result = KERN_SUCCESS; 2616 } 2617 unlock: 2618 vm_map_unlock(map); 2619 2620 if (result != KERN_SUCCESS) { 2621 vm_map_lock(submap); 2622 submap->flags &= ~MAP_IS_SUB_MAP; 2623 vm_map_unlock(submap); 2624 } 2625 return (result); 2626 } 2627 2628 /* 2629 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2630 */ 2631 #define MAX_INIT_PT 96 2632 2633 /* 2634 * vm_map_pmap_enter: 2635 * 2636 * Preload the specified map's pmap with mappings to the specified 2637 * object's memory-resident pages. No further physical pages are 2638 * allocated, and no further virtual pages are retrieved from secondary 2639 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2640 * limited number of page mappings are created at the low-end of the 2641 * specified address range. (For this purpose, a superpage mapping 2642 * counts as one page mapping.) Otherwise, all resident pages within 2643 * the specified address range are mapped. 2644 */ 2645 static void 2646 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2647 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2648 { 2649 vm_offset_t start; 2650 vm_page_t p, p_start; 2651 vm_pindex_t mask, psize, threshold, tmpidx; 2652 2653 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2654 return; 2655 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2656 VM_OBJECT_WLOCK(object); 2657 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2658 pmap_object_init_pt(map->pmap, addr, object, pindex, 2659 size); 2660 VM_OBJECT_WUNLOCK(object); 2661 return; 2662 } 2663 VM_OBJECT_LOCK_DOWNGRADE(object); 2664 } else 2665 VM_OBJECT_RLOCK(object); 2666 2667 psize = atop(size); 2668 if (psize + pindex > object->size) { 2669 if (pindex >= object->size) { 2670 VM_OBJECT_RUNLOCK(object); 2671 return; 2672 } 2673 psize = object->size - pindex; 2674 } 2675 2676 start = 0; 2677 p_start = NULL; 2678 threshold = MAX_INIT_PT; 2679 2680 p = vm_page_find_least(object, pindex); 2681 /* 2682 * Assert: the variable p is either (1) the page with the 2683 * least pindex greater than or equal to the parameter pindex 2684 * or (2) NULL. 2685 */ 2686 for (; 2687 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2688 p = TAILQ_NEXT(p, listq)) { 2689 /* 2690 * don't allow an madvise to blow away our really 2691 * free pages allocating pv entries. 2692 */ 2693 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2694 vm_page_count_severe()) || 2695 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2696 tmpidx >= threshold)) { 2697 psize = tmpidx; 2698 break; 2699 } 2700 if (vm_page_all_valid(p)) { 2701 if (p_start == NULL) { 2702 start = addr + ptoa(tmpidx); 2703 p_start = p; 2704 } 2705 /* Jump ahead if a superpage mapping is possible. */ 2706 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2707 (pagesizes[p->psind] - 1)) == 0) { 2708 mask = atop(pagesizes[p->psind]) - 1; 2709 if (tmpidx + mask < psize && 2710 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2711 p += mask; 2712 threshold += mask; 2713 } 2714 } 2715 } else if (p_start != NULL) { 2716 pmap_enter_object(map->pmap, start, addr + 2717 ptoa(tmpidx), p_start, prot); 2718 p_start = NULL; 2719 } 2720 } 2721 if (p_start != NULL) 2722 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2723 p_start, prot); 2724 VM_OBJECT_RUNLOCK(object); 2725 } 2726 2727 static void 2728 vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot, 2729 vm_prot_t new_maxprot, int flags) 2730 { 2731 vm_prot_t old_prot; 2732 2733 MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0); 2734 if ((entry->eflags & (MAP_ENTRY_STACK_GAP_UP | 2735 MAP_ENTRY_STACK_GAP_DN)) == 0) 2736 return; 2737 2738 old_prot = PROT_EXTRACT(entry->offset); 2739 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) { 2740 entry->offset = PROT_MAX(new_maxprot) | 2741 (new_maxprot & old_prot); 2742 } 2743 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) { 2744 entry->offset = new_prot | PROT_MAX( 2745 PROT_MAX_EXTRACT(entry->offset)); 2746 } 2747 } 2748 2749 /* 2750 * vm_map_protect: 2751 * 2752 * Sets the protection and/or the maximum protection of the 2753 * specified address region in the target map. 2754 */ 2755 int 2756 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2757 vm_prot_t new_prot, vm_prot_t new_maxprot, int flags) 2758 { 2759 vm_map_entry_t entry, first_entry, in_tran, prev_entry; 2760 vm_object_t obj; 2761 struct ucred *cred; 2762 vm_offset_t orig_start; 2763 vm_prot_t check_prot, max_prot, old_prot; 2764 int rv; 2765 2766 if (start == end) 2767 return (KERN_SUCCESS); 2768 2769 if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT | 2770 VM_MAP_PROTECT_SET_MAXPROT) && 2771 !CONTAINS_BITS(new_maxprot, new_prot)) 2772 return (KERN_OUT_OF_BOUNDS); 2773 2774 orig_start = start; 2775 again: 2776 in_tran = NULL; 2777 start = orig_start; 2778 vm_map_lock(map); 2779 2780 if ((map->flags & MAP_WXORX) != 0 && 2781 (flags & VM_MAP_PROTECT_SET_PROT) != 0 && 2782 CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) { 2783 vm_map_unlock(map); 2784 return (KERN_PROTECTION_FAILURE); 2785 } 2786 2787 /* 2788 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2789 * need to fault pages into the map and will drop the map lock while 2790 * doing so, and the VM object may end up in an inconsistent state if we 2791 * update the protection on the map entry in between faults. 2792 */ 2793 vm_map_wait_busy(map); 2794 2795 VM_MAP_RANGE_CHECK(map, start, end); 2796 2797 if (!vm_map_lookup_entry(map, start, &first_entry)) 2798 first_entry = vm_map_entry_succ(first_entry); 2799 2800 if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 && 2801 (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) { 2802 /* 2803 * Handle Linux's PROT_GROWSDOWN flag. 2804 * It means that protection is applied down to the 2805 * whole stack, including the specified range of the 2806 * mapped region, and the grow down region (AKA 2807 * guard). 2808 */ 2809 while (!CONTAINS_BITS(first_entry->eflags, 2810 MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP_DN) && 2811 first_entry != vm_map_entry_first(map)) 2812 first_entry = vm_map_entry_pred(first_entry); 2813 start = first_entry->start; 2814 } 2815 2816 /* 2817 * Make a first pass to check for protection violations. 2818 */ 2819 check_prot = 0; 2820 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) 2821 check_prot |= new_prot; 2822 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) 2823 check_prot |= new_maxprot; 2824 for (entry = first_entry; entry->start < end; 2825 entry = vm_map_entry_succ(entry)) { 2826 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 2827 vm_map_unlock(map); 2828 return (KERN_INVALID_ARGUMENT); 2829 } 2830 if ((entry->eflags & (MAP_ENTRY_GUARD | 2831 MAP_ENTRY_STACK_GAP_DN | MAP_ENTRY_STACK_GAP_UP)) == 2832 MAP_ENTRY_GUARD) 2833 continue; 2834 max_prot = (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 2835 MAP_ENTRY_STACK_GAP_UP)) != 0 ? 2836 PROT_MAX_EXTRACT(entry->offset) : entry->max_protection; 2837 if (!CONTAINS_BITS(max_prot, check_prot)) { 2838 vm_map_unlock(map); 2839 return (KERN_PROTECTION_FAILURE); 2840 } 2841 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2842 in_tran = entry; 2843 } 2844 2845 /* 2846 * Postpone the operation until all in-transition map entries have 2847 * stabilized. An in-transition entry might already have its pages 2848 * wired and wired_count incremented, but not yet have its 2849 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call 2850 * vm_fault_copy_entry() in the final loop below. 2851 */ 2852 if (in_tran != NULL) { 2853 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2854 vm_map_unlock_and_wait(map, 0); 2855 goto again; 2856 } 2857 2858 /* 2859 * Before changing the protections, try to reserve swap space for any 2860 * private (i.e., copy-on-write) mappings that are transitioning from 2861 * read-only to read/write access. If a reservation fails, break out 2862 * of this loop early and let the next loop simplify the entries, since 2863 * some may now be mergeable. 2864 */ 2865 rv = vm_map_clip_start(map, first_entry, start); 2866 if (rv != KERN_SUCCESS) { 2867 vm_map_unlock(map); 2868 return (rv); 2869 } 2870 for (entry = first_entry; entry->start < end; 2871 entry = vm_map_entry_succ(entry)) { 2872 rv = vm_map_clip_end(map, entry, end); 2873 if (rv != KERN_SUCCESS) { 2874 vm_map_unlock(map); 2875 return (rv); 2876 } 2877 2878 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 || 2879 ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 || 2880 ENTRY_CHARGED(entry) || 2881 (entry->eflags & MAP_ENTRY_GUARD) != 0) 2882 continue; 2883 2884 cred = curthread->td_ucred; 2885 obj = entry->object.vm_object; 2886 2887 if (obj == NULL || 2888 (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) { 2889 if (!swap_reserve(entry->end - entry->start)) { 2890 rv = KERN_RESOURCE_SHORTAGE; 2891 end = entry->end; 2892 break; 2893 } 2894 crhold(cred); 2895 entry->cred = cred; 2896 continue; 2897 } 2898 2899 VM_OBJECT_WLOCK(obj); 2900 if ((obj->flags & OBJ_SWAP) == 0) { 2901 VM_OBJECT_WUNLOCK(obj); 2902 continue; 2903 } 2904 2905 /* 2906 * Charge for the whole object allocation now, since 2907 * we cannot distinguish between non-charged and 2908 * charged clipped mapping of the same object later. 2909 */ 2910 KASSERT(obj->charge == 0, 2911 ("vm_map_protect: object %p overcharged (entry %p)", 2912 obj, entry)); 2913 if (!swap_reserve(ptoa(obj->size))) { 2914 VM_OBJECT_WUNLOCK(obj); 2915 rv = KERN_RESOURCE_SHORTAGE; 2916 end = entry->end; 2917 break; 2918 } 2919 2920 crhold(cred); 2921 obj->cred = cred; 2922 obj->charge = ptoa(obj->size); 2923 VM_OBJECT_WUNLOCK(obj); 2924 } 2925 2926 /* 2927 * If enough swap space was available, go back and fix up protections. 2928 * Otherwise, just simplify entries, since some may have been modified. 2929 * [Note that clipping is not necessary the second time.] 2930 */ 2931 for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry; 2932 entry->start < end; 2933 vm_map_try_merge_entries(map, prev_entry, entry), 2934 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2935 if (rv != KERN_SUCCESS) 2936 continue; 2937 2938 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 2939 vm_map_protect_guard(entry, new_prot, new_maxprot, 2940 flags); 2941 continue; 2942 } 2943 2944 old_prot = entry->protection; 2945 2946 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) { 2947 entry->max_protection = new_maxprot; 2948 entry->protection = new_maxprot & old_prot; 2949 } 2950 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) 2951 entry->protection = new_prot; 2952 2953 /* 2954 * For user wired map entries, the normal lazy evaluation of 2955 * write access upgrades through soft page faults is 2956 * undesirable. Instead, immediately copy any pages that are 2957 * copy-on-write and enable write access in the physical map. 2958 */ 2959 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2960 (entry->protection & VM_PROT_WRITE) != 0 && 2961 (old_prot & VM_PROT_WRITE) == 0) 2962 vm_fault_copy_entry(map, map, entry, entry, NULL); 2963 2964 /* 2965 * When restricting access, update the physical map. Worry 2966 * about copy-on-write here. 2967 */ 2968 if ((old_prot & ~entry->protection) != 0) { 2969 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2970 VM_PROT_ALL) 2971 pmap_protect(map->pmap, entry->start, 2972 entry->end, 2973 entry->protection & MASK(entry)); 2974 #undef MASK 2975 } 2976 } 2977 vm_map_try_merge_entries(map, prev_entry, entry); 2978 vm_map_unlock(map); 2979 return (rv); 2980 } 2981 2982 /* 2983 * vm_map_madvise: 2984 * 2985 * This routine traverses a processes map handling the madvise 2986 * system call. Advisories are classified as either those effecting 2987 * the vm_map_entry structure, or those effecting the underlying 2988 * objects. 2989 */ 2990 int 2991 vm_map_madvise( 2992 vm_map_t map, 2993 vm_offset_t start, 2994 vm_offset_t end, 2995 int behav) 2996 { 2997 vm_map_entry_t entry, prev_entry; 2998 int rv; 2999 bool modify_map; 3000 3001 /* 3002 * Some madvise calls directly modify the vm_map_entry, in which case 3003 * we need to use an exclusive lock on the map and we need to perform 3004 * various clipping operations. Otherwise we only need a read-lock 3005 * on the map. 3006 */ 3007 switch(behav) { 3008 case MADV_NORMAL: 3009 case MADV_SEQUENTIAL: 3010 case MADV_RANDOM: 3011 case MADV_NOSYNC: 3012 case MADV_AUTOSYNC: 3013 case MADV_NOCORE: 3014 case MADV_CORE: 3015 if (start == end) 3016 return (0); 3017 modify_map = true; 3018 vm_map_lock(map); 3019 break; 3020 case MADV_WILLNEED: 3021 case MADV_DONTNEED: 3022 case MADV_FREE: 3023 if (start == end) 3024 return (0); 3025 modify_map = false; 3026 vm_map_lock_read(map); 3027 break; 3028 default: 3029 return (EINVAL); 3030 } 3031 3032 /* 3033 * Locate starting entry and clip if necessary. 3034 */ 3035 VM_MAP_RANGE_CHECK(map, start, end); 3036 3037 if (modify_map) { 3038 /* 3039 * madvise behaviors that are implemented in the vm_map_entry. 3040 * 3041 * We clip the vm_map_entry so that behavioral changes are 3042 * limited to the specified address range. 3043 */ 3044 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry); 3045 if (rv != KERN_SUCCESS) { 3046 vm_map_unlock(map); 3047 return (vm_mmap_to_errno(rv)); 3048 } 3049 3050 for (; entry->start < end; prev_entry = entry, 3051 entry = vm_map_entry_succ(entry)) { 3052 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 3053 continue; 3054 3055 rv = vm_map_clip_end(map, entry, end); 3056 if (rv != KERN_SUCCESS) { 3057 vm_map_unlock(map); 3058 return (vm_mmap_to_errno(rv)); 3059 } 3060 3061 switch (behav) { 3062 case MADV_NORMAL: 3063 vm_map_entry_set_behavior(entry, 3064 MAP_ENTRY_BEHAV_NORMAL); 3065 break; 3066 case MADV_SEQUENTIAL: 3067 vm_map_entry_set_behavior(entry, 3068 MAP_ENTRY_BEHAV_SEQUENTIAL); 3069 break; 3070 case MADV_RANDOM: 3071 vm_map_entry_set_behavior(entry, 3072 MAP_ENTRY_BEHAV_RANDOM); 3073 break; 3074 case MADV_NOSYNC: 3075 entry->eflags |= MAP_ENTRY_NOSYNC; 3076 break; 3077 case MADV_AUTOSYNC: 3078 entry->eflags &= ~MAP_ENTRY_NOSYNC; 3079 break; 3080 case MADV_NOCORE: 3081 entry->eflags |= MAP_ENTRY_NOCOREDUMP; 3082 break; 3083 case MADV_CORE: 3084 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP; 3085 break; 3086 default: 3087 break; 3088 } 3089 vm_map_try_merge_entries(map, prev_entry, entry); 3090 } 3091 vm_map_try_merge_entries(map, prev_entry, entry); 3092 vm_map_unlock(map); 3093 } else { 3094 vm_pindex_t pstart, pend; 3095 3096 /* 3097 * madvise behaviors that are implemented in the underlying 3098 * vm_object. 3099 * 3100 * Since we don't clip the vm_map_entry, we have to clip 3101 * the vm_object pindex and count. 3102 */ 3103 if (!vm_map_lookup_entry(map, start, &entry)) 3104 entry = vm_map_entry_succ(entry); 3105 for (; entry->start < end; 3106 entry = vm_map_entry_succ(entry)) { 3107 vm_offset_t useEnd, useStart; 3108 3109 if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP | 3110 MAP_ENTRY_GUARD)) != 0) 3111 continue; 3112 3113 /* 3114 * MADV_FREE would otherwise rewind time to 3115 * the creation of the shadow object. Because 3116 * we hold the VM map read-locked, neither the 3117 * entry's object nor the presence of a 3118 * backing object can change. 3119 */ 3120 if (behav == MADV_FREE && 3121 entry->object.vm_object != NULL && 3122 entry->object.vm_object->backing_object != NULL) 3123 continue; 3124 3125 pstart = OFF_TO_IDX(entry->offset); 3126 pend = pstart + atop(entry->end - entry->start); 3127 useStart = entry->start; 3128 useEnd = entry->end; 3129 3130 if (entry->start < start) { 3131 pstart += atop(start - entry->start); 3132 useStart = start; 3133 } 3134 if (entry->end > end) { 3135 pend -= atop(entry->end - end); 3136 useEnd = end; 3137 } 3138 3139 if (pstart >= pend) 3140 continue; 3141 3142 /* 3143 * Perform the pmap_advise() before clearing 3144 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 3145 * concurrent pmap operation, such as pmap_remove(), 3146 * could clear a reference in the pmap and set 3147 * PGA_REFERENCED on the page before the pmap_advise() 3148 * had completed. Consequently, the page would appear 3149 * referenced based upon an old reference that 3150 * occurred before this pmap_advise() ran. 3151 */ 3152 if (behav == MADV_DONTNEED || behav == MADV_FREE) 3153 pmap_advise(map->pmap, useStart, useEnd, 3154 behav); 3155 3156 vm_object_madvise(entry->object.vm_object, pstart, 3157 pend, behav); 3158 3159 /* 3160 * Pre-populate paging structures in the 3161 * WILLNEED case. For wired entries, the 3162 * paging structures are already populated. 3163 */ 3164 if (behav == MADV_WILLNEED && 3165 entry->wired_count == 0) { 3166 vm_map_pmap_enter(map, 3167 useStart, 3168 entry->protection, 3169 entry->object.vm_object, 3170 pstart, 3171 ptoa(pend - pstart), 3172 MAP_PREFAULT_MADVISE 3173 ); 3174 } 3175 } 3176 vm_map_unlock_read(map); 3177 } 3178 return (0); 3179 } 3180 3181 /* 3182 * vm_map_inherit: 3183 * 3184 * Sets the inheritance of the specified address 3185 * range in the target map. Inheritance 3186 * affects how the map will be shared with 3187 * child maps at the time of vmspace_fork. 3188 */ 3189 int 3190 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 3191 vm_inherit_t new_inheritance) 3192 { 3193 vm_map_entry_t entry, lentry, prev_entry, start_entry; 3194 int rv; 3195 3196 switch (new_inheritance) { 3197 case VM_INHERIT_NONE: 3198 case VM_INHERIT_COPY: 3199 case VM_INHERIT_SHARE: 3200 case VM_INHERIT_ZERO: 3201 break; 3202 default: 3203 return (KERN_INVALID_ARGUMENT); 3204 } 3205 if (start == end) 3206 return (KERN_SUCCESS); 3207 vm_map_lock(map); 3208 VM_MAP_RANGE_CHECK(map, start, end); 3209 rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry); 3210 if (rv != KERN_SUCCESS) 3211 goto unlock; 3212 if (vm_map_lookup_entry(map, end - 1, &lentry)) { 3213 rv = vm_map_clip_end(map, lentry, end); 3214 if (rv != KERN_SUCCESS) 3215 goto unlock; 3216 } 3217 if (new_inheritance == VM_INHERIT_COPY) { 3218 for (entry = start_entry; entry->start < end; 3219 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3220 if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) 3221 != 0) { 3222 rv = KERN_INVALID_ARGUMENT; 3223 goto unlock; 3224 } 3225 } 3226 } 3227 for (entry = start_entry; entry->start < end; prev_entry = entry, 3228 entry = vm_map_entry_succ(entry)) { 3229 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx", 3230 entry, (uintmax_t)entry->end, (uintmax_t)end)); 3231 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 3232 new_inheritance != VM_INHERIT_ZERO) 3233 entry->inheritance = new_inheritance; 3234 vm_map_try_merge_entries(map, prev_entry, entry); 3235 } 3236 vm_map_try_merge_entries(map, prev_entry, entry); 3237 unlock: 3238 vm_map_unlock(map); 3239 return (rv); 3240 } 3241 3242 /* 3243 * vm_map_entry_in_transition: 3244 * 3245 * Release the map lock, and sleep until the entry is no longer in 3246 * transition. Awake and acquire the map lock. If the map changed while 3247 * another held the lock, lookup a possibly-changed entry at or after the 3248 * 'start' position of the old entry. 3249 */ 3250 static vm_map_entry_t 3251 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, 3252 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) 3253 { 3254 vm_map_entry_t entry; 3255 vm_offset_t start; 3256 u_int last_timestamp; 3257 3258 VM_MAP_ASSERT_LOCKED(map); 3259 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3260 ("not in-tranition map entry %p", in_entry)); 3261 /* 3262 * We have not yet clipped the entry. 3263 */ 3264 start = MAX(in_start, in_entry->start); 3265 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3266 last_timestamp = map->timestamp; 3267 if (vm_map_unlock_and_wait(map, 0)) { 3268 /* 3269 * Allow interruption of user wiring/unwiring? 3270 */ 3271 } 3272 vm_map_lock(map); 3273 if (last_timestamp + 1 == map->timestamp) 3274 return (in_entry); 3275 3276 /* 3277 * Look again for the entry because the map was modified while it was 3278 * unlocked. Specifically, the entry may have been clipped, merged, or 3279 * deleted. 3280 */ 3281 if (!vm_map_lookup_entry(map, start, &entry)) { 3282 if (!holes_ok) { 3283 *io_end = start; 3284 return (NULL); 3285 } 3286 entry = vm_map_entry_succ(entry); 3287 } 3288 return (entry); 3289 } 3290 3291 /* 3292 * vm_map_unwire: 3293 * 3294 * Implements both kernel and user unwiring. 3295 */ 3296 int 3297 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 3298 int flags) 3299 { 3300 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3301 int rv; 3302 bool holes_ok, need_wakeup, user_unwire; 3303 3304 if (start == end) 3305 return (KERN_SUCCESS); 3306 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3307 user_unwire = (flags & VM_MAP_WIRE_USER) != 0; 3308 vm_map_lock(map); 3309 VM_MAP_RANGE_CHECK(map, start, end); 3310 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3311 if (holes_ok) 3312 first_entry = vm_map_entry_succ(first_entry); 3313 else { 3314 vm_map_unlock(map); 3315 return (KERN_INVALID_ADDRESS); 3316 } 3317 } 3318 rv = KERN_SUCCESS; 3319 for (entry = first_entry; entry->start < end; entry = next_entry) { 3320 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3321 /* 3322 * We have not yet clipped the entry. 3323 */ 3324 next_entry = vm_map_entry_in_transition(map, start, 3325 &end, holes_ok, entry); 3326 if (next_entry == NULL) { 3327 if (entry == first_entry) { 3328 vm_map_unlock(map); 3329 return (KERN_INVALID_ADDRESS); 3330 } 3331 rv = KERN_INVALID_ADDRESS; 3332 break; 3333 } 3334 first_entry = (entry == first_entry) ? 3335 next_entry : NULL; 3336 continue; 3337 } 3338 rv = vm_map_clip_start(map, entry, start); 3339 if (rv != KERN_SUCCESS) 3340 break; 3341 rv = vm_map_clip_end(map, entry, end); 3342 if (rv != KERN_SUCCESS) 3343 break; 3344 3345 /* 3346 * Mark the entry in case the map lock is released. (See 3347 * above.) 3348 */ 3349 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3350 entry->wiring_thread == NULL, 3351 ("owned map entry %p", entry)); 3352 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3353 entry->wiring_thread = curthread; 3354 next_entry = vm_map_entry_succ(entry); 3355 /* 3356 * Check the map for holes in the specified region. 3357 * If holes_ok, skip this check. 3358 */ 3359 if (!holes_ok && 3360 entry->end < end && next_entry->start > entry->end) { 3361 end = entry->end; 3362 rv = KERN_INVALID_ADDRESS; 3363 break; 3364 } 3365 /* 3366 * If system unwiring, require that the entry is system wired. 3367 */ 3368 if (!user_unwire && 3369 vm_map_entry_system_wired_count(entry) == 0) { 3370 end = entry->end; 3371 rv = KERN_INVALID_ARGUMENT; 3372 break; 3373 } 3374 } 3375 need_wakeup = false; 3376 if (first_entry == NULL && 3377 !vm_map_lookup_entry(map, start, &first_entry)) { 3378 KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); 3379 prev_entry = first_entry; 3380 entry = vm_map_entry_succ(first_entry); 3381 } else { 3382 prev_entry = vm_map_entry_pred(first_entry); 3383 entry = first_entry; 3384 } 3385 for (; entry->start < end; 3386 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3387 /* 3388 * If holes_ok was specified, an empty 3389 * space in the unwired region could have been mapped 3390 * while the map lock was dropped for draining 3391 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 3392 * could be simultaneously wiring this new mapping 3393 * entry. Detect these cases and skip any entries 3394 * marked as in transition by us. 3395 */ 3396 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3397 entry->wiring_thread != curthread) { 3398 KASSERT(holes_ok, 3399 ("vm_map_unwire: !HOLESOK and new/changed entry")); 3400 continue; 3401 } 3402 3403 if (rv == KERN_SUCCESS && (!user_unwire || 3404 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 3405 if (entry->wired_count == 1) 3406 vm_map_entry_unwire(map, entry); 3407 else 3408 entry->wired_count--; 3409 if (user_unwire) 3410 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3411 } 3412 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3413 ("vm_map_unwire: in-transition flag missing %p", entry)); 3414 KASSERT(entry->wiring_thread == curthread, 3415 ("vm_map_unwire: alien wire %p", entry)); 3416 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 3417 entry->wiring_thread = NULL; 3418 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3419 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3420 need_wakeup = true; 3421 } 3422 vm_map_try_merge_entries(map, prev_entry, entry); 3423 } 3424 vm_map_try_merge_entries(map, prev_entry, entry); 3425 vm_map_unlock(map); 3426 if (need_wakeup) 3427 vm_map_wakeup(map); 3428 return (rv); 3429 } 3430 3431 static void 3432 vm_map_wire_user_count_sub(u_long npages) 3433 { 3434 3435 atomic_subtract_long(&vm_user_wire_count, npages); 3436 } 3437 3438 static bool 3439 vm_map_wire_user_count_add(u_long npages) 3440 { 3441 u_long wired; 3442 3443 wired = vm_user_wire_count; 3444 do { 3445 if (npages + wired > vm_page_max_user_wired) 3446 return (false); 3447 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3448 npages + wired)); 3449 3450 return (true); 3451 } 3452 3453 /* 3454 * vm_map_wire_entry_failure: 3455 * 3456 * Handle a wiring failure on the given entry. 3457 * 3458 * The map should be locked. 3459 */ 3460 static void 3461 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3462 vm_offset_t failed_addr) 3463 { 3464 3465 VM_MAP_ASSERT_LOCKED(map); 3466 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3467 entry->wired_count == 1, 3468 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3469 KASSERT(failed_addr < entry->end, 3470 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3471 3472 /* 3473 * If any pages at the start of this entry were successfully wired, 3474 * then unwire them. 3475 */ 3476 if (failed_addr > entry->start) { 3477 pmap_unwire(map->pmap, entry->start, failed_addr); 3478 vm_object_unwire(entry->object.vm_object, entry->offset, 3479 failed_addr - entry->start, PQ_ACTIVE); 3480 } 3481 3482 /* 3483 * Assign an out-of-range value to represent the failure to wire this 3484 * entry. 3485 */ 3486 entry->wired_count = -1; 3487 } 3488 3489 int 3490 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3491 { 3492 int rv; 3493 3494 vm_map_lock(map); 3495 rv = vm_map_wire_locked(map, start, end, flags); 3496 vm_map_unlock(map); 3497 return (rv); 3498 } 3499 3500 /* 3501 * vm_map_wire_locked: 3502 * 3503 * Implements both kernel and user wiring. Returns with the map locked, 3504 * the map lock may be dropped. 3505 */ 3506 int 3507 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3508 { 3509 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3510 vm_offset_t faddr, saved_end, saved_start; 3511 u_long incr, npages; 3512 u_int bidx, last_timestamp; 3513 int rv; 3514 bool holes_ok, need_wakeup, user_wire; 3515 vm_prot_t prot; 3516 3517 VM_MAP_ASSERT_LOCKED(map); 3518 3519 if (start == end) 3520 return (KERN_SUCCESS); 3521 prot = 0; 3522 if (flags & VM_MAP_WIRE_WRITE) 3523 prot |= VM_PROT_WRITE; 3524 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3525 user_wire = (flags & VM_MAP_WIRE_USER) != 0; 3526 VM_MAP_RANGE_CHECK(map, start, end); 3527 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3528 if (holes_ok) 3529 first_entry = vm_map_entry_succ(first_entry); 3530 else 3531 return (KERN_INVALID_ADDRESS); 3532 } 3533 for (entry = first_entry; entry->start < end; entry = next_entry) { 3534 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3535 /* 3536 * We have not yet clipped the entry. 3537 */ 3538 next_entry = vm_map_entry_in_transition(map, start, 3539 &end, holes_ok, entry); 3540 if (next_entry == NULL) { 3541 if (entry == first_entry) 3542 return (KERN_INVALID_ADDRESS); 3543 rv = KERN_INVALID_ADDRESS; 3544 goto done; 3545 } 3546 first_entry = (entry == first_entry) ? 3547 next_entry : NULL; 3548 continue; 3549 } 3550 rv = vm_map_clip_start(map, entry, start); 3551 if (rv != KERN_SUCCESS) 3552 goto done; 3553 rv = vm_map_clip_end(map, entry, end); 3554 if (rv != KERN_SUCCESS) 3555 goto done; 3556 3557 /* 3558 * Mark the entry in case the map lock is released. (See 3559 * above.) 3560 */ 3561 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3562 entry->wiring_thread == NULL, 3563 ("owned map entry %p", entry)); 3564 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3565 entry->wiring_thread = curthread; 3566 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3567 || (entry->protection & prot) != prot) { 3568 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3569 if (!holes_ok) { 3570 end = entry->end; 3571 rv = KERN_INVALID_ADDRESS; 3572 goto done; 3573 } 3574 } else if (entry->wired_count == 0) { 3575 entry->wired_count++; 3576 3577 npages = atop(entry->end - entry->start); 3578 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3579 vm_map_wire_entry_failure(map, entry, 3580 entry->start); 3581 end = entry->end; 3582 rv = KERN_RESOURCE_SHORTAGE; 3583 goto done; 3584 } 3585 3586 /* 3587 * Release the map lock, relying on the in-transition 3588 * mark. Mark the map busy for fork. 3589 */ 3590 saved_start = entry->start; 3591 saved_end = entry->end; 3592 last_timestamp = map->timestamp; 3593 bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 3594 incr = pagesizes[bidx]; 3595 vm_map_busy(map); 3596 vm_map_unlock(map); 3597 3598 for (faddr = saved_start; faddr < saved_end; 3599 faddr += incr) { 3600 /* 3601 * Simulate a fault to get the page and enter 3602 * it into the physical map. 3603 */ 3604 rv = vm_fault(map, faddr, VM_PROT_NONE, 3605 VM_FAULT_WIRE, NULL); 3606 if (rv != KERN_SUCCESS) 3607 break; 3608 } 3609 vm_map_lock(map); 3610 vm_map_unbusy(map); 3611 if (last_timestamp + 1 != map->timestamp) { 3612 /* 3613 * Look again for the entry because the map was 3614 * modified while it was unlocked. The entry 3615 * may have been clipped, but NOT merged or 3616 * deleted. 3617 */ 3618 if (!vm_map_lookup_entry(map, saved_start, 3619 &next_entry)) 3620 KASSERT(false, 3621 ("vm_map_wire: lookup failed")); 3622 first_entry = (entry == first_entry) ? 3623 next_entry : NULL; 3624 for (entry = next_entry; entry->end < saved_end; 3625 entry = vm_map_entry_succ(entry)) { 3626 /* 3627 * In case of failure, handle entries 3628 * that were not fully wired here; 3629 * fully wired entries are handled 3630 * later. 3631 */ 3632 if (rv != KERN_SUCCESS && 3633 faddr < entry->end) 3634 vm_map_wire_entry_failure(map, 3635 entry, faddr); 3636 } 3637 } 3638 if (rv != KERN_SUCCESS) { 3639 vm_map_wire_entry_failure(map, entry, faddr); 3640 if (user_wire) 3641 vm_map_wire_user_count_sub(npages); 3642 end = entry->end; 3643 goto done; 3644 } 3645 } else if (!user_wire || 3646 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3647 entry->wired_count++; 3648 } 3649 /* 3650 * Check the map for holes in the specified region. 3651 * If holes_ok was specified, skip this check. 3652 */ 3653 next_entry = vm_map_entry_succ(entry); 3654 if (!holes_ok && 3655 entry->end < end && next_entry->start > entry->end) { 3656 end = entry->end; 3657 rv = KERN_INVALID_ADDRESS; 3658 goto done; 3659 } 3660 } 3661 rv = KERN_SUCCESS; 3662 done: 3663 need_wakeup = false; 3664 if (first_entry == NULL && 3665 !vm_map_lookup_entry(map, start, &first_entry)) { 3666 KASSERT(holes_ok, ("vm_map_wire: lookup failed")); 3667 prev_entry = first_entry; 3668 entry = vm_map_entry_succ(first_entry); 3669 } else { 3670 prev_entry = vm_map_entry_pred(first_entry); 3671 entry = first_entry; 3672 } 3673 for (; entry->start < end; 3674 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3675 /* 3676 * If holes_ok was specified, an empty 3677 * space in the unwired region could have been mapped 3678 * while the map lock was dropped for faulting in the 3679 * pages or draining MAP_ENTRY_IN_TRANSITION. 3680 * Moreover, another thread could be simultaneously 3681 * wiring this new mapping entry. Detect these cases 3682 * and skip any entries marked as in transition not by us. 3683 * 3684 * Another way to get an entry not marked with 3685 * MAP_ENTRY_IN_TRANSITION is after failed clipping, 3686 * which set rv to KERN_INVALID_ARGUMENT. 3687 */ 3688 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3689 entry->wiring_thread != curthread) { 3690 KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT, 3691 ("vm_map_wire: !HOLESOK and new/changed entry")); 3692 continue; 3693 } 3694 3695 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { 3696 /* do nothing */ 3697 } else if (rv == KERN_SUCCESS) { 3698 if (user_wire) 3699 entry->eflags |= MAP_ENTRY_USER_WIRED; 3700 } else if (entry->wired_count == -1) { 3701 /* 3702 * Wiring failed on this entry. Thus, unwiring is 3703 * unnecessary. 3704 */ 3705 entry->wired_count = 0; 3706 } else if (!user_wire || 3707 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3708 /* 3709 * Undo the wiring. Wiring succeeded on this entry 3710 * but failed on a later entry. 3711 */ 3712 if (entry->wired_count == 1) { 3713 vm_map_entry_unwire(map, entry); 3714 if (user_wire) 3715 vm_map_wire_user_count_sub( 3716 atop(entry->end - entry->start)); 3717 } else 3718 entry->wired_count--; 3719 } 3720 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3721 ("vm_map_wire: in-transition flag missing %p", entry)); 3722 KASSERT(entry->wiring_thread == curthread, 3723 ("vm_map_wire: alien wire %p", entry)); 3724 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3725 MAP_ENTRY_WIRE_SKIPPED); 3726 entry->wiring_thread = NULL; 3727 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3728 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3729 need_wakeup = true; 3730 } 3731 vm_map_try_merge_entries(map, prev_entry, entry); 3732 } 3733 vm_map_try_merge_entries(map, prev_entry, entry); 3734 if (need_wakeup) 3735 vm_map_wakeup(map); 3736 return (rv); 3737 } 3738 3739 /* 3740 * vm_map_sync 3741 * 3742 * Push any dirty cached pages in the address range to their pager. 3743 * If syncio is TRUE, dirty pages are written synchronously. 3744 * If invalidate is TRUE, any cached pages are freed as well. 3745 * 3746 * If the size of the region from start to end is zero, we are 3747 * supposed to flush all modified pages within the region containing 3748 * start. Unfortunately, a region can be split or coalesced with 3749 * neighboring regions, making it difficult to determine what the 3750 * original region was. Therefore, we approximate this requirement by 3751 * flushing the current region containing start. 3752 * 3753 * Returns an error if any part of the specified range is not mapped. 3754 */ 3755 int 3756 vm_map_sync( 3757 vm_map_t map, 3758 vm_offset_t start, 3759 vm_offset_t end, 3760 boolean_t syncio, 3761 boolean_t invalidate) 3762 { 3763 vm_map_entry_t entry, first_entry, next_entry; 3764 vm_size_t size; 3765 vm_object_t object; 3766 vm_ooffset_t offset; 3767 unsigned int last_timestamp; 3768 int bdry_idx; 3769 boolean_t failed; 3770 3771 vm_map_lock_read(map); 3772 VM_MAP_RANGE_CHECK(map, start, end); 3773 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3774 vm_map_unlock_read(map); 3775 return (KERN_INVALID_ADDRESS); 3776 } else if (start == end) { 3777 start = first_entry->start; 3778 end = first_entry->end; 3779 } 3780 3781 /* 3782 * Make a first pass to check for user-wired memory, holes, 3783 * and partial invalidation of largepage mappings. 3784 */ 3785 for (entry = first_entry; entry->start < end; entry = next_entry) { 3786 if (invalidate) { 3787 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) { 3788 vm_map_unlock_read(map); 3789 return (KERN_INVALID_ARGUMENT); 3790 } 3791 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 3792 if (bdry_idx != 0 && 3793 ((start & (pagesizes[bdry_idx] - 1)) != 0 || 3794 (end & (pagesizes[bdry_idx] - 1)) != 0)) { 3795 vm_map_unlock_read(map); 3796 return (KERN_INVALID_ARGUMENT); 3797 } 3798 } 3799 next_entry = vm_map_entry_succ(entry); 3800 if (end > entry->end && 3801 entry->end != next_entry->start) { 3802 vm_map_unlock_read(map); 3803 return (KERN_INVALID_ADDRESS); 3804 } 3805 } 3806 3807 if (invalidate) 3808 pmap_remove(map->pmap, start, end); 3809 failed = FALSE; 3810 3811 /* 3812 * Make a second pass, cleaning/uncaching pages from the indicated 3813 * objects as we go. 3814 */ 3815 for (entry = first_entry; entry->start < end;) { 3816 offset = entry->offset + (start - entry->start); 3817 size = (end <= entry->end ? end : entry->end) - start; 3818 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 3819 vm_map_t smap; 3820 vm_map_entry_t tentry; 3821 vm_size_t tsize; 3822 3823 smap = entry->object.sub_map; 3824 vm_map_lock_read(smap); 3825 (void) vm_map_lookup_entry(smap, offset, &tentry); 3826 tsize = tentry->end - offset; 3827 if (tsize < size) 3828 size = tsize; 3829 object = tentry->object.vm_object; 3830 offset = tentry->offset + (offset - tentry->start); 3831 vm_map_unlock_read(smap); 3832 } else { 3833 object = entry->object.vm_object; 3834 } 3835 vm_object_reference(object); 3836 last_timestamp = map->timestamp; 3837 vm_map_unlock_read(map); 3838 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3839 failed = TRUE; 3840 start += size; 3841 vm_object_deallocate(object); 3842 vm_map_lock_read(map); 3843 if (last_timestamp == map->timestamp || 3844 !vm_map_lookup_entry(map, start, &entry)) 3845 entry = vm_map_entry_succ(entry); 3846 } 3847 3848 vm_map_unlock_read(map); 3849 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3850 } 3851 3852 /* 3853 * vm_map_entry_unwire: [ internal use only ] 3854 * 3855 * Make the region specified by this entry pageable. 3856 * 3857 * The map in question should be locked. 3858 * [This is the reason for this routine's existence.] 3859 */ 3860 static void 3861 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3862 { 3863 vm_size_t size; 3864 3865 VM_MAP_ASSERT_LOCKED(map); 3866 KASSERT(entry->wired_count > 0, 3867 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3868 3869 size = entry->end - entry->start; 3870 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3871 vm_map_wire_user_count_sub(atop(size)); 3872 pmap_unwire(map->pmap, entry->start, entry->end); 3873 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3874 PQ_ACTIVE); 3875 entry->wired_count = 0; 3876 } 3877 3878 static void 3879 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3880 { 3881 3882 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3883 vm_object_deallocate(entry->object.vm_object); 3884 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3885 } 3886 3887 /* 3888 * vm_map_entry_delete: [ internal use only ] 3889 * 3890 * Deallocate the given entry from the target map. 3891 */ 3892 static void 3893 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3894 { 3895 vm_object_t object; 3896 vm_pindex_t offidxstart, offidxend, size1; 3897 vm_size_t size; 3898 3899 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3900 object = entry->object.vm_object; 3901 3902 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3903 MPASS(entry->cred == NULL); 3904 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3905 MPASS(object == NULL); 3906 vm_map_entry_deallocate(entry, map->system_map); 3907 return; 3908 } 3909 3910 size = entry->end - entry->start; 3911 map->size -= size; 3912 3913 if (entry->cred != NULL) { 3914 swap_release_by_cred(size, entry->cred); 3915 crfree(entry->cred); 3916 } 3917 3918 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) { 3919 entry->object.vm_object = NULL; 3920 } else if ((object->flags & OBJ_ANON) != 0 || 3921 object == kernel_object) { 3922 KASSERT(entry->cred == NULL || object->cred == NULL || 3923 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3924 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3925 offidxstart = OFF_TO_IDX(entry->offset); 3926 offidxend = offidxstart + atop(size); 3927 VM_OBJECT_WLOCK(object); 3928 if (object->ref_count != 1 && 3929 ((object->flags & OBJ_ONEMAPPING) != 0 || 3930 object == kernel_object)) { 3931 vm_object_collapse(object); 3932 3933 /* 3934 * The option OBJPR_NOTMAPPED can be passed here 3935 * because vm_map_delete() already performed 3936 * pmap_remove() on the only mapping to this range 3937 * of pages. 3938 */ 3939 vm_object_page_remove(object, offidxstart, offidxend, 3940 OBJPR_NOTMAPPED); 3941 if (offidxend >= object->size && 3942 offidxstart < object->size) { 3943 size1 = object->size; 3944 object->size = offidxstart; 3945 if (object->cred != NULL) { 3946 size1 -= object->size; 3947 KASSERT(object->charge >= ptoa(size1), 3948 ("object %p charge < 0", object)); 3949 swap_release_by_cred(ptoa(size1), 3950 object->cred); 3951 object->charge -= ptoa(size1); 3952 } 3953 } 3954 } 3955 VM_OBJECT_WUNLOCK(object); 3956 } 3957 if (map->system_map) 3958 vm_map_entry_deallocate(entry, TRUE); 3959 else { 3960 entry->defer_next = curthread->td_map_def_user; 3961 curthread->td_map_def_user = entry; 3962 } 3963 } 3964 3965 /* 3966 * vm_map_delete: [ internal use only ] 3967 * 3968 * Deallocates the given address range from the target 3969 * map. 3970 */ 3971 int 3972 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3973 { 3974 vm_map_entry_t entry, next_entry, scratch_entry; 3975 int rv; 3976 3977 VM_MAP_ASSERT_LOCKED(map); 3978 3979 if (start == end) 3980 return (KERN_SUCCESS); 3981 3982 /* 3983 * Find the start of the region, and clip it. 3984 * Step through all entries in this region. 3985 */ 3986 rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry); 3987 if (rv != KERN_SUCCESS) 3988 return (rv); 3989 for (; entry->start < end; entry = next_entry) { 3990 /* 3991 * Wait for wiring or unwiring of an entry to complete. 3992 * Also wait for any system wirings to disappear on 3993 * user maps. 3994 */ 3995 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3996 (vm_map_pmap(map) != kernel_pmap && 3997 vm_map_entry_system_wired_count(entry) != 0)) { 3998 unsigned int last_timestamp; 3999 vm_offset_t saved_start; 4000 4001 saved_start = entry->start; 4002 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 4003 last_timestamp = map->timestamp; 4004 (void) vm_map_unlock_and_wait(map, 0); 4005 vm_map_lock(map); 4006 if (last_timestamp + 1 != map->timestamp) { 4007 /* 4008 * Look again for the entry because the map was 4009 * modified while it was unlocked. 4010 * Specifically, the entry may have been 4011 * clipped, merged, or deleted. 4012 */ 4013 rv = vm_map_lookup_clip_start(map, saved_start, 4014 &next_entry, &scratch_entry); 4015 if (rv != KERN_SUCCESS) 4016 break; 4017 } else 4018 next_entry = entry; 4019 continue; 4020 } 4021 4022 /* XXXKIB or delete to the upper superpage boundary ? */ 4023 rv = vm_map_clip_end(map, entry, end); 4024 if (rv != KERN_SUCCESS) 4025 break; 4026 next_entry = vm_map_entry_succ(entry); 4027 4028 /* 4029 * Unwire before removing addresses from the pmap; otherwise, 4030 * unwiring will put the entries back in the pmap. 4031 */ 4032 if (entry->wired_count != 0) 4033 vm_map_entry_unwire(map, entry); 4034 4035 /* 4036 * Remove mappings for the pages, but only if the 4037 * mappings could exist. For instance, it does not 4038 * make sense to call pmap_remove() for guard entries. 4039 */ 4040 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 4041 entry->object.vm_object != NULL) 4042 pmap_map_delete(map->pmap, entry->start, entry->end); 4043 4044 if (entry->end == map->anon_loc) 4045 map->anon_loc = entry->start; 4046 4047 /* 4048 * Delete the entry only after removing all pmap 4049 * entries pointing to its pages. (Otherwise, its 4050 * page frames may be reallocated, and any modify bits 4051 * will be set in the wrong object!) 4052 */ 4053 vm_map_entry_delete(map, entry); 4054 } 4055 return (rv); 4056 } 4057 4058 /* 4059 * vm_map_remove: 4060 * 4061 * Remove the given address range from the target map. 4062 * This is the exported form of vm_map_delete. 4063 */ 4064 int 4065 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 4066 { 4067 int result; 4068 4069 vm_map_lock(map); 4070 VM_MAP_RANGE_CHECK(map, start, end); 4071 result = vm_map_delete(map, start, end); 4072 vm_map_unlock(map); 4073 return (result); 4074 } 4075 4076 /* 4077 * vm_map_check_protection: 4078 * 4079 * Assert that the target map allows the specified privilege on the 4080 * entire address region given. The entire region must be allocated. 4081 * 4082 * WARNING! This code does not and should not check whether the 4083 * contents of the region is accessible. For example a smaller file 4084 * might be mapped into a larger address space. 4085 * 4086 * NOTE! This code is also called by munmap(). 4087 * 4088 * The map must be locked. A read lock is sufficient. 4089 */ 4090 boolean_t 4091 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 4092 vm_prot_t protection) 4093 { 4094 vm_map_entry_t entry; 4095 vm_map_entry_t tmp_entry; 4096 4097 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 4098 return (FALSE); 4099 entry = tmp_entry; 4100 4101 while (start < end) { 4102 /* 4103 * No holes allowed! 4104 */ 4105 if (start < entry->start) 4106 return (FALSE); 4107 /* 4108 * Check protection associated with entry. 4109 */ 4110 if ((entry->protection & protection) != protection) 4111 return (FALSE); 4112 /* go to next entry */ 4113 start = entry->end; 4114 entry = vm_map_entry_succ(entry); 4115 } 4116 return (TRUE); 4117 } 4118 4119 /* 4120 * 4121 * vm_map_copy_swap_object: 4122 * 4123 * Copies a swap-backed object from an existing map entry to a 4124 * new one. Carries forward the swap charge. May change the 4125 * src object on return. 4126 */ 4127 static void 4128 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry, 4129 vm_offset_t size, vm_ooffset_t *fork_charge) 4130 { 4131 vm_object_t src_object; 4132 struct ucred *cred; 4133 int charged; 4134 4135 src_object = src_entry->object.vm_object; 4136 charged = ENTRY_CHARGED(src_entry); 4137 if ((src_object->flags & OBJ_ANON) != 0) { 4138 VM_OBJECT_WLOCK(src_object); 4139 vm_object_collapse(src_object); 4140 if ((src_object->flags & OBJ_ONEMAPPING) != 0) { 4141 vm_object_split(src_entry); 4142 src_object = src_entry->object.vm_object; 4143 } 4144 vm_object_reference_locked(src_object); 4145 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 4146 VM_OBJECT_WUNLOCK(src_object); 4147 } else 4148 vm_object_reference(src_object); 4149 if (src_entry->cred != NULL && 4150 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4151 KASSERT(src_object->cred == NULL, 4152 ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p", 4153 src_object)); 4154 src_object->cred = src_entry->cred; 4155 src_object->charge = size; 4156 } 4157 dst_entry->object.vm_object = src_object; 4158 if (charged) { 4159 cred = curthread->td_ucred; 4160 crhold(cred); 4161 dst_entry->cred = cred; 4162 *fork_charge += size; 4163 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4164 crhold(cred); 4165 src_entry->cred = cred; 4166 *fork_charge += size; 4167 } 4168 } 4169 } 4170 4171 /* 4172 * vm_map_copy_entry: 4173 * 4174 * Copies the contents of the source entry to the destination 4175 * entry. The entries *must* be aligned properly. 4176 */ 4177 static void 4178 vm_map_copy_entry( 4179 vm_map_t src_map, 4180 vm_map_t dst_map, 4181 vm_map_entry_t src_entry, 4182 vm_map_entry_t dst_entry, 4183 vm_ooffset_t *fork_charge) 4184 { 4185 vm_object_t src_object; 4186 vm_map_entry_t fake_entry; 4187 vm_offset_t size; 4188 4189 VM_MAP_ASSERT_LOCKED(dst_map); 4190 4191 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 4192 return; 4193 4194 if (src_entry->wired_count == 0 || 4195 (src_entry->protection & VM_PROT_WRITE) == 0) { 4196 /* 4197 * If the source entry is marked needs_copy, it is already 4198 * write-protected. 4199 */ 4200 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 4201 (src_entry->protection & VM_PROT_WRITE) != 0) { 4202 pmap_protect(src_map->pmap, 4203 src_entry->start, 4204 src_entry->end, 4205 src_entry->protection & ~VM_PROT_WRITE); 4206 } 4207 4208 /* 4209 * Make a copy of the object. 4210 */ 4211 size = src_entry->end - src_entry->start; 4212 if ((src_object = src_entry->object.vm_object) != NULL) { 4213 if ((src_object->flags & OBJ_SWAP) != 0) { 4214 vm_map_copy_swap_object(src_entry, dst_entry, 4215 size, fork_charge); 4216 /* May have split/collapsed, reload obj. */ 4217 src_object = src_entry->object.vm_object; 4218 } else { 4219 vm_object_reference(src_object); 4220 dst_entry->object.vm_object = src_object; 4221 } 4222 src_entry->eflags |= MAP_ENTRY_COW | 4223 MAP_ENTRY_NEEDS_COPY; 4224 dst_entry->eflags |= MAP_ENTRY_COW | 4225 MAP_ENTRY_NEEDS_COPY; 4226 dst_entry->offset = src_entry->offset; 4227 if (src_entry->eflags & MAP_ENTRY_WRITECNT) { 4228 /* 4229 * MAP_ENTRY_WRITECNT cannot 4230 * indicate write reference from 4231 * src_entry, since the entry is 4232 * marked as needs copy. Allocate a 4233 * fake entry that is used to 4234 * decrement object->un_pager writecount 4235 * at the appropriate time. Attach 4236 * fake_entry to the deferred list. 4237 */ 4238 fake_entry = vm_map_entry_create(dst_map); 4239 fake_entry->eflags = MAP_ENTRY_WRITECNT; 4240 src_entry->eflags &= ~MAP_ENTRY_WRITECNT; 4241 vm_object_reference(src_object); 4242 fake_entry->object.vm_object = src_object; 4243 fake_entry->start = src_entry->start; 4244 fake_entry->end = src_entry->end; 4245 fake_entry->defer_next = 4246 curthread->td_map_def_user; 4247 curthread->td_map_def_user = fake_entry; 4248 } 4249 4250 pmap_copy(dst_map->pmap, src_map->pmap, 4251 dst_entry->start, dst_entry->end - dst_entry->start, 4252 src_entry->start); 4253 } else { 4254 dst_entry->object.vm_object = NULL; 4255 if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0) 4256 dst_entry->offset = 0; 4257 if (src_entry->cred != NULL) { 4258 dst_entry->cred = curthread->td_ucred; 4259 crhold(dst_entry->cred); 4260 *fork_charge += size; 4261 } 4262 } 4263 } else { 4264 /* 4265 * We don't want to make writeable wired pages copy-on-write. 4266 * Immediately copy these pages into the new map by simulating 4267 * page faults. The new pages are pageable. 4268 */ 4269 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 4270 fork_charge); 4271 } 4272 } 4273 4274 /* 4275 * vmspace_map_entry_forked: 4276 * Update the newly-forked vmspace each time a map entry is inherited 4277 * or copied. The values for vm_dsize and vm_tsize are approximate 4278 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 4279 */ 4280 static void 4281 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 4282 vm_map_entry_t entry) 4283 { 4284 vm_size_t entrysize; 4285 vm_offset_t newend; 4286 4287 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 4288 return; 4289 entrysize = entry->end - entry->start; 4290 vm2->vm_map.size += entrysize; 4291 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 4292 vm2->vm_ssize += btoc(entrysize); 4293 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 4294 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 4295 newend = MIN(entry->end, 4296 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 4297 vm2->vm_dsize += btoc(newend - entry->start); 4298 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 4299 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 4300 newend = MIN(entry->end, 4301 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 4302 vm2->vm_tsize += btoc(newend - entry->start); 4303 } 4304 } 4305 4306 /* 4307 * vmspace_fork: 4308 * Create a new process vmspace structure and vm_map 4309 * based on those of an existing process. The new map 4310 * is based on the old map, according to the inheritance 4311 * values on the regions in that map. 4312 * 4313 * XXX It might be worth coalescing the entries added to the new vmspace. 4314 * 4315 * The source map must not be locked. 4316 */ 4317 struct vmspace * 4318 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 4319 { 4320 struct vmspace *vm2; 4321 vm_map_t new_map, old_map; 4322 vm_map_entry_t new_entry, old_entry; 4323 vm_object_t object; 4324 int error, locked __diagused; 4325 vm_inherit_t inh; 4326 4327 old_map = &vm1->vm_map; 4328 /* Copy immutable fields of vm1 to vm2. */ 4329 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 4330 pmap_pinit); 4331 if (vm2 == NULL) 4332 return (NULL); 4333 4334 vm2->vm_taddr = vm1->vm_taddr; 4335 vm2->vm_daddr = vm1->vm_daddr; 4336 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 4337 vm2->vm_stacktop = vm1->vm_stacktop; 4338 vm2->vm_shp_base = vm1->vm_shp_base; 4339 vm_map_lock(old_map); 4340 if (old_map->busy) 4341 vm_map_wait_busy(old_map); 4342 new_map = &vm2->vm_map; 4343 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 4344 KASSERT(locked, ("vmspace_fork: lock failed")); 4345 4346 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 4347 if (error != 0) { 4348 sx_xunlock(&old_map->lock); 4349 sx_xunlock(&new_map->lock); 4350 vm_map_process_deferred(); 4351 vmspace_free(vm2); 4352 return (NULL); 4353 } 4354 4355 new_map->anon_loc = old_map->anon_loc; 4356 new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART | 4357 MAP_ASLR_STACK | MAP_WXORX); 4358 4359 VM_MAP_ENTRY_FOREACH(old_entry, old_map) { 4360 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 4361 panic("vm_map_fork: encountered a submap"); 4362 4363 inh = old_entry->inheritance; 4364 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 4365 inh != VM_INHERIT_NONE) 4366 inh = VM_INHERIT_COPY; 4367 4368 switch (inh) { 4369 case VM_INHERIT_NONE: 4370 break; 4371 4372 case VM_INHERIT_SHARE: 4373 /* 4374 * Clone the entry, creating the shared object if 4375 * necessary. 4376 */ 4377 object = old_entry->object.vm_object; 4378 if (object == NULL) { 4379 vm_map_entry_back(old_entry); 4380 object = old_entry->object.vm_object; 4381 } 4382 4383 /* 4384 * Add the reference before calling vm_object_shadow 4385 * to insure that a shadow object is created. 4386 */ 4387 vm_object_reference(object); 4388 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4389 vm_object_shadow(&old_entry->object.vm_object, 4390 &old_entry->offset, 4391 old_entry->end - old_entry->start, 4392 old_entry->cred, 4393 /* Transfer the second reference too. */ 4394 true); 4395 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4396 old_entry->cred = NULL; 4397 4398 /* 4399 * As in vm_map_merged_neighbor_dispose(), 4400 * the vnode lock will not be acquired in 4401 * this call to vm_object_deallocate(). 4402 */ 4403 vm_object_deallocate(object); 4404 object = old_entry->object.vm_object; 4405 } else { 4406 VM_OBJECT_WLOCK(object); 4407 vm_object_clear_flag(object, OBJ_ONEMAPPING); 4408 if (old_entry->cred != NULL) { 4409 KASSERT(object->cred == NULL, 4410 ("vmspace_fork both cred")); 4411 object->cred = old_entry->cred; 4412 object->charge = old_entry->end - 4413 old_entry->start; 4414 old_entry->cred = NULL; 4415 } 4416 4417 /* 4418 * Assert the correct state of the vnode 4419 * v_writecount while the object is locked, to 4420 * not relock it later for the assertion 4421 * correctness. 4422 */ 4423 if (old_entry->eflags & MAP_ENTRY_WRITECNT && 4424 object->type == OBJT_VNODE) { 4425 KASSERT(((struct vnode *)object-> 4426 handle)->v_writecount > 0, 4427 ("vmspace_fork: v_writecount %p", 4428 object)); 4429 KASSERT(object->un_pager.vnp. 4430 writemappings > 0, 4431 ("vmspace_fork: vnp.writecount %p", 4432 object)); 4433 } 4434 VM_OBJECT_WUNLOCK(object); 4435 } 4436 4437 /* 4438 * Clone the entry, referencing the shared object. 4439 */ 4440 new_entry = vm_map_entry_create(new_map); 4441 *new_entry = *old_entry; 4442 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4443 MAP_ENTRY_IN_TRANSITION); 4444 new_entry->wiring_thread = NULL; 4445 new_entry->wired_count = 0; 4446 if (new_entry->eflags & MAP_ENTRY_WRITECNT) { 4447 vm_pager_update_writecount(object, 4448 new_entry->start, new_entry->end); 4449 } 4450 vm_map_entry_set_vnode_text(new_entry, true); 4451 4452 /* 4453 * Insert the entry into the new map -- we know we're 4454 * inserting at the end of the new map. 4455 */ 4456 vm_map_entry_link(new_map, new_entry); 4457 vmspace_map_entry_forked(vm1, vm2, new_entry); 4458 4459 /* 4460 * Update the physical map 4461 */ 4462 pmap_copy(new_map->pmap, old_map->pmap, 4463 new_entry->start, 4464 (old_entry->end - old_entry->start), 4465 old_entry->start); 4466 break; 4467 4468 case VM_INHERIT_COPY: 4469 /* 4470 * Clone the entry and link into the map. 4471 */ 4472 new_entry = vm_map_entry_create(new_map); 4473 *new_entry = *old_entry; 4474 /* 4475 * Copied entry is COW over the old object. 4476 */ 4477 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4478 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT); 4479 new_entry->wiring_thread = NULL; 4480 new_entry->wired_count = 0; 4481 new_entry->object.vm_object = NULL; 4482 new_entry->cred = NULL; 4483 vm_map_entry_link(new_map, new_entry); 4484 vmspace_map_entry_forked(vm1, vm2, new_entry); 4485 vm_map_copy_entry(old_map, new_map, old_entry, 4486 new_entry, fork_charge); 4487 vm_map_entry_set_vnode_text(new_entry, true); 4488 break; 4489 4490 case VM_INHERIT_ZERO: 4491 /* 4492 * Create a new anonymous mapping entry modelled from 4493 * the old one. 4494 */ 4495 new_entry = vm_map_entry_create(new_map); 4496 memset(new_entry, 0, sizeof(*new_entry)); 4497 4498 new_entry->start = old_entry->start; 4499 new_entry->end = old_entry->end; 4500 new_entry->eflags = old_entry->eflags & 4501 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4502 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC | 4503 MAP_ENTRY_SPLIT_BOUNDARY_MASK); 4504 new_entry->protection = old_entry->protection; 4505 new_entry->max_protection = old_entry->max_protection; 4506 new_entry->inheritance = VM_INHERIT_ZERO; 4507 4508 vm_map_entry_link(new_map, new_entry); 4509 vmspace_map_entry_forked(vm1, vm2, new_entry); 4510 4511 new_entry->cred = curthread->td_ucred; 4512 crhold(new_entry->cred); 4513 *fork_charge += (new_entry->end - new_entry->start); 4514 4515 break; 4516 } 4517 } 4518 /* 4519 * Use inlined vm_map_unlock() to postpone handling the deferred 4520 * map entries, which cannot be done until both old_map and 4521 * new_map locks are released. 4522 */ 4523 sx_xunlock(&old_map->lock); 4524 sx_xunlock(&new_map->lock); 4525 vm_map_process_deferred(); 4526 4527 return (vm2); 4528 } 4529 4530 /* 4531 * Create a process's stack for exec_new_vmspace(). This function is never 4532 * asked to wire the newly created stack. 4533 */ 4534 int 4535 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4536 vm_prot_t prot, vm_prot_t max, int cow) 4537 { 4538 vm_size_t growsize, init_ssize; 4539 rlim_t vmemlim; 4540 int rv; 4541 4542 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4543 growsize = sgrowsiz; 4544 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4545 vm_map_lock(map); 4546 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4547 /* If we would blow our VMEM resource limit, no go */ 4548 if (map->size + init_ssize > vmemlim) { 4549 rv = KERN_NO_SPACE; 4550 goto out; 4551 } 4552 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4553 max, cow); 4554 out: 4555 vm_map_unlock(map); 4556 return (rv); 4557 } 4558 4559 static int stack_guard_page = 1; 4560 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4561 &stack_guard_page, 0, 4562 "Specifies the number of guard pages for a stack that grows"); 4563 4564 static int 4565 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4566 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4567 { 4568 vm_map_entry_t gap_entry, new_entry, prev_entry; 4569 vm_offset_t bot, gap_bot, gap_top, top; 4570 vm_size_t init_ssize, sgp; 4571 int orient, rv; 4572 4573 /* 4574 * The stack orientation is piggybacked with the cow argument. 4575 * Extract it into orient and mask the cow argument so that we 4576 * don't pass it around further. 4577 */ 4578 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4579 KASSERT(orient != 0, ("No stack grow direction")); 4580 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4581 ("bi-dir stack")); 4582 4583 if (max_ssize == 0 || 4584 !vm_map_range_valid(map, addrbos, addrbos + max_ssize)) 4585 return (KERN_INVALID_ADDRESS); 4586 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4587 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4588 (vm_size_t)stack_guard_page * PAGE_SIZE; 4589 if (sgp >= max_ssize) 4590 return (KERN_INVALID_ARGUMENT); 4591 4592 init_ssize = growsize; 4593 if (max_ssize < init_ssize + sgp) 4594 init_ssize = max_ssize - sgp; 4595 4596 /* If addr is already mapped, no go */ 4597 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4598 return (KERN_NO_SPACE); 4599 4600 /* 4601 * If we can't accommodate max_ssize in the current mapping, no go. 4602 */ 4603 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize) 4604 return (KERN_NO_SPACE); 4605 4606 /* 4607 * We initially map a stack of only init_ssize. We will grow as 4608 * needed later. Depending on the orientation of the stack (i.e. 4609 * the grow direction) we either map at the top of the range, the 4610 * bottom of the range or in the middle. 4611 * 4612 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4613 * and cow to be 0. Possibly we should eliminate these as input 4614 * parameters, and just pass these values here in the insert call. 4615 */ 4616 if (orient == MAP_STACK_GROWS_DOWN) { 4617 bot = addrbos + max_ssize - init_ssize; 4618 top = bot + init_ssize; 4619 gap_bot = addrbos; 4620 gap_top = bot; 4621 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4622 bot = addrbos; 4623 top = bot + init_ssize; 4624 gap_bot = top; 4625 gap_top = addrbos + max_ssize; 4626 } 4627 rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow, 4628 &new_entry); 4629 if (rv != KERN_SUCCESS) 4630 return (rv); 4631 KASSERT(new_entry->end == top || new_entry->start == bot, 4632 ("Bad entry start/end for new stack entry")); 4633 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4634 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4635 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4636 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4637 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4638 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4639 if (gap_bot == gap_top) 4640 return (KERN_SUCCESS); 4641 rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4642 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4643 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP), &gap_entry); 4644 if (rv == KERN_SUCCESS) { 4645 KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0, 4646 ("entry %p not gap %#x", gap_entry, gap_entry->eflags)); 4647 KASSERT((gap_entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4648 MAP_ENTRY_STACK_GAP_UP)) != 0, 4649 ("entry %p not stack gap %#x", gap_entry, 4650 gap_entry->eflags)); 4651 4652 /* 4653 * Gap can never successfully handle a fault, so 4654 * read-ahead logic is never used for it. Re-use 4655 * next_read of the gap entry to store 4656 * stack_guard_page for vm_map_growstack(). 4657 * Similarly, since a gap cannot have a backing object, 4658 * store the original stack protections in the 4659 * object offset. 4660 */ 4661 gap_entry->next_read = sgp; 4662 gap_entry->offset = prot | PROT_MAX(max); 4663 } else { 4664 (void)vm_map_delete(map, bot, top); 4665 } 4666 return (rv); 4667 } 4668 4669 /* 4670 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4671 * successfully grow the stack. 4672 */ 4673 static int 4674 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4675 { 4676 vm_map_entry_t stack_entry; 4677 struct proc *p; 4678 struct vmspace *vm; 4679 struct ucred *cred; 4680 vm_offset_t gap_end, gap_start, grow_start; 4681 vm_size_t grow_amount, guard, max_grow, sgp; 4682 vm_prot_t prot, max; 4683 rlim_t lmemlim, stacklim, vmemlim; 4684 int rv, rv1 __diagused; 4685 bool gap_deleted, grow_down, is_procstack; 4686 #ifdef notyet 4687 uint64_t limit; 4688 #endif 4689 #ifdef RACCT 4690 int error __diagused; 4691 #endif 4692 4693 p = curproc; 4694 vm = p->p_vmspace; 4695 4696 /* 4697 * Disallow stack growth when the access is performed by a 4698 * debugger or AIO daemon. The reason is that the wrong 4699 * resource limits are applied. 4700 */ 4701 if (p != initproc && (map != &p->p_vmspace->vm_map || 4702 p->p_textvp == NULL)) 4703 return (KERN_FAILURE); 4704 4705 MPASS(!map->system_map); 4706 4707 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4708 stacklim = lim_cur(curthread, RLIMIT_STACK); 4709 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4710 retry: 4711 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4712 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4713 return (KERN_FAILURE); 4714 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4715 return (KERN_SUCCESS); 4716 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4717 stack_entry = vm_map_entry_succ(gap_entry); 4718 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4719 stack_entry->start != gap_entry->end) 4720 return (KERN_FAILURE); 4721 grow_amount = round_page(stack_entry->start - addr); 4722 grow_down = true; 4723 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4724 stack_entry = vm_map_entry_pred(gap_entry); 4725 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4726 stack_entry->end != gap_entry->start) 4727 return (KERN_FAILURE); 4728 grow_amount = round_page(addr + 1 - stack_entry->end); 4729 grow_down = false; 4730 } else { 4731 return (KERN_FAILURE); 4732 } 4733 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4734 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4735 gap_entry->next_read; 4736 max_grow = gap_entry->end - gap_entry->start; 4737 if (guard > max_grow) 4738 return (KERN_NO_SPACE); 4739 max_grow -= guard; 4740 if (grow_amount > max_grow) 4741 return (KERN_NO_SPACE); 4742 4743 /* 4744 * If this is the main process stack, see if we're over the stack 4745 * limit. 4746 */ 4747 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4748 addr < (vm_offset_t)vm->vm_stacktop; 4749 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4750 return (KERN_NO_SPACE); 4751 4752 #ifdef RACCT 4753 if (racct_enable) { 4754 PROC_LOCK(p); 4755 if (is_procstack && racct_set(p, RACCT_STACK, 4756 ctob(vm->vm_ssize) + grow_amount)) { 4757 PROC_UNLOCK(p); 4758 return (KERN_NO_SPACE); 4759 } 4760 PROC_UNLOCK(p); 4761 } 4762 #endif 4763 4764 grow_amount = roundup(grow_amount, sgrowsiz); 4765 if (grow_amount > max_grow) 4766 grow_amount = max_grow; 4767 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4768 grow_amount = trunc_page((vm_size_t)stacklim) - 4769 ctob(vm->vm_ssize); 4770 } 4771 4772 #ifdef notyet 4773 PROC_LOCK(p); 4774 limit = racct_get_available(p, RACCT_STACK); 4775 PROC_UNLOCK(p); 4776 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4777 grow_amount = limit - ctob(vm->vm_ssize); 4778 #endif 4779 4780 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4781 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4782 rv = KERN_NO_SPACE; 4783 goto out; 4784 } 4785 #ifdef RACCT 4786 if (racct_enable) { 4787 PROC_LOCK(p); 4788 if (racct_set(p, RACCT_MEMLOCK, 4789 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4790 PROC_UNLOCK(p); 4791 rv = KERN_NO_SPACE; 4792 goto out; 4793 } 4794 PROC_UNLOCK(p); 4795 } 4796 #endif 4797 } 4798 4799 /* If we would blow our VMEM resource limit, no go */ 4800 if (map->size + grow_amount > vmemlim) { 4801 rv = KERN_NO_SPACE; 4802 goto out; 4803 } 4804 #ifdef RACCT 4805 if (racct_enable) { 4806 PROC_LOCK(p); 4807 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4808 PROC_UNLOCK(p); 4809 rv = KERN_NO_SPACE; 4810 goto out; 4811 } 4812 PROC_UNLOCK(p); 4813 } 4814 #endif 4815 4816 if (vm_map_lock_upgrade(map)) { 4817 gap_entry = NULL; 4818 vm_map_lock_read(map); 4819 goto retry; 4820 } 4821 4822 if (grow_down) { 4823 /* 4824 * The gap_entry "offset" field is overloaded. See 4825 * vm_map_stack_locked(). 4826 */ 4827 prot = PROT_EXTRACT(gap_entry->offset); 4828 max = PROT_MAX_EXTRACT(gap_entry->offset); 4829 sgp = gap_entry->next_read; 4830 4831 grow_start = gap_entry->end - grow_amount; 4832 if (gap_entry->start + grow_amount == gap_entry->end) { 4833 gap_start = gap_entry->start; 4834 gap_end = gap_entry->end; 4835 vm_map_entry_delete(map, gap_entry); 4836 gap_deleted = true; 4837 } else { 4838 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4839 vm_map_entry_resize(map, gap_entry, -grow_amount); 4840 gap_deleted = false; 4841 } 4842 rv = vm_map_insert(map, NULL, 0, grow_start, 4843 grow_start + grow_amount, prot, max, MAP_STACK_GROWS_DOWN); 4844 if (rv != KERN_SUCCESS) { 4845 if (gap_deleted) { 4846 rv1 = vm_map_insert1(map, NULL, 0, gap_start, 4847 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4848 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN, 4849 &gap_entry); 4850 MPASS(rv1 == KERN_SUCCESS); 4851 gap_entry->next_read = sgp; 4852 gap_entry->offset = prot | PROT_MAX(max); 4853 } else 4854 vm_map_entry_resize(map, gap_entry, 4855 grow_amount); 4856 } 4857 } else { 4858 grow_start = stack_entry->end; 4859 cred = stack_entry->cred; 4860 if (cred == NULL && stack_entry->object.vm_object != NULL) 4861 cred = stack_entry->object.vm_object->cred; 4862 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4863 rv = KERN_NO_SPACE; 4864 /* Grow the underlying object if applicable. */ 4865 else if (stack_entry->object.vm_object == NULL || 4866 vm_object_coalesce(stack_entry->object.vm_object, 4867 stack_entry->offset, 4868 (vm_size_t)(stack_entry->end - stack_entry->start), 4869 grow_amount, cred != NULL)) { 4870 if (gap_entry->start + grow_amount == gap_entry->end) { 4871 vm_map_entry_delete(map, gap_entry); 4872 vm_map_entry_resize(map, stack_entry, 4873 grow_amount); 4874 } else { 4875 gap_entry->start += grow_amount; 4876 stack_entry->end += grow_amount; 4877 } 4878 map->size += grow_amount; 4879 rv = KERN_SUCCESS; 4880 } else 4881 rv = KERN_FAILURE; 4882 } 4883 if (rv == KERN_SUCCESS && is_procstack) 4884 vm->vm_ssize += btoc(grow_amount); 4885 4886 /* 4887 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4888 */ 4889 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4890 rv = vm_map_wire_locked(map, grow_start, 4891 grow_start + grow_amount, 4892 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4893 } 4894 vm_map_lock_downgrade(map); 4895 4896 out: 4897 #ifdef RACCT 4898 if (racct_enable && rv != KERN_SUCCESS) { 4899 PROC_LOCK(p); 4900 error = racct_set(p, RACCT_VMEM, map->size); 4901 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4902 if (!old_mlock) { 4903 error = racct_set(p, RACCT_MEMLOCK, 4904 ptoa(pmap_wired_count(map->pmap))); 4905 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4906 } 4907 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4908 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4909 PROC_UNLOCK(p); 4910 } 4911 #endif 4912 4913 return (rv); 4914 } 4915 4916 /* 4917 * Unshare the specified VM space for exec. If other processes are 4918 * mapped to it, then create a new one. The new vmspace is null. 4919 */ 4920 int 4921 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4922 { 4923 struct vmspace *oldvmspace = p->p_vmspace; 4924 struct vmspace *newvmspace; 4925 4926 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4927 ("vmspace_exec recursed")); 4928 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4929 if (newvmspace == NULL) 4930 return (ENOMEM); 4931 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4932 /* 4933 * This code is written like this for prototype purposes. The 4934 * goal is to avoid running down the vmspace here, but let the 4935 * other process's that are still using the vmspace to finally 4936 * run it down. Even though there is little or no chance of blocking 4937 * here, it is a good idea to keep this form for future mods. 4938 */ 4939 PROC_VMSPACE_LOCK(p); 4940 p->p_vmspace = newvmspace; 4941 PROC_VMSPACE_UNLOCK(p); 4942 if (p == curthread->td_proc) 4943 pmap_activate(curthread); 4944 curthread->td_pflags |= TDP_EXECVMSPC; 4945 return (0); 4946 } 4947 4948 /* 4949 * Unshare the specified VM space for forcing COW. This 4950 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4951 */ 4952 int 4953 vmspace_unshare(struct proc *p) 4954 { 4955 struct vmspace *oldvmspace = p->p_vmspace; 4956 struct vmspace *newvmspace; 4957 vm_ooffset_t fork_charge; 4958 4959 /* 4960 * The caller is responsible for ensuring that the reference count 4961 * cannot concurrently transition 1 -> 2. 4962 */ 4963 if (refcount_load(&oldvmspace->vm_refcnt) == 1) 4964 return (0); 4965 fork_charge = 0; 4966 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4967 if (newvmspace == NULL) 4968 return (ENOMEM); 4969 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4970 vmspace_free(newvmspace); 4971 return (ENOMEM); 4972 } 4973 PROC_VMSPACE_LOCK(p); 4974 p->p_vmspace = newvmspace; 4975 PROC_VMSPACE_UNLOCK(p); 4976 if (p == curthread->td_proc) 4977 pmap_activate(curthread); 4978 vmspace_free(oldvmspace); 4979 return (0); 4980 } 4981 4982 /* 4983 * vm_map_lookup: 4984 * 4985 * Finds the VM object, offset, and 4986 * protection for a given virtual address in the 4987 * specified map, assuming a page fault of the 4988 * type specified. 4989 * 4990 * Leaves the map in question locked for read; return 4991 * values are guaranteed until a vm_map_lookup_done 4992 * call is performed. Note that the map argument 4993 * is in/out; the returned map must be used in 4994 * the call to vm_map_lookup_done. 4995 * 4996 * A handle (out_entry) is returned for use in 4997 * vm_map_lookup_done, to make that fast. 4998 * 4999 * If a lookup is requested with "write protection" 5000 * specified, the map may be changed to perform virtual 5001 * copying operations, although the data referenced will 5002 * remain the same. 5003 */ 5004 int 5005 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 5006 vm_offset_t vaddr, 5007 vm_prot_t fault_typea, 5008 vm_map_entry_t *out_entry, /* OUT */ 5009 vm_object_t *object, /* OUT */ 5010 vm_pindex_t *pindex, /* OUT */ 5011 vm_prot_t *out_prot, /* OUT */ 5012 boolean_t *wired) /* OUT */ 5013 { 5014 vm_map_entry_t entry; 5015 vm_map_t map = *var_map; 5016 vm_prot_t prot; 5017 vm_prot_t fault_type; 5018 vm_object_t eobject; 5019 vm_size_t size; 5020 struct ucred *cred; 5021 5022 RetryLookup: 5023 5024 vm_map_lock_read(map); 5025 5026 RetryLookupLocked: 5027 /* 5028 * Lookup the faulting address. 5029 */ 5030 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 5031 vm_map_unlock_read(map); 5032 return (KERN_INVALID_ADDRESS); 5033 } 5034 5035 entry = *out_entry; 5036 5037 /* 5038 * Handle submaps. 5039 */ 5040 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5041 vm_map_t old_map = map; 5042 5043 *var_map = map = entry->object.sub_map; 5044 vm_map_unlock_read(old_map); 5045 goto RetryLookup; 5046 } 5047 5048 /* 5049 * Check whether this task is allowed to have this page. 5050 */ 5051 prot = entry->protection; 5052 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 5053 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 5054 if (prot == VM_PROT_NONE && map != kernel_map && 5055 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 5056 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 5057 MAP_ENTRY_STACK_GAP_UP)) != 0 && 5058 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 5059 goto RetryLookupLocked; 5060 } 5061 fault_type = fault_typea & VM_PROT_ALL; 5062 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 5063 vm_map_unlock_read(map); 5064 return (KERN_PROTECTION_FAILURE); 5065 } 5066 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 5067 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 5068 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 5069 ("entry %p flags %x", entry, entry->eflags)); 5070 if ((fault_typea & VM_PROT_COPY) != 0 && 5071 (entry->max_protection & VM_PROT_WRITE) == 0 && 5072 (entry->eflags & MAP_ENTRY_COW) == 0) { 5073 vm_map_unlock_read(map); 5074 return (KERN_PROTECTION_FAILURE); 5075 } 5076 5077 /* 5078 * If this page is not pageable, we have to get it for all possible 5079 * accesses. 5080 */ 5081 *wired = (entry->wired_count != 0); 5082 if (*wired) 5083 fault_type = entry->protection; 5084 size = entry->end - entry->start; 5085 5086 /* 5087 * If the entry was copy-on-write, we either ... 5088 */ 5089 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5090 /* 5091 * If we want to write the page, we may as well handle that 5092 * now since we've got the map locked. 5093 * 5094 * If we don't need to write the page, we just demote the 5095 * permissions allowed. 5096 */ 5097 if ((fault_type & VM_PROT_WRITE) != 0 || 5098 (fault_typea & VM_PROT_COPY) != 0) { 5099 /* 5100 * Make a new object, and place it in the object 5101 * chain. Note that no new references have appeared 5102 * -- one just moved from the map to the new 5103 * object. 5104 */ 5105 if (vm_map_lock_upgrade(map)) 5106 goto RetryLookup; 5107 5108 if (entry->cred == NULL) { 5109 /* 5110 * The debugger owner is charged for 5111 * the memory. 5112 */ 5113 cred = curthread->td_ucred; 5114 crhold(cred); 5115 if (!swap_reserve_by_cred(size, cred)) { 5116 crfree(cred); 5117 vm_map_unlock(map); 5118 return (KERN_RESOURCE_SHORTAGE); 5119 } 5120 entry->cred = cred; 5121 } 5122 eobject = entry->object.vm_object; 5123 vm_object_shadow(&entry->object.vm_object, 5124 &entry->offset, size, entry->cred, false); 5125 if (eobject == entry->object.vm_object) { 5126 /* 5127 * The object was not shadowed. 5128 */ 5129 swap_release_by_cred(size, entry->cred); 5130 crfree(entry->cred); 5131 } 5132 entry->cred = NULL; 5133 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 5134 5135 vm_map_lock_downgrade(map); 5136 } else { 5137 /* 5138 * We're attempting to read a copy-on-write page -- 5139 * don't allow writes. 5140 */ 5141 prot &= ~VM_PROT_WRITE; 5142 } 5143 } 5144 5145 /* 5146 * Create an object if necessary. 5147 */ 5148 if (entry->object.vm_object == NULL && !map->system_map) { 5149 if (vm_map_lock_upgrade(map)) 5150 goto RetryLookup; 5151 entry->object.vm_object = vm_object_allocate_anon(atop(size), 5152 NULL, entry->cred, size); 5153 entry->offset = 0; 5154 entry->cred = NULL; 5155 vm_map_lock_downgrade(map); 5156 } 5157 5158 /* 5159 * Return the object/offset from this entry. If the entry was 5160 * copy-on-write or empty, it has been fixed up. 5161 */ 5162 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5163 *object = entry->object.vm_object; 5164 5165 *out_prot = prot; 5166 return (KERN_SUCCESS); 5167 } 5168 5169 /* 5170 * vm_map_lookup_locked: 5171 * 5172 * Lookup the faulting address. A version of vm_map_lookup that returns 5173 * KERN_FAILURE instead of blocking on map lock or memory allocation. 5174 */ 5175 int 5176 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 5177 vm_offset_t vaddr, 5178 vm_prot_t fault_typea, 5179 vm_map_entry_t *out_entry, /* OUT */ 5180 vm_object_t *object, /* OUT */ 5181 vm_pindex_t *pindex, /* OUT */ 5182 vm_prot_t *out_prot, /* OUT */ 5183 boolean_t *wired) /* OUT */ 5184 { 5185 vm_map_entry_t entry; 5186 vm_map_t map = *var_map; 5187 vm_prot_t prot; 5188 vm_prot_t fault_type = fault_typea; 5189 5190 /* 5191 * Lookup the faulting address. 5192 */ 5193 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 5194 return (KERN_INVALID_ADDRESS); 5195 5196 entry = *out_entry; 5197 5198 /* 5199 * Fail if the entry refers to a submap. 5200 */ 5201 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 5202 return (KERN_FAILURE); 5203 5204 /* 5205 * Check whether this task is allowed to have this page. 5206 */ 5207 prot = entry->protection; 5208 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 5209 if ((fault_type & prot) != fault_type) 5210 return (KERN_PROTECTION_FAILURE); 5211 5212 /* 5213 * If this page is not pageable, we have to get it for all possible 5214 * accesses. 5215 */ 5216 *wired = (entry->wired_count != 0); 5217 if (*wired) 5218 fault_type = entry->protection; 5219 5220 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5221 /* 5222 * Fail if the entry was copy-on-write for a write fault. 5223 */ 5224 if (fault_type & VM_PROT_WRITE) 5225 return (KERN_FAILURE); 5226 /* 5227 * We're attempting to read a copy-on-write page -- 5228 * don't allow writes. 5229 */ 5230 prot &= ~VM_PROT_WRITE; 5231 } 5232 5233 /* 5234 * Fail if an object should be created. 5235 */ 5236 if (entry->object.vm_object == NULL && !map->system_map) 5237 return (KERN_FAILURE); 5238 5239 /* 5240 * Return the object/offset from this entry. If the entry was 5241 * copy-on-write or empty, it has been fixed up. 5242 */ 5243 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5244 *object = entry->object.vm_object; 5245 5246 *out_prot = prot; 5247 return (KERN_SUCCESS); 5248 } 5249 5250 /* 5251 * vm_map_lookup_done: 5252 * 5253 * Releases locks acquired by a vm_map_lookup 5254 * (according to the handle returned by that lookup). 5255 */ 5256 void 5257 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 5258 { 5259 /* 5260 * Unlock the main-level map 5261 */ 5262 vm_map_unlock_read(map); 5263 } 5264 5265 vm_offset_t 5266 vm_map_max_KBI(const struct vm_map *map) 5267 { 5268 5269 return (vm_map_max(map)); 5270 } 5271 5272 vm_offset_t 5273 vm_map_min_KBI(const struct vm_map *map) 5274 { 5275 5276 return (vm_map_min(map)); 5277 } 5278 5279 pmap_t 5280 vm_map_pmap_KBI(vm_map_t map) 5281 { 5282 5283 return (map->pmap); 5284 } 5285 5286 bool 5287 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end) 5288 { 5289 5290 return (vm_map_range_valid(map, start, end)); 5291 } 5292 5293 #ifdef INVARIANTS 5294 static void 5295 _vm_map_assert_consistent(vm_map_t map, int check) 5296 { 5297 vm_map_entry_t entry, prev; 5298 vm_map_entry_t cur, header, lbound, ubound; 5299 vm_size_t max_left, max_right; 5300 5301 #ifdef DIAGNOSTIC 5302 ++map->nupdates; 5303 #endif 5304 if (enable_vmmap_check != check) 5305 return; 5306 5307 header = prev = &map->header; 5308 VM_MAP_ENTRY_FOREACH(entry, map) { 5309 KASSERT(prev->end <= entry->start, 5310 ("map %p prev->end = %jx, start = %jx", map, 5311 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5312 KASSERT(entry->start < entry->end, 5313 ("map %p start = %jx, end = %jx", map, 5314 (uintmax_t)entry->start, (uintmax_t)entry->end)); 5315 KASSERT(entry->left == header || 5316 entry->left->start < entry->start, 5317 ("map %p left->start = %jx, start = %jx", map, 5318 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 5319 KASSERT(entry->right == header || 5320 entry->start < entry->right->start, 5321 ("map %p start = %jx, right->start = %jx", map, 5322 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 5323 cur = map->root; 5324 lbound = ubound = header; 5325 for (;;) { 5326 if (entry->start < cur->start) { 5327 ubound = cur; 5328 cur = cur->left; 5329 KASSERT(cur != lbound, 5330 ("map %p cannot find %jx", 5331 map, (uintmax_t)entry->start)); 5332 } else if (cur->end <= entry->start) { 5333 lbound = cur; 5334 cur = cur->right; 5335 KASSERT(cur != ubound, 5336 ("map %p cannot find %jx", 5337 map, (uintmax_t)entry->start)); 5338 } else { 5339 KASSERT(cur == entry, 5340 ("map %p cannot find %jx", 5341 map, (uintmax_t)entry->start)); 5342 break; 5343 } 5344 } 5345 max_left = vm_map_entry_max_free_left(entry, lbound); 5346 max_right = vm_map_entry_max_free_right(entry, ubound); 5347 KASSERT(entry->max_free == vm_size_max(max_left, max_right), 5348 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 5349 (uintmax_t)entry->max_free, 5350 (uintmax_t)max_left, (uintmax_t)max_right)); 5351 prev = entry; 5352 } 5353 KASSERT(prev->end <= entry->start, 5354 ("map %p prev->end = %jx, start = %jx", map, 5355 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5356 } 5357 #endif 5358 5359 #include "opt_ddb.h" 5360 #ifdef DDB 5361 #include <sys/kernel.h> 5362 5363 #include <ddb/ddb.h> 5364 5365 static void 5366 vm_map_print(vm_map_t map) 5367 { 5368 vm_map_entry_t entry, prev; 5369 5370 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 5371 (void *)map, 5372 (void *)map->pmap, map->nentries, map->timestamp); 5373 5374 db_indent += 2; 5375 prev = &map->header; 5376 VM_MAP_ENTRY_FOREACH(entry, map) { 5377 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 5378 (void *)entry, (void *)entry->start, (void *)entry->end, 5379 entry->eflags); 5380 { 5381 static const char * const inheritance_name[4] = 5382 {"share", "copy", "none", "donate_copy"}; 5383 5384 db_iprintf(" prot=%x/%x/%s", 5385 entry->protection, 5386 entry->max_protection, 5387 inheritance_name[(int)(unsigned char) 5388 entry->inheritance]); 5389 if (entry->wired_count != 0) 5390 db_printf(", wired"); 5391 } 5392 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5393 db_printf(", share=%p, offset=0x%jx\n", 5394 (void *)entry->object.sub_map, 5395 (uintmax_t)entry->offset); 5396 if (prev == &map->header || 5397 prev->object.sub_map != 5398 entry->object.sub_map) { 5399 db_indent += 2; 5400 vm_map_print((vm_map_t)entry->object.sub_map); 5401 db_indent -= 2; 5402 } 5403 } else { 5404 if (entry->cred != NULL) 5405 db_printf(", ruid %d", entry->cred->cr_ruid); 5406 db_printf(", object=%p, offset=0x%jx", 5407 (void *)entry->object.vm_object, 5408 (uintmax_t)entry->offset); 5409 if (entry->object.vm_object && entry->object.vm_object->cred) 5410 db_printf(", obj ruid %d charge %jx", 5411 entry->object.vm_object->cred->cr_ruid, 5412 (uintmax_t)entry->object.vm_object->charge); 5413 if (entry->eflags & MAP_ENTRY_COW) 5414 db_printf(", copy (%s)", 5415 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 5416 db_printf("\n"); 5417 5418 if (prev == &map->header || 5419 prev->object.vm_object != 5420 entry->object.vm_object) { 5421 db_indent += 2; 5422 vm_object_print((db_expr_t)(intptr_t) 5423 entry->object.vm_object, 5424 0, 0, (char *)0); 5425 db_indent -= 2; 5426 } 5427 } 5428 prev = entry; 5429 } 5430 db_indent -= 2; 5431 } 5432 5433 DB_SHOW_COMMAND(map, map) 5434 { 5435 5436 if (!have_addr) { 5437 db_printf("usage: show map <addr>\n"); 5438 return; 5439 } 5440 vm_map_print((vm_map_t)addr); 5441 } 5442 5443 DB_SHOW_COMMAND(procvm, procvm) 5444 { 5445 struct proc *p; 5446 5447 if (have_addr) { 5448 p = db_lookup_proc(addr); 5449 } else { 5450 p = curproc; 5451 } 5452 5453 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 5454 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 5455 (void *)vmspace_pmap(p->p_vmspace)); 5456 5457 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 5458 } 5459 5460 #endif /* DDB */ 5461