xref: /freebsd/sys/vm/vm_map.c (revision f1951fd745b894fe6586c298874af98544a5e272)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100 
101 /*
102  *	Virtual memory maps provide for the mapping, protection,
103  *	and sharing of virtual memory objects.  In addition,
104  *	this module provides for an efficient virtual copy of
105  *	memory from one map to another.
106  *
107  *	Synchronization is required prior to most operations.
108  *
109  *	Maps consist of an ordered doubly-linked list of simple
110  *	entries; a self-adjusting binary search tree of these
111  *	entries is used to speed up lookups.
112  *
113  *	Since portions of maps are specified by start/end addresses,
114  *	which may not align with existing map entries, all
115  *	routines merely "clip" entries to these start/end values.
116  *	[That is, an entry is split into two, bordering at a
117  *	start or end value.]  Note that these clippings may not
118  *	always be necessary (as the two resulting entries are then
119  *	not changed); however, the clipping is done for convenience.
120  *
121  *	As mentioned above, virtual copy operations are performed
122  *	by copying VM object references from one map to
123  *	another, and then marking both regions as copy-on-write.
124  */
125 
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static int vm_map_alignspace(vm_map_t map, vm_object_t object,
136     vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length,
137     vm_offset_t max_addr, vm_offset_t alignment);
138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
142     vm_map_entry_t gap_entry);
143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
144     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
145 #ifdef INVARIANTS
146 static void vm_map_zdtor(void *mem, int size, void *arg);
147 static void vmspace_zdtor(void *mem, int size, void *arg);
148 #endif
149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
150     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
151     int cow);
152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
153     vm_offset_t failed_addr);
154 
155 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
156     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
157      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
158 
159 /*
160  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
161  * stable.
162  */
163 #define PROC_VMSPACE_LOCK(p) do { } while (0)
164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
165 
166 /*
167  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
168  *
169  *	Asserts that the starting and ending region
170  *	addresses fall within the valid range of the map.
171  */
172 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
173 		{					\
174 		if (start < vm_map_min(map))		\
175 			start = vm_map_min(map);	\
176 		if (end > vm_map_max(map))		\
177 			end = vm_map_max(map);		\
178 		if (start > end)			\
179 			start = end;			\
180 		}
181 
182 /*
183  *	vm_map_startup:
184  *
185  *	Initialize the vm_map module.  Must be called before
186  *	any other vm_map routines.
187  *
188  *	Map and entry structures are allocated from the general
189  *	purpose memory pool with some exceptions:
190  *
191  *	- The kernel map and kmem submap are allocated statically.
192  *	- Kernel map entries are allocated out of a static pool.
193  *
194  *	These restrictions are necessary since malloc() uses the
195  *	maps and requires map entries.
196  */
197 
198 void
199 vm_map_startup(void)
200 {
201 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
202 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
203 #ifdef INVARIANTS
204 	    vm_map_zdtor,
205 #else
206 	    NULL,
207 #endif
208 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
209 	uma_prealloc(mapzone, MAX_KMAP);
210 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
211 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
212 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
213 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
214 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
215 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
216 #ifdef INVARIANTS
217 	    vmspace_zdtor,
218 #else
219 	    NULL,
220 #endif
221 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
222 }
223 
224 static int
225 vmspace_zinit(void *mem, int size, int flags)
226 {
227 	struct vmspace *vm;
228 
229 	vm = (struct vmspace *)mem;
230 
231 	vm->vm_map.pmap = NULL;
232 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
233 	PMAP_LOCK_INIT(vmspace_pmap(vm));
234 	return (0);
235 }
236 
237 static int
238 vm_map_zinit(void *mem, int size, int flags)
239 {
240 	vm_map_t map;
241 
242 	map = (vm_map_t)mem;
243 	memset(map, 0, sizeof(*map));
244 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245 	sx_init(&map->lock, "vm map (user)");
246 	return (0);
247 }
248 
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253 	struct vmspace *vm;
254 
255 	vm = (struct vmspace *)mem;
256 
257 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262 	vm_map_t map;
263 
264 	map = (vm_map_t)mem;
265 	KASSERT(map->nentries == 0,
266 	    ("map %p nentries == %d on free.",
267 	    map, map->nentries));
268 	KASSERT(map->size == 0,
269 	    ("map %p size == %lu on free.",
270 	    map, (unsigned long)map->size));
271 }
272 #endif	/* INVARIANTS */
273 
274 /*
275  * Allocate a vmspace structure, including a vm_map and pmap,
276  * and initialize those structures.  The refcnt is set to 1.
277  *
278  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
279  */
280 struct vmspace *
281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
282 {
283 	struct vmspace *vm;
284 
285 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
286 
287 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
288 
289 	if (pinit == NULL)
290 		pinit = &pmap_pinit;
291 
292 	if (!pinit(vmspace_pmap(vm))) {
293 		uma_zfree(vmspace_zone, vm);
294 		return (NULL);
295 	}
296 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
297 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
298 	vm->vm_refcnt = 1;
299 	vm->vm_shm = NULL;
300 	vm->vm_swrss = 0;
301 	vm->vm_tsize = 0;
302 	vm->vm_dsize = 0;
303 	vm->vm_ssize = 0;
304 	vm->vm_taddr = 0;
305 	vm->vm_daddr = 0;
306 	vm->vm_maxsaddr = 0;
307 	return (vm);
308 }
309 
310 #ifdef RACCT
311 static void
312 vmspace_container_reset(struct proc *p)
313 {
314 
315 	PROC_LOCK(p);
316 	racct_set(p, RACCT_DATA, 0);
317 	racct_set(p, RACCT_STACK, 0);
318 	racct_set(p, RACCT_RSS, 0);
319 	racct_set(p, RACCT_MEMLOCK, 0);
320 	racct_set(p, RACCT_VMEM, 0);
321 	PROC_UNLOCK(p);
322 }
323 #endif
324 
325 static inline void
326 vmspace_dofree(struct vmspace *vm)
327 {
328 
329 	CTR1(KTR_VM, "vmspace_free: %p", vm);
330 
331 	/*
332 	 * Make sure any SysV shm is freed, it might not have been in
333 	 * exit1().
334 	 */
335 	shmexit(vm);
336 
337 	/*
338 	 * Lock the map, to wait out all other references to it.
339 	 * Delete all of the mappings and pages they hold, then call
340 	 * the pmap module to reclaim anything left.
341 	 */
342 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
343 	    vm->vm_map.max_offset);
344 
345 	pmap_release(vmspace_pmap(vm));
346 	vm->vm_map.pmap = NULL;
347 	uma_zfree(vmspace_zone, vm);
348 }
349 
350 void
351 vmspace_free(struct vmspace *vm)
352 {
353 
354 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
355 	    "vmspace_free() called");
356 
357 	if (vm->vm_refcnt == 0)
358 		panic("vmspace_free: attempt to free already freed vmspace");
359 
360 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
361 		vmspace_dofree(vm);
362 }
363 
364 void
365 vmspace_exitfree(struct proc *p)
366 {
367 	struct vmspace *vm;
368 
369 	PROC_VMSPACE_LOCK(p);
370 	vm = p->p_vmspace;
371 	p->p_vmspace = NULL;
372 	PROC_VMSPACE_UNLOCK(p);
373 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
374 	vmspace_free(vm);
375 }
376 
377 void
378 vmspace_exit(struct thread *td)
379 {
380 	int refcnt;
381 	struct vmspace *vm;
382 	struct proc *p;
383 
384 	/*
385 	 * Release user portion of address space.
386 	 * This releases references to vnodes,
387 	 * which could cause I/O if the file has been unlinked.
388 	 * Need to do this early enough that we can still sleep.
389 	 *
390 	 * The last exiting process to reach this point releases as
391 	 * much of the environment as it can. vmspace_dofree() is the
392 	 * slower fallback in case another process had a temporary
393 	 * reference to the vmspace.
394 	 */
395 
396 	p = td->td_proc;
397 	vm = p->p_vmspace;
398 	atomic_add_int(&vmspace0.vm_refcnt, 1);
399 	do {
400 		refcnt = vm->vm_refcnt;
401 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
402 			/* Switch now since other proc might free vmspace */
403 			PROC_VMSPACE_LOCK(p);
404 			p->p_vmspace = &vmspace0;
405 			PROC_VMSPACE_UNLOCK(p);
406 			pmap_activate(td);
407 		}
408 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
409 	if (refcnt == 1) {
410 		if (p->p_vmspace != vm) {
411 			/* vmspace not yet freed, switch back */
412 			PROC_VMSPACE_LOCK(p);
413 			p->p_vmspace = vm;
414 			PROC_VMSPACE_UNLOCK(p);
415 			pmap_activate(td);
416 		}
417 		pmap_remove_pages(vmspace_pmap(vm));
418 		/* Switch now since this proc will free vmspace */
419 		PROC_VMSPACE_LOCK(p);
420 		p->p_vmspace = &vmspace0;
421 		PROC_VMSPACE_UNLOCK(p);
422 		pmap_activate(td);
423 		vmspace_dofree(vm);
424 	}
425 #ifdef RACCT
426 	if (racct_enable)
427 		vmspace_container_reset(p);
428 #endif
429 }
430 
431 /* Acquire reference to vmspace owned by another process. */
432 
433 struct vmspace *
434 vmspace_acquire_ref(struct proc *p)
435 {
436 	struct vmspace *vm;
437 	int refcnt;
438 
439 	PROC_VMSPACE_LOCK(p);
440 	vm = p->p_vmspace;
441 	if (vm == NULL) {
442 		PROC_VMSPACE_UNLOCK(p);
443 		return (NULL);
444 	}
445 	do {
446 		refcnt = vm->vm_refcnt;
447 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
448 			PROC_VMSPACE_UNLOCK(p);
449 			return (NULL);
450 		}
451 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
452 	if (vm != p->p_vmspace) {
453 		PROC_VMSPACE_UNLOCK(p);
454 		vmspace_free(vm);
455 		return (NULL);
456 	}
457 	PROC_VMSPACE_UNLOCK(p);
458 	return (vm);
459 }
460 
461 /*
462  * Switch between vmspaces in an AIO kernel process.
463  *
464  * The AIO kernel processes switch to and from a user process's
465  * vmspace while performing an I/O operation on behalf of a user
466  * process.  The new vmspace is either the vmspace of a user process
467  * obtained from an active AIO request or the initial vmspace of the
468  * AIO kernel process (when it is idling).  Because user processes
469  * will block to drain any active AIO requests before proceeding in
470  * exit() or execve(), the vmspace reference count for these vmspaces
471  * can never be 0.  This allows for a much simpler implementation than
472  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
473  * processes hold an extra reference on their initial vmspace for the
474  * life of the process so that this guarantee is true for any vmspace
475  * passed as 'newvm'.
476  */
477 void
478 vmspace_switch_aio(struct vmspace *newvm)
479 {
480 	struct vmspace *oldvm;
481 
482 	/* XXX: Need some way to assert that this is an aio daemon. */
483 
484 	KASSERT(newvm->vm_refcnt > 0,
485 	    ("vmspace_switch_aio: newvm unreferenced"));
486 
487 	oldvm = curproc->p_vmspace;
488 	if (oldvm == newvm)
489 		return;
490 
491 	/*
492 	 * Point to the new address space and refer to it.
493 	 */
494 	curproc->p_vmspace = newvm;
495 	atomic_add_int(&newvm->vm_refcnt, 1);
496 
497 	/* Activate the new mapping. */
498 	pmap_activate(curthread);
499 
500 	/* Remove the daemon's reference to the old address space. */
501 	KASSERT(oldvm->vm_refcnt > 1,
502 	    ("vmspace_switch_aio: oldvm dropping last reference"));
503 	vmspace_free(oldvm);
504 }
505 
506 void
507 _vm_map_lock(vm_map_t map, const char *file, int line)
508 {
509 
510 	if (map->system_map)
511 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
512 	else
513 		sx_xlock_(&map->lock, file, line);
514 	map->timestamp++;
515 }
516 
517 static void
518 vm_map_process_deferred(void)
519 {
520 	struct thread *td;
521 	vm_map_entry_t entry, next;
522 	vm_object_t object;
523 
524 	td = curthread;
525 	entry = td->td_map_def_user;
526 	td->td_map_def_user = NULL;
527 	while (entry != NULL) {
528 		next = entry->next;
529 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
530 			/*
531 			 * Decrement the object's writemappings and
532 			 * possibly the vnode's v_writecount.
533 			 */
534 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
535 			    ("Submap with writecount"));
536 			object = entry->object.vm_object;
537 			KASSERT(object != NULL, ("No object for writecount"));
538 			vnode_pager_release_writecount(object, entry->start,
539 			    entry->end);
540 		}
541 		vm_map_entry_deallocate(entry, FALSE);
542 		entry = next;
543 	}
544 }
545 
546 void
547 _vm_map_unlock(vm_map_t map, const char *file, int line)
548 {
549 
550 	if (map->system_map)
551 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
552 	else {
553 		sx_xunlock_(&map->lock, file, line);
554 		vm_map_process_deferred();
555 	}
556 }
557 
558 void
559 _vm_map_lock_read(vm_map_t map, const char *file, int line)
560 {
561 
562 	if (map->system_map)
563 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
564 	else
565 		sx_slock_(&map->lock, file, line);
566 }
567 
568 void
569 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
570 {
571 
572 	if (map->system_map)
573 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
574 	else {
575 		sx_sunlock_(&map->lock, file, line);
576 		vm_map_process_deferred();
577 	}
578 }
579 
580 int
581 _vm_map_trylock(vm_map_t map, const char *file, int line)
582 {
583 	int error;
584 
585 	error = map->system_map ?
586 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
587 	    !sx_try_xlock_(&map->lock, file, line);
588 	if (error == 0)
589 		map->timestamp++;
590 	return (error == 0);
591 }
592 
593 int
594 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
595 {
596 	int error;
597 
598 	error = map->system_map ?
599 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
600 	    !sx_try_slock_(&map->lock, file, line);
601 	return (error == 0);
602 }
603 
604 /*
605  *	_vm_map_lock_upgrade:	[ internal use only ]
606  *
607  *	Tries to upgrade a read (shared) lock on the specified map to a write
608  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
609  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
610  *	returned without a read or write lock held.
611  *
612  *	Requires that the map be read locked.
613  */
614 int
615 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
616 {
617 	unsigned int last_timestamp;
618 
619 	if (map->system_map) {
620 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
621 	} else {
622 		if (!sx_try_upgrade_(&map->lock, file, line)) {
623 			last_timestamp = map->timestamp;
624 			sx_sunlock_(&map->lock, file, line);
625 			vm_map_process_deferred();
626 			/*
627 			 * If the map's timestamp does not change while the
628 			 * map is unlocked, then the upgrade succeeds.
629 			 */
630 			sx_xlock_(&map->lock, file, line);
631 			if (last_timestamp != map->timestamp) {
632 				sx_xunlock_(&map->lock, file, line);
633 				return (1);
634 			}
635 		}
636 	}
637 	map->timestamp++;
638 	return (0);
639 }
640 
641 void
642 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
643 {
644 
645 	if (map->system_map) {
646 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
647 	} else
648 		sx_downgrade_(&map->lock, file, line);
649 }
650 
651 /*
652  *	vm_map_locked:
653  *
654  *	Returns a non-zero value if the caller holds a write (exclusive) lock
655  *	on the specified map and the value "0" otherwise.
656  */
657 int
658 vm_map_locked(vm_map_t map)
659 {
660 
661 	if (map->system_map)
662 		return (mtx_owned(&map->system_mtx));
663 	else
664 		return (sx_xlocked(&map->lock));
665 }
666 
667 #ifdef INVARIANTS
668 static void
669 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
670 {
671 
672 	if (map->system_map)
673 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
674 	else
675 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
676 }
677 
678 #define	VM_MAP_ASSERT_LOCKED(map) \
679     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
680 #else
681 #define	VM_MAP_ASSERT_LOCKED(map)
682 #endif
683 
684 /*
685  *	_vm_map_unlock_and_wait:
686  *
687  *	Atomically releases the lock on the specified map and puts the calling
688  *	thread to sleep.  The calling thread will remain asleep until either
689  *	vm_map_wakeup() is performed on the map or the specified timeout is
690  *	exceeded.
691  *
692  *	WARNING!  This function does not perform deferred deallocations of
693  *	objects and map	entries.  Therefore, the calling thread is expected to
694  *	reacquire the map lock after reawakening and later perform an ordinary
695  *	unlock operation, such as vm_map_unlock(), before completing its
696  *	operation on the map.
697  */
698 int
699 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
700 {
701 
702 	mtx_lock(&map_sleep_mtx);
703 	if (map->system_map)
704 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
705 	else
706 		sx_xunlock_(&map->lock, file, line);
707 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
708 	    timo));
709 }
710 
711 /*
712  *	vm_map_wakeup:
713  *
714  *	Awaken any threads that have slept on the map using
715  *	vm_map_unlock_and_wait().
716  */
717 void
718 vm_map_wakeup(vm_map_t map)
719 {
720 
721 	/*
722 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
723 	 * from being performed (and lost) between the map unlock
724 	 * and the msleep() in _vm_map_unlock_and_wait().
725 	 */
726 	mtx_lock(&map_sleep_mtx);
727 	mtx_unlock(&map_sleep_mtx);
728 	wakeup(&map->root);
729 }
730 
731 void
732 vm_map_busy(vm_map_t map)
733 {
734 
735 	VM_MAP_ASSERT_LOCKED(map);
736 	map->busy++;
737 }
738 
739 void
740 vm_map_unbusy(vm_map_t map)
741 {
742 
743 	VM_MAP_ASSERT_LOCKED(map);
744 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
745 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
746 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
747 		wakeup(&map->busy);
748 	}
749 }
750 
751 void
752 vm_map_wait_busy(vm_map_t map)
753 {
754 
755 	VM_MAP_ASSERT_LOCKED(map);
756 	while (map->busy) {
757 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
758 		if (map->system_map)
759 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
760 		else
761 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
762 	}
763 	map->timestamp++;
764 }
765 
766 long
767 vmspace_resident_count(struct vmspace *vmspace)
768 {
769 	return pmap_resident_count(vmspace_pmap(vmspace));
770 }
771 
772 /*
773  *	vm_map_create:
774  *
775  *	Creates and returns a new empty VM map with
776  *	the given physical map structure, and having
777  *	the given lower and upper address bounds.
778  */
779 vm_map_t
780 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
781 {
782 	vm_map_t result;
783 
784 	result = uma_zalloc(mapzone, M_WAITOK);
785 	CTR1(KTR_VM, "vm_map_create: %p", result);
786 	_vm_map_init(result, pmap, min, max);
787 	return (result);
788 }
789 
790 /*
791  * Initialize an existing vm_map structure
792  * such as that in the vmspace structure.
793  */
794 static void
795 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
796 {
797 
798 	map->header.next = map->header.prev = &map->header;
799 	map->needs_wakeup = FALSE;
800 	map->system_map = 0;
801 	map->pmap = pmap;
802 	map->min_offset = min;
803 	map->max_offset = max;
804 	map->flags = 0;
805 	map->root = NULL;
806 	map->timestamp = 0;
807 	map->busy = 0;
808 }
809 
810 void
811 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
812 {
813 
814 	_vm_map_init(map, pmap, min, max);
815 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
816 	sx_init(&map->lock, "user map");
817 }
818 
819 /*
820  *	vm_map_entry_dispose:	[ internal use only ]
821  *
822  *	Inverse of vm_map_entry_create.
823  */
824 static void
825 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
826 {
827 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
828 }
829 
830 /*
831  *	vm_map_entry_create:	[ internal use only ]
832  *
833  *	Allocates a VM map entry for insertion.
834  *	No entry fields are filled in.
835  */
836 static vm_map_entry_t
837 vm_map_entry_create(vm_map_t map)
838 {
839 	vm_map_entry_t new_entry;
840 
841 	if (map->system_map)
842 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
843 	else
844 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
845 	if (new_entry == NULL)
846 		panic("vm_map_entry_create: kernel resources exhausted");
847 	return (new_entry);
848 }
849 
850 /*
851  *	vm_map_entry_set_behavior:
852  *
853  *	Set the expected access behavior, either normal, random, or
854  *	sequential.
855  */
856 static inline void
857 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
858 {
859 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
860 	    (behavior & MAP_ENTRY_BEHAV_MASK);
861 }
862 
863 /*
864  *	vm_map_entry_set_max_free:
865  *
866  *	Set the max_free field in a vm_map_entry.
867  */
868 static inline void
869 vm_map_entry_set_max_free(vm_map_entry_t entry)
870 {
871 
872 	entry->max_free = entry->adj_free;
873 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
874 		entry->max_free = entry->left->max_free;
875 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
876 		entry->max_free = entry->right->max_free;
877 }
878 
879 /*
880  *	vm_map_entry_splay:
881  *
882  *	The Sleator and Tarjan top-down splay algorithm with the
883  *	following variation.  Max_free must be computed bottom-up, so
884  *	on the downward pass, maintain the left and right spines in
885  *	reverse order.  Then, make a second pass up each side to fix
886  *	the pointers and compute max_free.  The time bound is O(log n)
887  *	amortized.
888  *
889  *	The new root is the vm_map_entry containing "addr", or else an
890  *	adjacent entry (lower or higher) if addr is not in the tree.
891  *
892  *	The map must be locked, and leaves it so.
893  *
894  *	Returns: the new root.
895  */
896 static vm_map_entry_t
897 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
898 {
899 	vm_map_entry_t llist, rlist;
900 	vm_map_entry_t ltree, rtree;
901 	vm_map_entry_t y;
902 
903 	/* Special case of empty tree. */
904 	if (root == NULL)
905 		return (root);
906 
907 	/*
908 	 * Pass One: Splay down the tree until we find addr or a NULL
909 	 * pointer where addr would go.  llist and rlist are the two
910 	 * sides in reverse order (bottom-up), with llist linked by
911 	 * the right pointer and rlist linked by the left pointer in
912 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
913 	 * the two spines.
914 	 */
915 	llist = NULL;
916 	rlist = NULL;
917 	for (;;) {
918 		/* root is never NULL in here. */
919 		if (addr < root->start) {
920 			y = root->left;
921 			if (y == NULL)
922 				break;
923 			if (addr < y->start && y->left != NULL) {
924 				/* Rotate right and put y on rlist. */
925 				root->left = y->right;
926 				y->right = root;
927 				vm_map_entry_set_max_free(root);
928 				root = y->left;
929 				y->left = rlist;
930 				rlist = y;
931 			} else {
932 				/* Put root on rlist. */
933 				root->left = rlist;
934 				rlist = root;
935 				root = y;
936 			}
937 		} else if (addr >= root->end) {
938 			y = root->right;
939 			if (y == NULL)
940 				break;
941 			if (addr >= y->end && y->right != NULL) {
942 				/* Rotate left and put y on llist. */
943 				root->right = y->left;
944 				y->left = root;
945 				vm_map_entry_set_max_free(root);
946 				root = y->right;
947 				y->right = llist;
948 				llist = y;
949 			} else {
950 				/* Put root on llist. */
951 				root->right = llist;
952 				llist = root;
953 				root = y;
954 			}
955 		} else
956 			break;
957 	}
958 
959 	/*
960 	 * Pass Two: Walk back up the two spines, flip the pointers
961 	 * and set max_free.  The subtrees of the root go at the
962 	 * bottom of llist and rlist.
963 	 */
964 	ltree = root->left;
965 	while (llist != NULL) {
966 		y = llist->right;
967 		llist->right = ltree;
968 		vm_map_entry_set_max_free(llist);
969 		ltree = llist;
970 		llist = y;
971 	}
972 	rtree = root->right;
973 	while (rlist != NULL) {
974 		y = rlist->left;
975 		rlist->left = rtree;
976 		vm_map_entry_set_max_free(rlist);
977 		rtree = rlist;
978 		rlist = y;
979 	}
980 
981 	/*
982 	 * Final assembly: add ltree and rtree as subtrees of root.
983 	 */
984 	root->left = ltree;
985 	root->right = rtree;
986 	vm_map_entry_set_max_free(root);
987 
988 	return (root);
989 }
990 
991 /*
992  *	vm_map_entry_{un,}link:
993  *
994  *	Insert/remove entries from maps.
995  */
996 static void
997 vm_map_entry_link(vm_map_t map,
998 		  vm_map_entry_t after_where,
999 		  vm_map_entry_t entry)
1000 {
1001 
1002 	CTR4(KTR_VM,
1003 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
1004 	    map->nentries, entry, after_where);
1005 	VM_MAP_ASSERT_LOCKED(map);
1006 	KASSERT(after_where->end <= entry->start,
1007 	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
1008 	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
1009 	KASSERT(entry->end <= after_where->next->start,
1010 	    ("vm_map_entry_link: new end %jx next start %jx overlap",
1011 	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1012 
1013 	map->nentries++;
1014 	entry->prev = after_where;
1015 	entry->next = after_where->next;
1016 	entry->next->prev = entry;
1017 	after_where->next = entry;
1018 
1019 	if (after_where != &map->header) {
1020 		if (after_where != map->root)
1021 			vm_map_entry_splay(after_where->start, map->root);
1022 		entry->right = after_where->right;
1023 		entry->left = after_where;
1024 		after_where->right = NULL;
1025 		after_where->adj_free = entry->start - after_where->end;
1026 		vm_map_entry_set_max_free(after_where);
1027 	} else {
1028 		entry->right = map->root;
1029 		entry->left = NULL;
1030 	}
1031 	entry->adj_free = entry->next->start - entry->end;
1032 	vm_map_entry_set_max_free(entry);
1033 	map->root = entry;
1034 }
1035 
1036 static void
1037 vm_map_entry_unlink(vm_map_t map,
1038 		    vm_map_entry_t entry)
1039 {
1040 	vm_map_entry_t next, prev, root;
1041 
1042 	VM_MAP_ASSERT_LOCKED(map);
1043 	if (entry != map->root)
1044 		vm_map_entry_splay(entry->start, map->root);
1045 	if (entry->left == NULL)
1046 		root = entry->right;
1047 	else {
1048 		root = vm_map_entry_splay(entry->start, entry->left);
1049 		root->right = entry->right;
1050 		root->adj_free = entry->next->start - root->end;
1051 		vm_map_entry_set_max_free(root);
1052 	}
1053 	map->root = root;
1054 
1055 	prev = entry->prev;
1056 	next = entry->next;
1057 	next->prev = prev;
1058 	prev->next = next;
1059 	map->nentries--;
1060 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1061 	    map->nentries, entry);
1062 }
1063 
1064 /*
1065  *	vm_map_entry_resize_free:
1066  *
1067  *	Recompute the amount of free space following a vm_map_entry
1068  *	and propagate that value up the tree.  Call this function after
1069  *	resizing a map entry in-place, that is, without a call to
1070  *	vm_map_entry_link() or _unlink().
1071  *
1072  *	The map must be locked, and leaves it so.
1073  */
1074 static void
1075 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1076 {
1077 
1078 	/*
1079 	 * Using splay trees without parent pointers, propagating
1080 	 * max_free up the tree is done by moving the entry to the
1081 	 * root and making the change there.
1082 	 */
1083 	if (entry != map->root)
1084 		map->root = vm_map_entry_splay(entry->start, map->root);
1085 
1086 	entry->adj_free = entry->next->start - entry->end;
1087 	vm_map_entry_set_max_free(entry);
1088 }
1089 
1090 /*
1091  *	vm_map_lookup_entry:	[ internal use only ]
1092  *
1093  *	Finds the map entry containing (or
1094  *	immediately preceding) the specified address
1095  *	in the given map; the entry is returned
1096  *	in the "entry" parameter.  The boolean
1097  *	result indicates whether the address is
1098  *	actually contained in the map.
1099  */
1100 boolean_t
1101 vm_map_lookup_entry(
1102 	vm_map_t map,
1103 	vm_offset_t address,
1104 	vm_map_entry_t *entry)	/* OUT */
1105 {
1106 	vm_map_entry_t cur;
1107 	boolean_t locked;
1108 
1109 	/*
1110 	 * If the map is empty, then the map entry immediately preceding
1111 	 * "address" is the map's header.
1112 	 */
1113 	cur = map->root;
1114 	if (cur == NULL)
1115 		*entry = &map->header;
1116 	else if (address >= cur->start && cur->end > address) {
1117 		*entry = cur;
1118 		return (TRUE);
1119 	} else if ((locked = vm_map_locked(map)) ||
1120 	    sx_try_upgrade(&map->lock)) {
1121 		/*
1122 		 * Splay requires a write lock on the map.  However, it only
1123 		 * restructures the binary search tree; it does not otherwise
1124 		 * change the map.  Thus, the map's timestamp need not change
1125 		 * on a temporary upgrade.
1126 		 */
1127 		map->root = cur = vm_map_entry_splay(address, cur);
1128 		if (!locked)
1129 			sx_downgrade(&map->lock);
1130 
1131 		/*
1132 		 * If "address" is contained within a map entry, the new root
1133 		 * is that map entry.  Otherwise, the new root is a map entry
1134 		 * immediately before or after "address".
1135 		 */
1136 		if (address >= cur->start) {
1137 			*entry = cur;
1138 			if (cur->end > address)
1139 				return (TRUE);
1140 		} else
1141 			*entry = cur->prev;
1142 	} else
1143 		/*
1144 		 * Since the map is only locked for read access, perform a
1145 		 * standard binary search tree lookup for "address".
1146 		 */
1147 		for (;;) {
1148 			if (address < cur->start) {
1149 				if (cur->left == NULL) {
1150 					*entry = cur->prev;
1151 					break;
1152 				}
1153 				cur = cur->left;
1154 			} else if (cur->end > address) {
1155 				*entry = cur;
1156 				return (TRUE);
1157 			} else {
1158 				if (cur->right == NULL) {
1159 					*entry = cur;
1160 					break;
1161 				}
1162 				cur = cur->right;
1163 			}
1164 		}
1165 	return (FALSE);
1166 }
1167 
1168 /*
1169  *	vm_map_insert:
1170  *
1171  *	Inserts the given whole VM object into the target
1172  *	map at the specified address range.  The object's
1173  *	size should match that of the address range.
1174  *
1175  *	Requires that the map be locked, and leaves it so.
1176  *
1177  *	If object is non-NULL, ref count must be bumped by caller
1178  *	prior to making call to account for the new entry.
1179  */
1180 int
1181 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1182     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1183 {
1184 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1185 	struct ucred *cred;
1186 	vm_eflags_t protoeflags;
1187 	vm_inherit_t inheritance;
1188 
1189 	VM_MAP_ASSERT_LOCKED(map);
1190 	KASSERT(object != kernel_object ||
1191 	    (cow & MAP_COPY_ON_WRITE) == 0,
1192 	    ("vm_map_insert: kernel object and COW"));
1193 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1194 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1195 	KASSERT((prot & ~max) == 0,
1196 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1197 
1198 	/*
1199 	 * Check that the start and end points are not bogus.
1200 	 */
1201 	if (start < map->min_offset || end > map->max_offset || start >= end)
1202 		return (KERN_INVALID_ADDRESS);
1203 
1204 	/*
1205 	 * Find the entry prior to the proposed starting address; if it's part
1206 	 * of an existing entry, this range is bogus.
1207 	 */
1208 	if (vm_map_lookup_entry(map, start, &temp_entry))
1209 		return (KERN_NO_SPACE);
1210 
1211 	prev_entry = temp_entry;
1212 
1213 	/*
1214 	 * Assert that the next entry doesn't overlap the end point.
1215 	 */
1216 	if (prev_entry->next->start < end)
1217 		return (KERN_NO_SPACE);
1218 
1219 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1220 	    max != VM_PROT_NONE))
1221 		return (KERN_INVALID_ARGUMENT);
1222 
1223 	protoeflags = 0;
1224 	if (cow & MAP_COPY_ON_WRITE)
1225 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1226 	if (cow & MAP_NOFAULT)
1227 		protoeflags |= MAP_ENTRY_NOFAULT;
1228 	if (cow & MAP_DISABLE_SYNCER)
1229 		protoeflags |= MAP_ENTRY_NOSYNC;
1230 	if (cow & MAP_DISABLE_COREDUMP)
1231 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1232 	if (cow & MAP_STACK_GROWS_DOWN)
1233 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1234 	if (cow & MAP_STACK_GROWS_UP)
1235 		protoeflags |= MAP_ENTRY_GROWS_UP;
1236 	if (cow & MAP_VN_WRITECOUNT)
1237 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1238 	if ((cow & MAP_CREATE_GUARD) != 0)
1239 		protoeflags |= MAP_ENTRY_GUARD;
1240 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1241 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1242 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1243 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1244 	if (cow & MAP_INHERIT_SHARE)
1245 		inheritance = VM_INHERIT_SHARE;
1246 	else
1247 		inheritance = VM_INHERIT_DEFAULT;
1248 
1249 	cred = NULL;
1250 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1251 		goto charged;
1252 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1253 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1254 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1255 			return (KERN_RESOURCE_SHORTAGE);
1256 		KASSERT(object == NULL ||
1257 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1258 		    object->cred == NULL,
1259 		    ("overcommit: vm_map_insert o %p", object));
1260 		cred = curthread->td_ucred;
1261 	}
1262 
1263 charged:
1264 	/* Expand the kernel pmap, if necessary. */
1265 	if (map == kernel_map && end > kernel_vm_end)
1266 		pmap_growkernel(end);
1267 	if (object != NULL) {
1268 		/*
1269 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1270 		 * is trivially proven to be the only mapping for any
1271 		 * of the object's pages.  (Object granularity
1272 		 * reference counting is insufficient to recognize
1273 		 * aliases with precision.)
1274 		 */
1275 		VM_OBJECT_WLOCK(object);
1276 		if (object->ref_count > 1 || object->shadow_count != 0)
1277 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1278 		VM_OBJECT_WUNLOCK(object);
1279 	} else if (prev_entry != &map->header &&
1280 	    (prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == protoeflags &&
1281 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1282 	    prev_entry->end == start && (prev_entry->cred == cred ||
1283 	    (prev_entry->object.vm_object != NULL &&
1284 	    prev_entry->object.vm_object->cred == cred)) &&
1285 	    vm_object_coalesce(prev_entry->object.vm_object,
1286 	    prev_entry->offset,
1287 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1288 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1289 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1290 		/*
1291 		 * We were able to extend the object.  Determine if we
1292 		 * can extend the previous map entry to include the
1293 		 * new range as well.
1294 		 */
1295 		if (prev_entry->inheritance == inheritance &&
1296 		    prev_entry->protection == prot &&
1297 		    prev_entry->max_protection == max &&
1298 		    prev_entry->wired_count == 0) {
1299 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1300 			    0, ("prev_entry %p has incoherent wiring",
1301 			    prev_entry));
1302 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1303 				map->size += end - prev_entry->end;
1304 			prev_entry->end = end;
1305 			vm_map_entry_resize_free(map, prev_entry);
1306 			vm_map_simplify_entry(map, prev_entry);
1307 			return (KERN_SUCCESS);
1308 		}
1309 
1310 		/*
1311 		 * If we can extend the object but cannot extend the
1312 		 * map entry, we have to create a new map entry.  We
1313 		 * must bump the ref count on the extended object to
1314 		 * account for it.  object may be NULL.
1315 		 */
1316 		object = prev_entry->object.vm_object;
1317 		offset = prev_entry->offset +
1318 		    (prev_entry->end - prev_entry->start);
1319 		vm_object_reference(object);
1320 		if (cred != NULL && object != NULL && object->cred != NULL &&
1321 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1322 			/* Object already accounts for this uid. */
1323 			cred = NULL;
1324 		}
1325 	}
1326 	if (cred != NULL)
1327 		crhold(cred);
1328 
1329 	/*
1330 	 * Create a new entry
1331 	 */
1332 	new_entry = vm_map_entry_create(map);
1333 	new_entry->start = start;
1334 	new_entry->end = end;
1335 	new_entry->cred = NULL;
1336 
1337 	new_entry->eflags = protoeflags;
1338 	new_entry->object.vm_object = object;
1339 	new_entry->offset = offset;
1340 
1341 	new_entry->inheritance = inheritance;
1342 	new_entry->protection = prot;
1343 	new_entry->max_protection = max;
1344 	new_entry->wired_count = 0;
1345 	new_entry->wiring_thread = NULL;
1346 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1347 	new_entry->next_read = start;
1348 
1349 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1350 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1351 	new_entry->cred = cred;
1352 
1353 	/*
1354 	 * Insert the new entry into the list
1355 	 */
1356 	vm_map_entry_link(map, prev_entry, new_entry);
1357 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1358 		map->size += new_entry->end - new_entry->start;
1359 
1360 	/*
1361 	 * Try to coalesce the new entry with both the previous and next
1362 	 * entries in the list.  Previously, we only attempted to coalesce
1363 	 * with the previous entry when object is NULL.  Here, we handle the
1364 	 * other cases, which are less common.
1365 	 */
1366 	vm_map_simplify_entry(map, new_entry);
1367 
1368 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1369 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1370 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1371 	}
1372 
1373 	return (KERN_SUCCESS);
1374 }
1375 
1376 /*
1377  *	vm_map_findspace:
1378  *
1379  *	Find the first fit (lowest VM address) for "length" free bytes
1380  *	beginning at address >= start in the given map.
1381  *
1382  *	In a vm_map_entry, "adj_free" is the amount of free space
1383  *	adjacent (higher address) to this entry, and "max_free" is the
1384  *	maximum amount of contiguous free space in its subtree.  This
1385  *	allows finding a free region in one path down the tree, so
1386  *	O(log n) amortized with splay trees.
1387  *
1388  *	The map must be locked, and leaves it so.
1389  *
1390  *	Returns: 0 on success, and starting address in *addr,
1391  *		 1 if insufficient space.
1392  */
1393 int
1394 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1395     vm_offset_t *addr)	/* OUT */
1396 {
1397 	vm_map_entry_t entry;
1398 	vm_offset_t st;
1399 
1400 	/*
1401 	 * Request must fit within min/max VM address and must avoid
1402 	 * address wrap.
1403 	 */
1404 	if (start < map->min_offset)
1405 		start = map->min_offset;
1406 	if (start + length > map->max_offset || start + length < start)
1407 		return (1);
1408 
1409 	/* Empty tree means wide open address space. */
1410 	if (map->root == NULL) {
1411 		*addr = start;
1412 		return (0);
1413 	}
1414 
1415 	/*
1416 	 * After splay, if start comes before root node, then there
1417 	 * must be a gap from start to the root.
1418 	 */
1419 	map->root = vm_map_entry_splay(start, map->root);
1420 	if (start + length <= map->root->start) {
1421 		*addr = start;
1422 		return (0);
1423 	}
1424 
1425 	/*
1426 	 * Root is the last node that might begin its gap before
1427 	 * start, and this is the last comparison where address
1428 	 * wrap might be a problem.
1429 	 */
1430 	st = (start > map->root->end) ? start : map->root->end;
1431 	if (length <= map->root->end + map->root->adj_free - st) {
1432 		*addr = st;
1433 		return (0);
1434 	}
1435 
1436 	/* With max_free, can immediately tell if no solution. */
1437 	entry = map->root->right;
1438 	if (entry == NULL || length > entry->max_free)
1439 		return (1);
1440 
1441 	/*
1442 	 * Search the right subtree in the order: left subtree, root,
1443 	 * right subtree (first fit).  The previous splay implies that
1444 	 * all regions in the right subtree have addresses > start.
1445 	 */
1446 	while (entry != NULL) {
1447 		if (entry->left != NULL && entry->left->max_free >= length)
1448 			entry = entry->left;
1449 		else if (entry->adj_free >= length) {
1450 			*addr = entry->end;
1451 			return (0);
1452 		} else
1453 			entry = entry->right;
1454 	}
1455 
1456 	/* Can't get here, so panic if we do. */
1457 	panic("vm_map_findspace: max_free corrupt");
1458 }
1459 
1460 int
1461 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1462     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1463     vm_prot_t max, int cow)
1464 {
1465 	vm_offset_t end;
1466 	int result;
1467 
1468 	end = start + length;
1469 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1470 	    object == NULL,
1471 	    ("vm_map_fixed: non-NULL backing object for stack"));
1472 	vm_map_lock(map);
1473 	VM_MAP_RANGE_CHECK(map, start, end);
1474 	if ((cow & MAP_CHECK_EXCL) == 0)
1475 		vm_map_delete(map, start, end);
1476 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1477 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1478 		    prot, max, cow);
1479 	} else {
1480 		result = vm_map_insert(map, object, offset, start, end,
1481 		    prot, max, cow);
1482 	}
1483 	vm_map_unlock(map);
1484 	return (result);
1485 }
1486 
1487 /*
1488  * Searches for the specified amount of free space in the given map with the
1489  * specified alignment.  Performs an address-ordered, first-fit search from
1490  * the given address "*addr", with an optional upper bound "max_addr".  If the
1491  * parameter "alignment" is zero, then the alignment is computed from the
1492  * given (object, offset) pair so as to enable the greatest possible use of
1493  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1494  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1495  *
1496  * The map must be locked.  Initially, there must be at least "length" bytes
1497  * of free space at the given address.
1498  */
1499 static int
1500 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1501     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1502     vm_offset_t alignment)
1503 {
1504 	vm_offset_t aligned_addr, free_addr;
1505 
1506 	VM_MAP_ASSERT_LOCKED(map);
1507 	free_addr = *addr;
1508 	KASSERT(!vm_map_findspace(map, free_addr, length, addr) &&
1509 	    free_addr == *addr, ("caller provided insufficient free space"));
1510 	for (;;) {
1511 		/*
1512 		 * At the start of every iteration, the free space at address
1513 		 * "*addr" is at least "length" bytes.
1514 		 */
1515 		if (alignment == 0)
1516 			pmap_align_superpage(object, offset, addr, length);
1517 		else if ((*addr & (alignment - 1)) != 0) {
1518 			*addr &= ~(alignment - 1);
1519 			*addr += alignment;
1520 		}
1521 		aligned_addr = *addr;
1522 		if (aligned_addr == free_addr) {
1523 			/*
1524 			 * Alignment did not change "*addr", so "*addr" must
1525 			 * still provide sufficient free space.
1526 			 */
1527 			return (KERN_SUCCESS);
1528 		}
1529 
1530 		/*
1531 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
1532 		 * be a valid address, in which case vm_map_findspace() cannot
1533 		 * be relied upon to fail.
1534 		 */
1535 		if (aligned_addr < free_addr ||
1536 		    vm_map_findspace(map, aligned_addr, length, addr) ||
1537 		    (max_addr != 0 && *addr + length > max_addr))
1538 			return (KERN_NO_SPACE);
1539 		free_addr = *addr;
1540 		if (free_addr == aligned_addr) {
1541 			/*
1542 			 * If a successful call to vm_map_findspace() did not
1543 			 * change "*addr", then "*addr" must still be aligned
1544 			 * and provide sufficient free space.
1545 			 */
1546 			return (KERN_SUCCESS);
1547 		}
1548 	}
1549 }
1550 
1551 /*
1552  *	vm_map_find finds an unallocated region in the target address
1553  *	map with the given length.  The search is defined to be
1554  *	first-fit from the specified address; the region found is
1555  *	returned in the same parameter.
1556  *
1557  *	If object is non-NULL, ref count must be bumped by caller
1558  *	prior to making call to account for the new entry.
1559  */
1560 int
1561 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1562 	    vm_offset_t *addr,	/* IN/OUT */
1563 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1564 	    vm_prot_t prot, vm_prot_t max, int cow)
1565 {
1566 	vm_offset_t alignment, min_addr;
1567 	int rv;
1568 
1569 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1570 	    object == NULL,
1571 	    ("vm_map_find: non-NULL backing object for stack"));
1572 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1573 	    (object->flags & OBJ_COLORED) == 0))
1574 		find_space = VMFS_ANY_SPACE;
1575 	if (find_space >> 8 != 0) {
1576 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1577 		alignment = (vm_offset_t)1 << (find_space >> 8);
1578 	} else
1579 		alignment = 0;
1580 	vm_map_lock(map);
1581 	if (find_space != VMFS_NO_SPACE) {
1582 		KASSERT(find_space == VMFS_ANY_SPACE ||
1583 		    find_space == VMFS_OPTIMAL_SPACE ||
1584 		    find_space == VMFS_SUPER_SPACE ||
1585 		    alignment != 0, ("unexpected VMFS flag"));
1586 		min_addr = *addr;
1587 again:
1588 		if (vm_map_findspace(map, min_addr, length, addr) ||
1589 		    (max_addr != 0 && *addr + length > max_addr)) {
1590 			rv = KERN_NO_SPACE;
1591 			goto done;
1592 		}
1593 		if (find_space != VMFS_ANY_SPACE &&
1594 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
1595 		    max_addr, alignment)) != KERN_SUCCESS) {
1596 			if (find_space == VMFS_OPTIMAL_SPACE) {
1597 				find_space = VMFS_ANY_SPACE;
1598 				goto again;
1599 			}
1600 			goto done;
1601 		}
1602 	}
1603 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1604 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1605 		    max, cow);
1606 	} else {
1607 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1608 		    prot, max, cow);
1609 	}
1610 done:
1611 	vm_map_unlock(map);
1612 	return (rv);
1613 }
1614 
1615 /*
1616  *	vm_map_find_min() is a variant of vm_map_find() that takes an
1617  *	additional parameter (min_addr) and treats the given address
1618  *	(*addr) differently.  Specifically, it treats *addr as a hint
1619  *	and not as the minimum address where the mapping is created.
1620  *
1621  *	This function works in two phases.  First, it tries to
1622  *	allocate above the hint.  If that fails and the hint is
1623  *	greater than min_addr, it performs a second pass, replacing
1624  *	the hint with min_addr as the minimum address for the
1625  *	allocation.
1626  */
1627 int
1628 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1629     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1630     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1631     int cow)
1632 {
1633 	vm_offset_t hint;
1634 	int rv;
1635 
1636 	hint = *addr;
1637 	for (;;) {
1638 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
1639 		    find_space, prot, max, cow);
1640 		if (rv == KERN_SUCCESS || min_addr >= hint)
1641 			return (rv);
1642 		*addr = hint = min_addr;
1643 	}
1644 }
1645 
1646 /*
1647  *	vm_map_simplify_entry:
1648  *
1649  *	Simplify the given map entry by merging with either neighbor.  This
1650  *	routine also has the ability to merge with both neighbors.
1651  *
1652  *	The map must be locked.
1653  *
1654  *	This routine guarantees that the passed entry remains valid (though
1655  *	possibly extended).  When merging, this routine may delete one or
1656  *	both neighbors.
1657  */
1658 void
1659 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1660 {
1661 	vm_map_entry_t next, prev;
1662 	vm_size_t prevsize, esize;
1663 
1664 	if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1665 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1666 		return;
1667 
1668 	prev = entry->prev;
1669 	if (prev != &map->header) {
1670 		prevsize = prev->end - prev->start;
1671 		if ( (prev->end == entry->start) &&
1672 		     (prev->object.vm_object == entry->object.vm_object) &&
1673 		     (!prev->object.vm_object ||
1674 			(prev->offset + prevsize == entry->offset)) &&
1675 		     (prev->eflags == entry->eflags) &&
1676 		     (prev->protection == entry->protection) &&
1677 		     (prev->max_protection == entry->max_protection) &&
1678 		     (prev->inheritance == entry->inheritance) &&
1679 		     (prev->wired_count == entry->wired_count) &&
1680 		     (prev->cred == entry->cred)) {
1681 			vm_map_entry_unlink(map, prev);
1682 			entry->start = prev->start;
1683 			entry->offset = prev->offset;
1684 			if (entry->prev != &map->header)
1685 				vm_map_entry_resize_free(map, entry->prev);
1686 
1687 			/*
1688 			 * If the backing object is a vnode object,
1689 			 * vm_object_deallocate() calls vrele().
1690 			 * However, vrele() does not lock the vnode
1691 			 * because the vnode has additional
1692 			 * references.  Thus, the map lock can be kept
1693 			 * without causing a lock-order reversal with
1694 			 * the vnode lock.
1695 			 *
1696 			 * Since we count the number of virtual page
1697 			 * mappings in object->un_pager.vnp.writemappings,
1698 			 * the writemappings value should not be adjusted
1699 			 * when the entry is disposed of.
1700 			 */
1701 			if (prev->object.vm_object)
1702 				vm_object_deallocate(prev->object.vm_object);
1703 			if (prev->cred != NULL)
1704 				crfree(prev->cred);
1705 			vm_map_entry_dispose(map, prev);
1706 		}
1707 	}
1708 
1709 	next = entry->next;
1710 	if (next != &map->header) {
1711 		esize = entry->end - entry->start;
1712 		if ((entry->end == next->start) &&
1713 		    (next->object.vm_object == entry->object.vm_object) &&
1714 		     (!entry->object.vm_object ||
1715 			(entry->offset + esize == next->offset)) &&
1716 		    (next->eflags == entry->eflags) &&
1717 		    (next->protection == entry->protection) &&
1718 		    (next->max_protection == entry->max_protection) &&
1719 		    (next->inheritance == entry->inheritance) &&
1720 		    (next->wired_count == entry->wired_count) &&
1721 		    (next->cred == entry->cred)) {
1722 			vm_map_entry_unlink(map, next);
1723 			entry->end = next->end;
1724 			vm_map_entry_resize_free(map, entry);
1725 
1726 			/*
1727 			 * See comment above.
1728 			 */
1729 			if (next->object.vm_object)
1730 				vm_object_deallocate(next->object.vm_object);
1731 			if (next->cred != NULL)
1732 				crfree(next->cred);
1733 			vm_map_entry_dispose(map, next);
1734 		}
1735 	}
1736 }
1737 /*
1738  *	vm_map_clip_start:	[ internal use only ]
1739  *
1740  *	Asserts that the given entry begins at or after
1741  *	the specified address; if necessary,
1742  *	it splits the entry into two.
1743  */
1744 #define vm_map_clip_start(map, entry, startaddr) \
1745 { \
1746 	if (startaddr > entry->start) \
1747 		_vm_map_clip_start(map, entry, startaddr); \
1748 }
1749 
1750 /*
1751  *	This routine is called only when it is known that
1752  *	the entry must be split.
1753  */
1754 static void
1755 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1756 {
1757 	vm_map_entry_t new_entry;
1758 
1759 	VM_MAP_ASSERT_LOCKED(map);
1760 	KASSERT(entry->end > start && entry->start < start,
1761 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
1762 
1763 	/*
1764 	 * Split off the front portion -- note that we must insert the new
1765 	 * entry BEFORE this one, so that this entry has the specified
1766 	 * starting address.
1767 	 */
1768 	vm_map_simplify_entry(map, entry);
1769 
1770 	/*
1771 	 * If there is no object backing this entry, we might as well create
1772 	 * one now.  If we defer it, an object can get created after the map
1773 	 * is clipped, and individual objects will be created for the split-up
1774 	 * map.  This is a bit of a hack, but is also about the best place to
1775 	 * put this improvement.
1776 	 */
1777 	if (entry->object.vm_object == NULL && !map->system_map &&
1778 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1779 		vm_object_t object;
1780 		object = vm_object_allocate(OBJT_DEFAULT,
1781 				atop(entry->end - entry->start));
1782 		entry->object.vm_object = object;
1783 		entry->offset = 0;
1784 		if (entry->cred != NULL) {
1785 			object->cred = entry->cred;
1786 			object->charge = entry->end - entry->start;
1787 			entry->cred = NULL;
1788 		}
1789 	} else if (entry->object.vm_object != NULL &&
1790 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1791 		   entry->cred != NULL) {
1792 		VM_OBJECT_WLOCK(entry->object.vm_object);
1793 		KASSERT(entry->object.vm_object->cred == NULL,
1794 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1795 		entry->object.vm_object->cred = entry->cred;
1796 		entry->object.vm_object->charge = entry->end - entry->start;
1797 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1798 		entry->cred = NULL;
1799 	}
1800 
1801 	new_entry = vm_map_entry_create(map);
1802 	*new_entry = *entry;
1803 
1804 	new_entry->end = start;
1805 	entry->offset += (start - entry->start);
1806 	entry->start = start;
1807 	if (new_entry->cred != NULL)
1808 		crhold(entry->cred);
1809 
1810 	vm_map_entry_link(map, entry->prev, new_entry);
1811 
1812 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1813 		vm_object_reference(new_entry->object.vm_object);
1814 		/*
1815 		 * The object->un_pager.vnp.writemappings for the
1816 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1817 		 * kept as is here.  The virtual pages are
1818 		 * re-distributed among the clipped entries, so the sum is
1819 		 * left the same.
1820 		 */
1821 	}
1822 }
1823 
1824 /*
1825  *	vm_map_clip_end:	[ internal use only ]
1826  *
1827  *	Asserts that the given entry ends at or before
1828  *	the specified address; if necessary,
1829  *	it splits the entry into two.
1830  */
1831 #define vm_map_clip_end(map, entry, endaddr) \
1832 { \
1833 	if ((endaddr) < (entry->end)) \
1834 		_vm_map_clip_end((map), (entry), (endaddr)); \
1835 }
1836 
1837 /*
1838  *	This routine is called only when it is known that
1839  *	the entry must be split.
1840  */
1841 static void
1842 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1843 {
1844 	vm_map_entry_t new_entry;
1845 
1846 	VM_MAP_ASSERT_LOCKED(map);
1847 	KASSERT(entry->start < end && entry->end > end,
1848 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
1849 
1850 	/*
1851 	 * If there is no object backing this entry, we might as well create
1852 	 * one now.  If we defer it, an object can get created after the map
1853 	 * is clipped, and individual objects will be created for the split-up
1854 	 * map.  This is a bit of a hack, but is also about the best place to
1855 	 * put this improvement.
1856 	 */
1857 	if (entry->object.vm_object == NULL && !map->system_map &&
1858 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1859 		vm_object_t object;
1860 		object = vm_object_allocate(OBJT_DEFAULT,
1861 				atop(entry->end - entry->start));
1862 		entry->object.vm_object = object;
1863 		entry->offset = 0;
1864 		if (entry->cred != NULL) {
1865 			object->cred = entry->cred;
1866 			object->charge = entry->end - entry->start;
1867 			entry->cred = NULL;
1868 		}
1869 	} else if (entry->object.vm_object != NULL &&
1870 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1871 		   entry->cred != NULL) {
1872 		VM_OBJECT_WLOCK(entry->object.vm_object);
1873 		KASSERT(entry->object.vm_object->cred == NULL,
1874 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1875 		entry->object.vm_object->cred = entry->cred;
1876 		entry->object.vm_object->charge = entry->end - entry->start;
1877 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1878 		entry->cred = NULL;
1879 	}
1880 
1881 	/*
1882 	 * Create a new entry and insert it AFTER the specified entry
1883 	 */
1884 	new_entry = vm_map_entry_create(map);
1885 	*new_entry = *entry;
1886 
1887 	new_entry->start = entry->end = end;
1888 	new_entry->offset += (end - entry->start);
1889 	if (new_entry->cred != NULL)
1890 		crhold(entry->cred);
1891 
1892 	vm_map_entry_link(map, entry, new_entry);
1893 
1894 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1895 		vm_object_reference(new_entry->object.vm_object);
1896 	}
1897 }
1898 
1899 /*
1900  *	vm_map_submap:		[ kernel use only ]
1901  *
1902  *	Mark the given range as handled by a subordinate map.
1903  *
1904  *	This range must have been created with vm_map_find,
1905  *	and no other operations may have been performed on this
1906  *	range prior to calling vm_map_submap.
1907  *
1908  *	Only a limited number of operations can be performed
1909  *	within this rage after calling vm_map_submap:
1910  *		vm_fault
1911  *	[Don't try vm_map_copy!]
1912  *
1913  *	To remove a submapping, one must first remove the
1914  *	range from the superior map, and then destroy the
1915  *	submap (if desired).  [Better yet, don't try it.]
1916  */
1917 int
1918 vm_map_submap(
1919 	vm_map_t map,
1920 	vm_offset_t start,
1921 	vm_offset_t end,
1922 	vm_map_t submap)
1923 {
1924 	vm_map_entry_t entry;
1925 	int result = KERN_INVALID_ARGUMENT;
1926 
1927 	vm_map_lock(map);
1928 
1929 	VM_MAP_RANGE_CHECK(map, start, end);
1930 
1931 	if (vm_map_lookup_entry(map, start, &entry)) {
1932 		vm_map_clip_start(map, entry, start);
1933 	} else
1934 		entry = entry->next;
1935 
1936 	vm_map_clip_end(map, entry, end);
1937 
1938 	if ((entry->start == start) && (entry->end == end) &&
1939 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1940 	    (entry->object.vm_object == NULL)) {
1941 		entry->object.sub_map = submap;
1942 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1943 		result = KERN_SUCCESS;
1944 	}
1945 	vm_map_unlock(map);
1946 
1947 	return (result);
1948 }
1949 
1950 /*
1951  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1952  */
1953 #define	MAX_INIT_PT	96
1954 
1955 /*
1956  *	vm_map_pmap_enter:
1957  *
1958  *	Preload the specified map's pmap with mappings to the specified
1959  *	object's memory-resident pages.  No further physical pages are
1960  *	allocated, and no further virtual pages are retrieved from secondary
1961  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1962  *	limited number of page mappings are created at the low-end of the
1963  *	specified address range.  (For this purpose, a superpage mapping
1964  *	counts as one page mapping.)  Otherwise, all resident pages within
1965  *	the specified address range are mapped.
1966  */
1967 static void
1968 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1969     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1970 {
1971 	vm_offset_t start;
1972 	vm_page_t p, p_start;
1973 	vm_pindex_t mask, psize, threshold, tmpidx;
1974 
1975 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1976 		return;
1977 	VM_OBJECT_RLOCK(object);
1978 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1979 		VM_OBJECT_RUNLOCK(object);
1980 		VM_OBJECT_WLOCK(object);
1981 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1982 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1983 			    size);
1984 			VM_OBJECT_WUNLOCK(object);
1985 			return;
1986 		}
1987 		VM_OBJECT_LOCK_DOWNGRADE(object);
1988 	}
1989 
1990 	psize = atop(size);
1991 	if (psize + pindex > object->size) {
1992 		if (object->size < pindex) {
1993 			VM_OBJECT_RUNLOCK(object);
1994 			return;
1995 		}
1996 		psize = object->size - pindex;
1997 	}
1998 
1999 	start = 0;
2000 	p_start = NULL;
2001 	threshold = MAX_INIT_PT;
2002 
2003 	p = vm_page_find_least(object, pindex);
2004 	/*
2005 	 * Assert: the variable p is either (1) the page with the
2006 	 * least pindex greater than or equal to the parameter pindex
2007 	 * or (2) NULL.
2008 	 */
2009 	for (;
2010 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2011 	     p = TAILQ_NEXT(p, listq)) {
2012 		/*
2013 		 * don't allow an madvise to blow away our really
2014 		 * free pages allocating pv entries.
2015 		 */
2016 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2017 		    vm_page_count_severe()) ||
2018 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2019 		    tmpidx >= threshold)) {
2020 			psize = tmpidx;
2021 			break;
2022 		}
2023 		if (p->valid == VM_PAGE_BITS_ALL) {
2024 			if (p_start == NULL) {
2025 				start = addr + ptoa(tmpidx);
2026 				p_start = p;
2027 			}
2028 			/* Jump ahead if a superpage mapping is possible. */
2029 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2030 			    (pagesizes[p->psind] - 1)) == 0) {
2031 				mask = atop(pagesizes[p->psind]) - 1;
2032 				if (tmpidx + mask < psize &&
2033 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2034 					p += mask;
2035 					threshold += mask;
2036 				}
2037 			}
2038 		} else if (p_start != NULL) {
2039 			pmap_enter_object(map->pmap, start, addr +
2040 			    ptoa(tmpidx), p_start, prot);
2041 			p_start = NULL;
2042 		}
2043 	}
2044 	if (p_start != NULL)
2045 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2046 		    p_start, prot);
2047 	VM_OBJECT_RUNLOCK(object);
2048 }
2049 
2050 /*
2051  *	vm_map_protect:
2052  *
2053  *	Sets the protection of the specified address
2054  *	region in the target map.  If "set_max" is
2055  *	specified, the maximum protection is to be set;
2056  *	otherwise, only the current protection is affected.
2057  */
2058 int
2059 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2060 	       vm_prot_t new_prot, boolean_t set_max)
2061 {
2062 	vm_map_entry_t current, entry;
2063 	vm_object_t obj;
2064 	struct ucred *cred;
2065 	vm_prot_t old_prot;
2066 
2067 	if (start == end)
2068 		return (KERN_SUCCESS);
2069 
2070 	vm_map_lock(map);
2071 
2072 	/*
2073 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2074 	 * need to fault pages into the map and will drop the map lock while
2075 	 * doing so, and the VM object may end up in an inconsistent state if we
2076 	 * update the protection on the map entry in between faults.
2077 	 */
2078 	vm_map_wait_busy(map);
2079 
2080 	VM_MAP_RANGE_CHECK(map, start, end);
2081 
2082 	if (vm_map_lookup_entry(map, start, &entry)) {
2083 		vm_map_clip_start(map, entry, start);
2084 	} else {
2085 		entry = entry->next;
2086 	}
2087 
2088 	/*
2089 	 * Make a first pass to check for protection violations.
2090 	 */
2091 	for (current = entry; current->start < end; current = current->next) {
2092 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2093 			continue;
2094 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2095 			vm_map_unlock(map);
2096 			return (KERN_INVALID_ARGUMENT);
2097 		}
2098 		if ((new_prot & current->max_protection) != new_prot) {
2099 			vm_map_unlock(map);
2100 			return (KERN_PROTECTION_FAILURE);
2101 		}
2102 	}
2103 
2104 	/*
2105 	 * Do an accounting pass for private read-only mappings that
2106 	 * now will do cow due to allowed write (e.g. debugger sets
2107 	 * breakpoint on text segment)
2108 	 */
2109 	for (current = entry; current->start < end; current = current->next) {
2110 
2111 		vm_map_clip_end(map, current, end);
2112 
2113 		if (set_max ||
2114 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2115 		    ENTRY_CHARGED(current) ||
2116 		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
2117 			continue;
2118 		}
2119 
2120 		cred = curthread->td_ucred;
2121 		obj = current->object.vm_object;
2122 
2123 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2124 			if (!swap_reserve(current->end - current->start)) {
2125 				vm_map_unlock(map);
2126 				return (KERN_RESOURCE_SHORTAGE);
2127 			}
2128 			crhold(cred);
2129 			current->cred = cred;
2130 			continue;
2131 		}
2132 
2133 		VM_OBJECT_WLOCK(obj);
2134 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2135 			VM_OBJECT_WUNLOCK(obj);
2136 			continue;
2137 		}
2138 
2139 		/*
2140 		 * Charge for the whole object allocation now, since
2141 		 * we cannot distinguish between non-charged and
2142 		 * charged clipped mapping of the same object later.
2143 		 */
2144 		KASSERT(obj->charge == 0,
2145 		    ("vm_map_protect: object %p overcharged (entry %p)",
2146 		    obj, current));
2147 		if (!swap_reserve(ptoa(obj->size))) {
2148 			VM_OBJECT_WUNLOCK(obj);
2149 			vm_map_unlock(map);
2150 			return (KERN_RESOURCE_SHORTAGE);
2151 		}
2152 
2153 		crhold(cred);
2154 		obj->cred = cred;
2155 		obj->charge = ptoa(obj->size);
2156 		VM_OBJECT_WUNLOCK(obj);
2157 	}
2158 
2159 	/*
2160 	 * Go back and fix up protections. [Note that clipping is not
2161 	 * necessary the second time.]
2162 	 */
2163 	for (current = entry; current->start < end; current = current->next) {
2164 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2165 			continue;
2166 
2167 		old_prot = current->protection;
2168 
2169 		if (set_max)
2170 			current->protection =
2171 			    (current->max_protection = new_prot) &
2172 			    old_prot;
2173 		else
2174 			current->protection = new_prot;
2175 
2176 		/*
2177 		 * For user wired map entries, the normal lazy evaluation of
2178 		 * write access upgrades through soft page faults is
2179 		 * undesirable.  Instead, immediately copy any pages that are
2180 		 * copy-on-write and enable write access in the physical map.
2181 		 */
2182 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2183 		    (current->protection & VM_PROT_WRITE) != 0 &&
2184 		    (old_prot & VM_PROT_WRITE) == 0)
2185 			vm_fault_copy_entry(map, map, current, current, NULL);
2186 
2187 		/*
2188 		 * When restricting access, update the physical map.  Worry
2189 		 * about copy-on-write here.
2190 		 */
2191 		if ((old_prot & ~current->protection) != 0) {
2192 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2193 							VM_PROT_ALL)
2194 			pmap_protect(map->pmap, current->start,
2195 			    current->end,
2196 			    current->protection & MASK(current));
2197 #undef	MASK
2198 		}
2199 		vm_map_simplify_entry(map, current);
2200 	}
2201 	vm_map_unlock(map);
2202 	return (KERN_SUCCESS);
2203 }
2204 
2205 /*
2206  *	vm_map_madvise:
2207  *
2208  *	This routine traverses a processes map handling the madvise
2209  *	system call.  Advisories are classified as either those effecting
2210  *	the vm_map_entry structure, or those effecting the underlying
2211  *	objects.
2212  */
2213 int
2214 vm_map_madvise(
2215 	vm_map_t map,
2216 	vm_offset_t start,
2217 	vm_offset_t end,
2218 	int behav)
2219 {
2220 	vm_map_entry_t current, entry;
2221 	bool modify_map;
2222 
2223 	/*
2224 	 * Some madvise calls directly modify the vm_map_entry, in which case
2225 	 * we need to use an exclusive lock on the map and we need to perform
2226 	 * various clipping operations.  Otherwise we only need a read-lock
2227 	 * on the map.
2228 	 */
2229 	switch(behav) {
2230 	case MADV_NORMAL:
2231 	case MADV_SEQUENTIAL:
2232 	case MADV_RANDOM:
2233 	case MADV_NOSYNC:
2234 	case MADV_AUTOSYNC:
2235 	case MADV_NOCORE:
2236 	case MADV_CORE:
2237 		if (start == end)
2238 			return (0);
2239 		modify_map = true;
2240 		vm_map_lock(map);
2241 		break;
2242 	case MADV_WILLNEED:
2243 	case MADV_DONTNEED:
2244 	case MADV_FREE:
2245 		if (start == end)
2246 			return (0);
2247 		modify_map = false;
2248 		vm_map_lock_read(map);
2249 		break;
2250 	default:
2251 		return (EINVAL);
2252 	}
2253 
2254 	/*
2255 	 * Locate starting entry and clip if necessary.
2256 	 */
2257 	VM_MAP_RANGE_CHECK(map, start, end);
2258 
2259 	if (vm_map_lookup_entry(map, start, &entry)) {
2260 		if (modify_map)
2261 			vm_map_clip_start(map, entry, start);
2262 	} else {
2263 		entry = entry->next;
2264 	}
2265 
2266 	if (modify_map) {
2267 		/*
2268 		 * madvise behaviors that are implemented in the vm_map_entry.
2269 		 *
2270 		 * We clip the vm_map_entry so that behavioral changes are
2271 		 * limited to the specified address range.
2272 		 */
2273 		for (current = entry; current->start < end;
2274 		    current = current->next) {
2275 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2276 				continue;
2277 
2278 			vm_map_clip_end(map, current, end);
2279 
2280 			switch (behav) {
2281 			case MADV_NORMAL:
2282 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2283 				break;
2284 			case MADV_SEQUENTIAL:
2285 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2286 				break;
2287 			case MADV_RANDOM:
2288 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2289 				break;
2290 			case MADV_NOSYNC:
2291 				current->eflags |= MAP_ENTRY_NOSYNC;
2292 				break;
2293 			case MADV_AUTOSYNC:
2294 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2295 				break;
2296 			case MADV_NOCORE:
2297 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2298 				break;
2299 			case MADV_CORE:
2300 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2301 				break;
2302 			default:
2303 				break;
2304 			}
2305 			vm_map_simplify_entry(map, current);
2306 		}
2307 		vm_map_unlock(map);
2308 	} else {
2309 		vm_pindex_t pstart, pend;
2310 
2311 		/*
2312 		 * madvise behaviors that are implemented in the underlying
2313 		 * vm_object.
2314 		 *
2315 		 * Since we don't clip the vm_map_entry, we have to clip
2316 		 * the vm_object pindex and count.
2317 		 */
2318 		for (current = entry; current->start < end;
2319 		    current = current->next) {
2320 			vm_offset_t useEnd, useStart;
2321 
2322 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2323 				continue;
2324 
2325 			pstart = OFF_TO_IDX(current->offset);
2326 			pend = pstart + atop(current->end - current->start);
2327 			useStart = current->start;
2328 			useEnd = current->end;
2329 
2330 			if (current->start < start) {
2331 				pstart += atop(start - current->start);
2332 				useStart = start;
2333 			}
2334 			if (current->end > end) {
2335 				pend -= atop(current->end - end);
2336 				useEnd = end;
2337 			}
2338 
2339 			if (pstart >= pend)
2340 				continue;
2341 
2342 			/*
2343 			 * Perform the pmap_advise() before clearing
2344 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2345 			 * concurrent pmap operation, such as pmap_remove(),
2346 			 * could clear a reference in the pmap and set
2347 			 * PGA_REFERENCED on the page before the pmap_advise()
2348 			 * had completed.  Consequently, the page would appear
2349 			 * referenced based upon an old reference that
2350 			 * occurred before this pmap_advise() ran.
2351 			 */
2352 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2353 				pmap_advise(map->pmap, useStart, useEnd,
2354 				    behav);
2355 
2356 			vm_object_madvise(current->object.vm_object, pstart,
2357 			    pend, behav);
2358 
2359 			/*
2360 			 * Pre-populate paging structures in the
2361 			 * WILLNEED case.  For wired entries, the
2362 			 * paging structures are already populated.
2363 			 */
2364 			if (behav == MADV_WILLNEED &&
2365 			    current->wired_count == 0) {
2366 				vm_map_pmap_enter(map,
2367 				    useStart,
2368 				    current->protection,
2369 				    current->object.vm_object,
2370 				    pstart,
2371 				    ptoa(pend - pstart),
2372 				    MAP_PREFAULT_MADVISE
2373 				);
2374 			}
2375 		}
2376 		vm_map_unlock_read(map);
2377 	}
2378 	return (0);
2379 }
2380 
2381 
2382 /*
2383  *	vm_map_inherit:
2384  *
2385  *	Sets the inheritance of the specified address
2386  *	range in the target map.  Inheritance
2387  *	affects how the map will be shared with
2388  *	child maps at the time of vmspace_fork.
2389  */
2390 int
2391 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2392 	       vm_inherit_t new_inheritance)
2393 {
2394 	vm_map_entry_t entry;
2395 	vm_map_entry_t temp_entry;
2396 
2397 	switch (new_inheritance) {
2398 	case VM_INHERIT_NONE:
2399 	case VM_INHERIT_COPY:
2400 	case VM_INHERIT_SHARE:
2401 	case VM_INHERIT_ZERO:
2402 		break;
2403 	default:
2404 		return (KERN_INVALID_ARGUMENT);
2405 	}
2406 	if (start == end)
2407 		return (KERN_SUCCESS);
2408 	vm_map_lock(map);
2409 	VM_MAP_RANGE_CHECK(map, start, end);
2410 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2411 		entry = temp_entry;
2412 		vm_map_clip_start(map, entry, start);
2413 	} else
2414 		entry = temp_entry->next;
2415 	while (entry->start < end) {
2416 		vm_map_clip_end(map, entry, end);
2417 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2418 		    new_inheritance != VM_INHERIT_ZERO)
2419 			entry->inheritance = new_inheritance;
2420 		vm_map_simplify_entry(map, entry);
2421 		entry = entry->next;
2422 	}
2423 	vm_map_unlock(map);
2424 	return (KERN_SUCCESS);
2425 }
2426 
2427 /*
2428  *	vm_map_unwire:
2429  *
2430  *	Implements both kernel and user unwiring.
2431  */
2432 int
2433 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2434     int flags)
2435 {
2436 	vm_map_entry_t entry, first_entry, tmp_entry;
2437 	vm_offset_t saved_start;
2438 	unsigned int last_timestamp;
2439 	int rv;
2440 	boolean_t need_wakeup, result, user_unwire;
2441 
2442 	if (start == end)
2443 		return (KERN_SUCCESS);
2444 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2445 	vm_map_lock(map);
2446 	VM_MAP_RANGE_CHECK(map, start, end);
2447 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2448 		if (flags & VM_MAP_WIRE_HOLESOK)
2449 			first_entry = first_entry->next;
2450 		else {
2451 			vm_map_unlock(map);
2452 			return (KERN_INVALID_ADDRESS);
2453 		}
2454 	}
2455 	last_timestamp = map->timestamp;
2456 	entry = first_entry;
2457 	while (entry->start < end) {
2458 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2459 			/*
2460 			 * We have not yet clipped the entry.
2461 			 */
2462 			saved_start = (start >= entry->start) ? start :
2463 			    entry->start;
2464 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2465 			if (vm_map_unlock_and_wait(map, 0)) {
2466 				/*
2467 				 * Allow interruption of user unwiring?
2468 				 */
2469 			}
2470 			vm_map_lock(map);
2471 			if (last_timestamp+1 != map->timestamp) {
2472 				/*
2473 				 * Look again for the entry because the map was
2474 				 * modified while it was unlocked.
2475 				 * Specifically, the entry may have been
2476 				 * clipped, merged, or deleted.
2477 				 */
2478 				if (!vm_map_lookup_entry(map, saved_start,
2479 				    &tmp_entry)) {
2480 					if (flags & VM_MAP_WIRE_HOLESOK)
2481 						tmp_entry = tmp_entry->next;
2482 					else {
2483 						if (saved_start == start) {
2484 							/*
2485 							 * First_entry has been deleted.
2486 							 */
2487 							vm_map_unlock(map);
2488 							return (KERN_INVALID_ADDRESS);
2489 						}
2490 						end = saved_start;
2491 						rv = KERN_INVALID_ADDRESS;
2492 						goto done;
2493 					}
2494 				}
2495 				if (entry == first_entry)
2496 					first_entry = tmp_entry;
2497 				else
2498 					first_entry = NULL;
2499 				entry = tmp_entry;
2500 			}
2501 			last_timestamp = map->timestamp;
2502 			continue;
2503 		}
2504 		vm_map_clip_start(map, entry, start);
2505 		vm_map_clip_end(map, entry, end);
2506 		/*
2507 		 * Mark the entry in case the map lock is released.  (See
2508 		 * above.)
2509 		 */
2510 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2511 		    entry->wiring_thread == NULL,
2512 		    ("owned map entry %p", entry));
2513 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2514 		entry->wiring_thread = curthread;
2515 		/*
2516 		 * Check the map for holes in the specified region.
2517 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2518 		 */
2519 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2520 		    (entry->end < end && entry->next->start > entry->end)) {
2521 			end = entry->end;
2522 			rv = KERN_INVALID_ADDRESS;
2523 			goto done;
2524 		}
2525 		/*
2526 		 * If system unwiring, require that the entry is system wired.
2527 		 */
2528 		if (!user_unwire &&
2529 		    vm_map_entry_system_wired_count(entry) == 0) {
2530 			end = entry->end;
2531 			rv = KERN_INVALID_ARGUMENT;
2532 			goto done;
2533 		}
2534 		entry = entry->next;
2535 	}
2536 	rv = KERN_SUCCESS;
2537 done:
2538 	need_wakeup = FALSE;
2539 	if (first_entry == NULL) {
2540 		result = vm_map_lookup_entry(map, start, &first_entry);
2541 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2542 			first_entry = first_entry->next;
2543 		else
2544 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2545 	}
2546 	for (entry = first_entry; entry->start < end; entry = entry->next) {
2547 		/*
2548 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2549 		 * space in the unwired region could have been mapped
2550 		 * while the map lock was dropped for draining
2551 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2552 		 * could be simultaneously wiring this new mapping
2553 		 * entry.  Detect these cases and skip any entries
2554 		 * marked as in transition by us.
2555 		 */
2556 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2557 		    entry->wiring_thread != curthread) {
2558 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2559 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2560 			continue;
2561 		}
2562 
2563 		if (rv == KERN_SUCCESS && (!user_unwire ||
2564 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2565 			if (user_unwire)
2566 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2567 			if (entry->wired_count == 1)
2568 				vm_map_entry_unwire(map, entry);
2569 			else
2570 				entry->wired_count--;
2571 		}
2572 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2573 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2574 		KASSERT(entry->wiring_thread == curthread,
2575 		    ("vm_map_unwire: alien wire %p", entry));
2576 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2577 		entry->wiring_thread = NULL;
2578 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2579 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2580 			need_wakeup = TRUE;
2581 		}
2582 		vm_map_simplify_entry(map, entry);
2583 	}
2584 	vm_map_unlock(map);
2585 	if (need_wakeup)
2586 		vm_map_wakeup(map);
2587 	return (rv);
2588 }
2589 
2590 /*
2591  *	vm_map_wire_entry_failure:
2592  *
2593  *	Handle a wiring failure on the given entry.
2594  *
2595  *	The map should be locked.
2596  */
2597 static void
2598 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2599     vm_offset_t failed_addr)
2600 {
2601 
2602 	VM_MAP_ASSERT_LOCKED(map);
2603 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2604 	    entry->wired_count == 1,
2605 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2606 	KASSERT(failed_addr < entry->end,
2607 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2608 
2609 	/*
2610 	 * If any pages at the start of this entry were successfully wired,
2611 	 * then unwire them.
2612 	 */
2613 	if (failed_addr > entry->start) {
2614 		pmap_unwire(map->pmap, entry->start, failed_addr);
2615 		vm_object_unwire(entry->object.vm_object, entry->offset,
2616 		    failed_addr - entry->start, PQ_ACTIVE);
2617 	}
2618 
2619 	/*
2620 	 * Assign an out-of-range value to represent the failure to wire this
2621 	 * entry.
2622 	 */
2623 	entry->wired_count = -1;
2624 }
2625 
2626 /*
2627  *	vm_map_wire:
2628  *
2629  *	Implements both kernel and user wiring.
2630  */
2631 int
2632 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2633     int flags)
2634 {
2635 	vm_map_entry_t entry, first_entry, tmp_entry;
2636 	vm_offset_t faddr, saved_end, saved_start;
2637 	unsigned int last_timestamp;
2638 	int rv;
2639 	boolean_t need_wakeup, result, user_wire;
2640 	vm_prot_t prot;
2641 
2642 	if (start == end)
2643 		return (KERN_SUCCESS);
2644 	prot = 0;
2645 	if (flags & VM_MAP_WIRE_WRITE)
2646 		prot |= VM_PROT_WRITE;
2647 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2648 	vm_map_lock(map);
2649 	VM_MAP_RANGE_CHECK(map, start, end);
2650 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2651 		if (flags & VM_MAP_WIRE_HOLESOK)
2652 			first_entry = first_entry->next;
2653 		else {
2654 			vm_map_unlock(map);
2655 			return (KERN_INVALID_ADDRESS);
2656 		}
2657 	}
2658 	last_timestamp = map->timestamp;
2659 	entry = first_entry;
2660 	while (entry->start < end) {
2661 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2662 			/*
2663 			 * We have not yet clipped the entry.
2664 			 */
2665 			saved_start = (start >= entry->start) ? start :
2666 			    entry->start;
2667 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2668 			if (vm_map_unlock_and_wait(map, 0)) {
2669 				/*
2670 				 * Allow interruption of user wiring?
2671 				 */
2672 			}
2673 			vm_map_lock(map);
2674 			if (last_timestamp + 1 != map->timestamp) {
2675 				/*
2676 				 * Look again for the entry because the map was
2677 				 * modified while it was unlocked.
2678 				 * Specifically, the entry may have been
2679 				 * clipped, merged, or deleted.
2680 				 */
2681 				if (!vm_map_lookup_entry(map, saved_start,
2682 				    &tmp_entry)) {
2683 					if (flags & VM_MAP_WIRE_HOLESOK)
2684 						tmp_entry = tmp_entry->next;
2685 					else {
2686 						if (saved_start == start) {
2687 							/*
2688 							 * first_entry has been deleted.
2689 							 */
2690 							vm_map_unlock(map);
2691 							return (KERN_INVALID_ADDRESS);
2692 						}
2693 						end = saved_start;
2694 						rv = KERN_INVALID_ADDRESS;
2695 						goto done;
2696 					}
2697 				}
2698 				if (entry == first_entry)
2699 					first_entry = tmp_entry;
2700 				else
2701 					first_entry = NULL;
2702 				entry = tmp_entry;
2703 			}
2704 			last_timestamp = map->timestamp;
2705 			continue;
2706 		}
2707 		vm_map_clip_start(map, entry, start);
2708 		vm_map_clip_end(map, entry, end);
2709 		/*
2710 		 * Mark the entry in case the map lock is released.  (See
2711 		 * above.)
2712 		 */
2713 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2714 		    entry->wiring_thread == NULL,
2715 		    ("owned map entry %p", entry));
2716 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2717 		entry->wiring_thread = curthread;
2718 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2719 		    || (entry->protection & prot) != prot) {
2720 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2721 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2722 				end = entry->end;
2723 				rv = KERN_INVALID_ADDRESS;
2724 				goto done;
2725 			}
2726 			goto next_entry;
2727 		}
2728 		if (entry->wired_count == 0) {
2729 			entry->wired_count++;
2730 			saved_start = entry->start;
2731 			saved_end = entry->end;
2732 
2733 			/*
2734 			 * Release the map lock, relying on the in-transition
2735 			 * mark.  Mark the map busy for fork.
2736 			 */
2737 			vm_map_busy(map);
2738 			vm_map_unlock(map);
2739 
2740 			faddr = saved_start;
2741 			do {
2742 				/*
2743 				 * Simulate a fault to get the page and enter
2744 				 * it into the physical map.
2745 				 */
2746 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2747 				    VM_FAULT_WIRE)) != KERN_SUCCESS)
2748 					break;
2749 			} while ((faddr += PAGE_SIZE) < saved_end);
2750 			vm_map_lock(map);
2751 			vm_map_unbusy(map);
2752 			if (last_timestamp + 1 != map->timestamp) {
2753 				/*
2754 				 * Look again for the entry because the map was
2755 				 * modified while it was unlocked.  The entry
2756 				 * may have been clipped, but NOT merged or
2757 				 * deleted.
2758 				 */
2759 				result = vm_map_lookup_entry(map, saved_start,
2760 				    &tmp_entry);
2761 				KASSERT(result, ("vm_map_wire: lookup failed"));
2762 				if (entry == first_entry)
2763 					first_entry = tmp_entry;
2764 				else
2765 					first_entry = NULL;
2766 				entry = tmp_entry;
2767 				while (entry->end < saved_end) {
2768 					/*
2769 					 * In case of failure, handle entries
2770 					 * that were not fully wired here;
2771 					 * fully wired entries are handled
2772 					 * later.
2773 					 */
2774 					if (rv != KERN_SUCCESS &&
2775 					    faddr < entry->end)
2776 						vm_map_wire_entry_failure(map,
2777 						    entry, faddr);
2778 					entry = entry->next;
2779 				}
2780 			}
2781 			last_timestamp = map->timestamp;
2782 			if (rv != KERN_SUCCESS) {
2783 				vm_map_wire_entry_failure(map, entry, faddr);
2784 				end = entry->end;
2785 				goto done;
2786 			}
2787 		} else if (!user_wire ||
2788 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2789 			entry->wired_count++;
2790 		}
2791 		/*
2792 		 * Check the map for holes in the specified region.
2793 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2794 		 */
2795 	next_entry:
2796 		if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2797 		    entry->end < end && entry->next->start > entry->end) {
2798 			end = entry->end;
2799 			rv = KERN_INVALID_ADDRESS;
2800 			goto done;
2801 		}
2802 		entry = entry->next;
2803 	}
2804 	rv = KERN_SUCCESS;
2805 done:
2806 	need_wakeup = FALSE;
2807 	if (first_entry == NULL) {
2808 		result = vm_map_lookup_entry(map, start, &first_entry);
2809 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2810 			first_entry = first_entry->next;
2811 		else
2812 			KASSERT(result, ("vm_map_wire: lookup failed"));
2813 	}
2814 	for (entry = first_entry; entry->start < end; entry = entry->next) {
2815 		/*
2816 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2817 		 * space in the unwired region could have been mapped
2818 		 * while the map lock was dropped for faulting in the
2819 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2820 		 * Moreover, another thread could be simultaneously
2821 		 * wiring this new mapping entry.  Detect these cases
2822 		 * and skip any entries marked as in transition not by us.
2823 		 */
2824 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2825 		    entry->wiring_thread != curthread) {
2826 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2827 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2828 			continue;
2829 		}
2830 
2831 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2832 			goto next_entry_done;
2833 
2834 		if (rv == KERN_SUCCESS) {
2835 			if (user_wire)
2836 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2837 		} else if (entry->wired_count == -1) {
2838 			/*
2839 			 * Wiring failed on this entry.  Thus, unwiring is
2840 			 * unnecessary.
2841 			 */
2842 			entry->wired_count = 0;
2843 		} else if (!user_wire ||
2844 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2845 			/*
2846 			 * Undo the wiring.  Wiring succeeded on this entry
2847 			 * but failed on a later entry.
2848 			 */
2849 			if (entry->wired_count == 1)
2850 				vm_map_entry_unwire(map, entry);
2851 			else
2852 				entry->wired_count--;
2853 		}
2854 	next_entry_done:
2855 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2856 		    ("vm_map_wire: in-transition flag missing %p", entry));
2857 		KASSERT(entry->wiring_thread == curthread,
2858 		    ("vm_map_wire: alien wire %p", entry));
2859 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2860 		    MAP_ENTRY_WIRE_SKIPPED);
2861 		entry->wiring_thread = NULL;
2862 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2863 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2864 			need_wakeup = TRUE;
2865 		}
2866 		vm_map_simplify_entry(map, entry);
2867 	}
2868 	vm_map_unlock(map);
2869 	if (need_wakeup)
2870 		vm_map_wakeup(map);
2871 	return (rv);
2872 }
2873 
2874 /*
2875  * vm_map_sync
2876  *
2877  * Push any dirty cached pages in the address range to their pager.
2878  * If syncio is TRUE, dirty pages are written synchronously.
2879  * If invalidate is TRUE, any cached pages are freed as well.
2880  *
2881  * If the size of the region from start to end is zero, we are
2882  * supposed to flush all modified pages within the region containing
2883  * start.  Unfortunately, a region can be split or coalesced with
2884  * neighboring regions, making it difficult to determine what the
2885  * original region was.  Therefore, we approximate this requirement by
2886  * flushing the current region containing start.
2887  *
2888  * Returns an error if any part of the specified range is not mapped.
2889  */
2890 int
2891 vm_map_sync(
2892 	vm_map_t map,
2893 	vm_offset_t start,
2894 	vm_offset_t end,
2895 	boolean_t syncio,
2896 	boolean_t invalidate)
2897 {
2898 	vm_map_entry_t current;
2899 	vm_map_entry_t entry;
2900 	vm_size_t size;
2901 	vm_object_t object;
2902 	vm_ooffset_t offset;
2903 	unsigned int last_timestamp;
2904 	boolean_t failed;
2905 
2906 	vm_map_lock_read(map);
2907 	VM_MAP_RANGE_CHECK(map, start, end);
2908 	if (!vm_map_lookup_entry(map, start, &entry)) {
2909 		vm_map_unlock_read(map);
2910 		return (KERN_INVALID_ADDRESS);
2911 	} else if (start == end) {
2912 		start = entry->start;
2913 		end = entry->end;
2914 	}
2915 	/*
2916 	 * Make a first pass to check for user-wired memory and holes.
2917 	 */
2918 	for (current = entry; current->start < end; current = current->next) {
2919 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2920 			vm_map_unlock_read(map);
2921 			return (KERN_INVALID_ARGUMENT);
2922 		}
2923 		if (end > current->end &&
2924 		    current->end != current->next->start) {
2925 			vm_map_unlock_read(map);
2926 			return (KERN_INVALID_ADDRESS);
2927 		}
2928 	}
2929 
2930 	if (invalidate)
2931 		pmap_remove(map->pmap, start, end);
2932 	failed = FALSE;
2933 
2934 	/*
2935 	 * Make a second pass, cleaning/uncaching pages from the indicated
2936 	 * objects as we go.
2937 	 */
2938 	for (current = entry; current->start < end;) {
2939 		offset = current->offset + (start - current->start);
2940 		size = (end <= current->end ? end : current->end) - start;
2941 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2942 			vm_map_t smap;
2943 			vm_map_entry_t tentry;
2944 			vm_size_t tsize;
2945 
2946 			smap = current->object.sub_map;
2947 			vm_map_lock_read(smap);
2948 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2949 			tsize = tentry->end - offset;
2950 			if (tsize < size)
2951 				size = tsize;
2952 			object = tentry->object.vm_object;
2953 			offset = tentry->offset + (offset - tentry->start);
2954 			vm_map_unlock_read(smap);
2955 		} else {
2956 			object = current->object.vm_object;
2957 		}
2958 		vm_object_reference(object);
2959 		last_timestamp = map->timestamp;
2960 		vm_map_unlock_read(map);
2961 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2962 			failed = TRUE;
2963 		start += size;
2964 		vm_object_deallocate(object);
2965 		vm_map_lock_read(map);
2966 		if (last_timestamp == map->timestamp ||
2967 		    !vm_map_lookup_entry(map, start, &current))
2968 			current = current->next;
2969 	}
2970 
2971 	vm_map_unlock_read(map);
2972 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2973 }
2974 
2975 /*
2976  *	vm_map_entry_unwire:	[ internal use only ]
2977  *
2978  *	Make the region specified by this entry pageable.
2979  *
2980  *	The map in question should be locked.
2981  *	[This is the reason for this routine's existence.]
2982  */
2983 static void
2984 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2985 {
2986 
2987 	VM_MAP_ASSERT_LOCKED(map);
2988 	KASSERT(entry->wired_count > 0,
2989 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
2990 	pmap_unwire(map->pmap, entry->start, entry->end);
2991 	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2992 	    entry->start, PQ_ACTIVE);
2993 	entry->wired_count = 0;
2994 }
2995 
2996 static void
2997 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2998 {
2999 
3000 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3001 		vm_object_deallocate(entry->object.vm_object);
3002 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3003 }
3004 
3005 /*
3006  *	vm_map_entry_delete:	[ internal use only ]
3007  *
3008  *	Deallocate the given entry from the target map.
3009  */
3010 static void
3011 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3012 {
3013 	vm_object_t object;
3014 	vm_pindex_t offidxstart, offidxend, count, size1;
3015 	vm_size_t size;
3016 
3017 	vm_map_entry_unlink(map, entry);
3018 	object = entry->object.vm_object;
3019 
3020 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3021 		MPASS(entry->cred == NULL);
3022 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3023 		MPASS(object == NULL);
3024 		vm_map_entry_deallocate(entry, map->system_map);
3025 		return;
3026 	}
3027 
3028 	size = entry->end - entry->start;
3029 	map->size -= size;
3030 
3031 	if (entry->cred != NULL) {
3032 		swap_release_by_cred(size, entry->cred);
3033 		crfree(entry->cred);
3034 	}
3035 
3036 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3037 	    (object != NULL)) {
3038 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3039 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3040 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3041 		count = atop(size);
3042 		offidxstart = OFF_TO_IDX(entry->offset);
3043 		offidxend = offidxstart + count;
3044 		VM_OBJECT_WLOCK(object);
3045 		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3046 		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3047 		    object == kernel_object)) {
3048 			vm_object_collapse(object);
3049 
3050 			/*
3051 			 * The option OBJPR_NOTMAPPED can be passed here
3052 			 * because vm_map_delete() already performed
3053 			 * pmap_remove() on the only mapping to this range
3054 			 * of pages.
3055 			 */
3056 			vm_object_page_remove(object, offidxstart, offidxend,
3057 			    OBJPR_NOTMAPPED);
3058 			if (object->type == OBJT_SWAP)
3059 				swap_pager_freespace(object, offidxstart,
3060 				    count);
3061 			if (offidxend >= object->size &&
3062 			    offidxstart < object->size) {
3063 				size1 = object->size;
3064 				object->size = offidxstart;
3065 				if (object->cred != NULL) {
3066 					size1 -= object->size;
3067 					KASSERT(object->charge >= ptoa(size1),
3068 					    ("object %p charge < 0", object));
3069 					swap_release_by_cred(ptoa(size1),
3070 					    object->cred);
3071 					object->charge -= ptoa(size1);
3072 				}
3073 			}
3074 		}
3075 		VM_OBJECT_WUNLOCK(object);
3076 	} else
3077 		entry->object.vm_object = NULL;
3078 	if (map->system_map)
3079 		vm_map_entry_deallocate(entry, TRUE);
3080 	else {
3081 		entry->next = curthread->td_map_def_user;
3082 		curthread->td_map_def_user = entry;
3083 	}
3084 }
3085 
3086 /*
3087  *	vm_map_delete:	[ internal use only ]
3088  *
3089  *	Deallocates the given address range from the target
3090  *	map.
3091  */
3092 int
3093 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3094 {
3095 	vm_map_entry_t entry;
3096 	vm_map_entry_t first_entry;
3097 
3098 	VM_MAP_ASSERT_LOCKED(map);
3099 	if (start == end)
3100 		return (KERN_SUCCESS);
3101 
3102 	/*
3103 	 * Find the start of the region, and clip it
3104 	 */
3105 	if (!vm_map_lookup_entry(map, start, &first_entry))
3106 		entry = first_entry->next;
3107 	else {
3108 		entry = first_entry;
3109 		vm_map_clip_start(map, entry, start);
3110 	}
3111 
3112 	/*
3113 	 * Step through all entries in this region
3114 	 */
3115 	while (entry->start < end) {
3116 		vm_map_entry_t next;
3117 
3118 		/*
3119 		 * Wait for wiring or unwiring of an entry to complete.
3120 		 * Also wait for any system wirings to disappear on
3121 		 * user maps.
3122 		 */
3123 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3124 		    (vm_map_pmap(map) != kernel_pmap &&
3125 		    vm_map_entry_system_wired_count(entry) != 0)) {
3126 			unsigned int last_timestamp;
3127 			vm_offset_t saved_start;
3128 			vm_map_entry_t tmp_entry;
3129 
3130 			saved_start = entry->start;
3131 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3132 			last_timestamp = map->timestamp;
3133 			(void) vm_map_unlock_and_wait(map, 0);
3134 			vm_map_lock(map);
3135 			if (last_timestamp + 1 != map->timestamp) {
3136 				/*
3137 				 * Look again for the entry because the map was
3138 				 * modified while it was unlocked.
3139 				 * Specifically, the entry may have been
3140 				 * clipped, merged, or deleted.
3141 				 */
3142 				if (!vm_map_lookup_entry(map, saved_start,
3143 							 &tmp_entry))
3144 					entry = tmp_entry->next;
3145 				else {
3146 					entry = tmp_entry;
3147 					vm_map_clip_start(map, entry,
3148 							  saved_start);
3149 				}
3150 			}
3151 			continue;
3152 		}
3153 		vm_map_clip_end(map, entry, end);
3154 
3155 		next = entry->next;
3156 
3157 		/*
3158 		 * Unwire before removing addresses from the pmap; otherwise,
3159 		 * unwiring will put the entries back in the pmap.
3160 		 */
3161 		if (entry->wired_count != 0)
3162 			vm_map_entry_unwire(map, entry);
3163 
3164 		/*
3165 		 * Remove mappings for the pages, but only if the
3166 		 * mappings could exist.  For instance, it does not
3167 		 * make sense to call pmap_remove() for guard entries.
3168 		 */
3169 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3170 		    entry->object.vm_object != NULL)
3171 			pmap_remove(map->pmap, entry->start, entry->end);
3172 
3173 		/*
3174 		 * Delete the entry only after removing all pmap
3175 		 * entries pointing to its pages.  (Otherwise, its
3176 		 * page frames may be reallocated, and any modify bits
3177 		 * will be set in the wrong object!)
3178 		 */
3179 		vm_map_entry_delete(map, entry);
3180 		entry = next;
3181 	}
3182 	return (KERN_SUCCESS);
3183 }
3184 
3185 /*
3186  *	vm_map_remove:
3187  *
3188  *	Remove the given address range from the target map.
3189  *	This is the exported form of vm_map_delete.
3190  */
3191 int
3192 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3193 {
3194 	int result;
3195 
3196 	vm_map_lock(map);
3197 	VM_MAP_RANGE_CHECK(map, start, end);
3198 	result = vm_map_delete(map, start, end);
3199 	vm_map_unlock(map);
3200 	return (result);
3201 }
3202 
3203 /*
3204  *	vm_map_check_protection:
3205  *
3206  *	Assert that the target map allows the specified privilege on the
3207  *	entire address region given.  The entire region must be allocated.
3208  *
3209  *	WARNING!  This code does not and should not check whether the
3210  *	contents of the region is accessible.  For example a smaller file
3211  *	might be mapped into a larger address space.
3212  *
3213  *	NOTE!  This code is also called by munmap().
3214  *
3215  *	The map must be locked.  A read lock is sufficient.
3216  */
3217 boolean_t
3218 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3219 			vm_prot_t protection)
3220 {
3221 	vm_map_entry_t entry;
3222 	vm_map_entry_t tmp_entry;
3223 
3224 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3225 		return (FALSE);
3226 	entry = tmp_entry;
3227 
3228 	while (start < end) {
3229 		/*
3230 		 * No holes allowed!
3231 		 */
3232 		if (start < entry->start)
3233 			return (FALSE);
3234 		/*
3235 		 * Check protection associated with entry.
3236 		 */
3237 		if ((entry->protection & protection) != protection)
3238 			return (FALSE);
3239 		/* go to next entry */
3240 		start = entry->end;
3241 		entry = entry->next;
3242 	}
3243 	return (TRUE);
3244 }
3245 
3246 /*
3247  *	vm_map_copy_entry:
3248  *
3249  *	Copies the contents of the source entry to the destination
3250  *	entry.  The entries *must* be aligned properly.
3251  */
3252 static void
3253 vm_map_copy_entry(
3254 	vm_map_t src_map,
3255 	vm_map_t dst_map,
3256 	vm_map_entry_t src_entry,
3257 	vm_map_entry_t dst_entry,
3258 	vm_ooffset_t *fork_charge)
3259 {
3260 	vm_object_t src_object;
3261 	vm_map_entry_t fake_entry;
3262 	vm_offset_t size;
3263 	struct ucred *cred;
3264 	int charged;
3265 
3266 	VM_MAP_ASSERT_LOCKED(dst_map);
3267 
3268 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3269 		return;
3270 
3271 	if (src_entry->wired_count == 0 ||
3272 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3273 		/*
3274 		 * If the source entry is marked needs_copy, it is already
3275 		 * write-protected.
3276 		 */
3277 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3278 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3279 			pmap_protect(src_map->pmap,
3280 			    src_entry->start,
3281 			    src_entry->end,
3282 			    src_entry->protection & ~VM_PROT_WRITE);
3283 		}
3284 
3285 		/*
3286 		 * Make a copy of the object.
3287 		 */
3288 		size = src_entry->end - src_entry->start;
3289 		if ((src_object = src_entry->object.vm_object) != NULL) {
3290 			VM_OBJECT_WLOCK(src_object);
3291 			charged = ENTRY_CHARGED(src_entry);
3292 			if (src_object->handle == NULL &&
3293 			    (src_object->type == OBJT_DEFAULT ||
3294 			    src_object->type == OBJT_SWAP)) {
3295 				vm_object_collapse(src_object);
3296 				if ((src_object->flags & (OBJ_NOSPLIT |
3297 				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3298 					vm_object_split(src_entry);
3299 					src_object =
3300 					    src_entry->object.vm_object;
3301 				}
3302 			}
3303 			vm_object_reference_locked(src_object);
3304 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3305 			if (src_entry->cred != NULL &&
3306 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3307 				KASSERT(src_object->cred == NULL,
3308 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3309 				     src_object));
3310 				src_object->cred = src_entry->cred;
3311 				src_object->charge = size;
3312 			}
3313 			VM_OBJECT_WUNLOCK(src_object);
3314 			dst_entry->object.vm_object = src_object;
3315 			if (charged) {
3316 				cred = curthread->td_ucred;
3317 				crhold(cred);
3318 				dst_entry->cred = cred;
3319 				*fork_charge += size;
3320 				if (!(src_entry->eflags &
3321 				      MAP_ENTRY_NEEDS_COPY)) {
3322 					crhold(cred);
3323 					src_entry->cred = cred;
3324 					*fork_charge += size;
3325 				}
3326 			}
3327 			src_entry->eflags |= MAP_ENTRY_COW |
3328 			    MAP_ENTRY_NEEDS_COPY;
3329 			dst_entry->eflags |= MAP_ENTRY_COW |
3330 			    MAP_ENTRY_NEEDS_COPY;
3331 			dst_entry->offset = src_entry->offset;
3332 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3333 				/*
3334 				 * MAP_ENTRY_VN_WRITECNT cannot
3335 				 * indicate write reference from
3336 				 * src_entry, since the entry is
3337 				 * marked as needs copy.  Allocate a
3338 				 * fake entry that is used to
3339 				 * decrement object->un_pager.vnp.writecount
3340 				 * at the appropriate time.  Attach
3341 				 * fake_entry to the deferred list.
3342 				 */
3343 				fake_entry = vm_map_entry_create(dst_map);
3344 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3345 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3346 				vm_object_reference(src_object);
3347 				fake_entry->object.vm_object = src_object;
3348 				fake_entry->start = src_entry->start;
3349 				fake_entry->end = src_entry->end;
3350 				fake_entry->next = curthread->td_map_def_user;
3351 				curthread->td_map_def_user = fake_entry;
3352 			}
3353 
3354 			pmap_copy(dst_map->pmap, src_map->pmap,
3355 			    dst_entry->start, dst_entry->end - dst_entry->start,
3356 			    src_entry->start);
3357 		} else {
3358 			dst_entry->object.vm_object = NULL;
3359 			dst_entry->offset = 0;
3360 			if (src_entry->cred != NULL) {
3361 				dst_entry->cred = curthread->td_ucred;
3362 				crhold(dst_entry->cred);
3363 				*fork_charge += size;
3364 			}
3365 		}
3366 	} else {
3367 		/*
3368 		 * We don't want to make writeable wired pages copy-on-write.
3369 		 * Immediately copy these pages into the new map by simulating
3370 		 * page faults.  The new pages are pageable.
3371 		 */
3372 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3373 		    fork_charge);
3374 	}
3375 }
3376 
3377 /*
3378  * vmspace_map_entry_forked:
3379  * Update the newly-forked vmspace each time a map entry is inherited
3380  * or copied.  The values for vm_dsize and vm_tsize are approximate
3381  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3382  */
3383 static void
3384 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3385     vm_map_entry_t entry)
3386 {
3387 	vm_size_t entrysize;
3388 	vm_offset_t newend;
3389 
3390 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3391 		return;
3392 	entrysize = entry->end - entry->start;
3393 	vm2->vm_map.size += entrysize;
3394 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3395 		vm2->vm_ssize += btoc(entrysize);
3396 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3397 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3398 		newend = MIN(entry->end,
3399 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3400 		vm2->vm_dsize += btoc(newend - entry->start);
3401 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3402 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3403 		newend = MIN(entry->end,
3404 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3405 		vm2->vm_tsize += btoc(newend - entry->start);
3406 	}
3407 }
3408 
3409 /*
3410  * vmspace_fork:
3411  * Create a new process vmspace structure and vm_map
3412  * based on those of an existing process.  The new map
3413  * is based on the old map, according to the inheritance
3414  * values on the regions in that map.
3415  *
3416  * XXX It might be worth coalescing the entries added to the new vmspace.
3417  *
3418  * The source map must not be locked.
3419  */
3420 struct vmspace *
3421 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3422 {
3423 	struct vmspace *vm2;
3424 	vm_map_t new_map, old_map;
3425 	vm_map_entry_t new_entry, old_entry;
3426 	vm_object_t object;
3427 	int locked;
3428 	vm_inherit_t inh;
3429 
3430 	old_map = &vm1->vm_map;
3431 	/* Copy immutable fields of vm1 to vm2. */
3432 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3433 	if (vm2 == NULL)
3434 		return (NULL);
3435 	vm2->vm_taddr = vm1->vm_taddr;
3436 	vm2->vm_daddr = vm1->vm_daddr;
3437 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3438 	vm_map_lock(old_map);
3439 	if (old_map->busy)
3440 		vm_map_wait_busy(old_map);
3441 	new_map = &vm2->vm_map;
3442 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3443 	KASSERT(locked, ("vmspace_fork: lock failed"));
3444 
3445 	old_entry = old_map->header.next;
3446 
3447 	while (old_entry != &old_map->header) {
3448 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3449 			panic("vm_map_fork: encountered a submap");
3450 
3451 		inh = old_entry->inheritance;
3452 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3453 		    inh != VM_INHERIT_NONE)
3454 			inh = VM_INHERIT_COPY;
3455 
3456 		switch (inh) {
3457 		case VM_INHERIT_NONE:
3458 			break;
3459 
3460 		case VM_INHERIT_SHARE:
3461 			/*
3462 			 * Clone the entry, creating the shared object if necessary.
3463 			 */
3464 			object = old_entry->object.vm_object;
3465 			if (object == NULL) {
3466 				object = vm_object_allocate(OBJT_DEFAULT,
3467 					atop(old_entry->end - old_entry->start));
3468 				old_entry->object.vm_object = object;
3469 				old_entry->offset = 0;
3470 				if (old_entry->cred != NULL) {
3471 					object->cred = old_entry->cred;
3472 					object->charge = old_entry->end -
3473 					    old_entry->start;
3474 					old_entry->cred = NULL;
3475 				}
3476 			}
3477 
3478 			/*
3479 			 * Add the reference before calling vm_object_shadow
3480 			 * to insure that a shadow object is created.
3481 			 */
3482 			vm_object_reference(object);
3483 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3484 				vm_object_shadow(&old_entry->object.vm_object,
3485 				    &old_entry->offset,
3486 				    old_entry->end - old_entry->start);
3487 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3488 				/* Transfer the second reference too. */
3489 				vm_object_reference(
3490 				    old_entry->object.vm_object);
3491 
3492 				/*
3493 				 * As in vm_map_simplify_entry(), the
3494 				 * vnode lock will not be acquired in
3495 				 * this call to vm_object_deallocate().
3496 				 */
3497 				vm_object_deallocate(object);
3498 				object = old_entry->object.vm_object;
3499 			}
3500 			VM_OBJECT_WLOCK(object);
3501 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3502 			if (old_entry->cred != NULL) {
3503 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3504 				object->cred = old_entry->cred;
3505 				object->charge = old_entry->end - old_entry->start;
3506 				old_entry->cred = NULL;
3507 			}
3508 
3509 			/*
3510 			 * Assert the correct state of the vnode
3511 			 * v_writecount while the object is locked, to
3512 			 * not relock it later for the assertion
3513 			 * correctness.
3514 			 */
3515 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3516 			    object->type == OBJT_VNODE) {
3517 				KASSERT(((struct vnode *)object->handle)->
3518 				    v_writecount > 0,
3519 				    ("vmspace_fork: v_writecount %p", object));
3520 				KASSERT(object->un_pager.vnp.writemappings > 0,
3521 				    ("vmspace_fork: vnp.writecount %p",
3522 				    object));
3523 			}
3524 			VM_OBJECT_WUNLOCK(object);
3525 
3526 			/*
3527 			 * Clone the entry, referencing the shared object.
3528 			 */
3529 			new_entry = vm_map_entry_create(new_map);
3530 			*new_entry = *old_entry;
3531 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3532 			    MAP_ENTRY_IN_TRANSITION);
3533 			new_entry->wiring_thread = NULL;
3534 			new_entry->wired_count = 0;
3535 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3536 				vnode_pager_update_writecount(object,
3537 				    new_entry->start, new_entry->end);
3538 			}
3539 
3540 			/*
3541 			 * Insert the entry into the new map -- we know we're
3542 			 * inserting at the end of the new map.
3543 			 */
3544 			vm_map_entry_link(new_map, new_map->header.prev,
3545 			    new_entry);
3546 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3547 
3548 			/*
3549 			 * Update the physical map
3550 			 */
3551 			pmap_copy(new_map->pmap, old_map->pmap,
3552 			    new_entry->start,
3553 			    (old_entry->end - old_entry->start),
3554 			    old_entry->start);
3555 			break;
3556 
3557 		case VM_INHERIT_COPY:
3558 			/*
3559 			 * Clone the entry and link into the map.
3560 			 */
3561 			new_entry = vm_map_entry_create(new_map);
3562 			*new_entry = *old_entry;
3563 			/*
3564 			 * Copied entry is COW over the old object.
3565 			 */
3566 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3567 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3568 			new_entry->wiring_thread = NULL;
3569 			new_entry->wired_count = 0;
3570 			new_entry->object.vm_object = NULL;
3571 			new_entry->cred = NULL;
3572 			vm_map_entry_link(new_map, new_map->header.prev,
3573 			    new_entry);
3574 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3575 			vm_map_copy_entry(old_map, new_map, old_entry,
3576 			    new_entry, fork_charge);
3577 			break;
3578 
3579 		case VM_INHERIT_ZERO:
3580 			/*
3581 			 * Create a new anonymous mapping entry modelled from
3582 			 * the old one.
3583 			 */
3584 			new_entry = vm_map_entry_create(new_map);
3585 			memset(new_entry, 0, sizeof(*new_entry));
3586 
3587 			new_entry->start = old_entry->start;
3588 			new_entry->end = old_entry->end;
3589 			new_entry->eflags = old_entry->eflags &
3590 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3591 			    MAP_ENTRY_VN_WRITECNT);
3592 			new_entry->protection = old_entry->protection;
3593 			new_entry->max_protection = old_entry->max_protection;
3594 			new_entry->inheritance = VM_INHERIT_ZERO;
3595 
3596 			vm_map_entry_link(new_map, new_map->header.prev,
3597 			    new_entry);
3598 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3599 
3600 			new_entry->cred = curthread->td_ucred;
3601 			crhold(new_entry->cred);
3602 			*fork_charge += (new_entry->end - new_entry->start);
3603 
3604 			break;
3605 		}
3606 		old_entry = old_entry->next;
3607 	}
3608 	/*
3609 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3610 	 * map entries, which cannot be done until both old_map and
3611 	 * new_map locks are released.
3612 	 */
3613 	sx_xunlock(&old_map->lock);
3614 	sx_xunlock(&new_map->lock);
3615 	vm_map_process_deferred();
3616 
3617 	return (vm2);
3618 }
3619 
3620 /*
3621  * Create a process's stack for exec_new_vmspace().  This function is never
3622  * asked to wire the newly created stack.
3623  */
3624 int
3625 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3626     vm_prot_t prot, vm_prot_t max, int cow)
3627 {
3628 	vm_size_t growsize, init_ssize;
3629 	rlim_t vmemlim;
3630 	int rv;
3631 
3632 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
3633 	growsize = sgrowsiz;
3634 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3635 	vm_map_lock(map);
3636 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3637 	/* If we would blow our VMEM resource limit, no go */
3638 	if (map->size + init_ssize > vmemlim) {
3639 		rv = KERN_NO_SPACE;
3640 		goto out;
3641 	}
3642 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3643 	    max, cow);
3644 out:
3645 	vm_map_unlock(map);
3646 	return (rv);
3647 }
3648 
3649 static int stack_guard_page = 1;
3650 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3651     &stack_guard_page, 0,
3652     "Specifies the number of guard pages for a stack that grows");
3653 
3654 static int
3655 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3656     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3657 {
3658 	vm_map_entry_t new_entry, prev_entry;
3659 	vm_offset_t bot, gap_bot, gap_top, top;
3660 	vm_size_t init_ssize, sgp;
3661 	int orient, rv;
3662 
3663 	/*
3664 	 * The stack orientation is piggybacked with the cow argument.
3665 	 * Extract it into orient and mask the cow argument so that we
3666 	 * don't pass it around further.
3667 	 */
3668 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3669 	KASSERT(orient != 0, ("No stack grow direction"));
3670 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3671 	    ("bi-dir stack"));
3672 
3673 	if (addrbos < vm_map_min(map) ||
3674 	    addrbos + max_ssize > vm_map_max(map) ||
3675 	    addrbos + max_ssize <= addrbos)
3676 		return (KERN_INVALID_ADDRESS);
3677 	sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3678 	if (sgp >= max_ssize)
3679 		return (KERN_INVALID_ARGUMENT);
3680 
3681 	init_ssize = growsize;
3682 	if (max_ssize < init_ssize + sgp)
3683 		init_ssize = max_ssize - sgp;
3684 
3685 	/* If addr is already mapped, no go */
3686 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3687 		return (KERN_NO_SPACE);
3688 
3689 	/*
3690 	 * If we can't accommodate max_ssize in the current mapping, no go.
3691 	 */
3692 	if (prev_entry->next->start < addrbos + max_ssize)
3693 		return (KERN_NO_SPACE);
3694 
3695 	/*
3696 	 * We initially map a stack of only init_ssize.  We will grow as
3697 	 * needed later.  Depending on the orientation of the stack (i.e.
3698 	 * the grow direction) we either map at the top of the range, the
3699 	 * bottom of the range or in the middle.
3700 	 *
3701 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3702 	 * and cow to be 0.  Possibly we should eliminate these as input
3703 	 * parameters, and just pass these values here in the insert call.
3704 	 */
3705 	if (orient == MAP_STACK_GROWS_DOWN) {
3706 		bot = addrbos + max_ssize - init_ssize;
3707 		top = bot + init_ssize;
3708 		gap_bot = addrbos;
3709 		gap_top = bot;
3710 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
3711 		bot = addrbos;
3712 		top = bot + init_ssize;
3713 		gap_bot = top;
3714 		gap_top = addrbos + max_ssize;
3715 	}
3716 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3717 	if (rv != KERN_SUCCESS)
3718 		return (rv);
3719 	new_entry = prev_entry->next;
3720 	KASSERT(new_entry->end == top || new_entry->start == bot,
3721 	    ("Bad entry start/end for new stack entry"));
3722 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3723 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3724 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3725 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3726 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3727 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3728 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3729 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3730 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3731 	if (rv != KERN_SUCCESS)
3732 		(void)vm_map_delete(map, bot, top);
3733 	return (rv);
3734 }
3735 
3736 /*
3737  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3738  * successfully grow the stack.
3739  */
3740 static int
3741 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3742 {
3743 	vm_map_entry_t stack_entry;
3744 	struct proc *p;
3745 	struct vmspace *vm;
3746 	struct ucred *cred;
3747 	vm_offset_t gap_end, gap_start, grow_start;
3748 	size_t grow_amount, guard, max_grow;
3749 	rlim_t lmemlim, stacklim, vmemlim;
3750 	int rv, rv1;
3751 	bool gap_deleted, grow_down, is_procstack;
3752 #ifdef notyet
3753 	uint64_t limit;
3754 #endif
3755 #ifdef RACCT
3756 	int error;
3757 #endif
3758 
3759 	p = curproc;
3760 	vm = p->p_vmspace;
3761 
3762 	/*
3763 	 * Disallow stack growth when the access is performed by a
3764 	 * debugger or AIO daemon.  The reason is that the wrong
3765 	 * resource limits are applied.
3766 	 */
3767 	if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3768 		return (KERN_FAILURE);
3769 
3770 	MPASS(!map->system_map);
3771 
3772 	guard = stack_guard_page * PAGE_SIZE;
3773 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3774 	stacklim = lim_cur(curthread, RLIMIT_STACK);
3775 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3776 retry:
3777 	/* If addr is not in a hole for a stack grow area, no need to grow. */
3778 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3779 		return (KERN_FAILURE);
3780 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3781 		return (KERN_SUCCESS);
3782 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3783 		stack_entry = gap_entry->next;
3784 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3785 		    stack_entry->start != gap_entry->end)
3786 			return (KERN_FAILURE);
3787 		grow_amount = round_page(stack_entry->start - addr);
3788 		grow_down = true;
3789 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3790 		stack_entry = gap_entry->prev;
3791 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3792 		    stack_entry->end != gap_entry->start)
3793 			return (KERN_FAILURE);
3794 		grow_amount = round_page(addr + 1 - stack_entry->end);
3795 		grow_down = false;
3796 	} else {
3797 		return (KERN_FAILURE);
3798 	}
3799 	max_grow = gap_entry->end - gap_entry->start;
3800 	if (guard > max_grow)
3801 		return (KERN_NO_SPACE);
3802 	max_grow -= guard;
3803 	if (grow_amount > max_grow)
3804 		return (KERN_NO_SPACE);
3805 
3806 	/*
3807 	 * If this is the main process stack, see if we're over the stack
3808 	 * limit.
3809 	 */
3810 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3811 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3812 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3813 		return (KERN_NO_SPACE);
3814 
3815 #ifdef RACCT
3816 	if (racct_enable) {
3817 		PROC_LOCK(p);
3818 		if (is_procstack && racct_set(p, RACCT_STACK,
3819 		    ctob(vm->vm_ssize) + grow_amount)) {
3820 			PROC_UNLOCK(p);
3821 			return (KERN_NO_SPACE);
3822 		}
3823 		PROC_UNLOCK(p);
3824 	}
3825 #endif
3826 
3827 	grow_amount = roundup(grow_amount, sgrowsiz);
3828 	if (grow_amount > max_grow)
3829 		grow_amount = max_grow;
3830 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3831 		grow_amount = trunc_page((vm_size_t)stacklim) -
3832 		    ctob(vm->vm_ssize);
3833 	}
3834 
3835 #ifdef notyet
3836 	PROC_LOCK(p);
3837 	limit = racct_get_available(p, RACCT_STACK);
3838 	PROC_UNLOCK(p);
3839 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3840 		grow_amount = limit - ctob(vm->vm_ssize);
3841 #endif
3842 
3843 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3844 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3845 			rv = KERN_NO_SPACE;
3846 			goto out;
3847 		}
3848 #ifdef RACCT
3849 		if (racct_enable) {
3850 			PROC_LOCK(p);
3851 			if (racct_set(p, RACCT_MEMLOCK,
3852 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3853 				PROC_UNLOCK(p);
3854 				rv = KERN_NO_SPACE;
3855 				goto out;
3856 			}
3857 			PROC_UNLOCK(p);
3858 		}
3859 #endif
3860 	}
3861 
3862 	/* If we would blow our VMEM resource limit, no go */
3863 	if (map->size + grow_amount > vmemlim) {
3864 		rv = KERN_NO_SPACE;
3865 		goto out;
3866 	}
3867 #ifdef RACCT
3868 	if (racct_enable) {
3869 		PROC_LOCK(p);
3870 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3871 			PROC_UNLOCK(p);
3872 			rv = KERN_NO_SPACE;
3873 			goto out;
3874 		}
3875 		PROC_UNLOCK(p);
3876 	}
3877 #endif
3878 
3879 	if (vm_map_lock_upgrade(map)) {
3880 		gap_entry = NULL;
3881 		vm_map_lock_read(map);
3882 		goto retry;
3883 	}
3884 
3885 	if (grow_down) {
3886 		grow_start = gap_entry->end - grow_amount;
3887 		if (gap_entry->start + grow_amount == gap_entry->end) {
3888 			gap_start = gap_entry->start;
3889 			gap_end = gap_entry->end;
3890 			vm_map_entry_delete(map, gap_entry);
3891 			gap_deleted = true;
3892 		} else {
3893 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
3894 			gap_entry->end -= grow_amount;
3895 			vm_map_entry_resize_free(map, gap_entry);
3896 			gap_deleted = false;
3897 		}
3898 		rv = vm_map_insert(map, NULL, 0, grow_start,
3899 		    grow_start + grow_amount,
3900 		    stack_entry->protection, stack_entry->max_protection,
3901 		    MAP_STACK_GROWS_DOWN);
3902 		if (rv != KERN_SUCCESS) {
3903 			if (gap_deleted) {
3904 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
3905 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
3906 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3907 				MPASS(rv1 == KERN_SUCCESS);
3908 			} else {
3909 				gap_entry->end += grow_amount;
3910 				vm_map_entry_resize_free(map, gap_entry);
3911 			}
3912 		}
3913 	} else {
3914 		grow_start = stack_entry->end;
3915 		cred = stack_entry->cred;
3916 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3917 			cred = stack_entry->object.vm_object->cred;
3918 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3919 			rv = KERN_NO_SPACE;
3920 		/* Grow the underlying object if applicable. */
3921 		else if (stack_entry->object.vm_object == NULL ||
3922 		    vm_object_coalesce(stack_entry->object.vm_object,
3923 		    stack_entry->offset,
3924 		    (vm_size_t)(stack_entry->end - stack_entry->start),
3925 		    (vm_size_t)grow_amount, cred != NULL)) {
3926 			if (gap_entry->start + grow_amount == gap_entry->end)
3927 				vm_map_entry_delete(map, gap_entry);
3928 			else
3929 				gap_entry->start += grow_amount;
3930 			stack_entry->end += grow_amount;
3931 			map->size += grow_amount;
3932 			vm_map_entry_resize_free(map, stack_entry);
3933 			rv = KERN_SUCCESS;
3934 		} else
3935 			rv = KERN_FAILURE;
3936 	}
3937 	if (rv == KERN_SUCCESS && is_procstack)
3938 		vm->vm_ssize += btoc(grow_amount);
3939 
3940 	/*
3941 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3942 	 */
3943 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3944 		vm_map_unlock(map);
3945 		vm_map_wire(map, grow_start, grow_start + grow_amount,
3946 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3947 		vm_map_lock_read(map);
3948 	} else
3949 		vm_map_lock_downgrade(map);
3950 
3951 out:
3952 #ifdef RACCT
3953 	if (racct_enable && rv != KERN_SUCCESS) {
3954 		PROC_LOCK(p);
3955 		error = racct_set(p, RACCT_VMEM, map->size);
3956 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3957 		if (!old_mlock) {
3958 			error = racct_set(p, RACCT_MEMLOCK,
3959 			    ptoa(pmap_wired_count(map->pmap)));
3960 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3961 		}
3962 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3963 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3964 		PROC_UNLOCK(p);
3965 	}
3966 #endif
3967 
3968 	return (rv);
3969 }
3970 
3971 /*
3972  * Unshare the specified VM space for exec.  If other processes are
3973  * mapped to it, then create a new one.  The new vmspace is null.
3974  */
3975 int
3976 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3977 {
3978 	struct vmspace *oldvmspace = p->p_vmspace;
3979 	struct vmspace *newvmspace;
3980 
3981 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3982 	    ("vmspace_exec recursed"));
3983 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3984 	if (newvmspace == NULL)
3985 		return (ENOMEM);
3986 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3987 	/*
3988 	 * This code is written like this for prototype purposes.  The
3989 	 * goal is to avoid running down the vmspace here, but let the
3990 	 * other process's that are still using the vmspace to finally
3991 	 * run it down.  Even though there is little or no chance of blocking
3992 	 * here, it is a good idea to keep this form for future mods.
3993 	 */
3994 	PROC_VMSPACE_LOCK(p);
3995 	p->p_vmspace = newvmspace;
3996 	PROC_VMSPACE_UNLOCK(p);
3997 	if (p == curthread->td_proc)
3998 		pmap_activate(curthread);
3999 	curthread->td_pflags |= TDP_EXECVMSPC;
4000 	return (0);
4001 }
4002 
4003 /*
4004  * Unshare the specified VM space for forcing COW.  This
4005  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4006  */
4007 int
4008 vmspace_unshare(struct proc *p)
4009 {
4010 	struct vmspace *oldvmspace = p->p_vmspace;
4011 	struct vmspace *newvmspace;
4012 	vm_ooffset_t fork_charge;
4013 
4014 	if (oldvmspace->vm_refcnt == 1)
4015 		return (0);
4016 	fork_charge = 0;
4017 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4018 	if (newvmspace == NULL)
4019 		return (ENOMEM);
4020 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4021 		vmspace_free(newvmspace);
4022 		return (ENOMEM);
4023 	}
4024 	PROC_VMSPACE_LOCK(p);
4025 	p->p_vmspace = newvmspace;
4026 	PROC_VMSPACE_UNLOCK(p);
4027 	if (p == curthread->td_proc)
4028 		pmap_activate(curthread);
4029 	vmspace_free(oldvmspace);
4030 	return (0);
4031 }
4032 
4033 /*
4034  *	vm_map_lookup:
4035  *
4036  *	Finds the VM object, offset, and
4037  *	protection for a given virtual address in the
4038  *	specified map, assuming a page fault of the
4039  *	type specified.
4040  *
4041  *	Leaves the map in question locked for read; return
4042  *	values are guaranteed until a vm_map_lookup_done
4043  *	call is performed.  Note that the map argument
4044  *	is in/out; the returned map must be used in
4045  *	the call to vm_map_lookup_done.
4046  *
4047  *	A handle (out_entry) is returned for use in
4048  *	vm_map_lookup_done, to make that fast.
4049  *
4050  *	If a lookup is requested with "write protection"
4051  *	specified, the map may be changed to perform virtual
4052  *	copying operations, although the data referenced will
4053  *	remain the same.
4054  */
4055 int
4056 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4057 	      vm_offset_t vaddr,
4058 	      vm_prot_t fault_typea,
4059 	      vm_map_entry_t *out_entry,	/* OUT */
4060 	      vm_object_t *object,		/* OUT */
4061 	      vm_pindex_t *pindex,		/* OUT */
4062 	      vm_prot_t *out_prot,		/* OUT */
4063 	      boolean_t *wired)			/* OUT */
4064 {
4065 	vm_map_entry_t entry;
4066 	vm_map_t map = *var_map;
4067 	vm_prot_t prot;
4068 	vm_prot_t fault_type = fault_typea;
4069 	vm_object_t eobject;
4070 	vm_size_t size;
4071 	struct ucred *cred;
4072 
4073 RetryLookup:
4074 
4075 	vm_map_lock_read(map);
4076 
4077 RetryLookupLocked:
4078 	/*
4079 	 * Lookup the faulting address.
4080 	 */
4081 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4082 		vm_map_unlock_read(map);
4083 		return (KERN_INVALID_ADDRESS);
4084 	}
4085 
4086 	entry = *out_entry;
4087 
4088 	/*
4089 	 * Handle submaps.
4090 	 */
4091 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4092 		vm_map_t old_map = map;
4093 
4094 		*var_map = map = entry->object.sub_map;
4095 		vm_map_unlock_read(old_map);
4096 		goto RetryLookup;
4097 	}
4098 
4099 	/*
4100 	 * Check whether this task is allowed to have this page.
4101 	 */
4102 	prot = entry->protection;
4103 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4104 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4105 		if (prot == VM_PROT_NONE && map != kernel_map &&
4106 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4107 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4108 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4109 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4110 			goto RetryLookupLocked;
4111 	}
4112 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4113 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4114 		vm_map_unlock_read(map);
4115 		return (KERN_PROTECTION_FAILURE);
4116 	}
4117 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4118 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4119 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4120 	    ("entry %p flags %x", entry, entry->eflags));
4121 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4122 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4123 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4124 		vm_map_unlock_read(map);
4125 		return (KERN_PROTECTION_FAILURE);
4126 	}
4127 
4128 	/*
4129 	 * If this page is not pageable, we have to get it for all possible
4130 	 * accesses.
4131 	 */
4132 	*wired = (entry->wired_count != 0);
4133 	if (*wired)
4134 		fault_type = entry->protection;
4135 	size = entry->end - entry->start;
4136 	/*
4137 	 * If the entry was copy-on-write, we either ...
4138 	 */
4139 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4140 		/*
4141 		 * If we want to write the page, we may as well handle that
4142 		 * now since we've got the map locked.
4143 		 *
4144 		 * If we don't need to write the page, we just demote the
4145 		 * permissions allowed.
4146 		 */
4147 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4148 		    (fault_typea & VM_PROT_COPY) != 0) {
4149 			/*
4150 			 * Make a new object, and place it in the object
4151 			 * chain.  Note that no new references have appeared
4152 			 * -- one just moved from the map to the new
4153 			 * object.
4154 			 */
4155 			if (vm_map_lock_upgrade(map))
4156 				goto RetryLookup;
4157 
4158 			if (entry->cred == NULL) {
4159 				/*
4160 				 * The debugger owner is charged for
4161 				 * the memory.
4162 				 */
4163 				cred = curthread->td_ucred;
4164 				crhold(cred);
4165 				if (!swap_reserve_by_cred(size, cred)) {
4166 					crfree(cred);
4167 					vm_map_unlock(map);
4168 					return (KERN_RESOURCE_SHORTAGE);
4169 				}
4170 				entry->cred = cred;
4171 			}
4172 			vm_object_shadow(&entry->object.vm_object,
4173 			    &entry->offset, size);
4174 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4175 			eobject = entry->object.vm_object;
4176 			if (eobject->cred != NULL) {
4177 				/*
4178 				 * The object was not shadowed.
4179 				 */
4180 				swap_release_by_cred(size, entry->cred);
4181 				crfree(entry->cred);
4182 				entry->cred = NULL;
4183 			} else if (entry->cred != NULL) {
4184 				VM_OBJECT_WLOCK(eobject);
4185 				eobject->cred = entry->cred;
4186 				eobject->charge = size;
4187 				VM_OBJECT_WUNLOCK(eobject);
4188 				entry->cred = NULL;
4189 			}
4190 
4191 			vm_map_lock_downgrade(map);
4192 		} else {
4193 			/*
4194 			 * We're attempting to read a copy-on-write page --
4195 			 * don't allow writes.
4196 			 */
4197 			prot &= ~VM_PROT_WRITE;
4198 		}
4199 	}
4200 
4201 	/*
4202 	 * Create an object if necessary.
4203 	 */
4204 	if (entry->object.vm_object == NULL &&
4205 	    !map->system_map) {
4206 		if (vm_map_lock_upgrade(map))
4207 			goto RetryLookup;
4208 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4209 		    atop(size));
4210 		entry->offset = 0;
4211 		if (entry->cred != NULL) {
4212 			VM_OBJECT_WLOCK(entry->object.vm_object);
4213 			entry->object.vm_object->cred = entry->cred;
4214 			entry->object.vm_object->charge = size;
4215 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4216 			entry->cred = NULL;
4217 		}
4218 		vm_map_lock_downgrade(map);
4219 	}
4220 
4221 	/*
4222 	 * Return the object/offset from this entry.  If the entry was
4223 	 * copy-on-write or empty, it has been fixed up.
4224 	 */
4225 	*pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4226 	*object = entry->object.vm_object;
4227 
4228 	*out_prot = prot;
4229 	return (KERN_SUCCESS);
4230 }
4231 
4232 /*
4233  *	vm_map_lookup_locked:
4234  *
4235  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4236  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4237  */
4238 int
4239 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4240 		     vm_offset_t vaddr,
4241 		     vm_prot_t fault_typea,
4242 		     vm_map_entry_t *out_entry,	/* OUT */
4243 		     vm_object_t *object,	/* OUT */
4244 		     vm_pindex_t *pindex,	/* OUT */
4245 		     vm_prot_t *out_prot,	/* OUT */
4246 		     boolean_t *wired)		/* OUT */
4247 {
4248 	vm_map_entry_t entry;
4249 	vm_map_t map = *var_map;
4250 	vm_prot_t prot;
4251 	vm_prot_t fault_type = fault_typea;
4252 
4253 	/*
4254 	 * Lookup the faulting address.
4255 	 */
4256 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4257 		return (KERN_INVALID_ADDRESS);
4258 
4259 	entry = *out_entry;
4260 
4261 	/*
4262 	 * Fail if the entry refers to a submap.
4263 	 */
4264 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4265 		return (KERN_FAILURE);
4266 
4267 	/*
4268 	 * Check whether this task is allowed to have this page.
4269 	 */
4270 	prot = entry->protection;
4271 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4272 	if ((fault_type & prot) != fault_type)
4273 		return (KERN_PROTECTION_FAILURE);
4274 
4275 	/*
4276 	 * If this page is not pageable, we have to get it for all possible
4277 	 * accesses.
4278 	 */
4279 	*wired = (entry->wired_count != 0);
4280 	if (*wired)
4281 		fault_type = entry->protection;
4282 
4283 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4284 		/*
4285 		 * Fail if the entry was copy-on-write for a write fault.
4286 		 */
4287 		if (fault_type & VM_PROT_WRITE)
4288 			return (KERN_FAILURE);
4289 		/*
4290 		 * We're attempting to read a copy-on-write page --
4291 		 * don't allow writes.
4292 		 */
4293 		prot &= ~VM_PROT_WRITE;
4294 	}
4295 
4296 	/*
4297 	 * Fail if an object should be created.
4298 	 */
4299 	if (entry->object.vm_object == NULL && !map->system_map)
4300 		return (KERN_FAILURE);
4301 
4302 	/*
4303 	 * Return the object/offset from this entry.  If the entry was
4304 	 * copy-on-write or empty, it has been fixed up.
4305 	 */
4306 	*pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4307 	*object = entry->object.vm_object;
4308 
4309 	*out_prot = prot;
4310 	return (KERN_SUCCESS);
4311 }
4312 
4313 /*
4314  *	vm_map_lookup_done:
4315  *
4316  *	Releases locks acquired by a vm_map_lookup
4317  *	(according to the handle returned by that lookup).
4318  */
4319 void
4320 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4321 {
4322 	/*
4323 	 * Unlock the main-level map
4324 	 */
4325 	vm_map_unlock_read(map);
4326 }
4327 
4328 vm_offset_t
4329 vm_map_max_KBI(const struct vm_map *map)
4330 {
4331 
4332 	return (map->max_offset);
4333 }
4334 
4335 vm_offset_t
4336 vm_map_min_KBI(const struct vm_map *map)
4337 {
4338 
4339 	return (map->min_offset);
4340 }
4341 
4342 pmap_t
4343 vm_map_pmap_KBI(vm_map_t map)
4344 {
4345 
4346 	return (map->pmap);
4347 }
4348 
4349 #include "opt_ddb.h"
4350 #ifdef DDB
4351 #include <sys/kernel.h>
4352 
4353 #include <ddb/ddb.h>
4354 
4355 static void
4356 vm_map_print(vm_map_t map)
4357 {
4358 	vm_map_entry_t entry;
4359 
4360 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4361 	    (void *)map,
4362 	    (void *)map->pmap, map->nentries, map->timestamp);
4363 
4364 	db_indent += 2;
4365 	for (entry = map->header.next; entry != &map->header;
4366 	    entry = entry->next) {
4367 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4368 		    (void *)entry, (void *)entry->start, (void *)entry->end,
4369 		    entry->eflags);
4370 		{
4371 			static char *inheritance_name[4] =
4372 			{"share", "copy", "none", "donate_copy"};
4373 
4374 			db_iprintf(" prot=%x/%x/%s",
4375 			    entry->protection,
4376 			    entry->max_protection,
4377 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4378 			if (entry->wired_count != 0)
4379 				db_printf(", wired");
4380 		}
4381 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4382 			db_printf(", share=%p, offset=0x%jx\n",
4383 			    (void *)entry->object.sub_map,
4384 			    (uintmax_t)entry->offset);
4385 			if ((entry->prev == &map->header) ||
4386 			    (entry->prev->object.sub_map !=
4387 				entry->object.sub_map)) {
4388 				db_indent += 2;
4389 				vm_map_print((vm_map_t)entry->object.sub_map);
4390 				db_indent -= 2;
4391 			}
4392 		} else {
4393 			if (entry->cred != NULL)
4394 				db_printf(", ruid %d", entry->cred->cr_ruid);
4395 			db_printf(", object=%p, offset=0x%jx",
4396 			    (void *)entry->object.vm_object,
4397 			    (uintmax_t)entry->offset);
4398 			if (entry->object.vm_object && entry->object.vm_object->cred)
4399 				db_printf(", obj ruid %d charge %jx",
4400 				    entry->object.vm_object->cred->cr_ruid,
4401 				    (uintmax_t)entry->object.vm_object->charge);
4402 			if (entry->eflags & MAP_ENTRY_COW)
4403 				db_printf(", copy (%s)",
4404 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4405 			db_printf("\n");
4406 
4407 			if ((entry->prev == &map->header) ||
4408 			    (entry->prev->object.vm_object !=
4409 				entry->object.vm_object)) {
4410 				db_indent += 2;
4411 				vm_object_print((db_expr_t)(intptr_t)
4412 						entry->object.vm_object,
4413 						0, 0, (char *)0);
4414 				db_indent -= 2;
4415 			}
4416 		}
4417 	}
4418 	db_indent -= 2;
4419 }
4420 
4421 DB_SHOW_COMMAND(map, map)
4422 {
4423 
4424 	if (!have_addr) {
4425 		db_printf("usage: show map <addr>\n");
4426 		return;
4427 	}
4428 	vm_map_print((vm_map_t)addr);
4429 }
4430 
4431 DB_SHOW_COMMAND(procvm, procvm)
4432 {
4433 	struct proc *p;
4434 
4435 	if (have_addr) {
4436 		p = db_lookup_proc(addr);
4437 	} else {
4438 		p = curproc;
4439 	}
4440 
4441 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4442 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4443 	    (void *)vmspace_pmap(p->p_vmspace));
4444 
4445 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4446 }
4447 
4448 #endif /* DDB */
4449