xref: /freebsd/sys/vm/vm_map.c (revision f18d3c411697ff46d85e579a72be54ca0cc67dd0)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 #ifdef INVARIANTS
136 static void vm_map_zdtor(void *mem, int size, void *arg);
137 static void vmspace_zdtor(void *mem, int size, void *arg);
138 #endif
139 
140 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
141     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
142      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
143 
144 /*
145  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
146  * stable.
147  */
148 #define PROC_VMSPACE_LOCK(p) do { } while (0)
149 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
150 
151 /*
152  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
153  *
154  *	Asserts that the starting and ending region
155  *	addresses fall within the valid range of the map.
156  */
157 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
158 		{					\
159 		if (start < vm_map_min(map))		\
160 			start = vm_map_min(map);	\
161 		if (end > vm_map_max(map))		\
162 			end = vm_map_max(map);		\
163 		if (start > end)			\
164 			start = end;			\
165 		}
166 
167 /*
168  *	vm_map_startup:
169  *
170  *	Initialize the vm_map module.  Must be called before
171  *	any other vm_map routines.
172  *
173  *	Map and entry structures are allocated from the general
174  *	purpose memory pool with some exceptions:
175  *
176  *	- The kernel map and kmem submap are allocated statically.
177  *	- Kernel map entries are allocated out of a static pool.
178  *
179  *	These restrictions are necessary since malloc() uses the
180  *	maps and requires map entries.
181  */
182 
183 void
184 vm_map_startup(void)
185 {
186 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
187 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
188 #ifdef INVARIANTS
189 	    vm_map_zdtor,
190 #else
191 	    NULL,
192 #endif
193 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
194 	uma_prealloc(mapzone, MAX_KMAP);
195 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
196 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
197 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
198 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
199 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
200 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
201 #ifdef INVARIANTS
202 	    vmspace_zdtor,
203 #else
204 	    NULL,
205 #endif
206 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
207 }
208 
209 static int
210 vmspace_zinit(void *mem, int size, int flags)
211 {
212 	struct vmspace *vm;
213 
214 	vm = (struct vmspace *)mem;
215 
216 	vm->vm_map.pmap = NULL;
217 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
218 	PMAP_LOCK_INIT(vmspace_pmap(vm));
219 	return (0);
220 }
221 
222 static int
223 vm_map_zinit(void *mem, int size, int flags)
224 {
225 	vm_map_t map;
226 
227 	map = (vm_map_t)mem;
228 	memset(map, 0, sizeof(*map));
229 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
230 	sx_init(&map->lock, "vm map (user)");
231 	return (0);
232 }
233 
234 #ifdef INVARIANTS
235 static void
236 vmspace_zdtor(void *mem, int size, void *arg)
237 {
238 	struct vmspace *vm;
239 
240 	vm = (struct vmspace *)mem;
241 
242 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
243 }
244 static void
245 vm_map_zdtor(void *mem, int size, void *arg)
246 {
247 	vm_map_t map;
248 
249 	map = (vm_map_t)mem;
250 	KASSERT(map->nentries == 0,
251 	    ("map %p nentries == %d on free.",
252 	    map, map->nentries));
253 	KASSERT(map->size == 0,
254 	    ("map %p size == %lu on free.",
255 	    map, (unsigned long)map->size));
256 }
257 #endif	/* INVARIANTS */
258 
259 /*
260  * Allocate a vmspace structure, including a vm_map and pmap,
261  * and initialize those structures.  The refcnt is set to 1.
262  *
263  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
264  */
265 struct vmspace *
266 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
267 {
268 	struct vmspace *vm;
269 
270 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
271 
272 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
273 
274 	if (pinit == NULL)
275 		pinit = &pmap_pinit;
276 
277 	if (!pinit(vmspace_pmap(vm))) {
278 		uma_zfree(vmspace_zone, vm);
279 		return (NULL);
280 	}
281 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
282 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
283 	vm->vm_refcnt = 1;
284 	vm->vm_shm = NULL;
285 	vm->vm_swrss = 0;
286 	vm->vm_tsize = 0;
287 	vm->vm_dsize = 0;
288 	vm->vm_ssize = 0;
289 	vm->vm_taddr = 0;
290 	vm->vm_daddr = 0;
291 	vm->vm_maxsaddr = 0;
292 	return (vm);
293 }
294 
295 static void
296 vmspace_container_reset(struct proc *p)
297 {
298 
299 #ifdef RACCT
300 	PROC_LOCK(p);
301 	racct_set(p, RACCT_DATA, 0);
302 	racct_set(p, RACCT_STACK, 0);
303 	racct_set(p, RACCT_RSS, 0);
304 	racct_set(p, RACCT_MEMLOCK, 0);
305 	racct_set(p, RACCT_VMEM, 0);
306 	PROC_UNLOCK(p);
307 #endif
308 }
309 
310 static inline void
311 vmspace_dofree(struct vmspace *vm)
312 {
313 
314 	CTR1(KTR_VM, "vmspace_free: %p", vm);
315 
316 	/*
317 	 * Make sure any SysV shm is freed, it might not have been in
318 	 * exit1().
319 	 */
320 	shmexit(vm);
321 
322 	/*
323 	 * Lock the map, to wait out all other references to it.
324 	 * Delete all of the mappings and pages they hold, then call
325 	 * the pmap module to reclaim anything left.
326 	 */
327 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
328 	    vm->vm_map.max_offset);
329 
330 	pmap_release(vmspace_pmap(vm));
331 	vm->vm_map.pmap = NULL;
332 	uma_zfree(vmspace_zone, vm);
333 }
334 
335 void
336 vmspace_free(struct vmspace *vm)
337 {
338 
339 	if (vm->vm_refcnt == 0)
340 		panic("vmspace_free: attempt to free already freed vmspace");
341 
342 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
343 		vmspace_dofree(vm);
344 }
345 
346 void
347 vmspace_exitfree(struct proc *p)
348 {
349 	struct vmspace *vm;
350 
351 	PROC_VMSPACE_LOCK(p);
352 	vm = p->p_vmspace;
353 	p->p_vmspace = NULL;
354 	PROC_VMSPACE_UNLOCK(p);
355 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
356 	vmspace_free(vm);
357 }
358 
359 void
360 vmspace_exit(struct thread *td)
361 {
362 	int refcnt;
363 	struct vmspace *vm;
364 	struct proc *p;
365 
366 	/*
367 	 * Release user portion of address space.
368 	 * This releases references to vnodes,
369 	 * which could cause I/O if the file has been unlinked.
370 	 * Need to do this early enough that we can still sleep.
371 	 *
372 	 * The last exiting process to reach this point releases as
373 	 * much of the environment as it can. vmspace_dofree() is the
374 	 * slower fallback in case another process had a temporary
375 	 * reference to the vmspace.
376 	 */
377 
378 	p = td->td_proc;
379 	vm = p->p_vmspace;
380 	atomic_add_int(&vmspace0.vm_refcnt, 1);
381 	do {
382 		refcnt = vm->vm_refcnt;
383 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
384 			/* Switch now since other proc might free vmspace */
385 			PROC_VMSPACE_LOCK(p);
386 			p->p_vmspace = &vmspace0;
387 			PROC_VMSPACE_UNLOCK(p);
388 			pmap_activate(td);
389 		}
390 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
391 	if (refcnt == 1) {
392 		if (p->p_vmspace != vm) {
393 			/* vmspace not yet freed, switch back */
394 			PROC_VMSPACE_LOCK(p);
395 			p->p_vmspace = vm;
396 			PROC_VMSPACE_UNLOCK(p);
397 			pmap_activate(td);
398 		}
399 		pmap_remove_pages(vmspace_pmap(vm));
400 		/* Switch now since this proc will free vmspace */
401 		PROC_VMSPACE_LOCK(p);
402 		p->p_vmspace = &vmspace0;
403 		PROC_VMSPACE_UNLOCK(p);
404 		pmap_activate(td);
405 		vmspace_dofree(vm);
406 	}
407 	vmspace_container_reset(p);
408 }
409 
410 /* Acquire reference to vmspace owned by another process. */
411 
412 struct vmspace *
413 vmspace_acquire_ref(struct proc *p)
414 {
415 	struct vmspace *vm;
416 	int refcnt;
417 
418 	PROC_VMSPACE_LOCK(p);
419 	vm = p->p_vmspace;
420 	if (vm == NULL) {
421 		PROC_VMSPACE_UNLOCK(p);
422 		return (NULL);
423 	}
424 	do {
425 		refcnt = vm->vm_refcnt;
426 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
427 			PROC_VMSPACE_UNLOCK(p);
428 			return (NULL);
429 		}
430 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
431 	if (vm != p->p_vmspace) {
432 		PROC_VMSPACE_UNLOCK(p);
433 		vmspace_free(vm);
434 		return (NULL);
435 	}
436 	PROC_VMSPACE_UNLOCK(p);
437 	return (vm);
438 }
439 
440 void
441 _vm_map_lock(vm_map_t map, const char *file, int line)
442 {
443 
444 	if (map->system_map)
445 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
446 	else
447 		sx_xlock_(&map->lock, file, line);
448 	map->timestamp++;
449 }
450 
451 static void
452 vm_map_process_deferred(void)
453 {
454 	struct thread *td;
455 	vm_map_entry_t entry, next;
456 	vm_object_t object;
457 
458 	td = curthread;
459 	entry = td->td_map_def_user;
460 	td->td_map_def_user = NULL;
461 	while (entry != NULL) {
462 		next = entry->next;
463 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
464 			/*
465 			 * Decrement the object's writemappings and
466 			 * possibly the vnode's v_writecount.
467 			 */
468 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
469 			    ("Submap with writecount"));
470 			object = entry->object.vm_object;
471 			KASSERT(object != NULL, ("No object for writecount"));
472 			vnode_pager_release_writecount(object, entry->start,
473 			    entry->end);
474 		}
475 		vm_map_entry_deallocate(entry, FALSE);
476 		entry = next;
477 	}
478 }
479 
480 void
481 _vm_map_unlock(vm_map_t map, const char *file, int line)
482 {
483 
484 	if (map->system_map)
485 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
486 	else {
487 		sx_xunlock_(&map->lock, file, line);
488 		vm_map_process_deferred();
489 	}
490 }
491 
492 void
493 _vm_map_lock_read(vm_map_t map, const char *file, int line)
494 {
495 
496 	if (map->system_map)
497 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
498 	else
499 		sx_slock_(&map->lock, file, line);
500 }
501 
502 void
503 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
504 {
505 
506 	if (map->system_map)
507 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
508 	else {
509 		sx_sunlock_(&map->lock, file, line);
510 		vm_map_process_deferred();
511 	}
512 }
513 
514 int
515 _vm_map_trylock(vm_map_t map, const char *file, int line)
516 {
517 	int error;
518 
519 	error = map->system_map ?
520 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
521 	    !sx_try_xlock_(&map->lock, file, line);
522 	if (error == 0)
523 		map->timestamp++;
524 	return (error == 0);
525 }
526 
527 int
528 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
529 {
530 	int error;
531 
532 	error = map->system_map ?
533 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
534 	    !sx_try_slock_(&map->lock, file, line);
535 	return (error == 0);
536 }
537 
538 /*
539  *	_vm_map_lock_upgrade:	[ internal use only ]
540  *
541  *	Tries to upgrade a read (shared) lock on the specified map to a write
542  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
543  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
544  *	returned without a read or write lock held.
545  *
546  *	Requires that the map be read locked.
547  */
548 int
549 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
550 {
551 	unsigned int last_timestamp;
552 
553 	if (map->system_map) {
554 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
555 	} else {
556 		if (!sx_try_upgrade_(&map->lock, file, line)) {
557 			last_timestamp = map->timestamp;
558 			sx_sunlock_(&map->lock, file, line);
559 			vm_map_process_deferred();
560 			/*
561 			 * If the map's timestamp does not change while the
562 			 * map is unlocked, then the upgrade succeeds.
563 			 */
564 			sx_xlock_(&map->lock, file, line);
565 			if (last_timestamp != map->timestamp) {
566 				sx_xunlock_(&map->lock, file, line);
567 				return (1);
568 			}
569 		}
570 	}
571 	map->timestamp++;
572 	return (0);
573 }
574 
575 void
576 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
577 {
578 
579 	if (map->system_map) {
580 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
581 	} else
582 		sx_downgrade_(&map->lock, file, line);
583 }
584 
585 /*
586  *	vm_map_locked:
587  *
588  *	Returns a non-zero value if the caller holds a write (exclusive) lock
589  *	on the specified map and the value "0" otherwise.
590  */
591 int
592 vm_map_locked(vm_map_t map)
593 {
594 
595 	if (map->system_map)
596 		return (mtx_owned(&map->system_mtx));
597 	else
598 		return (sx_xlocked(&map->lock));
599 }
600 
601 #ifdef INVARIANTS
602 static void
603 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
604 {
605 
606 	if (map->system_map)
607 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
608 	else
609 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
610 }
611 
612 #define	VM_MAP_ASSERT_LOCKED(map) \
613     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
614 #else
615 #define	VM_MAP_ASSERT_LOCKED(map)
616 #endif
617 
618 /*
619  *	_vm_map_unlock_and_wait:
620  *
621  *	Atomically releases the lock on the specified map and puts the calling
622  *	thread to sleep.  The calling thread will remain asleep until either
623  *	vm_map_wakeup() is performed on the map or the specified timeout is
624  *	exceeded.
625  *
626  *	WARNING!  This function does not perform deferred deallocations of
627  *	objects and map	entries.  Therefore, the calling thread is expected to
628  *	reacquire the map lock after reawakening and later perform an ordinary
629  *	unlock operation, such as vm_map_unlock(), before completing its
630  *	operation on the map.
631  */
632 int
633 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
634 {
635 
636 	mtx_lock(&map_sleep_mtx);
637 	if (map->system_map)
638 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
639 	else
640 		sx_xunlock_(&map->lock, file, line);
641 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
642 	    timo));
643 }
644 
645 /*
646  *	vm_map_wakeup:
647  *
648  *	Awaken any threads that have slept on the map using
649  *	vm_map_unlock_and_wait().
650  */
651 void
652 vm_map_wakeup(vm_map_t map)
653 {
654 
655 	/*
656 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
657 	 * from being performed (and lost) between the map unlock
658 	 * and the msleep() in _vm_map_unlock_and_wait().
659 	 */
660 	mtx_lock(&map_sleep_mtx);
661 	mtx_unlock(&map_sleep_mtx);
662 	wakeup(&map->root);
663 }
664 
665 void
666 vm_map_busy(vm_map_t map)
667 {
668 
669 	VM_MAP_ASSERT_LOCKED(map);
670 	map->busy++;
671 }
672 
673 void
674 vm_map_unbusy(vm_map_t map)
675 {
676 
677 	VM_MAP_ASSERT_LOCKED(map);
678 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
679 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
680 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
681 		wakeup(&map->busy);
682 	}
683 }
684 
685 void
686 vm_map_wait_busy(vm_map_t map)
687 {
688 
689 	VM_MAP_ASSERT_LOCKED(map);
690 	while (map->busy) {
691 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
692 		if (map->system_map)
693 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
694 		else
695 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
696 	}
697 	map->timestamp++;
698 }
699 
700 long
701 vmspace_resident_count(struct vmspace *vmspace)
702 {
703 	return pmap_resident_count(vmspace_pmap(vmspace));
704 }
705 
706 /*
707  *	vm_map_create:
708  *
709  *	Creates and returns a new empty VM map with
710  *	the given physical map structure, and having
711  *	the given lower and upper address bounds.
712  */
713 vm_map_t
714 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
715 {
716 	vm_map_t result;
717 
718 	result = uma_zalloc(mapzone, M_WAITOK);
719 	CTR1(KTR_VM, "vm_map_create: %p", result);
720 	_vm_map_init(result, pmap, min, max);
721 	return (result);
722 }
723 
724 /*
725  * Initialize an existing vm_map structure
726  * such as that in the vmspace structure.
727  */
728 static void
729 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
730 {
731 
732 	map->header.next = map->header.prev = &map->header;
733 	map->needs_wakeup = FALSE;
734 	map->system_map = 0;
735 	map->pmap = pmap;
736 	map->min_offset = min;
737 	map->max_offset = max;
738 	map->flags = 0;
739 	map->root = NULL;
740 	map->timestamp = 0;
741 	map->busy = 0;
742 }
743 
744 void
745 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
746 {
747 
748 	_vm_map_init(map, pmap, min, max);
749 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
750 	sx_init(&map->lock, "user map");
751 }
752 
753 /*
754  *	vm_map_entry_dispose:	[ internal use only ]
755  *
756  *	Inverse of vm_map_entry_create.
757  */
758 static void
759 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
760 {
761 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
762 }
763 
764 /*
765  *	vm_map_entry_create:	[ internal use only ]
766  *
767  *	Allocates a VM map entry for insertion.
768  *	No entry fields are filled in.
769  */
770 static vm_map_entry_t
771 vm_map_entry_create(vm_map_t map)
772 {
773 	vm_map_entry_t new_entry;
774 
775 	if (map->system_map)
776 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
777 	else
778 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
779 	if (new_entry == NULL)
780 		panic("vm_map_entry_create: kernel resources exhausted");
781 	return (new_entry);
782 }
783 
784 /*
785  *	vm_map_entry_set_behavior:
786  *
787  *	Set the expected access behavior, either normal, random, or
788  *	sequential.
789  */
790 static inline void
791 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
792 {
793 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
794 	    (behavior & MAP_ENTRY_BEHAV_MASK);
795 }
796 
797 /*
798  *	vm_map_entry_set_max_free:
799  *
800  *	Set the max_free field in a vm_map_entry.
801  */
802 static inline void
803 vm_map_entry_set_max_free(vm_map_entry_t entry)
804 {
805 
806 	entry->max_free = entry->adj_free;
807 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
808 		entry->max_free = entry->left->max_free;
809 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
810 		entry->max_free = entry->right->max_free;
811 }
812 
813 /*
814  *	vm_map_entry_splay:
815  *
816  *	The Sleator and Tarjan top-down splay algorithm with the
817  *	following variation.  Max_free must be computed bottom-up, so
818  *	on the downward pass, maintain the left and right spines in
819  *	reverse order.  Then, make a second pass up each side to fix
820  *	the pointers and compute max_free.  The time bound is O(log n)
821  *	amortized.
822  *
823  *	The new root is the vm_map_entry containing "addr", or else an
824  *	adjacent entry (lower or higher) if addr is not in the tree.
825  *
826  *	The map must be locked, and leaves it so.
827  *
828  *	Returns: the new root.
829  */
830 static vm_map_entry_t
831 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
832 {
833 	vm_map_entry_t llist, rlist;
834 	vm_map_entry_t ltree, rtree;
835 	vm_map_entry_t y;
836 
837 	/* Special case of empty tree. */
838 	if (root == NULL)
839 		return (root);
840 
841 	/*
842 	 * Pass One: Splay down the tree until we find addr or a NULL
843 	 * pointer where addr would go.  llist and rlist are the two
844 	 * sides in reverse order (bottom-up), with llist linked by
845 	 * the right pointer and rlist linked by the left pointer in
846 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
847 	 * the two spines.
848 	 */
849 	llist = NULL;
850 	rlist = NULL;
851 	for (;;) {
852 		/* root is never NULL in here. */
853 		if (addr < root->start) {
854 			y = root->left;
855 			if (y == NULL)
856 				break;
857 			if (addr < y->start && y->left != NULL) {
858 				/* Rotate right and put y on rlist. */
859 				root->left = y->right;
860 				y->right = root;
861 				vm_map_entry_set_max_free(root);
862 				root = y->left;
863 				y->left = rlist;
864 				rlist = y;
865 			} else {
866 				/* Put root on rlist. */
867 				root->left = rlist;
868 				rlist = root;
869 				root = y;
870 			}
871 		} else if (addr >= root->end) {
872 			y = root->right;
873 			if (y == NULL)
874 				break;
875 			if (addr >= y->end && y->right != NULL) {
876 				/* Rotate left and put y on llist. */
877 				root->right = y->left;
878 				y->left = root;
879 				vm_map_entry_set_max_free(root);
880 				root = y->right;
881 				y->right = llist;
882 				llist = y;
883 			} else {
884 				/* Put root on llist. */
885 				root->right = llist;
886 				llist = root;
887 				root = y;
888 			}
889 		} else
890 			break;
891 	}
892 
893 	/*
894 	 * Pass Two: Walk back up the two spines, flip the pointers
895 	 * and set max_free.  The subtrees of the root go at the
896 	 * bottom of llist and rlist.
897 	 */
898 	ltree = root->left;
899 	while (llist != NULL) {
900 		y = llist->right;
901 		llist->right = ltree;
902 		vm_map_entry_set_max_free(llist);
903 		ltree = llist;
904 		llist = y;
905 	}
906 	rtree = root->right;
907 	while (rlist != NULL) {
908 		y = rlist->left;
909 		rlist->left = rtree;
910 		vm_map_entry_set_max_free(rlist);
911 		rtree = rlist;
912 		rlist = y;
913 	}
914 
915 	/*
916 	 * Final assembly: add ltree and rtree as subtrees of root.
917 	 */
918 	root->left = ltree;
919 	root->right = rtree;
920 	vm_map_entry_set_max_free(root);
921 
922 	return (root);
923 }
924 
925 /*
926  *	vm_map_entry_{un,}link:
927  *
928  *	Insert/remove entries from maps.
929  */
930 static void
931 vm_map_entry_link(vm_map_t map,
932 		  vm_map_entry_t after_where,
933 		  vm_map_entry_t entry)
934 {
935 
936 	CTR4(KTR_VM,
937 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
938 	    map->nentries, entry, after_where);
939 	VM_MAP_ASSERT_LOCKED(map);
940 	map->nentries++;
941 	entry->prev = after_where;
942 	entry->next = after_where->next;
943 	entry->next->prev = entry;
944 	after_where->next = entry;
945 
946 	if (after_where != &map->header) {
947 		if (after_where != map->root)
948 			vm_map_entry_splay(after_where->start, map->root);
949 		entry->right = after_where->right;
950 		entry->left = after_where;
951 		after_where->right = NULL;
952 		after_where->adj_free = entry->start - after_where->end;
953 		vm_map_entry_set_max_free(after_where);
954 	} else {
955 		entry->right = map->root;
956 		entry->left = NULL;
957 	}
958 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
959 	    entry->next->start) - entry->end;
960 	vm_map_entry_set_max_free(entry);
961 	map->root = entry;
962 }
963 
964 static void
965 vm_map_entry_unlink(vm_map_t map,
966 		    vm_map_entry_t entry)
967 {
968 	vm_map_entry_t next, prev, root;
969 
970 	VM_MAP_ASSERT_LOCKED(map);
971 	if (entry != map->root)
972 		vm_map_entry_splay(entry->start, map->root);
973 	if (entry->left == NULL)
974 		root = entry->right;
975 	else {
976 		root = vm_map_entry_splay(entry->start, entry->left);
977 		root->right = entry->right;
978 		root->adj_free = (entry->next == &map->header ? map->max_offset :
979 		    entry->next->start) - root->end;
980 		vm_map_entry_set_max_free(root);
981 	}
982 	map->root = root;
983 
984 	prev = entry->prev;
985 	next = entry->next;
986 	next->prev = prev;
987 	prev->next = next;
988 	map->nentries--;
989 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
990 	    map->nentries, entry);
991 }
992 
993 /*
994  *	vm_map_entry_resize_free:
995  *
996  *	Recompute the amount of free space following a vm_map_entry
997  *	and propagate that value up the tree.  Call this function after
998  *	resizing a map entry in-place, that is, without a call to
999  *	vm_map_entry_link() or _unlink().
1000  *
1001  *	The map must be locked, and leaves it so.
1002  */
1003 static void
1004 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1005 {
1006 
1007 	/*
1008 	 * Using splay trees without parent pointers, propagating
1009 	 * max_free up the tree is done by moving the entry to the
1010 	 * root and making the change there.
1011 	 */
1012 	if (entry != map->root)
1013 		map->root = vm_map_entry_splay(entry->start, map->root);
1014 
1015 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1016 	    entry->next->start) - entry->end;
1017 	vm_map_entry_set_max_free(entry);
1018 }
1019 
1020 /*
1021  *	vm_map_lookup_entry:	[ internal use only ]
1022  *
1023  *	Finds the map entry containing (or
1024  *	immediately preceding) the specified address
1025  *	in the given map; the entry is returned
1026  *	in the "entry" parameter.  The boolean
1027  *	result indicates whether the address is
1028  *	actually contained in the map.
1029  */
1030 boolean_t
1031 vm_map_lookup_entry(
1032 	vm_map_t map,
1033 	vm_offset_t address,
1034 	vm_map_entry_t *entry)	/* OUT */
1035 {
1036 	vm_map_entry_t cur;
1037 	boolean_t locked;
1038 
1039 	/*
1040 	 * If the map is empty, then the map entry immediately preceding
1041 	 * "address" is the map's header.
1042 	 */
1043 	cur = map->root;
1044 	if (cur == NULL)
1045 		*entry = &map->header;
1046 	else if (address >= cur->start && cur->end > address) {
1047 		*entry = cur;
1048 		return (TRUE);
1049 	} else if ((locked = vm_map_locked(map)) ||
1050 	    sx_try_upgrade(&map->lock)) {
1051 		/*
1052 		 * Splay requires a write lock on the map.  However, it only
1053 		 * restructures the binary search tree; it does not otherwise
1054 		 * change the map.  Thus, the map's timestamp need not change
1055 		 * on a temporary upgrade.
1056 		 */
1057 		map->root = cur = vm_map_entry_splay(address, cur);
1058 		if (!locked)
1059 			sx_downgrade(&map->lock);
1060 
1061 		/*
1062 		 * If "address" is contained within a map entry, the new root
1063 		 * is that map entry.  Otherwise, the new root is a map entry
1064 		 * immediately before or after "address".
1065 		 */
1066 		if (address >= cur->start) {
1067 			*entry = cur;
1068 			if (cur->end > address)
1069 				return (TRUE);
1070 		} else
1071 			*entry = cur->prev;
1072 	} else
1073 		/*
1074 		 * Since the map is only locked for read access, perform a
1075 		 * standard binary search tree lookup for "address".
1076 		 */
1077 		for (;;) {
1078 			if (address < cur->start) {
1079 				if (cur->left == NULL) {
1080 					*entry = cur->prev;
1081 					break;
1082 				}
1083 				cur = cur->left;
1084 			} else if (cur->end > address) {
1085 				*entry = cur;
1086 				return (TRUE);
1087 			} else {
1088 				if (cur->right == NULL) {
1089 					*entry = cur;
1090 					break;
1091 				}
1092 				cur = cur->right;
1093 			}
1094 		}
1095 	return (FALSE);
1096 }
1097 
1098 /*
1099  *	vm_map_insert:
1100  *
1101  *	Inserts the given whole VM object into the target
1102  *	map at the specified address range.  The object's
1103  *	size should match that of the address range.
1104  *
1105  *	Requires that the map be locked, and leaves it so.
1106  *
1107  *	If object is non-NULL, ref count must be bumped by caller
1108  *	prior to making call to account for the new entry.
1109  */
1110 int
1111 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1112 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1113 	      int cow)
1114 {
1115 	vm_map_entry_t new_entry;
1116 	vm_map_entry_t prev_entry;
1117 	vm_map_entry_t temp_entry;
1118 	vm_eflags_t protoeflags;
1119 	struct ucred *cred;
1120 	vm_inherit_t inheritance;
1121 	boolean_t charge_prev_obj;
1122 
1123 	VM_MAP_ASSERT_LOCKED(map);
1124 
1125 	/*
1126 	 * Check that the start and end points are not bogus.
1127 	 */
1128 	if ((start < map->min_offset) || (end > map->max_offset) ||
1129 	    (start >= end))
1130 		return (KERN_INVALID_ADDRESS);
1131 
1132 	/*
1133 	 * Find the entry prior to the proposed starting address; if it's part
1134 	 * of an existing entry, this range is bogus.
1135 	 */
1136 	if (vm_map_lookup_entry(map, start, &temp_entry))
1137 		return (KERN_NO_SPACE);
1138 
1139 	prev_entry = temp_entry;
1140 
1141 	/*
1142 	 * Assert that the next entry doesn't overlap the end point.
1143 	 */
1144 	if ((prev_entry->next != &map->header) &&
1145 	    (prev_entry->next->start < end))
1146 		return (KERN_NO_SPACE);
1147 
1148 	protoeflags = 0;
1149 	charge_prev_obj = FALSE;
1150 
1151 	if (cow & MAP_COPY_ON_WRITE)
1152 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1153 
1154 	if (cow & MAP_NOFAULT) {
1155 		protoeflags |= MAP_ENTRY_NOFAULT;
1156 
1157 		KASSERT(object == NULL,
1158 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1159 	}
1160 	if (cow & MAP_DISABLE_SYNCER)
1161 		protoeflags |= MAP_ENTRY_NOSYNC;
1162 	if (cow & MAP_DISABLE_COREDUMP)
1163 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1164 	if (cow & MAP_VN_WRITECOUNT)
1165 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1166 	if (cow & MAP_INHERIT_SHARE)
1167 		inheritance = VM_INHERIT_SHARE;
1168 	else
1169 		inheritance = VM_INHERIT_DEFAULT;
1170 
1171 	cred = NULL;
1172 	KASSERT((object != kmem_object && object != kernel_object) ||
1173 	    ((object == kmem_object || object == kernel_object) &&
1174 		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1175 	    ("kmem or kernel object and cow"));
1176 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1177 		goto charged;
1178 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1179 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1180 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1181 			return (KERN_RESOURCE_SHORTAGE);
1182 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1183 		    object->cred == NULL,
1184 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1185 		cred = curthread->td_ucred;
1186 		crhold(cred);
1187 		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1188 			charge_prev_obj = TRUE;
1189 	}
1190 
1191 charged:
1192 	/* Expand the kernel pmap, if necessary. */
1193 	if (map == kernel_map && end > kernel_vm_end)
1194 		pmap_growkernel(end);
1195 	if (object != NULL) {
1196 		/*
1197 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1198 		 * is trivially proven to be the only mapping for any
1199 		 * of the object's pages.  (Object granularity
1200 		 * reference counting is insufficient to recognize
1201 		 * aliases with precision.)
1202 		 */
1203 		VM_OBJECT_WLOCK(object);
1204 		if (object->ref_count > 1 || object->shadow_count != 0)
1205 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1206 		VM_OBJECT_WUNLOCK(object);
1207 	}
1208 	else if ((prev_entry != &map->header) &&
1209 		 (prev_entry->eflags == protoeflags) &&
1210 		 (prev_entry->end == start) &&
1211 		 (prev_entry->wired_count == 0) &&
1212 		 (prev_entry->cred == cred ||
1213 		  (prev_entry->object.vm_object != NULL &&
1214 		   (prev_entry->object.vm_object->cred == cred))) &&
1215 		   vm_object_coalesce(prev_entry->object.vm_object,
1216 		       prev_entry->offset,
1217 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1218 		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1219 		/*
1220 		 * We were able to extend the object.  Determine if we
1221 		 * can extend the previous map entry to include the
1222 		 * new range as well.
1223 		 */
1224 		if ((prev_entry->inheritance == inheritance) &&
1225 		    (prev_entry->protection == prot) &&
1226 		    (prev_entry->max_protection == max)) {
1227 			map->size += (end - prev_entry->end);
1228 			prev_entry->end = end;
1229 			vm_map_entry_resize_free(map, prev_entry);
1230 			vm_map_simplify_entry(map, prev_entry);
1231 			if (cred != NULL)
1232 				crfree(cred);
1233 			return (KERN_SUCCESS);
1234 		}
1235 
1236 		/*
1237 		 * If we can extend the object but cannot extend the
1238 		 * map entry, we have to create a new map entry.  We
1239 		 * must bump the ref count on the extended object to
1240 		 * account for it.  object may be NULL.
1241 		 */
1242 		object = prev_entry->object.vm_object;
1243 		offset = prev_entry->offset +
1244 			(prev_entry->end - prev_entry->start);
1245 		vm_object_reference(object);
1246 		if (cred != NULL && object != NULL && object->cred != NULL &&
1247 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1248 			/* Object already accounts for this uid. */
1249 			crfree(cred);
1250 			cred = NULL;
1251 		}
1252 	}
1253 
1254 	/*
1255 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1256 	 * in things like the buffer map where we manage kva but do not manage
1257 	 * backing objects.
1258 	 */
1259 
1260 	/*
1261 	 * Create a new entry
1262 	 */
1263 	new_entry = vm_map_entry_create(map);
1264 	new_entry->start = start;
1265 	new_entry->end = end;
1266 	new_entry->cred = NULL;
1267 
1268 	new_entry->eflags = protoeflags;
1269 	new_entry->object.vm_object = object;
1270 	new_entry->offset = offset;
1271 	new_entry->avail_ssize = 0;
1272 
1273 	new_entry->inheritance = inheritance;
1274 	new_entry->protection = prot;
1275 	new_entry->max_protection = max;
1276 	new_entry->wired_count = 0;
1277 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1278 	new_entry->next_read = OFF_TO_IDX(offset);
1279 
1280 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1281 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1282 	new_entry->cred = cred;
1283 
1284 	/*
1285 	 * Insert the new entry into the list
1286 	 */
1287 	vm_map_entry_link(map, prev_entry, new_entry);
1288 	map->size += new_entry->end - new_entry->start;
1289 
1290 	/*
1291 	 * It may be possible to merge the new entry with the next and/or
1292 	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1293 	 * panic can result from merging such entries.
1294 	 */
1295 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1296 		vm_map_simplify_entry(map, new_entry);
1297 
1298 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1299 		vm_map_pmap_enter(map, start, prot,
1300 				    object, OFF_TO_IDX(offset), end - start,
1301 				    cow & MAP_PREFAULT_PARTIAL);
1302 	}
1303 
1304 	return (KERN_SUCCESS);
1305 }
1306 
1307 /*
1308  *	vm_map_findspace:
1309  *
1310  *	Find the first fit (lowest VM address) for "length" free bytes
1311  *	beginning at address >= start in the given map.
1312  *
1313  *	In a vm_map_entry, "adj_free" is the amount of free space
1314  *	adjacent (higher address) to this entry, and "max_free" is the
1315  *	maximum amount of contiguous free space in its subtree.  This
1316  *	allows finding a free region in one path down the tree, so
1317  *	O(log n) amortized with splay trees.
1318  *
1319  *	The map must be locked, and leaves it so.
1320  *
1321  *	Returns: 0 on success, and starting address in *addr,
1322  *		 1 if insufficient space.
1323  */
1324 int
1325 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1326     vm_offset_t *addr)	/* OUT */
1327 {
1328 	vm_map_entry_t entry;
1329 	vm_offset_t st;
1330 
1331 	/*
1332 	 * Request must fit within min/max VM address and must avoid
1333 	 * address wrap.
1334 	 */
1335 	if (start < map->min_offset)
1336 		start = map->min_offset;
1337 	if (start + length > map->max_offset || start + length < start)
1338 		return (1);
1339 
1340 	/* Empty tree means wide open address space. */
1341 	if (map->root == NULL) {
1342 		*addr = start;
1343 		return (0);
1344 	}
1345 
1346 	/*
1347 	 * After splay, if start comes before root node, then there
1348 	 * must be a gap from start to the root.
1349 	 */
1350 	map->root = vm_map_entry_splay(start, map->root);
1351 	if (start + length <= map->root->start) {
1352 		*addr = start;
1353 		return (0);
1354 	}
1355 
1356 	/*
1357 	 * Root is the last node that might begin its gap before
1358 	 * start, and this is the last comparison where address
1359 	 * wrap might be a problem.
1360 	 */
1361 	st = (start > map->root->end) ? start : map->root->end;
1362 	if (length <= map->root->end + map->root->adj_free - st) {
1363 		*addr = st;
1364 		return (0);
1365 	}
1366 
1367 	/* With max_free, can immediately tell if no solution. */
1368 	entry = map->root->right;
1369 	if (entry == NULL || length > entry->max_free)
1370 		return (1);
1371 
1372 	/*
1373 	 * Search the right subtree in the order: left subtree, root,
1374 	 * right subtree (first fit).  The previous splay implies that
1375 	 * all regions in the right subtree have addresses > start.
1376 	 */
1377 	while (entry != NULL) {
1378 		if (entry->left != NULL && entry->left->max_free >= length)
1379 			entry = entry->left;
1380 		else if (entry->adj_free >= length) {
1381 			*addr = entry->end;
1382 			return (0);
1383 		} else
1384 			entry = entry->right;
1385 	}
1386 
1387 	/* Can't get here, so panic if we do. */
1388 	panic("vm_map_findspace: max_free corrupt");
1389 }
1390 
1391 int
1392 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1393     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1394     vm_prot_t max, int cow)
1395 {
1396 	vm_offset_t end;
1397 	int result;
1398 
1399 	end = start + length;
1400 	vm_map_lock(map);
1401 	VM_MAP_RANGE_CHECK(map, start, end);
1402 	(void) vm_map_delete(map, start, end);
1403 	result = vm_map_insert(map, object, offset, start, end, prot,
1404 	    max, cow);
1405 	vm_map_unlock(map);
1406 	return (result);
1407 }
1408 
1409 /*
1410  *	vm_map_find finds an unallocated region in the target address
1411  *	map with the given length.  The search is defined to be
1412  *	first-fit from the specified address; the region found is
1413  *	returned in the same parameter.
1414  *
1415  *	If object is non-NULL, ref count must be bumped by caller
1416  *	prior to making call to account for the new entry.
1417  */
1418 int
1419 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1420 	    vm_offset_t *addr,	/* IN/OUT */
1421 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1422 	    vm_prot_t prot, vm_prot_t max, int cow)
1423 {
1424 	vm_offset_t alignment, initial_addr, start;
1425 	int result;
1426 
1427 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1428 	    (object->flags & OBJ_COLORED) == 0))
1429 		find_space = VMFS_ANY_SPACE;
1430 	if (find_space >> 8 != 0) {
1431 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1432 		alignment = (vm_offset_t)1 << (find_space >> 8);
1433 	} else
1434 		alignment = 0;
1435 	initial_addr = *addr;
1436 again:
1437 	start = initial_addr;
1438 	vm_map_lock(map);
1439 	do {
1440 		if (find_space != VMFS_NO_SPACE) {
1441 			if (vm_map_findspace(map, start, length, addr) ||
1442 			    (max_addr != 0 && *addr + length > max_addr)) {
1443 				vm_map_unlock(map);
1444 				if (find_space == VMFS_OPTIMAL_SPACE) {
1445 					find_space = VMFS_ANY_SPACE;
1446 					goto again;
1447 				}
1448 				return (KERN_NO_SPACE);
1449 			}
1450 			switch (find_space) {
1451 			case VMFS_SUPER_SPACE:
1452 			case VMFS_OPTIMAL_SPACE:
1453 				pmap_align_superpage(object, offset, addr,
1454 				    length);
1455 				break;
1456 			case VMFS_ANY_SPACE:
1457 				break;
1458 			default:
1459 				if ((*addr & (alignment - 1)) != 0) {
1460 					*addr &= ~(alignment - 1);
1461 					*addr += alignment;
1462 				}
1463 				break;
1464 			}
1465 
1466 			start = *addr;
1467 		}
1468 		result = vm_map_insert(map, object, offset, start, start +
1469 		    length, prot, max, cow);
1470 	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1471 	    find_space != VMFS_ANY_SPACE);
1472 	vm_map_unlock(map);
1473 	return (result);
1474 }
1475 
1476 /*
1477  *	vm_map_simplify_entry:
1478  *
1479  *	Simplify the given map entry by merging with either neighbor.  This
1480  *	routine also has the ability to merge with both neighbors.
1481  *
1482  *	The map must be locked.
1483  *
1484  *	This routine guarentees that the passed entry remains valid (though
1485  *	possibly extended).  When merging, this routine may delete one or
1486  *	both neighbors.
1487  */
1488 void
1489 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1490 {
1491 	vm_map_entry_t next, prev;
1492 	vm_size_t prevsize, esize;
1493 
1494 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1495 		return;
1496 
1497 	prev = entry->prev;
1498 	if (prev != &map->header) {
1499 		prevsize = prev->end - prev->start;
1500 		if ( (prev->end == entry->start) &&
1501 		     (prev->object.vm_object == entry->object.vm_object) &&
1502 		     (!prev->object.vm_object ||
1503 			(prev->offset + prevsize == entry->offset)) &&
1504 		     (prev->eflags == entry->eflags) &&
1505 		     (prev->protection == entry->protection) &&
1506 		     (prev->max_protection == entry->max_protection) &&
1507 		     (prev->inheritance == entry->inheritance) &&
1508 		     (prev->wired_count == entry->wired_count) &&
1509 		     (prev->cred == entry->cred)) {
1510 			vm_map_entry_unlink(map, prev);
1511 			entry->start = prev->start;
1512 			entry->offset = prev->offset;
1513 			if (entry->prev != &map->header)
1514 				vm_map_entry_resize_free(map, entry->prev);
1515 
1516 			/*
1517 			 * If the backing object is a vnode object,
1518 			 * vm_object_deallocate() calls vrele().
1519 			 * However, vrele() does not lock the vnode
1520 			 * because the vnode has additional
1521 			 * references.  Thus, the map lock can be kept
1522 			 * without causing a lock-order reversal with
1523 			 * the vnode lock.
1524 			 *
1525 			 * Since we count the number of virtual page
1526 			 * mappings in object->un_pager.vnp.writemappings,
1527 			 * the writemappings value should not be adjusted
1528 			 * when the entry is disposed of.
1529 			 */
1530 			if (prev->object.vm_object)
1531 				vm_object_deallocate(prev->object.vm_object);
1532 			if (prev->cred != NULL)
1533 				crfree(prev->cred);
1534 			vm_map_entry_dispose(map, prev);
1535 		}
1536 	}
1537 
1538 	next = entry->next;
1539 	if (next != &map->header) {
1540 		esize = entry->end - entry->start;
1541 		if ((entry->end == next->start) &&
1542 		    (next->object.vm_object == entry->object.vm_object) &&
1543 		     (!entry->object.vm_object ||
1544 			(entry->offset + esize == next->offset)) &&
1545 		    (next->eflags == entry->eflags) &&
1546 		    (next->protection == entry->protection) &&
1547 		    (next->max_protection == entry->max_protection) &&
1548 		    (next->inheritance == entry->inheritance) &&
1549 		    (next->wired_count == entry->wired_count) &&
1550 		    (next->cred == entry->cred)) {
1551 			vm_map_entry_unlink(map, next);
1552 			entry->end = next->end;
1553 			vm_map_entry_resize_free(map, entry);
1554 
1555 			/*
1556 			 * See comment above.
1557 			 */
1558 			if (next->object.vm_object)
1559 				vm_object_deallocate(next->object.vm_object);
1560 			if (next->cred != NULL)
1561 				crfree(next->cred);
1562 			vm_map_entry_dispose(map, next);
1563 		}
1564 	}
1565 }
1566 /*
1567  *	vm_map_clip_start:	[ internal use only ]
1568  *
1569  *	Asserts that the given entry begins at or after
1570  *	the specified address; if necessary,
1571  *	it splits the entry into two.
1572  */
1573 #define vm_map_clip_start(map, entry, startaddr) \
1574 { \
1575 	if (startaddr > entry->start) \
1576 		_vm_map_clip_start(map, entry, startaddr); \
1577 }
1578 
1579 /*
1580  *	This routine is called only when it is known that
1581  *	the entry must be split.
1582  */
1583 static void
1584 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1585 {
1586 	vm_map_entry_t new_entry;
1587 
1588 	VM_MAP_ASSERT_LOCKED(map);
1589 
1590 	/*
1591 	 * Split off the front portion -- note that we must insert the new
1592 	 * entry BEFORE this one, so that this entry has the specified
1593 	 * starting address.
1594 	 */
1595 	vm_map_simplify_entry(map, entry);
1596 
1597 	/*
1598 	 * If there is no object backing this entry, we might as well create
1599 	 * one now.  If we defer it, an object can get created after the map
1600 	 * is clipped, and individual objects will be created for the split-up
1601 	 * map.  This is a bit of a hack, but is also about the best place to
1602 	 * put this improvement.
1603 	 */
1604 	if (entry->object.vm_object == NULL && !map->system_map) {
1605 		vm_object_t object;
1606 		object = vm_object_allocate(OBJT_DEFAULT,
1607 				atop(entry->end - entry->start));
1608 		entry->object.vm_object = object;
1609 		entry->offset = 0;
1610 		if (entry->cred != NULL) {
1611 			object->cred = entry->cred;
1612 			object->charge = entry->end - entry->start;
1613 			entry->cred = NULL;
1614 		}
1615 	} else if (entry->object.vm_object != NULL &&
1616 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1617 		   entry->cred != NULL) {
1618 		VM_OBJECT_WLOCK(entry->object.vm_object);
1619 		KASSERT(entry->object.vm_object->cred == NULL,
1620 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1621 		entry->object.vm_object->cred = entry->cred;
1622 		entry->object.vm_object->charge = entry->end - entry->start;
1623 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1624 		entry->cred = NULL;
1625 	}
1626 
1627 	new_entry = vm_map_entry_create(map);
1628 	*new_entry = *entry;
1629 
1630 	new_entry->end = start;
1631 	entry->offset += (start - entry->start);
1632 	entry->start = start;
1633 	if (new_entry->cred != NULL)
1634 		crhold(entry->cred);
1635 
1636 	vm_map_entry_link(map, entry->prev, new_entry);
1637 
1638 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1639 		vm_object_reference(new_entry->object.vm_object);
1640 		/*
1641 		 * The object->un_pager.vnp.writemappings for the
1642 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1643 		 * kept as is here.  The virtual pages are
1644 		 * re-distributed among the clipped entries, so the sum is
1645 		 * left the same.
1646 		 */
1647 	}
1648 }
1649 
1650 /*
1651  *	vm_map_clip_end:	[ internal use only ]
1652  *
1653  *	Asserts that the given entry ends at or before
1654  *	the specified address; if necessary,
1655  *	it splits the entry into two.
1656  */
1657 #define vm_map_clip_end(map, entry, endaddr) \
1658 { \
1659 	if ((endaddr) < (entry->end)) \
1660 		_vm_map_clip_end((map), (entry), (endaddr)); \
1661 }
1662 
1663 /*
1664  *	This routine is called only when it is known that
1665  *	the entry must be split.
1666  */
1667 static void
1668 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1669 {
1670 	vm_map_entry_t new_entry;
1671 
1672 	VM_MAP_ASSERT_LOCKED(map);
1673 
1674 	/*
1675 	 * If there is no object backing this entry, we might as well create
1676 	 * one now.  If we defer it, an object can get created after the map
1677 	 * is clipped, and individual objects will be created for the split-up
1678 	 * map.  This is a bit of a hack, but is also about the best place to
1679 	 * put this improvement.
1680 	 */
1681 	if (entry->object.vm_object == NULL && !map->system_map) {
1682 		vm_object_t object;
1683 		object = vm_object_allocate(OBJT_DEFAULT,
1684 				atop(entry->end - entry->start));
1685 		entry->object.vm_object = object;
1686 		entry->offset = 0;
1687 		if (entry->cred != NULL) {
1688 			object->cred = entry->cred;
1689 			object->charge = entry->end - entry->start;
1690 			entry->cred = NULL;
1691 		}
1692 	} else if (entry->object.vm_object != NULL &&
1693 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1694 		   entry->cred != NULL) {
1695 		VM_OBJECT_WLOCK(entry->object.vm_object);
1696 		KASSERT(entry->object.vm_object->cred == NULL,
1697 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1698 		entry->object.vm_object->cred = entry->cred;
1699 		entry->object.vm_object->charge = entry->end - entry->start;
1700 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1701 		entry->cred = NULL;
1702 	}
1703 
1704 	/*
1705 	 * Create a new entry and insert it AFTER the specified entry
1706 	 */
1707 	new_entry = vm_map_entry_create(map);
1708 	*new_entry = *entry;
1709 
1710 	new_entry->start = entry->end = end;
1711 	new_entry->offset += (end - entry->start);
1712 	if (new_entry->cred != NULL)
1713 		crhold(entry->cred);
1714 
1715 	vm_map_entry_link(map, entry, new_entry);
1716 
1717 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1718 		vm_object_reference(new_entry->object.vm_object);
1719 	}
1720 }
1721 
1722 /*
1723  *	vm_map_submap:		[ kernel use only ]
1724  *
1725  *	Mark the given range as handled by a subordinate map.
1726  *
1727  *	This range must have been created with vm_map_find,
1728  *	and no other operations may have been performed on this
1729  *	range prior to calling vm_map_submap.
1730  *
1731  *	Only a limited number of operations can be performed
1732  *	within this rage after calling vm_map_submap:
1733  *		vm_fault
1734  *	[Don't try vm_map_copy!]
1735  *
1736  *	To remove a submapping, one must first remove the
1737  *	range from the superior map, and then destroy the
1738  *	submap (if desired).  [Better yet, don't try it.]
1739  */
1740 int
1741 vm_map_submap(
1742 	vm_map_t map,
1743 	vm_offset_t start,
1744 	vm_offset_t end,
1745 	vm_map_t submap)
1746 {
1747 	vm_map_entry_t entry;
1748 	int result = KERN_INVALID_ARGUMENT;
1749 
1750 	vm_map_lock(map);
1751 
1752 	VM_MAP_RANGE_CHECK(map, start, end);
1753 
1754 	if (vm_map_lookup_entry(map, start, &entry)) {
1755 		vm_map_clip_start(map, entry, start);
1756 	} else
1757 		entry = entry->next;
1758 
1759 	vm_map_clip_end(map, entry, end);
1760 
1761 	if ((entry->start == start) && (entry->end == end) &&
1762 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1763 	    (entry->object.vm_object == NULL)) {
1764 		entry->object.sub_map = submap;
1765 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1766 		result = KERN_SUCCESS;
1767 	}
1768 	vm_map_unlock(map);
1769 
1770 	return (result);
1771 }
1772 
1773 /*
1774  * The maximum number of pages to map
1775  */
1776 #define	MAX_INIT_PT	96
1777 
1778 /*
1779  *	vm_map_pmap_enter:
1780  *
1781  *	Preload read-only mappings for the specified object's resident pages
1782  *	into the target map.  If "flags" is MAP_PREFAULT_PARTIAL, then only
1783  *	the resident pages within the address range [addr, addr + ulmin(size,
1784  *	ptoa(MAX_INIT_PT))) are mapped.  Otherwise, all resident pages within
1785  *	the specified address range are mapped.  This eliminates many soft
1786  *	faults on process startup and immediately after an mmap(2).  Because
1787  *	these are speculative mappings, cached pages are not reactivated and
1788  *	mapped.
1789  */
1790 void
1791 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1792     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1793 {
1794 	vm_offset_t start;
1795 	vm_page_t p, p_start;
1796 	vm_pindex_t psize, tmpidx;
1797 
1798 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1799 		return;
1800 	VM_OBJECT_RLOCK(object);
1801 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1802 		VM_OBJECT_RUNLOCK(object);
1803 		VM_OBJECT_WLOCK(object);
1804 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1805 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1806 			    size);
1807 			VM_OBJECT_WUNLOCK(object);
1808 			return;
1809 		}
1810 		VM_OBJECT_LOCK_DOWNGRADE(object);
1811 	}
1812 
1813 	psize = atop(size);
1814 	if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1815 		psize = MAX_INIT_PT;
1816 	if (psize + pindex > object->size) {
1817 		if (object->size < pindex) {
1818 			VM_OBJECT_RUNLOCK(object);
1819 			return;
1820 		}
1821 		psize = object->size - pindex;
1822 	}
1823 
1824 	start = 0;
1825 	p_start = NULL;
1826 
1827 	p = vm_page_find_least(object, pindex);
1828 	/*
1829 	 * Assert: the variable p is either (1) the page with the
1830 	 * least pindex greater than or equal to the parameter pindex
1831 	 * or (2) NULL.
1832 	 */
1833 	for (;
1834 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1835 	     p = TAILQ_NEXT(p, listq)) {
1836 		/*
1837 		 * don't allow an madvise to blow away our really
1838 		 * free pages allocating pv entries.
1839 		 */
1840 		if ((flags & MAP_PREFAULT_MADVISE) &&
1841 		    cnt.v_free_count < cnt.v_free_reserved) {
1842 			psize = tmpidx;
1843 			break;
1844 		}
1845 		if (p->valid == VM_PAGE_BITS_ALL) {
1846 			if (p_start == NULL) {
1847 				start = addr + ptoa(tmpidx);
1848 				p_start = p;
1849 			}
1850 		} else if (p_start != NULL) {
1851 			pmap_enter_object(map->pmap, start, addr +
1852 			    ptoa(tmpidx), p_start, prot);
1853 			p_start = NULL;
1854 		}
1855 	}
1856 	if (p_start != NULL)
1857 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1858 		    p_start, prot);
1859 	VM_OBJECT_RUNLOCK(object);
1860 }
1861 
1862 /*
1863  *	vm_map_protect:
1864  *
1865  *	Sets the protection of the specified address
1866  *	region in the target map.  If "set_max" is
1867  *	specified, the maximum protection is to be set;
1868  *	otherwise, only the current protection is affected.
1869  */
1870 int
1871 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1872 	       vm_prot_t new_prot, boolean_t set_max)
1873 {
1874 	vm_map_entry_t current, entry;
1875 	vm_object_t obj;
1876 	struct ucred *cred;
1877 	vm_prot_t old_prot;
1878 
1879 	if (start == end)
1880 		return (KERN_SUCCESS);
1881 
1882 	vm_map_lock(map);
1883 
1884 	VM_MAP_RANGE_CHECK(map, start, end);
1885 
1886 	if (vm_map_lookup_entry(map, start, &entry)) {
1887 		vm_map_clip_start(map, entry, start);
1888 	} else {
1889 		entry = entry->next;
1890 	}
1891 
1892 	/*
1893 	 * Make a first pass to check for protection violations.
1894 	 */
1895 	current = entry;
1896 	while ((current != &map->header) && (current->start < end)) {
1897 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1898 			vm_map_unlock(map);
1899 			return (KERN_INVALID_ARGUMENT);
1900 		}
1901 		if ((new_prot & current->max_protection) != new_prot) {
1902 			vm_map_unlock(map);
1903 			return (KERN_PROTECTION_FAILURE);
1904 		}
1905 		current = current->next;
1906 	}
1907 
1908 
1909 	/*
1910 	 * Do an accounting pass for private read-only mappings that
1911 	 * now will do cow due to allowed write (e.g. debugger sets
1912 	 * breakpoint on text segment)
1913 	 */
1914 	for (current = entry; (current != &map->header) &&
1915 	     (current->start < end); current = current->next) {
1916 
1917 		vm_map_clip_end(map, current, end);
1918 
1919 		if (set_max ||
1920 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1921 		    ENTRY_CHARGED(current)) {
1922 			continue;
1923 		}
1924 
1925 		cred = curthread->td_ucred;
1926 		obj = current->object.vm_object;
1927 
1928 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1929 			if (!swap_reserve(current->end - current->start)) {
1930 				vm_map_unlock(map);
1931 				return (KERN_RESOURCE_SHORTAGE);
1932 			}
1933 			crhold(cred);
1934 			current->cred = cred;
1935 			continue;
1936 		}
1937 
1938 		VM_OBJECT_WLOCK(obj);
1939 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1940 			VM_OBJECT_WUNLOCK(obj);
1941 			continue;
1942 		}
1943 
1944 		/*
1945 		 * Charge for the whole object allocation now, since
1946 		 * we cannot distinguish between non-charged and
1947 		 * charged clipped mapping of the same object later.
1948 		 */
1949 		KASSERT(obj->charge == 0,
1950 		    ("vm_map_protect: object %p overcharged\n", obj));
1951 		if (!swap_reserve(ptoa(obj->size))) {
1952 			VM_OBJECT_WUNLOCK(obj);
1953 			vm_map_unlock(map);
1954 			return (KERN_RESOURCE_SHORTAGE);
1955 		}
1956 
1957 		crhold(cred);
1958 		obj->cred = cred;
1959 		obj->charge = ptoa(obj->size);
1960 		VM_OBJECT_WUNLOCK(obj);
1961 	}
1962 
1963 	/*
1964 	 * Go back and fix up protections. [Note that clipping is not
1965 	 * necessary the second time.]
1966 	 */
1967 	current = entry;
1968 	while ((current != &map->header) && (current->start < end)) {
1969 		old_prot = current->protection;
1970 
1971 		if (set_max)
1972 			current->protection =
1973 			    (current->max_protection = new_prot) &
1974 			    old_prot;
1975 		else
1976 			current->protection = new_prot;
1977 
1978 		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1979 		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1980 		    (current->protection & VM_PROT_WRITE) != 0 &&
1981 		    (old_prot & VM_PROT_WRITE) == 0) {
1982 			vm_fault_copy_entry(map, map, current, current, NULL);
1983 		}
1984 
1985 		/*
1986 		 * When restricting access, update the physical map.  Worry
1987 		 * about copy-on-write here.
1988 		 */
1989 		if ((old_prot & ~current->protection) != 0) {
1990 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1991 							VM_PROT_ALL)
1992 			pmap_protect(map->pmap, current->start,
1993 			    current->end,
1994 			    current->protection & MASK(current));
1995 #undef	MASK
1996 		}
1997 		vm_map_simplify_entry(map, current);
1998 		current = current->next;
1999 	}
2000 	vm_map_unlock(map);
2001 	return (KERN_SUCCESS);
2002 }
2003 
2004 /*
2005  *	vm_map_madvise:
2006  *
2007  *	This routine traverses a processes map handling the madvise
2008  *	system call.  Advisories are classified as either those effecting
2009  *	the vm_map_entry structure, or those effecting the underlying
2010  *	objects.
2011  */
2012 int
2013 vm_map_madvise(
2014 	vm_map_t map,
2015 	vm_offset_t start,
2016 	vm_offset_t end,
2017 	int behav)
2018 {
2019 	vm_map_entry_t current, entry;
2020 	int modify_map = 0;
2021 
2022 	/*
2023 	 * Some madvise calls directly modify the vm_map_entry, in which case
2024 	 * we need to use an exclusive lock on the map and we need to perform
2025 	 * various clipping operations.  Otherwise we only need a read-lock
2026 	 * on the map.
2027 	 */
2028 	switch(behav) {
2029 	case MADV_NORMAL:
2030 	case MADV_SEQUENTIAL:
2031 	case MADV_RANDOM:
2032 	case MADV_NOSYNC:
2033 	case MADV_AUTOSYNC:
2034 	case MADV_NOCORE:
2035 	case MADV_CORE:
2036 		if (start == end)
2037 			return (KERN_SUCCESS);
2038 		modify_map = 1;
2039 		vm_map_lock(map);
2040 		break;
2041 	case MADV_WILLNEED:
2042 	case MADV_DONTNEED:
2043 	case MADV_FREE:
2044 		if (start == end)
2045 			return (KERN_SUCCESS);
2046 		vm_map_lock_read(map);
2047 		break;
2048 	default:
2049 		return (KERN_INVALID_ARGUMENT);
2050 	}
2051 
2052 	/*
2053 	 * Locate starting entry and clip if necessary.
2054 	 */
2055 	VM_MAP_RANGE_CHECK(map, start, end);
2056 
2057 	if (vm_map_lookup_entry(map, start, &entry)) {
2058 		if (modify_map)
2059 			vm_map_clip_start(map, entry, start);
2060 	} else {
2061 		entry = entry->next;
2062 	}
2063 
2064 	if (modify_map) {
2065 		/*
2066 		 * madvise behaviors that are implemented in the vm_map_entry.
2067 		 *
2068 		 * We clip the vm_map_entry so that behavioral changes are
2069 		 * limited to the specified address range.
2070 		 */
2071 		for (current = entry;
2072 		     (current != &map->header) && (current->start < end);
2073 		     current = current->next
2074 		) {
2075 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2076 				continue;
2077 
2078 			vm_map_clip_end(map, current, end);
2079 
2080 			switch (behav) {
2081 			case MADV_NORMAL:
2082 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2083 				break;
2084 			case MADV_SEQUENTIAL:
2085 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2086 				break;
2087 			case MADV_RANDOM:
2088 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2089 				break;
2090 			case MADV_NOSYNC:
2091 				current->eflags |= MAP_ENTRY_NOSYNC;
2092 				break;
2093 			case MADV_AUTOSYNC:
2094 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2095 				break;
2096 			case MADV_NOCORE:
2097 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2098 				break;
2099 			case MADV_CORE:
2100 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2101 				break;
2102 			default:
2103 				break;
2104 			}
2105 			vm_map_simplify_entry(map, current);
2106 		}
2107 		vm_map_unlock(map);
2108 	} else {
2109 		vm_pindex_t pstart, pend;
2110 
2111 		/*
2112 		 * madvise behaviors that are implemented in the underlying
2113 		 * vm_object.
2114 		 *
2115 		 * Since we don't clip the vm_map_entry, we have to clip
2116 		 * the vm_object pindex and count.
2117 		 */
2118 		for (current = entry;
2119 		     (current != &map->header) && (current->start < end);
2120 		     current = current->next
2121 		) {
2122 			vm_offset_t useEnd, useStart;
2123 
2124 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2125 				continue;
2126 
2127 			pstart = OFF_TO_IDX(current->offset);
2128 			pend = pstart + atop(current->end - current->start);
2129 			useStart = current->start;
2130 			useEnd = current->end;
2131 
2132 			if (current->start < start) {
2133 				pstart += atop(start - current->start);
2134 				useStart = start;
2135 			}
2136 			if (current->end > end) {
2137 				pend -= atop(current->end - end);
2138 				useEnd = end;
2139 			}
2140 
2141 			if (pstart >= pend)
2142 				continue;
2143 
2144 			/*
2145 			 * Perform the pmap_advise() before clearing
2146 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2147 			 * concurrent pmap operation, such as pmap_remove(),
2148 			 * could clear a reference in the pmap and set
2149 			 * PGA_REFERENCED on the page before the pmap_advise()
2150 			 * had completed.  Consequently, the page would appear
2151 			 * referenced based upon an old reference that
2152 			 * occurred before this pmap_advise() ran.
2153 			 */
2154 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2155 				pmap_advise(map->pmap, useStart, useEnd,
2156 				    behav);
2157 
2158 			vm_object_madvise(current->object.vm_object, pstart,
2159 			    pend, behav);
2160 			if (behav == MADV_WILLNEED) {
2161 				vm_map_pmap_enter(map,
2162 				    useStart,
2163 				    current->protection,
2164 				    current->object.vm_object,
2165 				    pstart,
2166 				    ptoa(pend - pstart),
2167 				    MAP_PREFAULT_MADVISE
2168 				);
2169 			}
2170 		}
2171 		vm_map_unlock_read(map);
2172 	}
2173 	return (0);
2174 }
2175 
2176 
2177 /*
2178  *	vm_map_inherit:
2179  *
2180  *	Sets the inheritance of the specified address
2181  *	range in the target map.  Inheritance
2182  *	affects how the map will be shared with
2183  *	child maps at the time of vmspace_fork.
2184  */
2185 int
2186 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2187 	       vm_inherit_t new_inheritance)
2188 {
2189 	vm_map_entry_t entry;
2190 	vm_map_entry_t temp_entry;
2191 
2192 	switch (new_inheritance) {
2193 	case VM_INHERIT_NONE:
2194 	case VM_INHERIT_COPY:
2195 	case VM_INHERIT_SHARE:
2196 		break;
2197 	default:
2198 		return (KERN_INVALID_ARGUMENT);
2199 	}
2200 	if (start == end)
2201 		return (KERN_SUCCESS);
2202 	vm_map_lock(map);
2203 	VM_MAP_RANGE_CHECK(map, start, end);
2204 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2205 		entry = temp_entry;
2206 		vm_map_clip_start(map, entry, start);
2207 	} else
2208 		entry = temp_entry->next;
2209 	while ((entry != &map->header) && (entry->start < end)) {
2210 		vm_map_clip_end(map, entry, end);
2211 		entry->inheritance = new_inheritance;
2212 		vm_map_simplify_entry(map, entry);
2213 		entry = entry->next;
2214 	}
2215 	vm_map_unlock(map);
2216 	return (KERN_SUCCESS);
2217 }
2218 
2219 /*
2220  *	vm_map_unwire:
2221  *
2222  *	Implements both kernel and user unwiring.
2223  */
2224 int
2225 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2226     int flags)
2227 {
2228 	vm_map_entry_t entry, first_entry, tmp_entry;
2229 	vm_offset_t saved_start;
2230 	unsigned int last_timestamp;
2231 	int rv;
2232 	boolean_t need_wakeup, result, user_unwire;
2233 
2234 	if (start == end)
2235 		return (KERN_SUCCESS);
2236 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2237 	vm_map_lock(map);
2238 	VM_MAP_RANGE_CHECK(map, start, end);
2239 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2240 		if (flags & VM_MAP_WIRE_HOLESOK)
2241 			first_entry = first_entry->next;
2242 		else {
2243 			vm_map_unlock(map);
2244 			return (KERN_INVALID_ADDRESS);
2245 		}
2246 	}
2247 	last_timestamp = map->timestamp;
2248 	entry = first_entry;
2249 	while (entry != &map->header && entry->start < end) {
2250 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2251 			/*
2252 			 * We have not yet clipped the entry.
2253 			 */
2254 			saved_start = (start >= entry->start) ? start :
2255 			    entry->start;
2256 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2257 			if (vm_map_unlock_and_wait(map, 0)) {
2258 				/*
2259 				 * Allow interruption of user unwiring?
2260 				 */
2261 			}
2262 			vm_map_lock(map);
2263 			if (last_timestamp+1 != map->timestamp) {
2264 				/*
2265 				 * Look again for the entry because the map was
2266 				 * modified while it was unlocked.
2267 				 * Specifically, the entry may have been
2268 				 * clipped, merged, or deleted.
2269 				 */
2270 				if (!vm_map_lookup_entry(map, saved_start,
2271 				    &tmp_entry)) {
2272 					if (flags & VM_MAP_WIRE_HOLESOK)
2273 						tmp_entry = tmp_entry->next;
2274 					else {
2275 						if (saved_start == start) {
2276 							/*
2277 							 * First_entry has been deleted.
2278 							 */
2279 							vm_map_unlock(map);
2280 							return (KERN_INVALID_ADDRESS);
2281 						}
2282 						end = saved_start;
2283 						rv = KERN_INVALID_ADDRESS;
2284 						goto done;
2285 					}
2286 				}
2287 				if (entry == first_entry)
2288 					first_entry = tmp_entry;
2289 				else
2290 					first_entry = NULL;
2291 				entry = tmp_entry;
2292 			}
2293 			last_timestamp = map->timestamp;
2294 			continue;
2295 		}
2296 		vm_map_clip_start(map, entry, start);
2297 		vm_map_clip_end(map, entry, end);
2298 		/*
2299 		 * Mark the entry in case the map lock is released.  (See
2300 		 * above.)
2301 		 */
2302 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2303 		    entry->wiring_thread == NULL,
2304 		    ("owned map entry %p", entry));
2305 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2306 		entry->wiring_thread = curthread;
2307 		/*
2308 		 * Check the map for holes in the specified region.
2309 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2310 		 */
2311 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2312 		    (entry->end < end && (entry->next == &map->header ||
2313 		    entry->next->start > entry->end))) {
2314 			end = entry->end;
2315 			rv = KERN_INVALID_ADDRESS;
2316 			goto done;
2317 		}
2318 		/*
2319 		 * If system unwiring, require that the entry is system wired.
2320 		 */
2321 		if (!user_unwire &&
2322 		    vm_map_entry_system_wired_count(entry) == 0) {
2323 			end = entry->end;
2324 			rv = KERN_INVALID_ARGUMENT;
2325 			goto done;
2326 		}
2327 		entry = entry->next;
2328 	}
2329 	rv = KERN_SUCCESS;
2330 done:
2331 	need_wakeup = FALSE;
2332 	if (first_entry == NULL) {
2333 		result = vm_map_lookup_entry(map, start, &first_entry);
2334 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2335 			first_entry = first_entry->next;
2336 		else
2337 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2338 	}
2339 	for (entry = first_entry; entry != &map->header && entry->start < end;
2340 	    entry = entry->next) {
2341 		/*
2342 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2343 		 * space in the unwired region could have been mapped
2344 		 * while the map lock was dropped for draining
2345 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2346 		 * could be simultaneously wiring this new mapping
2347 		 * entry.  Detect these cases and skip any entries
2348 		 * marked as in transition by us.
2349 		 */
2350 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2351 		    entry->wiring_thread != curthread) {
2352 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2353 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2354 			continue;
2355 		}
2356 
2357 		if (rv == KERN_SUCCESS && (!user_unwire ||
2358 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2359 			if (user_unwire)
2360 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2361 			entry->wired_count--;
2362 			if (entry->wired_count == 0) {
2363 				/*
2364 				 * Retain the map lock.
2365 				 */
2366 				vm_fault_unwire(map, entry->start, entry->end,
2367 				    entry->object.vm_object != NULL &&
2368 				    (entry->object.vm_object->flags &
2369 				    OBJ_FICTITIOUS) != 0);
2370 			}
2371 		}
2372 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2373 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2374 		KASSERT(entry->wiring_thread == curthread,
2375 		    ("vm_map_unwire: alien wire %p", entry));
2376 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2377 		entry->wiring_thread = NULL;
2378 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2379 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2380 			need_wakeup = TRUE;
2381 		}
2382 		vm_map_simplify_entry(map, entry);
2383 	}
2384 	vm_map_unlock(map);
2385 	if (need_wakeup)
2386 		vm_map_wakeup(map);
2387 	return (rv);
2388 }
2389 
2390 /*
2391  *	vm_map_wire:
2392  *
2393  *	Implements both kernel and user wiring.
2394  */
2395 int
2396 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2397     int flags)
2398 {
2399 	vm_map_entry_t entry, first_entry, tmp_entry;
2400 	vm_offset_t saved_end, saved_start;
2401 	unsigned int last_timestamp;
2402 	int rv;
2403 	boolean_t fictitious, need_wakeup, result, user_wire;
2404 	vm_prot_t prot;
2405 
2406 	if (start == end)
2407 		return (KERN_SUCCESS);
2408 	prot = 0;
2409 	if (flags & VM_MAP_WIRE_WRITE)
2410 		prot |= VM_PROT_WRITE;
2411 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2412 	vm_map_lock(map);
2413 	VM_MAP_RANGE_CHECK(map, start, end);
2414 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2415 		if (flags & VM_MAP_WIRE_HOLESOK)
2416 			first_entry = first_entry->next;
2417 		else {
2418 			vm_map_unlock(map);
2419 			return (KERN_INVALID_ADDRESS);
2420 		}
2421 	}
2422 	last_timestamp = map->timestamp;
2423 	entry = first_entry;
2424 	while (entry != &map->header && entry->start < end) {
2425 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2426 			/*
2427 			 * We have not yet clipped the entry.
2428 			 */
2429 			saved_start = (start >= entry->start) ? start :
2430 			    entry->start;
2431 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2432 			if (vm_map_unlock_and_wait(map, 0)) {
2433 				/*
2434 				 * Allow interruption of user wiring?
2435 				 */
2436 			}
2437 			vm_map_lock(map);
2438 			if (last_timestamp + 1 != map->timestamp) {
2439 				/*
2440 				 * Look again for the entry because the map was
2441 				 * modified while it was unlocked.
2442 				 * Specifically, the entry may have been
2443 				 * clipped, merged, or deleted.
2444 				 */
2445 				if (!vm_map_lookup_entry(map, saved_start,
2446 				    &tmp_entry)) {
2447 					if (flags & VM_MAP_WIRE_HOLESOK)
2448 						tmp_entry = tmp_entry->next;
2449 					else {
2450 						if (saved_start == start) {
2451 							/*
2452 							 * first_entry has been deleted.
2453 							 */
2454 							vm_map_unlock(map);
2455 							return (KERN_INVALID_ADDRESS);
2456 						}
2457 						end = saved_start;
2458 						rv = KERN_INVALID_ADDRESS;
2459 						goto done;
2460 					}
2461 				}
2462 				if (entry == first_entry)
2463 					first_entry = tmp_entry;
2464 				else
2465 					first_entry = NULL;
2466 				entry = tmp_entry;
2467 			}
2468 			last_timestamp = map->timestamp;
2469 			continue;
2470 		}
2471 		vm_map_clip_start(map, entry, start);
2472 		vm_map_clip_end(map, entry, end);
2473 		/*
2474 		 * Mark the entry in case the map lock is released.  (See
2475 		 * above.)
2476 		 */
2477 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2478 		    entry->wiring_thread == NULL,
2479 		    ("owned map entry %p", entry));
2480 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2481 		entry->wiring_thread = curthread;
2482 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2483 		    || (entry->protection & prot) != prot) {
2484 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2485 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2486 				end = entry->end;
2487 				rv = KERN_INVALID_ADDRESS;
2488 				goto done;
2489 			}
2490 			goto next_entry;
2491 		}
2492 		if (entry->wired_count == 0) {
2493 			entry->wired_count++;
2494 			saved_start = entry->start;
2495 			saved_end = entry->end;
2496 			fictitious = entry->object.vm_object != NULL &&
2497 			    (entry->object.vm_object->flags &
2498 			    OBJ_FICTITIOUS) != 0;
2499 			/*
2500 			 * Release the map lock, relying on the in-transition
2501 			 * mark.  Mark the map busy for fork.
2502 			 */
2503 			vm_map_busy(map);
2504 			vm_map_unlock(map);
2505 			rv = vm_fault_wire(map, saved_start, saved_end,
2506 			    fictitious);
2507 			vm_map_lock(map);
2508 			vm_map_unbusy(map);
2509 			if (last_timestamp + 1 != map->timestamp) {
2510 				/*
2511 				 * Look again for the entry because the map was
2512 				 * modified while it was unlocked.  The entry
2513 				 * may have been clipped, but NOT merged or
2514 				 * deleted.
2515 				 */
2516 				result = vm_map_lookup_entry(map, saved_start,
2517 				    &tmp_entry);
2518 				KASSERT(result, ("vm_map_wire: lookup failed"));
2519 				if (entry == first_entry)
2520 					first_entry = tmp_entry;
2521 				else
2522 					first_entry = NULL;
2523 				entry = tmp_entry;
2524 				while (entry->end < saved_end) {
2525 					if (rv != KERN_SUCCESS) {
2526 						KASSERT(entry->wired_count == 1,
2527 						    ("vm_map_wire: bad count"));
2528 						entry->wired_count = -1;
2529 					}
2530 					entry = entry->next;
2531 				}
2532 			}
2533 			last_timestamp = map->timestamp;
2534 			if (rv != KERN_SUCCESS) {
2535 				KASSERT(entry->wired_count == 1,
2536 				    ("vm_map_wire: bad count"));
2537 				/*
2538 				 * Assign an out-of-range value to represent
2539 				 * the failure to wire this entry.
2540 				 */
2541 				entry->wired_count = -1;
2542 				end = entry->end;
2543 				goto done;
2544 			}
2545 		} else if (!user_wire ||
2546 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2547 			entry->wired_count++;
2548 		}
2549 		/*
2550 		 * Check the map for holes in the specified region.
2551 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2552 		 */
2553 	next_entry:
2554 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2555 		    (entry->end < end && (entry->next == &map->header ||
2556 		    entry->next->start > entry->end))) {
2557 			end = entry->end;
2558 			rv = KERN_INVALID_ADDRESS;
2559 			goto done;
2560 		}
2561 		entry = entry->next;
2562 	}
2563 	rv = KERN_SUCCESS;
2564 done:
2565 	need_wakeup = FALSE;
2566 	if (first_entry == NULL) {
2567 		result = vm_map_lookup_entry(map, start, &first_entry);
2568 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2569 			first_entry = first_entry->next;
2570 		else
2571 			KASSERT(result, ("vm_map_wire: lookup failed"));
2572 	}
2573 	for (entry = first_entry; entry != &map->header && entry->start < end;
2574 	    entry = entry->next) {
2575 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2576 			goto next_entry_done;
2577 
2578 		/*
2579 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2580 		 * space in the unwired region could have been mapped
2581 		 * while the map lock was dropped for faulting in the
2582 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2583 		 * Moreover, another thread could be simultaneously
2584 		 * wiring this new mapping entry.  Detect these cases
2585 		 * and skip any entries marked as in transition by us.
2586 		 */
2587 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2588 		    entry->wiring_thread != curthread) {
2589 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2590 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2591 			continue;
2592 		}
2593 
2594 		if (rv == KERN_SUCCESS) {
2595 			if (user_wire)
2596 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2597 		} else if (entry->wired_count == -1) {
2598 			/*
2599 			 * Wiring failed on this entry.  Thus, unwiring is
2600 			 * unnecessary.
2601 			 */
2602 			entry->wired_count = 0;
2603 		} else {
2604 			if (!user_wire ||
2605 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2606 				entry->wired_count--;
2607 			if (entry->wired_count == 0) {
2608 				/*
2609 				 * Retain the map lock.
2610 				 */
2611 				vm_fault_unwire(map, entry->start, entry->end,
2612 				    entry->object.vm_object != NULL &&
2613 				    (entry->object.vm_object->flags &
2614 				    OBJ_FICTITIOUS) != 0);
2615 			}
2616 		}
2617 	next_entry_done:
2618 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2619 		    ("vm_map_wire: in-transition flag missing %p", entry));
2620 		KASSERT(entry->wiring_thread == curthread,
2621 		    ("vm_map_wire: alien wire %p", entry));
2622 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2623 		    MAP_ENTRY_WIRE_SKIPPED);
2624 		entry->wiring_thread = NULL;
2625 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2626 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2627 			need_wakeup = TRUE;
2628 		}
2629 		vm_map_simplify_entry(map, entry);
2630 	}
2631 	vm_map_unlock(map);
2632 	if (need_wakeup)
2633 		vm_map_wakeup(map);
2634 	return (rv);
2635 }
2636 
2637 /*
2638  * vm_map_sync
2639  *
2640  * Push any dirty cached pages in the address range to their pager.
2641  * If syncio is TRUE, dirty pages are written synchronously.
2642  * If invalidate is TRUE, any cached pages are freed as well.
2643  *
2644  * If the size of the region from start to end is zero, we are
2645  * supposed to flush all modified pages within the region containing
2646  * start.  Unfortunately, a region can be split or coalesced with
2647  * neighboring regions, making it difficult to determine what the
2648  * original region was.  Therefore, we approximate this requirement by
2649  * flushing the current region containing start.
2650  *
2651  * Returns an error if any part of the specified range is not mapped.
2652  */
2653 int
2654 vm_map_sync(
2655 	vm_map_t map,
2656 	vm_offset_t start,
2657 	vm_offset_t end,
2658 	boolean_t syncio,
2659 	boolean_t invalidate)
2660 {
2661 	vm_map_entry_t current;
2662 	vm_map_entry_t entry;
2663 	vm_size_t size;
2664 	vm_object_t object;
2665 	vm_ooffset_t offset;
2666 	unsigned int last_timestamp;
2667 	boolean_t failed;
2668 
2669 	vm_map_lock_read(map);
2670 	VM_MAP_RANGE_CHECK(map, start, end);
2671 	if (!vm_map_lookup_entry(map, start, &entry)) {
2672 		vm_map_unlock_read(map);
2673 		return (KERN_INVALID_ADDRESS);
2674 	} else if (start == end) {
2675 		start = entry->start;
2676 		end = entry->end;
2677 	}
2678 	/*
2679 	 * Make a first pass to check for user-wired memory and holes.
2680 	 */
2681 	for (current = entry; current != &map->header && current->start < end;
2682 	    current = current->next) {
2683 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2684 			vm_map_unlock_read(map);
2685 			return (KERN_INVALID_ARGUMENT);
2686 		}
2687 		if (end > current->end &&
2688 		    (current->next == &map->header ||
2689 			current->end != current->next->start)) {
2690 			vm_map_unlock_read(map);
2691 			return (KERN_INVALID_ADDRESS);
2692 		}
2693 	}
2694 
2695 	if (invalidate)
2696 		pmap_remove(map->pmap, start, end);
2697 	failed = FALSE;
2698 
2699 	/*
2700 	 * Make a second pass, cleaning/uncaching pages from the indicated
2701 	 * objects as we go.
2702 	 */
2703 	for (current = entry; current != &map->header && current->start < end;) {
2704 		offset = current->offset + (start - current->start);
2705 		size = (end <= current->end ? end : current->end) - start;
2706 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2707 			vm_map_t smap;
2708 			vm_map_entry_t tentry;
2709 			vm_size_t tsize;
2710 
2711 			smap = current->object.sub_map;
2712 			vm_map_lock_read(smap);
2713 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2714 			tsize = tentry->end - offset;
2715 			if (tsize < size)
2716 				size = tsize;
2717 			object = tentry->object.vm_object;
2718 			offset = tentry->offset + (offset - tentry->start);
2719 			vm_map_unlock_read(smap);
2720 		} else {
2721 			object = current->object.vm_object;
2722 		}
2723 		vm_object_reference(object);
2724 		last_timestamp = map->timestamp;
2725 		vm_map_unlock_read(map);
2726 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2727 			failed = TRUE;
2728 		start += size;
2729 		vm_object_deallocate(object);
2730 		vm_map_lock_read(map);
2731 		if (last_timestamp == map->timestamp ||
2732 		    !vm_map_lookup_entry(map, start, &current))
2733 			current = current->next;
2734 	}
2735 
2736 	vm_map_unlock_read(map);
2737 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2738 }
2739 
2740 /*
2741  *	vm_map_entry_unwire:	[ internal use only ]
2742  *
2743  *	Make the region specified by this entry pageable.
2744  *
2745  *	The map in question should be locked.
2746  *	[This is the reason for this routine's existence.]
2747  */
2748 static void
2749 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2750 {
2751 	vm_fault_unwire(map, entry->start, entry->end,
2752 	    entry->object.vm_object != NULL &&
2753 	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2754 	entry->wired_count = 0;
2755 }
2756 
2757 static void
2758 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2759 {
2760 
2761 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2762 		vm_object_deallocate(entry->object.vm_object);
2763 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2764 }
2765 
2766 /*
2767  *	vm_map_entry_delete:	[ internal use only ]
2768  *
2769  *	Deallocate the given entry from the target map.
2770  */
2771 static void
2772 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2773 {
2774 	vm_object_t object;
2775 	vm_pindex_t offidxstart, offidxend, count, size1;
2776 	vm_ooffset_t size;
2777 
2778 	vm_map_entry_unlink(map, entry);
2779 	object = entry->object.vm_object;
2780 	size = entry->end - entry->start;
2781 	map->size -= size;
2782 
2783 	if (entry->cred != NULL) {
2784 		swap_release_by_cred(size, entry->cred);
2785 		crfree(entry->cred);
2786 	}
2787 
2788 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2789 	    (object != NULL)) {
2790 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2791 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2792 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2793 		count = OFF_TO_IDX(size);
2794 		offidxstart = OFF_TO_IDX(entry->offset);
2795 		offidxend = offidxstart + count;
2796 		VM_OBJECT_WLOCK(object);
2797 		if (object->ref_count != 1 &&
2798 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2799 		    object == kernel_object || object == kmem_object)) {
2800 			vm_object_collapse(object);
2801 
2802 			/*
2803 			 * The option OBJPR_NOTMAPPED can be passed here
2804 			 * because vm_map_delete() already performed
2805 			 * pmap_remove() on the only mapping to this range
2806 			 * of pages.
2807 			 */
2808 			vm_object_page_remove(object, offidxstart, offidxend,
2809 			    OBJPR_NOTMAPPED);
2810 			if (object->type == OBJT_SWAP)
2811 				swap_pager_freespace(object, offidxstart, count);
2812 			if (offidxend >= object->size &&
2813 			    offidxstart < object->size) {
2814 				size1 = object->size;
2815 				object->size = offidxstart;
2816 				if (object->cred != NULL) {
2817 					size1 -= object->size;
2818 					KASSERT(object->charge >= ptoa(size1),
2819 					    ("vm_map_entry_delete: object->charge < 0"));
2820 					swap_release_by_cred(ptoa(size1), object->cred);
2821 					object->charge -= ptoa(size1);
2822 				}
2823 			}
2824 		}
2825 		VM_OBJECT_WUNLOCK(object);
2826 	} else
2827 		entry->object.vm_object = NULL;
2828 	if (map->system_map)
2829 		vm_map_entry_deallocate(entry, TRUE);
2830 	else {
2831 		entry->next = curthread->td_map_def_user;
2832 		curthread->td_map_def_user = entry;
2833 	}
2834 }
2835 
2836 /*
2837  *	vm_map_delete:	[ internal use only ]
2838  *
2839  *	Deallocates the given address range from the target
2840  *	map.
2841  */
2842 int
2843 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2844 {
2845 	vm_map_entry_t entry;
2846 	vm_map_entry_t first_entry;
2847 
2848 	VM_MAP_ASSERT_LOCKED(map);
2849 	if (start == end)
2850 		return (KERN_SUCCESS);
2851 
2852 	/*
2853 	 * Find the start of the region, and clip it
2854 	 */
2855 	if (!vm_map_lookup_entry(map, start, &first_entry))
2856 		entry = first_entry->next;
2857 	else {
2858 		entry = first_entry;
2859 		vm_map_clip_start(map, entry, start);
2860 	}
2861 
2862 	/*
2863 	 * Step through all entries in this region
2864 	 */
2865 	while ((entry != &map->header) && (entry->start < end)) {
2866 		vm_map_entry_t next;
2867 
2868 		/*
2869 		 * Wait for wiring or unwiring of an entry to complete.
2870 		 * Also wait for any system wirings to disappear on
2871 		 * user maps.
2872 		 */
2873 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2874 		    (vm_map_pmap(map) != kernel_pmap &&
2875 		    vm_map_entry_system_wired_count(entry) != 0)) {
2876 			unsigned int last_timestamp;
2877 			vm_offset_t saved_start;
2878 			vm_map_entry_t tmp_entry;
2879 
2880 			saved_start = entry->start;
2881 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2882 			last_timestamp = map->timestamp;
2883 			(void) vm_map_unlock_and_wait(map, 0);
2884 			vm_map_lock(map);
2885 			if (last_timestamp + 1 != map->timestamp) {
2886 				/*
2887 				 * Look again for the entry because the map was
2888 				 * modified while it was unlocked.
2889 				 * Specifically, the entry may have been
2890 				 * clipped, merged, or deleted.
2891 				 */
2892 				if (!vm_map_lookup_entry(map, saved_start,
2893 							 &tmp_entry))
2894 					entry = tmp_entry->next;
2895 				else {
2896 					entry = tmp_entry;
2897 					vm_map_clip_start(map, entry,
2898 							  saved_start);
2899 				}
2900 			}
2901 			continue;
2902 		}
2903 		vm_map_clip_end(map, entry, end);
2904 
2905 		next = entry->next;
2906 
2907 		/*
2908 		 * Unwire before removing addresses from the pmap; otherwise,
2909 		 * unwiring will put the entries back in the pmap.
2910 		 */
2911 		if (entry->wired_count != 0) {
2912 			vm_map_entry_unwire(map, entry);
2913 		}
2914 
2915 		pmap_remove(map->pmap, entry->start, entry->end);
2916 
2917 		/*
2918 		 * Delete the entry only after removing all pmap
2919 		 * entries pointing to its pages.  (Otherwise, its
2920 		 * page frames may be reallocated, and any modify bits
2921 		 * will be set in the wrong object!)
2922 		 */
2923 		vm_map_entry_delete(map, entry);
2924 		entry = next;
2925 	}
2926 	return (KERN_SUCCESS);
2927 }
2928 
2929 /*
2930  *	vm_map_remove:
2931  *
2932  *	Remove the given address range from the target map.
2933  *	This is the exported form of vm_map_delete.
2934  */
2935 int
2936 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2937 {
2938 	int result;
2939 
2940 	vm_map_lock(map);
2941 	VM_MAP_RANGE_CHECK(map, start, end);
2942 	result = vm_map_delete(map, start, end);
2943 	vm_map_unlock(map);
2944 	return (result);
2945 }
2946 
2947 /*
2948  *	vm_map_check_protection:
2949  *
2950  *	Assert that the target map allows the specified privilege on the
2951  *	entire address region given.  The entire region must be allocated.
2952  *
2953  *	WARNING!  This code does not and should not check whether the
2954  *	contents of the region is accessible.  For example a smaller file
2955  *	might be mapped into a larger address space.
2956  *
2957  *	NOTE!  This code is also called by munmap().
2958  *
2959  *	The map must be locked.  A read lock is sufficient.
2960  */
2961 boolean_t
2962 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2963 			vm_prot_t protection)
2964 {
2965 	vm_map_entry_t entry;
2966 	vm_map_entry_t tmp_entry;
2967 
2968 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2969 		return (FALSE);
2970 	entry = tmp_entry;
2971 
2972 	while (start < end) {
2973 		if (entry == &map->header)
2974 			return (FALSE);
2975 		/*
2976 		 * No holes allowed!
2977 		 */
2978 		if (start < entry->start)
2979 			return (FALSE);
2980 		/*
2981 		 * Check protection associated with entry.
2982 		 */
2983 		if ((entry->protection & protection) != protection)
2984 			return (FALSE);
2985 		/* go to next entry */
2986 		start = entry->end;
2987 		entry = entry->next;
2988 	}
2989 	return (TRUE);
2990 }
2991 
2992 /*
2993  *	vm_map_copy_entry:
2994  *
2995  *	Copies the contents of the source entry to the destination
2996  *	entry.  The entries *must* be aligned properly.
2997  */
2998 static void
2999 vm_map_copy_entry(
3000 	vm_map_t src_map,
3001 	vm_map_t dst_map,
3002 	vm_map_entry_t src_entry,
3003 	vm_map_entry_t dst_entry,
3004 	vm_ooffset_t *fork_charge)
3005 {
3006 	vm_object_t src_object;
3007 	vm_map_entry_t fake_entry;
3008 	vm_offset_t size;
3009 	struct ucred *cred;
3010 	int charged;
3011 
3012 	VM_MAP_ASSERT_LOCKED(dst_map);
3013 
3014 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3015 		return;
3016 
3017 	if (src_entry->wired_count == 0) {
3018 
3019 		/*
3020 		 * If the source entry is marked needs_copy, it is already
3021 		 * write-protected.
3022 		 */
3023 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3024 			pmap_protect(src_map->pmap,
3025 			    src_entry->start,
3026 			    src_entry->end,
3027 			    src_entry->protection & ~VM_PROT_WRITE);
3028 		}
3029 
3030 		/*
3031 		 * Make a copy of the object.
3032 		 */
3033 		size = src_entry->end - src_entry->start;
3034 		if ((src_object = src_entry->object.vm_object) != NULL) {
3035 			VM_OBJECT_WLOCK(src_object);
3036 			charged = ENTRY_CHARGED(src_entry);
3037 			if ((src_object->handle == NULL) &&
3038 				(src_object->type == OBJT_DEFAULT ||
3039 				 src_object->type == OBJT_SWAP)) {
3040 				vm_object_collapse(src_object);
3041 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3042 					vm_object_split(src_entry);
3043 					src_object = src_entry->object.vm_object;
3044 				}
3045 			}
3046 			vm_object_reference_locked(src_object);
3047 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3048 			if (src_entry->cred != NULL &&
3049 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3050 				KASSERT(src_object->cred == NULL,
3051 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3052 				     src_object));
3053 				src_object->cred = src_entry->cred;
3054 				src_object->charge = size;
3055 			}
3056 			VM_OBJECT_WUNLOCK(src_object);
3057 			dst_entry->object.vm_object = src_object;
3058 			if (charged) {
3059 				cred = curthread->td_ucred;
3060 				crhold(cred);
3061 				dst_entry->cred = cred;
3062 				*fork_charge += size;
3063 				if (!(src_entry->eflags &
3064 				      MAP_ENTRY_NEEDS_COPY)) {
3065 					crhold(cred);
3066 					src_entry->cred = cred;
3067 					*fork_charge += size;
3068 				}
3069 			}
3070 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3071 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3072 			dst_entry->offset = src_entry->offset;
3073 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3074 				/*
3075 				 * MAP_ENTRY_VN_WRITECNT cannot
3076 				 * indicate write reference from
3077 				 * src_entry, since the entry is
3078 				 * marked as needs copy.  Allocate a
3079 				 * fake entry that is used to
3080 				 * decrement object->un_pager.vnp.writecount
3081 				 * at the appropriate time.  Attach
3082 				 * fake_entry to the deferred list.
3083 				 */
3084 				fake_entry = vm_map_entry_create(dst_map);
3085 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3086 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3087 				vm_object_reference(src_object);
3088 				fake_entry->object.vm_object = src_object;
3089 				fake_entry->start = src_entry->start;
3090 				fake_entry->end = src_entry->end;
3091 				fake_entry->next = curthread->td_map_def_user;
3092 				curthread->td_map_def_user = fake_entry;
3093 			}
3094 		} else {
3095 			dst_entry->object.vm_object = NULL;
3096 			dst_entry->offset = 0;
3097 			if (src_entry->cred != NULL) {
3098 				dst_entry->cred = curthread->td_ucred;
3099 				crhold(dst_entry->cred);
3100 				*fork_charge += size;
3101 			}
3102 		}
3103 
3104 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3105 		    dst_entry->end - dst_entry->start, src_entry->start);
3106 	} else {
3107 		/*
3108 		 * Of course, wired down pages can't be set copy-on-write.
3109 		 * Cause wired pages to be copied into the new map by
3110 		 * simulating faults (the new pages are pageable)
3111 		 */
3112 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3113 		    fork_charge);
3114 	}
3115 }
3116 
3117 /*
3118  * vmspace_map_entry_forked:
3119  * Update the newly-forked vmspace each time a map entry is inherited
3120  * or copied.  The values for vm_dsize and vm_tsize are approximate
3121  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3122  */
3123 static void
3124 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3125     vm_map_entry_t entry)
3126 {
3127 	vm_size_t entrysize;
3128 	vm_offset_t newend;
3129 
3130 	entrysize = entry->end - entry->start;
3131 	vm2->vm_map.size += entrysize;
3132 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3133 		vm2->vm_ssize += btoc(entrysize);
3134 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3135 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3136 		newend = MIN(entry->end,
3137 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3138 		vm2->vm_dsize += btoc(newend - entry->start);
3139 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3140 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3141 		newend = MIN(entry->end,
3142 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3143 		vm2->vm_tsize += btoc(newend - entry->start);
3144 	}
3145 }
3146 
3147 /*
3148  * vmspace_fork:
3149  * Create a new process vmspace structure and vm_map
3150  * based on those of an existing process.  The new map
3151  * is based on the old map, according to the inheritance
3152  * values on the regions in that map.
3153  *
3154  * XXX It might be worth coalescing the entries added to the new vmspace.
3155  *
3156  * The source map must not be locked.
3157  */
3158 struct vmspace *
3159 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3160 {
3161 	struct vmspace *vm2;
3162 	vm_map_t new_map, old_map;
3163 	vm_map_entry_t new_entry, old_entry;
3164 	vm_object_t object;
3165 	int locked;
3166 
3167 	old_map = &vm1->vm_map;
3168 	/* Copy immutable fields of vm1 to vm2. */
3169 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3170 	if (vm2 == NULL)
3171 		return (NULL);
3172 	vm2->vm_taddr = vm1->vm_taddr;
3173 	vm2->vm_daddr = vm1->vm_daddr;
3174 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3175 	vm_map_lock(old_map);
3176 	if (old_map->busy)
3177 		vm_map_wait_busy(old_map);
3178 	new_map = &vm2->vm_map;
3179 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3180 	KASSERT(locked, ("vmspace_fork: lock failed"));
3181 
3182 	old_entry = old_map->header.next;
3183 
3184 	while (old_entry != &old_map->header) {
3185 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3186 			panic("vm_map_fork: encountered a submap");
3187 
3188 		switch (old_entry->inheritance) {
3189 		case VM_INHERIT_NONE:
3190 			break;
3191 
3192 		case VM_INHERIT_SHARE:
3193 			/*
3194 			 * Clone the entry, creating the shared object if necessary.
3195 			 */
3196 			object = old_entry->object.vm_object;
3197 			if (object == NULL) {
3198 				object = vm_object_allocate(OBJT_DEFAULT,
3199 					atop(old_entry->end - old_entry->start));
3200 				old_entry->object.vm_object = object;
3201 				old_entry->offset = 0;
3202 				if (old_entry->cred != NULL) {
3203 					object->cred = old_entry->cred;
3204 					object->charge = old_entry->end -
3205 					    old_entry->start;
3206 					old_entry->cred = NULL;
3207 				}
3208 			}
3209 
3210 			/*
3211 			 * Add the reference before calling vm_object_shadow
3212 			 * to insure that a shadow object is created.
3213 			 */
3214 			vm_object_reference(object);
3215 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3216 				vm_object_shadow(&old_entry->object.vm_object,
3217 				    &old_entry->offset,
3218 				    old_entry->end - old_entry->start);
3219 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3220 				/* Transfer the second reference too. */
3221 				vm_object_reference(
3222 				    old_entry->object.vm_object);
3223 
3224 				/*
3225 				 * As in vm_map_simplify_entry(), the
3226 				 * vnode lock will not be acquired in
3227 				 * this call to vm_object_deallocate().
3228 				 */
3229 				vm_object_deallocate(object);
3230 				object = old_entry->object.vm_object;
3231 			}
3232 			VM_OBJECT_WLOCK(object);
3233 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3234 			if (old_entry->cred != NULL) {
3235 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3236 				object->cred = old_entry->cred;
3237 				object->charge = old_entry->end - old_entry->start;
3238 				old_entry->cred = NULL;
3239 			}
3240 
3241 			/*
3242 			 * Assert the correct state of the vnode
3243 			 * v_writecount while the object is locked, to
3244 			 * not relock it later for the assertion
3245 			 * correctness.
3246 			 */
3247 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3248 			    object->type == OBJT_VNODE) {
3249 				KASSERT(((struct vnode *)object->handle)->
3250 				    v_writecount > 0,
3251 				    ("vmspace_fork: v_writecount %p", object));
3252 				KASSERT(object->un_pager.vnp.writemappings > 0,
3253 				    ("vmspace_fork: vnp.writecount %p",
3254 				    object));
3255 			}
3256 			VM_OBJECT_WUNLOCK(object);
3257 
3258 			/*
3259 			 * Clone the entry, referencing the shared object.
3260 			 */
3261 			new_entry = vm_map_entry_create(new_map);
3262 			*new_entry = *old_entry;
3263 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3264 			    MAP_ENTRY_IN_TRANSITION);
3265 			new_entry->wiring_thread = NULL;
3266 			new_entry->wired_count = 0;
3267 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3268 				vnode_pager_update_writecount(object,
3269 				    new_entry->start, new_entry->end);
3270 			}
3271 
3272 			/*
3273 			 * Insert the entry into the new map -- we know we're
3274 			 * inserting at the end of the new map.
3275 			 */
3276 			vm_map_entry_link(new_map, new_map->header.prev,
3277 			    new_entry);
3278 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3279 
3280 			/*
3281 			 * Update the physical map
3282 			 */
3283 			pmap_copy(new_map->pmap, old_map->pmap,
3284 			    new_entry->start,
3285 			    (old_entry->end - old_entry->start),
3286 			    old_entry->start);
3287 			break;
3288 
3289 		case VM_INHERIT_COPY:
3290 			/*
3291 			 * Clone the entry and link into the map.
3292 			 */
3293 			new_entry = vm_map_entry_create(new_map);
3294 			*new_entry = *old_entry;
3295 			/*
3296 			 * Copied entry is COW over the old object.
3297 			 */
3298 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3299 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3300 			new_entry->wiring_thread = NULL;
3301 			new_entry->wired_count = 0;
3302 			new_entry->object.vm_object = NULL;
3303 			new_entry->cred = NULL;
3304 			vm_map_entry_link(new_map, new_map->header.prev,
3305 			    new_entry);
3306 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3307 			vm_map_copy_entry(old_map, new_map, old_entry,
3308 			    new_entry, fork_charge);
3309 			break;
3310 		}
3311 		old_entry = old_entry->next;
3312 	}
3313 	/*
3314 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3315 	 * map entries, which cannot be done until both old_map and
3316 	 * new_map locks are released.
3317 	 */
3318 	sx_xunlock(&old_map->lock);
3319 	sx_xunlock(&new_map->lock);
3320 	vm_map_process_deferred();
3321 
3322 	return (vm2);
3323 }
3324 
3325 int
3326 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3327     vm_prot_t prot, vm_prot_t max, int cow)
3328 {
3329 	vm_map_entry_t new_entry, prev_entry;
3330 	vm_offset_t bot, top;
3331 	vm_size_t growsize, init_ssize;
3332 	int orient, rv;
3333 	rlim_t lmemlim, vmemlim;
3334 
3335 	/*
3336 	 * The stack orientation is piggybacked with the cow argument.
3337 	 * Extract it into orient and mask the cow argument so that we
3338 	 * don't pass it around further.
3339 	 * NOTE: We explicitly allow bi-directional stacks.
3340 	 */
3341 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3342 	cow &= ~orient;
3343 	KASSERT(orient != 0, ("No stack grow direction"));
3344 
3345 	if (addrbos < vm_map_min(map) ||
3346 	    addrbos > vm_map_max(map) ||
3347 	    addrbos + max_ssize < addrbos)
3348 		return (KERN_NO_SPACE);
3349 
3350 	growsize = sgrowsiz;
3351 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3352 
3353 	PROC_LOCK(curproc);
3354 	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3355 	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3356 	PROC_UNLOCK(curproc);
3357 
3358 	vm_map_lock(map);
3359 
3360 	/* If addr is already mapped, no go */
3361 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3362 		vm_map_unlock(map);
3363 		return (KERN_NO_SPACE);
3364 	}
3365 
3366 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3367 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3368 			vm_map_unlock(map);
3369 			return (KERN_NO_SPACE);
3370 		}
3371 	}
3372 
3373 	/* If we would blow our VMEM resource limit, no go */
3374 	if (map->size + init_ssize > vmemlim) {
3375 		vm_map_unlock(map);
3376 		return (KERN_NO_SPACE);
3377 	}
3378 
3379 	/*
3380 	 * If we can't accomodate max_ssize in the current mapping, no go.
3381 	 * However, we need to be aware that subsequent user mappings might
3382 	 * map into the space we have reserved for stack, and currently this
3383 	 * space is not protected.
3384 	 *
3385 	 * Hopefully we will at least detect this condition when we try to
3386 	 * grow the stack.
3387 	 */
3388 	if ((prev_entry->next != &map->header) &&
3389 	    (prev_entry->next->start < addrbos + max_ssize)) {
3390 		vm_map_unlock(map);
3391 		return (KERN_NO_SPACE);
3392 	}
3393 
3394 	/*
3395 	 * We initially map a stack of only init_ssize.  We will grow as
3396 	 * needed later.  Depending on the orientation of the stack (i.e.
3397 	 * the grow direction) we either map at the top of the range, the
3398 	 * bottom of the range or in the middle.
3399 	 *
3400 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3401 	 * and cow to be 0.  Possibly we should eliminate these as input
3402 	 * parameters, and just pass these values here in the insert call.
3403 	 */
3404 	if (orient == MAP_STACK_GROWS_DOWN)
3405 		bot = addrbos + max_ssize - init_ssize;
3406 	else if (orient == MAP_STACK_GROWS_UP)
3407 		bot = addrbos;
3408 	else
3409 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3410 	top = bot + init_ssize;
3411 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3412 
3413 	/* Now set the avail_ssize amount. */
3414 	if (rv == KERN_SUCCESS) {
3415 		if (prev_entry != &map->header)
3416 			vm_map_clip_end(map, prev_entry, bot);
3417 		new_entry = prev_entry->next;
3418 		if (new_entry->end != top || new_entry->start != bot)
3419 			panic("Bad entry start/end for new stack entry");
3420 
3421 		new_entry->avail_ssize = max_ssize - init_ssize;
3422 		if (orient & MAP_STACK_GROWS_DOWN)
3423 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3424 		if (orient & MAP_STACK_GROWS_UP)
3425 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3426 	}
3427 
3428 	vm_map_unlock(map);
3429 	return (rv);
3430 }
3431 
3432 static int stack_guard_page = 0;
3433 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3434 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3435     &stack_guard_page, 0,
3436     "Insert stack guard page ahead of the growable segments.");
3437 
3438 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3439  * desired address is already mapped, or if we successfully grow
3440  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3441  * stack range (this is strange, but preserves compatibility with
3442  * the grow function in vm_machdep.c).
3443  */
3444 int
3445 vm_map_growstack(struct proc *p, vm_offset_t addr)
3446 {
3447 	vm_map_entry_t next_entry, prev_entry;
3448 	vm_map_entry_t new_entry, stack_entry;
3449 	struct vmspace *vm = p->p_vmspace;
3450 	vm_map_t map = &vm->vm_map;
3451 	vm_offset_t end;
3452 	vm_size_t growsize;
3453 	size_t grow_amount, max_grow;
3454 	rlim_t lmemlim, stacklim, vmemlim;
3455 	int is_procstack, rv;
3456 	struct ucred *cred;
3457 #ifdef notyet
3458 	uint64_t limit;
3459 #endif
3460 #ifdef RACCT
3461 	int error;
3462 #endif
3463 
3464 Retry:
3465 	PROC_LOCK(p);
3466 	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3467 	stacklim = lim_cur(p, RLIMIT_STACK);
3468 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3469 	PROC_UNLOCK(p);
3470 
3471 	vm_map_lock_read(map);
3472 
3473 	/* If addr is already in the entry range, no need to grow.*/
3474 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3475 		vm_map_unlock_read(map);
3476 		return (KERN_SUCCESS);
3477 	}
3478 
3479 	next_entry = prev_entry->next;
3480 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3481 		/*
3482 		 * This entry does not grow upwards. Since the address lies
3483 		 * beyond this entry, the next entry (if one exists) has to
3484 		 * be a downward growable entry. The entry list header is
3485 		 * never a growable entry, so it suffices to check the flags.
3486 		 */
3487 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3488 			vm_map_unlock_read(map);
3489 			return (KERN_SUCCESS);
3490 		}
3491 		stack_entry = next_entry;
3492 	} else {
3493 		/*
3494 		 * This entry grows upward. If the next entry does not at
3495 		 * least grow downwards, this is the entry we need to grow.
3496 		 * otherwise we have two possible choices and we have to
3497 		 * select one.
3498 		 */
3499 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3500 			/*
3501 			 * We have two choices; grow the entry closest to
3502 			 * the address to minimize the amount of growth.
3503 			 */
3504 			if (addr - prev_entry->end <= next_entry->start - addr)
3505 				stack_entry = prev_entry;
3506 			else
3507 				stack_entry = next_entry;
3508 		} else
3509 			stack_entry = prev_entry;
3510 	}
3511 
3512 	if (stack_entry == next_entry) {
3513 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3514 		KASSERT(addr < stack_entry->start, ("foo"));
3515 		end = (prev_entry != &map->header) ? prev_entry->end :
3516 		    stack_entry->start - stack_entry->avail_ssize;
3517 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3518 		max_grow = stack_entry->start - end;
3519 	} else {
3520 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3521 		KASSERT(addr >= stack_entry->end, ("foo"));
3522 		end = (next_entry != &map->header) ? next_entry->start :
3523 		    stack_entry->end + stack_entry->avail_ssize;
3524 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3525 		max_grow = end - stack_entry->end;
3526 	}
3527 
3528 	if (grow_amount > stack_entry->avail_ssize) {
3529 		vm_map_unlock_read(map);
3530 		return (KERN_NO_SPACE);
3531 	}
3532 
3533 	/*
3534 	 * If there is no longer enough space between the entries nogo, and
3535 	 * adjust the available space.  Note: this  should only happen if the
3536 	 * user has mapped into the stack area after the stack was created,
3537 	 * and is probably an error.
3538 	 *
3539 	 * This also effectively destroys any guard page the user might have
3540 	 * intended by limiting the stack size.
3541 	 */
3542 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3543 		if (vm_map_lock_upgrade(map))
3544 			goto Retry;
3545 
3546 		stack_entry->avail_ssize = max_grow;
3547 
3548 		vm_map_unlock(map);
3549 		return (KERN_NO_SPACE);
3550 	}
3551 
3552 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3553 
3554 	/*
3555 	 * If this is the main process stack, see if we're over the stack
3556 	 * limit.
3557 	 */
3558 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3559 		vm_map_unlock_read(map);
3560 		return (KERN_NO_SPACE);
3561 	}
3562 #ifdef RACCT
3563 	PROC_LOCK(p);
3564 	if (is_procstack &&
3565 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3566 		PROC_UNLOCK(p);
3567 		vm_map_unlock_read(map);
3568 		return (KERN_NO_SPACE);
3569 	}
3570 	PROC_UNLOCK(p);
3571 #endif
3572 
3573 	/* Round up the grow amount modulo sgrowsiz */
3574 	growsize = sgrowsiz;
3575 	grow_amount = roundup(grow_amount, growsize);
3576 	if (grow_amount > stack_entry->avail_ssize)
3577 		grow_amount = stack_entry->avail_ssize;
3578 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3579 		grow_amount = trunc_page((vm_size_t)stacklim) -
3580 		    ctob(vm->vm_ssize);
3581 	}
3582 #ifdef notyet
3583 	PROC_LOCK(p);
3584 	limit = racct_get_available(p, RACCT_STACK);
3585 	PROC_UNLOCK(p);
3586 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3587 		grow_amount = limit - ctob(vm->vm_ssize);
3588 #endif
3589 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3590 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3591 			vm_map_unlock_read(map);
3592 			rv = KERN_NO_SPACE;
3593 			goto out;
3594 		}
3595 #ifdef RACCT
3596 		PROC_LOCK(p);
3597 		if (racct_set(p, RACCT_MEMLOCK,
3598 		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3599 			PROC_UNLOCK(p);
3600 			vm_map_unlock_read(map);
3601 			rv = KERN_NO_SPACE;
3602 			goto out;
3603 		}
3604 		PROC_UNLOCK(p);
3605 #endif
3606 	}
3607 	/* If we would blow our VMEM resource limit, no go */
3608 	if (map->size + grow_amount > vmemlim) {
3609 		vm_map_unlock_read(map);
3610 		rv = KERN_NO_SPACE;
3611 		goto out;
3612 	}
3613 #ifdef RACCT
3614 	PROC_LOCK(p);
3615 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3616 		PROC_UNLOCK(p);
3617 		vm_map_unlock_read(map);
3618 		rv = KERN_NO_SPACE;
3619 		goto out;
3620 	}
3621 	PROC_UNLOCK(p);
3622 #endif
3623 
3624 	if (vm_map_lock_upgrade(map))
3625 		goto Retry;
3626 
3627 	if (stack_entry == next_entry) {
3628 		/*
3629 		 * Growing downward.
3630 		 */
3631 		/* Get the preliminary new entry start value */
3632 		addr = stack_entry->start - grow_amount;
3633 
3634 		/*
3635 		 * If this puts us into the previous entry, cut back our
3636 		 * growth to the available space. Also, see the note above.
3637 		 */
3638 		if (addr < end) {
3639 			stack_entry->avail_ssize = max_grow;
3640 			addr = end;
3641 			if (stack_guard_page)
3642 				addr += PAGE_SIZE;
3643 		}
3644 
3645 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3646 		    next_entry->protection, next_entry->max_protection, 0);
3647 
3648 		/* Adjust the available stack space by the amount we grew. */
3649 		if (rv == KERN_SUCCESS) {
3650 			if (prev_entry != &map->header)
3651 				vm_map_clip_end(map, prev_entry, addr);
3652 			new_entry = prev_entry->next;
3653 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3654 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3655 			KASSERT(new_entry->start == addr, ("foo"));
3656 			grow_amount = new_entry->end - new_entry->start;
3657 			new_entry->avail_ssize = stack_entry->avail_ssize -
3658 			    grow_amount;
3659 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3660 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3661 		}
3662 	} else {
3663 		/*
3664 		 * Growing upward.
3665 		 */
3666 		addr = stack_entry->end + grow_amount;
3667 
3668 		/*
3669 		 * If this puts us into the next entry, cut back our growth
3670 		 * to the available space. Also, see the note above.
3671 		 */
3672 		if (addr > end) {
3673 			stack_entry->avail_ssize = end - stack_entry->end;
3674 			addr = end;
3675 			if (stack_guard_page)
3676 				addr -= PAGE_SIZE;
3677 		}
3678 
3679 		grow_amount = addr - stack_entry->end;
3680 		cred = stack_entry->cred;
3681 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3682 			cred = stack_entry->object.vm_object->cred;
3683 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3684 			rv = KERN_NO_SPACE;
3685 		/* Grow the underlying object if applicable. */
3686 		else if (stack_entry->object.vm_object == NULL ||
3687 			 vm_object_coalesce(stack_entry->object.vm_object,
3688 			 stack_entry->offset,
3689 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3690 			 (vm_size_t)grow_amount, cred != NULL)) {
3691 			map->size += (addr - stack_entry->end);
3692 			/* Update the current entry. */
3693 			stack_entry->end = addr;
3694 			stack_entry->avail_ssize -= grow_amount;
3695 			vm_map_entry_resize_free(map, stack_entry);
3696 			rv = KERN_SUCCESS;
3697 
3698 			if (next_entry != &map->header)
3699 				vm_map_clip_start(map, next_entry, addr);
3700 		} else
3701 			rv = KERN_FAILURE;
3702 	}
3703 
3704 	if (rv == KERN_SUCCESS && is_procstack)
3705 		vm->vm_ssize += btoc(grow_amount);
3706 
3707 	vm_map_unlock(map);
3708 
3709 	/*
3710 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3711 	 */
3712 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3713 		vm_map_wire(map,
3714 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3715 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3716 		    (p->p_flag & P_SYSTEM)
3717 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3718 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3719 	}
3720 
3721 out:
3722 #ifdef RACCT
3723 	if (rv != KERN_SUCCESS) {
3724 		PROC_LOCK(p);
3725 		error = racct_set(p, RACCT_VMEM, map->size);
3726 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3727 		if (!old_mlock) {
3728 			error = racct_set(p, RACCT_MEMLOCK,
3729 			    ptoa(pmap_wired_count(map->pmap)));
3730 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3731 		}
3732 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3733 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3734 		PROC_UNLOCK(p);
3735 	}
3736 #endif
3737 
3738 	return (rv);
3739 }
3740 
3741 /*
3742  * Unshare the specified VM space for exec.  If other processes are
3743  * mapped to it, then create a new one.  The new vmspace is null.
3744  */
3745 int
3746 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3747 {
3748 	struct vmspace *oldvmspace = p->p_vmspace;
3749 	struct vmspace *newvmspace;
3750 
3751 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3752 	if (newvmspace == NULL)
3753 		return (ENOMEM);
3754 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3755 	/*
3756 	 * This code is written like this for prototype purposes.  The
3757 	 * goal is to avoid running down the vmspace here, but let the
3758 	 * other process's that are still using the vmspace to finally
3759 	 * run it down.  Even though there is little or no chance of blocking
3760 	 * here, it is a good idea to keep this form for future mods.
3761 	 */
3762 	PROC_VMSPACE_LOCK(p);
3763 	p->p_vmspace = newvmspace;
3764 	PROC_VMSPACE_UNLOCK(p);
3765 	if (p == curthread->td_proc)
3766 		pmap_activate(curthread);
3767 	vmspace_free(oldvmspace);
3768 	return (0);
3769 }
3770 
3771 /*
3772  * Unshare the specified VM space for forcing COW.  This
3773  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3774  */
3775 int
3776 vmspace_unshare(struct proc *p)
3777 {
3778 	struct vmspace *oldvmspace = p->p_vmspace;
3779 	struct vmspace *newvmspace;
3780 	vm_ooffset_t fork_charge;
3781 
3782 	if (oldvmspace->vm_refcnt == 1)
3783 		return (0);
3784 	fork_charge = 0;
3785 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3786 	if (newvmspace == NULL)
3787 		return (ENOMEM);
3788 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3789 		vmspace_free(newvmspace);
3790 		return (ENOMEM);
3791 	}
3792 	PROC_VMSPACE_LOCK(p);
3793 	p->p_vmspace = newvmspace;
3794 	PROC_VMSPACE_UNLOCK(p);
3795 	if (p == curthread->td_proc)
3796 		pmap_activate(curthread);
3797 	vmspace_free(oldvmspace);
3798 	return (0);
3799 }
3800 
3801 /*
3802  *	vm_map_lookup:
3803  *
3804  *	Finds the VM object, offset, and
3805  *	protection for a given virtual address in the
3806  *	specified map, assuming a page fault of the
3807  *	type specified.
3808  *
3809  *	Leaves the map in question locked for read; return
3810  *	values are guaranteed until a vm_map_lookup_done
3811  *	call is performed.  Note that the map argument
3812  *	is in/out; the returned map must be used in
3813  *	the call to vm_map_lookup_done.
3814  *
3815  *	A handle (out_entry) is returned for use in
3816  *	vm_map_lookup_done, to make that fast.
3817  *
3818  *	If a lookup is requested with "write protection"
3819  *	specified, the map may be changed to perform virtual
3820  *	copying operations, although the data referenced will
3821  *	remain the same.
3822  */
3823 int
3824 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3825 	      vm_offset_t vaddr,
3826 	      vm_prot_t fault_typea,
3827 	      vm_map_entry_t *out_entry,	/* OUT */
3828 	      vm_object_t *object,		/* OUT */
3829 	      vm_pindex_t *pindex,		/* OUT */
3830 	      vm_prot_t *out_prot,		/* OUT */
3831 	      boolean_t *wired)			/* OUT */
3832 {
3833 	vm_map_entry_t entry;
3834 	vm_map_t map = *var_map;
3835 	vm_prot_t prot;
3836 	vm_prot_t fault_type = fault_typea;
3837 	vm_object_t eobject;
3838 	vm_size_t size;
3839 	struct ucred *cred;
3840 
3841 RetryLookup:;
3842 
3843 	vm_map_lock_read(map);
3844 
3845 	/*
3846 	 * Lookup the faulting address.
3847 	 */
3848 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3849 		vm_map_unlock_read(map);
3850 		return (KERN_INVALID_ADDRESS);
3851 	}
3852 
3853 	entry = *out_entry;
3854 
3855 	/*
3856 	 * Handle submaps.
3857 	 */
3858 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3859 		vm_map_t old_map = map;
3860 
3861 		*var_map = map = entry->object.sub_map;
3862 		vm_map_unlock_read(old_map);
3863 		goto RetryLookup;
3864 	}
3865 
3866 	/*
3867 	 * Check whether this task is allowed to have this page.
3868 	 */
3869 	prot = entry->protection;
3870 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3871 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3872 		vm_map_unlock_read(map);
3873 		return (KERN_PROTECTION_FAILURE);
3874 	}
3875 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3876 	    (entry->eflags & MAP_ENTRY_COW) &&
3877 	    (fault_type & VM_PROT_WRITE)) {
3878 		vm_map_unlock_read(map);
3879 		return (KERN_PROTECTION_FAILURE);
3880 	}
3881 	if ((fault_typea & VM_PROT_COPY) != 0 &&
3882 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3883 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3884 		vm_map_unlock_read(map);
3885 		return (KERN_PROTECTION_FAILURE);
3886 	}
3887 
3888 	/*
3889 	 * If this page is not pageable, we have to get it for all possible
3890 	 * accesses.
3891 	 */
3892 	*wired = (entry->wired_count != 0);
3893 	if (*wired)
3894 		fault_type = entry->protection;
3895 	size = entry->end - entry->start;
3896 	/*
3897 	 * If the entry was copy-on-write, we either ...
3898 	 */
3899 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3900 		/*
3901 		 * If we want to write the page, we may as well handle that
3902 		 * now since we've got the map locked.
3903 		 *
3904 		 * If we don't need to write the page, we just demote the
3905 		 * permissions allowed.
3906 		 */
3907 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3908 		    (fault_typea & VM_PROT_COPY) != 0) {
3909 			/*
3910 			 * Make a new object, and place it in the object
3911 			 * chain.  Note that no new references have appeared
3912 			 * -- one just moved from the map to the new
3913 			 * object.
3914 			 */
3915 			if (vm_map_lock_upgrade(map))
3916 				goto RetryLookup;
3917 
3918 			if (entry->cred == NULL) {
3919 				/*
3920 				 * The debugger owner is charged for
3921 				 * the memory.
3922 				 */
3923 				cred = curthread->td_ucred;
3924 				crhold(cred);
3925 				if (!swap_reserve_by_cred(size, cred)) {
3926 					crfree(cred);
3927 					vm_map_unlock(map);
3928 					return (KERN_RESOURCE_SHORTAGE);
3929 				}
3930 				entry->cred = cred;
3931 			}
3932 			vm_object_shadow(&entry->object.vm_object,
3933 			    &entry->offset, size);
3934 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3935 			eobject = entry->object.vm_object;
3936 			if (eobject->cred != NULL) {
3937 				/*
3938 				 * The object was not shadowed.
3939 				 */
3940 				swap_release_by_cred(size, entry->cred);
3941 				crfree(entry->cred);
3942 				entry->cred = NULL;
3943 			} else if (entry->cred != NULL) {
3944 				VM_OBJECT_WLOCK(eobject);
3945 				eobject->cred = entry->cred;
3946 				eobject->charge = size;
3947 				VM_OBJECT_WUNLOCK(eobject);
3948 				entry->cred = NULL;
3949 			}
3950 
3951 			vm_map_lock_downgrade(map);
3952 		} else {
3953 			/*
3954 			 * We're attempting to read a copy-on-write page --
3955 			 * don't allow writes.
3956 			 */
3957 			prot &= ~VM_PROT_WRITE;
3958 		}
3959 	}
3960 
3961 	/*
3962 	 * Create an object if necessary.
3963 	 */
3964 	if (entry->object.vm_object == NULL &&
3965 	    !map->system_map) {
3966 		if (vm_map_lock_upgrade(map))
3967 			goto RetryLookup;
3968 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3969 		    atop(size));
3970 		entry->offset = 0;
3971 		if (entry->cred != NULL) {
3972 			VM_OBJECT_WLOCK(entry->object.vm_object);
3973 			entry->object.vm_object->cred = entry->cred;
3974 			entry->object.vm_object->charge = size;
3975 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
3976 			entry->cred = NULL;
3977 		}
3978 		vm_map_lock_downgrade(map);
3979 	}
3980 
3981 	/*
3982 	 * Return the object/offset from this entry.  If the entry was
3983 	 * copy-on-write or empty, it has been fixed up.
3984 	 */
3985 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3986 	*object = entry->object.vm_object;
3987 
3988 	*out_prot = prot;
3989 	return (KERN_SUCCESS);
3990 }
3991 
3992 /*
3993  *	vm_map_lookup_locked:
3994  *
3995  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3996  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3997  */
3998 int
3999 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4000 		     vm_offset_t vaddr,
4001 		     vm_prot_t fault_typea,
4002 		     vm_map_entry_t *out_entry,	/* OUT */
4003 		     vm_object_t *object,	/* OUT */
4004 		     vm_pindex_t *pindex,	/* OUT */
4005 		     vm_prot_t *out_prot,	/* OUT */
4006 		     boolean_t *wired)		/* OUT */
4007 {
4008 	vm_map_entry_t entry;
4009 	vm_map_t map = *var_map;
4010 	vm_prot_t prot;
4011 	vm_prot_t fault_type = fault_typea;
4012 
4013 	/*
4014 	 * Lookup the faulting address.
4015 	 */
4016 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4017 		return (KERN_INVALID_ADDRESS);
4018 
4019 	entry = *out_entry;
4020 
4021 	/*
4022 	 * Fail if the entry refers to a submap.
4023 	 */
4024 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4025 		return (KERN_FAILURE);
4026 
4027 	/*
4028 	 * Check whether this task is allowed to have this page.
4029 	 */
4030 	prot = entry->protection;
4031 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4032 	if ((fault_type & prot) != fault_type)
4033 		return (KERN_PROTECTION_FAILURE);
4034 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4035 	    (entry->eflags & MAP_ENTRY_COW) &&
4036 	    (fault_type & VM_PROT_WRITE))
4037 		return (KERN_PROTECTION_FAILURE);
4038 
4039 	/*
4040 	 * If this page is not pageable, we have to get it for all possible
4041 	 * accesses.
4042 	 */
4043 	*wired = (entry->wired_count != 0);
4044 	if (*wired)
4045 		fault_type = entry->protection;
4046 
4047 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4048 		/*
4049 		 * Fail if the entry was copy-on-write for a write fault.
4050 		 */
4051 		if (fault_type & VM_PROT_WRITE)
4052 			return (KERN_FAILURE);
4053 		/*
4054 		 * We're attempting to read a copy-on-write page --
4055 		 * don't allow writes.
4056 		 */
4057 		prot &= ~VM_PROT_WRITE;
4058 	}
4059 
4060 	/*
4061 	 * Fail if an object should be created.
4062 	 */
4063 	if (entry->object.vm_object == NULL && !map->system_map)
4064 		return (KERN_FAILURE);
4065 
4066 	/*
4067 	 * Return the object/offset from this entry.  If the entry was
4068 	 * copy-on-write or empty, it has been fixed up.
4069 	 */
4070 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4071 	*object = entry->object.vm_object;
4072 
4073 	*out_prot = prot;
4074 	return (KERN_SUCCESS);
4075 }
4076 
4077 /*
4078  *	vm_map_lookup_done:
4079  *
4080  *	Releases locks acquired by a vm_map_lookup
4081  *	(according to the handle returned by that lookup).
4082  */
4083 void
4084 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4085 {
4086 	/*
4087 	 * Unlock the main-level map
4088 	 */
4089 	vm_map_unlock_read(map);
4090 }
4091 
4092 #include "opt_ddb.h"
4093 #ifdef DDB
4094 #include <sys/kernel.h>
4095 
4096 #include <ddb/ddb.h>
4097 
4098 static void
4099 vm_map_print(vm_map_t map)
4100 {
4101 	vm_map_entry_t entry;
4102 
4103 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4104 	    (void *)map,
4105 	    (void *)map->pmap, map->nentries, map->timestamp);
4106 
4107 	db_indent += 2;
4108 	for (entry = map->header.next; entry != &map->header;
4109 	    entry = entry->next) {
4110 		db_iprintf("map entry %p: start=%p, end=%p\n",
4111 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4112 		{
4113 			static char *inheritance_name[4] =
4114 			{"share", "copy", "none", "donate_copy"};
4115 
4116 			db_iprintf(" prot=%x/%x/%s",
4117 			    entry->protection,
4118 			    entry->max_protection,
4119 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4120 			if (entry->wired_count != 0)
4121 				db_printf(", wired");
4122 		}
4123 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4124 			db_printf(", share=%p, offset=0x%jx\n",
4125 			    (void *)entry->object.sub_map,
4126 			    (uintmax_t)entry->offset);
4127 			if ((entry->prev == &map->header) ||
4128 			    (entry->prev->object.sub_map !=
4129 				entry->object.sub_map)) {
4130 				db_indent += 2;
4131 				vm_map_print((vm_map_t)entry->object.sub_map);
4132 				db_indent -= 2;
4133 			}
4134 		} else {
4135 			if (entry->cred != NULL)
4136 				db_printf(", ruid %d", entry->cred->cr_ruid);
4137 			db_printf(", object=%p, offset=0x%jx",
4138 			    (void *)entry->object.vm_object,
4139 			    (uintmax_t)entry->offset);
4140 			if (entry->object.vm_object && entry->object.vm_object->cred)
4141 				db_printf(", obj ruid %d charge %jx",
4142 				    entry->object.vm_object->cred->cr_ruid,
4143 				    (uintmax_t)entry->object.vm_object->charge);
4144 			if (entry->eflags & MAP_ENTRY_COW)
4145 				db_printf(", copy (%s)",
4146 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4147 			db_printf("\n");
4148 
4149 			if ((entry->prev == &map->header) ||
4150 			    (entry->prev->object.vm_object !=
4151 				entry->object.vm_object)) {
4152 				db_indent += 2;
4153 				vm_object_print((db_expr_t)(intptr_t)
4154 						entry->object.vm_object,
4155 						1, 0, (char *)0);
4156 				db_indent -= 2;
4157 			}
4158 		}
4159 	}
4160 	db_indent -= 2;
4161 }
4162 
4163 DB_SHOW_COMMAND(map, map)
4164 {
4165 
4166 	if (!have_addr) {
4167 		db_printf("usage: show map <addr>\n");
4168 		return;
4169 	}
4170 	vm_map_print((vm_map_t)addr);
4171 }
4172 
4173 DB_SHOW_COMMAND(procvm, procvm)
4174 {
4175 	struct proc *p;
4176 
4177 	if (have_addr) {
4178 		p = (struct proc *) addr;
4179 	} else {
4180 		p = curproc;
4181 	}
4182 
4183 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4184 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4185 	    (void *)vmspace_pmap(p->p_vmspace));
4186 
4187 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4188 }
4189 
4190 #endif /* DDB */
4191