1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/rwlock.h> 81 #include <sys/file.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/shm.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_pager.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t mapzone; 128 static uma_zone_t vmspace_zone; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static int vm_map_zinit(void *mem, int ize, int flags); 131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 132 vm_offset_t max); 133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 136 #ifdef INVARIANTS 137 static void vm_map_zdtor(void *mem, int size, void *arg); 138 static void vmspace_zdtor(void *mem, int size, void *arg); 139 #endif 140 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 141 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 142 int cow); 143 144 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 145 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 146 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 147 148 /* 149 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 150 * stable. 151 */ 152 #define PROC_VMSPACE_LOCK(p) do { } while (0) 153 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 154 155 /* 156 * VM_MAP_RANGE_CHECK: [ internal use only ] 157 * 158 * Asserts that the starting and ending region 159 * addresses fall within the valid range of the map. 160 */ 161 #define VM_MAP_RANGE_CHECK(map, start, end) \ 162 { \ 163 if (start < vm_map_min(map)) \ 164 start = vm_map_min(map); \ 165 if (end > vm_map_max(map)) \ 166 end = vm_map_max(map); \ 167 if (start > end) \ 168 start = end; \ 169 } 170 171 /* 172 * vm_map_startup: 173 * 174 * Initialize the vm_map module. Must be called before 175 * any other vm_map routines. 176 * 177 * Map and entry structures are allocated from the general 178 * purpose memory pool with some exceptions: 179 * 180 * - The kernel map and kmem submap are allocated statically. 181 * - Kernel map entries are allocated out of a static pool. 182 * 183 * These restrictions are necessary since malloc() uses the 184 * maps and requires map entries. 185 */ 186 187 void 188 vm_map_startup(void) 189 { 190 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 191 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 192 #ifdef INVARIANTS 193 vm_map_zdtor, 194 #else 195 NULL, 196 #endif 197 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 198 uma_prealloc(mapzone, MAX_KMAP); 199 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 200 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 201 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 202 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 203 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 204 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 205 #ifdef INVARIANTS 206 vmspace_zdtor, 207 #else 208 NULL, 209 #endif 210 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 211 } 212 213 static int 214 vmspace_zinit(void *mem, int size, int flags) 215 { 216 struct vmspace *vm; 217 218 vm = (struct vmspace *)mem; 219 220 vm->vm_map.pmap = NULL; 221 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 222 PMAP_LOCK_INIT(vmspace_pmap(vm)); 223 return (0); 224 } 225 226 static int 227 vm_map_zinit(void *mem, int size, int flags) 228 { 229 vm_map_t map; 230 231 map = (vm_map_t)mem; 232 memset(map, 0, sizeof(*map)); 233 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 234 sx_init(&map->lock, "vm map (user)"); 235 return (0); 236 } 237 238 #ifdef INVARIANTS 239 static void 240 vmspace_zdtor(void *mem, int size, void *arg) 241 { 242 struct vmspace *vm; 243 244 vm = (struct vmspace *)mem; 245 246 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 247 } 248 static void 249 vm_map_zdtor(void *mem, int size, void *arg) 250 { 251 vm_map_t map; 252 253 map = (vm_map_t)mem; 254 KASSERT(map->nentries == 0, 255 ("map %p nentries == %d on free.", 256 map, map->nentries)); 257 KASSERT(map->size == 0, 258 ("map %p size == %lu on free.", 259 map, (unsigned long)map->size)); 260 } 261 #endif /* INVARIANTS */ 262 263 /* 264 * Allocate a vmspace structure, including a vm_map and pmap, 265 * and initialize those structures. The refcnt is set to 1. 266 * 267 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 268 */ 269 struct vmspace * 270 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 271 { 272 struct vmspace *vm; 273 274 vm = uma_zalloc(vmspace_zone, M_WAITOK); 275 276 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 277 278 if (pinit == NULL) 279 pinit = &pmap_pinit; 280 281 if (!pinit(vmspace_pmap(vm))) { 282 uma_zfree(vmspace_zone, vm); 283 return (NULL); 284 } 285 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 286 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 287 vm->vm_refcnt = 1; 288 vm->vm_shm = NULL; 289 vm->vm_swrss = 0; 290 vm->vm_tsize = 0; 291 vm->vm_dsize = 0; 292 vm->vm_ssize = 0; 293 vm->vm_taddr = 0; 294 vm->vm_daddr = 0; 295 vm->vm_maxsaddr = 0; 296 return (vm); 297 } 298 299 static void 300 vmspace_container_reset(struct proc *p) 301 { 302 303 #ifdef RACCT 304 PROC_LOCK(p); 305 racct_set(p, RACCT_DATA, 0); 306 racct_set(p, RACCT_STACK, 0); 307 racct_set(p, RACCT_RSS, 0); 308 racct_set(p, RACCT_MEMLOCK, 0); 309 racct_set(p, RACCT_VMEM, 0); 310 PROC_UNLOCK(p); 311 #endif 312 } 313 314 static inline void 315 vmspace_dofree(struct vmspace *vm) 316 { 317 318 CTR1(KTR_VM, "vmspace_free: %p", vm); 319 320 /* 321 * Make sure any SysV shm is freed, it might not have been in 322 * exit1(). 323 */ 324 shmexit(vm); 325 326 /* 327 * Lock the map, to wait out all other references to it. 328 * Delete all of the mappings and pages they hold, then call 329 * the pmap module to reclaim anything left. 330 */ 331 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 332 vm->vm_map.max_offset); 333 334 pmap_release(vmspace_pmap(vm)); 335 vm->vm_map.pmap = NULL; 336 uma_zfree(vmspace_zone, vm); 337 } 338 339 void 340 vmspace_free(struct vmspace *vm) 341 { 342 343 if (vm->vm_refcnt == 0) 344 panic("vmspace_free: attempt to free already freed vmspace"); 345 346 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 347 vmspace_dofree(vm); 348 } 349 350 void 351 vmspace_exitfree(struct proc *p) 352 { 353 struct vmspace *vm; 354 355 PROC_VMSPACE_LOCK(p); 356 vm = p->p_vmspace; 357 p->p_vmspace = NULL; 358 PROC_VMSPACE_UNLOCK(p); 359 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 360 vmspace_free(vm); 361 } 362 363 void 364 vmspace_exit(struct thread *td) 365 { 366 int refcnt; 367 struct vmspace *vm; 368 struct proc *p; 369 370 /* 371 * Release user portion of address space. 372 * This releases references to vnodes, 373 * which could cause I/O if the file has been unlinked. 374 * Need to do this early enough that we can still sleep. 375 * 376 * The last exiting process to reach this point releases as 377 * much of the environment as it can. vmspace_dofree() is the 378 * slower fallback in case another process had a temporary 379 * reference to the vmspace. 380 */ 381 382 p = td->td_proc; 383 vm = p->p_vmspace; 384 atomic_add_int(&vmspace0.vm_refcnt, 1); 385 do { 386 refcnt = vm->vm_refcnt; 387 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 388 /* Switch now since other proc might free vmspace */ 389 PROC_VMSPACE_LOCK(p); 390 p->p_vmspace = &vmspace0; 391 PROC_VMSPACE_UNLOCK(p); 392 pmap_activate(td); 393 } 394 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 395 if (refcnt == 1) { 396 if (p->p_vmspace != vm) { 397 /* vmspace not yet freed, switch back */ 398 PROC_VMSPACE_LOCK(p); 399 p->p_vmspace = vm; 400 PROC_VMSPACE_UNLOCK(p); 401 pmap_activate(td); 402 } 403 pmap_remove_pages(vmspace_pmap(vm)); 404 /* Switch now since this proc will free vmspace */ 405 PROC_VMSPACE_LOCK(p); 406 p->p_vmspace = &vmspace0; 407 PROC_VMSPACE_UNLOCK(p); 408 pmap_activate(td); 409 vmspace_dofree(vm); 410 } 411 vmspace_container_reset(p); 412 } 413 414 /* Acquire reference to vmspace owned by another process. */ 415 416 struct vmspace * 417 vmspace_acquire_ref(struct proc *p) 418 { 419 struct vmspace *vm; 420 int refcnt; 421 422 PROC_VMSPACE_LOCK(p); 423 vm = p->p_vmspace; 424 if (vm == NULL) { 425 PROC_VMSPACE_UNLOCK(p); 426 return (NULL); 427 } 428 do { 429 refcnt = vm->vm_refcnt; 430 if (refcnt <= 0) { /* Avoid 0->1 transition */ 431 PROC_VMSPACE_UNLOCK(p); 432 return (NULL); 433 } 434 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 435 if (vm != p->p_vmspace) { 436 PROC_VMSPACE_UNLOCK(p); 437 vmspace_free(vm); 438 return (NULL); 439 } 440 PROC_VMSPACE_UNLOCK(p); 441 return (vm); 442 } 443 444 void 445 _vm_map_lock(vm_map_t map, const char *file, int line) 446 { 447 448 if (map->system_map) 449 mtx_lock_flags_(&map->system_mtx, 0, file, line); 450 else 451 sx_xlock_(&map->lock, file, line); 452 map->timestamp++; 453 } 454 455 static void 456 vm_map_process_deferred(void) 457 { 458 struct thread *td; 459 vm_map_entry_t entry, next; 460 vm_object_t object; 461 462 td = curthread; 463 entry = td->td_map_def_user; 464 td->td_map_def_user = NULL; 465 while (entry != NULL) { 466 next = entry->next; 467 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 468 /* 469 * Decrement the object's writemappings and 470 * possibly the vnode's v_writecount. 471 */ 472 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 473 ("Submap with writecount")); 474 object = entry->object.vm_object; 475 KASSERT(object != NULL, ("No object for writecount")); 476 vnode_pager_release_writecount(object, entry->start, 477 entry->end); 478 } 479 vm_map_entry_deallocate(entry, FALSE); 480 entry = next; 481 } 482 } 483 484 void 485 _vm_map_unlock(vm_map_t map, const char *file, int line) 486 { 487 488 if (map->system_map) 489 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 490 else { 491 sx_xunlock_(&map->lock, file, line); 492 vm_map_process_deferred(); 493 } 494 } 495 496 void 497 _vm_map_lock_read(vm_map_t map, const char *file, int line) 498 { 499 500 if (map->system_map) 501 mtx_lock_flags_(&map->system_mtx, 0, file, line); 502 else 503 sx_slock_(&map->lock, file, line); 504 } 505 506 void 507 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 508 { 509 510 if (map->system_map) 511 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 512 else { 513 sx_sunlock_(&map->lock, file, line); 514 vm_map_process_deferred(); 515 } 516 } 517 518 int 519 _vm_map_trylock(vm_map_t map, const char *file, int line) 520 { 521 int error; 522 523 error = map->system_map ? 524 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 525 !sx_try_xlock_(&map->lock, file, line); 526 if (error == 0) 527 map->timestamp++; 528 return (error == 0); 529 } 530 531 int 532 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 533 { 534 int error; 535 536 error = map->system_map ? 537 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 538 !sx_try_slock_(&map->lock, file, line); 539 return (error == 0); 540 } 541 542 /* 543 * _vm_map_lock_upgrade: [ internal use only ] 544 * 545 * Tries to upgrade a read (shared) lock on the specified map to a write 546 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 547 * non-zero value if the upgrade fails. If the upgrade fails, the map is 548 * returned without a read or write lock held. 549 * 550 * Requires that the map be read locked. 551 */ 552 int 553 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 554 { 555 unsigned int last_timestamp; 556 557 if (map->system_map) { 558 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 559 } else { 560 if (!sx_try_upgrade_(&map->lock, file, line)) { 561 last_timestamp = map->timestamp; 562 sx_sunlock_(&map->lock, file, line); 563 vm_map_process_deferred(); 564 /* 565 * If the map's timestamp does not change while the 566 * map is unlocked, then the upgrade succeeds. 567 */ 568 sx_xlock_(&map->lock, file, line); 569 if (last_timestamp != map->timestamp) { 570 sx_xunlock_(&map->lock, file, line); 571 return (1); 572 } 573 } 574 } 575 map->timestamp++; 576 return (0); 577 } 578 579 void 580 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 581 { 582 583 if (map->system_map) { 584 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 585 } else 586 sx_downgrade_(&map->lock, file, line); 587 } 588 589 /* 590 * vm_map_locked: 591 * 592 * Returns a non-zero value if the caller holds a write (exclusive) lock 593 * on the specified map and the value "0" otherwise. 594 */ 595 int 596 vm_map_locked(vm_map_t map) 597 { 598 599 if (map->system_map) 600 return (mtx_owned(&map->system_mtx)); 601 else 602 return (sx_xlocked(&map->lock)); 603 } 604 605 #ifdef INVARIANTS 606 static void 607 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 608 { 609 610 if (map->system_map) 611 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 612 else 613 sx_assert_(&map->lock, SA_XLOCKED, file, line); 614 } 615 616 #define VM_MAP_ASSERT_LOCKED(map) \ 617 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 618 #else 619 #define VM_MAP_ASSERT_LOCKED(map) 620 #endif 621 622 /* 623 * _vm_map_unlock_and_wait: 624 * 625 * Atomically releases the lock on the specified map and puts the calling 626 * thread to sleep. The calling thread will remain asleep until either 627 * vm_map_wakeup() is performed on the map or the specified timeout is 628 * exceeded. 629 * 630 * WARNING! This function does not perform deferred deallocations of 631 * objects and map entries. Therefore, the calling thread is expected to 632 * reacquire the map lock after reawakening and later perform an ordinary 633 * unlock operation, such as vm_map_unlock(), before completing its 634 * operation on the map. 635 */ 636 int 637 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 638 { 639 640 mtx_lock(&map_sleep_mtx); 641 if (map->system_map) 642 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 643 else 644 sx_xunlock_(&map->lock, file, line); 645 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 646 timo)); 647 } 648 649 /* 650 * vm_map_wakeup: 651 * 652 * Awaken any threads that have slept on the map using 653 * vm_map_unlock_and_wait(). 654 */ 655 void 656 vm_map_wakeup(vm_map_t map) 657 { 658 659 /* 660 * Acquire and release map_sleep_mtx to prevent a wakeup() 661 * from being performed (and lost) between the map unlock 662 * and the msleep() in _vm_map_unlock_and_wait(). 663 */ 664 mtx_lock(&map_sleep_mtx); 665 mtx_unlock(&map_sleep_mtx); 666 wakeup(&map->root); 667 } 668 669 void 670 vm_map_busy(vm_map_t map) 671 { 672 673 VM_MAP_ASSERT_LOCKED(map); 674 map->busy++; 675 } 676 677 void 678 vm_map_unbusy(vm_map_t map) 679 { 680 681 VM_MAP_ASSERT_LOCKED(map); 682 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 683 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 684 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 685 wakeup(&map->busy); 686 } 687 } 688 689 void 690 vm_map_wait_busy(vm_map_t map) 691 { 692 693 VM_MAP_ASSERT_LOCKED(map); 694 while (map->busy) { 695 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 696 if (map->system_map) 697 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 698 else 699 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 700 } 701 map->timestamp++; 702 } 703 704 long 705 vmspace_resident_count(struct vmspace *vmspace) 706 { 707 return pmap_resident_count(vmspace_pmap(vmspace)); 708 } 709 710 /* 711 * vm_map_create: 712 * 713 * Creates and returns a new empty VM map with 714 * the given physical map structure, and having 715 * the given lower and upper address bounds. 716 */ 717 vm_map_t 718 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 719 { 720 vm_map_t result; 721 722 result = uma_zalloc(mapzone, M_WAITOK); 723 CTR1(KTR_VM, "vm_map_create: %p", result); 724 _vm_map_init(result, pmap, min, max); 725 return (result); 726 } 727 728 /* 729 * Initialize an existing vm_map structure 730 * such as that in the vmspace structure. 731 */ 732 static void 733 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 734 { 735 736 map->header.next = map->header.prev = &map->header; 737 map->needs_wakeup = FALSE; 738 map->system_map = 0; 739 map->pmap = pmap; 740 map->min_offset = min; 741 map->max_offset = max; 742 map->flags = 0; 743 map->root = NULL; 744 map->timestamp = 0; 745 map->busy = 0; 746 } 747 748 void 749 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 750 { 751 752 _vm_map_init(map, pmap, min, max); 753 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 754 sx_init(&map->lock, "user map"); 755 } 756 757 /* 758 * vm_map_entry_dispose: [ internal use only ] 759 * 760 * Inverse of vm_map_entry_create. 761 */ 762 static void 763 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 764 { 765 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 766 } 767 768 /* 769 * vm_map_entry_create: [ internal use only ] 770 * 771 * Allocates a VM map entry for insertion. 772 * No entry fields are filled in. 773 */ 774 static vm_map_entry_t 775 vm_map_entry_create(vm_map_t map) 776 { 777 vm_map_entry_t new_entry; 778 779 if (map->system_map) 780 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 781 else 782 new_entry = uma_zalloc(mapentzone, M_WAITOK); 783 if (new_entry == NULL) 784 panic("vm_map_entry_create: kernel resources exhausted"); 785 return (new_entry); 786 } 787 788 /* 789 * vm_map_entry_set_behavior: 790 * 791 * Set the expected access behavior, either normal, random, or 792 * sequential. 793 */ 794 static inline void 795 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 796 { 797 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 798 (behavior & MAP_ENTRY_BEHAV_MASK); 799 } 800 801 /* 802 * vm_map_entry_set_max_free: 803 * 804 * Set the max_free field in a vm_map_entry. 805 */ 806 static inline void 807 vm_map_entry_set_max_free(vm_map_entry_t entry) 808 { 809 810 entry->max_free = entry->adj_free; 811 if (entry->left != NULL && entry->left->max_free > entry->max_free) 812 entry->max_free = entry->left->max_free; 813 if (entry->right != NULL && entry->right->max_free > entry->max_free) 814 entry->max_free = entry->right->max_free; 815 } 816 817 /* 818 * vm_map_entry_splay: 819 * 820 * The Sleator and Tarjan top-down splay algorithm with the 821 * following variation. Max_free must be computed bottom-up, so 822 * on the downward pass, maintain the left and right spines in 823 * reverse order. Then, make a second pass up each side to fix 824 * the pointers and compute max_free. The time bound is O(log n) 825 * amortized. 826 * 827 * The new root is the vm_map_entry containing "addr", or else an 828 * adjacent entry (lower or higher) if addr is not in the tree. 829 * 830 * The map must be locked, and leaves it so. 831 * 832 * Returns: the new root. 833 */ 834 static vm_map_entry_t 835 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 836 { 837 vm_map_entry_t llist, rlist; 838 vm_map_entry_t ltree, rtree; 839 vm_map_entry_t y; 840 841 /* Special case of empty tree. */ 842 if (root == NULL) 843 return (root); 844 845 /* 846 * Pass One: Splay down the tree until we find addr or a NULL 847 * pointer where addr would go. llist and rlist are the two 848 * sides in reverse order (bottom-up), with llist linked by 849 * the right pointer and rlist linked by the left pointer in 850 * the vm_map_entry. Wait until Pass Two to set max_free on 851 * the two spines. 852 */ 853 llist = NULL; 854 rlist = NULL; 855 for (;;) { 856 /* root is never NULL in here. */ 857 if (addr < root->start) { 858 y = root->left; 859 if (y == NULL) 860 break; 861 if (addr < y->start && y->left != NULL) { 862 /* Rotate right and put y on rlist. */ 863 root->left = y->right; 864 y->right = root; 865 vm_map_entry_set_max_free(root); 866 root = y->left; 867 y->left = rlist; 868 rlist = y; 869 } else { 870 /* Put root on rlist. */ 871 root->left = rlist; 872 rlist = root; 873 root = y; 874 } 875 } else if (addr >= root->end) { 876 y = root->right; 877 if (y == NULL) 878 break; 879 if (addr >= y->end && y->right != NULL) { 880 /* Rotate left and put y on llist. */ 881 root->right = y->left; 882 y->left = root; 883 vm_map_entry_set_max_free(root); 884 root = y->right; 885 y->right = llist; 886 llist = y; 887 } else { 888 /* Put root on llist. */ 889 root->right = llist; 890 llist = root; 891 root = y; 892 } 893 } else 894 break; 895 } 896 897 /* 898 * Pass Two: Walk back up the two spines, flip the pointers 899 * and set max_free. The subtrees of the root go at the 900 * bottom of llist and rlist. 901 */ 902 ltree = root->left; 903 while (llist != NULL) { 904 y = llist->right; 905 llist->right = ltree; 906 vm_map_entry_set_max_free(llist); 907 ltree = llist; 908 llist = y; 909 } 910 rtree = root->right; 911 while (rlist != NULL) { 912 y = rlist->left; 913 rlist->left = rtree; 914 vm_map_entry_set_max_free(rlist); 915 rtree = rlist; 916 rlist = y; 917 } 918 919 /* 920 * Final assembly: add ltree and rtree as subtrees of root. 921 */ 922 root->left = ltree; 923 root->right = rtree; 924 vm_map_entry_set_max_free(root); 925 926 return (root); 927 } 928 929 /* 930 * vm_map_entry_{un,}link: 931 * 932 * Insert/remove entries from maps. 933 */ 934 static void 935 vm_map_entry_link(vm_map_t map, 936 vm_map_entry_t after_where, 937 vm_map_entry_t entry) 938 { 939 940 CTR4(KTR_VM, 941 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 942 map->nentries, entry, after_where); 943 VM_MAP_ASSERT_LOCKED(map); 944 KASSERT(after_where == &map->header || 945 after_where->end <= entry->start, 946 ("vm_map_entry_link: prev end %jx new start %jx overlap", 947 (uintmax_t)after_where->end, (uintmax_t)entry->start)); 948 KASSERT(after_where->next == &map->header || 949 entry->end <= after_where->next->start, 950 ("vm_map_entry_link: new end %jx next start %jx overlap", 951 (uintmax_t)entry->end, (uintmax_t)after_where->next->start)); 952 953 map->nentries++; 954 entry->prev = after_where; 955 entry->next = after_where->next; 956 entry->next->prev = entry; 957 after_where->next = entry; 958 959 if (after_where != &map->header) { 960 if (after_where != map->root) 961 vm_map_entry_splay(after_where->start, map->root); 962 entry->right = after_where->right; 963 entry->left = after_where; 964 after_where->right = NULL; 965 after_where->adj_free = entry->start - after_where->end; 966 vm_map_entry_set_max_free(after_where); 967 } else { 968 entry->right = map->root; 969 entry->left = NULL; 970 } 971 entry->adj_free = (entry->next == &map->header ? map->max_offset : 972 entry->next->start) - entry->end; 973 vm_map_entry_set_max_free(entry); 974 map->root = entry; 975 } 976 977 static void 978 vm_map_entry_unlink(vm_map_t map, 979 vm_map_entry_t entry) 980 { 981 vm_map_entry_t next, prev, root; 982 983 VM_MAP_ASSERT_LOCKED(map); 984 if (entry != map->root) 985 vm_map_entry_splay(entry->start, map->root); 986 if (entry->left == NULL) 987 root = entry->right; 988 else { 989 root = vm_map_entry_splay(entry->start, entry->left); 990 root->right = entry->right; 991 root->adj_free = (entry->next == &map->header ? map->max_offset : 992 entry->next->start) - root->end; 993 vm_map_entry_set_max_free(root); 994 } 995 map->root = root; 996 997 prev = entry->prev; 998 next = entry->next; 999 next->prev = prev; 1000 prev->next = next; 1001 map->nentries--; 1002 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1003 map->nentries, entry); 1004 } 1005 1006 /* 1007 * vm_map_entry_resize_free: 1008 * 1009 * Recompute the amount of free space following a vm_map_entry 1010 * and propagate that value up the tree. Call this function after 1011 * resizing a map entry in-place, that is, without a call to 1012 * vm_map_entry_link() or _unlink(). 1013 * 1014 * The map must be locked, and leaves it so. 1015 */ 1016 static void 1017 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1018 { 1019 1020 /* 1021 * Using splay trees without parent pointers, propagating 1022 * max_free up the tree is done by moving the entry to the 1023 * root and making the change there. 1024 */ 1025 if (entry != map->root) 1026 map->root = vm_map_entry_splay(entry->start, map->root); 1027 1028 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1029 entry->next->start) - entry->end; 1030 vm_map_entry_set_max_free(entry); 1031 } 1032 1033 /* 1034 * vm_map_lookup_entry: [ internal use only ] 1035 * 1036 * Finds the map entry containing (or 1037 * immediately preceding) the specified address 1038 * in the given map; the entry is returned 1039 * in the "entry" parameter. The boolean 1040 * result indicates whether the address is 1041 * actually contained in the map. 1042 */ 1043 boolean_t 1044 vm_map_lookup_entry( 1045 vm_map_t map, 1046 vm_offset_t address, 1047 vm_map_entry_t *entry) /* OUT */ 1048 { 1049 vm_map_entry_t cur; 1050 boolean_t locked; 1051 1052 /* 1053 * If the map is empty, then the map entry immediately preceding 1054 * "address" is the map's header. 1055 */ 1056 cur = map->root; 1057 if (cur == NULL) 1058 *entry = &map->header; 1059 else if (address >= cur->start && cur->end > address) { 1060 *entry = cur; 1061 return (TRUE); 1062 } else if ((locked = vm_map_locked(map)) || 1063 sx_try_upgrade(&map->lock)) { 1064 /* 1065 * Splay requires a write lock on the map. However, it only 1066 * restructures the binary search tree; it does not otherwise 1067 * change the map. Thus, the map's timestamp need not change 1068 * on a temporary upgrade. 1069 */ 1070 map->root = cur = vm_map_entry_splay(address, cur); 1071 if (!locked) 1072 sx_downgrade(&map->lock); 1073 1074 /* 1075 * If "address" is contained within a map entry, the new root 1076 * is that map entry. Otherwise, the new root is a map entry 1077 * immediately before or after "address". 1078 */ 1079 if (address >= cur->start) { 1080 *entry = cur; 1081 if (cur->end > address) 1082 return (TRUE); 1083 } else 1084 *entry = cur->prev; 1085 } else 1086 /* 1087 * Since the map is only locked for read access, perform a 1088 * standard binary search tree lookup for "address". 1089 */ 1090 for (;;) { 1091 if (address < cur->start) { 1092 if (cur->left == NULL) { 1093 *entry = cur->prev; 1094 break; 1095 } 1096 cur = cur->left; 1097 } else if (cur->end > address) { 1098 *entry = cur; 1099 return (TRUE); 1100 } else { 1101 if (cur->right == NULL) { 1102 *entry = cur; 1103 break; 1104 } 1105 cur = cur->right; 1106 } 1107 } 1108 return (FALSE); 1109 } 1110 1111 /* 1112 * vm_map_insert: 1113 * 1114 * Inserts the given whole VM object into the target 1115 * map at the specified address range. The object's 1116 * size should match that of the address range. 1117 * 1118 * Requires that the map be locked, and leaves it so. 1119 * 1120 * If object is non-NULL, ref count must be bumped by caller 1121 * prior to making call to account for the new entry. 1122 */ 1123 int 1124 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1125 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1126 { 1127 vm_map_entry_t new_entry, prev_entry, temp_entry; 1128 vm_eflags_t protoeflags; 1129 struct ucred *cred; 1130 vm_inherit_t inheritance; 1131 1132 VM_MAP_ASSERT_LOCKED(map); 1133 KASSERT((object != kmem_object && object != kernel_object) || 1134 (cow & MAP_COPY_ON_WRITE) == 0, 1135 ("vm_map_insert: kmem or kernel object and COW")); 1136 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1137 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1138 1139 /* 1140 * Check that the start and end points are not bogus. 1141 */ 1142 if ((start < map->min_offset) || (end > map->max_offset) || 1143 (start >= end)) 1144 return (KERN_INVALID_ADDRESS); 1145 1146 /* 1147 * Find the entry prior to the proposed starting address; if it's part 1148 * of an existing entry, this range is bogus. 1149 */ 1150 if (vm_map_lookup_entry(map, start, &temp_entry)) 1151 return (KERN_NO_SPACE); 1152 1153 prev_entry = temp_entry; 1154 1155 /* 1156 * Assert that the next entry doesn't overlap the end point. 1157 */ 1158 if ((prev_entry->next != &map->header) && 1159 (prev_entry->next->start < end)) 1160 return (KERN_NO_SPACE); 1161 1162 protoeflags = 0; 1163 if (cow & MAP_COPY_ON_WRITE) 1164 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1165 if (cow & MAP_NOFAULT) 1166 protoeflags |= MAP_ENTRY_NOFAULT; 1167 if (cow & MAP_DISABLE_SYNCER) 1168 protoeflags |= MAP_ENTRY_NOSYNC; 1169 if (cow & MAP_DISABLE_COREDUMP) 1170 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1171 if (cow & MAP_STACK_GROWS_DOWN) 1172 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1173 if (cow & MAP_STACK_GROWS_UP) 1174 protoeflags |= MAP_ENTRY_GROWS_UP; 1175 if (cow & MAP_VN_WRITECOUNT) 1176 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1177 if (cow & MAP_INHERIT_SHARE) 1178 inheritance = VM_INHERIT_SHARE; 1179 else 1180 inheritance = VM_INHERIT_DEFAULT; 1181 1182 cred = NULL; 1183 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1184 goto charged; 1185 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1186 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1187 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1188 return (KERN_RESOURCE_SHORTAGE); 1189 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1190 object->cred == NULL, 1191 ("OVERCOMMIT: vm_map_insert o %p", object)); 1192 cred = curthread->td_ucred; 1193 } 1194 1195 charged: 1196 /* Expand the kernel pmap, if necessary. */ 1197 if (map == kernel_map && end > kernel_vm_end) 1198 pmap_growkernel(end); 1199 if (object != NULL) { 1200 /* 1201 * OBJ_ONEMAPPING must be cleared unless this mapping 1202 * is trivially proven to be the only mapping for any 1203 * of the object's pages. (Object granularity 1204 * reference counting is insufficient to recognize 1205 * aliases with precision.) 1206 */ 1207 VM_OBJECT_WLOCK(object); 1208 if (object->ref_count > 1 || object->shadow_count != 0) 1209 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1210 VM_OBJECT_WUNLOCK(object); 1211 } 1212 else if ((prev_entry != &map->header) && 1213 (prev_entry->eflags == protoeflags) && 1214 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 && 1215 (prev_entry->end == start) && 1216 (prev_entry->wired_count == 0) && 1217 (prev_entry->cred == cred || 1218 (prev_entry->object.vm_object != NULL && 1219 (prev_entry->object.vm_object->cred == cred))) && 1220 vm_object_coalesce(prev_entry->object.vm_object, 1221 prev_entry->offset, 1222 (vm_size_t)(prev_entry->end - prev_entry->start), 1223 (vm_size_t)(end - prev_entry->end), cred != NULL && 1224 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1225 /* 1226 * We were able to extend the object. Determine if we 1227 * can extend the previous map entry to include the 1228 * new range as well. 1229 */ 1230 if ((prev_entry->inheritance == inheritance) && 1231 (prev_entry->protection == prot) && 1232 (prev_entry->max_protection == max)) { 1233 map->size += (end - prev_entry->end); 1234 prev_entry->end = end; 1235 vm_map_entry_resize_free(map, prev_entry); 1236 vm_map_simplify_entry(map, prev_entry); 1237 return (KERN_SUCCESS); 1238 } 1239 1240 /* 1241 * If we can extend the object but cannot extend the 1242 * map entry, we have to create a new map entry. We 1243 * must bump the ref count on the extended object to 1244 * account for it. object may be NULL. 1245 */ 1246 object = prev_entry->object.vm_object; 1247 offset = prev_entry->offset + 1248 (prev_entry->end - prev_entry->start); 1249 vm_object_reference(object); 1250 if (cred != NULL && object != NULL && object->cred != NULL && 1251 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1252 /* Object already accounts for this uid. */ 1253 cred = NULL; 1254 } 1255 } 1256 if (cred != NULL) 1257 crhold(cred); 1258 1259 /* 1260 * Create a new entry 1261 */ 1262 new_entry = vm_map_entry_create(map); 1263 new_entry->start = start; 1264 new_entry->end = end; 1265 new_entry->cred = NULL; 1266 1267 new_entry->eflags = protoeflags; 1268 new_entry->object.vm_object = object; 1269 new_entry->offset = offset; 1270 new_entry->avail_ssize = 0; 1271 1272 new_entry->inheritance = inheritance; 1273 new_entry->protection = prot; 1274 new_entry->max_protection = max; 1275 new_entry->wired_count = 0; 1276 new_entry->wiring_thread = NULL; 1277 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1278 new_entry->next_read = OFF_TO_IDX(offset); 1279 1280 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1281 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1282 new_entry->cred = cred; 1283 1284 /* 1285 * Insert the new entry into the list 1286 */ 1287 vm_map_entry_link(map, prev_entry, new_entry); 1288 map->size += new_entry->end - new_entry->start; 1289 1290 /* 1291 * Try to coalesce the new entry with both the previous and next 1292 * entries in the list. Previously, we only attempted to coalesce 1293 * with the previous entry when object is NULL. Here, we handle the 1294 * other cases, which are less common. 1295 */ 1296 vm_map_simplify_entry(map, new_entry); 1297 1298 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1299 vm_map_pmap_enter(map, start, prot, 1300 object, OFF_TO_IDX(offset), end - start, 1301 cow & MAP_PREFAULT_PARTIAL); 1302 } 1303 1304 return (KERN_SUCCESS); 1305 } 1306 1307 /* 1308 * vm_map_findspace: 1309 * 1310 * Find the first fit (lowest VM address) for "length" free bytes 1311 * beginning at address >= start in the given map. 1312 * 1313 * In a vm_map_entry, "adj_free" is the amount of free space 1314 * adjacent (higher address) to this entry, and "max_free" is the 1315 * maximum amount of contiguous free space in its subtree. This 1316 * allows finding a free region in one path down the tree, so 1317 * O(log n) amortized with splay trees. 1318 * 1319 * The map must be locked, and leaves it so. 1320 * 1321 * Returns: 0 on success, and starting address in *addr, 1322 * 1 if insufficient space. 1323 */ 1324 int 1325 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1326 vm_offset_t *addr) /* OUT */ 1327 { 1328 vm_map_entry_t entry; 1329 vm_offset_t st; 1330 1331 /* 1332 * Request must fit within min/max VM address and must avoid 1333 * address wrap. 1334 */ 1335 if (start < map->min_offset) 1336 start = map->min_offset; 1337 if (start + length > map->max_offset || start + length < start) 1338 return (1); 1339 1340 /* Empty tree means wide open address space. */ 1341 if (map->root == NULL) { 1342 *addr = start; 1343 return (0); 1344 } 1345 1346 /* 1347 * After splay, if start comes before root node, then there 1348 * must be a gap from start to the root. 1349 */ 1350 map->root = vm_map_entry_splay(start, map->root); 1351 if (start + length <= map->root->start) { 1352 *addr = start; 1353 return (0); 1354 } 1355 1356 /* 1357 * Root is the last node that might begin its gap before 1358 * start, and this is the last comparison where address 1359 * wrap might be a problem. 1360 */ 1361 st = (start > map->root->end) ? start : map->root->end; 1362 if (length <= map->root->end + map->root->adj_free - st) { 1363 *addr = st; 1364 return (0); 1365 } 1366 1367 /* With max_free, can immediately tell if no solution. */ 1368 entry = map->root->right; 1369 if (entry == NULL || length > entry->max_free) 1370 return (1); 1371 1372 /* 1373 * Search the right subtree in the order: left subtree, root, 1374 * right subtree (first fit). The previous splay implies that 1375 * all regions in the right subtree have addresses > start. 1376 */ 1377 while (entry != NULL) { 1378 if (entry->left != NULL && entry->left->max_free >= length) 1379 entry = entry->left; 1380 else if (entry->adj_free >= length) { 1381 *addr = entry->end; 1382 return (0); 1383 } else 1384 entry = entry->right; 1385 } 1386 1387 /* Can't get here, so panic if we do. */ 1388 panic("vm_map_findspace: max_free corrupt"); 1389 } 1390 1391 int 1392 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1393 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1394 vm_prot_t max, int cow) 1395 { 1396 vm_offset_t end; 1397 int result; 1398 1399 end = start + length; 1400 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1401 object == NULL, 1402 ("vm_map_fixed: non-NULL backing object for stack")); 1403 vm_map_lock(map); 1404 VM_MAP_RANGE_CHECK(map, start, end); 1405 if ((cow & MAP_CHECK_EXCL) == 0) 1406 vm_map_delete(map, start, end); 1407 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1408 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1409 prot, max, cow); 1410 } else { 1411 result = vm_map_insert(map, object, offset, start, end, 1412 prot, max, cow); 1413 } 1414 vm_map_unlock(map); 1415 return (result); 1416 } 1417 1418 /* 1419 * vm_map_find finds an unallocated region in the target address 1420 * map with the given length. The search is defined to be 1421 * first-fit from the specified address; the region found is 1422 * returned in the same parameter. 1423 * 1424 * If object is non-NULL, ref count must be bumped by caller 1425 * prior to making call to account for the new entry. 1426 */ 1427 int 1428 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1429 vm_offset_t *addr, /* IN/OUT */ 1430 vm_size_t length, vm_offset_t max_addr, int find_space, 1431 vm_prot_t prot, vm_prot_t max, int cow) 1432 { 1433 vm_offset_t alignment, initial_addr, start; 1434 int result; 1435 1436 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1437 object == NULL, 1438 ("vm_map_find: non-NULL backing object for stack")); 1439 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1440 (object->flags & OBJ_COLORED) == 0)) 1441 find_space = VMFS_ANY_SPACE; 1442 if (find_space >> 8 != 0) { 1443 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1444 alignment = (vm_offset_t)1 << (find_space >> 8); 1445 } else 1446 alignment = 0; 1447 initial_addr = *addr; 1448 again: 1449 start = initial_addr; 1450 vm_map_lock(map); 1451 do { 1452 if (find_space != VMFS_NO_SPACE) { 1453 if (vm_map_findspace(map, start, length, addr) || 1454 (max_addr != 0 && *addr + length > max_addr)) { 1455 vm_map_unlock(map); 1456 if (find_space == VMFS_OPTIMAL_SPACE) { 1457 find_space = VMFS_ANY_SPACE; 1458 goto again; 1459 } 1460 return (KERN_NO_SPACE); 1461 } 1462 switch (find_space) { 1463 case VMFS_SUPER_SPACE: 1464 case VMFS_OPTIMAL_SPACE: 1465 pmap_align_superpage(object, offset, addr, 1466 length); 1467 break; 1468 case VMFS_ANY_SPACE: 1469 break; 1470 default: 1471 if ((*addr & (alignment - 1)) != 0) { 1472 *addr &= ~(alignment - 1); 1473 *addr += alignment; 1474 } 1475 break; 1476 } 1477 1478 start = *addr; 1479 } 1480 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1481 result = vm_map_stack_locked(map, start, length, 1482 sgrowsiz, prot, max, cow); 1483 } else { 1484 result = vm_map_insert(map, object, offset, start, 1485 start + length, prot, max, cow); 1486 } 1487 } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE && 1488 find_space != VMFS_ANY_SPACE); 1489 vm_map_unlock(map); 1490 return (result); 1491 } 1492 1493 /* 1494 * vm_map_simplify_entry: 1495 * 1496 * Simplify the given map entry by merging with either neighbor. This 1497 * routine also has the ability to merge with both neighbors. 1498 * 1499 * The map must be locked. 1500 * 1501 * This routine guarentees that the passed entry remains valid (though 1502 * possibly extended). When merging, this routine may delete one or 1503 * both neighbors. 1504 */ 1505 void 1506 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1507 { 1508 vm_map_entry_t next, prev; 1509 vm_size_t prevsize, esize; 1510 1511 if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | 1512 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0) 1513 return; 1514 1515 prev = entry->prev; 1516 if (prev != &map->header) { 1517 prevsize = prev->end - prev->start; 1518 if ( (prev->end == entry->start) && 1519 (prev->object.vm_object == entry->object.vm_object) && 1520 (!prev->object.vm_object || 1521 (prev->offset + prevsize == entry->offset)) && 1522 (prev->eflags == entry->eflags) && 1523 (prev->protection == entry->protection) && 1524 (prev->max_protection == entry->max_protection) && 1525 (prev->inheritance == entry->inheritance) && 1526 (prev->wired_count == entry->wired_count) && 1527 (prev->cred == entry->cred)) { 1528 vm_map_entry_unlink(map, prev); 1529 entry->start = prev->start; 1530 entry->offset = prev->offset; 1531 if (entry->prev != &map->header) 1532 vm_map_entry_resize_free(map, entry->prev); 1533 1534 /* 1535 * If the backing object is a vnode object, 1536 * vm_object_deallocate() calls vrele(). 1537 * However, vrele() does not lock the vnode 1538 * because the vnode has additional 1539 * references. Thus, the map lock can be kept 1540 * without causing a lock-order reversal with 1541 * the vnode lock. 1542 * 1543 * Since we count the number of virtual page 1544 * mappings in object->un_pager.vnp.writemappings, 1545 * the writemappings value should not be adjusted 1546 * when the entry is disposed of. 1547 */ 1548 if (prev->object.vm_object) 1549 vm_object_deallocate(prev->object.vm_object); 1550 if (prev->cred != NULL) 1551 crfree(prev->cred); 1552 vm_map_entry_dispose(map, prev); 1553 } 1554 } 1555 1556 next = entry->next; 1557 if (next != &map->header) { 1558 esize = entry->end - entry->start; 1559 if ((entry->end == next->start) && 1560 (next->object.vm_object == entry->object.vm_object) && 1561 (!entry->object.vm_object || 1562 (entry->offset + esize == next->offset)) && 1563 (next->eflags == entry->eflags) && 1564 (next->protection == entry->protection) && 1565 (next->max_protection == entry->max_protection) && 1566 (next->inheritance == entry->inheritance) && 1567 (next->wired_count == entry->wired_count) && 1568 (next->cred == entry->cred)) { 1569 vm_map_entry_unlink(map, next); 1570 entry->end = next->end; 1571 vm_map_entry_resize_free(map, entry); 1572 1573 /* 1574 * See comment above. 1575 */ 1576 if (next->object.vm_object) 1577 vm_object_deallocate(next->object.vm_object); 1578 if (next->cred != NULL) 1579 crfree(next->cred); 1580 vm_map_entry_dispose(map, next); 1581 } 1582 } 1583 } 1584 /* 1585 * vm_map_clip_start: [ internal use only ] 1586 * 1587 * Asserts that the given entry begins at or after 1588 * the specified address; if necessary, 1589 * it splits the entry into two. 1590 */ 1591 #define vm_map_clip_start(map, entry, startaddr) \ 1592 { \ 1593 if (startaddr > entry->start) \ 1594 _vm_map_clip_start(map, entry, startaddr); \ 1595 } 1596 1597 /* 1598 * This routine is called only when it is known that 1599 * the entry must be split. 1600 */ 1601 static void 1602 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1603 { 1604 vm_map_entry_t new_entry; 1605 1606 VM_MAP_ASSERT_LOCKED(map); 1607 1608 /* 1609 * Split off the front portion -- note that we must insert the new 1610 * entry BEFORE this one, so that this entry has the specified 1611 * starting address. 1612 */ 1613 vm_map_simplify_entry(map, entry); 1614 1615 /* 1616 * If there is no object backing this entry, we might as well create 1617 * one now. If we defer it, an object can get created after the map 1618 * is clipped, and individual objects will be created for the split-up 1619 * map. This is a bit of a hack, but is also about the best place to 1620 * put this improvement. 1621 */ 1622 if (entry->object.vm_object == NULL && !map->system_map) { 1623 vm_object_t object; 1624 object = vm_object_allocate(OBJT_DEFAULT, 1625 atop(entry->end - entry->start)); 1626 entry->object.vm_object = object; 1627 entry->offset = 0; 1628 if (entry->cred != NULL) { 1629 object->cred = entry->cred; 1630 object->charge = entry->end - entry->start; 1631 entry->cred = NULL; 1632 } 1633 } else if (entry->object.vm_object != NULL && 1634 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1635 entry->cred != NULL) { 1636 VM_OBJECT_WLOCK(entry->object.vm_object); 1637 KASSERT(entry->object.vm_object->cred == NULL, 1638 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1639 entry->object.vm_object->cred = entry->cred; 1640 entry->object.vm_object->charge = entry->end - entry->start; 1641 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1642 entry->cred = NULL; 1643 } 1644 1645 new_entry = vm_map_entry_create(map); 1646 *new_entry = *entry; 1647 1648 new_entry->end = start; 1649 entry->offset += (start - entry->start); 1650 entry->start = start; 1651 if (new_entry->cred != NULL) 1652 crhold(entry->cred); 1653 1654 vm_map_entry_link(map, entry->prev, new_entry); 1655 1656 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1657 vm_object_reference(new_entry->object.vm_object); 1658 /* 1659 * The object->un_pager.vnp.writemappings for the 1660 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1661 * kept as is here. The virtual pages are 1662 * re-distributed among the clipped entries, so the sum is 1663 * left the same. 1664 */ 1665 } 1666 } 1667 1668 /* 1669 * vm_map_clip_end: [ internal use only ] 1670 * 1671 * Asserts that the given entry ends at or before 1672 * the specified address; if necessary, 1673 * it splits the entry into two. 1674 */ 1675 #define vm_map_clip_end(map, entry, endaddr) \ 1676 { \ 1677 if ((endaddr) < (entry->end)) \ 1678 _vm_map_clip_end((map), (entry), (endaddr)); \ 1679 } 1680 1681 /* 1682 * This routine is called only when it is known that 1683 * the entry must be split. 1684 */ 1685 static void 1686 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1687 { 1688 vm_map_entry_t new_entry; 1689 1690 VM_MAP_ASSERT_LOCKED(map); 1691 1692 /* 1693 * If there is no object backing this entry, we might as well create 1694 * one now. If we defer it, an object can get created after the map 1695 * is clipped, and individual objects will be created for the split-up 1696 * map. This is a bit of a hack, but is also about the best place to 1697 * put this improvement. 1698 */ 1699 if (entry->object.vm_object == NULL && !map->system_map) { 1700 vm_object_t object; 1701 object = vm_object_allocate(OBJT_DEFAULT, 1702 atop(entry->end - entry->start)); 1703 entry->object.vm_object = object; 1704 entry->offset = 0; 1705 if (entry->cred != NULL) { 1706 object->cred = entry->cred; 1707 object->charge = entry->end - entry->start; 1708 entry->cred = NULL; 1709 } 1710 } else if (entry->object.vm_object != NULL && 1711 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1712 entry->cred != NULL) { 1713 VM_OBJECT_WLOCK(entry->object.vm_object); 1714 KASSERT(entry->object.vm_object->cred == NULL, 1715 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1716 entry->object.vm_object->cred = entry->cred; 1717 entry->object.vm_object->charge = entry->end - entry->start; 1718 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1719 entry->cred = NULL; 1720 } 1721 1722 /* 1723 * Create a new entry and insert it AFTER the specified entry 1724 */ 1725 new_entry = vm_map_entry_create(map); 1726 *new_entry = *entry; 1727 1728 new_entry->start = entry->end = end; 1729 new_entry->offset += (end - entry->start); 1730 if (new_entry->cred != NULL) 1731 crhold(entry->cred); 1732 1733 vm_map_entry_link(map, entry, new_entry); 1734 1735 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1736 vm_object_reference(new_entry->object.vm_object); 1737 } 1738 } 1739 1740 /* 1741 * vm_map_submap: [ kernel use only ] 1742 * 1743 * Mark the given range as handled by a subordinate map. 1744 * 1745 * This range must have been created with vm_map_find, 1746 * and no other operations may have been performed on this 1747 * range prior to calling vm_map_submap. 1748 * 1749 * Only a limited number of operations can be performed 1750 * within this rage after calling vm_map_submap: 1751 * vm_fault 1752 * [Don't try vm_map_copy!] 1753 * 1754 * To remove a submapping, one must first remove the 1755 * range from the superior map, and then destroy the 1756 * submap (if desired). [Better yet, don't try it.] 1757 */ 1758 int 1759 vm_map_submap( 1760 vm_map_t map, 1761 vm_offset_t start, 1762 vm_offset_t end, 1763 vm_map_t submap) 1764 { 1765 vm_map_entry_t entry; 1766 int result = KERN_INVALID_ARGUMENT; 1767 1768 vm_map_lock(map); 1769 1770 VM_MAP_RANGE_CHECK(map, start, end); 1771 1772 if (vm_map_lookup_entry(map, start, &entry)) { 1773 vm_map_clip_start(map, entry, start); 1774 } else 1775 entry = entry->next; 1776 1777 vm_map_clip_end(map, entry, end); 1778 1779 if ((entry->start == start) && (entry->end == end) && 1780 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1781 (entry->object.vm_object == NULL)) { 1782 entry->object.sub_map = submap; 1783 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1784 result = KERN_SUCCESS; 1785 } 1786 vm_map_unlock(map); 1787 1788 return (result); 1789 } 1790 1791 /* 1792 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 1793 */ 1794 #define MAX_INIT_PT 96 1795 1796 /* 1797 * vm_map_pmap_enter: 1798 * 1799 * Preload the specified map's pmap with mappings to the specified 1800 * object's memory-resident pages. No further physical pages are 1801 * allocated, and no further virtual pages are retrieved from secondary 1802 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 1803 * limited number of page mappings are created at the low-end of the 1804 * specified address range. (For this purpose, a superpage mapping 1805 * counts as one page mapping.) Otherwise, all resident pages within 1806 * the specified address range are mapped. Because these mappings are 1807 * being created speculatively, cached pages are not reactivated and 1808 * mapped. 1809 */ 1810 void 1811 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1812 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1813 { 1814 vm_offset_t start; 1815 vm_page_t p, p_start; 1816 vm_pindex_t mask, psize, threshold, tmpidx; 1817 1818 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1819 return; 1820 VM_OBJECT_RLOCK(object); 1821 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1822 VM_OBJECT_RUNLOCK(object); 1823 VM_OBJECT_WLOCK(object); 1824 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1825 pmap_object_init_pt(map->pmap, addr, object, pindex, 1826 size); 1827 VM_OBJECT_WUNLOCK(object); 1828 return; 1829 } 1830 VM_OBJECT_LOCK_DOWNGRADE(object); 1831 } 1832 1833 psize = atop(size); 1834 if (psize + pindex > object->size) { 1835 if (object->size < pindex) { 1836 VM_OBJECT_RUNLOCK(object); 1837 return; 1838 } 1839 psize = object->size - pindex; 1840 } 1841 1842 start = 0; 1843 p_start = NULL; 1844 threshold = MAX_INIT_PT; 1845 1846 p = vm_page_find_least(object, pindex); 1847 /* 1848 * Assert: the variable p is either (1) the page with the 1849 * least pindex greater than or equal to the parameter pindex 1850 * or (2) NULL. 1851 */ 1852 for (; 1853 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1854 p = TAILQ_NEXT(p, listq)) { 1855 /* 1856 * don't allow an madvise to blow away our really 1857 * free pages allocating pv entries. 1858 */ 1859 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 1860 vm_cnt.v_free_count < vm_cnt.v_free_reserved) || 1861 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 1862 tmpidx >= threshold)) { 1863 psize = tmpidx; 1864 break; 1865 } 1866 if (p->valid == VM_PAGE_BITS_ALL) { 1867 if (p_start == NULL) { 1868 start = addr + ptoa(tmpidx); 1869 p_start = p; 1870 } 1871 /* Jump ahead if a superpage mapping is possible. */ 1872 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 1873 (pagesizes[p->psind] - 1)) == 0) { 1874 mask = atop(pagesizes[p->psind]) - 1; 1875 if (tmpidx + mask < psize && 1876 vm_page_ps_is_valid(p)) { 1877 p += mask; 1878 threshold += mask; 1879 } 1880 } 1881 } else if (p_start != NULL) { 1882 pmap_enter_object(map->pmap, start, addr + 1883 ptoa(tmpidx), p_start, prot); 1884 p_start = NULL; 1885 } 1886 } 1887 if (p_start != NULL) 1888 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1889 p_start, prot); 1890 VM_OBJECT_RUNLOCK(object); 1891 } 1892 1893 /* 1894 * vm_map_protect: 1895 * 1896 * Sets the protection of the specified address 1897 * region in the target map. If "set_max" is 1898 * specified, the maximum protection is to be set; 1899 * otherwise, only the current protection is affected. 1900 */ 1901 int 1902 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1903 vm_prot_t new_prot, boolean_t set_max) 1904 { 1905 vm_map_entry_t current, entry; 1906 vm_object_t obj; 1907 struct ucred *cred; 1908 vm_prot_t old_prot; 1909 1910 if (start == end) 1911 return (KERN_SUCCESS); 1912 1913 vm_map_lock(map); 1914 1915 VM_MAP_RANGE_CHECK(map, start, end); 1916 1917 if (vm_map_lookup_entry(map, start, &entry)) { 1918 vm_map_clip_start(map, entry, start); 1919 } else { 1920 entry = entry->next; 1921 } 1922 1923 /* 1924 * Make a first pass to check for protection violations. 1925 */ 1926 current = entry; 1927 while ((current != &map->header) && (current->start < end)) { 1928 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1929 vm_map_unlock(map); 1930 return (KERN_INVALID_ARGUMENT); 1931 } 1932 if ((new_prot & current->max_protection) != new_prot) { 1933 vm_map_unlock(map); 1934 return (KERN_PROTECTION_FAILURE); 1935 } 1936 current = current->next; 1937 } 1938 1939 1940 /* 1941 * Do an accounting pass for private read-only mappings that 1942 * now will do cow due to allowed write (e.g. debugger sets 1943 * breakpoint on text segment) 1944 */ 1945 for (current = entry; (current != &map->header) && 1946 (current->start < end); current = current->next) { 1947 1948 vm_map_clip_end(map, current, end); 1949 1950 if (set_max || 1951 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1952 ENTRY_CHARGED(current)) { 1953 continue; 1954 } 1955 1956 cred = curthread->td_ucred; 1957 obj = current->object.vm_object; 1958 1959 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1960 if (!swap_reserve(current->end - current->start)) { 1961 vm_map_unlock(map); 1962 return (KERN_RESOURCE_SHORTAGE); 1963 } 1964 crhold(cred); 1965 current->cred = cred; 1966 continue; 1967 } 1968 1969 VM_OBJECT_WLOCK(obj); 1970 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1971 VM_OBJECT_WUNLOCK(obj); 1972 continue; 1973 } 1974 1975 /* 1976 * Charge for the whole object allocation now, since 1977 * we cannot distinguish between non-charged and 1978 * charged clipped mapping of the same object later. 1979 */ 1980 KASSERT(obj->charge == 0, 1981 ("vm_map_protect: object %p overcharged (entry %p)", 1982 obj, current)); 1983 if (!swap_reserve(ptoa(obj->size))) { 1984 VM_OBJECT_WUNLOCK(obj); 1985 vm_map_unlock(map); 1986 return (KERN_RESOURCE_SHORTAGE); 1987 } 1988 1989 crhold(cred); 1990 obj->cred = cred; 1991 obj->charge = ptoa(obj->size); 1992 VM_OBJECT_WUNLOCK(obj); 1993 } 1994 1995 /* 1996 * Go back and fix up protections. [Note that clipping is not 1997 * necessary the second time.] 1998 */ 1999 current = entry; 2000 while ((current != &map->header) && (current->start < end)) { 2001 old_prot = current->protection; 2002 2003 if (set_max) 2004 current->protection = 2005 (current->max_protection = new_prot) & 2006 old_prot; 2007 else 2008 current->protection = new_prot; 2009 2010 /* 2011 * For user wired map entries, the normal lazy evaluation of 2012 * write access upgrades through soft page faults is 2013 * undesirable. Instead, immediately copy any pages that are 2014 * copy-on-write and enable write access in the physical map. 2015 */ 2016 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2017 (current->protection & VM_PROT_WRITE) != 0 && 2018 (old_prot & VM_PROT_WRITE) == 0) 2019 vm_fault_copy_entry(map, map, current, current, NULL); 2020 2021 /* 2022 * When restricting access, update the physical map. Worry 2023 * about copy-on-write here. 2024 */ 2025 if ((old_prot & ~current->protection) != 0) { 2026 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2027 VM_PROT_ALL) 2028 pmap_protect(map->pmap, current->start, 2029 current->end, 2030 current->protection & MASK(current)); 2031 #undef MASK 2032 } 2033 vm_map_simplify_entry(map, current); 2034 current = current->next; 2035 } 2036 vm_map_unlock(map); 2037 return (KERN_SUCCESS); 2038 } 2039 2040 /* 2041 * vm_map_madvise: 2042 * 2043 * This routine traverses a processes map handling the madvise 2044 * system call. Advisories are classified as either those effecting 2045 * the vm_map_entry structure, or those effecting the underlying 2046 * objects. 2047 */ 2048 int 2049 vm_map_madvise( 2050 vm_map_t map, 2051 vm_offset_t start, 2052 vm_offset_t end, 2053 int behav) 2054 { 2055 vm_map_entry_t current, entry; 2056 int modify_map = 0; 2057 2058 /* 2059 * Some madvise calls directly modify the vm_map_entry, in which case 2060 * we need to use an exclusive lock on the map and we need to perform 2061 * various clipping operations. Otherwise we only need a read-lock 2062 * on the map. 2063 */ 2064 switch(behav) { 2065 case MADV_NORMAL: 2066 case MADV_SEQUENTIAL: 2067 case MADV_RANDOM: 2068 case MADV_NOSYNC: 2069 case MADV_AUTOSYNC: 2070 case MADV_NOCORE: 2071 case MADV_CORE: 2072 if (start == end) 2073 return (KERN_SUCCESS); 2074 modify_map = 1; 2075 vm_map_lock(map); 2076 break; 2077 case MADV_WILLNEED: 2078 case MADV_DONTNEED: 2079 case MADV_FREE: 2080 if (start == end) 2081 return (KERN_SUCCESS); 2082 vm_map_lock_read(map); 2083 break; 2084 default: 2085 return (KERN_INVALID_ARGUMENT); 2086 } 2087 2088 /* 2089 * Locate starting entry and clip if necessary. 2090 */ 2091 VM_MAP_RANGE_CHECK(map, start, end); 2092 2093 if (vm_map_lookup_entry(map, start, &entry)) { 2094 if (modify_map) 2095 vm_map_clip_start(map, entry, start); 2096 } else { 2097 entry = entry->next; 2098 } 2099 2100 if (modify_map) { 2101 /* 2102 * madvise behaviors that are implemented in the vm_map_entry. 2103 * 2104 * We clip the vm_map_entry so that behavioral changes are 2105 * limited to the specified address range. 2106 */ 2107 for (current = entry; 2108 (current != &map->header) && (current->start < end); 2109 current = current->next 2110 ) { 2111 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2112 continue; 2113 2114 vm_map_clip_end(map, current, end); 2115 2116 switch (behav) { 2117 case MADV_NORMAL: 2118 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2119 break; 2120 case MADV_SEQUENTIAL: 2121 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2122 break; 2123 case MADV_RANDOM: 2124 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2125 break; 2126 case MADV_NOSYNC: 2127 current->eflags |= MAP_ENTRY_NOSYNC; 2128 break; 2129 case MADV_AUTOSYNC: 2130 current->eflags &= ~MAP_ENTRY_NOSYNC; 2131 break; 2132 case MADV_NOCORE: 2133 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2134 break; 2135 case MADV_CORE: 2136 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2137 break; 2138 default: 2139 break; 2140 } 2141 vm_map_simplify_entry(map, current); 2142 } 2143 vm_map_unlock(map); 2144 } else { 2145 vm_pindex_t pstart, pend; 2146 2147 /* 2148 * madvise behaviors that are implemented in the underlying 2149 * vm_object. 2150 * 2151 * Since we don't clip the vm_map_entry, we have to clip 2152 * the vm_object pindex and count. 2153 */ 2154 for (current = entry; 2155 (current != &map->header) && (current->start < end); 2156 current = current->next 2157 ) { 2158 vm_offset_t useEnd, useStart; 2159 2160 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2161 continue; 2162 2163 pstart = OFF_TO_IDX(current->offset); 2164 pend = pstart + atop(current->end - current->start); 2165 useStart = current->start; 2166 useEnd = current->end; 2167 2168 if (current->start < start) { 2169 pstart += atop(start - current->start); 2170 useStart = start; 2171 } 2172 if (current->end > end) { 2173 pend -= atop(current->end - end); 2174 useEnd = end; 2175 } 2176 2177 if (pstart >= pend) 2178 continue; 2179 2180 /* 2181 * Perform the pmap_advise() before clearing 2182 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2183 * concurrent pmap operation, such as pmap_remove(), 2184 * could clear a reference in the pmap and set 2185 * PGA_REFERENCED on the page before the pmap_advise() 2186 * had completed. Consequently, the page would appear 2187 * referenced based upon an old reference that 2188 * occurred before this pmap_advise() ran. 2189 */ 2190 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2191 pmap_advise(map->pmap, useStart, useEnd, 2192 behav); 2193 2194 vm_object_madvise(current->object.vm_object, pstart, 2195 pend, behav); 2196 if (behav == MADV_WILLNEED) { 2197 vm_map_pmap_enter(map, 2198 useStart, 2199 current->protection, 2200 current->object.vm_object, 2201 pstart, 2202 ptoa(pend - pstart), 2203 MAP_PREFAULT_MADVISE 2204 ); 2205 } 2206 } 2207 vm_map_unlock_read(map); 2208 } 2209 return (0); 2210 } 2211 2212 2213 /* 2214 * vm_map_inherit: 2215 * 2216 * Sets the inheritance of the specified address 2217 * range in the target map. Inheritance 2218 * affects how the map will be shared with 2219 * child maps at the time of vmspace_fork. 2220 */ 2221 int 2222 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2223 vm_inherit_t new_inheritance) 2224 { 2225 vm_map_entry_t entry; 2226 vm_map_entry_t temp_entry; 2227 2228 switch (new_inheritance) { 2229 case VM_INHERIT_NONE: 2230 case VM_INHERIT_COPY: 2231 case VM_INHERIT_SHARE: 2232 break; 2233 default: 2234 return (KERN_INVALID_ARGUMENT); 2235 } 2236 if (start == end) 2237 return (KERN_SUCCESS); 2238 vm_map_lock(map); 2239 VM_MAP_RANGE_CHECK(map, start, end); 2240 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2241 entry = temp_entry; 2242 vm_map_clip_start(map, entry, start); 2243 } else 2244 entry = temp_entry->next; 2245 while ((entry != &map->header) && (entry->start < end)) { 2246 vm_map_clip_end(map, entry, end); 2247 entry->inheritance = new_inheritance; 2248 vm_map_simplify_entry(map, entry); 2249 entry = entry->next; 2250 } 2251 vm_map_unlock(map); 2252 return (KERN_SUCCESS); 2253 } 2254 2255 /* 2256 * vm_map_unwire: 2257 * 2258 * Implements both kernel and user unwiring. 2259 */ 2260 int 2261 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2262 int flags) 2263 { 2264 vm_map_entry_t entry, first_entry, tmp_entry; 2265 vm_offset_t saved_start; 2266 unsigned int last_timestamp; 2267 int rv; 2268 boolean_t need_wakeup, result, user_unwire; 2269 2270 if (start == end) 2271 return (KERN_SUCCESS); 2272 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2273 vm_map_lock(map); 2274 VM_MAP_RANGE_CHECK(map, start, end); 2275 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2276 if (flags & VM_MAP_WIRE_HOLESOK) 2277 first_entry = first_entry->next; 2278 else { 2279 vm_map_unlock(map); 2280 return (KERN_INVALID_ADDRESS); 2281 } 2282 } 2283 last_timestamp = map->timestamp; 2284 entry = first_entry; 2285 while (entry != &map->header && entry->start < end) { 2286 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2287 /* 2288 * We have not yet clipped the entry. 2289 */ 2290 saved_start = (start >= entry->start) ? start : 2291 entry->start; 2292 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2293 if (vm_map_unlock_and_wait(map, 0)) { 2294 /* 2295 * Allow interruption of user unwiring? 2296 */ 2297 } 2298 vm_map_lock(map); 2299 if (last_timestamp+1 != map->timestamp) { 2300 /* 2301 * Look again for the entry because the map was 2302 * modified while it was unlocked. 2303 * Specifically, the entry may have been 2304 * clipped, merged, or deleted. 2305 */ 2306 if (!vm_map_lookup_entry(map, saved_start, 2307 &tmp_entry)) { 2308 if (flags & VM_MAP_WIRE_HOLESOK) 2309 tmp_entry = tmp_entry->next; 2310 else { 2311 if (saved_start == start) { 2312 /* 2313 * First_entry has been deleted. 2314 */ 2315 vm_map_unlock(map); 2316 return (KERN_INVALID_ADDRESS); 2317 } 2318 end = saved_start; 2319 rv = KERN_INVALID_ADDRESS; 2320 goto done; 2321 } 2322 } 2323 if (entry == first_entry) 2324 first_entry = tmp_entry; 2325 else 2326 first_entry = NULL; 2327 entry = tmp_entry; 2328 } 2329 last_timestamp = map->timestamp; 2330 continue; 2331 } 2332 vm_map_clip_start(map, entry, start); 2333 vm_map_clip_end(map, entry, end); 2334 /* 2335 * Mark the entry in case the map lock is released. (See 2336 * above.) 2337 */ 2338 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2339 entry->wiring_thread == NULL, 2340 ("owned map entry %p", entry)); 2341 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2342 entry->wiring_thread = curthread; 2343 /* 2344 * Check the map for holes in the specified region. 2345 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2346 */ 2347 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2348 (entry->end < end && (entry->next == &map->header || 2349 entry->next->start > entry->end))) { 2350 end = entry->end; 2351 rv = KERN_INVALID_ADDRESS; 2352 goto done; 2353 } 2354 /* 2355 * If system unwiring, require that the entry is system wired. 2356 */ 2357 if (!user_unwire && 2358 vm_map_entry_system_wired_count(entry) == 0) { 2359 end = entry->end; 2360 rv = KERN_INVALID_ARGUMENT; 2361 goto done; 2362 } 2363 entry = entry->next; 2364 } 2365 rv = KERN_SUCCESS; 2366 done: 2367 need_wakeup = FALSE; 2368 if (first_entry == NULL) { 2369 result = vm_map_lookup_entry(map, start, &first_entry); 2370 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2371 first_entry = first_entry->next; 2372 else 2373 KASSERT(result, ("vm_map_unwire: lookup failed")); 2374 } 2375 for (entry = first_entry; entry != &map->header && entry->start < end; 2376 entry = entry->next) { 2377 /* 2378 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2379 * space in the unwired region could have been mapped 2380 * while the map lock was dropped for draining 2381 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2382 * could be simultaneously wiring this new mapping 2383 * entry. Detect these cases and skip any entries 2384 * marked as in transition by us. 2385 */ 2386 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2387 entry->wiring_thread != curthread) { 2388 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2389 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2390 continue; 2391 } 2392 2393 if (rv == KERN_SUCCESS && (!user_unwire || 2394 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2395 if (user_unwire) 2396 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2397 if (entry->wired_count == 1) 2398 vm_map_entry_unwire(map, entry); 2399 else 2400 entry->wired_count--; 2401 } 2402 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2403 ("vm_map_unwire: in-transition flag missing %p", entry)); 2404 KASSERT(entry->wiring_thread == curthread, 2405 ("vm_map_unwire: alien wire %p", entry)); 2406 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2407 entry->wiring_thread = NULL; 2408 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2409 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2410 need_wakeup = TRUE; 2411 } 2412 vm_map_simplify_entry(map, entry); 2413 } 2414 vm_map_unlock(map); 2415 if (need_wakeup) 2416 vm_map_wakeup(map); 2417 return (rv); 2418 } 2419 2420 /* 2421 * vm_map_wire: 2422 * 2423 * Implements both kernel and user wiring. 2424 */ 2425 int 2426 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2427 int flags) 2428 { 2429 vm_map_entry_t entry, first_entry, tmp_entry; 2430 vm_offset_t saved_end, saved_start; 2431 unsigned int last_timestamp; 2432 int rv; 2433 boolean_t fictitious, need_wakeup, result, user_wire; 2434 vm_prot_t prot; 2435 2436 if (start == end) 2437 return (KERN_SUCCESS); 2438 prot = 0; 2439 if (flags & VM_MAP_WIRE_WRITE) 2440 prot |= VM_PROT_WRITE; 2441 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2442 vm_map_lock(map); 2443 VM_MAP_RANGE_CHECK(map, start, end); 2444 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2445 if (flags & VM_MAP_WIRE_HOLESOK) 2446 first_entry = first_entry->next; 2447 else { 2448 vm_map_unlock(map); 2449 return (KERN_INVALID_ADDRESS); 2450 } 2451 } 2452 last_timestamp = map->timestamp; 2453 entry = first_entry; 2454 while (entry != &map->header && entry->start < end) { 2455 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2456 /* 2457 * We have not yet clipped the entry. 2458 */ 2459 saved_start = (start >= entry->start) ? start : 2460 entry->start; 2461 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2462 if (vm_map_unlock_and_wait(map, 0)) { 2463 /* 2464 * Allow interruption of user wiring? 2465 */ 2466 } 2467 vm_map_lock(map); 2468 if (last_timestamp + 1 != map->timestamp) { 2469 /* 2470 * Look again for the entry because the map was 2471 * modified while it was unlocked. 2472 * Specifically, the entry may have been 2473 * clipped, merged, or deleted. 2474 */ 2475 if (!vm_map_lookup_entry(map, saved_start, 2476 &tmp_entry)) { 2477 if (flags & VM_MAP_WIRE_HOLESOK) 2478 tmp_entry = tmp_entry->next; 2479 else { 2480 if (saved_start == start) { 2481 /* 2482 * first_entry has been deleted. 2483 */ 2484 vm_map_unlock(map); 2485 return (KERN_INVALID_ADDRESS); 2486 } 2487 end = saved_start; 2488 rv = KERN_INVALID_ADDRESS; 2489 goto done; 2490 } 2491 } 2492 if (entry == first_entry) 2493 first_entry = tmp_entry; 2494 else 2495 first_entry = NULL; 2496 entry = tmp_entry; 2497 } 2498 last_timestamp = map->timestamp; 2499 continue; 2500 } 2501 vm_map_clip_start(map, entry, start); 2502 vm_map_clip_end(map, entry, end); 2503 /* 2504 * Mark the entry in case the map lock is released. (See 2505 * above.) 2506 */ 2507 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2508 entry->wiring_thread == NULL, 2509 ("owned map entry %p", entry)); 2510 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2511 entry->wiring_thread = curthread; 2512 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2513 || (entry->protection & prot) != prot) { 2514 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2515 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2516 end = entry->end; 2517 rv = KERN_INVALID_ADDRESS; 2518 goto done; 2519 } 2520 goto next_entry; 2521 } 2522 if (entry->wired_count == 0) { 2523 entry->wired_count++; 2524 saved_start = entry->start; 2525 saved_end = entry->end; 2526 fictitious = entry->object.vm_object != NULL && 2527 (entry->object.vm_object->flags & 2528 OBJ_FICTITIOUS) != 0; 2529 /* 2530 * Release the map lock, relying on the in-transition 2531 * mark. Mark the map busy for fork. 2532 */ 2533 vm_map_busy(map); 2534 vm_map_unlock(map); 2535 rv = vm_fault_wire(map, saved_start, saved_end, 2536 fictitious); 2537 vm_map_lock(map); 2538 vm_map_unbusy(map); 2539 if (last_timestamp + 1 != map->timestamp) { 2540 /* 2541 * Look again for the entry because the map was 2542 * modified while it was unlocked. The entry 2543 * may have been clipped, but NOT merged or 2544 * deleted. 2545 */ 2546 result = vm_map_lookup_entry(map, saved_start, 2547 &tmp_entry); 2548 KASSERT(result, ("vm_map_wire: lookup failed")); 2549 if (entry == first_entry) 2550 first_entry = tmp_entry; 2551 else 2552 first_entry = NULL; 2553 entry = tmp_entry; 2554 while (entry->end < saved_end) { 2555 if (rv != KERN_SUCCESS) { 2556 KASSERT(entry->wired_count == 1, 2557 ("vm_map_wire: bad count")); 2558 entry->wired_count = -1; 2559 } 2560 entry = entry->next; 2561 } 2562 } 2563 last_timestamp = map->timestamp; 2564 if (rv != KERN_SUCCESS) { 2565 KASSERT(entry->wired_count == 1, 2566 ("vm_map_wire: bad count")); 2567 /* 2568 * Assign an out-of-range value to represent 2569 * the failure to wire this entry. 2570 */ 2571 entry->wired_count = -1; 2572 end = entry->end; 2573 goto done; 2574 } 2575 } else if (!user_wire || 2576 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2577 entry->wired_count++; 2578 } 2579 /* 2580 * Check the map for holes in the specified region. 2581 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2582 */ 2583 next_entry: 2584 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2585 (entry->end < end && (entry->next == &map->header || 2586 entry->next->start > entry->end))) { 2587 end = entry->end; 2588 rv = KERN_INVALID_ADDRESS; 2589 goto done; 2590 } 2591 entry = entry->next; 2592 } 2593 rv = KERN_SUCCESS; 2594 done: 2595 need_wakeup = FALSE; 2596 if (first_entry == NULL) { 2597 result = vm_map_lookup_entry(map, start, &first_entry); 2598 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2599 first_entry = first_entry->next; 2600 else 2601 KASSERT(result, ("vm_map_wire: lookup failed")); 2602 } 2603 for (entry = first_entry; entry != &map->header && entry->start < end; 2604 entry = entry->next) { 2605 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2606 goto next_entry_done; 2607 2608 /* 2609 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2610 * space in the unwired region could have been mapped 2611 * while the map lock was dropped for faulting in the 2612 * pages or draining MAP_ENTRY_IN_TRANSITION. 2613 * Moreover, another thread could be simultaneously 2614 * wiring this new mapping entry. Detect these cases 2615 * and skip any entries marked as in transition by us. 2616 */ 2617 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2618 entry->wiring_thread != curthread) { 2619 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2620 ("vm_map_wire: !HOLESOK and new/changed entry")); 2621 continue; 2622 } 2623 2624 if (rv == KERN_SUCCESS) { 2625 if (user_wire) 2626 entry->eflags |= MAP_ENTRY_USER_WIRED; 2627 } else if (entry->wired_count == -1) { 2628 /* 2629 * Wiring failed on this entry. Thus, unwiring is 2630 * unnecessary. 2631 */ 2632 entry->wired_count = 0; 2633 } else if (!user_wire || 2634 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2635 if (entry->wired_count == 1) 2636 vm_map_entry_unwire(map, entry); 2637 else 2638 entry->wired_count--; 2639 } 2640 next_entry_done: 2641 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2642 ("vm_map_wire: in-transition flag missing %p", entry)); 2643 KASSERT(entry->wiring_thread == curthread, 2644 ("vm_map_wire: alien wire %p", entry)); 2645 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2646 MAP_ENTRY_WIRE_SKIPPED); 2647 entry->wiring_thread = NULL; 2648 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2649 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2650 need_wakeup = TRUE; 2651 } 2652 vm_map_simplify_entry(map, entry); 2653 } 2654 vm_map_unlock(map); 2655 if (need_wakeup) 2656 vm_map_wakeup(map); 2657 return (rv); 2658 } 2659 2660 /* 2661 * vm_map_sync 2662 * 2663 * Push any dirty cached pages in the address range to their pager. 2664 * If syncio is TRUE, dirty pages are written synchronously. 2665 * If invalidate is TRUE, any cached pages are freed as well. 2666 * 2667 * If the size of the region from start to end is zero, we are 2668 * supposed to flush all modified pages within the region containing 2669 * start. Unfortunately, a region can be split or coalesced with 2670 * neighboring regions, making it difficult to determine what the 2671 * original region was. Therefore, we approximate this requirement by 2672 * flushing the current region containing start. 2673 * 2674 * Returns an error if any part of the specified range is not mapped. 2675 */ 2676 int 2677 vm_map_sync( 2678 vm_map_t map, 2679 vm_offset_t start, 2680 vm_offset_t end, 2681 boolean_t syncio, 2682 boolean_t invalidate) 2683 { 2684 vm_map_entry_t current; 2685 vm_map_entry_t entry; 2686 vm_size_t size; 2687 vm_object_t object; 2688 vm_ooffset_t offset; 2689 unsigned int last_timestamp; 2690 boolean_t failed; 2691 2692 vm_map_lock_read(map); 2693 VM_MAP_RANGE_CHECK(map, start, end); 2694 if (!vm_map_lookup_entry(map, start, &entry)) { 2695 vm_map_unlock_read(map); 2696 return (KERN_INVALID_ADDRESS); 2697 } else if (start == end) { 2698 start = entry->start; 2699 end = entry->end; 2700 } 2701 /* 2702 * Make a first pass to check for user-wired memory and holes. 2703 */ 2704 for (current = entry; current != &map->header && current->start < end; 2705 current = current->next) { 2706 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2707 vm_map_unlock_read(map); 2708 return (KERN_INVALID_ARGUMENT); 2709 } 2710 if (end > current->end && 2711 (current->next == &map->header || 2712 current->end != current->next->start)) { 2713 vm_map_unlock_read(map); 2714 return (KERN_INVALID_ADDRESS); 2715 } 2716 } 2717 2718 if (invalidate) 2719 pmap_remove(map->pmap, start, end); 2720 failed = FALSE; 2721 2722 /* 2723 * Make a second pass, cleaning/uncaching pages from the indicated 2724 * objects as we go. 2725 */ 2726 for (current = entry; current != &map->header && current->start < end;) { 2727 offset = current->offset + (start - current->start); 2728 size = (end <= current->end ? end : current->end) - start; 2729 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2730 vm_map_t smap; 2731 vm_map_entry_t tentry; 2732 vm_size_t tsize; 2733 2734 smap = current->object.sub_map; 2735 vm_map_lock_read(smap); 2736 (void) vm_map_lookup_entry(smap, offset, &tentry); 2737 tsize = tentry->end - offset; 2738 if (tsize < size) 2739 size = tsize; 2740 object = tentry->object.vm_object; 2741 offset = tentry->offset + (offset - tentry->start); 2742 vm_map_unlock_read(smap); 2743 } else { 2744 object = current->object.vm_object; 2745 } 2746 vm_object_reference(object); 2747 last_timestamp = map->timestamp; 2748 vm_map_unlock_read(map); 2749 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2750 failed = TRUE; 2751 start += size; 2752 vm_object_deallocate(object); 2753 vm_map_lock_read(map); 2754 if (last_timestamp == map->timestamp || 2755 !vm_map_lookup_entry(map, start, ¤t)) 2756 current = current->next; 2757 } 2758 2759 vm_map_unlock_read(map); 2760 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2761 } 2762 2763 /* 2764 * vm_map_entry_unwire: [ internal use only ] 2765 * 2766 * Make the region specified by this entry pageable. 2767 * 2768 * The map in question should be locked. 2769 * [This is the reason for this routine's existence.] 2770 */ 2771 static void 2772 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2773 { 2774 2775 VM_MAP_ASSERT_LOCKED(map); 2776 KASSERT(entry->wired_count > 0, 2777 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 2778 pmap_unwire(map->pmap, entry->start, entry->end); 2779 vm_object_unwire(entry->object.vm_object, entry->offset, entry->end - 2780 entry->start, PQ_ACTIVE); 2781 entry->wired_count = 0; 2782 } 2783 2784 static void 2785 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2786 { 2787 2788 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2789 vm_object_deallocate(entry->object.vm_object); 2790 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2791 } 2792 2793 /* 2794 * vm_map_entry_delete: [ internal use only ] 2795 * 2796 * Deallocate the given entry from the target map. 2797 */ 2798 static void 2799 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2800 { 2801 vm_object_t object; 2802 vm_pindex_t offidxstart, offidxend, count, size1; 2803 vm_ooffset_t size; 2804 2805 vm_map_entry_unlink(map, entry); 2806 object = entry->object.vm_object; 2807 size = entry->end - entry->start; 2808 map->size -= size; 2809 2810 if (entry->cred != NULL) { 2811 swap_release_by_cred(size, entry->cred); 2812 crfree(entry->cred); 2813 } 2814 2815 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2816 (object != NULL)) { 2817 KASSERT(entry->cred == NULL || object->cred == NULL || 2818 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2819 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2820 count = OFF_TO_IDX(size); 2821 offidxstart = OFF_TO_IDX(entry->offset); 2822 offidxend = offidxstart + count; 2823 VM_OBJECT_WLOCK(object); 2824 if (object->ref_count != 1 && 2825 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2826 object == kernel_object || object == kmem_object)) { 2827 vm_object_collapse(object); 2828 2829 /* 2830 * The option OBJPR_NOTMAPPED can be passed here 2831 * because vm_map_delete() already performed 2832 * pmap_remove() on the only mapping to this range 2833 * of pages. 2834 */ 2835 vm_object_page_remove(object, offidxstart, offidxend, 2836 OBJPR_NOTMAPPED); 2837 if (object->type == OBJT_SWAP) 2838 swap_pager_freespace(object, offidxstart, count); 2839 if (offidxend >= object->size && 2840 offidxstart < object->size) { 2841 size1 = object->size; 2842 object->size = offidxstart; 2843 if (object->cred != NULL) { 2844 size1 -= object->size; 2845 KASSERT(object->charge >= ptoa(size1), 2846 ("vm_map_entry_delete: object->charge < 0")); 2847 swap_release_by_cred(ptoa(size1), object->cred); 2848 object->charge -= ptoa(size1); 2849 } 2850 } 2851 } 2852 VM_OBJECT_WUNLOCK(object); 2853 } else 2854 entry->object.vm_object = NULL; 2855 if (map->system_map) 2856 vm_map_entry_deallocate(entry, TRUE); 2857 else { 2858 entry->next = curthread->td_map_def_user; 2859 curthread->td_map_def_user = entry; 2860 } 2861 } 2862 2863 /* 2864 * vm_map_delete: [ internal use only ] 2865 * 2866 * Deallocates the given address range from the target 2867 * map. 2868 */ 2869 int 2870 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2871 { 2872 vm_map_entry_t entry; 2873 vm_map_entry_t first_entry; 2874 2875 VM_MAP_ASSERT_LOCKED(map); 2876 if (start == end) 2877 return (KERN_SUCCESS); 2878 2879 /* 2880 * Find the start of the region, and clip it 2881 */ 2882 if (!vm_map_lookup_entry(map, start, &first_entry)) 2883 entry = first_entry->next; 2884 else { 2885 entry = first_entry; 2886 vm_map_clip_start(map, entry, start); 2887 } 2888 2889 /* 2890 * Step through all entries in this region 2891 */ 2892 while ((entry != &map->header) && (entry->start < end)) { 2893 vm_map_entry_t next; 2894 2895 /* 2896 * Wait for wiring or unwiring of an entry to complete. 2897 * Also wait for any system wirings to disappear on 2898 * user maps. 2899 */ 2900 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2901 (vm_map_pmap(map) != kernel_pmap && 2902 vm_map_entry_system_wired_count(entry) != 0)) { 2903 unsigned int last_timestamp; 2904 vm_offset_t saved_start; 2905 vm_map_entry_t tmp_entry; 2906 2907 saved_start = entry->start; 2908 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2909 last_timestamp = map->timestamp; 2910 (void) vm_map_unlock_and_wait(map, 0); 2911 vm_map_lock(map); 2912 if (last_timestamp + 1 != map->timestamp) { 2913 /* 2914 * Look again for the entry because the map was 2915 * modified while it was unlocked. 2916 * Specifically, the entry may have been 2917 * clipped, merged, or deleted. 2918 */ 2919 if (!vm_map_lookup_entry(map, saved_start, 2920 &tmp_entry)) 2921 entry = tmp_entry->next; 2922 else { 2923 entry = tmp_entry; 2924 vm_map_clip_start(map, entry, 2925 saved_start); 2926 } 2927 } 2928 continue; 2929 } 2930 vm_map_clip_end(map, entry, end); 2931 2932 next = entry->next; 2933 2934 /* 2935 * Unwire before removing addresses from the pmap; otherwise, 2936 * unwiring will put the entries back in the pmap. 2937 */ 2938 if (entry->wired_count != 0) { 2939 vm_map_entry_unwire(map, entry); 2940 } 2941 2942 pmap_remove(map->pmap, entry->start, entry->end); 2943 2944 /* 2945 * Delete the entry only after removing all pmap 2946 * entries pointing to its pages. (Otherwise, its 2947 * page frames may be reallocated, and any modify bits 2948 * will be set in the wrong object!) 2949 */ 2950 vm_map_entry_delete(map, entry); 2951 entry = next; 2952 } 2953 return (KERN_SUCCESS); 2954 } 2955 2956 /* 2957 * vm_map_remove: 2958 * 2959 * Remove the given address range from the target map. 2960 * This is the exported form of vm_map_delete. 2961 */ 2962 int 2963 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2964 { 2965 int result; 2966 2967 vm_map_lock(map); 2968 VM_MAP_RANGE_CHECK(map, start, end); 2969 result = vm_map_delete(map, start, end); 2970 vm_map_unlock(map); 2971 return (result); 2972 } 2973 2974 /* 2975 * vm_map_check_protection: 2976 * 2977 * Assert that the target map allows the specified privilege on the 2978 * entire address region given. The entire region must be allocated. 2979 * 2980 * WARNING! This code does not and should not check whether the 2981 * contents of the region is accessible. For example a smaller file 2982 * might be mapped into a larger address space. 2983 * 2984 * NOTE! This code is also called by munmap(). 2985 * 2986 * The map must be locked. A read lock is sufficient. 2987 */ 2988 boolean_t 2989 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2990 vm_prot_t protection) 2991 { 2992 vm_map_entry_t entry; 2993 vm_map_entry_t tmp_entry; 2994 2995 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2996 return (FALSE); 2997 entry = tmp_entry; 2998 2999 while (start < end) { 3000 if (entry == &map->header) 3001 return (FALSE); 3002 /* 3003 * No holes allowed! 3004 */ 3005 if (start < entry->start) 3006 return (FALSE); 3007 /* 3008 * Check protection associated with entry. 3009 */ 3010 if ((entry->protection & protection) != protection) 3011 return (FALSE); 3012 /* go to next entry */ 3013 start = entry->end; 3014 entry = entry->next; 3015 } 3016 return (TRUE); 3017 } 3018 3019 /* 3020 * vm_map_copy_entry: 3021 * 3022 * Copies the contents of the source entry to the destination 3023 * entry. The entries *must* be aligned properly. 3024 */ 3025 static void 3026 vm_map_copy_entry( 3027 vm_map_t src_map, 3028 vm_map_t dst_map, 3029 vm_map_entry_t src_entry, 3030 vm_map_entry_t dst_entry, 3031 vm_ooffset_t *fork_charge) 3032 { 3033 vm_object_t src_object; 3034 vm_map_entry_t fake_entry; 3035 vm_offset_t size; 3036 struct ucred *cred; 3037 int charged; 3038 3039 VM_MAP_ASSERT_LOCKED(dst_map); 3040 3041 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3042 return; 3043 3044 if (src_entry->wired_count == 0 || 3045 (src_entry->protection & VM_PROT_WRITE) == 0) { 3046 /* 3047 * If the source entry is marked needs_copy, it is already 3048 * write-protected. 3049 */ 3050 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3051 (src_entry->protection & VM_PROT_WRITE) != 0) { 3052 pmap_protect(src_map->pmap, 3053 src_entry->start, 3054 src_entry->end, 3055 src_entry->protection & ~VM_PROT_WRITE); 3056 } 3057 3058 /* 3059 * Make a copy of the object. 3060 */ 3061 size = src_entry->end - src_entry->start; 3062 if ((src_object = src_entry->object.vm_object) != NULL) { 3063 VM_OBJECT_WLOCK(src_object); 3064 charged = ENTRY_CHARGED(src_entry); 3065 if ((src_object->handle == NULL) && 3066 (src_object->type == OBJT_DEFAULT || 3067 src_object->type == OBJT_SWAP)) { 3068 vm_object_collapse(src_object); 3069 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3070 vm_object_split(src_entry); 3071 src_object = src_entry->object.vm_object; 3072 } 3073 } 3074 vm_object_reference_locked(src_object); 3075 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3076 if (src_entry->cred != NULL && 3077 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3078 KASSERT(src_object->cred == NULL, 3079 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3080 src_object)); 3081 src_object->cred = src_entry->cred; 3082 src_object->charge = size; 3083 } 3084 VM_OBJECT_WUNLOCK(src_object); 3085 dst_entry->object.vm_object = src_object; 3086 if (charged) { 3087 cred = curthread->td_ucred; 3088 crhold(cred); 3089 dst_entry->cred = cred; 3090 *fork_charge += size; 3091 if (!(src_entry->eflags & 3092 MAP_ENTRY_NEEDS_COPY)) { 3093 crhold(cred); 3094 src_entry->cred = cred; 3095 *fork_charge += size; 3096 } 3097 } 3098 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3099 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3100 dst_entry->offset = src_entry->offset; 3101 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3102 /* 3103 * MAP_ENTRY_VN_WRITECNT cannot 3104 * indicate write reference from 3105 * src_entry, since the entry is 3106 * marked as needs copy. Allocate a 3107 * fake entry that is used to 3108 * decrement object->un_pager.vnp.writecount 3109 * at the appropriate time. Attach 3110 * fake_entry to the deferred list. 3111 */ 3112 fake_entry = vm_map_entry_create(dst_map); 3113 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3114 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3115 vm_object_reference(src_object); 3116 fake_entry->object.vm_object = src_object; 3117 fake_entry->start = src_entry->start; 3118 fake_entry->end = src_entry->end; 3119 fake_entry->next = curthread->td_map_def_user; 3120 curthread->td_map_def_user = fake_entry; 3121 } 3122 } else { 3123 dst_entry->object.vm_object = NULL; 3124 dst_entry->offset = 0; 3125 if (src_entry->cred != NULL) { 3126 dst_entry->cred = curthread->td_ucred; 3127 crhold(dst_entry->cred); 3128 *fork_charge += size; 3129 } 3130 } 3131 3132 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3133 dst_entry->end - dst_entry->start, src_entry->start); 3134 } else { 3135 /* 3136 * We don't want to make writeable wired pages copy-on-write. 3137 * Immediately copy these pages into the new map by simulating 3138 * page faults. The new pages are pageable. 3139 */ 3140 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3141 fork_charge); 3142 } 3143 } 3144 3145 /* 3146 * vmspace_map_entry_forked: 3147 * Update the newly-forked vmspace each time a map entry is inherited 3148 * or copied. The values for vm_dsize and vm_tsize are approximate 3149 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3150 */ 3151 static void 3152 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3153 vm_map_entry_t entry) 3154 { 3155 vm_size_t entrysize; 3156 vm_offset_t newend; 3157 3158 entrysize = entry->end - entry->start; 3159 vm2->vm_map.size += entrysize; 3160 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3161 vm2->vm_ssize += btoc(entrysize); 3162 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3163 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3164 newend = MIN(entry->end, 3165 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3166 vm2->vm_dsize += btoc(newend - entry->start); 3167 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3168 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3169 newend = MIN(entry->end, 3170 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3171 vm2->vm_tsize += btoc(newend - entry->start); 3172 } 3173 } 3174 3175 /* 3176 * vmspace_fork: 3177 * Create a new process vmspace structure and vm_map 3178 * based on those of an existing process. The new map 3179 * is based on the old map, according to the inheritance 3180 * values on the regions in that map. 3181 * 3182 * XXX It might be worth coalescing the entries added to the new vmspace. 3183 * 3184 * The source map must not be locked. 3185 */ 3186 struct vmspace * 3187 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3188 { 3189 struct vmspace *vm2; 3190 vm_map_t new_map, old_map; 3191 vm_map_entry_t new_entry, old_entry; 3192 vm_object_t object; 3193 int locked; 3194 3195 old_map = &vm1->vm_map; 3196 /* Copy immutable fields of vm1 to vm2. */ 3197 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL); 3198 if (vm2 == NULL) 3199 return (NULL); 3200 vm2->vm_taddr = vm1->vm_taddr; 3201 vm2->vm_daddr = vm1->vm_daddr; 3202 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3203 vm_map_lock(old_map); 3204 if (old_map->busy) 3205 vm_map_wait_busy(old_map); 3206 new_map = &vm2->vm_map; 3207 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3208 KASSERT(locked, ("vmspace_fork: lock failed")); 3209 3210 old_entry = old_map->header.next; 3211 3212 while (old_entry != &old_map->header) { 3213 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3214 panic("vm_map_fork: encountered a submap"); 3215 3216 switch (old_entry->inheritance) { 3217 case VM_INHERIT_NONE: 3218 break; 3219 3220 case VM_INHERIT_SHARE: 3221 /* 3222 * Clone the entry, creating the shared object if necessary. 3223 */ 3224 object = old_entry->object.vm_object; 3225 if (object == NULL) { 3226 object = vm_object_allocate(OBJT_DEFAULT, 3227 atop(old_entry->end - old_entry->start)); 3228 old_entry->object.vm_object = object; 3229 old_entry->offset = 0; 3230 if (old_entry->cred != NULL) { 3231 object->cred = old_entry->cred; 3232 object->charge = old_entry->end - 3233 old_entry->start; 3234 old_entry->cred = NULL; 3235 } 3236 } 3237 3238 /* 3239 * Add the reference before calling vm_object_shadow 3240 * to insure that a shadow object is created. 3241 */ 3242 vm_object_reference(object); 3243 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3244 vm_object_shadow(&old_entry->object.vm_object, 3245 &old_entry->offset, 3246 old_entry->end - old_entry->start); 3247 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3248 /* Transfer the second reference too. */ 3249 vm_object_reference( 3250 old_entry->object.vm_object); 3251 3252 /* 3253 * As in vm_map_simplify_entry(), the 3254 * vnode lock will not be acquired in 3255 * this call to vm_object_deallocate(). 3256 */ 3257 vm_object_deallocate(object); 3258 object = old_entry->object.vm_object; 3259 } 3260 VM_OBJECT_WLOCK(object); 3261 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3262 if (old_entry->cred != NULL) { 3263 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3264 object->cred = old_entry->cred; 3265 object->charge = old_entry->end - old_entry->start; 3266 old_entry->cred = NULL; 3267 } 3268 3269 /* 3270 * Assert the correct state of the vnode 3271 * v_writecount while the object is locked, to 3272 * not relock it later for the assertion 3273 * correctness. 3274 */ 3275 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3276 object->type == OBJT_VNODE) { 3277 KASSERT(((struct vnode *)object->handle)-> 3278 v_writecount > 0, 3279 ("vmspace_fork: v_writecount %p", object)); 3280 KASSERT(object->un_pager.vnp.writemappings > 0, 3281 ("vmspace_fork: vnp.writecount %p", 3282 object)); 3283 } 3284 VM_OBJECT_WUNLOCK(object); 3285 3286 /* 3287 * Clone the entry, referencing the shared object. 3288 */ 3289 new_entry = vm_map_entry_create(new_map); 3290 *new_entry = *old_entry; 3291 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3292 MAP_ENTRY_IN_TRANSITION); 3293 new_entry->wiring_thread = NULL; 3294 new_entry->wired_count = 0; 3295 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3296 vnode_pager_update_writecount(object, 3297 new_entry->start, new_entry->end); 3298 } 3299 3300 /* 3301 * Insert the entry into the new map -- we know we're 3302 * inserting at the end of the new map. 3303 */ 3304 vm_map_entry_link(new_map, new_map->header.prev, 3305 new_entry); 3306 vmspace_map_entry_forked(vm1, vm2, new_entry); 3307 3308 /* 3309 * Update the physical map 3310 */ 3311 pmap_copy(new_map->pmap, old_map->pmap, 3312 new_entry->start, 3313 (old_entry->end - old_entry->start), 3314 old_entry->start); 3315 break; 3316 3317 case VM_INHERIT_COPY: 3318 /* 3319 * Clone the entry and link into the map. 3320 */ 3321 new_entry = vm_map_entry_create(new_map); 3322 *new_entry = *old_entry; 3323 /* 3324 * Copied entry is COW over the old object. 3325 */ 3326 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3327 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3328 new_entry->wiring_thread = NULL; 3329 new_entry->wired_count = 0; 3330 new_entry->object.vm_object = NULL; 3331 new_entry->cred = NULL; 3332 vm_map_entry_link(new_map, new_map->header.prev, 3333 new_entry); 3334 vmspace_map_entry_forked(vm1, vm2, new_entry); 3335 vm_map_copy_entry(old_map, new_map, old_entry, 3336 new_entry, fork_charge); 3337 break; 3338 } 3339 old_entry = old_entry->next; 3340 } 3341 /* 3342 * Use inlined vm_map_unlock() to postpone handling the deferred 3343 * map entries, which cannot be done until both old_map and 3344 * new_map locks are released. 3345 */ 3346 sx_xunlock(&old_map->lock); 3347 sx_xunlock(&new_map->lock); 3348 vm_map_process_deferred(); 3349 3350 return (vm2); 3351 } 3352 3353 int 3354 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3355 vm_prot_t prot, vm_prot_t max, int cow) 3356 { 3357 vm_size_t growsize, init_ssize; 3358 rlim_t lmemlim, vmemlim; 3359 int rv; 3360 3361 growsize = sgrowsiz; 3362 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3363 vm_map_lock(map); 3364 PROC_LOCK(curproc); 3365 lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK); 3366 vmemlim = lim_cur(curproc, RLIMIT_VMEM); 3367 PROC_UNLOCK(curproc); 3368 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3369 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) { 3370 rv = KERN_NO_SPACE; 3371 goto out; 3372 } 3373 } 3374 /* If we would blow our VMEM resource limit, no go */ 3375 if (map->size + init_ssize > vmemlim) { 3376 rv = KERN_NO_SPACE; 3377 goto out; 3378 } 3379 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 3380 max, cow); 3381 out: 3382 vm_map_unlock(map); 3383 return (rv); 3384 } 3385 3386 static int 3387 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3388 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 3389 { 3390 vm_map_entry_t new_entry, prev_entry; 3391 vm_offset_t bot, top; 3392 vm_size_t init_ssize; 3393 int orient, rv; 3394 3395 /* 3396 * The stack orientation is piggybacked with the cow argument. 3397 * Extract it into orient and mask the cow argument so that we 3398 * don't pass it around further. 3399 * NOTE: We explicitly allow bi-directional stacks. 3400 */ 3401 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3402 KASSERT(orient != 0, ("No stack grow direction")); 3403 3404 if (addrbos < vm_map_min(map) || 3405 addrbos > vm_map_max(map) || 3406 addrbos + max_ssize < addrbos) 3407 return (KERN_NO_SPACE); 3408 3409 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3410 3411 /* If addr is already mapped, no go */ 3412 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 3413 return (KERN_NO_SPACE); 3414 3415 /* 3416 * If we can't accomodate max_ssize in the current mapping, no go. 3417 * However, we need to be aware that subsequent user mappings might 3418 * map into the space we have reserved for stack, and currently this 3419 * space is not protected. 3420 * 3421 * Hopefully we will at least detect this condition when we try to 3422 * grow the stack. 3423 */ 3424 if ((prev_entry->next != &map->header) && 3425 (prev_entry->next->start < addrbos + max_ssize)) 3426 return (KERN_NO_SPACE); 3427 3428 /* 3429 * We initially map a stack of only init_ssize. We will grow as 3430 * needed later. Depending on the orientation of the stack (i.e. 3431 * the grow direction) we either map at the top of the range, the 3432 * bottom of the range or in the middle. 3433 * 3434 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3435 * and cow to be 0. Possibly we should eliminate these as input 3436 * parameters, and just pass these values here in the insert call. 3437 */ 3438 if (orient == MAP_STACK_GROWS_DOWN) 3439 bot = addrbos + max_ssize - init_ssize; 3440 else if (orient == MAP_STACK_GROWS_UP) 3441 bot = addrbos; 3442 else 3443 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3444 top = bot + init_ssize; 3445 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3446 3447 /* Now set the avail_ssize amount. */ 3448 if (rv == KERN_SUCCESS) { 3449 new_entry = prev_entry->next; 3450 if (new_entry->end != top || new_entry->start != bot) 3451 panic("Bad entry start/end for new stack entry"); 3452 3453 new_entry->avail_ssize = max_ssize - init_ssize; 3454 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 3455 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 3456 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 3457 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 3458 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 3459 ("new entry lacks MAP_ENTRY_GROWS_UP")); 3460 } 3461 3462 return (rv); 3463 } 3464 3465 static int stack_guard_page = 0; 3466 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 3467 &stack_guard_page, 0, 3468 "Insert stack guard page ahead of the growable segments."); 3469 3470 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3471 * desired address is already mapped, or if we successfully grow 3472 * the stack. Also returns KERN_SUCCESS if addr is outside the 3473 * stack range (this is strange, but preserves compatibility with 3474 * the grow function in vm_machdep.c). 3475 */ 3476 int 3477 vm_map_growstack(struct proc *p, vm_offset_t addr) 3478 { 3479 vm_map_entry_t next_entry, prev_entry; 3480 vm_map_entry_t new_entry, stack_entry; 3481 struct vmspace *vm = p->p_vmspace; 3482 vm_map_t map = &vm->vm_map; 3483 vm_offset_t end; 3484 vm_size_t growsize; 3485 size_t grow_amount, max_grow; 3486 rlim_t lmemlim, stacklim, vmemlim; 3487 int is_procstack, rv; 3488 struct ucred *cred; 3489 #ifdef notyet 3490 uint64_t limit; 3491 #endif 3492 #ifdef RACCT 3493 int error; 3494 #endif 3495 3496 Retry: 3497 PROC_LOCK(p); 3498 lmemlim = lim_cur(p, RLIMIT_MEMLOCK); 3499 stacklim = lim_cur(p, RLIMIT_STACK); 3500 vmemlim = lim_cur(p, RLIMIT_VMEM); 3501 PROC_UNLOCK(p); 3502 3503 vm_map_lock_read(map); 3504 3505 /* If addr is already in the entry range, no need to grow.*/ 3506 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3507 vm_map_unlock_read(map); 3508 return (KERN_SUCCESS); 3509 } 3510 3511 next_entry = prev_entry->next; 3512 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3513 /* 3514 * This entry does not grow upwards. Since the address lies 3515 * beyond this entry, the next entry (if one exists) has to 3516 * be a downward growable entry. The entry list header is 3517 * never a growable entry, so it suffices to check the flags. 3518 */ 3519 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3520 vm_map_unlock_read(map); 3521 return (KERN_SUCCESS); 3522 } 3523 stack_entry = next_entry; 3524 } else { 3525 /* 3526 * This entry grows upward. If the next entry does not at 3527 * least grow downwards, this is the entry we need to grow. 3528 * otherwise we have two possible choices and we have to 3529 * select one. 3530 */ 3531 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3532 /* 3533 * We have two choices; grow the entry closest to 3534 * the address to minimize the amount of growth. 3535 */ 3536 if (addr - prev_entry->end <= next_entry->start - addr) 3537 stack_entry = prev_entry; 3538 else 3539 stack_entry = next_entry; 3540 } else 3541 stack_entry = prev_entry; 3542 } 3543 3544 if (stack_entry == next_entry) { 3545 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3546 KASSERT(addr < stack_entry->start, ("foo")); 3547 end = (prev_entry != &map->header) ? prev_entry->end : 3548 stack_entry->start - stack_entry->avail_ssize; 3549 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3550 max_grow = stack_entry->start - end; 3551 } else { 3552 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3553 KASSERT(addr >= stack_entry->end, ("foo")); 3554 end = (next_entry != &map->header) ? next_entry->start : 3555 stack_entry->end + stack_entry->avail_ssize; 3556 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3557 max_grow = end - stack_entry->end; 3558 } 3559 3560 if (grow_amount > stack_entry->avail_ssize) { 3561 vm_map_unlock_read(map); 3562 return (KERN_NO_SPACE); 3563 } 3564 3565 /* 3566 * If there is no longer enough space between the entries nogo, and 3567 * adjust the available space. Note: this should only happen if the 3568 * user has mapped into the stack area after the stack was created, 3569 * and is probably an error. 3570 * 3571 * This also effectively destroys any guard page the user might have 3572 * intended by limiting the stack size. 3573 */ 3574 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3575 if (vm_map_lock_upgrade(map)) 3576 goto Retry; 3577 3578 stack_entry->avail_ssize = max_grow; 3579 3580 vm_map_unlock(map); 3581 return (KERN_NO_SPACE); 3582 } 3583 3584 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3585 3586 /* 3587 * If this is the main process stack, see if we're over the stack 3588 * limit. 3589 */ 3590 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3591 vm_map_unlock_read(map); 3592 return (KERN_NO_SPACE); 3593 } 3594 #ifdef RACCT 3595 PROC_LOCK(p); 3596 if (is_procstack && 3597 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3598 PROC_UNLOCK(p); 3599 vm_map_unlock_read(map); 3600 return (KERN_NO_SPACE); 3601 } 3602 PROC_UNLOCK(p); 3603 #endif 3604 3605 /* Round up the grow amount modulo sgrowsiz */ 3606 growsize = sgrowsiz; 3607 grow_amount = roundup(grow_amount, growsize); 3608 if (grow_amount > stack_entry->avail_ssize) 3609 grow_amount = stack_entry->avail_ssize; 3610 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3611 grow_amount = trunc_page((vm_size_t)stacklim) - 3612 ctob(vm->vm_ssize); 3613 } 3614 #ifdef notyet 3615 PROC_LOCK(p); 3616 limit = racct_get_available(p, RACCT_STACK); 3617 PROC_UNLOCK(p); 3618 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3619 grow_amount = limit - ctob(vm->vm_ssize); 3620 #endif 3621 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3622 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3623 vm_map_unlock_read(map); 3624 rv = KERN_NO_SPACE; 3625 goto out; 3626 } 3627 #ifdef RACCT 3628 PROC_LOCK(p); 3629 if (racct_set(p, RACCT_MEMLOCK, 3630 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3631 PROC_UNLOCK(p); 3632 vm_map_unlock_read(map); 3633 rv = KERN_NO_SPACE; 3634 goto out; 3635 } 3636 PROC_UNLOCK(p); 3637 #endif 3638 } 3639 /* If we would blow our VMEM resource limit, no go */ 3640 if (map->size + grow_amount > vmemlim) { 3641 vm_map_unlock_read(map); 3642 rv = KERN_NO_SPACE; 3643 goto out; 3644 } 3645 #ifdef RACCT 3646 PROC_LOCK(p); 3647 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3648 PROC_UNLOCK(p); 3649 vm_map_unlock_read(map); 3650 rv = KERN_NO_SPACE; 3651 goto out; 3652 } 3653 PROC_UNLOCK(p); 3654 #endif 3655 3656 if (vm_map_lock_upgrade(map)) 3657 goto Retry; 3658 3659 if (stack_entry == next_entry) { 3660 /* 3661 * Growing downward. 3662 */ 3663 /* Get the preliminary new entry start value */ 3664 addr = stack_entry->start - grow_amount; 3665 3666 /* 3667 * If this puts us into the previous entry, cut back our 3668 * growth to the available space. Also, see the note above. 3669 */ 3670 if (addr < end) { 3671 stack_entry->avail_ssize = max_grow; 3672 addr = end; 3673 if (stack_guard_page) 3674 addr += PAGE_SIZE; 3675 } 3676 3677 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3678 next_entry->protection, next_entry->max_protection, 3679 MAP_STACK_GROWS_DOWN); 3680 3681 /* Adjust the available stack space by the amount we grew. */ 3682 if (rv == KERN_SUCCESS) { 3683 new_entry = prev_entry->next; 3684 KASSERT(new_entry == stack_entry->prev, ("foo")); 3685 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3686 KASSERT(new_entry->start == addr, ("foo")); 3687 KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 3688 0, ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 3689 grow_amount = new_entry->end - new_entry->start; 3690 new_entry->avail_ssize = stack_entry->avail_ssize - 3691 grow_amount; 3692 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3693 } 3694 } else { 3695 /* 3696 * Growing upward. 3697 */ 3698 addr = stack_entry->end + grow_amount; 3699 3700 /* 3701 * If this puts us into the next entry, cut back our growth 3702 * to the available space. Also, see the note above. 3703 */ 3704 if (addr > end) { 3705 stack_entry->avail_ssize = end - stack_entry->end; 3706 addr = end; 3707 if (stack_guard_page) 3708 addr -= PAGE_SIZE; 3709 } 3710 3711 grow_amount = addr - stack_entry->end; 3712 cred = stack_entry->cred; 3713 if (cred == NULL && stack_entry->object.vm_object != NULL) 3714 cred = stack_entry->object.vm_object->cred; 3715 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3716 rv = KERN_NO_SPACE; 3717 /* Grow the underlying object if applicable. */ 3718 else if (stack_entry->object.vm_object == NULL || 3719 vm_object_coalesce(stack_entry->object.vm_object, 3720 stack_entry->offset, 3721 (vm_size_t)(stack_entry->end - stack_entry->start), 3722 (vm_size_t)grow_amount, cred != NULL)) { 3723 map->size += (addr - stack_entry->end); 3724 /* Update the current entry. */ 3725 stack_entry->end = addr; 3726 stack_entry->avail_ssize -= grow_amount; 3727 vm_map_entry_resize_free(map, stack_entry); 3728 rv = KERN_SUCCESS; 3729 } else 3730 rv = KERN_FAILURE; 3731 } 3732 3733 if (rv == KERN_SUCCESS && is_procstack) 3734 vm->vm_ssize += btoc(grow_amount); 3735 3736 vm_map_unlock(map); 3737 3738 /* 3739 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3740 */ 3741 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3742 vm_map_wire(map, 3743 (stack_entry == next_entry) ? addr : addr - grow_amount, 3744 (stack_entry == next_entry) ? stack_entry->start : addr, 3745 (p->p_flag & P_SYSTEM) 3746 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3747 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3748 } 3749 3750 out: 3751 #ifdef RACCT 3752 if (rv != KERN_SUCCESS) { 3753 PROC_LOCK(p); 3754 error = racct_set(p, RACCT_VMEM, map->size); 3755 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3756 if (!old_mlock) { 3757 error = racct_set(p, RACCT_MEMLOCK, 3758 ptoa(pmap_wired_count(map->pmap))); 3759 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3760 } 3761 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3762 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3763 PROC_UNLOCK(p); 3764 } 3765 #endif 3766 3767 return (rv); 3768 } 3769 3770 /* 3771 * Unshare the specified VM space for exec. If other processes are 3772 * mapped to it, then create a new one. The new vmspace is null. 3773 */ 3774 int 3775 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3776 { 3777 struct vmspace *oldvmspace = p->p_vmspace; 3778 struct vmspace *newvmspace; 3779 3780 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 3781 ("vmspace_exec recursed")); 3782 newvmspace = vmspace_alloc(minuser, maxuser, NULL); 3783 if (newvmspace == NULL) 3784 return (ENOMEM); 3785 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3786 /* 3787 * This code is written like this for prototype purposes. The 3788 * goal is to avoid running down the vmspace here, but let the 3789 * other process's that are still using the vmspace to finally 3790 * run it down. Even though there is little or no chance of blocking 3791 * here, it is a good idea to keep this form for future mods. 3792 */ 3793 PROC_VMSPACE_LOCK(p); 3794 p->p_vmspace = newvmspace; 3795 PROC_VMSPACE_UNLOCK(p); 3796 if (p == curthread->td_proc) 3797 pmap_activate(curthread); 3798 curthread->td_pflags |= TDP_EXECVMSPC; 3799 return (0); 3800 } 3801 3802 /* 3803 * Unshare the specified VM space for forcing COW. This 3804 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3805 */ 3806 int 3807 vmspace_unshare(struct proc *p) 3808 { 3809 struct vmspace *oldvmspace = p->p_vmspace; 3810 struct vmspace *newvmspace; 3811 vm_ooffset_t fork_charge; 3812 3813 if (oldvmspace->vm_refcnt == 1) 3814 return (0); 3815 fork_charge = 0; 3816 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3817 if (newvmspace == NULL) 3818 return (ENOMEM); 3819 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3820 vmspace_free(newvmspace); 3821 return (ENOMEM); 3822 } 3823 PROC_VMSPACE_LOCK(p); 3824 p->p_vmspace = newvmspace; 3825 PROC_VMSPACE_UNLOCK(p); 3826 if (p == curthread->td_proc) 3827 pmap_activate(curthread); 3828 vmspace_free(oldvmspace); 3829 return (0); 3830 } 3831 3832 /* 3833 * vm_map_lookup: 3834 * 3835 * Finds the VM object, offset, and 3836 * protection for a given virtual address in the 3837 * specified map, assuming a page fault of the 3838 * type specified. 3839 * 3840 * Leaves the map in question locked for read; return 3841 * values are guaranteed until a vm_map_lookup_done 3842 * call is performed. Note that the map argument 3843 * is in/out; the returned map must be used in 3844 * the call to vm_map_lookup_done. 3845 * 3846 * A handle (out_entry) is returned for use in 3847 * vm_map_lookup_done, to make that fast. 3848 * 3849 * If a lookup is requested with "write protection" 3850 * specified, the map may be changed to perform virtual 3851 * copying operations, although the data referenced will 3852 * remain the same. 3853 */ 3854 int 3855 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3856 vm_offset_t vaddr, 3857 vm_prot_t fault_typea, 3858 vm_map_entry_t *out_entry, /* OUT */ 3859 vm_object_t *object, /* OUT */ 3860 vm_pindex_t *pindex, /* OUT */ 3861 vm_prot_t *out_prot, /* OUT */ 3862 boolean_t *wired) /* OUT */ 3863 { 3864 vm_map_entry_t entry; 3865 vm_map_t map = *var_map; 3866 vm_prot_t prot; 3867 vm_prot_t fault_type = fault_typea; 3868 vm_object_t eobject; 3869 vm_size_t size; 3870 struct ucred *cred; 3871 3872 RetryLookup:; 3873 3874 vm_map_lock_read(map); 3875 3876 /* 3877 * Lookup the faulting address. 3878 */ 3879 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3880 vm_map_unlock_read(map); 3881 return (KERN_INVALID_ADDRESS); 3882 } 3883 3884 entry = *out_entry; 3885 3886 /* 3887 * Handle submaps. 3888 */ 3889 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3890 vm_map_t old_map = map; 3891 3892 *var_map = map = entry->object.sub_map; 3893 vm_map_unlock_read(old_map); 3894 goto RetryLookup; 3895 } 3896 3897 /* 3898 * Check whether this task is allowed to have this page. 3899 */ 3900 prot = entry->protection; 3901 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3902 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3903 vm_map_unlock_read(map); 3904 return (KERN_PROTECTION_FAILURE); 3905 } 3906 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3907 (entry->eflags & MAP_ENTRY_COW) && 3908 (fault_type & VM_PROT_WRITE)) { 3909 vm_map_unlock_read(map); 3910 return (KERN_PROTECTION_FAILURE); 3911 } 3912 if ((fault_typea & VM_PROT_COPY) != 0 && 3913 (entry->max_protection & VM_PROT_WRITE) == 0 && 3914 (entry->eflags & MAP_ENTRY_COW) == 0) { 3915 vm_map_unlock_read(map); 3916 return (KERN_PROTECTION_FAILURE); 3917 } 3918 3919 /* 3920 * If this page is not pageable, we have to get it for all possible 3921 * accesses. 3922 */ 3923 *wired = (entry->wired_count != 0); 3924 if (*wired) 3925 fault_type = entry->protection; 3926 size = entry->end - entry->start; 3927 /* 3928 * If the entry was copy-on-write, we either ... 3929 */ 3930 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3931 /* 3932 * If we want to write the page, we may as well handle that 3933 * now since we've got the map locked. 3934 * 3935 * If we don't need to write the page, we just demote the 3936 * permissions allowed. 3937 */ 3938 if ((fault_type & VM_PROT_WRITE) != 0 || 3939 (fault_typea & VM_PROT_COPY) != 0) { 3940 /* 3941 * Make a new object, and place it in the object 3942 * chain. Note that no new references have appeared 3943 * -- one just moved from the map to the new 3944 * object. 3945 */ 3946 if (vm_map_lock_upgrade(map)) 3947 goto RetryLookup; 3948 3949 if (entry->cred == NULL) { 3950 /* 3951 * The debugger owner is charged for 3952 * the memory. 3953 */ 3954 cred = curthread->td_ucred; 3955 crhold(cred); 3956 if (!swap_reserve_by_cred(size, cred)) { 3957 crfree(cred); 3958 vm_map_unlock(map); 3959 return (KERN_RESOURCE_SHORTAGE); 3960 } 3961 entry->cred = cred; 3962 } 3963 vm_object_shadow(&entry->object.vm_object, 3964 &entry->offset, size); 3965 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3966 eobject = entry->object.vm_object; 3967 if (eobject->cred != NULL) { 3968 /* 3969 * The object was not shadowed. 3970 */ 3971 swap_release_by_cred(size, entry->cred); 3972 crfree(entry->cred); 3973 entry->cred = NULL; 3974 } else if (entry->cred != NULL) { 3975 VM_OBJECT_WLOCK(eobject); 3976 eobject->cred = entry->cred; 3977 eobject->charge = size; 3978 VM_OBJECT_WUNLOCK(eobject); 3979 entry->cred = NULL; 3980 } 3981 3982 vm_map_lock_downgrade(map); 3983 } else { 3984 /* 3985 * We're attempting to read a copy-on-write page -- 3986 * don't allow writes. 3987 */ 3988 prot &= ~VM_PROT_WRITE; 3989 } 3990 } 3991 3992 /* 3993 * Create an object if necessary. 3994 */ 3995 if (entry->object.vm_object == NULL && 3996 !map->system_map) { 3997 if (vm_map_lock_upgrade(map)) 3998 goto RetryLookup; 3999 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4000 atop(size)); 4001 entry->offset = 0; 4002 if (entry->cred != NULL) { 4003 VM_OBJECT_WLOCK(entry->object.vm_object); 4004 entry->object.vm_object->cred = entry->cred; 4005 entry->object.vm_object->charge = size; 4006 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4007 entry->cred = NULL; 4008 } 4009 vm_map_lock_downgrade(map); 4010 } 4011 4012 /* 4013 * Return the object/offset from this entry. If the entry was 4014 * copy-on-write or empty, it has been fixed up. 4015 */ 4016 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4017 *object = entry->object.vm_object; 4018 4019 *out_prot = prot; 4020 return (KERN_SUCCESS); 4021 } 4022 4023 /* 4024 * vm_map_lookup_locked: 4025 * 4026 * Lookup the faulting address. A version of vm_map_lookup that returns 4027 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4028 */ 4029 int 4030 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4031 vm_offset_t vaddr, 4032 vm_prot_t fault_typea, 4033 vm_map_entry_t *out_entry, /* OUT */ 4034 vm_object_t *object, /* OUT */ 4035 vm_pindex_t *pindex, /* OUT */ 4036 vm_prot_t *out_prot, /* OUT */ 4037 boolean_t *wired) /* OUT */ 4038 { 4039 vm_map_entry_t entry; 4040 vm_map_t map = *var_map; 4041 vm_prot_t prot; 4042 vm_prot_t fault_type = fault_typea; 4043 4044 /* 4045 * Lookup the faulting address. 4046 */ 4047 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4048 return (KERN_INVALID_ADDRESS); 4049 4050 entry = *out_entry; 4051 4052 /* 4053 * Fail if the entry refers to a submap. 4054 */ 4055 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4056 return (KERN_FAILURE); 4057 4058 /* 4059 * Check whether this task is allowed to have this page. 4060 */ 4061 prot = entry->protection; 4062 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4063 if ((fault_type & prot) != fault_type) 4064 return (KERN_PROTECTION_FAILURE); 4065 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 4066 (entry->eflags & MAP_ENTRY_COW) && 4067 (fault_type & VM_PROT_WRITE)) 4068 return (KERN_PROTECTION_FAILURE); 4069 4070 /* 4071 * If this page is not pageable, we have to get it for all possible 4072 * accesses. 4073 */ 4074 *wired = (entry->wired_count != 0); 4075 if (*wired) 4076 fault_type = entry->protection; 4077 4078 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4079 /* 4080 * Fail if the entry was copy-on-write for a write fault. 4081 */ 4082 if (fault_type & VM_PROT_WRITE) 4083 return (KERN_FAILURE); 4084 /* 4085 * We're attempting to read a copy-on-write page -- 4086 * don't allow writes. 4087 */ 4088 prot &= ~VM_PROT_WRITE; 4089 } 4090 4091 /* 4092 * Fail if an object should be created. 4093 */ 4094 if (entry->object.vm_object == NULL && !map->system_map) 4095 return (KERN_FAILURE); 4096 4097 /* 4098 * Return the object/offset from this entry. If the entry was 4099 * copy-on-write or empty, it has been fixed up. 4100 */ 4101 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4102 *object = entry->object.vm_object; 4103 4104 *out_prot = prot; 4105 return (KERN_SUCCESS); 4106 } 4107 4108 /* 4109 * vm_map_lookup_done: 4110 * 4111 * Releases locks acquired by a vm_map_lookup 4112 * (according to the handle returned by that lookup). 4113 */ 4114 void 4115 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4116 { 4117 /* 4118 * Unlock the main-level map 4119 */ 4120 vm_map_unlock_read(map); 4121 } 4122 4123 #include "opt_ddb.h" 4124 #ifdef DDB 4125 #include <sys/kernel.h> 4126 4127 #include <ddb/ddb.h> 4128 4129 static void 4130 vm_map_print(vm_map_t map) 4131 { 4132 vm_map_entry_t entry; 4133 4134 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4135 (void *)map, 4136 (void *)map->pmap, map->nentries, map->timestamp); 4137 4138 db_indent += 2; 4139 for (entry = map->header.next; entry != &map->header; 4140 entry = entry->next) { 4141 db_iprintf("map entry %p: start=%p, end=%p\n", 4142 (void *)entry, (void *)entry->start, (void *)entry->end); 4143 { 4144 static char *inheritance_name[4] = 4145 {"share", "copy", "none", "donate_copy"}; 4146 4147 db_iprintf(" prot=%x/%x/%s", 4148 entry->protection, 4149 entry->max_protection, 4150 inheritance_name[(int)(unsigned char)entry->inheritance]); 4151 if (entry->wired_count != 0) 4152 db_printf(", wired"); 4153 } 4154 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4155 db_printf(", share=%p, offset=0x%jx\n", 4156 (void *)entry->object.sub_map, 4157 (uintmax_t)entry->offset); 4158 if ((entry->prev == &map->header) || 4159 (entry->prev->object.sub_map != 4160 entry->object.sub_map)) { 4161 db_indent += 2; 4162 vm_map_print((vm_map_t)entry->object.sub_map); 4163 db_indent -= 2; 4164 } 4165 } else { 4166 if (entry->cred != NULL) 4167 db_printf(", ruid %d", entry->cred->cr_ruid); 4168 db_printf(", object=%p, offset=0x%jx", 4169 (void *)entry->object.vm_object, 4170 (uintmax_t)entry->offset); 4171 if (entry->object.vm_object && entry->object.vm_object->cred) 4172 db_printf(", obj ruid %d charge %jx", 4173 entry->object.vm_object->cred->cr_ruid, 4174 (uintmax_t)entry->object.vm_object->charge); 4175 if (entry->eflags & MAP_ENTRY_COW) 4176 db_printf(", copy (%s)", 4177 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4178 db_printf("\n"); 4179 4180 if ((entry->prev == &map->header) || 4181 (entry->prev->object.vm_object != 4182 entry->object.vm_object)) { 4183 db_indent += 2; 4184 vm_object_print((db_expr_t)(intptr_t) 4185 entry->object.vm_object, 4186 0, 0, (char *)0); 4187 db_indent -= 2; 4188 } 4189 } 4190 } 4191 db_indent -= 2; 4192 } 4193 4194 DB_SHOW_COMMAND(map, map) 4195 { 4196 4197 if (!have_addr) { 4198 db_printf("usage: show map <addr>\n"); 4199 return; 4200 } 4201 vm_map_print((vm_map_t)addr); 4202 } 4203 4204 DB_SHOW_COMMAND(procvm, procvm) 4205 { 4206 struct proc *p; 4207 4208 if (have_addr) { 4209 p = (struct proc *) addr; 4210 } else { 4211 p = curproc; 4212 } 4213 4214 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4215 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4216 (void *)vmspace_pmap(p->p_vmspace)); 4217 4218 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4219 } 4220 4221 #endif /* DDB */ 4222