xref: /freebsd/sys/vm/vm_map.c (revision ee41f1b1cf5e3d4f586cb85b46123b416275862c)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Virtual memory mapping module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/proc.h>
74 #include <sys/vmmeter.h>
75 #include <sys/mman.h>
76 #include <sys/vnode.h>
77 #include <sys/resourcevar.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_pager.h>
87 #include <vm/vm_kern.h>
88 #include <vm/vm_extern.h>
89 #include <vm/vm_zone.h>
90 #include <vm/swap_pager.h>
91 
92 /*
93  *	Virtual memory maps provide for the mapping, protection,
94  *	and sharing of virtual memory objects.  In addition,
95  *	this module provides for an efficient virtual copy of
96  *	memory from one map to another.
97  *
98  *	Synchronization is required prior to most operations.
99  *
100  *	Maps consist of an ordered doubly-linked list of simple
101  *	entries; a single hint is used to speed up lookups.
102  *
103  *	Since portions of maps are specified by start/end addresses,
104  *	which may not align with existing map entries, all
105  *	routines merely "clip" entries to these start/end values.
106  *	[That is, an entry is split into two, bordering at a
107  *	start or end value.]  Note that these clippings may not
108  *	always be necessary (as the two resulting entries are then
109  *	not changed); however, the clipping is done for convenience.
110  *
111  *	As mentioned above, virtual copy operations are performed
112  *	by copying VM object references from one map to
113  *	another, and then marking both regions as copy-on-write.
114  */
115 
116 /*
117  *	vm_map_startup:
118  *
119  *	Initialize the vm_map module.  Must be called before
120  *	any other vm_map routines.
121  *
122  *	Map and entry structures are allocated from the general
123  *	purpose memory pool with some exceptions:
124  *
125  *	- The kernel map and kmem submap are allocated statically.
126  *	- Kernel map entries are allocated out of a static pool.
127  *
128  *	These restrictions are necessary since malloc() uses the
129  *	maps and requires map entries.
130  */
131 
132 static struct vm_zone kmapentzone_store, mapentzone_store, mapzone_store;
133 static vm_zone_t mapentzone, kmapentzone, mapzone, vmspace_zone;
134 static struct vm_object kmapentobj, mapentobj, mapobj;
135 
136 static struct vm_map_entry map_entry_init[MAX_MAPENT];
137 static struct vm_map_entry kmap_entry_init[MAX_KMAPENT];
138 static struct vm_map map_init[MAX_KMAP];
139 
140 static void _vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t));
141 static void _vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t));
142 static vm_map_entry_t vm_map_entry_create __P((vm_map_t));
143 static void vm_map_entry_delete __P((vm_map_t, vm_map_entry_t));
144 static void vm_map_entry_dispose __P((vm_map_t, vm_map_entry_t));
145 static void vm_map_entry_unwire __P((vm_map_t, vm_map_entry_t));
146 static void vm_map_copy_entry __P((vm_map_t, vm_map_t, vm_map_entry_t,
147 		vm_map_entry_t));
148 static void vm_map_split __P((vm_map_entry_t));
149 
150 void
151 vm_map_startup()
152 {
153 	mapzone = &mapzone_store;
154 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
155 		map_init, MAX_KMAP);
156 	kmapentzone = &kmapentzone_store;
157 	zbootinit(kmapentzone, "KMAP ENTRY", sizeof (struct vm_map_entry),
158 		kmap_entry_init, MAX_KMAPENT);
159 	mapentzone = &mapentzone_store;
160 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
161 		map_entry_init, MAX_MAPENT);
162 }
163 
164 /*
165  * Allocate a vmspace structure, including a vm_map and pmap,
166  * and initialize those structures.  The refcnt is set to 1.
167  * The remaining fields must be initialized by the caller.
168  */
169 struct vmspace *
170 vmspace_alloc(min, max)
171 	vm_offset_t min, max;
172 {
173 	struct vmspace *vm;
174 
175 	vm = zalloc(vmspace_zone);
176 	vm_map_init(&vm->vm_map, min, max);
177 	pmap_pinit(vmspace_pmap(vm));
178 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
179 	vm->vm_refcnt = 1;
180 	vm->vm_shm = NULL;
181 	return (vm);
182 }
183 
184 void
185 vm_init2(void) {
186 	zinitna(kmapentzone, &kmapentobj,
187 		NULL, 0, cnt.v_page_count / 4, ZONE_INTERRUPT, 1);
188 	zinitna(mapentzone, &mapentobj,
189 		NULL, 0, 0, 0, 1);
190 	zinitna(mapzone, &mapobj,
191 		NULL, 0, 0, 0, 1);
192 	vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
193 	pmap_init2();
194 	vm_object_init2();
195 }
196 
197 void
198 vmspace_free(vm)
199 	struct vmspace *vm;
200 {
201 
202 	if (vm->vm_refcnt == 0)
203 		panic("vmspace_free: attempt to free already freed vmspace");
204 
205 	if (--vm->vm_refcnt == 0) {
206 
207 		/*
208 		 * Lock the map, to wait out all other references to it.
209 		 * Delete all of the mappings and pages they hold, then call
210 		 * the pmap module to reclaim anything left.
211 		 */
212 		vm_map_lock(&vm->vm_map);
213 		(void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
214 		    vm->vm_map.max_offset);
215 		vm_map_unlock(&vm->vm_map);
216 
217 		pmap_release(vmspace_pmap(vm));
218 		vm_map_destroy(&vm->vm_map);
219 		zfree(vmspace_zone, vm);
220 	}
221 }
222 
223 /*
224  *	vm_map_create:
225  *
226  *	Creates and returns a new empty VM map with
227  *	the given physical map structure, and having
228  *	the given lower and upper address bounds.
229  */
230 vm_map_t
231 vm_map_create(pmap, min, max)
232 	pmap_t pmap;
233 	vm_offset_t min, max;
234 {
235 	vm_map_t result;
236 
237 	result = zalloc(mapzone);
238 	vm_map_init(result, min, max);
239 	result->pmap = pmap;
240 	return (result);
241 }
242 
243 /*
244  * Initialize an existing vm_map structure
245  * such as that in the vmspace structure.
246  * The pmap is set elsewhere.
247  */
248 void
249 vm_map_init(map, min, max)
250 	struct vm_map *map;
251 	vm_offset_t min, max;
252 {
253 	map->header.next = map->header.prev = &map->header;
254 	map->nentries = 0;
255 	map->size = 0;
256 	map->system_map = 0;
257 	map->min_offset = min;
258 	map->max_offset = max;
259 	map->first_free = &map->header;
260 	map->hint = &map->header;
261 	map->timestamp = 0;
262 	lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
263 }
264 
265 void
266 vm_map_destroy(map)
267 	struct vm_map *map;
268 {
269 	lockdestroy(&map->lock);
270 }
271 
272 /*
273  *	vm_map_entry_dispose:	[ internal use only ]
274  *
275  *	Inverse of vm_map_entry_create.
276  */
277 static void
278 vm_map_entry_dispose(map, entry)
279 	vm_map_t map;
280 	vm_map_entry_t entry;
281 {
282 	zfree((map->system_map || !mapentzone) ? kmapentzone : mapentzone, entry);
283 }
284 
285 /*
286  *	vm_map_entry_create:	[ internal use only ]
287  *
288  *	Allocates a VM map entry for insertion.
289  *	No entry fields are filled in.  This routine is
290  */
291 static vm_map_entry_t
292 vm_map_entry_create(map)
293 	vm_map_t map;
294 {
295 	vm_map_entry_t new_entry;
296 
297 	new_entry = zalloc((map->system_map || !mapentzone) ?
298 		kmapentzone : mapentzone);
299 	if (new_entry == NULL)
300 	    panic("vm_map_entry_create: kernel resources exhausted");
301 	return(new_entry);
302 }
303 
304 /*
305  *	vm_map_entry_{un,}link:
306  *
307  *	Insert/remove entries from maps.
308  */
309 static __inline void
310 vm_map_entry_link(vm_map_t map,
311 		  vm_map_entry_t after_where,
312 		  vm_map_entry_t entry)
313 {
314 	map->nentries++;
315 	entry->prev = after_where;
316 	entry->next = after_where->next;
317 	entry->next->prev = entry;
318 	after_where->next = entry;
319 }
320 
321 static __inline void
322 vm_map_entry_unlink(vm_map_t map,
323 		    vm_map_entry_t entry)
324 {
325 	vm_map_entry_t prev = entry->prev;
326 	vm_map_entry_t next = entry->next;
327 
328 	next->prev = prev;
329 	prev->next = next;
330 	map->nentries--;
331 }
332 
333 /*
334  *	SAVE_HINT:
335  *
336  *	Saves the specified entry as the hint for
337  *	future lookups.
338  */
339 #define	SAVE_HINT(map,value) \
340 		(map)->hint = (value);
341 
342 /*
343  *	vm_map_lookup_entry:	[ internal use only ]
344  *
345  *	Finds the map entry containing (or
346  *	immediately preceding) the specified address
347  *	in the given map; the entry is returned
348  *	in the "entry" parameter.  The boolean
349  *	result indicates whether the address is
350  *	actually contained in the map.
351  */
352 boolean_t
353 vm_map_lookup_entry(map, address, entry)
354 	vm_map_t map;
355 	vm_offset_t address;
356 	vm_map_entry_t *entry;	/* OUT */
357 {
358 	vm_map_entry_t cur;
359 	vm_map_entry_t last;
360 
361 	/*
362 	 * Start looking either from the head of the list, or from the hint.
363 	 */
364 
365 	cur = map->hint;
366 
367 	if (cur == &map->header)
368 		cur = cur->next;
369 
370 	if (address >= cur->start) {
371 		/*
372 		 * Go from hint to end of list.
373 		 *
374 		 * But first, make a quick check to see if we are already looking
375 		 * at the entry we want (which is usually the case). Note also
376 		 * that we don't need to save the hint here... it is the same
377 		 * hint (unless we are at the header, in which case the hint
378 		 * didn't buy us anything anyway).
379 		 */
380 		last = &map->header;
381 		if ((cur != last) && (cur->end > address)) {
382 			*entry = cur;
383 			return (TRUE);
384 		}
385 	} else {
386 		/*
387 		 * Go from start to hint, *inclusively*
388 		 */
389 		last = cur->next;
390 		cur = map->header.next;
391 	}
392 
393 	/*
394 	 * Search linearly
395 	 */
396 
397 	while (cur != last) {
398 		if (cur->end > address) {
399 			if (address >= cur->start) {
400 				/*
401 				 * Save this lookup for future hints, and
402 				 * return
403 				 */
404 
405 				*entry = cur;
406 				SAVE_HINT(map, cur);
407 				return (TRUE);
408 			}
409 			break;
410 		}
411 		cur = cur->next;
412 	}
413 	*entry = cur->prev;
414 	SAVE_HINT(map, *entry);
415 	return (FALSE);
416 }
417 
418 /*
419  *	vm_map_insert:
420  *
421  *	Inserts the given whole VM object into the target
422  *	map at the specified address range.  The object's
423  *	size should match that of the address range.
424  *
425  *	Requires that the map be locked, and leaves it so.
426  *
427  *	If object is non-NULL, ref count must be bumped by caller
428  *	prior to making call to account for the new entry.
429  */
430 int
431 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
432 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
433 	      int cow)
434 {
435 	vm_map_entry_t new_entry;
436 	vm_map_entry_t prev_entry;
437 	vm_map_entry_t temp_entry;
438 	vm_eflags_t protoeflags;
439 
440 	/*
441 	 * Check that the start and end points are not bogus.
442 	 */
443 
444 	if ((start < map->min_offset) || (end > map->max_offset) ||
445 	    (start >= end))
446 		return (KERN_INVALID_ADDRESS);
447 
448 	/*
449 	 * Find the entry prior to the proposed starting address; if it's part
450 	 * of an existing entry, this range is bogus.
451 	 */
452 
453 	if (vm_map_lookup_entry(map, start, &temp_entry))
454 		return (KERN_NO_SPACE);
455 
456 	prev_entry = temp_entry;
457 
458 	/*
459 	 * Assert that the next entry doesn't overlap the end point.
460 	 */
461 
462 	if ((prev_entry->next != &map->header) &&
463 	    (prev_entry->next->start < end))
464 		return (KERN_NO_SPACE);
465 
466 	protoeflags = 0;
467 
468 	if (cow & MAP_COPY_ON_WRITE)
469 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
470 
471 	if (cow & MAP_NOFAULT) {
472 		protoeflags |= MAP_ENTRY_NOFAULT;
473 
474 		KASSERT(object == NULL,
475 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
476 	}
477 	if (cow & MAP_DISABLE_SYNCER)
478 		protoeflags |= MAP_ENTRY_NOSYNC;
479 	if (cow & MAP_DISABLE_COREDUMP)
480 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
481 
482 	if (object) {
483 		/*
484 		 * When object is non-NULL, it could be shared with another
485 		 * process.  We have to set or clear OBJ_ONEMAPPING
486 		 * appropriately.
487 		 */
488 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
489 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
490 		}
491 	}
492 	else if ((prev_entry != &map->header) &&
493 		 (prev_entry->eflags == protoeflags) &&
494 		 (prev_entry->end == start) &&
495 		 (prev_entry->wired_count == 0) &&
496 		 ((prev_entry->object.vm_object == NULL) ||
497 		  vm_object_coalesce(prev_entry->object.vm_object,
498 				     OFF_TO_IDX(prev_entry->offset),
499 				     (vm_size_t)(prev_entry->end - prev_entry->start),
500 				     (vm_size_t)(end - prev_entry->end)))) {
501 		/*
502 		 * We were able to extend the object.  Determine if we
503 		 * can extend the previous map entry to include the
504 		 * new range as well.
505 		 */
506 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
507 		    (prev_entry->protection == prot) &&
508 		    (prev_entry->max_protection == max)) {
509 			map->size += (end - prev_entry->end);
510 			prev_entry->end = end;
511 			vm_map_simplify_entry(map, prev_entry);
512 			return (KERN_SUCCESS);
513 		}
514 
515 		/*
516 		 * If we can extend the object but cannot extend the
517 		 * map entry, we have to create a new map entry.  We
518 		 * must bump the ref count on the extended object to
519 		 * account for it.  object may be NULL.
520 		 */
521 		object = prev_entry->object.vm_object;
522 		offset = prev_entry->offset +
523 			(prev_entry->end - prev_entry->start);
524 		vm_object_reference(object);
525 	}
526 
527 	/*
528 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
529 	 * in things like the buffer map where we manage kva but do not manage
530 	 * backing objects.
531 	 */
532 
533 	/*
534 	 * Create a new entry
535 	 */
536 
537 	new_entry = vm_map_entry_create(map);
538 	new_entry->start = start;
539 	new_entry->end = end;
540 
541 	new_entry->eflags = protoeflags;
542 	new_entry->object.vm_object = object;
543 	new_entry->offset = offset;
544 	new_entry->avail_ssize = 0;
545 
546 	new_entry->inheritance = VM_INHERIT_DEFAULT;
547 	new_entry->protection = prot;
548 	new_entry->max_protection = max;
549 	new_entry->wired_count = 0;
550 
551 	/*
552 	 * Insert the new entry into the list
553 	 */
554 
555 	vm_map_entry_link(map, prev_entry, new_entry);
556 	map->size += new_entry->end - new_entry->start;
557 
558 	/*
559 	 * Update the free space hint
560 	 */
561 	if ((map->first_free == prev_entry) &&
562 	    (prev_entry->end >= new_entry->start)) {
563 		map->first_free = new_entry;
564 	}
565 
566 	/*
567 	 * It may be possible to simplify the entry
568 	 */
569 	vm_map_simplify_entry(map, new_entry);
570 
571 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
572 		pmap_object_init_pt(map->pmap, start,
573 				    object, OFF_TO_IDX(offset), end - start,
574 				    cow & MAP_PREFAULT_PARTIAL);
575 	}
576 
577 	return (KERN_SUCCESS);
578 }
579 
580 /*
581  * Find sufficient space for `length' bytes in the given map, starting at
582  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
583  */
584 int
585 vm_map_findspace(map, start, length, addr)
586 	vm_map_t map;
587 	vm_offset_t start;
588 	vm_size_t length;
589 	vm_offset_t *addr;
590 {
591 	vm_map_entry_t entry, next;
592 	vm_offset_t end;
593 
594 	if (start < map->min_offset)
595 		start = map->min_offset;
596 	if (start > map->max_offset)
597 		return (1);
598 
599 	/*
600 	 * Look for the first possible address; if there's already something
601 	 * at this address, we have to start after it.
602 	 */
603 	if (start == map->min_offset) {
604 		if ((entry = map->first_free) != &map->header)
605 			start = entry->end;
606 	} else {
607 		vm_map_entry_t tmp;
608 
609 		if (vm_map_lookup_entry(map, start, &tmp))
610 			start = tmp->end;
611 		entry = tmp;
612 	}
613 
614 	/*
615 	 * Look through the rest of the map, trying to fit a new region in the
616 	 * gap between existing regions, or after the very last region.
617 	 */
618 	for (;; start = (entry = next)->end) {
619 		/*
620 		 * Find the end of the proposed new region.  Be sure we didn't
621 		 * go beyond the end of the map, or wrap around the address;
622 		 * if so, we lose.  Otherwise, if this is the last entry, or
623 		 * if the proposed new region fits before the next entry, we
624 		 * win.
625 		 */
626 		end = start + length;
627 		if (end > map->max_offset || end < start)
628 			return (1);
629 		next = entry->next;
630 		if (next == &map->header || next->start >= end)
631 			break;
632 	}
633 	SAVE_HINT(map, entry);
634 	*addr = start;
635 	if (map == kernel_map) {
636 		vm_offset_t ksize;
637 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
638 			pmap_growkernel(ksize);
639 		}
640 	}
641 	return (0);
642 }
643 
644 /*
645  *	vm_map_find finds an unallocated region in the target address
646  *	map with the given length.  The search is defined to be
647  *	first-fit from the specified address; the region found is
648  *	returned in the same parameter.
649  *
650  *	If object is non-NULL, ref count must be bumped by caller
651  *	prior to making call to account for the new entry.
652  */
653 int
654 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
655 	    vm_offset_t *addr,	/* IN/OUT */
656 	    vm_size_t length, boolean_t find_space, vm_prot_t prot,
657 	    vm_prot_t max, int cow)
658 {
659 	vm_offset_t start;
660 	int result, s = 0;
661 
662 	start = *addr;
663 
664 	if (map == kmem_map || map == mb_map)
665 		s = splvm();
666 
667 	vm_map_lock(map);
668 	if (find_space) {
669 		if (vm_map_findspace(map, start, length, addr)) {
670 			vm_map_unlock(map);
671 			if (map == kmem_map || map == mb_map)
672 				splx(s);
673 			return (KERN_NO_SPACE);
674 		}
675 		start = *addr;
676 	}
677 	result = vm_map_insert(map, object, offset,
678 		start, start + length, prot, max, cow);
679 	vm_map_unlock(map);
680 
681 	if (map == kmem_map || map == mb_map)
682 		splx(s);
683 
684 	return (result);
685 }
686 
687 /*
688  *	vm_map_simplify_entry:
689  *
690  *	Simplify the given map entry by merging with either neighbor.  This
691  *	routine also has the ability to merge with both neighbors.
692  *
693  *	The map must be locked.
694  *
695  *	This routine guarentees that the passed entry remains valid (though
696  *	possibly extended).  When merging, this routine may delete one or
697  *	both neighbors.
698  */
699 void
700 vm_map_simplify_entry(map, entry)
701 	vm_map_t map;
702 	vm_map_entry_t entry;
703 {
704 	vm_map_entry_t next, prev;
705 	vm_size_t prevsize, esize;
706 
707 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
708 		return;
709 
710 	prev = entry->prev;
711 	if (prev != &map->header) {
712 		prevsize = prev->end - prev->start;
713 		if ( (prev->end == entry->start) &&
714 		     (prev->object.vm_object == entry->object.vm_object) &&
715 		     (!prev->object.vm_object ||
716 			(prev->offset + prevsize == entry->offset)) &&
717 		     (prev->eflags == entry->eflags) &&
718 		     (prev->protection == entry->protection) &&
719 		     (prev->max_protection == entry->max_protection) &&
720 		     (prev->inheritance == entry->inheritance) &&
721 		     (prev->wired_count == entry->wired_count)) {
722 			if (map->first_free == prev)
723 				map->first_free = entry;
724 			if (map->hint == prev)
725 				map->hint = entry;
726 			vm_map_entry_unlink(map, prev);
727 			entry->start = prev->start;
728 			entry->offset = prev->offset;
729 			if (prev->object.vm_object)
730 				vm_object_deallocate(prev->object.vm_object);
731 			vm_map_entry_dispose(map, prev);
732 		}
733 	}
734 
735 	next = entry->next;
736 	if (next != &map->header) {
737 		esize = entry->end - entry->start;
738 		if ((entry->end == next->start) &&
739 		    (next->object.vm_object == entry->object.vm_object) &&
740 		     (!entry->object.vm_object ||
741 			(entry->offset + esize == next->offset)) &&
742 		    (next->eflags == entry->eflags) &&
743 		    (next->protection == entry->protection) &&
744 		    (next->max_protection == entry->max_protection) &&
745 		    (next->inheritance == entry->inheritance) &&
746 		    (next->wired_count == entry->wired_count)) {
747 			if (map->first_free == next)
748 				map->first_free = entry;
749 			if (map->hint == next)
750 				map->hint = entry;
751 			vm_map_entry_unlink(map, next);
752 			entry->end = next->end;
753 			if (next->object.vm_object)
754 				vm_object_deallocate(next->object.vm_object);
755 			vm_map_entry_dispose(map, next);
756 	        }
757 	}
758 }
759 /*
760  *	vm_map_clip_start:	[ internal use only ]
761  *
762  *	Asserts that the given entry begins at or after
763  *	the specified address; if necessary,
764  *	it splits the entry into two.
765  */
766 #define vm_map_clip_start(map, entry, startaddr) \
767 { \
768 	if (startaddr > entry->start) \
769 		_vm_map_clip_start(map, entry, startaddr); \
770 }
771 
772 /*
773  *	This routine is called only when it is known that
774  *	the entry must be split.
775  */
776 static void
777 _vm_map_clip_start(map, entry, start)
778 	vm_map_t map;
779 	vm_map_entry_t entry;
780 	vm_offset_t start;
781 {
782 	vm_map_entry_t new_entry;
783 
784 	/*
785 	 * Split off the front portion -- note that we must insert the new
786 	 * entry BEFORE this one, so that this entry has the specified
787 	 * starting address.
788 	 */
789 
790 	vm_map_simplify_entry(map, entry);
791 
792 	/*
793 	 * If there is no object backing this entry, we might as well create
794 	 * one now.  If we defer it, an object can get created after the map
795 	 * is clipped, and individual objects will be created for the split-up
796 	 * map.  This is a bit of a hack, but is also about the best place to
797 	 * put this improvement.
798 	 */
799 
800 	if (entry->object.vm_object == NULL && !map->system_map) {
801 		vm_object_t object;
802 		object = vm_object_allocate(OBJT_DEFAULT,
803 				atop(entry->end - entry->start));
804 		entry->object.vm_object = object;
805 		entry->offset = 0;
806 	}
807 
808 	new_entry = vm_map_entry_create(map);
809 	*new_entry = *entry;
810 
811 	new_entry->end = start;
812 	entry->offset += (start - entry->start);
813 	entry->start = start;
814 
815 	vm_map_entry_link(map, entry->prev, new_entry);
816 
817 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
818 		vm_object_reference(new_entry->object.vm_object);
819 	}
820 }
821 
822 /*
823  *	vm_map_clip_end:	[ internal use only ]
824  *
825  *	Asserts that the given entry ends at or before
826  *	the specified address; if necessary,
827  *	it splits the entry into two.
828  */
829 
830 #define vm_map_clip_end(map, entry, endaddr) \
831 { \
832 	if (endaddr < entry->end) \
833 		_vm_map_clip_end(map, entry, endaddr); \
834 }
835 
836 /*
837  *	This routine is called only when it is known that
838  *	the entry must be split.
839  */
840 static void
841 _vm_map_clip_end(map, entry, end)
842 	vm_map_t map;
843 	vm_map_entry_t entry;
844 	vm_offset_t end;
845 {
846 	vm_map_entry_t new_entry;
847 
848 	/*
849 	 * If there is no object backing this entry, we might as well create
850 	 * one now.  If we defer it, an object can get created after the map
851 	 * is clipped, and individual objects will be created for the split-up
852 	 * map.  This is a bit of a hack, but is also about the best place to
853 	 * put this improvement.
854 	 */
855 
856 	if (entry->object.vm_object == NULL && !map->system_map) {
857 		vm_object_t object;
858 		object = vm_object_allocate(OBJT_DEFAULT,
859 				atop(entry->end - entry->start));
860 		entry->object.vm_object = object;
861 		entry->offset = 0;
862 	}
863 
864 	/*
865 	 * Create a new entry and insert it AFTER the specified entry
866 	 */
867 
868 	new_entry = vm_map_entry_create(map);
869 	*new_entry = *entry;
870 
871 	new_entry->start = entry->end = end;
872 	new_entry->offset += (end - entry->start);
873 
874 	vm_map_entry_link(map, entry, new_entry);
875 
876 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
877 		vm_object_reference(new_entry->object.vm_object);
878 	}
879 }
880 
881 /*
882  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
883  *
884  *	Asserts that the starting and ending region
885  *	addresses fall within the valid range of the map.
886  */
887 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
888 		{					\
889 		if (start < vm_map_min(map))		\
890 			start = vm_map_min(map);	\
891 		if (end > vm_map_max(map))		\
892 			end = vm_map_max(map);		\
893 		if (start > end)			\
894 			start = end;			\
895 		}
896 
897 /*
898  *	vm_map_submap:		[ kernel use only ]
899  *
900  *	Mark the given range as handled by a subordinate map.
901  *
902  *	This range must have been created with vm_map_find,
903  *	and no other operations may have been performed on this
904  *	range prior to calling vm_map_submap.
905  *
906  *	Only a limited number of operations can be performed
907  *	within this rage after calling vm_map_submap:
908  *		vm_fault
909  *	[Don't try vm_map_copy!]
910  *
911  *	To remove a submapping, one must first remove the
912  *	range from the superior map, and then destroy the
913  *	submap (if desired).  [Better yet, don't try it.]
914  */
915 int
916 vm_map_submap(map, start, end, submap)
917 	vm_map_t map;
918 	vm_offset_t start;
919 	vm_offset_t end;
920 	vm_map_t submap;
921 {
922 	vm_map_entry_t entry;
923 	int result = KERN_INVALID_ARGUMENT;
924 
925 	vm_map_lock(map);
926 
927 	VM_MAP_RANGE_CHECK(map, start, end);
928 
929 	if (vm_map_lookup_entry(map, start, &entry)) {
930 		vm_map_clip_start(map, entry, start);
931 	} else
932 		entry = entry->next;
933 
934 	vm_map_clip_end(map, entry, end);
935 
936 	if ((entry->start == start) && (entry->end == end) &&
937 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
938 	    (entry->object.vm_object == NULL)) {
939 		entry->object.sub_map = submap;
940 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
941 		result = KERN_SUCCESS;
942 	}
943 	vm_map_unlock(map);
944 
945 	return (result);
946 }
947 
948 /*
949  *	vm_map_protect:
950  *
951  *	Sets the protection of the specified address
952  *	region in the target map.  If "set_max" is
953  *	specified, the maximum protection is to be set;
954  *	otherwise, only the current protection is affected.
955  */
956 int
957 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
958 	       vm_prot_t new_prot, boolean_t set_max)
959 {
960 	vm_map_entry_t current;
961 	vm_map_entry_t entry;
962 
963 	vm_map_lock(map);
964 
965 	VM_MAP_RANGE_CHECK(map, start, end);
966 
967 	if (vm_map_lookup_entry(map, start, &entry)) {
968 		vm_map_clip_start(map, entry, start);
969 	} else {
970 		entry = entry->next;
971 	}
972 
973 	/*
974 	 * Make a first pass to check for protection violations.
975 	 */
976 
977 	current = entry;
978 	while ((current != &map->header) && (current->start < end)) {
979 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
980 			vm_map_unlock(map);
981 			return (KERN_INVALID_ARGUMENT);
982 		}
983 		if ((new_prot & current->max_protection) != new_prot) {
984 			vm_map_unlock(map);
985 			return (KERN_PROTECTION_FAILURE);
986 		}
987 		current = current->next;
988 	}
989 
990 	/*
991 	 * Go back and fix up protections. [Note that clipping is not
992 	 * necessary the second time.]
993 	 */
994 
995 	current = entry;
996 
997 	while ((current != &map->header) && (current->start < end)) {
998 		vm_prot_t old_prot;
999 
1000 		vm_map_clip_end(map, current, end);
1001 
1002 		old_prot = current->protection;
1003 		if (set_max)
1004 			current->protection =
1005 			    (current->max_protection = new_prot) &
1006 			    old_prot;
1007 		else
1008 			current->protection = new_prot;
1009 
1010 		/*
1011 		 * Update physical map if necessary. Worry about copy-on-write
1012 		 * here -- CHECK THIS XXX
1013 		 */
1014 
1015 		if (current->protection != old_prot) {
1016 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1017 							VM_PROT_ALL)
1018 
1019 			pmap_protect(map->pmap, current->start,
1020 			    current->end,
1021 			    current->protection & MASK(current));
1022 #undef	MASK
1023 		}
1024 
1025 		vm_map_simplify_entry(map, current);
1026 
1027 		current = current->next;
1028 	}
1029 
1030 	vm_map_unlock(map);
1031 	return (KERN_SUCCESS);
1032 }
1033 
1034 /*
1035  *	vm_map_madvise:
1036  *
1037  * 	This routine traverses a processes map handling the madvise
1038  *	system call.  Advisories are classified as either those effecting
1039  *	the vm_map_entry structure, or those effecting the underlying
1040  *	objects.
1041  */
1042 
1043 int
1044 vm_map_madvise(map, start, end, behav)
1045 	vm_map_t map;
1046 	vm_offset_t start, end;
1047 	int behav;
1048 {
1049 	vm_map_entry_t current, entry;
1050 	int modify_map = 0;
1051 
1052 	/*
1053 	 * Some madvise calls directly modify the vm_map_entry, in which case
1054 	 * we need to use an exclusive lock on the map and we need to perform
1055 	 * various clipping operations.  Otherwise we only need a read-lock
1056 	 * on the map.
1057 	 */
1058 
1059 	switch(behav) {
1060 	case MADV_NORMAL:
1061 	case MADV_SEQUENTIAL:
1062 	case MADV_RANDOM:
1063 	case MADV_NOSYNC:
1064 	case MADV_AUTOSYNC:
1065 	case MADV_NOCORE:
1066 	case MADV_CORE:
1067 		modify_map = 1;
1068 		vm_map_lock(map);
1069 		break;
1070 	case MADV_WILLNEED:
1071 	case MADV_DONTNEED:
1072 	case MADV_FREE:
1073 		vm_map_lock_read(map);
1074 		break;
1075 	default:
1076 		return (KERN_INVALID_ARGUMENT);
1077 	}
1078 
1079 	/*
1080 	 * Locate starting entry and clip if necessary.
1081 	 */
1082 
1083 	VM_MAP_RANGE_CHECK(map, start, end);
1084 
1085 	if (vm_map_lookup_entry(map, start, &entry)) {
1086 		if (modify_map)
1087 			vm_map_clip_start(map, entry, start);
1088 	} else {
1089 		entry = entry->next;
1090 	}
1091 
1092 	if (modify_map) {
1093 		/*
1094 		 * madvise behaviors that are implemented in the vm_map_entry.
1095 		 *
1096 		 * We clip the vm_map_entry so that behavioral changes are
1097 		 * limited to the specified address range.
1098 		 */
1099 		for (current = entry;
1100 		     (current != &map->header) && (current->start < end);
1101 		     current = current->next
1102 		) {
1103 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1104 				continue;
1105 
1106 			vm_map_clip_end(map, current, end);
1107 
1108 			switch (behav) {
1109 			case MADV_NORMAL:
1110 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1111 				break;
1112 			case MADV_SEQUENTIAL:
1113 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1114 				break;
1115 			case MADV_RANDOM:
1116 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1117 				break;
1118 			case MADV_NOSYNC:
1119 				current->eflags |= MAP_ENTRY_NOSYNC;
1120 				break;
1121 			case MADV_AUTOSYNC:
1122 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1123 				break;
1124 			case MADV_NOCORE:
1125 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1126 				break;
1127 			case MADV_CORE:
1128 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1129 				break;
1130 			default:
1131 				break;
1132 			}
1133 			vm_map_simplify_entry(map, current);
1134 		}
1135 		vm_map_unlock(map);
1136 	} else {
1137 		vm_pindex_t pindex;
1138 		int count;
1139 
1140 		/*
1141 		 * madvise behaviors that are implemented in the underlying
1142 		 * vm_object.
1143 		 *
1144 		 * Since we don't clip the vm_map_entry, we have to clip
1145 		 * the vm_object pindex and count.
1146 		 */
1147 		for (current = entry;
1148 		     (current != &map->header) && (current->start < end);
1149 		     current = current->next
1150 		) {
1151 			vm_offset_t useStart;
1152 
1153 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1154 				continue;
1155 
1156 			pindex = OFF_TO_IDX(current->offset);
1157 			count = atop(current->end - current->start);
1158 			useStart = current->start;
1159 
1160 			if (current->start < start) {
1161 				pindex += atop(start - current->start);
1162 				count -= atop(start - current->start);
1163 				useStart = start;
1164 			}
1165 			if (current->end > end)
1166 				count -= atop(current->end - end);
1167 
1168 			if (count <= 0)
1169 				continue;
1170 
1171 			vm_object_madvise(current->object.vm_object,
1172 					  pindex, count, behav);
1173 			if (behav == MADV_WILLNEED) {
1174 				pmap_object_init_pt(
1175 				    map->pmap,
1176 				    useStart,
1177 				    current->object.vm_object,
1178 				    pindex,
1179 				    (count << PAGE_SHIFT),
1180 				    0
1181 				);
1182 			}
1183 		}
1184 		vm_map_unlock_read(map);
1185 	}
1186 	return(0);
1187 }
1188 
1189 
1190 /*
1191  *	vm_map_inherit:
1192  *
1193  *	Sets the inheritance of the specified address
1194  *	range in the target map.  Inheritance
1195  *	affects how the map will be shared with
1196  *	child maps at the time of vm_map_fork.
1197  */
1198 int
1199 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1200 	       vm_inherit_t new_inheritance)
1201 {
1202 	vm_map_entry_t entry;
1203 	vm_map_entry_t temp_entry;
1204 
1205 	switch (new_inheritance) {
1206 	case VM_INHERIT_NONE:
1207 	case VM_INHERIT_COPY:
1208 	case VM_INHERIT_SHARE:
1209 		break;
1210 	default:
1211 		return (KERN_INVALID_ARGUMENT);
1212 	}
1213 
1214 	vm_map_lock(map);
1215 
1216 	VM_MAP_RANGE_CHECK(map, start, end);
1217 
1218 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1219 		entry = temp_entry;
1220 		vm_map_clip_start(map, entry, start);
1221 	} else
1222 		entry = temp_entry->next;
1223 
1224 	while ((entry != &map->header) && (entry->start < end)) {
1225 		vm_map_clip_end(map, entry, end);
1226 
1227 		entry->inheritance = new_inheritance;
1228 
1229 		vm_map_simplify_entry(map, entry);
1230 
1231 		entry = entry->next;
1232 	}
1233 
1234 	vm_map_unlock(map);
1235 	return (KERN_SUCCESS);
1236 }
1237 
1238 /*
1239  * Implement the semantics of mlock
1240  */
1241 int
1242 vm_map_user_pageable(map, start, end, new_pageable)
1243 	vm_map_t map;
1244 	vm_offset_t start;
1245 	vm_offset_t end;
1246 	boolean_t new_pageable;
1247 {
1248 	vm_map_entry_t entry;
1249 	vm_map_entry_t start_entry;
1250 	vm_offset_t estart;
1251 	int rv;
1252 
1253 	vm_map_lock(map);
1254 	VM_MAP_RANGE_CHECK(map, start, end);
1255 
1256 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1257 		vm_map_unlock(map);
1258 		return (KERN_INVALID_ADDRESS);
1259 	}
1260 
1261 	if (new_pageable) {
1262 
1263 		entry = start_entry;
1264 		vm_map_clip_start(map, entry, start);
1265 
1266 		/*
1267 		 * Now decrement the wiring count for each region. If a region
1268 		 * becomes completely unwired, unwire its physical pages and
1269 		 * mappings.
1270 		 */
1271 		while ((entry != &map->header) && (entry->start < end)) {
1272 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1273 				vm_map_clip_end(map, entry, end);
1274 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1275 				entry->wired_count--;
1276 				if (entry->wired_count == 0)
1277 					vm_fault_unwire(map, entry->start, entry->end);
1278 			}
1279 			vm_map_simplify_entry(map,entry);
1280 			entry = entry->next;
1281 		}
1282 	} else {
1283 
1284 		entry = start_entry;
1285 
1286 		while ((entry != &map->header) && (entry->start < end)) {
1287 
1288 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1289 				entry = entry->next;
1290 				continue;
1291 			}
1292 
1293 			if (entry->wired_count != 0) {
1294 				entry->wired_count++;
1295 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1296 				entry = entry->next;
1297 				continue;
1298 			}
1299 
1300 			/* Here on entry being newly wired */
1301 
1302 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1303 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1304 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1305 
1306 					vm_object_shadow(&entry->object.vm_object,
1307 					    &entry->offset,
1308 					    atop(entry->end - entry->start));
1309 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1310 
1311 				} else if (entry->object.vm_object == NULL &&
1312 					   !map->system_map) {
1313 
1314 					entry->object.vm_object =
1315 					    vm_object_allocate(OBJT_DEFAULT,
1316 						atop(entry->end - entry->start));
1317 					entry->offset = (vm_offset_t) 0;
1318 
1319 				}
1320 			}
1321 
1322 			vm_map_clip_start(map, entry, start);
1323 			vm_map_clip_end(map, entry, end);
1324 
1325 			entry->wired_count++;
1326 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1327 			estart = entry->start;
1328 
1329 			/* First we need to allow map modifications */
1330 			vm_map_set_recursive(map);
1331 			vm_map_lock_downgrade(map);
1332 			map->timestamp++;
1333 
1334 			rv = vm_fault_user_wire(map, entry->start, entry->end);
1335 			if (rv) {
1336 
1337 				entry->wired_count--;
1338 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1339 
1340 				vm_map_clear_recursive(map);
1341 				vm_map_unlock(map);
1342 
1343 				(void) vm_map_user_pageable(map, start, entry->start, TRUE);
1344 				return rv;
1345 			}
1346 
1347 			vm_map_clear_recursive(map);
1348 			if (vm_map_lock_upgrade(map)) {
1349 				vm_map_lock(map);
1350 				if (vm_map_lookup_entry(map, estart, &entry)
1351 				    == FALSE) {
1352 					vm_map_unlock(map);
1353 					(void) vm_map_user_pageable(map,
1354 								    start,
1355 								    estart,
1356 								    TRUE);
1357 					return (KERN_INVALID_ADDRESS);
1358 				}
1359 			}
1360 			vm_map_simplify_entry(map,entry);
1361 		}
1362 	}
1363 	map->timestamp++;
1364 	vm_map_unlock(map);
1365 	return KERN_SUCCESS;
1366 }
1367 
1368 /*
1369  *	vm_map_pageable:
1370  *
1371  *	Sets the pageability of the specified address
1372  *	range in the target map.  Regions specified
1373  *	as not pageable require locked-down physical
1374  *	memory and physical page maps.
1375  *
1376  *	The map must not be locked, but a reference
1377  *	must remain to the map throughout the call.
1378  */
1379 int
1380 vm_map_pageable(map, start, end, new_pageable)
1381 	vm_map_t map;
1382 	vm_offset_t start;
1383 	vm_offset_t end;
1384 	boolean_t new_pageable;
1385 {
1386 	vm_map_entry_t entry;
1387 	vm_map_entry_t start_entry;
1388 	vm_offset_t failed = 0;
1389 	int rv;
1390 
1391 	vm_map_lock(map);
1392 
1393 	VM_MAP_RANGE_CHECK(map, start, end);
1394 
1395 	/*
1396 	 * Only one pageability change may take place at one time, since
1397 	 * vm_fault assumes it will be called only once for each
1398 	 * wiring/unwiring.  Therefore, we have to make sure we're actually
1399 	 * changing the pageability for the entire region.  We do so before
1400 	 * making any changes.
1401 	 */
1402 
1403 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1404 		vm_map_unlock(map);
1405 		return (KERN_INVALID_ADDRESS);
1406 	}
1407 	entry = start_entry;
1408 
1409 	/*
1410 	 * Actions are rather different for wiring and unwiring, so we have
1411 	 * two separate cases.
1412 	 */
1413 
1414 	if (new_pageable) {
1415 
1416 		vm_map_clip_start(map, entry, start);
1417 
1418 		/*
1419 		 * Unwiring.  First ensure that the range to be unwired is
1420 		 * really wired down and that there are no holes.
1421 		 */
1422 		while ((entry != &map->header) && (entry->start < end)) {
1423 
1424 			if (entry->wired_count == 0 ||
1425 			    (entry->end < end &&
1426 				(entry->next == &map->header ||
1427 				    entry->next->start > entry->end))) {
1428 				vm_map_unlock(map);
1429 				return (KERN_INVALID_ARGUMENT);
1430 			}
1431 			entry = entry->next;
1432 		}
1433 
1434 		/*
1435 		 * Now decrement the wiring count for each region. If a region
1436 		 * becomes completely unwired, unwire its physical pages and
1437 		 * mappings.
1438 		 */
1439 		entry = start_entry;
1440 		while ((entry != &map->header) && (entry->start < end)) {
1441 			vm_map_clip_end(map, entry, end);
1442 
1443 			entry->wired_count--;
1444 			if (entry->wired_count == 0)
1445 				vm_fault_unwire(map, entry->start, entry->end);
1446 
1447 			vm_map_simplify_entry(map, entry);
1448 
1449 			entry = entry->next;
1450 		}
1451 	} else {
1452 		/*
1453 		 * Wiring.  We must do this in two passes:
1454 		 *
1455 		 * 1.  Holding the write lock, we create any shadow or zero-fill
1456 		 * objects that need to be created. Then we clip each map
1457 		 * entry to the region to be wired and increment its wiring
1458 		 * count.  We create objects before clipping the map entries
1459 		 * to avoid object proliferation.
1460 		 *
1461 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
1462 		 * fault in the pages for any newly wired area (wired_count is
1463 		 * 1).
1464 		 *
1465 		 * Downgrading to a read lock for vm_fault_wire avoids a possible
1466 		 * deadlock with another process that may have faulted on one
1467 		 * of the pages to be wired (it would mark the page busy,
1468 		 * blocking us, then in turn block on the map lock that we
1469 		 * hold).  Because of problems in the recursive lock package,
1470 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1471 		 * any actions that require the write lock must be done
1472 		 * beforehand.  Because we keep the read lock on the map, the
1473 		 * copy-on-write status of the entries we modify here cannot
1474 		 * change.
1475 		 */
1476 
1477 		/*
1478 		 * Pass 1.
1479 		 */
1480 		while ((entry != &map->header) && (entry->start < end)) {
1481 			if (entry->wired_count == 0) {
1482 
1483 				/*
1484 				 * Perform actions of vm_map_lookup that need
1485 				 * the write lock on the map: create a shadow
1486 				 * object for a copy-on-write region, or an
1487 				 * object for a zero-fill region.
1488 				 *
1489 				 * We don't have to do this for entries that
1490 				 * point to sub maps, because we won't
1491 				 * hold the lock on the sub map.
1492 				 */
1493 				if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1494 					int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1495 					if (copyflag &&
1496 					    ((entry->protection & VM_PROT_WRITE) != 0)) {
1497 
1498 						vm_object_shadow(&entry->object.vm_object,
1499 						    &entry->offset,
1500 						    atop(entry->end - entry->start));
1501 						entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1502 					} else if (entry->object.vm_object == NULL &&
1503 						   !map->system_map) {
1504 						entry->object.vm_object =
1505 						    vm_object_allocate(OBJT_DEFAULT,
1506 							atop(entry->end - entry->start));
1507 						entry->offset = (vm_offset_t) 0;
1508 					}
1509 				}
1510 			}
1511 			vm_map_clip_start(map, entry, start);
1512 			vm_map_clip_end(map, entry, end);
1513 			entry->wired_count++;
1514 
1515 			/*
1516 			 * Check for holes
1517 			 */
1518 			if (entry->end < end &&
1519 			    (entry->next == &map->header ||
1520 				entry->next->start > entry->end)) {
1521 				/*
1522 				 * Found one.  Object creation actions do not
1523 				 * need to be undone, but the wired counts
1524 				 * need to be restored.
1525 				 */
1526 				while (entry != &map->header && entry->end > start) {
1527 					entry->wired_count--;
1528 					entry = entry->prev;
1529 				}
1530 				vm_map_unlock(map);
1531 				return (KERN_INVALID_ARGUMENT);
1532 			}
1533 			entry = entry->next;
1534 		}
1535 
1536 		/*
1537 		 * Pass 2.
1538 		 */
1539 
1540 		/*
1541 		 * HACK HACK HACK HACK
1542 		 *
1543 		 * If we are wiring in the kernel map or a submap of it,
1544 		 * unlock the map to avoid deadlocks.  We trust that the
1545 		 * kernel is well-behaved, and therefore will not do
1546 		 * anything destructive to this region of the map while
1547 		 * we have it unlocked.  We cannot trust user processes
1548 		 * to do the same.
1549 		 *
1550 		 * HACK HACK HACK HACK
1551 		 */
1552 		if (vm_map_pmap(map) == kernel_pmap) {
1553 			vm_map_unlock(map);	/* trust me ... */
1554 		} else {
1555 			vm_map_lock_downgrade(map);
1556 		}
1557 
1558 		rv = 0;
1559 		entry = start_entry;
1560 		while (entry != &map->header && entry->start < end) {
1561 			/*
1562 			 * If vm_fault_wire fails for any page we need to undo
1563 			 * what has been done.  We decrement the wiring count
1564 			 * for those pages which have not yet been wired (now)
1565 			 * and unwire those that have (later).
1566 			 *
1567 			 * XXX this violates the locking protocol on the map,
1568 			 * needs to be fixed.
1569 			 */
1570 			if (rv)
1571 				entry->wired_count--;
1572 			else if (entry->wired_count == 1) {
1573 				rv = vm_fault_wire(map, entry->start, entry->end);
1574 				if (rv) {
1575 					failed = entry->start;
1576 					entry->wired_count--;
1577 				}
1578 			}
1579 			entry = entry->next;
1580 		}
1581 
1582 		if (vm_map_pmap(map) == kernel_pmap) {
1583 			vm_map_lock(map);
1584 		}
1585 		if (rv) {
1586 			vm_map_unlock(map);
1587 			(void) vm_map_pageable(map, start, failed, TRUE);
1588 			return (rv);
1589 		}
1590 		vm_map_simplify_entry(map, start_entry);
1591 	}
1592 
1593 	vm_map_unlock(map);
1594 
1595 	return (KERN_SUCCESS);
1596 }
1597 
1598 /*
1599  * vm_map_clean
1600  *
1601  * Push any dirty cached pages in the address range to their pager.
1602  * If syncio is TRUE, dirty pages are written synchronously.
1603  * If invalidate is TRUE, any cached pages are freed as well.
1604  *
1605  * Returns an error if any part of the specified range is not mapped.
1606  */
1607 int
1608 vm_map_clean(map, start, end, syncio, invalidate)
1609 	vm_map_t map;
1610 	vm_offset_t start;
1611 	vm_offset_t end;
1612 	boolean_t syncio;
1613 	boolean_t invalidate;
1614 {
1615 	vm_map_entry_t current;
1616 	vm_map_entry_t entry;
1617 	vm_size_t size;
1618 	vm_object_t object;
1619 	vm_ooffset_t offset;
1620 
1621 	vm_map_lock_read(map);
1622 	VM_MAP_RANGE_CHECK(map, start, end);
1623 	if (!vm_map_lookup_entry(map, start, &entry)) {
1624 		vm_map_unlock_read(map);
1625 		return (KERN_INVALID_ADDRESS);
1626 	}
1627 	/*
1628 	 * Make a first pass to check for holes.
1629 	 */
1630 	for (current = entry; current->start < end; current = current->next) {
1631 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1632 			vm_map_unlock_read(map);
1633 			return (KERN_INVALID_ARGUMENT);
1634 		}
1635 		if (end > current->end &&
1636 		    (current->next == &map->header ||
1637 			current->end != current->next->start)) {
1638 			vm_map_unlock_read(map);
1639 			return (KERN_INVALID_ADDRESS);
1640 		}
1641 	}
1642 
1643 	if (invalidate)
1644 		pmap_remove(vm_map_pmap(map), start, end);
1645 	/*
1646 	 * Make a second pass, cleaning/uncaching pages from the indicated
1647 	 * objects as we go.
1648 	 */
1649 	for (current = entry; current->start < end; current = current->next) {
1650 		offset = current->offset + (start - current->start);
1651 		size = (end <= current->end ? end : current->end) - start;
1652 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1653 			vm_map_t smap;
1654 			vm_map_entry_t tentry;
1655 			vm_size_t tsize;
1656 
1657 			smap = current->object.sub_map;
1658 			vm_map_lock_read(smap);
1659 			(void) vm_map_lookup_entry(smap, offset, &tentry);
1660 			tsize = tentry->end - offset;
1661 			if (tsize < size)
1662 				size = tsize;
1663 			object = tentry->object.vm_object;
1664 			offset = tentry->offset + (offset - tentry->start);
1665 			vm_map_unlock_read(smap);
1666 		} else {
1667 			object = current->object.vm_object;
1668 		}
1669 		/*
1670 		 * Note that there is absolutely no sense in writing out
1671 		 * anonymous objects, so we track down the vnode object
1672 		 * to write out.
1673 		 * We invalidate (remove) all pages from the address space
1674 		 * anyway, for semantic correctness.
1675 		 */
1676 		while (object->backing_object) {
1677 			object = object->backing_object;
1678 			offset += object->backing_object_offset;
1679 			if (object->size < OFF_TO_IDX( offset + size))
1680 				size = IDX_TO_OFF(object->size) - offset;
1681 		}
1682 		if (object && (object->type == OBJT_VNODE) &&
1683 		    (current->protection & VM_PROT_WRITE)) {
1684 			/*
1685 			 * Flush pages if writing is allowed, invalidate them
1686 			 * if invalidation requested.  Pages undergoing I/O
1687 			 * will be ignored by vm_object_page_remove().
1688 			 *
1689 			 * We cannot lock the vnode and then wait for paging
1690 			 * to complete without deadlocking against vm_fault.
1691 			 * Instead we simply call vm_object_page_remove() and
1692 			 * allow it to block internally on a page-by-page
1693 			 * basis when it encounters pages undergoing async
1694 			 * I/O.
1695 			 */
1696 			int flags;
1697 
1698 			vm_object_reference(object);
1699 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1700 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1701 			flags |= invalidate ? OBJPC_INVAL : 0;
1702 			vm_object_page_clean(object,
1703 			    OFF_TO_IDX(offset),
1704 			    OFF_TO_IDX(offset + size + PAGE_MASK),
1705 			    flags);
1706 			if (invalidate) {
1707 				/*vm_object_pip_wait(object, "objmcl");*/
1708 				vm_object_page_remove(object,
1709 				    OFF_TO_IDX(offset),
1710 				    OFF_TO_IDX(offset + size + PAGE_MASK),
1711 				    FALSE);
1712 			}
1713 			VOP_UNLOCK(object->handle, 0, curproc);
1714 			vm_object_deallocate(object);
1715 		}
1716 		start += size;
1717 	}
1718 
1719 	vm_map_unlock_read(map);
1720 	return (KERN_SUCCESS);
1721 }
1722 
1723 /*
1724  *	vm_map_entry_unwire:	[ internal use only ]
1725  *
1726  *	Make the region specified by this entry pageable.
1727  *
1728  *	The map in question should be locked.
1729  *	[This is the reason for this routine's existence.]
1730  */
1731 static void
1732 vm_map_entry_unwire(map, entry)
1733 	vm_map_t map;
1734 	vm_map_entry_t entry;
1735 {
1736 	vm_fault_unwire(map, entry->start, entry->end);
1737 	entry->wired_count = 0;
1738 }
1739 
1740 /*
1741  *	vm_map_entry_delete:	[ internal use only ]
1742  *
1743  *	Deallocate the given entry from the target map.
1744  */
1745 static void
1746 vm_map_entry_delete(map, entry)
1747 	vm_map_t map;
1748 	vm_map_entry_t entry;
1749 {
1750 	vm_map_entry_unlink(map, entry);
1751 	map->size -= entry->end - entry->start;
1752 
1753 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1754 		vm_object_deallocate(entry->object.vm_object);
1755 	}
1756 
1757 	vm_map_entry_dispose(map, entry);
1758 }
1759 
1760 /*
1761  *	vm_map_delete:	[ internal use only ]
1762  *
1763  *	Deallocates the given address range from the target
1764  *	map.
1765  */
1766 int
1767 vm_map_delete(map, start, end)
1768 	vm_map_t map;
1769 	vm_offset_t start;
1770 	vm_offset_t end;
1771 {
1772 	vm_object_t object;
1773 	vm_map_entry_t entry;
1774 	vm_map_entry_t first_entry;
1775 
1776 	/*
1777 	 * Find the start of the region, and clip it
1778 	 */
1779 
1780 	if (!vm_map_lookup_entry(map, start, &first_entry))
1781 		entry = first_entry->next;
1782 	else {
1783 		entry = first_entry;
1784 		vm_map_clip_start(map, entry, start);
1785 		/*
1786 		 * Fix the lookup hint now, rather than each time though the
1787 		 * loop.
1788 		 */
1789 		SAVE_HINT(map, entry->prev);
1790 	}
1791 
1792 	/*
1793 	 * Save the free space hint
1794 	 */
1795 
1796 	if (entry == &map->header) {
1797 		map->first_free = &map->header;
1798 	} else if (map->first_free->start >= start) {
1799 		map->first_free = entry->prev;
1800 	}
1801 
1802 	/*
1803 	 * Step through all entries in this region
1804 	 */
1805 
1806 	while ((entry != &map->header) && (entry->start < end)) {
1807 		vm_map_entry_t next;
1808 		vm_offset_t s, e;
1809 		vm_pindex_t offidxstart, offidxend, count;
1810 
1811 		vm_map_clip_end(map, entry, end);
1812 
1813 		s = entry->start;
1814 		e = entry->end;
1815 		next = entry->next;
1816 
1817 		offidxstart = OFF_TO_IDX(entry->offset);
1818 		count = OFF_TO_IDX(e - s);
1819 		object = entry->object.vm_object;
1820 
1821 		/*
1822 		 * Unwire before removing addresses from the pmap; otherwise,
1823 		 * unwiring will put the entries back in the pmap.
1824 		 */
1825 		if (entry->wired_count != 0) {
1826 			vm_map_entry_unwire(map, entry);
1827 		}
1828 
1829 		offidxend = offidxstart + count;
1830 
1831 		if ((object == kernel_object) || (object == kmem_object)) {
1832 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
1833 		} else {
1834 			pmap_remove(map->pmap, s, e);
1835 			if (object != NULL &&
1836 			    object->ref_count != 1 &&
1837 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
1838 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1839 				vm_object_collapse(object);
1840 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
1841 				if (object->type == OBJT_SWAP) {
1842 					swap_pager_freespace(object, offidxstart, count);
1843 				}
1844 				if (offidxend >= object->size &&
1845 				    offidxstart < object->size) {
1846 					object->size = offidxstart;
1847 				}
1848 			}
1849 		}
1850 
1851 		/*
1852 		 * Delete the entry (which may delete the object) only after
1853 		 * removing all pmap entries pointing to its pages.
1854 		 * (Otherwise, its page frames may be reallocated, and any
1855 		 * modify bits will be set in the wrong object!)
1856 		 */
1857 		vm_map_entry_delete(map, entry);
1858 		entry = next;
1859 	}
1860 	return (KERN_SUCCESS);
1861 }
1862 
1863 /*
1864  *	vm_map_remove:
1865  *
1866  *	Remove the given address range from the target map.
1867  *	This is the exported form of vm_map_delete.
1868  */
1869 int
1870 vm_map_remove(map, start, end)
1871 	vm_map_t map;
1872 	vm_offset_t start;
1873 	vm_offset_t end;
1874 {
1875 	int result, s = 0;
1876 
1877 	if (map == kmem_map || map == mb_map)
1878 		s = splvm();
1879 
1880 	vm_map_lock(map);
1881 	VM_MAP_RANGE_CHECK(map, start, end);
1882 	result = vm_map_delete(map, start, end);
1883 	vm_map_unlock(map);
1884 
1885 	if (map == kmem_map || map == mb_map)
1886 		splx(s);
1887 
1888 	return (result);
1889 }
1890 
1891 /*
1892  *	vm_map_check_protection:
1893  *
1894  *	Assert that the target map allows the specified
1895  *	privilege on the entire address region given.
1896  *	The entire region must be allocated.
1897  */
1898 boolean_t
1899 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
1900 			vm_prot_t protection)
1901 {
1902 	vm_map_entry_t entry;
1903 	vm_map_entry_t tmp_entry;
1904 
1905 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
1906 		return (FALSE);
1907 	}
1908 	entry = tmp_entry;
1909 
1910 	while (start < end) {
1911 		if (entry == &map->header) {
1912 			return (FALSE);
1913 		}
1914 		/*
1915 		 * No holes allowed!
1916 		 */
1917 
1918 		if (start < entry->start) {
1919 			return (FALSE);
1920 		}
1921 		/*
1922 		 * Check protection associated with entry.
1923 		 */
1924 
1925 		if ((entry->protection & protection) != protection) {
1926 			return (FALSE);
1927 		}
1928 		/* go to next entry */
1929 
1930 		start = entry->end;
1931 		entry = entry->next;
1932 	}
1933 	return (TRUE);
1934 }
1935 
1936 /*
1937  * Split the pages in a map entry into a new object.  This affords
1938  * easier removal of unused pages, and keeps object inheritance from
1939  * being a negative impact on memory usage.
1940  */
1941 static void
1942 vm_map_split(entry)
1943 	vm_map_entry_t entry;
1944 {
1945 	vm_page_t m;
1946 	vm_object_t orig_object, new_object, source;
1947 	vm_offset_t s, e;
1948 	vm_pindex_t offidxstart, offidxend, idx;
1949 	vm_size_t size;
1950 	vm_ooffset_t offset;
1951 
1952 	orig_object = entry->object.vm_object;
1953 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1954 		return;
1955 	if (orig_object->ref_count <= 1)
1956 		return;
1957 
1958 	offset = entry->offset;
1959 	s = entry->start;
1960 	e = entry->end;
1961 
1962 	offidxstart = OFF_TO_IDX(offset);
1963 	offidxend = offidxstart + OFF_TO_IDX(e - s);
1964 	size = offidxend - offidxstart;
1965 
1966 	new_object = vm_pager_allocate(orig_object->type,
1967 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1968 	if (new_object == NULL)
1969 		return;
1970 
1971 	source = orig_object->backing_object;
1972 	if (source != NULL) {
1973 		vm_object_reference(source);	/* Referenced by new_object */
1974 		TAILQ_INSERT_TAIL(&source->shadow_head,
1975 				  new_object, shadow_list);
1976 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1977 		new_object->backing_object_offset =
1978 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
1979 		new_object->backing_object = source;
1980 		source->shadow_count++;
1981 		source->generation++;
1982 	}
1983 
1984 	for (idx = 0; idx < size; idx++) {
1985 		vm_page_t m;
1986 
1987 	retry:
1988 		m = vm_page_lookup(orig_object, offidxstart + idx);
1989 		if (m == NULL)
1990 			continue;
1991 
1992 		/*
1993 		 * We must wait for pending I/O to complete before we can
1994 		 * rename the page.
1995 		 *
1996 		 * We do not have to VM_PROT_NONE the page as mappings should
1997 		 * not be changed by this operation.
1998 		 */
1999 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2000 			goto retry;
2001 
2002 		vm_page_busy(m);
2003 		vm_page_rename(m, new_object, idx);
2004 		/* page automatically made dirty by rename and cache handled */
2005 		vm_page_busy(m);
2006 	}
2007 
2008 	if (orig_object->type == OBJT_SWAP) {
2009 		vm_object_pip_add(orig_object, 1);
2010 		/*
2011 		 * copy orig_object pages into new_object
2012 		 * and destroy unneeded pages in
2013 		 * shadow object.
2014 		 */
2015 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2016 		vm_object_pip_wakeup(orig_object);
2017 	}
2018 
2019 	for (idx = 0; idx < size; idx++) {
2020 		m = vm_page_lookup(new_object, idx);
2021 		if (m) {
2022 			vm_page_wakeup(m);
2023 		}
2024 	}
2025 
2026 	entry->object.vm_object = new_object;
2027 	entry->offset = 0LL;
2028 	vm_object_deallocate(orig_object);
2029 }
2030 
2031 /*
2032  *	vm_map_copy_entry:
2033  *
2034  *	Copies the contents of the source entry to the destination
2035  *	entry.  The entries *must* be aligned properly.
2036  */
2037 static void
2038 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry)
2039 	vm_map_t src_map, dst_map;
2040 	vm_map_entry_t src_entry, dst_entry;
2041 {
2042 	vm_object_t src_object;
2043 
2044 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2045 		return;
2046 
2047 	if (src_entry->wired_count == 0) {
2048 
2049 		/*
2050 		 * If the source entry is marked needs_copy, it is already
2051 		 * write-protected.
2052 		 */
2053 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2054 			pmap_protect(src_map->pmap,
2055 			    src_entry->start,
2056 			    src_entry->end,
2057 			    src_entry->protection & ~VM_PROT_WRITE);
2058 		}
2059 
2060 		/*
2061 		 * Make a copy of the object.
2062 		 */
2063 		if ((src_object = src_entry->object.vm_object) != NULL) {
2064 
2065 			if ((src_object->handle == NULL) &&
2066 				(src_object->type == OBJT_DEFAULT ||
2067 				 src_object->type == OBJT_SWAP)) {
2068 				vm_object_collapse(src_object);
2069 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2070 					vm_map_split(src_entry);
2071 					src_object = src_entry->object.vm_object;
2072 				}
2073 			}
2074 
2075 			vm_object_reference(src_object);
2076 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2077 			dst_entry->object.vm_object = src_object;
2078 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2079 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2080 			dst_entry->offset = src_entry->offset;
2081 		} else {
2082 			dst_entry->object.vm_object = NULL;
2083 			dst_entry->offset = 0;
2084 		}
2085 
2086 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2087 		    dst_entry->end - dst_entry->start, src_entry->start);
2088 	} else {
2089 		/*
2090 		 * Of course, wired down pages can't be set copy-on-write.
2091 		 * Cause wired pages to be copied into the new map by
2092 		 * simulating faults (the new pages are pageable)
2093 		 */
2094 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2095 	}
2096 }
2097 
2098 /*
2099  * vmspace_fork:
2100  * Create a new process vmspace structure and vm_map
2101  * based on those of an existing process.  The new map
2102  * is based on the old map, according to the inheritance
2103  * values on the regions in that map.
2104  *
2105  * The source map must not be locked.
2106  */
2107 struct vmspace *
2108 vmspace_fork(vm1)
2109 	struct vmspace *vm1;
2110 {
2111 	struct vmspace *vm2;
2112 	vm_map_t old_map = &vm1->vm_map;
2113 	vm_map_t new_map;
2114 	vm_map_entry_t old_entry;
2115 	vm_map_entry_t new_entry;
2116 	vm_object_t object;
2117 
2118 	vm_map_lock(old_map);
2119 
2120 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2121 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2122 	    (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy);
2123 	new_map = &vm2->vm_map;	/* XXX */
2124 	new_map->timestamp = 1;
2125 
2126 	old_entry = old_map->header.next;
2127 
2128 	while (old_entry != &old_map->header) {
2129 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2130 			panic("vm_map_fork: encountered a submap");
2131 
2132 		switch (old_entry->inheritance) {
2133 		case VM_INHERIT_NONE:
2134 			break;
2135 
2136 		case VM_INHERIT_SHARE:
2137 			/*
2138 			 * Clone the entry, creating the shared object if necessary.
2139 			 */
2140 			object = old_entry->object.vm_object;
2141 			if (object == NULL) {
2142 				object = vm_object_allocate(OBJT_DEFAULT,
2143 					atop(old_entry->end - old_entry->start));
2144 				old_entry->object.vm_object = object;
2145 				old_entry->offset = (vm_offset_t) 0;
2146 			}
2147 
2148 			/*
2149 			 * Add the reference before calling vm_object_shadow
2150 			 * to insure that a shadow object is created.
2151 			 */
2152 			vm_object_reference(object);
2153 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2154 				vm_object_shadow(&old_entry->object.vm_object,
2155 					&old_entry->offset,
2156 					atop(old_entry->end - old_entry->start));
2157 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2158 				object = old_entry->object.vm_object;
2159 			}
2160 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2161 
2162 			/*
2163 			 * Clone the entry, referencing the shared object.
2164 			 */
2165 			new_entry = vm_map_entry_create(new_map);
2166 			*new_entry = *old_entry;
2167 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2168 			new_entry->wired_count = 0;
2169 
2170 			/*
2171 			 * Insert the entry into the new map -- we know we're
2172 			 * inserting at the end of the new map.
2173 			 */
2174 
2175 			vm_map_entry_link(new_map, new_map->header.prev,
2176 			    new_entry);
2177 
2178 			/*
2179 			 * Update the physical map
2180 			 */
2181 
2182 			pmap_copy(new_map->pmap, old_map->pmap,
2183 			    new_entry->start,
2184 			    (old_entry->end - old_entry->start),
2185 			    old_entry->start);
2186 			break;
2187 
2188 		case VM_INHERIT_COPY:
2189 			/*
2190 			 * Clone the entry and link into the map.
2191 			 */
2192 			new_entry = vm_map_entry_create(new_map);
2193 			*new_entry = *old_entry;
2194 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2195 			new_entry->wired_count = 0;
2196 			new_entry->object.vm_object = NULL;
2197 			vm_map_entry_link(new_map, new_map->header.prev,
2198 			    new_entry);
2199 			vm_map_copy_entry(old_map, new_map, old_entry,
2200 			    new_entry);
2201 			break;
2202 		}
2203 		old_entry = old_entry->next;
2204 	}
2205 
2206 	new_map->size = old_map->size;
2207 	vm_map_unlock(old_map);
2208 
2209 	return (vm2);
2210 }
2211 
2212 int
2213 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2214 	      vm_prot_t prot, vm_prot_t max, int cow)
2215 {
2216 	vm_map_entry_t prev_entry;
2217 	vm_map_entry_t new_stack_entry;
2218 	vm_size_t      init_ssize;
2219 	int            rv;
2220 
2221 	if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2222 		return (KERN_NO_SPACE);
2223 
2224 	if (max_ssize < SGROWSIZ)
2225 		init_ssize = max_ssize;
2226 	else
2227 		init_ssize = SGROWSIZ;
2228 
2229 	vm_map_lock(map);
2230 
2231 	/* If addr is already mapped, no go */
2232 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2233 		vm_map_unlock(map);
2234 		return (KERN_NO_SPACE);
2235 	}
2236 
2237 	/* If we can't accomodate max_ssize in the current mapping,
2238 	 * no go.  However, we need to be aware that subsequent user
2239 	 * mappings might map into the space we have reserved for
2240 	 * stack, and currently this space is not protected.
2241 	 *
2242 	 * Hopefully we will at least detect this condition
2243 	 * when we try to grow the stack.
2244 	 */
2245 	if ((prev_entry->next != &map->header) &&
2246 	    (prev_entry->next->start < addrbos + max_ssize)) {
2247 		vm_map_unlock(map);
2248 		return (KERN_NO_SPACE);
2249 	}
2250 
2251 	/* We initially map a stack of only init_ssize.  We will
2252 	 * grow as needed later.  Since this is to be a grow
2253 	 * down stack, we map at the top of the range.
2254 	 *
2255 	 * Note: we would normally expect prot and max to be
2256 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2257 	 * eliminate these as input parameters, and just
2258 	 * pass these values here in the insert call.
2259 	 */
2260 	rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize,
2261 	                   addrbos + max_ssize, prot, max, cow);
2262 
2263 	/* Now set the avail_ssize amount */
2264 	if (rv == KERN_SUCCESS){
2265 		if (prev_entry != &map->header)
2266 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize);
2267 		new_stack_entry = prev_entry->next;
2268 		if (new_stack_entry->end   != addrbos + max_ssize ||
2269 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2270 			panic ("Bad entry start/end for new stack entry");
2271 		else
2272 			new_stack_entry->avail_ssize = max_ssize - init_ssize;
2273 	}
2274 
2275 	vm_map_unlock(map);
2276 	return (rv);
2277 }
2278 
2279 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2280  * desired address is already mapped, or if we successfully grow
2281  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2282  * stack range (this is strange, but preserves compatibility with
2283  * the grow function in vm_machdep.c).
2284  */
2285 int
2286 vm_map_growstack (struct proc *p, vm_offset_t addr)
2287 {
2288 	vm_map_entry_t prev_entry;
2289 	vm_map_entry_t stack_entry;
2290 	vm_map_entry_t new_stack_entry;
2291 	struct vmspace *vm = p->p_vmspace;
2292 	vm_map_t map = &vm->vm_map;
2293 	vm_offset_t    end;
2294 	int      grow_amount;
2295 	int      rv;
2296 	int      is_procstack;
2297 Retry:
2298 	vm_map_lock_read(map);
2299 
2300 	/* If addr is already in the entry range, no need to grow.*/
2301 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2302 		vm_map_unlock_read(map);
2303 		return (KERN_SUCCESS);
2304 	}
2305 
2306 	if ((stack_entry = prev_entry->next) == &map->header) {
2307 		vm_map_unlock_read(map);
2308 		return (KERN_SUCCESS);
2309 	}
2310 	if (prev_entry == &map->header)
2311 		end = stack_entry->start - stack_entry->avail_ssize;
2312 	else
2313 		end = prev_entry->end;
2314 
2315 	/* This next test mimics the old grow function in vm_machdep.c.
2316 	 * It really doesn't quite make sense, but we do it anyway
2317 	 * for compatibility.
2318 	 *
2319 	 * If not growable stack, return success.  This signals the
2320 	 * caller to proceed as he would normally with normal vm.
2321 	 */
2322 	if (stack_entry->avail_ssize < 1 ||
2323 	    addr >= stack_entry->start ||
2324 	    addr <  stack_entry->start - stack_entry->avail_ssize) {
2325 		vm_map_unlock_read(map);
2326 		return (KERN_SUCCESS);
2327 	}
2328 
2329 	/* Find the minimum grow amount */
2330 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2331 	if (grow_amount > stack_entry->avail_ssize) {
2332 		vm_map_unlock_read(map);
2333 		return (KERN_NO_SPACE);
2334 	}
2335 
2336 	/* If there is no longer enough space between the entries
2337 	 * nogo, and adjust the available space.  Note: this
2338 	 * should only happen if the user has mapped into the
2339 	 * stack area after the stack was created, and is
2340 	 * probably an error.
2341 	 *
2342 	 * This also effectively destroys any guard page the user
2343 	 * might have intended by limiting the stack size.
2344 	 */
2345 	if (grow_amount > stack_entry->start - end) {
2346 		if (vm_map_lock_upgrade(map))
2347 			goto Retry;
2348 
2349 		stack_entry->avail_ssize = stack_entry->start - end;
2350 
2351 		vm_map_unlock(map);
2352 		return (KERN_NO_SPACE);
2353 	}
2354 
2355 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2356 
2357 	/* If this is the main process stack, see if we're over the
2358 	 * stack limit.
2359 	 */
2360 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2361 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2362 		vm_map_unlock_read(map);
2363 		return (KERN_NO_SPACE);
2364 	}
2365 
2366 	/* Round up the grow amount modulo SGROWSIZ */
2367 	grow_amount = roundup (grow_amount, SGROWSIZ);
2368 	if (grow_amount > stack_entry->avail_ssize) {
2369 		grow_amount = stack_entry->avail_ssize;
2370 	}
2371 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2372 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2373 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2374 		              ctob(vm->vm_ssize);
2375 	}
2376 
2377 	if (vm_map_lock_upgrade(map))
2378 		goto Retry;
2379 
2380 	/* Get the preliminary new entry start value */
2381 	addr = stack_entry->start - grow_amount;
2382 
2383 	/* If this puts us into the previous entry, cut back our growth
2384 	 * to the available space.  Also, see the note above.
2385 	 */
2386 	if (addr < end) {
2387 		stack_entry->avail_ssize = stack_entry->start - end;
2388 		addr = end;
2389 	}
2390 
2391 	rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2392 			   VM_PROT_ALL,
2393 			   VM_PROT_ALL,
2394 			   0);
2395 
2396 	/* Adjust the available stack space by the amount we grew. */
2397 	if (rv == KERN_SUCCESS) {
2398 		if (prev_entry != &map->header)
2399 			vm_map_clip_end(map, prev_entry, addr);
2400 		new_stack_entry = prev_entry->next;
2401 		if (new_stack_entry->end   != stack_entry->start  ||
2402 		    new_stack_entry->start != addr)
2403 			panic ("Bad stack grow start/end in new stack entry");
2404 		else {
2405 			new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2406 							(new_stack_entry->end -
2407 							 new_stack_entry->start);
2408 			if (is_procstack)
2409 				vm->vm_ssize += btoc(new_stack_entry->end -
2410 						     new_stack_entry->start);
2411 		}
2412 	}
2413 
2414 	vm_map_unlock(map);
2415 	return (rv);
2416 
2417 }
2418 
2419 /*
2420  * Unshare the specified VM space for exec.  If other processes are
2421  * mapped to it, then create a new one.  The new vmspace is null.
2422  */
2423 
2424 void
2425 vmspace_exec(struct proc *p) {
2426 	struct vmspace *oldvmspace = p->p_vmspace;
2427 	struct vmspace *newvmspace;
2428 	vm_map_t map = &p->p_vmspace->vm_map;
2429 
2430 	newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2431 	bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2432 	    (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2433 	/*
2434 	 * This code is written like this for prototype purposes.  The
2435 	 * goal is to avoid running down the vmspace here, but let the
2436 	 * other process's that are still using the vmspace to finally
2437 	 * run it down.  Even though there is little or no chance of blocking
2438 	 * here, it is a good idea to keep this form for future mods.
2439 	 */
2440 	vmspace_free(oldvmspace);
2441 	p->p_vmspace = newvmspace;
2442 	pmap_pinit2(vmspace_pmap(newvmspace));
2443 	if (p == curproc)
2444 		pmap_activate(p);
2445 }
2446 
2447 /*
2448  * Unshare the specified VM space for forcing COW.  This
2449  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2450  */
2451 
2452 void
2453 vmspace_unshare(struct proc *p) {
2454 	struct vmspace *oldvmspace = p->p_vmspace;
2455 	struct vmspace *newvmspace;
2456 
2457 	if (oldvmspace->vm_refcnt == 1)
2458 		return;
2459 	newvmspace = vmspace_fork(oldvmspace);
2460 	vmspace_free(oldvmspace);
2461 	p->p_vmspace = newvmspace;
2462 	pmap_pinit2(vmspace_pmap(newvmspace));
2463 	if (p == curproc)
2464 		pmap_activate(p);
2465 }
2466 
2467 
2468 /*
2469  *	vm_map_lookup:
2470  *
2471  *	Finds the VM object, offset, and
2472  *	protection for a given virtual address in the
2473  *	specified map, assuming a page fault of the
2474  *	type specified.
2475  *
2476  *	Leaves the map in question locked for read; return
2477  *	values are guaranteed until a vm_map_lookup_done
2478  *	call is performed.  Note that the map argument
2479  *	is in/out; the returned map must be used in
2480  *	the call to vm_map_lookup_done.
2481  *
2482  *	A handle (out_entry) is returned for use in
2483  *	vm_map_lookup_done, to make that fast.
2484  *
2485  *	If a lookup is requested with "write protection"
2486  *	specified, the map may be changed to perform virtual
2487  *	copying operations, although the data referenced will
2488  *	remain the same.
2489  */
2490 int
2491 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
2492 	      vm_offset_t vaddr,
2493 	      vm_prot_t fault_typea,
2494 	      vm_map_entry_t *out_entry,	/* OUT */
2495 	      vm_object_t *object,		/* OUT */
2496 	      vm_pindex_t *pindex,		/* OUT */
2497 	      vm_prot_t *out_prot,		/* OUT */
2498 	      boolean_t *wired)			/* OUT */
2499 {
2500 	vm_map_entry_t entry;
2501 	vm_map_t map = *var_map;
2502 	vm_prot_t prot;
2503 	vm_prot_t fault_type = fault_typea;
2504 
2505 RetryLookup:;
2506 
2507 	/*
2508 	 * Lookup the faulting address.
2509 	 */
2510 
2511 	vm_map_lock_read(map);
2512 
2513 #define	RETURN(why) \
2514 		{ \
2515 		vm_map_unlock_read(map); \
2516 		return(why); \
2517 		}
2518 
2519 	/*
2520 	 * If the map has an interesting hint, try it before calling full
2521 	 * blown lookup routine.
2522 	 */
2523 
2524 	entry = map->hint;
2525 
2526 	*out_entry = entry;
2527 
2528 	if ((entry == &map->header) ||
2529 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
2530 		vm_map_entry_t tmp_entry;
2531 
2532 		/*
2533 		 * Entry was either not a valid hint, or the vaddr was not
2534 		 * contained in the entry, so do a full lookup.
2535 		 */
2536 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry))
2537 			RETURN(KERN_INVALID_ADDRESS);
2538 
2539 		entry = tmp_entry;
2540 		*out_entry = entry;
2541 	}
2542 
2543 	/*
2544 	 * Handle submaps.
2545 	 */
2546 
2547 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2548 		vm_map_t old_map = map;
2549 
2550 		*var_map = map = entry->object.sub_map;
2551 		vm_map_unlock_read(old_map);
2552 		goto RetryLookup;
2553 	}
2554 
2555 	/*
2556 	 * Check whether this task is allowed to have this page.
2557 	 * Note the special case for MAP_ENTRY_COW
2558 	 * pages with an override.  This is to implement a forced
2559 	 * COW for debuggers.
2560 	 */
2561 
2562 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
2563 		prot = entry->max_protection;
2564 	else
2565 		prot = entry->protection;
2566 
2567 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
2568 	if ((fault_type & prot) != fault_type) {
2569 			RETURN(KERN_PROTECTION_FAILURE);
2570 	}
2571 
2572 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
2573 	    (entry->eflags & MAP_ENTRY_COW) &&
2574 	    (fault_type & VM_PROT_WRITE) &&
2575 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
2576 		RETURN(KERN_PROTECTION_FAILURE);
2577 	}
2578 
2579 	/*
2580 	 * If this page is not pageable, we have to get it for all possible
2581 	 * accesses.
2582 	 */
2583 
2584 	*wired = (entry->wired_count != 0);
2585 	if (*wired)
2586 		prot = fault_type = entry->protection;
2587 
2588 	/*
2589 	 * If the entry was copy-on-write, we either ...
2590 	 */
2591 
2592 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2593 		/*
2594 		 * If we want to write the page, we may as well handle that
2595 		 * now since we've got the map locked.
2596 		 *
2597 		 * If we don't need to write the page, we just demote the
2598 		 * permissions allowed.
2599 		 */
2600 
2601 		if (fault_type & VM_PROT_WRITE) {
2602 			/*
2603 			 * Make a new object, and place it in the object
2604 			 * chain.  Note that no new references have appeared
2605 			 * -- one just moved from the map to the new
2606 			 * object.
2607 			 */
2608 
2609 			if (vm_map_lock_upgrade(map))
2610 				goto RetryLookup;
2611 
2612 			vm_object_shadow(
2613 			    &entry->object.vm_object,
2614 			    &entry->offset,
2615 			    atop(entry->end - entry->start));
2616 
2617 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2618 			vm_map_lock_downgrade(map);
2619 		} else {
2620 			/*
2621 			 * We're attempting to read a copy-on-write page --
2622 			 * don't allow writes.
2623 			 */
2624 
2625 			prot &= ~VM_PROT_WRITE;
2626 		}
2627 	}
2628 
2629 	/*
2630 	 * Create an object if necessary.
2631 	 */
2632 	if (entry->object.vm_object == NULL &&
2633 	    !map->system_map) {
2634 		if (vm_map_lock_upgrade(map))
2635 			goto RetryLookup;
2636 
2637 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
2638 		    atop(entry->end - entry->start));
2639 		entry->offset = 0;
2640 		vm_map_lock_downgrade(map);
2641 	}
2642 
2643 	/*
2644 	 * Return the object/offset from this entry.  If the entry was
2645 	 * copy-on-write or empty, it has been fixed up.
2646 	 */
2647 
2648 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
2649 	*object = entry->object.vm_object;
2650 
2651 	/*
2652 	 * Return whether this is the only map sharing this data.
2653 	 */
2654 
2655 	*out_prot = prot;
2656 	return (KERN_SUCCESS);
2657 
2658 #undef	RETURN
2659 }
2660 
2661 /*
2662  *	vm_map_lookup_done:
2663  *
2664  *	Releases locks acquired by a vm_map_lookup
2665  *	(according to the handle returned by that lookup).
2666  */
2667 
2668 void
2669 vm_map_lookup_done(map, entry)
2670 	vm_map_t map;
2671 	vm_map_entry_t entry;
2672 {
2673 	/*
2674 	 * Unlock the main-level map
2675 	 */
2676 
2677 	vm_map_unlock_read(map);
2678 }
2679 
2680 /*
2681  * Implement uiomove with VM operations.  This handles (and collateral changes)
2682  * support every combination of source object modification, and COW type
2683  * operations.
2684  */
2685 int
2686 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages)
2687 	vm_map_t mapa;
2688 	vm_object_t srcobject;
2689 	off_t cp;
2690 	int cnta;
2691 	vm_offset_t uaddra;
2692 	int *npages;
2693 {
2694 	vm_map_t map;
2695 	vm_object_t first_object, oldobject, object;
2696 	vm_map_entry_t entry;
2697 	vm_prot_t prot;
2698 	boolean_t wired;
2699 	int tcnt, rv;
2700 	vm_offset_t uaddr, start, end, tend;
2701 	vm_pindex_t first_pindex, osize, oindex;
2702 	off_t ooffset;
2703 	int cnt;
2704 
2705 	if (npages)
2706 		*npages = 0;
2707 
2708 	cnt = cnta;
2709 	uaddr = uaddra;
2710 
2711 	while (cnt > 0) {
2712 		map = mapa;
2713 
2714 		if ((vm_map_lookup(&map, uaddr,
2715 			VM_PROT_READ, &entry, &first_object,
2716 			&first_pindex, &prot, &wired)) != KERN_SUCCESS) {
2717 			return EFAULT;
2718 		}
2719 
2720 		vm_map_clip_start(map, entry, uaddr);
2721 
2722 		tcnt = cnt;
2723 		tend = uaddr + tcnt;
2724 		if (tend > entry->end) {
2725 			tcnt = entry->end - uaddr;
2726 			tend = entry->end;
2727 		}
2728 
2729 		vm_map_clip_end(map, entry, tend);
2730 
2731 		start = entry->start;
2732 		end = entry->end;
2733 
2734 		osize = atop(tcnt);
2735 
2736 		oindex = OFF_TO_IDX(cp);
2737 		if (npages) {
2738 			vm_pindex_t idx;
2739 			for (idx = 0; idx < osize; idx++) {
2740 				vm_page_t m;
2741 				if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
2742 					vm_map_lookup_done(map, entry);
2743 					return 0;
2744 				}
2745 				/*
2746 				 * disallow busy or invalid pages, but allow
2747 				 * m->busy pages if they are entirely valid.
2748 				 */
2749 				if ((m->flags & PG_BUSY) ||
2750 					((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
2751 					vm_map_lookup_done(map, entry);
2752 					return 0;
2753 				}
2754 			}
2755 		}
2756 
2757 /*
2758  * If we are changing an existing map entry, just redirect
2759  * the object, and change mappings.
2760  */
2761 		if ((first_object->type == OBJT_VNODE) &&
2762 			((oldobject = entry->object.vm_object) == first_object)) {
2763 
2764 			if ((entry->offset != cp) || (oldobject != srcobject)) {
2765 				/*
2766    				* Remove old window into the file
2767    				*/
2768 				pmap_remove (map->pmap, uaddr, tend);
2769 
2770 				/*
2771    				* Force copy on write for mmaped regions
2772    				*/
2773 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2774 
2775 				/*
2776    				* Point the object appropriately
2777    				*/
2778 				if (oldobject != srcobject) {
2779 
2780 				/*
2781    				* Set the object optimization hint flag
2782    				*/
2783 					vm_object_set_flag(srcobject, OBJ_OPT);
2784 					vm_object_reference(srcobject);
2785 					entry->object.vm_object = srcobject;
2786 
2787 					if (oldobject) {
2788 						vm_object_deallocate(oldobject);
2789 					}
2790 				}
2791 
2792 				entry->offset = cp;
2793 				map->timestamp++;
2794 			} else {
2795 				pmap_remove (map->pmap, uaddr, tend);
2796 			}
2797 
2798 		} else if ((first_object->ref_count == 1) &&
2799 			(first_object->size == osize) &&
2800 			((first_object->type == OBJT_DEFAULT) ||
2801 				(first_object->type == OBJT_SWAP)) ) {
2802 
2803 			oldobject = first_object->backing_object;
2804 
2805 			if ((first_object->backing_object_offset != cp) ||
2806 				(oldobject != srcobject)) {
2807 				/*
2808    				* Remove old window into the file
2809    				*/
2810 				pmap_remove (map->pmap, uaddr, tend);
2811 
2812 				/*
2813 				 * Remove unneeded old pages
2814 				 */
2815 				vm_object_page_remove(first_object, 0, 0, 0);
2816 
2817 				/*
2818 				 * Invalidate swap space
2819 				 */
2820 				if (first_object->type == OBJT_SWAP) {
2821 					swap_pager_freespace(first_object,
2822 						0,
2823 						first_object->size);
2824 				}
2825 
2826 				/*
2827    				* Force copy on write for mmaped regions
2828    				*/
2829 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2830 
2831 				/*
2832    				* Point the object appropriately
2833    				*/
2834 				if (oldobject != srcobject) {
2835 
2836 				/*
2837    				* Set the object optimization hint flag
2838    				*/
2839 					vm_object_set_flag(srcobject, OBJ_OPT);
2840 					vm_object_reference(srcobject);
2841 
2842 					if (oldobject) {
2843 						TAILQ_REMOVE(&oldobject->shadow_head,
2844 							first_object, shadow_list);
2845 						oldobject->shadow_count--;
2846 						/* XXX bump generation? */
2847 						vm_object_deallocate(oldobject);
2848 					}
2849 
2850 					TAILQ_INSERT_TAIL(&srcobject->shadow_head,
2851 						first_object, shadow_list);
2852 					srcobject->shadow_count++;
2853 					/* XXX bump generation? */
2854 
2855 					first_object->backing_object = srcobject;
2856 				}
2857 				first_object->backing_object_offset = cp;
2858 				map->timestamp++;
2859 			} else {
2860 				pmap_remove (map->pmap, uaddr, tend);
2861 			}
2862 /*
2863  * Otherwise, we have to do a logical mmap.
2864  */
2865 		} else {
2866 
2867 			vm_object_set_flag(srcobject, OBJ_OPT);
2868 			vm_object_reference(srcobject);
2869 
2870 			pmap_remove (map->pmap, uaddr, tend);
2871 
2872 			vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2873 			vm_map_lock_upgrade(map);
2874 
2875 			if (entry == &map->header) {
2876 				map->first_free = &map->header;
2877 			} else if (map->first_free->start >= start) {
2878 				map->first_free = entry->prev;
2879 			}
2880 
2881 			SAVE_HINT(map, entry->prev);
2882 			vm_map_entry_delete(map, entry);
2883 
2884 			object = srcobject;
2885 			ooffset = cp;
2886 
2887 			rv = vm_map_insert(map, object, ooffset, start, tend,
2888 				VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
2889 
2890 			if (rv != KERN_SUCCESS)
2891 				panic("vm_uiomove: could not insert new entry: %d", rv);
2892 		}
2893 
2894 /*
2895  * Map the window directly, if it is already in memory
2896  */
2897 		pmap_object_init_pt(map->pmap, uaddr,
2898 			srcobject, oindex, tcnt, 0);
2899 
2900 		map->timestamp++;
2901 		vm_map_unlock(map);
2902 
2903 		cnt -= tcnt;
2904 		uaddr += tcnt;
2905 		cp += tcnt;
2906 		if (npages)
2907 			*npages += osize;
2908 	}
2909 	return 0;
2910 }
2911 
2912 /*
2913  * Performs the copy_on_write operations necessary to allow the virtual copies
2914  * into user space to work.  This has to be called for write(2) system calls
2915  * from other processes, file unlinking, and file size shrinkage.
2916  */
2917 void
2918 vm_freeze_copyopts(object, froma, toa)
2919 	vm_object_t object;
2920 	vm_pindex_t froma, toa;
2921 {
2922 	int rv;
2923 	vm_object_t robject;
2924 	vm_pindex_t idx;
2925 
2926 	if ((object == NULL) ||
2927 		((object->flags & OBJ_OPT) == 0))
2928 		return;
2929 
2930 	if (object->shadow_count > object->ref_count)
2931 		panic("vm_freeze_copyopts: sc > rc");
2932 
2933 	while((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) {
2934 		vm_pindex_t bo_pindex;
2935 		vm_page_t m_in, m_out;
2936 
2937 		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
2938 
2939 		vm_object_reference(robject);
2940 
2941 		vm_object_pip_wait(robject, "objfrz");
2942 
2943 		if (robject->ref_count == 1) {
2944 			vm_object_deallocate(robject);
2945 			continue;
2946 		}
2947 
2948 		vm_object_pip_add(robject, 1);
2949 
2950 		for (idx = 0; idx < robject->size; idx++) {
2951 
2952 			m_out = vm_page_grab(robject, idx,
2953 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
2954 
2955 			if (m_out->valid == 0) {
2956 				m_in = vm_page_grab(object, bo_pindex + idx,
2957 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
2958 				if (m_in->valid == 0) {
2959 					rv = vm_pager_get_pages(object, &m_in, 1, 0);
2960 					if (rv != VM_PAGER_OK) {
2961 						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
2962 						continue;
2963 					}
2964 					vm_page_deactivate(m_in);
2965 				}
2966 
2967 				vm_page_protect(m_in, VM_PROT_NONE);
2968 				pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
2969 				m_out->valid = m_in->valid;
2970 				vm_page_dirty(m_out);
2971 				vm_page_activate(m_out);
2972 				vm_page_wakeup(m_in);
2973 			}
2974 			vm_page_wakeup(m_out);
2975 		}
2976 
2977 		object->shadow_count--;
2978 		object->ref_count--;
2979 		TAILQ_REMOVE(&object->shadow_head, robject, shadow_list);
2980 		robject->backing_object = NULL;
2981 		robject->backing_object_offset = 0;
2982 
2983 		vm_object_pip_wakeup(robject);
2984 		vm_object_deallocate(robject);
2985 	}
2986 
2987 	vm_object_clear_flag(object, OBJ_OPT);
2988 }
2989 
2990 #include "opt_ddb.h"
2991 #ifdef DDB
2992 #include <sys/kernel.h>
2993 
2994 #include <ddb/ddb.h>
2995 
2996 /*
2997  *	vm_map_print:	[ debug ]
2998  */
2999 DB_SHOW_COMMAND(map, vm_map_print)
3000 {
3001 	static int nlines;
3002 	/* XXX convert args. */
3003 	vm_map_t map = (vm_map_t)addr;
3004 	boolean_t full = have_addr;
3005 
3006 	vm_map_entry_t entry;
3007 
3008 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3009 	    (void *)map,
3010 	    (void *)map->pmap, map->nentries, map->timestamp);
3011 	nlines++;
3012 
3013 	if (!full && db_indent)
3014 		return;
3015 
3016 	db_indent += 2;
3017 	for (entry = map->header.next; entry != &map->header;
3018 	    entry = entry->next) {
3019 		db_iprintf("map entry %p: start=%p, end=%p\n",
3020 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3021 		nlines++;
3022 		{
3023 			static char *inheritance_name[4] =
3024 			{"share", "copy", "none", "donate_copy"};
3025 
3026 			db_iprintf(" prot=%x/%x/%s",
3027 			    entry->protection,
3028 			    entry->max_protection,
3029 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3030 			if (entry->wired_count != 0)
3031 				db_printf(", wired");
3032 		}
3033 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3034 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3035 			db_printf(", share=%p, offset=0x%lx\n",
3036 			    (void *)entry->object.sub_map,
3037 			    (long)entry->offset);
3038 			nlines++;
3039 			if ((entry->prev == &map->header) ||
3040 			    (entry->prev->object.sub_map !=
3041 				entry->object.sub_map)) {
3042 				db_indent += 2;
3043 				vm_map_print((db_expr_t)(intptr_t)
3044 					     entry->object.sub_map,
3045 					     full, 0, (char *)0);
3046 				db_indent -= 2;
3047 			}
3048 		} else {
3049 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3050 			db_printf(", object=%p, offset=0x%lx",
3051 			    (void *)entry->object.vm_object,
3052 			    (long)entry->offset);
3053 			if (entry->eflags & MAP_ENTRY_COW)
3054 				db_printf(", copy (%s)",
3055 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3056 			db_printf("\n");
3057 			nlines++;
3058 
3059 			if ((entry->prev == &map->header) ||
3060 			    (entry->prev->object.vm_object !=
3061 				entry->object.vm_object)) {
3062 				db_indent += 2;
3063 				vm_object_print((db_expr_t)(intptr_t)
3064 						entry->object.vm_object,
3065 						full, 0, (char *)0);
3066 				nlines += 4;
3067 				db_indent -= 2;
3068 			}
3069 		}
3070 	}
3071 	db_indent -= 2;
3072 	if (db_indent == 0)
3073 		nlines = 0;
3074 }
3075 
3076 
3077 DB_SHOW_COMMAND(procvm, procvm)
3078 {
3079 	struct proc *p;
3080 
3081 	if (have_addr) {
3082 		p = (struct proc *) addr;
3083 	} else {
3084 		p = curproc;
3085 	}
3086 
3087 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3088 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3089 	    (void *)vmspace_pmap(p->p_vmspace));
3090 
3091 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3092 }
3093 
3094 #endif /* DDB */
3095