xref: /freebsd/sys/vm/vm_map.c (revision ec0e626bafb335b30c499d06066997f54b10c092)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
137     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
138 #ifdef INVARIANTS
139 static void vm_map_zdtor(void *mem, int size, void *arg);
140 static void vmspace_zdtor(void *mem, int size, void *arg);
141 #endif
142 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
143     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
144     int cow);
145 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
146     vm_offset_t failed_addr);
147 
148 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
149     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151 
152 /*
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158 
159 /*
160  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
161  *
162  *	Asserts that the starting and ending region
163  *	addresses fall within the valid range of the map.
164  */
165 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
166 		{					\
167 		if (start < vm_map_min(map))		\
168 			start = vm_map_min(map);	\
169 		if (end > vm_map_max(map))		\
170 			end = vm_map_max(map);		\
171 		if (start > end)			\
172 			start = end;			\
173 		}
174 
175 /*
176  *	vm_map_startup:
177  *
178  *	Initialize the vm_map module.  Must be called before
179  *	any other vm_map routines.
180  *
181  *	Map and entry structures are allocated from the general
182  *	purpose memory pool with some exceptions:
183  *
184  *	- The kernel map and kmem submap are allocated statically.
185  *	- Kernel map entries are allocated out of a static pool.
186  *
187  *	These restrictions are necessary since malloc() uses the
188  *	maps and requires map entries.
189  */
190 
191 void
192 vm_map_startup(void)
193 {
194 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
195 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
196 #ifdef INVARIANTS
197 	    vm_map_zdtor,
198 #else
199 	    NULL,
200 #endif
201 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
202 	uma_prealloc(mapzone, MAX_KMAP);
203 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
204 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
205 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
206 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
207 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
208 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
209 #ifdef INVARIANTS
210 	    vmspace_zdtor,
211 #else
212 	    NULL,
213 #endif
214 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
215 }
216 
217 static int
218 vmspace_zinit(void *mem, int size, int flags)
219 {
220 	struct vmspace *vm;
221 
222 	vm = (struct vmspace *)mem;
223 
224 	vm->vm_map.pmap = NULL;
225 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
226 	PMAP_LOCK_INIT(vmspace_pmap(vm));
227 	return (0);
228 }
229 
230 static int
231 vm_map_zinit(void *mem, int size, int flags)
232 {
233 	vm_map_t map;
234 
235 	map = (vm_map_t)mem;
236 	memset(map, 0, sizeof(*map));
237 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
238 	sx_init(&map->lock, "vm map (user)");
239 	return (0);
240 }
241 
242 #ifdef INVARIANTS
243 static void
244 vmspace_zdtor(void *mem, int size, void *arg)
245 {
246 	struct vmspace *vm;
247 
248 	vm = (struct vmspace *)mem;
249 
250 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
251 }
252 static void
253 vm_map_zdtor(void *mem, int size, void *arg)
254 {
255 	vm_map_t map;
256 
257 	map = (vm_map_t)mem;
258 	KASSERT(map->nentries == 0,
259 	    ("map %p nentries == %d on free.",
260 	    map, map->nentries));
261 	KASSERT(map->size == 0,
262 	    ("map %p size == %lu on free.",
263 	    map, (unsigned long)map->size));
264 }
265 #endif	/* INVARIANTS */
266 
267 /*
268  * Allocate a vmspace structure, including a vm_map and pmap,
269  * and initialize those structures.  The refcnt is set to 1.
270  *
271  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
272  */
273 struct vmspace *
274 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
275 {
276 	struct vmspace *vm;
277 
278 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
279 
280 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
281 
282 	if (pinit == NULL)
283 		pinit = &pmap_pinit;
284 
285 	if (!pinit(vmspace_pmap(vm))) {
286 		uma_zfree(vmspace_zone, vm);
287 		return (NULL);
288 	}
289 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291 	vm->vm_refcnt = 1;
292 	vm->vm_shm = NULL;
293 	vm->vm_swrss = 0;
294 	vm->vm_tsize = 0;
295 	vm->vm_dsize = 0;
296 	vm->vm_ssize = 0;
297 	vm->vm_taddr = 0;
298 	vm->vm_daddr = 0;
299 	vm->vm_maxsaddr = 0;
300 	return (vm);
301 }
302 
303 static void
304 vmspace_container_reset(struct proc *p)
305 {
306 
307 #ifdef RACCT
308 	PROC_LOCK(p);
309 	racct_set(p, RACCT_DATA, 0);
310 	racct_set(p, RACCT_STACK, 0);
311 	racct_set(p, RACCT_RSS, 0);
312 	racct_set(p, RACCT_MEMLOCK, 0);
313 	racct_set(p, RACCT_VMEM, 0);
314 	PROC_UNLOCK(p);
315 #endif
316 }
317 
318 static inline void
319 vmspace_dofree(struct vmspace *vm)
320 {
321 
322 	CTR1(KTR_VM, "vmspace_free: %p", vm);
323 
324 	/*
325 	 * Make sure any SysV shm is freed, it might not have been in
326 	 * exit1().
327 	 */
328 	shmexit(vm);
329 
330 	/*
331 	 * Lock the map, to wait out all other references to it.
332 	 * Delete all of the mappings and pages they hold, then call
333 	 * the pmap module to reclaim anything left.
334 	 */
335 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
336 	    vm->vm_map.max_offset);
337 
338 	pmap_release(vmspace_pmap(vm));
339 	vm->vm_map.pmap = NULL;
340 	uma_zfree(vmspace_zone, vm);
341 }
342 
343 void
344 vmspace_free(struct vmspace *vm)
345 {
346 
347 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
348 	    "vmspace_free() called with non-sleepable lock held");
349 
350 	if (vm->vm_refcnt == 0)
351 		panic("vmspace_free: attempt to free already freed vmspace");
352 
353 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
354 		vmspace_dofree(vm);
355 }
356 
357 void
358 vmspace_exitfree(struct proc *p)
359 {
360 	struct vmspace *vm;
361 
362 	PROC_VMSPACE_LOCK(p);
363 	vm = p->p_vmspace;
364 	p->p_vmspace = NULL;
365 	PROC_VMSPACE_UNLOCK(p);
366 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
367 	vmspace_free(vm);
368 }
369 
370 void
371 vmspace_exit(struct thread *td)
372 {
373 	int refcnt;
374 	struct vmspace *vm;
375 	struct proc *p;
376 
377 	/*
378 	 * Release user portion of address space.
379 	 * This releases references to vnodes,
380 	 * which could cause I/O if the file has been unlinked.
381 	 * Need to do this early enough that we can still sleep.
382 	 *
383 	 * The last exiting process to reach this point releases as
384 	 * much of the environment as it can. vmspace_dofree() is the
385 	 * slower fallback in case another process had a temporary
386 	 * reference to the vmspace.
387 	 */
388 
389 	p = td->td_proc;
390 	vm = p->p_vmspace;
391 	atomic_add_int(&vmspace0.vm_refcnt, 1);
392 	do {
393 		refcnt = vm->vm_refcnt;
394 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
395 			/* Switch now since other proc might free vmspace */
396 			PROC_VMSPACE_LOCK(p);
397 			p->p_vmspace = &vmspace0;
398 			PROC_VMSPACE_UNLOCK(p);
399 			pmap_activate(td);
400 		}
401 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
402 	if (refcnt == 1) {
403 		if (p->p_vmspace != vm) {
404 			/* vmspace not yet freed, switch back */
405 			PROC_VMSPACE_LOCK(p);
406 			p->p_vmspace = vm;
407 			PROC_VMSPACE_UNLOCK(p);
408 			pmap_activate(td);
409 		}
410 		pmap_remove_pages(vmspace_pmap(vm));
411 		/* Switch now since this proc will free vmspace */
412 		PROC_VMSPACE_LOCK(p);
413 		p->p_vmspace = &vmspace0;
414 		PROC_VMSPACE_UNLOCK(p);
415 		pmap_activate(td);
416 		vmspace_dofree(vm);
417 	}
418 	vmspace_container_reset(p);
419 }
420 
421 /* Acquire reference to vmspace owned by another process. */
422 
423 struct vmspace *
424 vmspace_acquire_ref(struct proc *p)
425 {
426 	struct vmspace *vm;
427 	int refcnt;
428 
429 	PROC_VMSPACE_LOCK(p);
430 	vm = p->p_vmspace;
431 	if (vm == NULL) {
432 		PROC_VMSPACE_UNLOCK(p);
433 		return (NULL);
434 	}
435 	do {
436 		refcnt = vm->vm_refcnt;
437 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
438 			PROC_VMSPACE_UNLOCK(p);
439 			return (NULL);
440 		}
441 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
442 	if (vm != p->p_vmspace) {
443 		PROC_VMSPACE_UNLOCK(p);
444 		vmspace_free(vm);
445 		return (NULL);
446 	}
447 	PROC_VMSPACE_UNLOCK(p);
448 	return (vm);
449 }
450 
451 void
452 _vm_map_lock(vm_map_t map, const char *file, int line)
453 {
454 
455 	if (map->system_map)
456 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
457 	else
458 		sx_xlock_(&map->lock, file, line);
459 	map->timestamp++;
460 }
461 
462 static void
463 vm_map_process_deferred(void)
464 {
465 	struct thread *td;
466 	vm_map_entry_t entry, next;
467 	vm_object_t object;
468 
469 	td = curthread;
470 	entry = td->td_map_def_user;
471 	td->td_map_def_user = NULL;
472 	while (entry != NULL) {
473 		next = entry->next;
474 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
475 			/*
476 			 * Decrement the object's writemappings and
477 			 * possibly the vnode's v_writecount.
478 			 */
479 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
480 			    ("Submap with writecount"));
481 			object = entry->object.vm_object;
482 			KASSERT(object != NULL, ("No object for writecount"));
483 			vnode_pager_release_writecount(object, entry->start,
484 			    entry->end);
485 		}
486 		vm_map_entry_deallocate(entry, FALSE);
487 		entry = next;
488 	}
489 }
490 
491 void
492 _vm_map_unlock(vm_map_t map, const char *file, int line)
493 {
494 
495 	if (map->system_map)
496 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
497 	else {
498 		sx_xunlock_(&map->lock, file, line);
499 		vm_map_process_deferred();
500 	}
501 }
502 
503 void
504 _vm_map_lock_read(vm_map_t map, const char *file, int line)
505 {
506 
507 	if (map->system_map)
508 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
509 	else
510 		sx_slock_(&map->lock, file, line);
511 }
512 
513 void
514 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
515 {
516 
517 	if (map->system_map)
518 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
519 	else {
520 		sx_sunlock_(&map->lock, file, line);
521 		vm_map_process_deferred();
522 	}
523 }
524 
525 int
526 _vm_map_trylock(vm_map_t map, const char *file, int line)
527 {
528 	int error;
529 
530 	error = map->system_map ?
531 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
532 	    !sx_try_xlock_(&map->lock, file, line);
533 	if (error == 0)
534 		map->timestamp++;
535 	return (error == 0);
536 }
537 
538 int
539 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
540 {
541 	int error;
542 
543 	error = map->system_map ?
544 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
545 	    !sx_try_slock_(&map->lock, file, line);
546 	return (error == 0);
547 }
548 
549 /*
550  *	_vm_map_lock_upgrade:	[ internal use only ]
551  *
552  *	Tries to upgrade a read (shared) lock on the specified map to a write
553  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
554  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
555  *	returned without a read or write lock held.
556  *
557  *	Requires that the map be read locked.
558  */
559 int
560 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
561 {
562 	unsigned int last_timestamp;
563 
564 	if (map->system_map) {
565 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
566 	} else {
567 		if (!sx_try_upgrade_(&map->lock, file, line)) {
568 			last_timestamp = map->timestamp;
569 			sx_sunlock_(&map->lock, file, line);
570 			vm_map_process_deferred();
571 			/*
572 			 * If the map's timestamp does not change while the
573 			 * map is unlocked, then the upgrade succeeds.
574 			 */
575 			sx_xlock_(&map->lock, file, line);
576 			if (last_timestamp != map->timestamp) {
577 				sx_xunlock_(&map->lock, file, line);
578 				return (1);
579 			}
580 		}
581 	}
582 	map->timestamp++;
583 	return (0);
584 }
585 
586 void
587 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
588 {
589 
590 	if (map->system_map) {
591 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
592 	} else
593 		sx_downgrade_(&map->lock, file, line);
594 }
595 
596 /*
597  *	vm_map_locked:
598  *
599  *	Returns a non-zero value if the caller holds a write (exclusive) lock
600  *	on the specified map and the value "0" otherwise.
601  */
602 int
603 vm_map_locked(vm_map_t map)
604 {
605 
606 	if (map->system_map)
607 		return (mtx_owned(&map->system_mtx));
608 	else
609 		return (sx_xlocked(&map->lock));
610 }
611 
612 #ifdef INVARIANTS
613 static void
614 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
615 {
616 
617 	if (map->system_map)
618 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
619 	else
620 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
621 }
622 
623 #define	VM_MAP_ASSERT_LOCKED(map) \
624     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
625 #else
626 #define	VM_MAP_ASSERT_LOCKED(map)
627 #endif
628 
629 /*
630  *	_vm_map_unlock_and_wait:
631  *
632  *	Atomically releases the lock on the specified map and puts the calling
633  *	thread to sleep.  The calling thread will remain asleep until either
634  *	vm_map_wakeup() is performed on the map or the specified timeout is
635  *	exceeded.
636  *
637  *	WARNING!  This function does not perform deferred deallocations of
638  *	objects and map	entries.  Therefore, the calling thread is expected to
639  *	reacquire the map lock after reawakening and later perform an ordinary
640  *	unlock operation, such as vm_map_unlock(), before completing its
641  *	operation on the map.
642  */
643 int
644 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
645 {
646 
647 	mtx_lock(&map_sleep_mtx);
648 	if (map->system_map)
649 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
650 	else
651 		sx_xunlock_(&map->lock, file, line);
652 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
653 	    timo));
654 }
655 
656 /*
657  *	vm_map_wakeup:
658  *
659  *	Awaken any threads that have slept on the map using
660  *	vm_map_unlock_and_wait().
661  */
662 void
663 vm_map_wakeup(vm_map_t map)
664 {
665 
666 	/*
667 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
668 	 * from being performed (and lost) between the map unlock
669 	 * and the msleep() in _vm_map_unlock_and_wait().
670 	 */
671 	mtx_lock(&map_sleep_mtx);
672 	mtx_unlock(&map_sleep_mtx);
673 	wakeup(&map->root);
674 }
675 
676 void
677 vm_map_busy(vm_map_t map)
678 {
679 
680 	VM_MAP_ASSERT_LOCKED(map);
681 	map->busy++;
682 }
683 
684 void
685 vm_map_unbusy(vm_map_t map)
686 {
687 
688 	VM_MAP_ASSERT_LOCKED(map);
689 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
690 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
691 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
692 		wakeup(&map->busy);
693 	}
694 }
695 
696 void
697 vm_map_wait_busy(vm_map_t map)
698 {
699 
700 	VM_MAP_ASSERT_LOCKED(map);
701 	while (map->busy) {
702 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
703 		if (map->system_map)
704 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
705 		else
706 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
707 	}
708 	map->timestamp++;
709 }
710 
711 long
712 vmspace_resident_count(struct vmspace *vmspace)
713 {
714 	return pmap_resident_count(vmspace_pmap(vmspace));
715 }
716 
717 /*
718  *	vm_map_create:
719  *
720  *	Creates and returns a new empty VM map with
721  *	the given physical map structure, and having
722  *	the given lower and upper address bounds.
723  */
724 vm_map_t
725 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
726 {
727 	vm_map_t result;
728 
729 	result = uma_zalloc(mapzone, M_WAITOK);
730 	CTR1(KTR_VM, "vm_map_create: %p", result);
731 	_vm_map_init(result, pmap, min, max);
732 	return (result);
733 }
734 
735 /*
736  * Initialize an existing vm_map structure
737  * such as that in the vmspace structure.
738  */
739 static void
740 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
741 {
742 
743 	map->header.next = map->header.prev = &map->header;
744 	map->needs_wakeup = FALSE;
745 	map->system_map = 0;
746 	map->pmap = pmap;
747 	map->min_offset = min;
748 	map->max_offset = max;
749 	map->flags = 0;
750 	map->root = NULL;
751 	map->timestamp = 0;
752 	map->busy = 0;
753 }
754 
755 void
756 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
757 {
758 
759 	_vm_map_init(map, pmap, min, max);
760 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
761 	sx_init(&map->lock, "user map");
762 }
763 
764 /*
765  *	vm_map_entry_dispose:	[ internal use only ]
766  *
767  *	Inverse of vm_map_entry_create.
768  */
769 static void
770 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
771 {
772 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
773 }
774 
775 /*
776  *	vm_map_entry_create:	[ internal use only ]
777  *
778  *	Allocates a VM map entry for insertion.
779  *	No entry fields are filled in.
780  */
781 static vm_map_entry_t
782 vm_map_entry_create(vm_map_t map)
783 {
784 	vm_map_entry_t new_entry;
785 
786 	if (map->system_map)
787 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
788 	else
789 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
790 	if (new_entry == NULL)
791 		panic("vm_map_entry_create: kernel resources exhausted");
792 	return (new_entry);
793 }
794 
795 /*
796  *	vm_map_entry_set_behavior:
797  *
798  *	Set the expected access behavior, either normal, random, or
799  *	sequential.
800  */
801 static inline void
802 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
803 {
804 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
805 	    (behavior & MAP_ENTRY_BEHAV_MASK);
806 }
807 
808 /*
809  *	vm_map_entry_set_max_free:
810  *
811  *	Set the max_free field in a vm_map_entry.
812  */
813 static inline void
814 vm_map_entry_set_max_free(vm_map_entry_t entry)
815 {
816 
817 	entry->max_free = entry->adj_free;
818 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
819 		entry->max_free = entry->left->max_free;
820 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
821 		entry->max_free = entry->right->max_free;
822 }
823 
824 /*
825  *	vm_map_entry_splay:
826  *
827  *	The Sleator and Tarjan top-down splay algorithm with the
828  *	following variation.  Max_free must be computed bottom-up, so
829  *	on the downward pass, maintain the left and right spines in
830  *	reverse order.  Then, make a second pass up each side to fix
831  *	the pointers and compute max_free.  The time bound is O(log n)
832  *	amortized.
833  *
834  *	The new root is the vm_map_entry containing "addr", or else an
835  *	adjacent entry (lower or higher) if addr is not in the tree.
836  *
837  *	The map must be locked, and leaves it so.
838  *
839  *	Returns: the new root.
840  */
841 static vm_map_entry_t
842 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
843 {
844 	vm_map_entry_t llist, rlist;
845 	vm_map_entry_t ltree, rtree;
846 	vm_map_entry_t y;
847 
848 	/* Special case of empty tree. */
849 	if (root == NULL)
850 		return (root);
851 
852 	/*
853 	 * Pass One: Splay down the tree until we find addr or a NULL
854 	 * pointer where addr would go.  llist and rlist are the two
855 	 * sides in reverse order (bottom-up), with llist linked by
856 	 * the right pointer and rlist linked by the left pointer in
857 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
858 	 * the two spines.
859 	 */
860 	llist = NULL;
861 	rlist = NULL;
862 	for (;;) {
863 		/* root is never NULL in here. */
864 		if (addr < root->start) {
865 			y = root->left;
866 			if (y == NULL)
867 				break;
868 			if (addr < y->start && y->left != NULL) {
869 				/* Rotate right and put y on rlist. */
870 				root->left = y->right;
871 				y->right = root;
872 				vm_map_entry_set_max_free(root);
873 				root = y->left;
874 				y->left = rlist;
875 				rlist = y;
876 			} else {
877 				/* Put root on rlist. */
878 				root->left = rlist;
879 				rlist = root;
880 				root = y;
881 			}
882 		} else if (addr >= root->end) {
883 			y = root->right;
884 			if (y == NULL)
885 				break;
886 			if (addr >= y->end && y->right != NULL) {
887 				/* Rotate left and put y on llist. */
888 				root->right = y->left;
889 				y->left = root;
890 				vm_map_entry_set_max_free(root);
891 				root = y->right;
892 				y->right = llist;
893 				llist = y;
894 			} else {
895 				/* Put root on llist. */
896 				root->right = llist;
897 				llist = root;
898 				root = y;
899 			}
900 		} else
901 			break;
902 	}
903 
904 	/*
905 	 * Pass Two: Walk back up the two spines, flip the pointers
906 	 * and set max_free.  The subtrees of the root go at the
907 	 * bottom of llist and rlist.
908 	 */
909 	ltree = root->left;
910 	while (llist != NULL) {
911 		y = llist->right;
912 		llist->right = ltree;
913 		vm_map_entry_set_max_free(llist);
914 		ltree = llist;
915 		llist = y;
916 	}
917 	rtree = root->right;
918 	while (rlist != NULL) {
919 		y = rlist->left;
920 		rlist->left = rtree;
921 		vm_map_entry_set_max_free(rlist);
922 		rtree = rlist;
923 		rlist = y;
924 	}
925 
926 	/*
927 	 * Final assembly: add ltree and rtree as subtrees of root.
928 	 */
929 	root->left = ltree;
930 	root->right = rtree;
931 	vm_map_entry_set_max_free(root);
932 
933 	return (root);
934 }
935 
936 /*
937  *	vm_map_entry_{un,}link:
938  *
939  *	Insert/remove entries from maps.
940  */
941 static void
942 vm_map_entry_link(vm_map_t map,
943 		  vm_map_entry_t after_where,
944 		  vm_map_entry_t entry)
945 {
946 
947 	CTR4(KTR_VM,
948 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
949 	    map->nentries, entry, after_where);
950 	VM_MAP_ASSERT_LOCKED(map);
951 	KASSERT(after_where == &map->header ||
952 	    after_where->end <= entry->start,
953 	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
954 	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
955 	KASSERT(after_where->next == &map->header ||
956 	    entry->end <= after_where->next->start,
957 	    ("vm_map_entry_link: new end %jx next start %jx overlap",
958 	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
959 
960 	map->nentries++;
961 	entry->prev = after_where;
962 	entry->next = after_where->next;
963 	entry->next->prev = entry;
964 	after_where->next = entry;
965 
966 	if (after_where != &map->header) {
967 		if (after_where != map->root)
968 			vm_map_entry_splay(after_where->start, map->root);
969 		entry->right = after_where->right;
970 		entry->left = after_where;
971 		after_where->right = NULL;
972 		after_where->adj_free = entry->start - after_where->end;
973 		vm_map_entry_set_max_free(after_where);
974 	} else {
975 		entry->right = map->root;
976 		entry->left = NULL;
977 	}
978 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
979 	    entry->next->start) - entry->end;
980 	vm_map_entry_set_max_free(entry);
981 	map->root = entry;
982 }
983 
984 static void
985 vm_map_entry_unlink(vm_map_t map,
986 		    vm_map_entry_t entry)
987 {
988 	vm_map_entry_t next, prev, root;
989 
990 	VM_MAP_ASSERT_LOCKED(map);
991 	if (entry != map->root)
992 		vm_map_entry_splay(entry->start, map->root);
993 	if (entry->left == NULL)
994 		root = entry->right;
995 	else {
996 		root = vm_map_entry_splay(entry->start, entry->left);
997 		root->right = entry->right;
998 		root->adj_free = (entry->next == &map->header ? map->max_offset :
999 		    entry->next->start) - root->end;
1000 		vm_map_entry_set_max_free(root);
1001 	}
1002 	map->root = root;
1003 
1004 	prev = entry->prev;
1005 	next = entry->next;
1006 	next->prev = prev;
1007 	prev->next = next;
1008 	map->nentries--;
1009 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1010 	    map->nentries, entry);
1011 }
1012 
1013 /*
1014  *	vm_map_entry_resize_free:
1015  *
1016  *	Recompute the amount of free space following a vm_map_entry
1017  *	and propagate that value up the tree.  Call this function after
1018  *	resizing a map entry in-place, that is, without a call to
1019  *	vm_map_entry_link() or _unlink().
1020  *
1021  *	The map must be locked, and leaves it so.
1022  */
1023 static void
1024 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1025 {
1026 
1027 	/*
1028 	 * Using splay trees without parent pointers, propagating
1029 	 * max_free up the tree is done by moving the entry to the
1030 	 * root and making the change there.
1031 	 */
1032 	if (entry != map->root)
1033 		map->root = vm_map_entry_splay(entry->start, map->root);
1034 
1035 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1036 	    entry->next->start) - entry->end;
1037 	vm_map_entry_set_max_free(entry);
1038 }
1039 
1040 /*
1041  *	vm_map_lookup_entry:	[ internal use only ]
1042  *
1043  *	Finds the map entry containing (or
1044  *	immediately preceding) the specified address
1045  *	in the given map; the entry is returned
1046  *	in the "entry" parameter.  The boolean
1047  *	result indicates whether the address is
1048  *	actually contained in the map.
1049  */
1050 boolean_t
1051 vm_map_lookup_entry(
1052 	vm_map_t map,
1053 	vm_offset_t address,
1054 	vm_map_entry_t *entry)	/* OUT */
1055 {
1056 	vm_map_entry_t cur;
1057 	boolean_t locked;
1058 
1059 	/*
1060 	 * If the map is empty, then the map entry immediately preceding
1061 	 * "address" is the map's header.
1062 	 */
1063 	cur = map->root;
1064 	if (cur == NULL)
1065 		*entry = &map->header;
1066 	else if (address >= cur->start && cur->end > address) {
1067 		*entry = cur;
1068 		return (TRUE);
1069 	} else if ((locked = vm_map_locked(map)) ||
1070 	    sx_try_upgrade(&map->lock)) {
1071 		/*
1072 		 * Splay requires a write lock on the map.  However, it only
1073 		 * restructures the binary search tree; it does not otherwise
1074 		 * change the map.  Thus, the map's timestamp need not change
1075 		 * on a temporary upgrade.
1076 		 */
1077 		map->root = cur = vm_map_entry_splay(address, cur);
1078 		if (!locked)
1079 			sx_downgrade(&map->lock);
1080 
1081 		/*
1082 		 * If "address" is contained within a map entry, the new root
1083 		 * is that map entry.  Otherwise, the new root is a map entry
1084 		 * immediately before or after "address".
1085 		 */
1086 		if (address >= cur->start) {
1087 			*entry = cur;
1088 			if (cur->end > address)
1089 				return (TRUE);
1090 		} else
1091 			*entry = cur->prev;
1092 	} else
1093 		/*
1094 		 * Since the map is only locked for read access, perform a
1095 		 * standard binary search tree lookup for "address".
1096 		 */
1097 		for (;;) {
1098 			if (address < cur->start) {
1099 				if (cur->left == NULL) {
1100 					*entry = cur->prev;
1101 					break;
1102 				}
1103 				cur = cur->left;
1104 			} else if (cur->end > address) {
1105 				*entry = cur;
1106 				return (TRUE);
1107 			} else {
1108 				if (cur->right == NULL) {
1109 					*entry = cur;
1110 					break;
1111 				}
1112 				cur = cur->right;
1113 			}
1114 		}
1115 	return (FALSE);
1116 }
1117 
1118 /*
1119  *	vm_map_insert:
1120  *
1121  *	Inserts the given whole VM object into the target
1122  *	map at the specified address range.  The object's
1123  *	size should match that of the address range.
1124  *
1125  *	Requires that the map be locked, and leaves it so.
1126  *
1127  *	If object is non-NULL, ref count must be bumped by caller
1128  *	prior to making call to account for the new entry.
1129  */
1130 int
1131 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1132     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1133 {
1134 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1135 	vm_eflags_t protoeflags;
1136 	struct ucred *cred;
1137 	vm_inherit_t inheritance;
1138 
1139 	VM_MAP_ASSERT_LOCKED(map);
1140 	KASSERT((object != kmem_object && object != kernel_object) ||
1141 	    (cow & MAP_COPY_ON_WRITE) == 0,
1142 	    ("vm_map_insert: kmem or kernel object and COW"));
1143 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1144 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1145 
1146 	/*
1147 	 * Check that the start and end points are not bogus.
1148 	 */
1149 	if ((start < map->min_offset) || (end > map->max_offset) ||
1150 	    (start >= end))
1151 		return (KERN_INVALID_ADDRESS);
1152 
1153 	/*
1154 	 * Find the entry prior to the proposed starting address; if it's part
1155 	 * of an existing entry, this range is bogus.
1156 	 */
1157 	if (vm_map_lookup_entry(map, start, &temp_entry))
1158 		return (KERN_NO_SPACE);
1159 
1160 	prev_entry = temp_entry;
1161 
1162 	/*
1163 	 * Assert that the next entry doesn't overlap the end point.
1164 	 */
1165 	if ((prev_entry->next != &map->header) &&
1166 	    (prev_entry->next->start < end))
1167 		return (KERN_NO_SPACE);
1168 
1169 	protoeflags = 0;
1170 	if (cow & MAP_COPY_ON_WRITE)
1171 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1172 	if (cow & MAP_NOFAULT)
1173 		protoeflags |= MAP_ENTRY_NOFAULT;
1174 	if (cow & MAP_DISABLE_SYNCER)
1175 		protoeflags |= MAP_ENTRY_NOSYNC;
1176 	if (cow & MAP_DISABLE_COREDUMP)
1177 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1178 	if (cow & MAP_STACK_GROWS_DOWN)
1179 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1180 	if (cow & MAP_STACK_GROWS_UP)
1181 		protoeflags |= MAP_ENTRY_GROWS_UP;
1182 	if (cow & MAP_VN_WRITECOUNT)
1183 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1184 	if (cow & MAP_INHERIT_SHARE)
1185 		inheritance = VM_INHERIT_SHARE;
1186 	else
1187 		inheritance = VM_INHERIT_DEFAULT;
1188 
1189 	cred = NULL;
1190 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1191 		goto charged;
1192 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1193 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1194 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1195 			return (KERN_RESOURCE_SHORTAGE);
1196 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1197 		    object->cred == NULL,
1198 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1199 		cred = curthread->td_ucred;
1200 	}
1201 
1202 charged:
1203 	/* Expand the kernel pmap, if necessary. */
1204 	if (map == kernel_map && end > kernel_vm_end)
1205 		pmap_growkernel(end);
1206 	if (object != NULL) {
1207 		/*
1208 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1209 		 * is trivially proven to be the only mapping for any
1210 		 * of the object's pages.  (Object granularity
1211 		 * reference counting is insufficient to recognize
1212 		 * aliases with precision.)
1213 		 */
1214 		VM_OBJECT_WLOCK(object);
1215 		if (object->ref_count > 1 || object->shadow_count != 0)
1216 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1217 		VM_OBJECT_WUNLOCK(object);
1218 	}
1219 	else if ((prev_entry != &map->header) &&
1220 		 (prev_entry->eflags == protoeflags) &&
1221 		 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1222 		 (prev_entry->end == start) &&
1223 		 (prev_entry->wired_count == 0) &&
1224 		 (prev_entry->cred == cred ||
1225 		  (prev_entry->object.vm_object != NULL &&
1226 		   (prev_entry->object.vm_object->cred == cred))) &&
1227 		   vm_object_coalesce(prev_entry->object.vm_object,
1228 		       prev_entry->offset,
1229 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1230 		       (vm_size_t)(end - prev_entry->end), cred != NULL &&
1231 		       (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1232 		/*
1233 		 * We were able to extend the object.  Determine if we
1234 		 * can extend the previous map entry to include the
1235 		 * new range as well.
1236 		 */
1237 		if ((prev_entry->inheritance == inheritance) &&
1238 		    (prev_entry->protection == prot) &&
1239 		    (prev_entry->max_protection == max)) {
1240 			map->size += (end - prev_entry->end);
1241 			prev_entry->end = end;
1242 			vm_map_entry_resize_free(map, prev_entry);
1243 			vm_map_simplify_entry(map, prev_entry);
1244 			return (KERN_SUCCESS);
1245 		}
1246 
1247 		/*
1248 		 * If we can extend the object but cannot extend the
1249 		 * map entry, we have to create a new map entry.  We
1250 		 * must bump the ref count on the extended object to
1251 		 * account for it.  object may be NULL.
1252 		 */
1253 		object = prev_entry->object.vm_object;
1254 		offset = prev_entry->offset +
1255 			(prev_entry->end - prev_entry->start);
1256 		vm_object_reference(object);
1257 		if (cred != NULL && object != NULL && object->cred != NULL &&
1258 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1259 			/* Object already accounts for this uid. */
1260 			cred = NULL;
1261 		}
1262 	}
1263 	if (cred != NULL)
1264 		crhold(cred);
1265 
1266 	/*
1267 	 * Create a new entry
1268 	 */
1269 	new_entry = vm_map_entry_create(map);
1270 	new_entry->start = start;
1271 	new_entry->end = end;
1272 	new_entry->cred = NULL;
1273 
1274 	new_entry->eflags = protoeflags;
1275 	new_entry->object.vm_object = object;
1276 	new_entry->offset = offset;
1277 	new_entry->avail_ssize = 0;
1278 
1279 	new_entry->inheritance = inheritance;
1280 	new_entry->protection = prot;
1281 	new_entry->max_protection = max;
1282 	new_entry->wired_count = 0;
1283 	new_entry->wiring_thread = NULL;
1284 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1285 	new_entry->next_read = OFF_TO_IDX(offset);
1286 
1287 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1288 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1289 	new_entry->cred = cred;
1290 
1291 	/*
1292 	 * Insert the new entry into the list
1293 	 */
1294 	vm_map_entry_link(map, prev_entry, new_entry);
1295 	map->size += new_entry->end - new_entry->start;
1296 
1297 	/*
1298 	 * Try to coalesce the new entry with both the previous and next
1299 	 * entries in the list.  Previously, we only attempted to coalesce
1300 	 * with the previous entry when object is NULL.  Here, we handle the
1301 	 * other cases, which are less common.
1302 	 */
1303 	vm_map_simplify_entry(map, new_entry);
1304 
1305 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1306 		vm_map_pmap_enter(map, start, prot,
1307 				    object, OFF_TO_IDX(offset), end - start,
1308 				    cow & MAP_PREFAULT_PARTIAL);
1309 	}
1310 
1311 	return (KERN_SUCCESS);
1312 }
1313 
1314 /*
1315  *	vm_map_findspace:
1316  *
1317  *	Find the first fit (lowest VM address) for "length" free bytes
1318  *	beginning at address >= start in the given map.
1319  *
1320  *	In a vm_map_entry, "adj_free" is the amount of free space
1321  *	adjacent (higher address) to this entry, and "max_free" is the
1322  *	maximum amount of contiguous free space in its subtree.  This
1323  *	allows finding a free region in one path down the tree, so
1324  *	O(log n) amortized with splay trees.
1325  *
1326  *	The map must be locked, and leaves it so.
1327  *
1328  *	Returns: 0 on success, and starting address in *addr,
1329  *		 1 if insufficient space.
1330  */
1331 int
1332 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1333     vm_offset_t *addr)	/* OUT */
1334 {
1335 	vm_map_entry_t entry;
1336 	vm_offset_t st;
1337 
1338 	/*
1339 	 * Request must fit within min/max VM address and must avoid
1340 	 * address wrap.
1341 	 */
1342 	if (start < map->min_offset)
1343 		start = map->min_offset;
1344 	if (start + length > map->max_offset || start + length < start)
1345 		return (1);
1346 
1347 	/* Empty tree means wide open address space. */
1348 	if (map->root == NULL) {
1349 		*addr = start;
1350 		return (0);
1351 	}
1352 
1353 	/*
1354 	 * After splay, if start comes before root node, then there
1355 	 * must be a gap from start to the root.
1356 	 */
1357 	map->root = vm_map_entry_splay(start, map->root);
1358 	if (start + length <= map->root->start) {
1359 		*addr = start;
1360 		return (0);
1361 	}
1362 
1363 	/*
1364 	 * Root is the last node that might begin its gap before
1365 	 * start, and this is the last comparison where address
1366 	 * wrap might be a problem.
1367 	 */
1368 	st = (start > map->root->end) ? start : map->root->end;
1369 	if (length <= map->root->end + map->root->adj_free - st) {
1370 		*addr = st;
1371 		return (0);
1372 	}
1373 
1374 	/* With max_free, can immediately tell if no solution. */
1375 	entry = map->root->right;
1376 	if (entry == NULL || length > entry->max_free)
1377 		return (1);
1378 
1379 	/*
1380 	 * Search the right subtree in the order: left subtree, root,
1381 	 * right subtree (first fit).  The previous splay implies that
1382 	 * all regions in the right subtree have addresses > start.
1383 	 */
1384 	while (entry != NULL) {
1385 		if (entry->left != NULL && entry->left->max_free >= length)
1386 			entry = entry->left;
1387 		else if (entry->adj_free >= length) {
1388 			*addr = entry->end;
1389 			return (0);
1390 		} else
1391 			entry = entry->right;
1392 	}
1393 
1394 	/* Can't get here, so panic if we do. */
1395 	panic("vm_map_findspace: max_free corrupt");
1396 }
1397 
1398 int
1399 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1400     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1401     vm_prot_t max, int cow)
1402 {
1403 	vm_offset_t end;
1404 	int result;
1405 
1406 	end = start + length;
1407 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1408 	    object == NULL,
1409 	    ("vm_map_fixed: non-NULL backing object for stack"));
1410 	vm_map_lock(map);
1411 	VM_MAP_RANGE_CHECK(map, start, end);
1412 	if ((cow & MAP_CHECK_EXCL) == 0)
1413 		vm_map_delete(map, start, end);
1414 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1415 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1416 		    prot, max, cow);
1417 	} else {
1418 		result = vm_map_insert(map, object, offset, start, end,
1419 		    prot, max, cow);
1420 	}
1421 	vm_map_unlock(map);
1422 	return (result);
1423 }
1424 
1425 /*
1426  *	vm_map_find finds an unallocated region in the target address
1427  *	map with the given length.  The search is defined to be
1428  *	first-fit from the specified address; the region found is
1429  *	returned in the same parameter.
1430  *
1431  *	If object is non-NULL, ref count must be bumped by caller
1432  *	prior to making call to account for the new entry.
1433  */
1434 int
1435 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1436 	    vm_offset_t *addr,	/* IN/OUT */
1437 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1438 	    vm_prot_t prot, vm_prot_t max, int cow)
1439 {
1440 	vm_offset_t alignment, initial_addr, start;
1441 	int result;
1442 
1443 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1444 	    object == NULL,
1445 	    ("vm_map_find: non-NULL backing object for stack"));
1446 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1447 	    (object->flags & OBJ_COLORED) == 0))
1448 		find_space = VMFS_ANY_SPACE;
1449 	if (find_space >> 8 != 0) {
1450 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1451 		alignment = (vm_offset_t)1 << (find_space >> 8);
1452 	} else
1453 		alignment = 0;
1454 	initial_addr = *addr;
1455 again:
1456 	start = initial_addr;
1457 	vm_map_lock(map);
1458 	do {
1459 		if (find_space != VMFS_NO_SPACE) {
1460 			if (vm_map_findspace(map, start, length, addr) ||
1461 			    (max_addr != 0 && *addr + length > max_addr)) {
1462 				vm_map_unlock(map);
1463 				if (find_space == VMFS_OPTIMAL_SPACE) {
1464 					find_space = VMFS_ANY_SPACE;
1465 					goto again;
1466 				}
1467 				return (KERN_NO_SPACE);
1468 			}
1469 			switch (find_space) {
1470 			case VMFS_SUPER_SPACE:
1471 			case VMFS_OPTIMAL_SPACE:
1472 				pmap_align_superpage(object, offset, addr,
1473 				    length);
1474 				break;
1475 			case VMFS_ANY_SPACE:
1476 				break;
1477 			default:
1478 				if ((*addr & (alignment - 1)) != 0) {
1479 					*addr &= ~(alignment - 1);
1480 					*addr += alignment;
1481 				}
1482 				break;
1483 			}
1484 
1485 			start = *addr;
1486 		}
1487 		if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1488 			result = vm_map_stack_locked(map, start, length,
1489 			    sgrowsiz, prot, max, cow);
1490 		} else {
1491 			result = vm_map_insert(map, object, offset, start,
1492 			    start + length, prot, max, cow);
1493 		}
1494 	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1495 	    find_space != VMFS_ANY_SPACE);
1496 	vm_map_unlock(map);
1497 	return (result);
1498 }
1499 
1500 /*
1501  *	vm_map_simplify_entry:
1502  *
1503  *	Simplify the given map entry by merging with either neighbor.  This
1504  *	routine also has the ability to merge with both neighbors.
1505  *
1506  *	The map must be locked.
1507  *
1508  *	This routine guarentees that the passed entry remains valid (though
1509  *	possibly extended).  When merging, this routine may delete one or
1510  *	both neighbors.
1511  */
1512 void
1513 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1514 {
1515 	vm_map_entry_t next, prev;
1516 	vm_size_t prevsize, esize;
1517 
1518 	if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1519 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1520 		return;
1521 
1522 	prev = entry->prev;
1523 	if (prev != &map->header) {
1524 		prevsize = prev->end - prev->start;
1525 		if ( (prev->end == entry->start) &&
1526 		     (prev->object.vm_object == entry->object.vm_object) &&
1527 		     (!prev->object.vm_object ||
1528 			(prev->offset + prevsize == entry->offset)) &&
1529 		     (prev->eflags == entry->eflags) &&
1530 		     (prev->protection == entry->protection) &&
1531 		     (prev->max_protection == entry->max_protection) &&
1532 		     (prev->inheritance == entry->inheritance) &&
1533 		     (prev->wired_count == entry->wired_count) &&
1534 		     (prev->cred == entry->cred)) {
1535 			vm_map_entry_unlink(map, prev);
1536 			entry->start = prev->start;
1537 			entry->offset = prev->offset;
1538 			if (entry->prev != &map->header)
1539 				vm_map_entry_resize_free(map, entry->prev);
1540 
1541 			/*
1542 			 * If the backing object is a vnode object,
1543 			 * vm_object_deallocate() calls vrele().
1544 			 * However, vrele() does not lock the vnode
1545 			 * because the vnode has additional
1546 			 * references.  Thus, the map lock can be kept
1547 			 * without causing a lock-order reversal with
1548 			 * the vnode lock.
1549 			 *
1550 			 * Since we count the number of virtual page
1551 			 * mappings in object->un_pager.vnp.writemappings,
1552 			 * the writemappings value should not be adjusted
1553 			 * when the entry is disposed of.
1554 			 */
1555 			if (prev->object.vm_object)
1556 				vm_object_deallocate(prev->object.vm_object);
1557 			if (prev->cred != NULL)
1558 				crfree(prev->cred);
1559 			vm_map_entry_dispose(map, prev);
1560 		}
1561 	}
1562 
1563 	next = entry->next;
1564 	if (next != &map->header) {
1565 		esize = entry->end - entry->start;
1566 		if ((entry->end == next->start) &&
1567 		    (next->object.vm_object == entry->object.vm_object) &&
1568 		     (!entry->object.vm_object ||
1569 			(entry->offset + esize == next->offset)) &&
1570 		    (next->eflags == entry->eflags) &&
1571 		    (next->protection == entry->protection) &&
1572 		    (next->max_protection == entry->max_protection) &&
1573 		    (next->inheritance == entry->inheritance) &&
1574 		    (next->wired_count == entry->wired_count) &&
1575 		    (next->cred == entry->cred)) {
1576 			vm_map_entry_unlink(map, next);
1577 			entry->end = next->end;
1578 			vm_map_entry_resize_free(map, entry);
1579 
1580 			/*
1581 			 * See comment above.
1582 			 */
1583 			if (next->object.vm_object)
1584 				vm_object_deallocate(next->object.vm_object);
1585 			if (next->cred != NULL)
1586 				crfree(next->cred);
1587 			vm_map_entry_dispose(map, next);
1588 		}
1589 	}
1590 }
1591 /*
1592  *	vm_map_clip_start:	[ internal use only ]
1593  *
1594  *	Asserts that the given entry begins at or after
1595  *	the specified address; if necessary,
1596  *	it splits the entry into two.
1597  */
1598 #define vm_map_clip_start(map, entry, startaddr) \
1599 { \
1600 	if (startaddr > entry->start) \
1601 		_vm_map_clip_start(map, entry, startaddr); \
1602 }
1603 
1604 /*
1605  *	This routine is called only when it is known that
1606  *	the entry must be split.
1607  */
1608 static void
1609 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1610 {
1611 	vm_map_entry_t new_entry;
1612 
1613 	VM_MAP_ASSERT_LOCKED(map);
1614 
1615 	/*
1616 	 * Split off the front portion -- note that we must insert the new
1617 	 * entry BEFORE this one, so that this entry has the specified
1618 	 * starting address.
1619 	 */
1620 	vm_map_simplify_entry(map, entry);
1621 
1622 	/*
1623 	 * If there is no object backing this entry, we might as well create
1624 	 * one now.  If we defer it, an object can get created after the map
1625 	 * is clipped, and individual objects will be created for the split-up
1626 	 * map.  This is a bit of a hack, but is also about the best place to
1627 	 * put this improvement.
1628 	 */
1629 	if (entry->object.vm_object == NULL && !map->system_map) {
1630 		vm_object_t object;
1631 		object = vm_object_allocate(OBJT_DEFAULT,
1632 				atop(entry->end - entry->start));
1633 		entry->object.vm_object = object;
1634 		entry->offset = 0;
1635 		if (entry->cred != NULL) {
1636 			object->cred = entry->cred;
1637 			object->charge = entry->end - entry->start;
1638 			entry->cred = NULL;
1639 		}
1640 	} else if (entry->object.vm_object != NULL &&
1641 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1642 		   entry->cred != NULL) {
1643 		VM_OBJECT_WLOCK(entry->object.vm_object);
1644 		KASSERT(entry->object.vm_object->cred == NULL,
1645 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1646 		entry->object.vm_object->cred = entry->cred;
1647 		entry->object.vm_object->charge = entry->end - entry->start;
1648 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1649 		entry->cred = NULL;
1650 	}
1651 
1652 	new_entry = vm_map_entry_create(map);
1653 	*new_entry = *entry;
1654 
1655 	new_entry->end = start;
1656 	entry->offset += (start - entry->start);
1657 	entry->start = start;
1658 	if (new_entry->cred != NULL)
1659 		crhold(entry->cred);
1660 
1661 	vm_map_entry_link(map, entry->prev, new_entry);
1662 
1663 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1664 		vm_object_reference(new_entry->object.vm_object);
1665 		/*
1666 		 * The object->un_pager.vnp.writemappings for the
1667 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1668 		 * kept as is here.  The virtual pages are
1669 		 * re-distributed among the clipped entries, so the sum is
1670 		 * left the same.
1671 		 */
1672 	}
1673 }
1674 
1675 /*
1676  *	vm_map_clip_end:	[ internal use only ]
1677  *
1678  *	Asserts that the given entry ends at or before
1679  *	the specified address; if necessary,
1680  *	it splits the entry into two.
1681  */
1682 #define vm_map_clip_end(map, entry, endaddr) \
1683 { \
1684 	if ((endaddr) < (entry->end)) \
1685 		_vm_map_clip_end((map), (entry), (endaddr)); \
1686 }
1687 
1688 /*
1689  *	This routine is called only when it is known that
1690  *	the entry must be split.
1691  */
1692 static void
1693 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1694 {
1695 	vm_map_entry_t new_entry;
1696 
1697 	VM_MAP_ASSERT_LOCKED(map);
1698 
1699 	/*
1700 	 * If there is no object backing this entry, we might as well create
1701 	 * one now.  If we defer it, an object can get created after the map
1702 	 * is clipped, and individual objects will be created for the split-up
1703 	 * map.  This is a bit of a hack, but is also about the best place to
1704 	 * put this improvement.
1705 	 */
1706 	if (entry->object.vm_object == NULL && !map->system_map) {
1707 		vm_object_t object;
1708 		object = vm_object_allocate(OBJT_DEFAULT,
1709 				atop(entry->end - entry->start));
1710 		entry->object.vm_object = object;
1711 		entry->offset = 0;
1712 		if (entry->cred != NULL) {
1713 			object->cred = entry->cred;
1714 			object->charge = entry->end - entry->start;
1715 			entry->cred = NULL;
1716 		}
1717 	} else if (entry->object.vm_object != NULL &&
1718 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1719 		   entry->cred != NULL) {
1720 		VM_OBJECT_WLOCK(entry->object.vm_object);
1721 		KASSERT(entry->object.vm_object->cred == NULL,
1722 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1723 		entry->object.vm_object->cred = entry->cred;
1724 		entry->object.vm_object->charge = entry->end - entry->start;
1725 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1726 		entry->cred = NULL;
1727 	}
1728 
1729 	/*
1730 	 * Create a new entry and insert it AFTER the specified entry
1731 	 */
1732 	new_entry = vm_map_entry_create(map);
1733 	*new_entry = *entry;
1734 
1735 	new_entry->start = entry->end = end;
1736 	new_entry->offset += (end - entry->start);
1737 	if (new_entry->cred != NULL)
1738 		crhold(entry->cred);
1739 
1740 	vm_map_entry_link(map, entry, new_entry);
1741 
1742 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1743 		vm_object_reference(new_entry->object.vm_object);
1744 	}
1745 }
1746 
1747 /*
1748  *	vm_map_submap:		[ kernel use only ]
1749  *
1750  *	Mark the given range as handled by a subordinate map.
1751  *
1752  *	This range must have been created with vm_map_find,
1753  *	and no other operations may have been performed on this
1754  *	range prior to calling vm_map_submap.
1755  *
1756  *	Only a limited number of operations can be performed
1757  *	within this rage after calling vm_map_submap:
1758  *		vm_fault
1759  *	[Don't try vm_map_copy!]
1760  *
1761  *	To remove a submapping, one must first remove the
1762  *	range from the superior map, and then destroy the
1763  *	submap (if desired).  [Better yet, don't try it.]
1764  */
1765 int
1766 vm_map_submap(
1767 	vm_map_t map,
1768 	vm_offset_t start,
1769 	vm_offset_t end,
1770 	vm_map_t submap)
1771 {
1772 	vm_map_entry_t entry;
1773 	int result = KERN_INVALID_ARGUMENT;
1774 
1775 	vm_map_lock(map);
1776 
1777 	VM_MAP_RANGE_CHECK(map, start, end);
1778 
1779 	if (vm_map_lookup_entry(map, start, &entry)) {
1780 		vm_map_clip_start(map, entry, start);
1781 	} else
1782 		entry = entry->next;
1783 
1784 	vm_map_clip_end(map, entry, end);
1785 
1786 	if ((entry->start == start) && (entry->end == end) &&
1787 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1788 	    (entry->object.vm_object == NULL)) {
1789 		entry->object.sub_map = submap;
1790 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1791 		result = KERN_SUCCESS;
1792 	}
1793 	vm_map_unlock(map);
1794 
1795 	return (result);
1796 }
1797 
1798 /*
1799  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1800  */
1801 #define	MAX_INIT_PT	96
1802 
1803 /*
1804  *	vm_map_pmap_enter:
1805  *
1806  *	Preload the specified map's pmap with mappings to the specified
1807  *	object's memory-resident pages.  No further physical pages are
1808  *	allocated, and no further virtual pages are retrieved from secondary
1809  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1810  *	limited number of page mappings are created at the low-end of the
1811  *	specified address range.  (For this purpose, a superpage mapping
1812  *	counts as one page mapping.)  Otherwise, all resident pages within
1813  *	the specified address range are mapped.  Because these mappings are
1814  *	being created speculatively, cached pages are not reactivated and
1815  *	mapped.
1816  */
1817 static void
1818 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1819     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1820 {
1821 	vm_offset_t start;
1822 	vm_page_t p, p_start;
1823 	vm_pindex_t mask, psize, threshold, tmpidx;
1824 
1825 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1826 		return;
1827 	VM_OBJECT_RLOCK(object);
1828 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1829 		VM_OBJECT_RUNLOCK(object);
1830 		VM_OBJECT_WLOCK(object);
1831 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1832 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1833 			    size);
1834 			VM_OBJECT_WUNLOCK(object);
1835 			return;
1836 		}
1837 		VM_OBJECT_LOCK_DOWNGRADE(object);
1838 	}
1839 
1840 	psize = atop(size);
1841 	if (psize + pindex > object->size) {
1842 		if (object->size < pindex) {
1843 			VM_OBJECT_RUNLOCK(object);
1844 			return;
1845 		}
1846 		psize = object->size - pindex;
1847 	}
1848 
1849 	start = 0;
1850 	p_start = NULL;
1851 	threshold = MAX_INIT_PT;
1852 
1853 	p = vm_page_find_least(object, pindex);
1854 	/*
1855 	 * Assert: the variable p is either (1) the page with the
1856 	 * least pindex greater than or equal to the parameter pindex
1857 	 * or (2) NULL.
1858 	 */
1859 	for (;
1860 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1861 	     p = TAILQ_NEXT(p, listq)) {
1862 		/*
1863 		 * don't allow an madvise to blow away our really
1864 		 * free pages allocating pv entries.
1865 		 */
1866 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1867 		    vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1868 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1869 		    tmpidx >= threshold)) {
1870 			psize = tmpidx;
1871 			break;
1872 		}
1873 		if (p->valid == VM_PAGE_BITS_ALL) {
1874 			if (p_start == NULL) {
1875 				start = addr + ptoa(tmpidx);
1876 				p_start = p;
1877 			}
1878 			/* Jump ahead if a superpage mapping is possible. */
1879 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1880 			    (pagesizes[p->psind] - 1)) == 0) {
1881 				mask = atop(pagesizes[p->psind]) - 1;
1882 				if (tmpidx + mask < psize &&
1883 				    vm_page_ps_is_valid(p)) {
1884 					p += mask;
1885 					threshold += mask;
1886 				}
1887 			}
1888 		} else if (p_start != NULL) {
1889 			pmap_enter_object(map->pmap, start, addr +
1890 			    ptoa(tmpidx), p_start, prot);
1891 			p_start = NULL;
1892 		}
1893 	}
1894 	if (p_start != NULL)
1895 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1896 		    p_start, prot);
1897 	VM_OBJECT_RUNLOCK(object);
1898 }
1899 
1900 /*
1901  *	vm_map_protect:
1902  *
1903  *	Sets the protection of the specified address
1904  *	region in the target map.  If "set_max" is
1905  *	specified, the maximum protection is to be set;
1906  *	otherwise, only the current protection is affected.
1907  */
1908 int
1909 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1910 	       vm_prot_t new_prot, boolean_t set_max)
1911 {
1912 	vm_map_entry_t current, entry;
1913 	vm_object_t obj;
1914 	struct ucred *cred;
1915 	vm_prot_t old_prot;
1916 
1917 	if (start == end)
1918 		return (KERN_SUCCESS);
1919 
1920 	vm_map_lock(map);
1921 
1922 	VM_MAP_RANGE_CHECK(map, start, end);
1923 
1924 	if (vm_map_lookup_entry(map, start, &entry)) {
1925 		vm_map_clip_start(map, entry, start);
1926 	} else {
1927 		entry = entry->next;
1928 	}
1929 
1930 	/*
1931 	 * Make a first pass to check for protection violations.
1932 	 */
1933 	current = entry;
1934 	while ((current != &map->header) && (current->start < end)) {
1935 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1936 			vm_map_unlock(map);
1937 			return (KERN_INVALID_ARGUMENT);
1938 		}
1939 		if ((new_prot & current->max_protection) != new_prot) {
1940 			vm_map_unlock(map);
1941 			return (KERN_PROTECTION_FAILURE);
1942 		}
1943 		current = current->next;
1944 	}
1945 
1946 
1947 	/*
1948 	 * Do an accounting pass for private read-only mappings that
1949 	 * now will do cow due to allowed write (e.g. debugger sets
1950 	 * breakpoint on text segment)
1951 	 */
1952 	for (current = entry; (current != &map->header) &&
1953 	     (current->start < end); current = current->next) {
1954 
1955 		vm_map_clip_end(map, current, end);
1956 
1957 		if (set_max ||
1958 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1959 		    ENTRY_CHARGED(current)) {
1960 			continue;
1961 		}
1962 
1963 		cred = curthread->td_ucred;
1964 		obj = current->object.vm_object;
1965 
1966 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1967 			if (!swap_reserve(current->end - current->start)) {
1968 				vm_map_unlock(map);
1969 				return (KERN_RESOURCE_SHORTAGE);
1970 			}
1971 			crhold(cred);
1972 			current->cred = cred;
1973 			continue;
1974 		}
1975 
1976 		VM_OBJECT_WLOCK(obj);
1977 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1978 			VM_OBJECT_WUNLOCK(obj);
1979 			continue;
1980 		}
1981 
1982 		/*
1983 		 * Charge for the whole object allocation now, since
1984 		 * we cannot distinguish between non-charged and
1985 		 * charged clipped mapping of the same object later.
1986 		 */
1987 		KASSERT(obj->charge == 0,
1988 		    ("vm_map_protect: object %p overcharged (entry %p)",
1989 		    obj, current));
1990 		if (!swap_reserve(ptoa(obj->size))) {
1991 			VM_OBJECT_WUNLOCK(obj);
1992 			vm_map_unlock(map);
1993 			return (KERN_RESOURCE_SHORTAGE);
1994 		}
1995 
1996 		crhold(cred);
1997 		obj->cred = cred;
1998 		obj->charge = ptoa(obj->size);
1999 		VM_OBJECT_WUNLOCK(obj);
2000 	}
2001 
2002 	/*
2003 	 * Go back and fix up protections. [Note that clipping is not
2004 	 * necessary the second time.]
2005 	 */
2006 	current = entry;
2007 	while ((current != &map->header) && (current->start < end)) {
2008 		old_prot = current->protection;
2009 
2010 		if (set_max)
2011 			current->protection =
2012 			    (current->max_protection = new_prot) &
2013 			    old_prot;
2014 		else
2015 			current->protection = new_prot;
2016 
2017 		/*
2018 		 * For user wired map entries, the normal lazy evaluation of
2019 		 * write access upgrades through soft page faults is
2020 		 * undesirable.  Instead, immediately copy any pages that are
2021 		 * copy-on-write and enable write access in the physical map.
2022 		 */
2023 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2024 		    (current->protection & VM_PROT_WRITE) != 0 &&
2025 		    (old_prot & VM_PROT_WRITE) == 0)
2026 			vm_fault_copy_entry(map, map, current, current, NULL);
2027 
2028 		/*
2029 		 * When restricting access, update the physical map.  Worry
2030 		 * about copy-on-write here.
2031 		 */
2032 		if ((old_prot & ~current->protection) != 0) {
2033 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2034 							VM_PROT_ALL)
2035 			pmap_protect(map->pmap, current->start,
2036 			    current->end,
2037 			    current->protection & MASK(current));
2038 #undef	MASK
2039 		}
2040 		vm_map_simplify_entry(map, current);
2041 		current = current->next;
2042 	}
2043 	vm_map_unlock(map);
2044 	return (KERN_SUCCESS);
2045 }
2046 
2047 /*
2048  *	vm_map_madvise:
2049  *
2050  *	This routine traverses a processes map handling the madvise
2051  *	system call.  Advisories are classified as either those effecting
2052  *	the vm_map_entry structure, or those effecting the underlying
2053  *	objects.
2054  */
2055 int
2056 vm_map_madvise(
2057 	vm_map_t map,
2058 	vm_offset_t start,
2059 	vm_offset_t end,
2060 	int behav)
2061 {
2062 	vm_map_entry_t current, entry;
2063 	int modify_map = 0;
2064 
2065 	/*
2066 	 * Some madvise calls directly modify the vm_map_entry, in which case
2067 	 * we need to use an exclusive lock on the map and we need to perform
2068 	 * various clipping operations.  Otherwise we only need a read-lock
2069 	 * on the map.
2070 	 */
2071 	switch(behav) {
2072 	case MADV_NORMAL:
2073 	case MADV_SEQUENTIAL:
2074 	case MADV_RANDOM:
2075 	case MADV_NOSYNC:
2076 	case MADV_AUTOSYNC:
2077 	case MADV_NOCORE:
2078 	case MADV_CORE:
2079 		if (start == end)
2080 			return (KERN_SUCCESS);
2081 		modify_map = 1;
2082 		vm_map_lock(map);
2083 		break;
2084 	case MADV_WILLNEED:
2085 	case MADV_DONTNEED:
2086 	case MADV_FREE:
2087 		if (start == end)
2088 			return (KERN_SUCCESS);
2089 		vm_map_lock_read(map);
2090 		break;
2091 	default:
2092 		return (KERN_INVALID_ARGUMENT);
2093 	}
2094 
2095 	/*
2096 	 * Locate starting entry and clip if necessary.
2097 	 */
2098 	VM_MAP_RANGE_CHECK(map, start, end);
2099 
2100 	if (vm_map_lookup_entry(map, start, &entry)) {
2101 		if (modify_map)
2102 			vm_map_clip_start(map, entry, start);
2103 	} else {
2104 		entry = entry->next;
2105 	}
2106 
2107 	if (modify_map) {
2108 		/*
2109 		 * madvise behaviors that are implemented in the vm_map_entry.
2110 		 *
2111 		 * We clip the vm_map_entry so that behavioral changes are
2112 		 * limited to the specified address range.
2113 		 */
2114 		for (current = entry;
2115 		     (current != &map->header) && (current->start < end);
2116 		     current = current->next
2117 		) {
2118 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2119 				continue;
2120 
2121 			vm_map_clip_end(map, current, end);
2122 
2123 			switch (behav) {
2124 			case MADV_NORMAL:
2125 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2126 				break;
2127 			case MADV_SEQUENTIAL:
2128 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2129 				break;
2130 			case MADV_RANDOM:
2131 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2132 				break;
2133 			case MADV_NOSYNC:
2134 				current->eflags |= MAP_ENTRY_NOSYNC;
2135 				break;
2136 			case MADV_AUTOSYNC:
2137 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2138 				break;
2139 			case MADV_NOCORE:
2140 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2141 				break;
2142 			case MADV_CORE:
2143 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2144 				break;
2145 			default:
2146 				break;
2147 			}
2148 			vm_map_simplify_entry(map, current);
2149 		}
2150 		vm_map_unlock(map);
2151 	} else {
2152 		vm_pindex_t pstart, pend;
2153 
2154 		/*
2155 		 * madvise behaviors that are implemented in the underlying
2156 		 * vm_object.
2157 		 *
2158 		 * Since we don't clip the vm_map_entry, we have to clip
2159 		 * the vm_object pindex and count.
2160 		 */
2161 		for (current = entry;
2162 		     (current != &map->header) && (current->start < end);
2163 		     current = current->next
2164 		) {
2165 			vm_offset_t useEnd, useStart;
2166 
2167 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2168 				continue;
2169 
2170 			pstart = OFF_TO_IDX(current->offset);
2171 			pend = pstart + atop(current->end - current->start);
2172 			useStart = current->start;
2173 			useEnd = current->end;
2174 
2175 			if (current->start < start) {
2176 				pstart += atop(start - current->start);
2177 				useStart = start;
2178 			}
2179 			if (current->end > end) {
2180 				pend -= atop(current->end - end);
2181 				useEnd = end;
2182 			}
2183 
2184 			if (pstart >= pend)
2185 				continue;
2186 
2187 			/*
2188 			 * Perform the pmap_advise() before clearing
2189 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2190 			 * concurrent pmap operation, such as pmap_remove(),
2191 			 * could clear a reference in the pmap and set
2192 			 * PGA_REFERENCED on the page before the pmap_advise()
2193 			 * had completed.  Consequently, the page would appear
2194 			 * referenced based upon an old reference that
2195 			 * occurred before this pmap_advise() ran.
2196 			 */
2197 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2198 				pmap_advise(map->pmap, useStart, useEnd,
2199 				    behav);
2200 
2201 			vm_object_madvise(current->object.vm_object, pstart,
2202 			    pend, behav);
2203 
2204 			/*
2205 			 * Pre-populate paging structures in the
2206 			 * WILLNEED case.  For wired entries, the
2207 			 * paging structures are already populated.
2208 			 */
2209 			if (behav == MADV_WILLNEED &&
2210 			    current->wired_count == 0) {
2211 				vm_map_pmap_enter(map,
2212 				    useStart,
2213 				    current->protection,
2214 				    current->object.vm_object,
2215 				    pstart,
2216 				    ptoa(pend - pstart),
2217 				    MAP_PREFAULT_MADVISE
2218 				);
2219 			}
2220 		}
2221 		vm_map_unlock_read(map);
2222 	}
2223 	return (0);
2224 }
2225 
2226 
2227 /*
2228  *	vm_map_inherit:
2229  *
2230  *	Sets the inheritance of the specified address
2231  *	range in the target map.  Inheritance
2232  *	affects how the map will be shared with
2233  *	child maps at the time of vmspace_fork.
2234  */
2235 int
2236 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2237 	       vm_inherit_t new_inheritance)
2238 {
2239 	vm_map_entry_t entry;
2240 	vm_map_entry_t temp_entry;
2241 
2242 	switch (new_inheritance) {
2243 	case VM_INHERIT_NONE:
2244 	case VM_INHERIT_COPY:
2245 	case VM_INHERIT_SHARE:
2246 		break;
2247 	default:
2248 		return (KERN_INVALID_ARGUMENT);
2249 	}
2250 	if (start == end)
2251 		return (KERN_SUCCESS);
2252 	vm_map_lock(map);
2253 	VM_MAP_RANGE_CHECK(map, start, end);
2254 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2255 		entry = temp_entry;
2256 		vm_map_clip_start(map, entry, start);
2257 	} else
2258 		entry = temp_entry->next;
2259 	while ((entry != &map->header) && (entry->start < end)) {
2260 		vm_map_clip_end(map, entry, end);
2261 		entry->inheritance = new_inheritance;
2262 		vm_map_simplify_entry(map, entry);
2263 		entry = entry->next;
2264 	}
2265 	vm_map_unlock(map);
2266 	return (KERN_SUCCESS);
2267 }
2268 
2269 /*
2270  *	vm_map_unwire:
2271  *
2272  *	Implements both kernel and user unwiring.
2273  */
2274 int
2275 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2276     int flags)
2277 {
2278 	vm_map_entry_t entry, first_entry, tmp_entry;
2279 	vm_offset_t saved_start;
2280 	unsigned int last_timestamp;
2281 	int rv;
2282 	boolean_t need_wakeup, result, user_unwire;
2283 
2284 	if (start == end)
2285 		return (KERN_SUCCESS);
2286 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2287 	vm_map_lock(map);
2288 	VM_MAP_RANGE_CHECK(map, start, end);
2289 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2290 		if (flags & VM_MAP_WIRE_HOLESOK)
2291 			first_entry = first_entry->next;
2292 		else {
2293 			vm_map_unlock(map);
2294 			return (KERN_INVALID_ADDRESS);
2295 		}
2296 	}
2297 	last_timestamp = map->timestamp;
2298 	entry = first_entry;
2299 	while (entry != &map->header && entry->start < end) {
2300 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2301 			/*
2302 			 * We have not yet clipped the entry.
2303 			 */
2304 			saved_start = (start >= entry->start) ? start :
2305 			    entry->start;
2306 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2307 			if (vm_map_unlock_and_wait(map, 0)) {
2308 				/*
2309 				 * Allow interruption of user unwiring?
2310 				 */
2311 			}
2312 			vm_map_lock(map);
2313 			if (last_timestamp+1 != map->timestamp) {
2314 				/*
2315 				 * Look again for the entry because the map was
2316 				 * modified while it was unlocked.
2317 				 * Specifically, the entry may have been
2318 				 * clipped, merged, or deleted.
2319 				 */
2320 				if (!vm_map_lookup_entry(map, saved_start,
2321 				    &tmp_entry)) {
2322 					if (flags & VM_MAP_WIRE_HOLESOK)
2323 						tmp_entry = tmp_entry->next;
2324 					else {
2325 						if (saved_start == start) {
2326 							/*
2327 							 * First_entry has been deleted.
2328 							 */
2329 							vm_map_unlock(map);
2330 							return (KERN_INVALID_ADDRESS);
2331 						}
2332 						end = saved_start;
2333 						rv = KERN_INVALID_ADDRESS;
2334 						goto done;
2335 					}
2336 				}
2337 				if (entry == first_entry)
2338 					first_entry = tmp_entry;
2339 				else
2340 					first_entry = NULL;
2341 				entry = tmp_entry;
2342 			}
2343 			last_timestamp = map->timestamp;
2344 			continue;
2345 		}
2346 		vm_map_clip_start(map, entry, start);
2347 		vm_map_clip_end(map, entry, end);
2348 		/*
2349 		 * Mark the entry in case the map lock is released.  (See
2350 		 * above.)
2351 		 */
2352 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2353 		    entry->wiring_thread == NULL,
2354 		    ("owned map entry %p", entry));
2355 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2356 		entry->wiring_thread = curthread;
2357 		/*
2358 		 * Check the map for holes in the specified region.
2359 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2360 		 */
2361 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2362 		    (entry->end < end && (entry->next == &map->header ||
2363 		    entry->next->start > entry->end))) {
2364 			end = entry->end;
2365 			rv = KERN_INVALID_ADDRESS;
2366 			goto done;
2367 		}
2368 		/*
2369 		 * If system unwiring, require that the entry is system wired.
2370 		 */
2371 		if (!user_unwire &&
2372 		    vm_map_entry_system_wired_count(entry) == 0) {
2373 			end = entry->end;
2374 			rv = KERN_INVALID_ARGUMENT;
2375 			goto done;
2376 		}
2377 		entry = entry->next;
2378 	}
2379 	rv = KERN_SUCCESS;
2380 done:
2381 	need_wakeup = FALSE;
2382 	if (first_entry == NULL) {
2383 		result = vm_map_lookup_entry(map, start, &first_entry);
2384 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2385 			first_entry = first_entry->next;
2386 		else
2387 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2388 	}
2389 	for (entry = first_entry; entry != &map->header && entry->start < end;
2390 	    entry = entry->next) {
2391 		/*
2392 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2393 		 * space in the unwired region could have been mapped
2394 		 * while the map lock was dropped for draining
2395 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2396 		 * could be simultaneously wiring this new mapping
2397 		 * entry.  Detect these cases and skip any entries
2398 		 * marked as in transition by us.
2399 		 */
2400 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2401 		    entry->wiring_thread != curthread) {
2402 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2403 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2404 			continue;
2405 		}
2406 
2407 		if (rv == KERN_SUCCESS && (!user_unwire ||
2408 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2409 			if (user_unwire)
2410 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2411 			if (entry->wired_count == 1)
2412 				vm_map_entry_unwire(map, entry);
2413 			else
2414 				entry->wired_count--;
2415 		}
2416 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2417 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2418 		KASSERT(entry->wiring_thread == curthread,
2419 		    ("vm_map_unwire: alien wire %p", entry));
2420 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2421 		entry->wiring_thread = NULL;
2422 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2423 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2424 			need_wakeup = TRUE;
2425 		}
2426 		vm_map_simplify_entry(map, entry);
2427 	}
2428 	vm_map_unlock(map);
2429 	if (need_wakeup)
2430 		vm_map_wakeup(map);
2431 	return (rv);
2432 }
2433 
2434 /*
2435  *	vm_map_wire_entry_failure:
2436  *
2437  *	Handle a wiring failure on the given entry.
2438  *
2439  *	The map should be locked.
2440  */
2441 static void
2442 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2443     vm_offset_t failed_addr)
2444 {
2445 
2446 	VM_MAP_ASSERT_LOCKED(map);
2447 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2448 	    entry->wired_count == 1,
2449 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2450 	KASSERT(failed_addr < entry->end,
2451 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2452 
2453 	/*
2454 	 * If any pages at the start of this entry were successfully wired,
2455 	 * then unwire them.
2456 	 */
2457 	if (failed_addr > entry->start) {
2458 		pmap_unwire(map->pmap, entry->start, failed_addr);
2459 		vm_object_unwire(entry->object.vm_object, entry->offset,
2460 		    failed_addr - entry->start, PQ_ACTIVE);
2461 	}
2462 
2463 	/*
2464 	 * Assign an out-of-range value to represent the failure to wire this
2465 	 * entry.
2466 	 */
2467 	entry->wired_count = -1;
2468 }
2469 
2470 /*
2471  *	vm_map_wire:
2472  *
2473  *	Implements both kernel and user wiring.
2474  */
2475 int
2476 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2477     int flags)
2478 {
2479 	vm_map_entry_t entry, first_entry, tmp_entry;
2480 	vm_offset_t faddr, saved_end, saved_start;
2481 	unsigned int last_timestamp;
2482 	int rv;
2483 	boolean_t need_wakeup, result, user_wire;
2484 	vm_prot_t prot;
2485 
2486 	if (start == end)
2487 		return (KERN_SUCCESS);
2488 	prot = 0;
2489 	if (flags & VM_MAP_WIRE_WRITE)
2490 		prot |= VM_PROT_WRITE;
2491 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2492 	vm_map_lock(map);
2493 	VM_MAP_RANGE_CHECK(map, start, end);
2494 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2495 		if (flags & VM_MAP_WIRE_HOLESOK)
2496 			first_entry = first_entry->next;
2497 		else {
2498 			vm_map_unlock(map);
2499 			return (KERN_INVALID_ADDRESS);
2500 		}
2501 	}
2502 	last_timestamp = map->timestamp;
2503 	entry = first_entry;
2504 	while (entry != &map->header && entry->start < end) {
2505 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2506 			/*
2507 			 * We have not yet clipped the entry.
2508 			 */
2509 			saved_start = (start >= entry->start) ? start :
2510 			    entry->start;
2511 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2512 			if (vm_map_unlock_and_wait(map, 0)) {
2513 				/*
2514 				 * Allow interruption of user wiring?
2515 				 */
2516 			}
2517 			vm_map_lock(map);
2518 			if (last_timestamp + 1 != map->timestamp) {
2519 				/*
2520 				 * Look again for the entry because the map was
2521 				 * modified while it was unlocked.
2522 				 * Specifically, the entry may have been
2523 				 * clipped, merged, or deleted.
2524 				 */
2525 				if (!vm_map_lookup_entry(map, saved_start,
2526 				    &tmp_entry)) {
2527 					if (flags & VM_MAP_WIRE_HOLESOK)
2528 						tmp_entry = tmp_entry->next;
2529 					else {
2530 						if (saved_start == start) {
2531 							/*
2532 							 * first_entry has been deleted.
2533 							 */
2534 							vm_map_unlock(map);
2535 							return (KERN_INVALID_ADDRESS);
2536 						}
2537 						end = saved_start;
2538 						rv = KERN_INVALID_ADDRESS;
2539 						goto done;
2540 					}
2541 				}
2542 				if (entry == first_entry)
2543 					first_entry = tmp_entry;
2544 				else
2545 					first_entry = NULL;
2546 				entry = tmp_entry;
2547 			}
2548 			last_timestamp = map->timestamp;
2549 			continue;
2550 		}
2551 		vm_map_clip_start(map, entry, start);
2552 		vm_map_clip_end(map, entry, end);
2553 		/*
2554 		 * Mark the entry in case the map lock is released.  (See
2555 		 * above.)
2556 		 */
2557 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2558 		    entry->wiring_thread == NULL,
2559 		    ("owned map entry %p", entry));
2560 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2561 		entry->wiring_thread = curthread;
2562 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2563 		    || (entry->protection & prot) != prot) {
2564 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2565 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2566 				end = entry->end;
2567 				rv = KERN_INVALID_ADDRESS;
2568 				goto done;
2569 			}
2570 			goto next_entry;
2571 		}
2572 		if (entry->wired_count == 0) {
2573 			entry->wired_count++;
2574 			saved_start = entry->start;
2575 			saved_end = entry->end;
2576 
2577 			/*
2578 			 * Release the map lock, relying on the in-transition
2579 			 * mark.  Mark the map busy for fork.
2580 			 */
2581 			vm_map_busy(map);
2582 			vm_map_unlock(map);
2583 
2584 			faddr = saved_start;
2585 			do {
2586 				/*
2587 				 * Simulate a fault to get the page and enter
2588 				 * it into the physical map.
2589 				 */
2590 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2591 				    VM_FAULT_CHANGE_WIRING)) != KERN_SUCCESS)
2592 					break;
2593 			} while ((faddr += PAGE_SIZE) < saved_end);
2594 			vm_map_lock(map);
2595 			vm_map_unbusy(map);
2596 			if (last_timestamp + 1 != map->timestamp) {
2597 				/*
2598 				 * Look again for the entry because the map was
2599 				 * modified while it was unlocked.  The entry
2600 				 * may have been clipped, but NOT merged or
2601 				 * deleted.
2602 				 */
2603 				result = vm_map_lookup_entry(map, saved_start,
2604 				    &tmp_entry);
2605 				KASSERT(result, ("vm_map_wire: lookup failed"));
2606 				if (entry == first_entry)
2607 					first_entry = tmp_entry;
2608 				else
2609 					first_entry = NULL;
2610 				entry = tmp_entry;
2611 				while (entry->end < saved_end) {
2612 					/*
2613 					 * In case of failure, handle entries
2614 					 * that were not fully wired here;
2615 					 * fully wired entries are handled
2616 					 * later.
2617 					 */
2618 					if (rv != KERN_SUCCESS &&
2619 					    faddr < entry->end)
2620 						vm_map_wire_entry_failure(map,
2621 						    entry, faddr);
2622 					entry = entry->next;
2623 				}
2624 			}
2625 			last_timestamp = map->timestamp;
2626 			if (rv != KERN_SUCCESS) {
2627 				vm_map_wire_entry_failure(map, entry, faddr);
2628 				end = entry->end;
2629 				goto done;
2630 			}
2631 		} else if (!user_wire ||
2632 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2633 			entry->wired_count++;
2634 		}
2635 		/*
2636 		 * Check the map for holes in the specified region.
2637 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2638 		 */
2639 	next_entry:
2640 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2641 		    (entry->end < end && (entry->next == &map->header ||
2642 		    entry->next->start > entry->end))) {
2643 			end = entry->end;
2644 			rv = KERN_INVALID_ADDRESS;
2645 			goto done;
2646 		}
2647 		entry = entry->next;
2648 	}
2649 	rv = KERN_SUCCESS;
2650 done:
2651 	need_wakeup = FALSE;
2652 	if (first_entry == NULL) {
2653 		result = vm_map_lookup_entry(map, start, &first_entry);
2654 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2655 			first_entry = first_entry->next;
2656 		else
2657 			KASSERT(result, ("vm_map_wire: lookup failed"));
2658 	}
2659 	for (entry = first_entry; entry != &map->header && entry->start < end;
2660 	    entry = entry->next) {
2661 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2662 			goto next_entry_done;
2663 
2664 		/*
2665 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2666 		 * space in the unwired region could have been mapped
2667 		 * while the map lock was dropped for faulting in the
2668 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2669 		 * Moreover, another thread could be simultaneously
2670 		 * wiring this new mapping entry.  Detect these cases
2671 		 * and skip any entries marked as in transition by us.
2672 		 */
2673 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2674 		    entry->wiring_thread != curthread) {
2675 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2676 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2677 			continue;
2678 		}
2679 
2680 		if (rv == KERN_SUCCESS) {
2681 			if (user_wire)
2682 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2683 		} else if (entry->wired_count == -1) {
2684 			/*
2685 			 * Wiring failed on this entry.  Thus, unwiring is
2686 			 * unnecessary.
2687 			 */
2688 			entry->wired_count = 0;
2689 		} else if (!user_wire ||
2690 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2691 			/*
2692 			 * Undo the wiring.  Wiring succeeded on this entry
2693 			 * but failed on a later entry.
2694 			 */
2695 			if (entry->wired_count == 1)
2696 				vm_map_entry_unwire(map, entry);
2697 			else
2698 				entry->wired_count--;
2699 		}
2700 	next_entry_done:
2701 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2702 		    ("vm_map_wire: in-transition flag missing %p", entry));
2703 		KASSERT(entry->wiring_thread == curthread,
2704 		    ("vm_map_wire: alien wire %p", entry));
2705 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2706 		    MAP_ENTRY_WIRE_SKIPPED);
2707 		entry->wiring_thread = NULL;
2708 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2709 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2710 			need_wakeup = TRUE;
2711 		}
2712 		vm_map_simplify_entry(map, entry);
2713 	}
2714 	vm_map_unlock(map);
2715 	if (need_wakeup)
2716 		vm_map_wakeup(map);
2717 	return (rv);
2718 }
2719 
2720 /*
2721  * vm_map_sync
2722  *
2723  * Push any dirty cached pages in the address range to their pager.
2724  * If syncio is TRUE, dirty pages are written synchronously.
2725  * If invalidate is TRUE, any cached pages are freed as well.
2726  *
2727  * If the size of the region from start to end is zero, we are
2728  * supposed to flush all modified pages within the region containing
2729  * start.  Unfortunately, a region can be split or coalesced with
2730  * neighboring regions, making it difficult to determine what the
2731  * original region was.  Therefore, we approximate this requirement by
2732  * flushing the current region containing start.
2733  *
2734  * Returns an error if any part of the specified range is not mapped.
2735  */
2736 int
2737 vm_map_sync(
2738 	vm_map_t map,
2739 	vm_offset_t start,
2740 	vm_offset_t end,
2741 	boolean_t syncio,
2742 	boolean_t invalidate)
2743 {
2744 	vm_map_entry_t current;
2745 	vm_map_entry_t entry;
2746 	vm_size_t size;
2747 	vm_object_t object;
2748 	vm_ooffset_t offset;
2749 	unsigned int last_timestamp;
2750 	boolean_t failed;
2751 
2752 	vm_map_lock_read(map);
2753 	VM_MAP_RANGE_CHECK(map, start, end);
2754 	if (!vm_map_lookup_entry(map, start, &entry)) {
2755 		vm_map_unlock_read(map);
2756 		return (KERN_INVALID_ADDRESS);
2757 	} else if (start == end) {
2758 		start = entry->start;
2759 		end = entry->end;
2760 	}
2761 	/*
2762 	 * Make a first pass to check for user-wired memory and holes.
2763 	 */
2764 	for (current = entry; current != &map->header && current->start < end;
2765 	    current = current->next) {
2766 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2767 			vm_map_unlock_read(map);
2768 			return (KERN_INVALID_ARGUMENT);
2769 		}
2770 		if (end > current->end &&
2771 		    (current->next == &map->header ||
2772 			current->end != current->next->start)) {
2773 			vm_map_unlock_read(map);
2774 			return (KERN_INVALID_ADDRESS);
2775 		}
2776 	}
2777 
2778 	if (invalidate)
2779 		pmap_remove(map->pmap, start, end);
2780 	failed = FALSE;
2781 
2782 	/*
2783 	 * Make a second pass, cleaning/uncaching pages from the indicated
2784 	 * objects as we go.
2785 	 */
2786 	for (current = entry; current != &map->header && current->start < end;) {
2787 		offset = current->offset + (start - current->start);
2788 		size = (end <= current->end ? end : current->end) - start;
2789 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2790 			vm_map_t smap;
2791 			vm_map_entry_t tentry;
2792 			vm_size_t tsize;
2793 
2794 			smap = current->object.sub_map;
2795 			vm_map_lock_read(smap);
2796 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2797 			tsize = tentry->end - offset;
2798 			if (tsize < size)
2799 				size = tsize;
2800 			object = tentry->object.vm_object;
2801 			offset = tentry->offset + (offset - tentry->start);
2802 			vm_map_unlock_read(smap);
2803 		} else {
2804 			object = current->object.vm_object;
2805 		}
2806 		vm_object_reference(object);
2807 		last_timestamp = map->timestamp;
2808 		vm_map_unlock_read(map);
2809 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2810 			failed = TRUE;
2811 		start += size;
2812 		vm_object_deallocate(object);
2813 		vm_map_lock_read(map);
2814 		if (last_timestamp == map->timestamp ||
2815 		    !vm_map_lookup_entry(map, start, &current))
2816 			current = current->next;
2817 	}
2818 
2819 	vm_map_unlock_read(map);
2820 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2821 }
2822 
2823 /*
2824  *	vm_map_entry_unwire:	[ internal use only ]
2825  *
2826  *	Make the region specified by this entry pageable.
2827  *
2828  *	The map in question should be locked.
2829  *	[This is the reason for this routine's existence.]
2830  */
2831 static void
2832 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2833 {
2834 
2835 	VM_MAP_ASSERT_LOCKED(map);
2836 	KASSERT(entry->wired_count > 0,
2837 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
2838 	pmap_unwire(map->pmap, entry->start, entry->end);
2839 	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2840 	    entry->start, PQ_ACTIVE);
2841 	entry->wired_count = 0;
2842 }
2843 
2844 static void
2845 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2846 {
2847 
2848 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2849 		vm_object_deallocate(entry->object.vm_object);
2850 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2851 }
2852 
2853 /*
2854  *	vm_map_entry_delete:	[ internal use only ]
2855  *
2856  *	Deallocate the given entry from the target map.
2857  */
2858 static void
2859 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2860 {
2861 	vm_object_t object;
2862 	vm_pindex_t offidxstart, offidxend, count, size1;
2863 	vm_ooffset_t size;
2864 
2865 	vm_map_entry_unlink(map, entry);
2866 	object = entry->object.vm_object;
2867 	size = entry->end - entry->start;
2868 	map->size -= size;
2869 
2870 	if (entry->cred != NULL) {
2871 		swap_release_by_cred(size, entry->cred);
2872 		crfree(entry->cred);
2873 	}
2874 
2875 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2876 	    (object != NULL)) {
2877 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2878 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2879 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2880 		count = OFF_TO_IDX(size);
2881 		offidxstart = OFF_TO_IDX(entry->offset);
2882 		offidxend = offidxstart + count;
2883 		VM_OBJECT_WLOCK(object);
2884 		if (object->ref_count != 1 &&
2885 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2886 		    object == kernel_object || object == kmem_object)) {
2887 			vm_object_collapse(object);
2888 
2889 			/*
2890 			 * The option OBJPR_NOTMAPPED can be passed here
2891 			 * because vm_map_delete() already performed
2892 			 * pmap_remove() on the only mapping to this range
2893 			 * of pages.
2894 			 */
2895 			vm_object_page_remove(object, offidxstart, offidxend,
2896 			    OBJPR_NOTMAPPED);
2897 			if (object->type == OBJT_SWAP)
2898 				swap_pager_freespace(object, offidxstart, count);
2899 			if (offidxend >= object->size &&
2900 			    offidxstart < object->size) {
2901 				size1 = object->size;
2902 				object->size = offidxstart;
2903 				if (object->cred != NULL) {
2904 					size1 -= object->size;
2905 					KASSERT(object->charge >= ptoa(size1),
2906 					    ("vm_map_entry_delete: object->charge < 0"));
2907 					swap_release_by_cred(ptoa(size1), object->cred);
2908 					object->charge -= ptoa(size1);
2909 				}
2910 			}
2911 		}
2912 		VM_OBJECT_WUNLOCK(object);
2913 	} else
2914 		entry->object.vm_object = NULL;
2915 	if (map->system_map)
2916 		vm_map_entry_deallocate(entry, TRUE);
2917 	else {
2918 		entry->next = curthread->td_map_def_user;
2919 		curthread->td_map_def_user = entry;
2920 	}
2921 }
2922 
2923 /*
2924  *	vm_map_delete:	[ internal use only ]
2925  *
2926  *	Deallocates the given address range from the target
2927  *	map.
2928  */
2929 int
2930 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2931 {
2932 	vm_map_entry_t entry;
2933 	vm_map_entry_t first_entry;
2934 
2935 	VM_MAP_ASSERT_LOCKED(map);
2936 	if (start == end)
2937 		return (KERN_SUCCESS);
2938 
2939 	/*
2940 	 * Find the start of the region, and clip it
2941 	 */
2942 	if (!vm_map_lookup_entry(map, start, &first_entry))
2943 		entry = first_entry->next;
2944 	else {
2945 		entry = first_entry;
2946 		vm_map_clip_start(map, entry, start);
2947 	}
2948 
2949 	/*
2950 	 * Step through all entries in this region
2951 	 */
2952 	while ((entry != &map->header) && (entry->start < end)) {
2953 		vm_map_entry_t next;
2954 
2955 		/*
2956 		 * Wait for wiring or unwiring of an entry to complete.
2957 		 * Also wait for any system wirings to disappear on
2958 		 * user maps.
2959 		 */
2960 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2961 		    (vm_map_pmap(map) != kernel_pmap &&
2962 		    vm_map_entry_system_wired_count(entry) != 0)) {
2963 			unsigned int last_timestamp;
2964 			vm_offset_t saved_start;
2965 			vm_map_entry_t tmp_entry;
2966 
2967 			saved_start = entry->start;
2968 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2969 			last_timestamp = map->timestamp;
2970 			(void) vm_map_unlock_and_wait(map, 0);
2971 			vm_map_lock(map);
2972 			if (last_timestamp + 1 != map->timestamp) {
2973 				/*
2974 				 * Look again for the entry because the map was
2975 				 * modified while it was unlocked.
2976 				 * Specifically, the entry may have been
2977 				 * clipped, merged, or deleted.
2978 				 */
2979 				if (!vm_map_lookup_entry(map, saved_start,
2980 							 &tmp_entry))
2981 					entry = tmp_entry->next;
2982 				else {
2983 					entry = tmp_entry;
2984 					vm_map_clip_start(map, entry,
2985 							  saved_start);
2986 				}
2987 			}
2988 			continue;
2989 		}
2990 		vm_map_clip_end(map, entry, end);
2991 
2992 		next = entry->next;
2993 
2994 		/*
2995 		 * Unwire before removing addresses from the pmap; otherwise,
2996 		 * unwiring will put the entries back in the pmap.
2997 		 */
2998 		if (entry->wired_count != 0) {
2999 			vm_map_entry_unwire(map, entry);
3000 		}
3001 
3002 		pmap_remove(map->pmap, entry->start, entry->end);
3003 
3004 		/*
3005 		 * Delete the entry only after removing all pmap
3006 		 * entries pointing to its pages.  (Otherwise, its
3007 		 * page frames may be reallocated, and any modify bits
3008 		 * will be set in the wrong object!)
3009 		 */
3010 		vm_map_entry_delete(map, entry);
3011 		entry = next;
3012 	}
3013 	return (KERN_SUCCESS);
3014 }
3015 
3016 /*
3017  *	vm_map_remove:
3018  *
3019  *	Remove the given address range from the target map.
3020  *	This is the exported form of vm_map_delete.
3021  */
3022 int
3023 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3024 {
3025 	int result;
3026 
3027 	vm_map_lock(map);
3028 	VM_MAP_RANGE_CHECK(map, start, end);
3029 	result = vm_map_delete(map, start, end);
3030 	vm_map_unlock(map);
3031 	return (result);
3032 }
3033 
3034 /*
3035  *	vm_map_check_protection:
3036  *
3037  *	Assert that the target map allows the specified privilege on the
3038  *	entire address region given.  The entire region must be allocated.
3039  *
3040  *	WARNING!  This code does not and should not check whether the
3041  *	contents of the region is accessible.  For example a smaller file
3042  *	might be mapped into a larger address space.
3043  *
3044  *	NOTE!  This code is also called by munmap().
3045  *
3046  *	The map must be locked.  A read lock is sufficient.
3047  */
3048 boolean_t
3049 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3050 			vm_prot_t protection)
3051 {
3052 	vm_map_entry_t entry;
3053 	vm_map_entry_t tmp_entry;
3054 
3055 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3056 		return (FALSE);
3057 	entry = tmp_entry;
3058 
3059 	while (start < end) {
3060 		if (entry == &map->header)
3061 			return (FALSE);
3062 		/*
3063 		 * No holes allowed!
3064 		 */
3065 		if (start < entry->start)
3066 			return (FALSE);
3067 		/*
3068 		 * Check protection associated with entry.
3069 		 */
3070 		if ((entry->protection & protection) != protection)
3071 			return (FALSE);
3072 		/* go to next entry */
3073 		start = entry->end;
3074 		entry = entry->next;
3075 	}
3076 	return (TRUE);
3077 }
3078 
3079 /*
3080  *	vm_map_copy_entry:
3081  *
3082  *	Copies the contents of the source entry to the destination
3083  *	entry.  The entries *must* be aligned properly.
3084  */
3085 static void
3086 vm_map_copy_entry(
3087 	vm_map_t src_map,
3088 	vm_map_t dst_map,
3089 	vm_map_entry_t src_entry,
3090 	vm_map_entry_t dst_entry,
3091 	vm_ooffset_t *fork_charge)
3092 {
3093 	vm_object_t src_object;
3094 	vm_map_entry_t fake_entry;
3095 	vm_offset_t size;
3096 	struct ucred *cred;
3097 	int charged;
3098 
3099 	VM_MAP_ASSERT_LOCKED(dst_map);
3100 
3101 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3102 		return;
3103 
3104 	if (src_entry->wired_count == 0 ||
3105 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3106 		/*
3107 		 * If the source entry is marked needs_copy, it is already
3108 		 * write-protected.
3109 		 */
3110 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3111 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3112 			pmap_protect(src_map->pmap,
3113 			    src_entry->start,
3114 			    src_entry->end,
3115 			    src_entry->protection & ~VM_PROT_WRITE);
3116 		}
3117 
3118 		/*
3119 		 * Make a copy of the object.
3120 		 */
3121 		size = src_entry->end - src_entry->start;
3122 		if ((src_object = src_entry->object.vm_object) != NULL) {
3123 			VM_OBJECT_WLOCK(src_object);
3124 			charged = ENTRY_CHARGED(src_entry);
3125 			if ((src_object->handle == NULL) &&
3126 				(src_object->type == OBJT_DEFAULT ||
3127 				 src_object->type == OBJT_SWAP)) {
3128 				vm_object_collapse(src_object);
3129 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3130 					vm_object_split(src_entry);
3131 					src_object = src_entry->object.vm_object;
3132 				}
3133 			}
3134 			vm_object_reference_locked(src_object);
3135 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3136 			if (src_entry->cred != NULL &&
3137 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3138 				KASSERT(src_object->cred == NULL,
3139 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3140 				     src_object));
3141 				src_object->cred = src_entry->cred;
3142 				src_object->charge = size;
3143 			}
3144 			VM_OBJECT_WUNLOCK(src_object);
3145 			dst_entry->object.vm_object = src_object;
3146 			if (charged) {
3147 				cred = curthread->td_ucred;
3148 				crhold(cred);
3149 				dst_entry->cred = cred;
3150 				*fork_charge += size;
3151 				if (!(src_entry->eflags &
3152 				      MAP_ENTRY_NEEDS_COPY)) {
3153 					crhold(cred);
3154 					src_entry->cred = cred;
3155 					*fork_charge += size;
3156 				}
3157 			}
3158 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3159 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3160 			dst_entry->offset = src_entry->offset;
3161 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3162 				/*
3163 				 * MAP_ENTRY_VN_WRITECNT cannot
3164 				 * indicate write reference from
3165 				 * src_entry, since the entry is
3166 				 * marked as needs copy.  Allocate a
3167 				 * fake entry that is used to
3168 				 * decrement object->un_pager.vnp.writecount
3169 				 * at the appropriate time.  Attach
3170 				 * fake_entry to the deferred list.
3171 				 */
3172 				fake_entry = vm_map_entry_create(dst_map);
3173 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3174 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3175 				vm_object_reference(src_object);
3176 				fake_entry->object.vm_object = src_object;
3177 				fake_entry->start = src_entry->start;
3178 				fake_entry->end = src_entry->end;
3179 				fake_entry->next = curthread->td_map_def_user;
3180 				curthread->td_map_def_user = fake_entry;
3181 			}
3182 		} else {
3183 			dst_entry->object.vm_object = NULL;
3184 			dst_entry->offset = 0;
3185 			if (src_entry->cred != NULL) {
3186 				dst_entry->cred = curthread->td_ucred;
3187 				crhold(dst_entry->cred);
3188 				*fork_charge += size;
3189 			}
3190 		}
3191 
3192 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3193 		    dst_entry->end - dst_entry->start, src_entry->start);
3194 	} else {
3195 		/*
3196 		 * We don't want to make writeable wired pages copy-on-write.
3197 		 * Immediately copy these pages into the new map by simulating
3198 		 * page faults.  The new pages are pageable.
3199 		 */
3200 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3201 		    fork_charge);
3202 	}
3203 }
3204 
3205 /*
3206  * vmspace_map_entry_forked:
3207  * Update the newly-forked vmspace each time a map entry is inherited
3208  * or copied.  The values for vm_dsize and vm_tsize are approximate
3209  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3210  */
3211 static void
3212 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3213     vm_map_entry_t entry)
3214 {
3215 	vm_size_t entrysize;
3216 	vm_offset_t newend;
3217 
3218 	entrysize = entry->end - entry->start;
3219 	vm2->vm_map.size += entrysize;
3220 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3221 		vm2->vm_ssize += btoc(entrysize);
3222 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3223 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3224 		newend = MIN(entry->end,
3225 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3226 		vm2->vm_dsize += btoc(newend - entry->start);
3227 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3228 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3229 		newend = MIN(entry->end,
3230 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3231 		vm2->vm_tsize += btoc(newend - entry->start);
3232 	}
3233 }
3234 
3235 /*
3236  * vmspace_fork:
3237  * Create a new process vmspace structure and vm_map
3238  * based on those of an existing process.  The new map
3239  * is based on the old map, according to the inheritance
3240  * values on the regions in that map.
3241  *
3242  * XXX It might be worth coalescing the entries added to the new vmspace.
3243  *
3244  * The source map must not be locked.
3245  */
3246 struct vmspace *
3247 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3248 {
3249 	struct vmspace *vm2;
3250 	vm_map_t new_map, old_map;
3251 	vm_map_entry_t new_entry, old_entry;
3252 	vm_object_t object;
3253 	int locked;
3254 
3255 	old_map = &vm1->vm_map;
3256 	/* Copy immutable fields of vm1 to vm2. */
3257 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3258 	if (vm2 == NULL)
3259 		return (NULL);
3260 	vm2->vm_taddr = vm1->vm_taddr;
3261 	vm2->vm_daddr = vm1->vm_daddr;
3262 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3263 	vm_map_lock(old_map);
3264 	if (old_map->busy)
3265 		vm_map_wait_busy(old_map);
3266 	new_map = &vm2->vm_map;
3267 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3268 	KASSERT(locked, ("vmspace_fork: lock failed"));
3269 
3270 	old_entry = old_map->header.next;
3271 
3272 	while (old_entry != &old_map->header) {
3273 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3274 			panic("vm_map_fork: encountered a submap");
3275 
3276 		switch (old_entry->inheritance) {
3277 		case VM_INHERIT_NONE:
3278 			break;
3279 
3280 		case VM_INHERIT_SHARE:
3281 			/*
3282 			 * Clone the entry, creating the shared object if necessary.
3283 			 */
3284 			object = old_entry->object.vm_object;
3285 			if (object == NULL) {
3286 				object = vm_object_allocate(OBJT_DEFAULT,
3287 					atop(old_entry->end - old_entry->start));
3288 				old_entry->object.vm_object = object;
3289 				old_entry->offset = 0;
3290 				if (old_entry->cred != NULL) {
3291 					object->cred = old_entry->cred;
3292 					object->charge = old_entry->end -
3293 					    old_entry->start;
3294 					old_entry->cred = NULL;
3295 				}
3296 			}
3297 
3298 			/*
3299 			 * Add the reference before calling vm_object_shadow
3300 			 * to insure that a shadow object is created.
3301 			 */
3302 			vm_object_reference(object);
3303 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3304 				vm_object_shadow(&old_entry->object.vm_object,
3305 				    &old_entry->offset,
3306 				    old_entry->end - old_entry->start);
3307 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3308 				/* Transfer the second reference too. */
3309 				vm_object_reference(
3310 				    old_entry->object.vm_object);
3311 
3312 				/*
3313 				 * As in vm_map_simplify_entry(), the
3314 				 * vnode lock will not be acquired in
3315 				 * this call to vm_object_deallocate().
3316 				 */
3317 				vm_object_deallocate(object);
3318 				object = old_entry->object.vm_object;
3319 			}
3320 			VM_OBJECT_WLOCK(object);
3321 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3322 			if (old_entry->cred != NULL) {
3323 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3324 				object->cred = old_entry->cred;
3325 				object->charge = old_entry->end - old_entry->start;
3326 				old_entry->cred = NULL;
3327 			}
3328 
3329 			/*
3330 			 * Assert the correct state of the vnode
3331 			 * v_writecount while the object is locked, to
3332 			 * not relock it later for the assertion
3333 			 * correctness.
3334 			 */
3335 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3336 			    object->type == OBJT_VNODE) {
3337 				KASSERT(((struct vnode *)object->handle)->
3338 				    v_writecount > 0,
3339 				    ("vmspace_fork: v_writecount %p", object));
3340 				KASSERT(object->un_pager.vnp.writemappings > 0,
3341 				    ("vmspace_fork: vnp.writecount %p",
3342 				    object));
3343 			}
3344 			VM_OBJECT_WUNLOCK(object);
3345 
3346 			/*
3347 			 * Clone the entry, referencing the shared object.
3348 			 */
3349 			new_entry = vm_map_entry_create(new_map);
3350 			*new_entry = *old_entry;
3351 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3352 			    MAP_ENTRY_IN_TRANSITION);
3353 			new_entry->wiring_thread = NULL;
3354 			new_entry->wired_count = 0;
3355 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3356 				vnode_pager_update_writecount(object,
3357 				    new_entry->start, new_entry->end);
3358 			}
3359 
3360 			/*
3361 			 * Insert the entry into the new map -- we know we're
3362 			 * inserting at the end of the new map.
3363 			 */
3364 			vm_map_entry_link(new_map, new_map->header.prev,
3365 			    new_entry);
3366 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3367 
3368 			/*
3369 			 * Update the physical map
3370 			 */
3371 			pmap_copy(new_map->pmap, old_map->pmap,
3372 			    new_entry->start,
3373 			    (old_entry->end - old_entry->start),
3374 			    old_entry->start);
3375 			break;
3376 
3377 		case VM_INHERIT_COPY:
3378 			/*
3379 			 * Clone the entry and link into the map.
3380 			 */
3381 			new_entry = vm_map_entry_create(new_map);
3382 			*new_entry = *old_entry;
3383 			/*
3384 			 * Copied entry is COW over the old object.
3385 			 */
3386 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3387 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3388 			new_entry->wiring_thread = NULL;
3389 			new_entry->wired_count = 0;
3390 			new_entry->object.vm_object = NULL;
3391 			new_entry->cred = NULL;
3392 			vm_map_entry_link(new_map, new_map->header.prev,
3393 			    new_entry);
3394 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3395 			vm_map_copy_entry(old_map, new_map, old_entry,
3396 			    new_entry, fork_charge);
3397 			break;
3398 		}
3399 		old_entry = old_entry->next;
3400 	}
3401 	/*
3402 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3403 	 * map entries, which cannot be done until both old_map and
3404 	 * new_map locks are released.
3405 	 */
3406 	sx_xunlock(&old_map->lock);
3407 	sx_xunlock(&new_map->lock);
3408 	vm_map_process_deferred();
3409 
3410 	return (vm2);
3411 }
3412 
3413 int
3414 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3415     vm_prot_t prot, vm_prot_t max, int cow)
3416 {
3417 	vm_size_t growsize, init_ssize;
3418 	rlim_t lmemlim, vmemlim;
3419 	int rv;
3420 
3421 	growsize = sgrowsiz;
3422 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3423 	vm_map_lock(map);
3424 	PROC_LOCK(curproc);
3425 	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3426 	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3427 	PROC_UNLOCK(curproc);
3428 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3429 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3430 			rv = KERN_NO_SPACE;
3431 			goto out;
3432 		}
3433 	}
3434 	/* If we would blow our VMEM resource limit, no go */
3435 	if (map->size + init_ssize > vmemlim) {
3436 		rv = KERN_NO_SPACE;
3437 		goto out;
3438 	}
3439 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3440 	    max, cow);
3441 out:
3442 	vm_map_unlock(map);
3443 	return (rv);
3444 }
3445 
3446 static int
3447 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3448     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3449 {
3450 	vm_map_entry_t new_entry, prev_entry;
3451 	vm_offset_t bot, top;
3452 	vm_size_t init_ssize;
3453 	int orient, rv;
3454 
3455 	/*
3456 	 * The stack orientation is piggybacked with the cow argument.
3457 	 * Extract it into orient and mask the cow argument so that we
3458 	 * don't pass it around further.
3459 	 * NOTE: We explicitly allow bi-directional stacks.
3460 	 */
3461 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3462 	KASSERT(orient != 0, ("No stack grow direction"));
3463 
3464 	if (addrbos < vm_map_min(map) ||
3465 	    addrbos > vm_map_max(map) ||
3466 	    addrbos + max_ssize < addrbos)
3467 		return (KERN_NO_SPACE);
3468 
3469 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3470 
3471 	/* If addr is already mapped, no go */
3472 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3473 		return (KERN_NO_SPACE);
3474 
3475 	/*
3476 	 * If we can't accomodate max_ssize in the current mapping, no go.
3477 	 * However, we need to be aware that subsequent user mappings might
3478 	 * map into the space we have reserved for stack, and currently this
3479 	 * space is not protected.
3480 	 *
3481 	 * Hopefully we will at least detect this condition when we try to
3482 	 * grow the stack.
3483 	 */
3484 	if ((prev_entry->next != &map->header) &&
3485 	    (prev_entry->next->start < addrbos + max_ssize))
3486 		return (KERN_NO_SPACE);
3487 
3488 	/*
3489 	 * We initially map a stack of only init_ssize.  We will grow as
3490 	 * needed later.  Depending on the orientation of the stack (i.e.
3491 	 * the grow direction) we either map at the top of the range, the
3492 	 * bottom of the range or in the middle.
3493 	 *
3494 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3495 	 * and cow to be 0.  Possibly we should eliminate these as input
3496 	 * parameters, and just pass these values here in the insert call.
3497 	 */
3498 	if (orient == MAP_STACK_GROWS_DOWN)
3499 		bot = addrbos + max_ssize - init_ssize;
3500 	else if (orient == MAP_STACK_GROWS_UP)
3501 		bot = addrbos;
3502 	else
3503 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3504 	top = bot + init_ssize;
3505 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3506 
3507 	/* Now set the avail_ssize amount. */
3508 	if (rv == KERN_SUCCESS) {
3509 		new_entry = prev_entry->next;
3510 		if (new_entry->end != top || new_entry->start != bot)
3511 			panic("Bad entry start/end for new stack entry");
3512 
3513 		new_entry->avail_ssize = max_ssize - init_ssize;
3514 		KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3515 		    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3516 		    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3517 		KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3518 		    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3519 		    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3520 	}
3521 
3522 	return (rv);
3523 }
3524 
3525 static int stack_guard_page = 0;
3526 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3527     &stack_guard_page, 0,
3528     "Insert stack guard page ahead of the growable segments.");
3529 
3530 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3531  * desired address is already mapped, or if we successfully grow
3532  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3533  * stack range (this is strange, but preserves compatibility with
3534  * the grow function in vm_machdep.c).
3535  */
3536 int
3537 vm_map_growstack(struct proc *p, vm_offset_t addr)
3538 {
3539 	vm_map_entry_t next_entry, prev_entry;
3540 	vm_map_entry_t new_entry, stack_entry;
3541 	struct vmspace *vm = p->p_vmspace;
3542 	vm_map_t map = &vm->vm_map;
3543 	vm_offset_t end;
3544 	vm_size_t growsize;
3545 	size_t grow_amount, max_grow;
3546 	rlim_t lmemlim, stacklim, vmemlim;
3547 	int is_procstack, rv;
3548 	struct ucred *cred;
3549 #ifdef notyet
3550 	uint64_t limit;
3551 #endif
3552 #ifdef RACCT
3553 	int error;
3554 #endif
3555 
3556 Retry:
3557 	PROC_LOCK(p);
3558 	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3559 	stacklim = lim_cur(p, RLIMIT_STACK);
3560 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3561 	PROC_UNLOCK(p);
3562 
3563 	vm_map_lock_read(map);
3564 
3565 	/* If addr is already in the entry range, no need to grow.*/
3566 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3567 		vm_map_unlock_read(map);
3568 		return (KERN_SUCCESS);
3569 	}
3570 
3571 	next_entry = prev_entry->next;
3572 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3573 		/*
3574 		 * This entry does not grow upwards. Since the address lies
3575 		 * beyond this entry, the next entry (if one exists) has to
3576 		 * be a downward growable entry. The entry list header is
3577 		 * never a growable entry, so it suffices to check the flags.
3578 		 */
3579 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3580 			vm_map_unlock_read(map);
3581 			return (KERN_SUCCESS);
3582 		}
3583 		stack_entry = next_entry;
3584 	} else {
3585 		/*
3586 		 * This entry grows upward. If the next entry does not at
3587 		 * least grow downwards, this is the entry we need to grow.
3588 		 * otherwise we have two possible choices and we have to
3589 		 * select one.
3590 		 */
3591 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3592 			/*
3593 			 * We have two choices; grow the entry closest to
3594 			 * the address to minimize the amount of growth.
3595 			 */
3596 			if (addr - prev_entry->end <= next_entry->start - addr)
3597 				stack_entry = prev_entry;
3598 			else
3599 				stack_entry = next_entry;
3600 		} else
3601 			stack_entry = prev_entry;
3602 	}
3603 
3604 	if (stack_entry == next_entry) {
3605 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3606 		KASSERT(addr < stack_entry->start, ("foo"));
3607 		end = (prev_entry != &map->header) ? prev_entry->end :
3608 		    stack_entry->start - stack_entry->avail_ssize;
3609 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3610 		max_grow = stack_entry->start - end;
3611 	} else {
3612 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3613 		KASSERT(addr >= stack_entry->end, ("foo"));
3614 		end = (next_entry != &map->header) ? next_entry->start :
3615 		    stack_entry->end + stack_entry->avail_ssize;
3616 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3617 		max_grow = end - stack_entry->end;
3618 	}
3619 
3620 	if (grow_amount > stack_entry->avail_ssize) {
3621 		vm_map_unlock_read(map);
3622 		return (KERN_NO_SPACE);
3623 	}
3624 
3625 	/*
3626 	 * If there is no longer enough space between the entries nogo, and
3627 	 * adjust the available space.  Note: this  should only happen if the
3628 	 * user has mapped into the stack area after the stack was created,
3629 	 * and is probably an error.
3630 	 *
3631 	 * This also effectively destroys any guard page the user might have
3632 	 * intended by limiting the stack size.
3633 	 */
3634 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3635 		if (vm_map_lock_upgrade(map))
3636 			goto Retry;
3637 
3638 		stack_entry->avail_ssize = max_grow;
3639 
3640 		vm_map_unlock(map);
3641 		return (KERN_NO_SPACE);
3642 	}
3643 
3644 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3645 
3646 	/*
3647 	 * If this is the main process stack, see if we're over the stack
3648 	 * limit.
3649 	 */
3650 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3651 		vm_map_unlock_read(map);
3652 		return (KERN_NO_SPACE);
3653 	}
3654 #ifdef RACCT
3655 	PROC_LOCK(p);
3656 	if (is_procstack &&
3657 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3658 		PROC_UNLOCK(p);
3659 		vm_map_unlock_read(map);
3660 		return (KERN_NO_SPACE);
3661 	}
3662 	PROC_UNLOCK(p);
3663 #endif
3664 
3665 	/* Round up the grow amount modulo sgrowsiz */
3666 	growsize = sgrowsiz;
3667 	grow_amount = roundup(grow_amount, growsize);
3668 	if (grow_amount > stack_entry->avail_ssize)
3669 		grow_amount = stack_entry->avail_ssize;
3670 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3671 		grow_amount = trunc_page((vm_size_t)stacklim) -
3672 		    ctob(vm->vm_ssize);
3673 	}
3674 #ifdef notyet
3675 	PROC_LOCK(p);
3676 	limit = racct_get_available(p, RACCT_STACK);
3677 	PROC_UNLOCK(p);
3678 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3679 		grow_amount = limit - ctob(vm->vm_ssize);
3680 #endif
3681 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3682 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3683 			vm_map_unlock_read(map);
3684 			rv = KERN_NO_SPACE;
3685 			goto out;
3686 		}
3687 #ifdef RACCT
3688 		PROC_LOCK(p);
3689 		if (racct_set(p, RACCT_MEMLOCK,
3690 		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3691 			PROC_UNLOCK(p);
3692 			vm_map_unlock_read(map);
3693 			rv = KERN_NO_SPACE;
3694 			goto out;
3695 		}
3696 		PROC_UNLOCK(p);
3697 #endif
3698 	}
3699 	/* If we would blow our VMEM resource limit, no go */
3700 	if (map->size + grow_amount > vmemlim) {
3701 		vm_map_unlock_read(map);
3702 		rv = KERN_NO_SPACE;
3703 		goto out;
3704 	}
3705 #ifdef RACCT
3706 	PROC_LOCK(p);
3707 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3708 		PROC_UNLOCK(p);
3709 		vm_map_unlock_read(map);
3710 		rv = KERN_NO_SPACE;
3711 		goto out;
3712 	}
3713 	PROC_UNLOCK(p);
3714 #endif
3715 
3716 	if (vm_map_lock_upgrade(map))
3717 		goto Retry;
3718 
3719 	if (stack_entry == next_entry) {
3720 		/*
3721 		 * Growing downward.
3722 		 */
3723 		/* Get the preliminary new entry start value */
3724 		addr = stack_entry->start - grow_amount;
3725 
3726 		/*
3727 		 * If this puts us into the previous entry, cut back our
3728 		 * growth to the available space. Also, see the note above.
3729 		 */
3730 		if (addr < end) {
3731 			stack_entry->avail_ssize = max_grow;
3732 			addr = end;
3733 			if (stack_guard_page)
3734 				addr += PAGE_SIZE;
3735 		}
3736 
3737 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3738 		    next_entry->protection, next_entry->max_protection,
3739 		    MAP_STACK_GROWS_DOWN);
3740 
3741 		/* Adjust the available stack space by the amount we grew. */
3742 		if (rv == KERN_SUCCESS) {
3743 			new_entry = prev_entry->next;
3744 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3745 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3746 			KASSERT(new_entry->start == addr, ("foo"));
3747 			KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) !=
3748 			    0, ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3749 			grow_amount = new_entry->end - new_entry->start;
3750 			new_entry->avail_ssize = stack_entry->avail_ssize -
3751 			    grow_amount;
3752 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3753 		}
3754 	} else {
3755 		/*
3756 		 * Growing upward.
3757 		 */
3758 		addr = stack_entry->end + grow_amount;
3759 
3760 		/*
3761 		 * If this puts us into the next entry, cut back our growth
3762 		 * to the available space. Also, see the note above.
3763 		 */
3764 		if (addr > end) {
3765 			stack_entry->avail_ssize = end - stack_entry->end;
3766 			addr = end;
3767 			if (stack_guard_page)
3768 				addr -= PAGE_SIZE;
3769 		}
3770 
3771 		grow_amount = addr - stack_entry->end;
3772 		cred = stack_entry->cred;
3773 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3774 			cred = stack_entry->object.vm_object->cred;
3775 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3776 			rv = KERN_NO_SPACE;
3777 		/* Grow the underlying object if applicable. */
3778 		else if (stack_entry->object.vm_object == NULL ||
3779 			 vm_object_coalesce(stack_entry->object.vm_object,
3780 			 stack_entry->offset,
3781 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3782 			 (vm_size_t)grow_amount, cred != NULL)) {
3783 			map->size += (addr - stack_entry->end);
3784 			/* Update the current entry. */
3785 			stack_entry->end = addr;
3786 			stack_entry->avail_ssize -= grow_amount;
3787 			vm_map_entry_resize_free(map, stack_entry);
3788 			rv = KERN_SUCCESS;
3789 		} else
3790 			rv = KERN_FAILURE;
3791 	}
3792 
3793 	if (rv == KERN_SUCCESS && is_procstack)
3794 		vm->vm_ssize += btoc(grow_amount);
3795 
3796 	vm_map_unlock(map);
3797 
3798 	/*
3799 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3800 	 */
3801 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3802 		vm_map_wire(map,
3803 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3804 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3805 		    (p->p_flag & P_SYSTEM)
3806 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3807 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3808 	}
3809 
3810 out:
3811 #ifdef RACCT
3812 	if (rv != KERN_SUCCESS) {
3813 		PROC_LOCK(p);
3814 		error = racct_set(p, RACCT_VMEM, map->size);
3815 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3816 		if (!old_mlock) {
3817 			error = racct_set(p, RACCT_MEMLOCK,
3818 			    ptoa(pmap_wired_count(map->pmap)));
3819 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3820 		}
3821 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3822 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3823 		PROC_UNLOCK(p);
3824 	}
3825 #endif
3826 
3827 	return (rv);
3828 }
3829 
3830 /*
3831  * Unshare the specified VM space for exec.  If other processes are
3832  * mapped to it, then create a new one.  The new vmspace is null.
3833  */
3834 int
3835 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3836 {
3837 	struct vmspace *oldvmspace = p->p_vmspace;
3838 	struct vmspace *newvmspace;
3839 
3840 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3841 	    ("vmspace_exec recursed"));
3842 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3843 	if (newvmspace == NULL)
3844 		return (ENOMEM);
3845 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3846 	/*
3847 	 * This code is written like this for prototype purposes.  The
3848 	 * goal is to avoid running down the vmspace here, but let the
3849 	 * other process's that are still using the vmspace to finally
3850 	 * run it down.  Even though there is little or no chance of blocking
3851 	 * here, it is a good idea to keep this form for future mods.
3852 	 */
3853 	PROC_VMSPACE_LOCK(p);
3854 	p->p_vmspace = newvmspace;
3855 	PROC_VMSPACE_UNLOCK(p);
3856 	if (p == curthread->td_proc)
3857 		pmap_activate(curthread);
3858 	curthread->td_pflags |= TDP_EXECVMSPC;
3859 	return (0);
3860 }
3861 
3862 /*
3863  * Unshare the specified VM space for forcing COW.  This
3864  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3865  */
3866 int
3867 vmspace_unshare(struct proc *p)
3868 {
3869 	struct vmspace *oldvmspace = p->p_vmspace;
3870 	struct vmspace *newvmspace;
3871 	vm_ooffset_t fork_charge;
3872 
3873 	if (oldvmspace->vm_refcnt == 1)
3874 		return (0);
3875 	fork_charge = 0;
3876 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3877 	if (newvmspace == NULL)
3878 		return (ENOMEM);
3879 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3880 		vmspace_free(newvmspace);
3881 		return (ENOMEM);
3882 	}
3883 	PROC_VMSPACE_LOCK(p);
3884 	p->p_vmspace = newvmspace;
3885 	PROC_VMSPACE_UNLOCK(p);
3886 	if (p == curthread->td_proc)
3887 		pmap_activate(curthread);
3888 	vmspace_free(oldvmspace);
3889 	return (0);
3890 }
3891 
3892 /*
3893  *	vm_map_lookup:
3894  *
3895  *	Finds the VM object, offset, and
3896  *	protection for a given virtual address in the
3897  *	specified map, assuming a page fault of the
3898  *	type specified.
3899  *
3900  *	Leaves the map in question locked for read; return
3901  *	values are guaranteed until a vm_map_lookup_done
3902  *	call is performed.  Note that the map argument
3903  *	is in/out; the returned map must be used in
3904  *	the call to vm_map_lookup_done.
3905  *
3906  *	A handle (out_entry) is returned for use in
3907  *	vm_map_lookup_done, to make that fast.
3908  *
3909  *	If a lookup is requested with "write protection"
3910  *	specified, the map may be changed to perform virtual
3911  *	copying operations, although the data referenced will
3912  *	remain the same.
3913  */
3914 int
3915 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3916 	      vm_offset_t vaddr,
3917 	      vm_prot_t fault_typea,
3918 	      vm_map_entry_t *out_entry,	/* OUT */
3919 	      vm_object_t *object,		/* OUT */
3920 	      vm_pindex_t *pindex,		/* OUT */
3921 	      vm_prot_t *out_prot,		/* OUT */
3922 	      boolean_t *wired)			/* OUT */
3923 {
3924 	vm_map_entry_t entry;
3925 	vm_map_t map = *var_map;
3926 	vm_prot_t prot;
3927 	vm_prot_t fault_type = fault_typea;
3928 	vm_object_t eobject;
3929 	vm_size_t size;
3930 	struct ucred *cred;
3931 
3932 RetryLookup:;
3933 
3934 	vm_map_lock_read(map);
3935 
3936 	/*
3937 	 * Lookup the faulting address.
3938 	 */
3939 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3940 		vm_map_unlock_read(map);
3941 		return (KERN_INVALID_ADDRESS);
3942 	}
3943 
3944 	entry = *out_entry;
3945 
3946 	/*
3947 	 * Handle submaps.
3948 	 */
3949 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3950 		vm_map_t old_map = map;
3951 
3952 		*var_map = map = entry->object.sub_map;
3953 		vm_map_unlock_read(old_map);
3954 		goto RetryLookup;
3955 	}
3956 
3957 	/*
3958 	 * Check whether this task is allowed to have this page.
3959 	 */
3960 	prot = entry->protection;
3961 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3962 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3963 		vm_map_unlock_read(map);
3964 		return (KERN_PROTECTION_FAILURE);
3965 	}
3966 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3967 	    (entry->eflags & MAP_ENTRY_COW) &&
3968 	    (fault_type & VM_PROT_WRITE)) {
3969 		vm_map_unlock_read(map);
3970 		return (KERN_PROTECTION_FAILURE);
3971 	}
3972 	if ((fault_typea & VM_PROT_COPY) != 0 &&
3973 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3974 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3975 		vm_map_unlock_read(map);
3976 		return (KERN_PROTECTION_FAILURE);
3977 	}
3978 
3979 	/*
3980 	 * If this page is not pageable, we have to get it for all possible
3981 	 * accesses.
3982 	 */
3983 	*wired = (entry->wired_count != 0);
3984 	if (*wired)
3985 		fault_type = entry->protection;
3986 	size = entry->end - entry->start;
3987 	/*
3988 	 * If the entry was copy-on-write, we either ...
3989 	 */
3990 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3991 		/*
3992 		 * If we want to write the page, we may as well handle that
3993 		 * now since we've got the map locked.
3994 		 *
3995 		 * If we don't need to write the page, we just demote the
3996 		 * permissions allowed.
3997 		 */
3998 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3999 		    (fault_typea & VM_PROT_COPY) != 0) {
4000 			/*
4001 			 * Make a new object, and place it in the object
4002 			 * chain.  Note that no new references have appeared
4003 			 * -- one just moved from the map to the new
4004 			 * object.
4005 			 */
4006 			if (vm_map_lock_upgrade(map))
4007 				goto RetryLookup;
4008 
4009 			if (entry->cred == NULL) {
4010 				/*
4011 				 * The debugger owner is charged for
4012 				 * the memory.
4013 				 */
4014 				cred = curthread->td_ucred;
4015 				crhold(cred);
4016 				if (!swap_reserve_by_cred(size, cred)) {
4017 					crfree(cred);
4018 					vm_map_unlock(map);
4019 					return (KERN_RESOURCE_SHORTAGE);
4020 				}
4021 				entry->cred = cred;
4022 			}
4023 			vm_object_shadow(&entry->object.vm_object,
4024 			    &entry->offset, size);
4025 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4026 			eobject = entry->object.vm_object;
4027 			if (eobject->cred != NULL) {
4028 				/*
4029 				 * The object was not shadowed.
4030 				 */
4031 				swap_release_by_cred(size, entry->cred);
4032 				crfree(entry->cred);
4033 				entry->cred = NULL;
4034 			} else if (entry->cred != NULL) {
4035 				VM_OBJECT_WLOCK(eobject);
4036 				eobject->cred = entry->cred;
4037 				eobject->charge = size;
4038 				VM_OBJECT_WUNLOCK(eobject);
4039 				entry->cred = NULL;
4040 			}
4041 
4042 			vm_map_lock_downgrade(map);
4043 		} else {
4044 			/*
4045 			 * We're attempting to read a copy-on-write page --
4046 			 * don't allow writes.
4047 			 */
4048 			prot &= ~VM_PROT_WRITE;
4049 		}
4050 	}
4051 
4052 	/*
4053 	 * Create an object if necessary.
4054 	 */
4055 	if (entry->object.vm_object == NULL &&
4056 	    !map->system_map) {
4057 		if (vm_map_lock_upgrade(map))
4058 			goto RetryLookup;
4059 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4060 		    atop(size));
4061 		entry->offset = 0;
4062 		if (entry->cred != NULL) {
4063 			VM_OBJECT_WLOCK(entry->object.vm_object);
4064 			entry->object.vm_object->cred = entry->cred;
4065 			entry->object.vm_object->charge = size;
4066 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4067 			entry->cred = NULL;
4068 		}
4069 		vm_map_lock_downgrade(map);
4070 	}
4071 
4072 	/*
4073 	 * Return the object/offset from this entry.  If the entry was
4074 	 * copy-on-write or empty, it has been fixed up.
4075 	 */
4076 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4077 	*object = entry->object.vm_object;
4078 
4079 	*out_prot = prot;
4080 	return (KERN_SUCCESS);
4081 }
4082 
4083 /*
4084  *	vm_map_lookup_locked:
4085  *
4086  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4087  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4088  */
4089 int
4090 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4091 		     vm_offset_t vaddr,
4092 		     vm_prot_t fault_typea,
4093 		     vm_map_entry_t *out_entry,	/* OUT */
4094 		     vm_object_t *object,	/* OUT */
4095 		     vm_pindex_t *pindex,	/* OUT */
4096 		     vm_prot_t *out_prot,	/* OUT */
4097 		     boolean_t *wired)		/* OUT */
4098 {
4099 	vm_map_entry_t entry;
4100 	vm_map_t map = *var_map;
4101 	vm_prot_t prot;
4102 	vm_prot_t fault_type = fault_typea;
4103 
4104 	/*
4105 	 * Lookup the faulting address.
4106 	 */
4107 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4108 		return (KERN_INVALID_ADDRESS);
4109 
4110 	entry = *out_entry;
4111 
4112 	/*
4113 	 * Fail if the entry refers to a submap.
4114 	 */
4115 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4116 		return (KERN_FAILURE);
4117 
4118 	/*
4119 	 * Check whether this task is allowed to have this page.
4120 	 */
4121 	prot = entry->protection;
4122 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4123 	if ((fault_type & prot) != fault_type)
4124 		return (KERN_PROTECTION_FAILURE);
4125 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4126 	    (entry->eflags & MAP_ENTRY_COW) &&
4127 	    (fault_type & VM_PROT_WRITE))
4128 		return (KERN_PROTECTION_FAILURE);
4129 
4130 	/*
4131 	 * If this page is not pageable, we have to get it for all possible
4132 	 * accesses.
4133 	 */
4134 	*wired = (entry->wired_count != 0);
4135 	if (*wired)
4136 		fault_type = entry->protection;
4137 
4138 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4139 		/*
4140 		 * Fail if the entry was copy-on-write for a write fault.
4141 		 */
4142 		if (fault_type & VM_PROT_WRITE)
4143 			return (KERN_FAILURE);
4144 		/*
4145 		 * We're attempting to read a copy-on-write page --
4146 		 * don't allow writes.
4147 		 */
4148 		prot &= ~VM_PROT_WRITE;
4149 	}
4150 
4151 	/*
4152 	 * Fail if an object should be created.
4153 	 */
4154 	if (entry->object.vm_object == NULL && !map->system_map)
4155 		return (KERN_FAILURE);
4156 
4157 	/*
4158 	 * Return the object/offset from this entry.  If the entry was
4159 	 * copy-on-write or empty, it has been fixed up.
4160 	 */
4161 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4162 	*object = entry->object.vm_object;
4163 
4164 	*out_prot = prot;
4165 	return (KERN_SUCCESS);
4166 }
4167 
4168 /*
4169  *	vm_map_lookup_done:
4170  *
4171  *	Releases locks acquired by a vm_map_lookup
4172  *	(according to the handle returned by that lookup).
4173  */
4174 void
4175 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4176 {
4177 	/*
4178 	 * Unlock the main-level map
4179 	 */
4180 	vm_map_unlock_read(map);
4181 }
4182 
4183 #include "opt_ddb.h"
4184 #ifdef DDB
4185 #include <sys/kernel.h>
4186 
4187 #include <ddb/ddb.h>
4188 
4189 static void
4190 vm_map_print(vm_map_t map)
4191 {
4192 	vm_map_entry_t entry;
4193 
4194 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4195 	    (void *)map,
4196 	    (void *)map->pmap, map->nentries, map->timestamp);
4197 
4198 	db_indent += 2;
4199 	for (entry = map->header.next; entry != &map->header;
4200 	    entry = entry->next) {
4201 		db_iprintf("map entry %p: start=%p, end=%p\n",
4202 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4203 		{
4204 			static char *inheritance_name[4] =
4205 			{"share", "copy", "none", "donate_copy"};
4206 
4207 			db_iprintf(" prot=%x/%x/%s",
4208 			    entry->protection,
4209 			    entry->max_protection,
4210 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4211 			if (entry->wired_count != 0)
4212 				db_printf(", wired");
4213 		}
4214 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4215 			db_printf(", share=%p, offset=0x%jx\n",
4216 			    (void *)entry->object.sub_map,
4217 			    (uintmax_t)entry->offset);
4218 			if ((entry->prev == &map->header) ||
4219 			    (entry->prev->object.sub_map !=
4220 				entry->object.sub_map)) {
4221 				db_indent += 2;
4222 				vm_map_print((vm_map_t)entry->object.sub_map);
4223 				db_indent -= 2;
4224 			}
4225 		} else {
4226 			if (entry->cred != NULL)
4227 				db_printf(", ruid %d", entry->cred->cr_ruid);
4228 			db_printf(", object=%p, offset=0x%jx",
4229 			    (void *)entry->object.vm_object,
4230 			    (uintmax_t)entry->offset);
4231 			if (entry->object.vm_object && entry->object.vm_object->cred)
4232 				db_printf(", obj ruid %d charge %jx",
4233 				    entry->object.vm_object->cred->cr_ruid,
4234 				    (uintmax_t)entry->object.vm_object->charge);
4235 			if (entry->eflags & MAP_ENTRY_COW)
4236 				db_printf(", copy (%s)",
4237 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4238 			db_printf("\n");
4239 
4240 			if ((entry->prev == &map->header) ||
4241 			    (entry->prev->object.vm_object !=
4242 				entry->object.vm_object)) {
4243 				db_indent += 2;
4244 				vm_object_print((db_expr_t)(intptr_t)
4245 						entry->object.vm_object,
4246 						0, 0, (char *)0);
4247 				db_indent -= 2;
4248 			}
4249 		}
4250 	}
4251 	db_indent -= 2;
4252 }
4253 
4254 DB_SHOW_COMMAND(map, map)
4255 {
4256 
4257 	if (!have_addr) {
4258 		db_printf("usage: show map <addr>\n");
4259 		return;
4260 	}
4261 	vm_map_print((vm_map_t)addr);
4262 }
4263 
4264 DB_SHOW_COMMAND(procvm, procvm)
4265 {
4266 	struct proc *p;
4267 
4268 	if (have_addr) {
4269 		p = (struct proc *) addr;
4270 	} else {
4271 		p = curproc;
4272 	}
4273 
4274 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4275 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4276 	    (void *)vmspace_pmap(p->p_vmspace));
4277 
4278 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4279 }
4280 
4281 #endif /* DDB */
4282