1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/rwlock.h> 81 #include <sys/file.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/shm.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_pager.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t mapzone; 128 static uma_zone_t vmspace_zone; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static int vm_map_zinit(void *mem, int ize, int flags); 131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 132 vm_offset_t max); 133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 137 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 138 #ifdef INVARIANTS 139 static void vm_map_zdtor(void *mem, int size, void *arg); 140 static void vmspace_zdtor(void *mem, int size, void *arg); 141 #endif 142 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 143 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 144 int cow); 145 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 146 vm_offset_t failed_addr); 147 148 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 149 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 150 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 151 152 /* 153 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 154 * stable. 155 */ 156 #define PROC_VMSPACE_LOCK(p) do { } while (0) 157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 158 159 /* 160 * VM_MAP_RANGE_CHECK: [ internal use only ] 161 * 162 * Asserts that the starting and ending region 163 * addresses fall within the valid range of the map. 164 */ 165 #define VM_MAP_RANGE_CHECK(map, start, end) \ 166 { \ 167 if (start < vm_map_min(map)) \ 168 start = vm_map_min(map); \ 169 if (end > vm_map_max(map)) \ 170 end = vm_map_max(map); \ 171 if (start > end) \ 172 start = end; \ 173 } 174 175 /* 176 * vm_map_startup: 177 * 178 * Initialize the vm_map module. Must be called before 179 * any other vm_map routines. 180 * 181 * Map and entry structures are allocated from the general 182 * purpose memory pool with some exceptions: 183 * 184 * - The kernel map and kmem submap are allocated statically. 185 * - Kernel map entries are allocated out of a static pool. 186 * 187 * These restrictions are necessary since malloc() uses the 188 * maps and requires map entries. 189 */ 190 191 void 192 vm_map_startup(void) 193 { 194 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 195 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 196 #ifdef INVARIANTS 197 vm_map_zdtor, 198 #else 199 NULL, 200 #endif 201 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 202 uma_prealloc(mapzone, MAX_KMAP); 203 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 204 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 205 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 206 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 207 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 208 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 209 #ifdef INVARIANTS 210 vmspace_zdtor, 211 #else 212 NULL, 213 #endif 214 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 215 } 216 217 static int 218 vmspace_zinit(void *mem, int size, int flags) 219 { 220 struct vmspace *vm; 221 222 vm = (struct vmspace *)mem; 223 224 vm->vm_map.pmap = NULL; 225 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 226 PMAP_LOCK_INIT(vmspace_pmap(vm)); 227 return (0); 228 } 229 230 static int 231 vm_map_zinit(void *mem, int size, int flags) 232 { 233 vm_map_t map; 234 235 map = (vm_map_t)mem; 236 memset(map, 0, sizeof(*map)); 237 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 238 sx_init(&map->lock, "vm map (user)"); 239 return (0); 240 } 241 242 #ifdef INVARIANTS 243 static void 244 vmspace_zdtor(void *mem, int size, void *arg) 245 { 246 struct vmspace *vm; 247 248 vm = (struct vmspace *)mem; 249 250 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 251 } 252 static void 253 vm_map_zdtor(void *mem, int size, void *arg) 254 { 255 vm_map_t map; 256 257 map = (vm_map_t)mem; 258 KASSERT(map->nentries == 0, 259 ("map %p nentries == %d on free.", 260 map, map->nentries)); 261 KASSERT(map->size == 0, 262 ("map %p size == %lu on free.", 263 map, (unsigned long)map->size)); 264 } 265 #endif /* INVARIANTS */ 266 267 /* 268 * Allocate a vmspace structure, including a vm_map and pmap, 269 * and initialize those structures. The refcnt is set to 1. 270 * 271 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 272 */ 273 struct vmspace * 274 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 275 { 276 struct vmspace *vm; 277 278 vm = uma_zalloc(vmspace_zone, M_WAITOK); 279 280 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 281 282 if (pinit == NULL) 283 pinit = &pmap_pinit; 284 285 if (!pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 static void 304 vmspace_container_reset(struct proc *p) 305 { 306 307 #ifdef RACCT 308 PROC_LOCK(p); 309 racct_set(p, RACCT_DATA, 0); 310 racct_set(p, RACCT_STACK, 0); 311 racct_set(p, RACCT_RSS, 0); 312 racct_set(p, RACCT_MEMLOCK, 0); 313 racct_set(p, RACCT_VMEM, 0); 314 PROC_UNLOCK(p); 315 #endif 316 } 317 318 static inline void 319 vmspace_dofree(struct vmspace *vm) 320 { 321 322 CTR1(KTR_VM, "vmspace_free: %p", vm); 323 324 /* 325 * Make sure any SysV shm is freed, it might not have been in 326 * exit1(). 327 */ 328 shmexit(vm); 329 330 /* 331 * Lock the map, to wait out all other references to it. 332 * Delete all of the mappings and pages they hold, then call 333 * the pmap module to reclaim anything left. 334 */ 335 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 336 vm->vm_map.max_offset); 337 338 pmap_release(vmspace_pmap(vm)); 339 vm->vm_map.pmap = NULL; 340 uma_zfree(vmspace_zone, vm); 341 } 342 343 void 344 vmspace_free(struct vmspace *vm) 345 { 346 347 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 348 "vmspace_free() called with non-sleepable lock held"); 349 350 if (vm->vm_refcnt == 0) 351 panic("vmspace_free: attempt to free already freed vmspace"); 352 353 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 354 vmspace_dofree(vm); 355 } 356 357 void 358 vmspace_exitfree(struct proc *p) 359 { 360 struct vmspace *vm; 361 362 PROC_VMSPACE_LOCK(p); 363 vm = p->p_vmspace; 364 p->p_vmspace = NULL; 365 PROC_VMSPACE_UNLOCK(p); 366 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 367 vmspace_free(vm); 368 } 369 370 void 371 vmspace_exit(struct thread *td) 372 { 373 int refcnt; 374 struct vmspace *vm; 375 struct proc *p; 376 377 /* 378 * Release user portion of address space. 379 * This releases references to vnodes, 380 * which could cause I/O if the file has been unlinked. 381 * Need to do this early enough that we can still sleep. 382 * 383 * The last exiting process to reach this point releases as 384 * much of the environment as it can. vmspace_dofree() is the 385 * slower fallback in case another process had a temporary 386 * reference to the vmspace. 387 */ 388 389 p = td->td_proc; 390 vm = p->p_vmspace; 391 atomic_add_int(&vmspace0.vm_refcnt, 1); 392 do { 393 refcnt = vm->vm_refcnt; 394 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 395 /* Switch now since other proc might free vmspace */ 396 PROC_VMSPACE_LOCK(p); 397 p->p_vmspace = &vmspace0; 398 PROC_VMSPACE_UNLOCK(p); 399 pmap_activate(td); 400 } 401 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 402 if (refcnt == 1) { 403 if (p->p_vmspace != vm) { 404 /* vmspace not yet freed, switch back */ 405 PROC_VMSPACE_LOCK(p); 406 p->p_vmspace = vm; 407 PROC_VMSPACE_UNLOCK(p); 408 pmap_activate(td); 409 } 410 pmap_remove_pages(vmspace_pmap(vm)); 411 /* Switch now since this proc will free vmspace */ 412 PROC_VMSPACE_LOCK(p); 413 p->p_vmspace = &vmspace0; 414 PROC_VMSPACE_UNLOCK(p); 415 pmap_activate(td); 416 vmspace_dofree(vm); 417 } 418 vmspace_container_reset(p); 419 } 420 421 /* Acquire reference to vmspace owned by another process. */ 422 423 struct vmspace * 424 vmspace_acquire_ref(struct proc *p) 425 { 426 struct vmspace *vm; 427 int refcnt; 428 429 PROC_VMSPACE_LOCK(p); 430 vm = p->p_vmspace; 431 if (vm == NULL) { 432 PROC_VMSPACE_UNLOCK(p); 433 return (NULL); 434 } 435 do { 436 refcnt = vm->vm_refcnt; 437 if (refcnt <= 0) { /* Avoid 0->1 transition */ 438 PROC_VMSPACE_UNLOCK(p); 439 return (NULL); 440 } 441 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 442 if (vm != p->p_vmspace) { 443 PROC_VMSPACE_UNLOCK(p); 444 vmspace_free(vm); 445 return (NULL); 446 } 447 PROC_VMSPACE_UNLOCK(p); 448 return (vm); 449 } 450 451 void 452 _vm_map_lock(vm_map_t map, const char *file, int line) 453 { 454 455 if (map->system_map) 456 mtx_lock_flags_(&map->system_mtx, 0, file, line); 457 else 458 sx_xlock_(&map->lock, file, line); 459 map->timestamp++; 460 } 461 462 static void 463 vm_map_process_deferred(void) 464 { 465 struct thread *td; 466 vm_map_entry_t entry, next; 467 vm_object_t object; 468 469 td = curthread; 470 entry = td->td_map_def_user; 471 td->td_map_def_user = NULL; 472 while (entry != NULL) { 473 next = entry->next; 474 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 475 /* 476 * Decrement the object's writemappings and 477 * possibly the vnode's v_writecount. 478 */ 479 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 480 ("Submap with writecount")); 481 object = entry->object.vm_object; 482 KASSERT(object != NULL, ("No object for writecount")); 483 vnode_pager_release_writecount(object, entry->start, 484 entry->end); 485 } 486 vm_map_entry_deallocate(entry, FALSE); 487 entry = next; 488 } 489 } 490 491 void 492 _vm_map_unlock(vm_map_t map, const char *file, int line) 493 { 494 495 if (map->system_map) 496 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 497 else { 498 sx_xunlock_(&map->lock, file, line); 499 vm_map_process_deferred(); 500 } 501 } 502 503 void 504 _vm_map_lock_read(vm_map_t map, const char *file, int line) 505 { 506 507 if (map->system_map) 508 mtx_lock_flags_(&map->system_mtx, 0, file, line); 509 else 510 sx_slock_(&map->lock, file, line); 511 } 512 513 void 514 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 515 { 516 517 if (map->system_map) 518 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 519 else { 520 sx_sunlock_(&map->lock, file, line); 521 vm_map_process_deferred(); 522 } 523 } 524 525 int 526 _vm_map_trylock(vm_map_t map, const char *file, int line) 527 { 528 int error; 529 530 error = map->system_map ? 531 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 532 !sx_try_xlock_(&map->lock, file, line); 533 if (error == 0) 534 map->timestamp++; 535 return (error == 0); 536 } 537 538 int 539 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 540 { 541 int error; 542 543 error = map->system_map ? 544 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 545 !sx_try_slock_(&map->lock, file, line); 546 return (error == 0); 547 } 548 549 /* 550 * _vm_map_lock_upgrade: [ internal use only ] 551 * 552 * Tries to upgrade a read (shared) lock on the specified map to a write 553 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 554 * non-zero value if the upgrade fails. If the upgrade fails, the map is 555 * returned without a read or write lock held. 556 * 557 * Requires that the map be read locked. 558 */ 559 int 560 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 561 { 562 unsigned int last_timestamp; 563 564 if (map->system_map) { 565 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 566 } else { 567 if (!sx_try_upgrade_(&map->lock, file, line)) { 568 last_timestamp = map->timestamp; 569 sx_sunlock_(&map->lock, file, line); 570 vm_map_process_deferred(); 571 /* 572 * If the map's timestamp does not change while the 573 * map is unlocked, then the upgrade succeeds. 574 */ 575 sx_xlock_(&map->lock, file, line); 576 if (last_timestamp != map->timestamp) { 577 sx_xunlock_(&map->lock, file, line); 578 return (1); 579 } 580 } 581 } 582 map->timestamp++; 583 return (0); 584 } 585 586 void 587 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 588 { 589 590 if (map->system_map) { 591 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 592 } else 593 sx_downgrade_(&map->lock, file, line); 594 } 595 596 /* 597 * vm_map_locked: 598 * 599 * Returns a non-zero value if the caller holds a write (exclusive) lock 600 * on the specified map and the value "0" otherwise. 601 */ 602 int 603 vm_map_locked(vm_map_t map) 604 { 605 606 if (map->system_map) 607 return (mtx_owned(&map->system_mtx)); 608 else 609 return (sx_xlocked(&map->lock)); 610 } 611 612 #ifdef INVARIANTS 613 static void 614 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 615 { 616 617 if (map->system_map) 618 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 619 else 620 sx_assert_(&map->lock, SA_XLOCKED, file, line); 621 } 622 623 #define VM_MAP_ASSERT_LOCKED(map) \ 624 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 625 #else 626 #define VM_MAP_ASSERT_LOCKED(map) 627 #endif 628 629 /* 630 * _vm_map_unlock_and_wait: 631 * 632 * Atomically releases the lock on the specified map and puts the calling 633 * thread to sleep. The calling thread will remain asleep until either 634 * vm_map_wakeup() is performed on the map or the specified timeout is 635 * exceeded. 636 * 637 * WARNING! This function does not perform deferred deallocations of 638 * objects and map entries. Therefore, the calling thread is expected to 639 * reacquire the map lock after reawakening and later perform an ordinary 640 * unlock operation, such as vm_map_unlock(), before completing its 641 * operation on the map. 642 */ 643 int 644 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 645 { 646 647 mtx_lock(&map_sleep_mtx); 648 if (map->system_map) 649 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 650 else 651 sx_xunlock_(&map->lock, file, line); 652 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 653 timo)); 654 } 655 656 /* 657 * vm_map_wakeup: 658 * 659 * Awaken any threads that have slept on the map using 660 * vm_map_unlock_and_wait(). 661 */ 662 void 663 vm_map_wakeup(vm_map_t map) 664 { 665 666 /* 667 * Acquire and release map_sleep_mtx to prevent a wakeup() 668 * from being performed (and lost) between the map unlock 669 * and the msleep() in _vm_map_unlock_and_wait(). 670 */ 671 mtx_lock(&map_sleep_mtx); 672 mtx_unlock(&map_sleep_mtx); 673 wakeup(&map->root); 674 } 675 676 void 677 vm_map_busy(vm_map_t map) 678 { 679 680 VM_MAP_ASSERT_LOCKED(map); 681 map->busy++; 682 } 683 684 void 685 vm_map_unbusy(vm_map_t map) 686 { 687 688 VM_MAP_ASSERT_LOCKED(map); 689 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 690 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 691 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 692 wakeup(&map->busy); 693 } 694 } 695 696 void 697 vm_map_wait_busy(vm_map_t map) 698 { 699 700 VM_MAP_ASSERT_LOCKED(map); 701 while (map->busy) { 702 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 703 if (map->system_map) 704 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 705 else 706 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 707 } 708 map->timestamp++; 709 } 710 711 long 712 vmspace_resident_count(struct vmspace *vmspace) 713 { 714 return pmap_resident_count(vmspace_pmap(vmspace)); 715 } 716 717 /* 718 * vm_map_create: 719 * 720 * Creates and returns a new empty VM map with 721 * the given physical map structure, and having 722 * the given lower and upper address bounds. 723 */ 724 vm_map_t 725 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 726 { 727 vm_map_t result; 728 729 result = uma_zalloc(mapzone, M_WAITOK); 730 CTR1(KTR_VM, "vm_map_create: %p", result); 731 _vm_map_init(result, pmap, min, max); 732 return (result); 733 } 734 735 /* 736 * Initialize an existing vm_map structure 737 * such as that in the vmspace structure. 738 */ 739 static void 740 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 741 { 742 743 map->header.next = map->header.prev = &map->header; 744 map->needs_wakeup = FALSE; 745 map->system_map = 0; 746 map->pmap = pmap; 747 map->min_offset = min; 748 map->max_offset = max; 749 map->flags = 0; 750 map->root = NULL; 751 map->timestamp = 0; 752 map->busy = 0; 753 } 754 755 void 756 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 757 { 758 759 _vm_map_init(map, pmap, min, max); 760 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 761 sx_init(&map->lock, "user map"); 762 } 763 764 /* 765 * vm_map_entry_dispose: [ internal use only ] 766 * 767 * Inverse of vm_map_entry_create. 768 */ 769 static void 770 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 771 { 772 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 773 } 774 775 /* 776 * vm_map_entry_create: [ internal use only ] 777 * 778 * Allocates a VM map entry for insertion. 779 * No entry fields are filled in. 780 */ 781 static vm_map_entry_t 782 vm_map_entry_create(vm_map_t map) 783 { 784 vm_map_entry_t new_entry; 785 786 if (map->system_map) 787 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 788 else 789 new_entry = uma_zalloc(mapentzone, M_WAITOK); 790 if (new_entry == NULL) 791 panic("vm_map_entry_create: kernel resources exhausted"); 792 return (new_entry); 793 } 794 795 /* 796 * vm_map_entry_set_behavior: 797 * 798 * Set the expected access behavior, either normal, random, or 799 * sequential. 800 */ 801 static inline void 802 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 803 { 804 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 805 (behavior & MAP_ENTRY_BEHAV_MASK); 806 } 807 808 /* 809 * vm_map_entry_set_max_free: 810 * 811 * Set the max_free field in a vm_map_entry. 812 */ 813 static inline void 814 vm_map_entry_set_max_free(vm_map_entry_t entry) 815 { 816 817 entry->max_free = entry->adj_free; 818 if (entry->left != NULL && entry->left->max_free > entry->max_free) 819 entry->max_free = entry->left->max_free; 820 if (entry->right != NULL && entry->right->max_free > entry->max_free) 821 entry->max_free = entry->right->max_free; 822 } 823 824 /* 825 * vm_map_entry_splay: 826 * 827 * The Sleator and Tarjan top-down splay algorithm with the 828 * following variation. Max_free must be computed bottom-up, so 829 * on the downward pass, maintain the left and right spines in 830 * reverse order. Then, make a second pass up each side to fix 831 * the pointers and compute max_free. The time bound is O(log n) 832 * amortized. 833 * 834 * The new root is the vm_map_entry containing "addr", or else an 835 * adjacent entry (lower or higher) if addr is not in the tree. 836 * 837 * The map must be locked, and leaves it so. 838 * 839 * Returns: the new root. 840 */ 841 static vm_map_entry_t 842 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 843 { 844 vm_map_entry_t llist, rlist; 845 vm_map_entry_t ltree, rtree; 846 vm_map_entry_t y; 847 848 /* Special case of empty tree. */ 849 if (root == NULL) 850 return (root); 851 852 /* 853 * Pass One: Splay down the tree until we find addr or a NULL 854 * pointer where addr would go. llist and rlist are the two 855 * sides in reverse order (bottom-up), with llist linked by 856 * the right pointer and rlist linked by the left pointer in 857 * the vm_map_entry. Wait until Pass Two to set max_free on 858 * the two spines. 859 */ 860 llist = NULL; 861 rlist = NULL; 862 for (;;) { 863 /* root is never NULL in here. */ 864 if (addr < root->start) { 865 y = root->left; 866 if (y == NULL) 867 break; 868 if (addr < y->start && y->left != NULL) { 869 /* Rotate right and put y on rlist. */ 870 root->left = y->right; 871 y->right = root; 872 vm_map_entry_set_max_free(root); 873 root = y->left; 874 y->left = rlist; 875 rlist = y; 876 } else { 877 /* Put root on rlist. */ 878 root->left = rlist; 879 rlist = root; 880 root = y; 881 } 882 } else if (addr >= root->end) { 883 y = root->right; 884 if (y == NULL) 885 break; 886 if (addr >= y->end && y->right != NULL) { 887 /* Rotate left and put y on llist. */ 888 root->right = y->left; 889 y->left = root; 890 vm_map_entry_set_max_free(root); 891 root = y->right; 892 y->right = llist; 893 llist = y; 894 } else { 895 /* Put root on llist. */ 896 root->right = llist; 897 llist = root; 898 root = y; 899 } 900 } else 901 break; 902 } 903 904 /* 905 * Pass Two: Walk back up the two spines, flip the pointers 906 * and set max_free. The subtrees of the root go at the 907 * bottom of llist and rlist. 908 */ 909 ltree = root->left; 910 while (llist != NULL) { 911 y = llist->right; 912 llist->right = ltree; 913 vm_map_entry_set_max_free(llist); 914 ltree = llist; 915 llist = y; 916 } 917 rtree = root->right; 918 while (rlist != NULL) { 919 y = rlist->left; 920 rlist->left = rtree; 921 vm_map_entry_set_max_free(rlist); 922 rtree = rlist; 923 rlist = y; 924 } 925 926 /* 927 * Final assembly: add ltree and rtree as subtrees of root. 928 */ 929 root->left = ltree; 930 root->right = rtree; 931 vm_map_entry_set_max_free(root); 932 933 return (root); 934 } 935 936 /* 937 * vm_map_entry_{un,}link: 938 * 939 * Insert/remove entries from maps. 940 */ 941 static void 942 vm_map_entry_link(vm_map_t map, 943 vm_map_entry_t after_where, 944 vm_map_entry_t entry) 945 { 946 947 CTR4(KTR_VM, 948 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 949 map->nentries, entry, after_where); 950 VM_MAP_ASSERT_LOCKED(map); 951 KASSERT(after_where == &map->header || 952 after_where->end <= entry->start, 953 ("vm_map_entry_link: prev end %jx new start %jx overlap", 954 (uintmax_t)after_where->end, (uintmax_t)entry->start)); 955 KASSERT(after_where->next == &map->header || 956 entry->end <= after_where->next->start, 957 ("vm_map_entry_link: new end %jx next start %jx overlap", 958 (uintmax_t)entry->end, (uintmax_t)after_where->next->start)); 959 960 map->nentries++; 961 entry->prev = after_where; 962 entry->next = after_where->next; 963 entry->next->prev = entry; 964 after_where->next = entry; 965 966 if (after_where != &map->header) { 967 if (after_where != map->root) 968 vm_map_entry_splay(after_where->start, map->root); 969 entry->right = after_where->right; 970 entry->left = after_where; 971 after_where->right = NULL; 972 after_where->adj_free = entry->start - after_where->end; 973 vm_map_entry_set_max_free(after_where); 974 } else { 975 entry->right = map->root; 976 entry->left = NULL; 977 } 978 entry->adj_free = (entry->next == &map->header ? map->max_offset : 979 entry->next->start) - entry->end; 980 vm_map_entry_set_max_free(entry); 981 map->root = entry; 982 } 983 984 static void 985 vm_map_entry_unlink(vm_map_t map, 986 vm_map_entry_t entry) 987 { 988 vm_map_entry_t next, prev, root; 989 990 VM_MAP_ASSERT_LOCKED(map); 991 if (entry != map->root) 992 vm_map_entry_splay(entry->start, map->root); 993 if (entry->left == NULL) 994 root = entry->right; 995 else { 996 root = vm_map_entry_splay(entry->start, entry->left); 997 root->right = entry->right; 998 root->adj_free = (entry->next == &map->header ? map->max_offset : 999 entry->next->start) - root->end; 1000 vm_map_entry_set_max_free(root); 1001 } 1002 map->root = root; 1003 1004 prev = entry->prev; 1005 next = entry->next; 1006 next->prev = prev; 1007 prev->next = next; 1008 map->nentries--; 1009 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1010 map->nentries, entry); 1011 } 1012 1013 /* 1014 * vm_map_entry_resize_free: 1015 * 1016 * Recompute the amount of free space following a vm_map_entry 1017 * and propagate that value up the tree. Call this function after 1018 * resizing a map entry in-place, that is, without a call to 1019 * vm_map_entry_link() or _unlink(). 1020 * 1021 * The map must be locked, and leaves it so. 1022 */ 1023 static void 1024 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1025 { 1026 1027 /* 1028 * Using splay trees without parent pointers, propagating 1029 * max_free up the tree is done by moving the entry to the 1030 * root and making the change there. 1031 */ 1032 if (entry != map->root) 1033 map->root = vm_map_entry_splay(entry->start, map->root); 1034 1035 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1036 entry->next->start) - entry->end; 1037 vm_map_entry_set_max_free(entry); 1038 } 1039 1040 /* 1041 * vm_map_lookup_entry: [ internal use only ] 1042 * 1043 * Finds the map entry containing (or 1044 * immediately preceding) the specified address 1045 * in the given map; the entry is returned 1046 * in the "entry" parameter. The boolean 1047 * result indicates whether the address is 1048 * actually contained in the map. 1049 */ 1050 boolean_t 1051 vm_map_lookup_entry( 1052 vm_map_t map, 1053 vm_offset_t address, 1054 vm_map_entry_t *entry) /* OUT */ 1055 { 1056 vm_map_entry_t cur; 1057 boolean_t locked; 1058 1059 /* 1060 * If the map is empty, then the map entry immediately preceding 1061 * "address" is the map's header. 1062 */ 1063 cur = map->root; 1064 if (cur == NULL) 1065 *entry = &map->header; 1066 else if (address >= cur->start && cur->end > address) { 1067 *entry = cur; 1068 return (TRUE); 1069 } else if ((locked = vm_map_locked(map)) || 1070 sx_try_upgrade(&map->lock)) { 1071 /* 1072 * Splay requires a write lock on the map. However, it only 1073 * restructures the binary search tree; it does not otherwise 1074 * change the map. Thus, the map's timestamp need not change 1075 * on a temporary upgrade. 1076 */ 1077 map->root = cur = vm_map_entry_splay(address, cur); 1078 if (!locked) 1079 sx_downgrade(&map->lock); 1080 1081 /* 1082 * If "address" is contained within a map entry, the new root 1083 * is that map entry. Otherwise, the new root is a map entry 1084 * immediately before or after "address". 1085 */ 1086 if (address >= cur->start) { 1087 *entry = cur; 1088 if (cur->end > address) 1089 return (TRUE); 1090 } else 1091 *entry = cur->prev; 1092 } else 1093 /* 1094 * Since the map is only locked for read access, perform a 1095 * standard binary search tree lookup for "address". 1096 */ 1097 for (;;) { 1098 if (address < cur->start) { 1099 if (cur->left == NULL) { 1100 *entry = cur->prev; 1101 break; 1102 } 1103 cur = cur->left; 1104 } else if (cur->end > address) { 1105 *entry = cur; 1106 return (TRUE); 1107 } else { 1108 if (cur->right == NULL) { 1109 *entry = cur; 1110 break; 1111 } 1112 cur = cur->right; 1113 } 1114 } 1115 return (FALSE); 1116 } 1117 1118 /* 1119 * vm_map_insert: 1120 * 1121 * Inserts the given whole VM object into the target 1122 * map at the specified address range. The object's 1123 * size should match that of the address range. 1124 * 1125 * Requires that the map be locked, and leaves it so. 1126 * 1127 * If object is non-NULL, ref count must be bumped by caller 1128 * prior to making call to account for the new entry. 1129 */ 1130 int 1131 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1132 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1133 { 1134 vm_map_entry_t new_entry, prev_entry, temp_entry; 1135 vm_eflags_t protoeflags; 1136 struct ucred *cred; 1137 vm_inherit_t inheritance; 1138 1139 VM_MAP_ASSERT_LOCKED(map); 1140 KASSERT((object != kmem_object && object != kernel_object) || 1141 (cow & MAP_COPY_ON_WRITE) == 0, 1142 ("vm_map_insert: kmem or kernel object and COW")); 1143 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1144 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1145 1146 /* 1147 * Check that the start and end points are not bogus. 1148 */ 1149 if ((start < map->min_offset) || (end > map->max_offset) || 1150 (start >= end)) 1151 return (KERN_INVALID_ADDRESS); 1152 1153 /* 1154 * Find the entry prior to the proposed starting address; if it's part 1155 * of an existing entry, this range is bogus. 1156 */ 1157 if (vm_map_lookup_entry(map, start, &temp_entry)) 1158 return (KERN_NO_SPACE); 1159 1160 prev_entry = temp_entry; 1161 1162 /* 1163 * Assert that the next entry doesn't overlap the end point. 1164 */ 1165 if ((prev_entry->next != &map->header) && 1166 (prev_entry->next->start < end)) 1167 return (KERN_NO_SPACE); 1168 1169 protoeflags = 0; 1170 if (cow & MAP_COPY_ON_WRITE) 1171 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1172 if (cow & MAP_NOFAULT) 1173 protoeflags |= MAP_ENTRY_NOFAULT; 1174 if (cow & MAP_DISABLE_SYNCER) 1175 protoeflags |= MAP_ENTRY_NOSYNC; 1176 if (cow & MAP_DISABLE_COREDUMP) 1177 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1178 if (cow & MAP_STACK_GROWS_DOWN) 1179 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1180 if (cow & MAP_STACK_GROWS_UP) 1181 protoeflags |= MAP_ENTRY_GROWS_UP; 1182 if (cow & MAP_VN_WRITECOUNT) 1183 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1184 if (cow & MAP_INHERIT_SHARE) 1185 inheritance = VM_INHERIT_SHARE; 1186 else 1187 inheritance = VM_INHERIT_DEFAULT; 1188 1189 cred = NULL; 1190 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1191 goto charged; 1192 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1193 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1194 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1195 return (KERN_RESOURCE_SHORTAGE); 1196 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1197 object->cred == NULL, 1198 ("OVERCOMMIT: vm_map_insert o %p", object)); 1199 cred = curthread->td_ucred; 1200 } 1201 1202 charged: 1203 /* Expand the kernel pmap, if necessary. */ 1204 if (map == kernel_map && end > kernel_vm_end) 1205 pmap_growkernel(end); 1206 if (object != NULL) { 1207 /* 1208 * OBJ_ONEMAPPING must be cleared unless this mapping 1209 * is trivially proven to be the only mapping for any 1210 * of the object's pages. (Object granularity 1211 * reference counting is insufficient to recognize 1212 * aliases with precision.) 1213 */ 1214 VM_OBJECT_WLOCK(object); 1215 if (object->ref_count > 1 || object->shadow_count != 0) 1216 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1217 VM_OBJECT_WUNLOCK(object); 1218 } 1219 else if ((prev_entry != &map->header) && 1220 (prev_entry->eflags == protoeflags) && 1221 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 && 1222 (prev_entry->end == start) && 1223 (prev_entry->wired_count == 0) && 1224 (prev_entry->cred == cred || 1225 (prev_entry->object.vm_object != NULL && 1226 (prev_entry->object.vm_object->cred == cred))) && 1227 vm_object_coalesce(prev_entry->object.vm_object, 1228 prev_entry->offset, 1229 (vm_size_t)(prev_entry->end - prev_entry->start), 1230 (vm_size_t)(end - prev_entry->end), cred != NULL && 1231 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1232 /* 1233 * We were able to extend the object. Determine if we 1234 * can extend the previous map entry to include the 1235 * new range as well. 1236 */ 1237 if ((prev_entry->inheritance == inheritance) && 1238 (prev_entry->protection == prot) && 1239 (prev_entry->max_protection == max)) { 1240 map->size += (end - prev_entry->end); 1241 prev_entry->end = end; 1242 vm_map_entry_resize_free(map, prev_entry); 1243 vm_map_simplify_entry(map, prev_entry); 1244 return (KERN_SUCCESS); 1245 } 1246 1247 /* 1248 * If we can extend the object but cannot extend the 1249 * map entry, we have to create a new map entry. We 1250 * must bump the ref count on the extended object to 1251 * account for it. object may be NULL. 1252 */ 1253 object = prev_entry->object.vm_object; 1254 offset = prev_entry->offset + 1255 (prev_entry->end - prev_entry->start); 1256 vm_object_reference(object); 1257 if (cred != NULL && object != NULL && object->cred != NULL && 1258 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1259 /* Object already accounts for this uid. */ 1260 cred = NULL; 1261 } 1262 } 1263 if (cred != NULL) 1264 crhold(cred); 1265 1266 /* 1267 * Create a new entry 1268 */ 1269 new_entry = vm_map_entry_create(map); 1270 new_entry->start = start; 1271 new_entry->end = end; 1272 new_entry->cred = NULL; 1273 1274 new_entry->eflags = protoeflags; 1275 new_entry->object.vm_object = object; 1276 new_entry->offset = offset; 1277 new_entry->avail_ssize = 0; 1278 1279 new_entry->inheritance = inheritance; 1280 new_entry->protection = prot; 1281 new_entry->max_protection = max; 1282 new_entry->wired_count = 0; 1283 new_entry->wiring_thread = NULL; 1284 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1285 new_entry->next_read = OFF_TO_IDX(offset); 1286 1287 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1288 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1289 new_entry->cred = cred; 1290 1291 /* 1292 * Insert the new entry into the list 1293 */ 1294 vm_map_entry_link(map, prev_entry, new_entry); 1295 map->size += new_entry->end - new_entry->start; 1296 1297 /* 1298 * Try to coalesce the new entry with both the previous and next 1299 * entries in the list. Previously, we only attempted to coalesce 1300 * with the previous entry when object is NULL. Here, we handle the 1301 * other cases, which are less common. 1302 */ 1303 vm_map_simplify_entry(map, new_entry); 1304 1305 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1306 vm_map_pmap_enter(map, start, prot, 1307 object, OFF_TO_IDX(offset), end - start, 1308 cow & MAP_PREFAULT_PARTIAL); 1309 } 1310 1311 return (KERN_SUCCESS); 1312 } 1313 1314 /* 1315 * vm_map_findspace: 1316 * 1317 * Find the first fit (lowest VM address) for "length" free bytes 1318 * beginning at address >= start in the given map. 1319 * 1320 * In a vm_map_entry, "adj_free" is the amount of free space 1321 * adjacent (higher address) to this entry, and "max_free" is the 1322 * maximum amount of contiguous free space in its subtree. This 1323 * allows finding a free region in one path down the tree, so 1324 * O(log n) amortized with splay trees. 1325 * 1326 * The map must be locked, and leaves it so. 1327 * 1328 * Returns: 0 on success, and starting address in *addr, 1329 * 1 if insufficient space. 1330 */ 1331 int 1332 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1333 vm_offset_t *addr) /* OUT */ 1334 { 1335 vm_map_entry_t entry; 1336 vm_offset_t st; 1337 1338 /* 1339 * Request must fit within min/max VM address and must avoid 1340 * address wrap. 1341 */ 1342 if (start < map->min_offset) 1343 start = map->min_offset; 1344 if (start + length > map->max_offset || start + length < start) 1345 return (1); 1346 1347 /* Empty tree means wide open address space. */ 1348 if (map->root == NULL) { 1349 *addr = start; 1350 return (0); 1351 } 1352 1353 /* 1354 * After splay, if start comes before root node, then there 1355 * must be a gap from start to the root. 1356 */ 1357 map->root = vm_map_entry_splay(start, map->root); 1358 if (start + length <= map->root->start) { 1359 *addr = start; 1360 return (0); 1361 } 1362 1363 /* 1364 * Root is the last node that might begin its gap before 1365 * start, and this is the last comparison where address 1366 * wrap might be a problem. 1367 */ 1368 st = (start > map->root->end) ? start : map->root->end; 1369 if (length <= map->root->end + map->root->adj_free - st) { 1370 *addr = st; 1371 return (0); 1372 } 1373 1374 /* With max_free, can immediately tell if no solution. */ 1375 entry = map->root->right; 1376 if (entry == NULL || length > entry->max_free) 1377 return (1); 1378 1379 /* 1380 * Search the right subtree in the order: left subtree, root, 1381 * right subtree (first fit). The previous splay implies that 1382 * all regions in the right subtree have addresses > start. 1383 */ 1384 while (entry != NULL) { 1385 if (entry->left != NULL && entry->left->max_free >= length) 1386 entry = entry->left; 1387 else if (entry->adj_free >= length) { 1388 *addr = entry->end; 1389 return (0); 1390 } else 1391 entry = entry->right; 1392 } 1393 1394 /* Can't get here, so panic if we do. */ 1395 panic("vm_map_findspace: max_free corrupt"); 1396 } 1397 1398 int 1399 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1400 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1401 vm_prot_t max, int cow) 1402 { 1403 vm_offset_t end; 1404 int result; 1405 1406 end = start + length; 1407 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1408 object == NULL, 1409 ("vm_map_fixed: non-NULL backing object for stack")); 1410 vm_map_lock(map); 1411 VM_MAP_RANGE_CHECK(map, start, end); 1412 if ((cow & MAP_CHECK_EXCL) == 0) 1413 vm_map_delete(map, start, end); 1414 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1415 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1416 prot, max, cow); 1417 } else { 1418 result = vm_map_insert(map, object, offset, start, end, 1419 prot, max, cow); 1420 } 1421 vm_map_unlock(map); 1422 return (result); 1423 } 1424 1425 /* 1426 * vm_map_find finds an unallocated region in the target address 1427 * map with the given length. The search is defined to be 1428 * first-fit from the specified address; the region found is 1429 * returned in the same parameter. 1430 * 1431 * If object is non-NULL, ref count must be bumped by caller 1432 * prior to making call to account for the new entry. 1433 */ 1434 int 1435 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1436 vm_offset_t *addr, /* IN/OUT */ 1437 vm_size_t length, vm_offset_t max_addr, int find_space, 1438 vm_prot_t prot, vm_prot_t max, int cow) 1439 { 1440 vm_offset_t alignment, initial_addr, start; 1441 int result; 1442 1443 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1444 object == NULL, 1445 ("vm_map_find: non-NULL backing object for stack")); 1446 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1447 (object->flags & OBJ_COLORED) == 0)) 1448 find_space = VMFS_ANY_SPACE; 1449 if (find_space >> 8 != 0) { 1450 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1451 alignment = (vm_offset_t)1 << (find_space >> 8); 1452 } else 1453 alignment = 0; 1454 initial_addr = *addr; 1455 again: 1456 start = initial_addr; 1457 vm_map_lock(map); 1458 do { 1459 if (find_space != VMFS_NO_SPACE) { 1460 if (vm_map_findspace(map, start, length, addr) || 1461 (max_addr != 0 && *addr + length > max_addr)) { 1462 vm_map_unlock(map); 1463 if (find_space == VMFS_OPTIMAL_SPACE) { 1464 find_space = VMFS_ANY_SPACE; 1465 goto again; 1466 } 1467 return (KERN_NO_SPACE); 1468 } 1469 switch (find_space) { 1470 case VMFS_SUPER_SPACE: 1471 case VMFS_OPTIMAL_SPACE: 1472 pmap_align_superpage(object, offset, addr, 1473 length); 1474 break; 1475 case VMFS_ANY_SPACE: 1476 break; 1477 default: 1478 if ((*addr & (alignment - 1)) != 0) { 1479 *addr &= ~(alignment - 1); 1480 *addr += alignment; 1481 } 1482 break; 1483 } 1484 1485 start = *addr; 1486 } 1487 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1488 result = vm_map_stack_locked(map, start, length, 1489 sgrowsiz, prot, max, cow); 1490 } else { 1491 result = vm_map_insert(map, object, offset, start, 1492 start + length, prot, max, cow); 1493 } 1494 } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE && 1495 find_space != VMFS_ANY_SPACE); 1496 vm_map_unlock(map); 1497 return (result); 1498 } 1499 1500 /* 1501 * vm_map_simplify_entry: 1502 * 1503 * Simplify the given map entry by merging with either neighbor. This 1504 * routine also has the ability to merge with both neighbors. 1505 * 1506 * The map must be locked. 1507 * 1508 * This routine guarentees that the passed entry remains valid (though 1509 * possibly extended). When merging, this routine may delete one or 1510 * both neighbors. 1511 */ 1512 void 1513 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1514 { 1515 vm_map_entry_t next, prev; 1516 vm_size_t prevsize, esize; 1517 1518 if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | 1519 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0) 1520 return; 1521 1522 prev = entry->prev; 1523 if (prev != &map->header) { 1524 prevsize = prev->end - prev->start; 1525 if ( (prev->end == entry->start) && 1526 (prev->object.vm_object == entry->object.vm_object) && 1527 (!prev->object.vm_object || 1528 (prev->offset + prevsize == entry->offset)) && 1529 (prev->eflags == entry->eflags) && 1530 (prev->protection == entry->protection) && 1531 (prev->max_protection == entry->max_protection) && 1532 (prev->inheritance == entry->inheritance) && 1533 (prev->wired_count == entry->wired_count) && 1534 (prev->cred == entry->cred)) { 1535 vm_map_entry_unlink(map, prev); 1536 entry->start = prev->start; 1537 entry->offset = prev->offset; 1538 if (entry->prev != &map->header) 1539 vm_map_entry_resize_free(map, entry->prev); 1540 1541 /* 1542 * If the backing object is a vnode object, 1543 * vm_object_deallocate() calls vrele(). 1544 * However, vrele() does not lock the vnode 1545 * because the vnode has additional 1546 * references. Thus, the map lock can be kept 1547 * without causing a lock-order reversal with 1548 * the vnode lock. 1549 * 1550 * Since we count the number of virtual page 1551 * mappings in object->un_pager.vnp.writemappings, 1552 * the writemappings value should not be adjusted 1553 * when the entry is disposed of. 1554 */ 1555 if (prev->object.vm_object) 1556 vm_object_deallocate(prev->object.vm_object); 1557 if (prev->cred != NULL) 1558 crfree(prev->cred); 1559 vm_map_entry_dispose(map, prev); 1560 } 1561 } 1562 1563 next = entry->next; 1564 if (next != &map->header) { 1565 esize = entry->end - entry->start; 1566 if ((entry->end == next->start) && 1567 (next->object.vm_object == entry->object.vm_object) && 1568 (!entry->object.vm_object || 1569 (entry->offset + esize == next->offset)) && 1570 (next->eflags == entry->eflags) && 1571 (next->protection == entry->protection) && 1572 (next->max_protection == entry->max_protection) && 1573 (next->inheritance == entry->inheritance) && 1574 (next->wired_count == entry->wired_count) && 1575 (next->cred == entry->cred)) { 1576 vm_map_entry_unlink(map, next); 1577 entry->end = next->end; 1578 vm_map_entry_resize_free(map, entry); 1579 1580 /* 1581 * See comment above. 1582 */ 1583 if (next->object.vm_object) 1584 vm_object_deallocate(next->object.vm_object); 1585 if (next->cred != NULL) 1586 crfree(next->cred); 1587 vm_map_entry_dispose(map, next); 1588 } 1589 } 1590 } 1591 /* 1592 * vm_map_clip_start: [ internal use only ] 1593 * 1594 * Asserts that the given entry begins at or after 1595 * the specified address; if necessary, 1596 * it splits the entry into two. 1597 */ 1598 #define vm_map_clip_start(map, entry, startaddr) \ 1599 { \ 1600 if (startaddr > entry->start) \ 1601 _vm_map_clip_start(map, entry, startaddr); \ 1602 } 1603 1604 /* 1605 * This routine is called only when it is known that 1606 * the entry must be split. 1607 */ 1608 static void 1609 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1610 { 1611 vm_map_entry_t new_entry; 1612 1613 VM_MAP_ASSERT_LOCKED(map); 1614 1615 /* 1616 * Split off the front portion -- note that we must insert the new 1617 * entry BEFORE this one, so that this entry has the specified 1618 * starting address. 1619 */ 1620 vm_map_simplify_entry(map, entry); 1621 1622 /* 1623 * If there is no object backing this entry, we might as well create 1624 * one now. If we defer it, an object can get created after the map 1625 * is clipped, and individual objects will be created for the split-up 1626 * map. This is a bit of a hack, but is also about the best place to 1627 * put this improvement. 1628 */ 1629 if (entry->object.vm_object == NULL && !map->system_map) { 1630 vm_object_t object; 1631 object = vm_object_allocate(OBJT_DEFAULT, 1632 atop(entry->end - entry->start)); 1633 entry->object.vm_object = object; 1634 entry->offset = 0; 1635 if (entry->cred != NULL) { 1636 object->cred = entry->cred; 1637 object->charge = entry->end - entry->start; 1638 entry->cred = NULL; 1639 } 1640 } else if (entry->object.vm_object != NULL && 1641 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1642 entry->cred != NULL) { 1643 VM_OBJECT_WLOCK(entry->object.vm_object); 1644 KASSERT(entry->object.vm_object->cred == NULL, 1645 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1646 entry->object.vm_object->cred = entry->cred; 1647 entry->object.vm_object->charge = entry->end - entry->start; 1648 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1649 entry->cred = NULL; 1650 } 1651 1652 new_entry = vm_map_entry_create(map); 1653 *new_entry = *entry; 1654 1655 new_entry->end = start; 1656 entry->offset += (start - entry->start); 1657 entry->start = start; 1658 if (new_entry->cred != NULL) 1659 crhold(entry->cred); 1660 1661 vm_map_entry_link(map, entry->prev, new_entry); 1662 1663 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1664 vm_object_reference(new_entry->object.vm_object); 1665 /* 1666 * The object->un_pager.vnp.writemappings for the 1667 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1668 * kept as is here. The virtual pages are 1669 * re-distributed among the clipped entries, so the sum is 1670 * left the same. 1671 */ 1672 } 1673 } 1674 1675 /* 1676 * vm_map_clip_end: [ internal use only ] 1677 * 1678 * Asserts that the given entry ends at or before 1679 * the specified address; if necessary, 1680 * it splits the entry into two. 1681 */ 1682 #define vm_map_clip_end(map, entry, endaddr) \ 1683 { \ 1684 if ((endaddr) < (entry->end)) \ 1685 _vm_map_clip_end((map), (entry), (endaddr)); \ 1686 } 1687 1688 /* 1689 * This routine is called only when it is known that 1690 * the entry must be split. 1691 */ 1692 static void 1693 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1694 { 1695 vm_map_entry_t new_entry; 1696 1697 VM_MAP_ASSERT_LOCKED(map); 1698 1699 /* 1700 * If there is no object backing this entry, we might as well create 1701 * one now. If we defer it, an object can get created after the map 1702 * is clipped, and individual objects will be created for the split-up 1703 * map. This is a bit of a hack, but is also about the best place to 1704 * put this improvement. 1705 */ 1706 if (entry->object.vm_object == NULL && !map->system_map) { 1707 vm_object_t object; 1708 object = vm_object_allocate(OBJT_DEFAULT, 1709 atop(entry->end - entry->start)); 1710 entry->object.vm_object = object; 1711 entry->offset = 0; 1712 if (entry->cred != NULL) { 1713 object->cred = entry->cred; 1714 object->charge = entry->end - entry->start; 1715 entry->cred = NULL; 1716 } 1717 } else if (entry->object.vm_object != NULL && 1718 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1719 entry->cred != NULL) { 1720 VM_OBJECT_WLOCK(entry->object.vm_object); 1721 KASSERT(entry->object.vm_object->cred == NULL, 1722 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1723 entry->object.vm_object->cred = entry->cred; 1724 entry->object.vm_object->charge = entry->end - entry->start; 1725 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1726 entry->cred = NULL; 1727 } 1728 1729 /* 1730 * Create a new entry and insert it AFTER the specified entry 1731 */ 1732 new_entry = vm_map_entry_create(map); 1733 *new_entry = *entry; 1734 1735 new_entry->start = entry->end = end; 1736 new_entry->offset += (end - entry->start); 1737 if (new_entry->cred != NULL) 1738 crhold(entry->cred); 1739 1740 vm_map_entry_link(map, entry, new_entry); 1741 1742 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1743 vm_object_reference(new_entry->object.vm_object); 1744 } 1745 } 1746 1747 /* 1748 * vm_map_submap: [ kernel use only ] 1749 * 1750 * Mark the given range as handled by a subordinate map. 1751 * 1752 * This range must have been created with vm_map_find, 1753 * and no other operations may have been performed on this 1754 * range prior to calling vm_map_submap. 1755 * 1756 * Only a limited number of operations can be performed 1757 * within this rage after calling vm_map_submap: 1758 * vm_fault 1759 * [Don't try vm_map_copy!] 1760 * 1761 * To remove a submapping, one must first remove the 1762 * range from the superior map, and then destroy the 1763 * submap (if desired). [Better yet, don't try it.] 1764 */ 1765 int 1766 vm_map_submap( 1767 vm_map_t map, 1768 vm_offset_t start, 1769 vm_offset_t end, 1770 vm_map_t submap) 1771 { 1772 vm_map_entry_t entry; 1773 int result = KERN_INVALID_ARGUMENT; 1774 1775 vm_map_lock(map); 1776 1777 VM_MAP_RANGE_CHECK(map, start, end); 1778 1779 if (vm_map_lookup_entry(map, start, &entry)) { 1780 vm_map_clip_start(map, entry, start); 1781 } else 1782 entry = entry->next; 1783 1784 vm_map_clip_end(map, entry, end); 1785 1786 if ((entry->start == start) && (entry->end == end) && 1787 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1788 (entry->object.vm_object == NULL)) { 1789 entry->object.sub_map = submap; 1790 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1791 result = KERN_SUCCESS; 1792 } 1793 vm_map_unlock(map); 1794 1795 return (result); 1796 } 1797 1798 /* 1799 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 1800 */ 1801 #define MAX_INIT_PT 96 1802 1803 /* 1804 * vm_map_pmap_enter: 1805 * 1806 * Preload the specified map's pmap with mappings to the specified 1807 * object's memory-resident pages. No further physical pages are 1808 * allocated, and no further virtual pages are retrieved from secondary 1809 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 1810 * limited number of page mappings are created at the low-end of the 1811 * specified address range. (For this purpose, a superpage mapping 1812 * counts as one page mapping.) Otherwise, all resident pages within 1813 * the specified address range are mapped. Because these mappings are 1814 * being created speculatively, cached pages are not reactivated and 1815 * mapped. 1816 */ 1817 static void 1818 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1819 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1820 { 1821 vm_offset_t start; 1822 vm_page_t p, p_start; 1823 vm_pindex_t mask, psize, threshold, tmpidx; 1824 1825 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1826 return; 1827 VM_OBJECT_RLOCK(object); 1828 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1829 VM_OBJECT_RUNLOCK(object); 1830 VM_OBJECT_WLOCK(object); 1831 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1832 pmap_object_init_pt(map->pmap, addr, object, pindex, 1833 size); 1834 VM_OBJECT_WUNLOCK(object); 1835 return; 1836 } 1837 VM_OBJECT_LOCK_DOWNGRADE(object); 1838 } 1839 1840 psize = atop(size); 1841 if (psize + pindex > object->size) { 1842 if (object->size < pindex) { 1843 VM_OBJECT_RUNLOCK(object); 1844 return; 1845 } 1846 psize = object->size - pindex; 1847 } 1848 1849 start = 0; 1850 p_start = NULL; 1851 threshold = MAX_INIT_PT; 1852 1853 p = vm_page_find_least(object, pindex); 1854 /* 1855 * Assert: the variable p is either (1) the page with the 1856 * least pindex greater than or equal to the parameter pindex 1857 * or (2) NULL. 1858 */ 1859 for (; 1860 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1861 p = TAILQ_NEXT(p, listq)) { 1862 /* 1863 * don't allow an madvise to blow away our really 1864 * free pages allocating pv entries. 1865 */ 1866 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 1867 vm_cnt.v_free_count < vm_cnt.v_free_reserved) || 1868 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 1869 tmpidx >= threshold)) { 1870 psize = tmpidx; 1871 break; 1872 } 1873 if (p->valid == VM_PAGE_BITS_ALL) { 1874 if (p_start == NULL) { 1875 start = addr + ptoa(tmpidx); 1876 p_start = p; 1877 } 1878 /* Jump ahead if a superpage mapping is possible. */ 1879 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 1880 (pagesizes[p->psind] - 1)) == 0) { 1881 mask = atop(pagesizes[p->psind]) - 1; 1882 if (tmpidx + mask < psize && 1883 vm_page_ps_is_valid(p)) { 1884 p += mask; 1885 threshold += mask; 1886 } 1887 } 1888 } else if (p_start != NULL) { 1889 pmap_enter_object(map->pmap, start, addr + 1890 ptoa(tmpidx), p_start, prot); 1891 p_start = NULL; 1892 } 1893 } 1894 if (p_start != NULL) 1895 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1896 p_start, prot); 1897 VM_OBJECT_RUNLOCK(object); 1898 } 1899 1900 /* 1901 * vm_map_protect: 1902 * 1903 * Sets the protection of the specified address 1904 * region in the target map. If "set_max" is 1905 * specified, the maximum protection is to be set; 1906 * otherwise, only the current protection is affected. 1907 */ 1908 int 1909 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1910 vm_prot_t new_prot, boolean_t set_max) 1911 { 1912 vm_map_entry_t current, entry; 1913 vm_object_t obj; 1914 struct ucred *cred; 1915 vm_prot_t old_prot; 1916 1917 if (start == end) 1918 return (KERN_SUCCESS); 1919 1920 vm_map_lock(map); 1921 1922 VM_MAP_RANGE_CHECK(map, start, end); 1923 1924 if (vm_map_lookup_entry(map, start, &entry)) { 1925 vm_map_clip_start(map, entry, start); 1926 } else { 1927 entry = entry->next; 1928 } 1929 1930 /* 1931 * Make a first pass to check for protection violations. 1932 */ 1933 current = entry; 1934 while ((current != &map->header) && (current->start < end)) { 1935 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1936 vm_map_unlock(map); 1937 return (KERN_INVALID_ARGUMENT); 1938 } 1939 if ((new_prot & current->max_protection) != new_prot) { 1940 vm_map_unlock(map); 1941 return (KERN_PROTECTION_FAILURE); 1942 } 1943 current = current->next; 1944 } 1945 1946 1947 /* 1948 * Do an accounting pass for private read-only mappings that 1949 * now will do cow due to allowed write (e.g. debugger sets 1950 * breakpoint on text segment) 1951 */ 1952 for (current = entry; (current != &map->header) && 1953 (current->start < end); current = current->next) { 1954 1955 vm_map_clip_end(map, current, end); 1956 1957 if (set_max || 1958 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1959 ENTRY_CHARGED(current)) { 1960 continue; 1961 } 1962 1963 cred = curthread->td_ucred; 1964 obj = current->object.vm_object; 1965 1966 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1967 if (!swap_reserve(current->end - current->start)) { 1968 vm_map_unlock(map); 1969 return (KERN_RESOURCE_SHORTAGE); 1970 } 1971 crhold(cred); 1972 current->cred = cred; 1973 continue; 1974 } 1975 1976 VM_OBJECT_WLOCK(obj); 1977 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1978 VM_OBJECT_WUNLOCK(obj); 1979 continue; 1980 } 1981 1982 /* 1983 * Charge for the whole object allocation now, since 1984 * we cannot distinguish between non-charged and 1985 * charged clipped mapping of the same object later. 1986 */ 1987 KASSERT(obj->charge == 0, 1988 ("vm_map_protect: object %p overcharged (entry %p)", 1989 obj, current)); 1990 if (!swap_reserve(ptoa(obj->size))) { 1991 VM_OBJECT_WUNLOCK(obj); 1992 vm_map_unlock(map); 1993 return (KERN_RESOURCE_SHORTAGE); 1994 } 1995 1996 crhold(cred); 1997 obj->cred = cred; 1998 obj->charge = ptoa(obj->size); 1999 VM_OBJECT_WUNLOCK(obj); 2000 } 2001 2002 /* 2003 * Go back and fix up protections. [Note that clipping is not 2004 * necessary the second time.] 2005 */ 2006 current = entry; 2007 while ((current != &map->header) && (current->start < end)) { 2008 old_prot = current->protection; 2009 2010 if (set_max) 2011 current->protection = 2012 (current->max_protection = new_prot) & 2013 old_prot; 2014 else 2015 current->protection = new_prot; 2016 2017 /* 2018 * For user wired map entries, the normal lazy evaluation of 2019 * write access upgrades through soft page faults is 2020 * undesirable. Instead, immediately copy any pages that are 2021 * copy-on-write and enable write access in the physical map. 2022 */ 2023 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2024 (current->protection & VM_PROT_WRITE) != 0 && 2025 (old_prot & VM_PROT_WRITE) == 0) 2026 vm_fault_copy_entry(map, map, current, current, NULL); 2027 2028 /* 2029 * When restricting access, update the physical map. Worry 2030 * about copy-on-write here. 2031 */ 2032 if ((old_prot & ~current->protection) != 0) { 2033 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2034 VM_PROT_ALL) 2035 pmap_protect(map->pmap, current->start, 2036 current->end, 2037 current->protection & MASK(current)); 2038 #undef MASK 2039 } 2040 vm_map_simplify_entry(map, current); 2041 current = current->next; 2042 } 2043 vm_map_unlock(map); 2044 return (KERN_SUCCESS); 2045 } 2046 2047 /* 2048 * vm_map_madvise: 2049 * 2050 * This routine traverses a processes map handling the madvise 2051 * system call. Advisories are classified as either those effecting 2052 * the vm_map_entry structure, or those effecting the underlying 2053 * objects. 2054 */ 2055 int 2056 vm_map_madvise( 2057 vm_map_t map, 2058 vm_offset_t start, 2059 vm_offset_t end, 2060 int behav) 2061 { 2062 vm_map_entry_t current, entry; 2063 int modify_map = 0; 2064 2065 /* 2066 * Some madvise calls directly modify the vm_map_entry, in which case 2067 * we need to use an exclusive lock on the map and we need to perform 2068 * various clipping operations. Otherwise we only need a read-lock 2069 * on the map. 2070 */ 2071 switch(behav) { 2072 case MADV_NORMAL: 2073 case MADV_SEQUENTIAL: 2074 case MADV_RANDOM: 2075 case MADV_NOSYNC: 2076 case MADV_AUTOSYNC: 2077 case MADV_NOCORE: 2078 case MADV_CORE: 2079 if (start == end) 2080 return (KERN_SUCCESS); 2081 modify_map = 1; 2082 vm_map_lock(map); 2083 break; 2084 case MADV_WILLNEED: 2085 case MADV_DONTNEED: 2086 case MADV_FREE: 2087 if (start == end) 2088 return (KERN_SUCCESS); 2089 vm_map_lock_read(map); 2090 break; 2091 default: 2092 return (KERN_INVALID_ARGUMENT); 2093 } 2094 2095 /* 2096 * Locate starting entry and clip if necessary. 2097 */ 2098 VM_MAP_RANGE_CHECK(map, start, end); 2099 2100 if (vm_map_lookup_entry(map, start, &entry)) { 2101 if (modify_map) 2102 vm_map_clip_start(map, entry, start); 2103 } else { 2104 entry = entry->next; 2105 } 2106 2107 if (modify_map) { 2108 /* 2109 * madvise behaviors that are implemented in the vm_map_entry. 2110 * 2111 * We clip the vm_map_entry so that behavioral changes are 2112 * limited to the specified address range. 2113 */ 2114 for (current = entry; 2115 (current != &map->header) && (current->start < end); 2116 current = current->next 2117 ) { 2118 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2119 continue; 2120 2121 vm_map_clip_end(map, current, end); 2122 2123 switch (behav) { 2124 case MADV_NORMAL: 2125 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2126 break; 2127 case MADV_SEQUENTIAL: 2128 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2129 break; 2130 case MADV_RANDOM: 2131 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2132 break; 2133 case MADV_NOSYNC: 2134 current->eflags |= MAP_ENTRY_NOSYNC; 2135 break; 2136 case MADV_AUTOSYNC: 2137 current->eflags &= ~MAP_ENTRY_NOSYNC; 2138 break; 2139 case MADV_NOCORE: 2140 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2141 break; 2142 case MADV_CORE: 2143 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2144 break; 2145 default: 2146 break; 2147 } 2148 vm_map_simplify_entry(map, current); 2149 } 2150 vm_map_unlock(map); 2151 } else { 2152 vm_pindex_t pstart, pend; 2153 2154 /* 2155 * madvise behaviors that are implemented in the underlying 2156 * vm_object. 2157 * 2158 * Since we don't clip the vm_map_entry, we have to clip 2159 * the vm_object pindex and count. 2160 */ 2161 for (current = entry; 2162 (current != &map->header) && (current->start < end); 2163 current = current->next 2164 ) { 2165 vm_offset_t useEnd, useStart; 2166 2167 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2168 continue; 2169 2170 pstart = OFF_TO_IDX(current->offset); 2171 pend = pstart + atop(current->end - current->start); 2172 useStart = current->start; 2173 useEnd = current->end; 2174 2175 if (current->start < start) { 2176 pstart += atop(start - current->start); 2177 useStart = start; 2178 } 2179 if (current->end > end) { 2180 pend -= atop(current->end - end); 2181 useEnd = end; 2182 } 2183 2184 if (pstart >= pend) 2185 continue; 2186 2187 /* 2188 * Perform the pmap_advise() before clearing 2189 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2190 * concurrent pmap operation, such as pmap_remove(), 2191 * could clear a reference in the pmap and set 2192 * PGA_REFERENCED on the page before the pmap_advise() 2193 * had completed. Consequently, the page would appear 2194 * referenced based upon an old reference that 2195 * occurred before this pmap_advise() ran. 2196 */ 2197 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2198 pmap_advise(map->pmap, useStart, useEnd, 2199 behav); 2200 2201 vm_object_madvise(current->object.vm_object, pstart, 2202 pend, behav); 2203 2204 /* 2205 * Pre-populate paging structures in the 2206 * WILLNEED case. For wired entries, the 2207 * paging structures are already populated. 2208 */ 2209 if (behav == MADV_WILLNEED && 2210 current->wired_count == 0) { 2211 vm_map_pmap_enter(map, 2212 useStart, 2213 current->protection, 2214 current->object.vm_object, 2215 pstart, 2216 ptoa(pend - pstart), 2217 MAP_PREFAULT_MADVISE 2218 ); 2219 } 2220 } 2221 vm_map_unlock_read(map); 2222 } 2223 return (0); 2224 } 2225 2226 2227 /* 2228 * vm_map_inherit: 2229 * 2230 * Sets the inheritance of the specified address 2231 * range in the target map. Inheritance 2232 * affects how the map will be shared with 2233 * child maps at the time of vmspace_fork. 2234 */ 2235 int 2236 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2237 vm_inherit_t new_inheritance) 2238 { 2239 vm_map_entry_t entry; 2240 vm_map_entry_t temp_entry; 2241 2242 switch (new_inheritance) { 2243 case VM_INHERIT_NONE: 2244 case VM_INHERIT_COPY: 2245 case VM_INHERIT_SHARE: 2246 break; 2247 default: 2248 return (KERN_INVALID_ARGUMENT); 2249 } 2250 if (start == end) 2251 return (KERN_SUCCESS); 2252 vm_map_lock(map); 2253 VM_MAP_RANGE_CHECK(map, start, end); 2254 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2255 entry = temp_entry; 2256 vm_map_clip_start(map, entry, start); 2257 } else 2258 entry = temp_entry->next; 2259 while ((entry != &map->header) && (entry->start < end)) { 2260 vm_map_clip_end(map, entry, end); 2261 entry->inheritance = new_inheritance; 2262 vm_map_simplify_entry(map, entry); 2263 entry = entry->next; 2264 } 2265 vm_map_unlock(map); 2266 return (KERN_SUCCESS); 2267 } 2268 2269 /* 2270 * vm_map_unwire: 2271 * 2272 * Implements both kernel and user unwiring. 2273 */ 2274 int 2275 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2276 int flags) 2277 { 2278 vm_map_entry_t entry, first_entry, tmp_entry; 2279 vm_offset_t saved_start; 2280 unsigned int last_timestamp; 2281 int rv; 2282 boolean_t need_wakeup, result, user_unwire; 2283 2284 if (start == end) 2285 return (KERN_SUCCESS); 2286 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2287 vm_map_lock(map); 2288 VM_MAP_RANGE_CHECK(map, start, end); 2289 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2290 if (flags & VM_MAP_WIRE_HOLESOK) 2291 first_entry = first_entry->next; 2292 else { 2293 vm_map_unlock(map); 2294 return (KERN_INVALID_ADDRESS); 2295 } 2296 } 2297 last_timestamp = map->timestamp; 2298 entry = first_entry; 2299 while (entry != &map->header && entry->start < end) { 2300 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2301 /* 2302 * We have not yet clipped the entry. 2303 */ 2304 saved_start = (start >= entry->start) ? start : 2305 entry->start; 2306 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2307 if (vm_map_unlock_and_wait(map, 0)) { 2308 /* 2309 * Allow interruption of user unwiring? 2310 */ 2311 } 2312 vm_map_lock(map); 2313 if (last_timestamp+1 != map->timestamp) { 2314 /* 2315 * Look again for the entry because the map was 2316 * modified while it was unlocked. 2317 * Specifically, the entry may have been 2318 * clipped, merged, or deleted. 2319 */ 2320 if (!vm_map_lookup_entry(map, saved_start, 2321 &tmp_entry)) { 2322 if (flags & VM_MAP_WIRE_HOLESOK) 2323 tmp_entry = tmp_entry->next; 2324 else { 2325 if (saved_start == start) { 2326 /* 2327 * First_entry has been deleted. 2328 */ 2329 vm_map_unlock(map); 2330 return (KERN_INVALID_ADDRESS); 2331 } 2332 end = saved_start; 2333 rv = KERN_INVALID_ADDRESS; 2334 goto done; 2335 } 2336 } 2337 if (entry == first_entry) 2338 first_entry = tmp_entry; 2339 else 2340 first_entry = NULL; 2341 entry = tmp_entry; 2342 } 2343 last_timestamp = map->timestamp; 2344 continue; 2345 } 2346 vm_map_clip_start(map, entry, start); 2347 vm_map_clip_end(map, entry, end); 2348 /* 2349 * Mark the entry in case the map lock is released. (See 2350 * above.) 2351 */ 2352 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2353 entry->wiring_thread == NULL, 2354 ("owned map entry %p", entry)); 2355 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2356 entry->wiring_thread = curthread; 2357 /* 2358 * Check the map for holes in the specified region. 2359 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2360 */ 2361 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2362 (entry->end < end && (entry->next == &map->header || 2363 entry->next->start > entry->end))) { 2364 end = entry->end; 2365 rv = KERN_INVALID_ADDRESS; 2366 goto done; 2367 } 2368 /* 2369 * If system unwiring, require that the entry is system wired. 2370 */ 2371 if (!user_unwire && 2372 vm_map_entry_system_wired_count(entry) == 0) { 2373 end = entry->end; 2374 rv = KERN_INVALID_ARGUMENT; 2375 goto done; 2376 } 2377 entry = entry->next; 2378 } 2379 rv = KERN_SUCCESS; 2380 done: 2381 need_wakeup = FALSE; 2382 if (first_entry == NULL) { 2383 result = vm_map_lookup_entry(map, start, &first_entry); 2384 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2385 first_entry = first_entry->next; 2386 else 2387 KASSERT(result, ("vm_map_unwire: lookup failed")); 2388 } 2389 for (entry = first_entry; entry != &map->header && entry->start < end; 2390 entry = entry->next) { 2391 /* 2392 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2393 * space in the unwired region could have been mapped 2394 * while the map lock was dropped for draining 2395 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2396 * could be simultaneously wiring this new mapping 2397 * entry. Detect these cases and skip any entries 2398 * marked as in transition by us. 2399 */ 2400 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2401 entry->wiring_thread != curthread) { 2402 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2403 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2404 continue; 2405 } 2406 2407 if (rv == KERN_SUCCESS && (!user_unwire || 2408 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2409 if (user_unwire) 2410 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2411 if (entry->wired_count == 1) 2412 vm_map_entry_unwire(map, entry); 2413 else 2414 entry->wired_count--; 2415 } 2416 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2417 ("vm_map_unwire: in-transition flag missing %p", entry)); 2418 KASSERT(entry->wiring_thread == curthread, 2419 ("vm_map_unwire: alien wire %p", entry)); 2420 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2421 entry->wiring_thread = NULL; 2422 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2423 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2424 need_wakeup = TRUE; 2425 } 2426 vm_map_simplify_entry(map, entry); 2427 } 2428 vm_map_unlock(map); 2429 if (need_wakeup) 2430 vm_map_wakeup(map); 2431 return (rv); 2432 } 2433 2434 /* 2435 * vm_map_wire_entry_failure: 2436 * 2437 * Handle a wiring failure on the given entry. 2438 * 2439 * The map should be locked. 2440 */ 2441 static void 2442 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 2443 vm_offset_t failed_addr) 2444 { 2445 2446 VM_MAP_ASSERT_LOCKED(map); 2447 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 2448 entry->wired_count == 1, 2449 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 2450 KASSERT(failed_addr < entry->end, 2451 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 2452 2453 /* 2454 * If any pages at the start of this entry were successfully wired, 2455 * then unwire them. 2456 */ 2457 if (failed_addr > entry->start) { 2458 pmap_unwire(map->pmap, entry->start, failed_addr); 2459 vm_object_unwire(entry->object.vm_object, entry->offset, 2460 failed_addr - entry->start, PQ_ACTIVE); 2461 } 2462 2463 /* 2464 * Assign an out-of-range value to represent the failure to wire this 2465 * entry. 2466 */ 2467 entry->wired_count = -1; 2468 } 2469 2470 /* 2471 * vm_map_wire: 2472 * 2473 * Implements both kernel and user wiring. 2474 */ 2475 int 2476 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2477 int flags) 2478 { 2479 vm_map_entry_t entry, first_entry, tmp_entry; 2480 vm_offset_t faddr, saved_end, saved_start; 2481 unsigned int last_timestamp; 2482 int rv; 2483 boolean_t need_wakeup, result, user_wire; 2484 vm_prot_t prot; 2485 2486 if (start == end) 2487 return (KERN_SUCCESS); 2488 prot = 0; 2489 if (flags & VM_MAP_WIRE_WRITE) 2490 prot |= VM_PROT_WRITE; 2491 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2492 vm_map_lock(map); 2493 VM_MAP_RANGE_CHECK(map, start, end); 2494 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2495 if (flags & VM_MAP_WIRE_HOLESOK) 2496 first_entry = first_entry->next; 2497 else { 2498 vm_map_unlock(map); 2499 return (KERN_INVALID_ADDRESS); 2500 } 2501 } 2502 last_timestamp = map->timestamp; 2503 entry = first_entry; 2504 while (entry != &map->header && entry->start < end) { 2505 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2506 /* 2507 * We have not yet clipped the entry. 2508 */ 2509 saved_start = (start >= entry->start) ? start : 2510 entry->start; 2511 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2512 if (vm_map_unlock_and_wait(map, 0)) { 2513 /* 2514 * Allow interruption of user wiring? 2515 */ 2516 } 2517 vm_map_lock(map); 2518 if (last_timestamp + 1 != map->timestamp) { 2519 /* 2520 * Look again for the entry because the map was 2521 * modified while it was unlocked. 2522 * Specifically, the entry may have been 2523 * clipped, merged, or deleted. 2524 */ 2525 if (!vm_map_lookup_entry(map, saved_start, 2526 &tmp_entry)) { 2527 if (flags & VM_MAP_WIRE_HOLESOK) 2528 tmp_entry = tmp_entry->next; 2529 else { 2530 if (saved_start == start) { 2531 /* 2532 * first_entry has been deleted. 2533 */ 2534 vm_map_unlock(map); 2535 return (KERN_INVALID_ADDRESS); 2536 } 2537 end = saved_start; 2538 rv = KERN_INVALID_ADDRESS; 2539 goto done; 2540 } 2541 } 2542 if (entry == first_entry) 2543 first_entry = tmp_entry; 2544 else 2545 first_entry = NULL; 2546 entry = tmp_entry; 2547 } 2548 last_timestamp = map->timestamp; 2549 continue; 2550 } 2551 vm_map_clip_start(map, entry, start); 2552 vm_map_clip_end(map, entry, end); 2553 /* 2554 * Mark the entry in case the map lock is released. (See 2555 * above.) 2556 */ 2557 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2558 entry->wiring_thread == NULL, 2559 ("owned map entry %p", entry)); 2560 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2561 entry->wiring_thread = curthread; 2562 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2563 || (entry->protection & prot) != prot) { 2564 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2565 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2566 end = entry->end; 2567 rv = KERN_INVALID_ADDRESS; 2568 goto done; 2569 } 2570 goto next_entry; 2571 } 2572 if (entry->wired_count == 0) { 2573 entry->wired_count++; 2574 saved_start = entry->start; 2575 saved_end = entry->end; 2576 2577 /* 2578 * Release the map lock, relying on the in-transition 2579 * mark. Mark the map busy for fork. 2580 */ 2581 vm_map_busy(map); 2582 vm_map_unlock(map); 2583 2584 faddr = saved_start; 2585 do { 2586 /* 2587 * Simulate a fault to get the page and enter 2588 * it into the physical map. 2589 */ 2590 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 2591 VM_FAULT_CHANGE_WIRING)) != KERN_SUCCESS) 2592 break; 2593 } while ((faddr += PAGE_SIZE) < saved_end); 2594 vm_map_lock(map); 2595 vm_map_unbusy(map); 2596 if (last_timestamp + 1 != map->timestamp) { 2597 /* 2598 * Look again for the entry because the map was 2599 * modified while it was unlocked. The entry 2600 * may have been clipped, but NOT merged or 2601 * deleted. 2602 */ 2603 result = vm_map_lookup_entry(map, saved_start, 2604 &tmp_entry); 2605 KASSERT(result, ("vm_map_wire: lookup failed")); 2606 if (entry == first_entry) 2607 first_entry = tmp_entry; 2608 else 2609 first_entry = NULL; 2610 entry = tmp_entry; 2611 while (entry->end < saved_end) { 2612 /* 2613 * In case of failure, handle entries 2614 * that were not fully wired here; 2615 * fully wired entries are handled 2616 * later. 2617 */ 2618 if (rv != KERN_SUCCESS && 2619 faddr < entry->end) 2620 vm_map_wire_entry_failure(map, 2621 entry, faddr); 2622 entry = entry->next; 2623 } 2624 } 2625 last_timestamp = map->timestamp; 2626 if (rv != KERN_SUCCESS) { 2627 vm_map_wire_entry_failure(map, entry, faddr); 2628 end = entry->end; 2629 goto done; 2630 } 2631 } else if (!user_wire || 2632 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2633 entry->wired_count++; 2634 } 2635 /* 2636 * Check the map for holes in the specified region. 2637 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2638 */ 2639 next_entry: 2640 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2641 (entry->end < end && (entry->next == &map->header || 2642 entry->next->start > entry->end))) { 2643 end = entry->end; 2644 rv = KERN_INVALID_ADDRESS; 2645 goto done; 2646 } 2647 entry = entry->next; 2648 } 2649 rv = KERN_SUCCESS; 2650 done: 2651 need_wakeup = FALSE; 2652 if (first_entry == NULL) { 2653 result = vm_map_lookup_entry(map, start, &first_entry); 2654 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2655 first_entry = first_entry->next; 2656 else 2657 KASSERT(result, ("vm_map_wire: lookup failed")); 2658 } 2659 for (entry = first_entry; entry != &map->header && entry->start < end; 2660 entry = entry->next) { 2661 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2662 goto next_entry_done; 2663 2664 /* 2665 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2666 * space in the unwired region could have been mapped 2667 * while the map lock was dropped for faulting in the 2668 * pages or draining MAP_ENTRY_IN_TRANSITION. 2669 * Moreover, another thread could be simultaneously 2670 * wiring this new mapping entry. Detect these cases 2671 * and skip any entries marked as in transition by us. 2672 */ 2673 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2674 entry->wiring_thread != curthread) { 2675 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2676 ("vm_map_wire: !HOLESOK and new/changed entry")); 2677 continue; 2678 } 2679 2680 if (rv == KERN_SUCCESS) { 2681 if (user_wire) 2682 entry->eflags |= MAP_ENTRY_USER_WIRED; 2683 } else if (entry->wired_count == -1) { 2684 /* 2685 * Wiring failed on this entry. Thus, unwiring is 2686 * unnecessary. 2687 */ 2688 entry->wired_count = 0; 2689 } else if (!user_wire || 2690 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2691 /* 2692 * Undo the wiring. Wiring succeeded on this entry 2693 * but failed on a later entry. 2694 */ 2695 if (entry->wired_count == 1) 2696 vm_map_entry_unwire(map, entry); 2697 else 2698 entry->wired_count--; 2699 } 2700 next_entry_done: 2701 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2702 ("vm_map_wire: in-transition flag missing %p", entry)); 2703 KASSERT(entry->wiring_thread == curthread, 2704 ("vm_map_wire: alien wire %p", entry)); 2705 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2706 MAP_ENTRY_WIRE_SKIPPED); 2707 entry->wiring_thread = NULL; 2708 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2709 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2710 need_wakeup = TRUE; 2711 } 2712 vm_map_simplify_entry(map, entry); 2713 } 2714 vm_map_unlock(map); 2715 if (need_wakeup) 2716 vm_map_wakeup(map); 2717 return (rv); 2718 } 2719 2720 /* 2721 * vm_map_sync 2722 * 2723 * Push any dirty cached pages in the address range to their pager. 2724 * If syncio is TRUE, dirty pages are written synchronously. 2725 * If invalidate is TRUE, any cached pages are freed as well. 2726 * 2727 * If the size of the region from start to end is zero, we are 2728 * supposed to flush all modified pages within the region containing 2729 * start. Unfortunately, a region can be split or coalesced with 2730 * neighboring regions, making it difficult to determine what the 2731 * original region was. Therefore, we approximate this requirement by 2732 * flushing the current region containing start. 2733 * 2734 * Returns an error if any part of the specified range is not mapped. 2735 */ 2736 int 2737 vm_map_sync( 2738 vm_map_t map, 2739 vm_offset_t start, 2740 vm_offset_t end, 2741 boolean_t syncio, 2742 boolean_t invalidate) 2743 { 2744 vm_map_entry_t current; 2745 vm_map_entry_t entry; 2746 vm_size_t size; 2747 vm_object_t object; 2748 vm_ooffset_t offset; 2749 unsigned int last_timestamp; 2750 boolean_t failed; 2751 2752 vm_map_lock_read(map); 2753 VM_MAP_RANGE_CHECK(map, start, end); 2754 if (!vm_map_lookup_entry(map, start, &entry)) { 2755 vm_map_unlock_read(map); 2756 return (KERN_INVALID_ADDRESS); 2757 } else if (start == end) { 2758 start = entry->start; 2759 end = entry->end; 2760 } 2761 /* 2762 * Make a first pass to check for user-wired memory and holes. 2763 */ 2764 for (current = entry; current != &map->header && current->start < end; 2765 current = current->next) { 2766 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2767 vm_map_unlock_read(map); 2768 return (KERN_INVALID_ARGUMENT); 2769 } 2770 if (end > current->end && 2771 (current->next == &map->header || 2772 current->end != current->next->start)) { 2773 vm_map_unlock_read(map); 2774 return (KERN_INVALID_ADDRESS); 2775 } 2776 } 2777 2778 if (invalidate) 2779 pmap_remove(map->pmap, start, end); 2780 failed = FALSE; 2781 2782 /* 2783 * Make a second pass, cleaning/uncaching pages from the indicated 2784 * objects as we go. 2785 */ 2786 for (current = entry; current != &map->header && current->start < end;) { 2787 offset = current->offset + (start - current->start); 2788 size = (end <= current->end ? end : current->end) - start; 2789 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2790 vm_map_t smap; 2791 vm_map_entry_t tentry; 2792 vm_size_t tsize; 2793 2794 smap = current->object.sub_map; 2795 vm_map_lock_read(smap); 2796 (void) vm_map_lookup_entry(smap, offset, &tentry); 2797 tsize = tentry->end - offset; 2798 if (tsize < size) 2799 size = tsize; 2800 object = tentry->object.vm_object; 2801 offset = tentry->offset + (offset - tentry->start); 2802 vm_map_unlock_read(smap); 2803 } else { 2804 object = current->object.vm_object; 2805 } 2806 vm_object_reference(object); 2807 last_timestamp = map->timestamp; 2808 vm_map_unlock_read(map); 2809 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2810 failed = TRUE; 2811 start += size; 2812 vm_object_deallocate(object); 2813 vm_map_lock_read(map); 2814 if (last_timestamp == map->timestamp || 2815 !vm_map_lookup_entry(map, start, ¤t)) 2816 current = current->next; 2817 } 2818 2819 vm_map_unlock_read(map); 2820 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2821 } 2822 2823 /* 2824 * vm_map_entry_unwire: [ internal use only ] 2825 * 2826 * Make the region specified by this entry pageable. 2827 * 2828 * The map in question should be locked. 2829 * [This is the reason for this routine's existence.] 2830 */ 2831 static void 2832 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2833 { 2834 2835 VM_MAP_ASSERT_LOCKED(map); 2836 KASSERT(entry->wired_count > 0, 2837 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 2838 pmap_unwire(map->pmap, entry->start, entry->end); 2839 vm_object_unwire(entry->object.vm_object, entry->offset, entry->end - 2840 entry->start, PQ_ACTIVE); 2841 entry->wired_count = 0; 2842 } 2843 2844 static void 2845 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2846 { 2847 2848 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2849 vm_object_deallocate(entry->object.vm_object); 2850 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2851 } 2852 2853 /* 2854 * vm_map_entry_delete: [ internal use only ] 2855 * 2856 * Deallocate the given entry from the target map. 2857 */ 2858 static void 2859 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2860 { 2861 vm_object_t object; 2862 vm_pindex_t offidxstart, offidxend, count, size1; 2863 vm_ooffset_t size; 2864 2865 vm_map_entry_unlink(map, entry); 2866 object = entry->object.vm_object; 2867 size = entry->end - entry->start; 2868 map->size -= size; 2869 2870 if (entry->cred != NULL) { 2871 swap_release_by_cred(size, entry->cred); 2872 crfree(entry->cred); 2873 } 2874 2875 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2876 (object != NULL)) { 2877 KASSERT(entry->cred == NULL || object->cred == NULL || 2878 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2879 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2880 count = OFF_TO_IDX(size); 2881 offidxstart = OFF_TO_IDX(entry->offset); 2882 offidxend = offidxstart + count; 2883 VM_OBJECT_WLOCK(object); 2884 if (object->ref_count != 1 && 2885 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2886 object == kernel_object || object == kmem_object)) { 2887 vm_object_collapse(object); 2888 2889 /* 2890 * The option OBJPR_NOTMAPPED can be passed here 2891 * because vm_map_delete() already performed 2892 * pmap_remove() on the only mapping to this range 2893 * of pages. 2894 */ 2895 vm_object_page_remove(object, offidxstart, offidxend, 2896 OBJPR_NOTMAPPED); 2897 if (object->type == OBJT_SWAP) 2898 swap_pager_freespace(object, offidxstart, count); 2899 if (offidxend >= object->size && 2900 offidxstart < object->size) { 2901 size1 = object->size; 2902 object->size = offidxstart; 2903 if (object->cred != NULL) { 2904 size1 -= object->size; 2905 KASSERT(object->charge >= ptoa(size1), 2906 ("vm_map_entry_delete: object->charge < 0")); 2907 swap_release_by_cred(ptoa(size1), object->cred); 2908 object->charge -= ptoa(size1); 2909 } 2910 } 2911 } 2912 VM_OBJECT_WUNLOCK(object); 2913 } else 2914 entry->object.vm_object = NULL; 2915 if (map->system_map) 2916 vm_map_entry_deallocate(entry, TRUE); 2917 else { 2918 entry->next = curthread->td_map_def_user; 2919 curthread->td_map_def_user = entry; 2920 } 2921 } 2922 2923 /* 2924 * vm_map_delete: [ internal use only ] 2925 * 2926 * Deallocates the given address range from the target 2927 * map. 2928 */ 2929 int 2930 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2931 { 2932 vm_map_entry_t entry; 2933 vm_map_entry_t first_entry; 2934 2935 VM_MAP_ASSERT_LOCKED(map); 2936 if (start == end) 2937 return (KERN_SUCCESS); 2938 2939 /* 2940 * Find the start of the region, and clip it 2941 */ 2942 if (!vm_map_lookup_entry(map, start, &first_entry)) 2943 entry = first_entry->next; 2944 else { 2945 entry = first_entry; 2946 vm_map_clip_start(map, entry, start); 2947 } 2948 2949 /* 2950 * Step through all entries in this region 2951 */ 2952 while ((entry != &map->header) && (entry->start < end)) { 2953 vm_map_entry_t next; 2954 2955 /* 2956 * Wait for wiring or unwiring of an entry to complete. 2957 * Also wait for any system wirings to disappear on 2958 * user maps. 2959 */ 2960 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2961 (vm_map_pmap(map) != kernel_pmap && 2962 vm_map_entry_system_wired_count(entry) != 0)) { 2963 unsigned int last_timestamp; 2964 vm_offset_t saved_start; 2965 vm_map_entry_t tmp_entry; 2966 2967 saved_start = entry->start; 2968 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2969 last_timestamp = map->timestamp; 2970 (void) vm_map_unlock_and_wait(map, 0); 2971 vm_map_lock(map); 2972 if (last_timestamp + 1 != map->timestamp) { 2973 /* 2974 * Look again for the entry because the map was 2975 * modified while it was unlocked. 2976 * Specifically, the entry may have been 2977 * clipped, merged, or deleted. 2978 */ 2979 if (!vm_map_lookup_entry(map, saved_start, 2980 &tmp_entry)) 2981 entry = tmp_entry->next; 2982 else { 2983 entry = tmp_entry; 2984 vm_map_clip_start(map, entry, 2985 saved_start); 2986 } 2987 } 2988 continue; 2989 } 2990 vm_map_clip_end(map, entry, end); 2991 2992 next = entry->next; 2993 2994 /* 2995 * Unwire before removing addresses from the pmap; otherwise, 2996 * unwiring will put the entries back in the pmap. 2997 */ 2998 if (entry->wired_count != 0) { 2999 vm_map_entry_unwire(map, entry); 3000 } 3001 3002 pmap_remove(map->pmap, entry->start, entry->end); 3003 3004 /* 3005 * Delete the entry only after removing all pmap 3006 * entries pointing to its pages. (Otherwise, its 3007 * page frames may be reallocated, and any modify bits 3008 * will be set in the wrong object!) 3009 */ 3010 vm_map_entry_delete(map, entry); 3011 entry = next; 3012 } 3013 return (KERN_SUCCESS); 3014 } 3015 3016 /* 3017 * vm_map_remove: 3018 * 3019 * Remove the given address range from the target map. 3020 * This is the exported form of vm_map_delete. 3021 */ 3022 int 3023 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3024 { 3025 int result; 3026 3027 vm_map_lock(map); 3028 VM_MAP_RANGE_CHECK(map, start, end); 3029 result = vm_map_delete(map, start, end); 3030 vm_map_unlock(map); 3031 return (result); 3032 } 3033 3034 /* 3035 * vm_map_check_protection: 3036 * 3037 * Assert that the target map allows the specified privilege on the 3038 * entire address region given. The entire region must be allocated. 3039 * 3040 * WARNING! This code does not and should not check whether the 3041 * contents of the region is accessible. For example a smaller file 3042 * might be mapped into a larger address space. 3043 * 3044 * NOTE! This code is also called by munmap(). 3045 * 3046 * The map must be locked. A read lock is sufficient. 3047 */ 3048 boolean_t 3049 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3050 vm_prot_t protection) 3051 { 3052 vm_map_entry_t entry; 3053 vm_map_entry_t tmp_entry; 3054 3055 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3056 return (FALSE); 3057 entry = tmp_entry; 3058 3059 while (start < end) { 3060 if (entry == &map->header) 3061 return (FALSE); 3062 /* 3063 * No holes allowed! 3064 */ 3065 if (start < entry->start) 3066 return (FALSE); 3067 /* 3068 * Check protection associated with entry. 3069 */ 3070 if ((entry->protection & protection) != protection) 3071 return (FALSE); 3072 /* go to next entry */ 3073 start = entry->end; 3074 entry = entry->next; 3075 } 3076 return (TRUE); 3077 } 3078 3079 /* 3080 * vm_map_copy_entry: 3081 * 3082 * Copies the contents of the source entry to the destination 3083 * entry. The entries *must* be aligned properly. 3084 */ 3085 static void 3086 vm_map_copy_entry( 3087 vm_map_t src_map, 3088 vm_map_t dst_map, 3089 vm_map_entry_t src_entry, 3090 vm_map_entry_t dst_entry, 3091 vm_ooffset_t *fork_charge) 3092 { 3093 vm_object_t src_object; 3094 vm_map_entry_t fake_entry; 3095 vm_offset_t size; 3096 struct ucred *cred; 3097 int charged; 3098 3099 VM_MAP_ASSERT_LOCKED(dst_map); 3100 3101 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3102 return; 3103 3104 if (src_entry->wired_count == 0 || 3105 (src_entry->protection & VM_PROT_WRITE) == 0) { 3106 /* 3107 * If the source entry is marked needs_copy, it is already 3108 * write-protected. 3109 */ 3110 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3111 (src_entry->protection & VM_PROT_WRITE) != 0) { 3112 pmap_protect(src_map->pmap, 3113 src_entry->start, 3114 src_entry->end, 3115 src_entry->protection & ~VM_PROT_WRITE); 3116 } 3117 3118 /* 3119 * Make a copy of the object. 3120 */ 3121 size = src_entry->end - src_entry->start; 3122 if ((src_object = src_entry->object.vm_object) != NULL) { 3123 VM_OBJECT_WLOCK(src_object); 3124 charged = ENTRY_CHARGED(src_entry); 3125 if ((src_object->handle == NULL) && 3126 (src_object->type == OBJT_DEFAULT || 3127 src_object->type == OBJT_SWAP)) { 3128 vm_object_collapse(src_object); 3129 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3130 vm_object_split(src_entry); 3131 src_object = src_entry->object.vm_object; 3132 } 3133 } 3134 vm_object_reference_locked(src_object); 3135 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3136 if (src_entry->cred != NULL && 3137 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3138 KASSERT(src_object->cred == NULL, 3139 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3140 src_object)); 3141 src_object->cred = src_entry->cred; 3142 src_object->charge = size; 3143 } 3144 VM_OBJECT_WUNLOCK(src_object); 3145 dst_entry->object.vm_object = src_object; 3146 if (charged) { 3147 cred = curthread->td_ucred; 3148 crhold(cred); 3149 dst_entry->cred = cred; 3150 *fork_charge += size; 3151 if (!(src_entry->eflags & 3152 MAP_ENTRY_NEEDS_COPY)) { 3153 crhold(cred); 3154 src_entry->cred = cred; 3155 *fork_charge += size; 3156 } 3157 } 3158 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3159 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3160 dst_entry->offset = src_entry->offset; 3161 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3162 /* 3163 * MAP_ENTRY_VN_WRITECNT cannot 3164 * indicate write reference from 3165 * src_entry, since the entry is 3166 * marked as needs copy. Allocate a 3167 * fake entry that is used to 3168 * decrement object->un_pager.vnp.writecount 3169 * at the appropriate time. Attach 3170 * fake_entry to the deferred list. 3171 */ 3172 fake_entry = vm_map_entry_create(dst_map); 3173 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3174 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3175 vm_object_reference(src_object); 3176 fake_entry->object.vm_object = src_object; 3177 fake_entry->start = src_entry->start; 3178 fake_entry->end = src_entry->end; 3179 fake_entry->next = curthread->td_map_def_user; 3180 curthread->td_map_def_user = fake_entry; 3181 } 3182 } else { 3183 dst_entry->object.vm_object = NULL; 3184 dst_entry->offset = 0; 3185 if (src_entry->cred != NULL) { 3186 dst_entry->cred = curthread->td_ucred; 3187 crhold(dst_entry->cred); 3188 *fork_charge += size; 3189 } 3190 } 3191 3192 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3193 dst_entry->end - dst_entry->start, src_entry->start); 3194 } else { 3195 /* 3196 * We don't want to make writeable wired pages copy-on-write. 3197 * Immediately copy these pages into the new map by simulating 3198 * page faults. The new pages are pageable. 3199 */ 3200 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3201 fork_charge); 3202 } 3203 } 3204 3205 /* 3206 * vmspace_map_entry_forked: 3207 * Update the newly-forked vmspace each time a map entry is inherited 3208 * or copied. The values for vm_dsize and vm_tsize are approximate 3209 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3210 */ 3211 static void 3212 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3213 vm_map_entry_t entry) 3214 { 3215 vm_size_t entrysize; 3216 vm_offset_t newend; 3217 3218 entrysize = entry->end - entry->start; 3219 vm2->vm_map.size += entrysize; 3220 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3221 vm2->vm_ssize += btoc(entrysize); 3222 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3223 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3224 newend = MIN(entry->end, 3225 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3226 vm2->vm_dsize += btoc(newend - entry->start); 3227 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3228 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3229 newend = MIN(entry->end, 3230 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3231 vm2->vm_tsize += btoc(newend - entry->start); 3232 } 3233 } 3234 3235 /* 3236 * vmspace_fork: 3237 * Create a new process vmspace structure and vm_map 3238 * based on those of an existing process. The new map 3239 * is based on the old map, according to the inheritance 3240 * values on the regions in that map. 3241 * 3242 * XXX It might be worth coalescing the entries added to the new vmspace. 3243 * 3244 * The source map must not be locked. 3245 */ 3246 struct vmspace * 3247 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3248 { 3249 struct vmspace *vm2; 3250 vm_map_t new_map, old_map; 3251 vm_map_entry_t new_entry, old_entry; 3252 vm_object_t object; 3253 int locked; 3254 3255 old_map = &vm1->vm_map; 3256 /* Copy immutable fields of vm1 to vm2. */ 3257 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL); 3258 if (vm2 == NULL) 3259 return (NULL); 3260 vm2->vm_taddr = vm1->vm_taddr; 3261 vm2->vm_daddr = vm1->vm_daddr; 3262 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3263 vm_map_lock(old_map); 3264 if (old_map->busy) 3265 vm_map_wait_busy(old_map); 3266 new_map = &vm2->vm_map; 3267 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3268 KASSERT(locked, ("vmspace_fork: lock failed")); 3269 3270 old_entry = old_map->header.next; 3271 3272 while (old_entry != &old_map->header) { 3273 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3274 panic("vm_map_fork: encountered a submap"); 3275 3276 switch (old_entry->inheritance) { 3277 case VM_INHERIT_NONE: 3278 break; 3279 3280 case VM_INHERIT_SHARE: 3281 /* 3282 * Clone the entry, creating the shared object if necessary. 3283 */ 3284 object = old_entry->object.vm_object; 3285 if (object == NULL) { 3286 object = vm_object_allocate(OBJT_DEFAULT, 3287 atop(old_entry->end - old_entry->start)); 3288 old_entry->object.vm_object = object; 3289 old_entry->offset = 0; 3290 if (old_entry->cred != NULL) { 3291 object->cred = old_entry->cred; 3292 object->charge = old_entry->end - 3293 old_entry->start; 3294 old_entry->cred = NULL; 3295 } 3296 } 3297 3298 /* 3299 * Add the reference before calling vm_object_shadow 3300 * to insure that a shadow object is created. 3301 */ 3302 vm_object_reference(object); 3303 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3304 vm_object_shadow(&old_entry->object.vm_object, 3305 &old_entry->offset, 3306 old_entry->end - old_entry->start); 3307 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3308 /* Transfer the second reference too. */ 3309 vm_object_reference( 3310 old_entry->object.vm_object); 3311 3312 /* 3313 * As in vm_map_simplify_entry(), the 3314 * vnode lock will not be acquired in 3315 * this call to vm_object_deallocate(). 3316 */ 3317 vm_object_deallocate(object); 3318 object = old_entry->object.vm_object; 3319 } 3320 VM_OBJECT_WLOCK(object); 3321 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3322 if (old_entry->cred != NULL) { 3323 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3324 object->cred = old_entry->cred; 3325 object->charge = old_entry->end - old_entry->start; 3326 old_entry->cred = NULL; 3327 } 3328 3329 /* 3330 * Assert the correct state of the vnode 3331 * v_writecount while the object is locked, to 3332 * not relock it later for the assertion 3333 * correctness. 3334 */ 3335 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3336 object->type == OBJT_VNODE) { 3337 KASSERT(((struct vnode *)object->handle)-> 3338 v_writecount > 0, 3339 ("vmspace_fork: v_writecount %p", object)); 3340 KASSERT(object->un_pager.vnp.writemappings > 0, 3341 ("vmspace_fork: vnp.writecount %p", 3342 object)); 3343 } 3344 VM_OBJECT_WUNLOCK(object); 3345 3346 /* 3347 * Clone the entry, referencing the shared object. 3348 */ 3349 new_entry = vm_map_entry_create(new_map); 3350 *new_entry = *old_entry; 3351 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3352 MAP_ENTRY_IN_TRANSITION); 3353 new_entry->wiring_thread = NULL; 3354 new_entry->wired_count = 0; 3355 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3356 vnode_pager_update_writecount(object, 3357 new_entry->start, new_entry->end); 3358 } 3359 3360 /* 3361 * Insert the entry into the new map -- we know we're 3362 * inserting at the end of the new map. 3363 */ 3364 vm_map_entry_link(new_map, new_map->header.prev, 3365 new_entry); 3366 vmspace_map_entry_forked(vm1, vm2, new_entry); 3367 3368 /* 3369 * Update the physical map 3370 */ 3371 pmap_copy(new_map->pmap, old_map->pmap, 3372 new_entry->start, 3373 (old_entry->end - old_entry->start), 3374 old_entry->start); 3375 break; 3376 3377 case VM_INHERIT_COPY: 3378 /* 3379 * Clone the entry and link into the map. 3380 */ 3381 new_entry = vm_map_entry_create(new_map); 3382 *new_entry = *old_entry; 3383 /* 3384 * Copied entry is COW over the old object. 3385 */ 3386 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3387 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3388 new_entry->wiring_thread = NULL; 3389 new_entry->wired_count = 0; 3390 new_entry->object.vm_object = NULL; 3391 new_entry->cred = NULL; 3392 vm_map_entry_link(new_map, new_map->header.prev, 3393 new_entry); 3394 vmspace_map_entry_forked(vm1, vm2, new_entry); 3395 vm_map_copy_entry(old_map, new_map, old_entry, 3396 new_entry, fork_charge); 3397 break; 3398 } 3399 old_entry = old_entry->next; 3400 } 3401 /* 3402 * Use inlined vm_map_unlock() to postpone handling the deferred 3403 * map entries, which cannot be done until both old_map and 3404 * new_map locks are released. 3405 */ 3406 sx_xunlock(&old_map->lock); 3407 sx_xunlock(&new_map->lock); 3408 vm_map_process_deferred(); 3409 3410 return (vm2); 3411 } 3412 3413 int 3414 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3415 vm_prot_t prot, vm_prot_t max, int cow) 3416 { 3417 vm_size_t growsize, init_ssize; 3418 rlim_t lmemlim, vmemlim; 3419 int rv; 3420 3421 growsize = sgrowsiz; 3422 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3423 vm_map_lock(map); 3424 PROC_LOCK(curproc); 3425 lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK); 3426 vmemlim = lim_cur(curproc, RLIMIT_VMEM); 3427 PROC_UNLOCK(curproc); 3428 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3429 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) { 3430 rv = KERN_NO_SPACE; 3431 goto out; 3432 } 3433 } 3434 /* If we would blow our VMEM resource limit, no go */ 3435 if (map->size + init_ssize > vmemlim) { 3436 rv = KERN_NO_SPACE; 3437 goto out; 3438 } 3439 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 3440 max, cow); 3441 out: 3442 vm_map_unlock(map); 3443 return (rv); 3444 } 3445 3446 static int 3447 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3448 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 3449 { 3450 vm_map_entry_t new_entry, prev_entry; 3451 vm_offset_t bot, top; 3452 vm_size_t init_ssize; 3453 int orient, rv; 3454 3455 /* 3456 * The stack orientation is piggybacked with the cow argument. 3457 * Extract it into orient and mask the cow argument so that we 3458 * don't pass it around further. 3459 * NOTE: We explicitly allow bi-directional stacks. 3460 */ 3461 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3462 KASSERT(orient != 0, ("No stack grow direction")); 3463 3464 if (addrbos < vm_map_min(map) || 3465 addrbos > vm_map_max(map) || 3466 addrbos + max_ssize < addrbos) 3467 return (KERN_NO_SPACE); 3468 3469 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3470 3471 /* If addr is already mapped, no go */ 3472 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 3473 return (KERN_NO_SPACE); 3474 3475 /* 3476 * If we can't accomodate max_ssize in the current mapping, no go. 3477 * However, we need to be aware that subsequent user mappings might 3478 * map into the space we have reserved for stack, and currently this 3479 * space is not protected. 3480 * 3481 * Hopefully we will at least detect this condition when we try to 3482 * grow the stack. 3483 */ 3484 if ((prev_entry->next != &map->header) && 3485 (prev_entry->next->start < addrbos + max_ssize)) 3486 return (KERN_NO_SPACE); 3487 3488 /* 3489 * We initially map a stack of only init_ssize. We will grow as 3490 * needed later. Depending on the orientation of the stack (i.e. 3491 * the grow direction) we either map at the top of the range, the 3492 * bottom of the range or in the middle. 3493 * 3494 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3495 * and cow to be 0. Possibly we should eliminate these as input 3496 * parameters, and just pass these values here in the insert call. 3497 */ 3498 if (orient == MAP_STACK_GROWS_DOWN) 3499 bot = addrbos + max_ssize - init_ssize; 3500 else if (orient == MAP_STACK_GROWS_UP) 3501 bot = addrbos; 3502 else 3503 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3504 top = bot + init_ssize; 3505 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3506 3507 /* Now set the avail_ssize amount. */ 3508 if (rv == KERN_SUCCESS) { 3509 new_entry = prev_entry->next; 3510 if (new_entry->end != top || new_entry->start != bot) 3511 panic("Bad entry start/end for new stack entry"); 3512 3513 new_entry->avail_ssize = max_ssize - init_ssize; 3514 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 3515 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 3516 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 3517 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 3518 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 3519 ("new entry lacks MAP_ENTRY_GROWS_UP")); 3520 } 3521 3522 return (rv); 3523 } 3524 3525 static int stack_guard_page = 0; 3526 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 3527 &stack_guard_page, 0, 3528 "Insert stack guard page ahead of the growable segments."); 3529 3530 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3531 * desired address is already mapped, or if we successfully grow 3532 * the stack. Also returns KERN_SUCCESS if addr is outside the 3533 * stack range (this is strange, but preserves compatibility with 3534 * the grow function in vm_machdep.c). 3535 */ 3536 int 3537 vm_map_growstack(struct proc *p, vm_offset_t addr) 3538 { 3539 vm_map_entry_t next_entry, prev_entry; 3540 vm_map_entry_t new_entry, stack_entry; 3541 struct vmspace *vm = p->p_vmspace; 3542 vm_map_t map = &vm->vm_map; 3543 vm_offset_t end; 3544 vm_size_t growsize; 3545 size_t grow_amount, max_grow; 3546 rlim_t lmemlim, stacklim, vmemlim; 3547 int is_procstack, rv; 3548 struct ucred *cred; 3549 #ifdef notyet 3550 uint64_t limit; 3551 #endif 3552 #ifdef RACCT 3553 int error; 3554 #endif 3555 3556 Retry: 3557 PROC_LOCK(p); 3558 lmemlim = lim_cur(p, RLIMIT_MEMLOCK); 3559 stacklim = lim_cur(p, RLIMIT_STACK); 3560 vmemlim = lim_cur(p, RLIMIT_VMEM); 3561 PROC_UNLOCK(p); 3562 3563 vm_map_lock_read(map); 3564 3565 /* If addr is already in the entry range, no need to grow.*/ 3566 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3567 vm_map_unlock_read(map); 3568 return (KERN_SUCCESS); 3569 } 3570 3571 next_entry = prev_entry->next; 3572 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3573 /* 3574 * This entry does not grow upwards. Since the address lies 3575 * beyond this entry, the next entry (if one exists) has to 3576 * be a downward growable entry. The entry list header is 3577 * never a growable entry, so it suffices to check the flags. 3578 */ 3579 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3580 vm_map_unlock_read(map); 3581 return (KERN_SUCCESS); 3582 } 3583 stack_entry = next_entry; 3584 } else { 3585 /* 3586 * This entry grows upward. If the next entry does not at 3587 * least grow downwards, this is the entry we need to grow. 3588 * otherwise we have two possible choices and we have to 3589 * select one. 3590 */ 3591 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3592 /* 3593 * We have two choices; grow the entry closest to 3594 * the address to minimize the amount of growth. 3595 */ 3596 if (addr - prev_entry->end <= next_entry->start - addr) 3597 stack_entry = prev_entry; 3598 else 3599 stack_entry = next_entry; 3600 } else 3601 stack_entry = prev_entry; 3602 } 3603 3604 if (stack_entry == next_entry) { 3605 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3606 KASSERT(addr < stack_entry->start, ("foo")); 3607 end = (prev_entry != &map->header) ? prev_entry->end : 3608 stack_entry->start - stack_entry->avail_ssize; 3609 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3610 max_grow = stack_entry->start - end; 3611 } else { 3612 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3613 KASSERT(addr >= stack_entry->end, ("foo")); 3614 end = (next_entry != &map->header) ? next_entry->start : 3615 stack_entry->end + stack_entry->avail_ssize; 3616 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3617 max_grow = end - stack_entry->end; 3618 } 3619 3620 if (grow_amount > stack_entry->avail_ssize) { 3621 vm_map_unlock_read(map); 3622 return (KERN_NO_SPACE); 3623 } 3624 3625 /* 3626 * If there is no longer enough space between the entries nogo, and 3627 * adjust the available space. Note: this should only happen if the 3628 * user has mapped into the stack area after the stack was created, 3629 * and is probably an error. 3630 * 3631 * This also effectively destroys any guard page the user might have 3632 * intended by limiting the stack size. 3633 */ 3634 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3635 if (vm_map_lock_upgrade(map)) 3636 goto Retry; 3637 3638 stack_entry->avail_ssize = max_grow; 3639 3640 vm_map_unlock(map); 3641 return (KERN_NO_SPACE); 3642 } 3643 3644 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3645 3646 /* 3647 * If this is the main process stack, see if we're over the stack 3648 * limit. 3649 */ 3650 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3651 vm_map_unlock_read(map); 3652 return (KERN_NO_SPACE); 3653 } 3654 #ifdef RACCT 3655 PROC_LOCK(p); 3656 if (is_procstack && 3657 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3658 PROC_UNLOCK(p); 3659 vm_map_unlock_read(map); 3660 return (KERN_NO_SPACE); 3661 } 3662 PROC_UNLOCK(p); 3663 #endif 3664 3665 /* Round up the grow amount modulo sgrowsiz */ 3666 growsize = sgrowsiz; 3667 grow_amount = roundup(grow_amount, growsize); 3668 if (grow_amount > stack_entry->avail_ssize) 3669 grow_amount = stack_entry->avail_ssize; 3670 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3671 grow_amount = trunc_page((vm_size_t)stacklim) - 3672 ctob(vm->vm_ssize); 3673 } 3674 #ifdef notyet 3675 PROC_LOCK(p); 3676 limit = racct_get_available(p, RACCT_STACK); 3677 PROC_UNLOCK(p); 3678 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3679 grow_amount = limit - ctob(vm->vm_ssize); 3680 #endif 3681 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3682 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3683 vm_map_unlock_read(map); 3684 rv = KERN_NO_SPACE; 3685 goto out; 3686 } 3687 #ifdef RACCT 3688 PROC_LOCK(p); 3689 if (racct_set(p, RACCT_MEMLOCK, 3690 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3691 PROC_UNLOCK(p); 3692 vm_map_unlock_read(map); 3693 rv = KERN_NO_SPACE; 3694 goto out; 3695 } 3696 PROC_UNLOCK(p); 3697 #endif 3698 } 3699 /* If we would blow our VMEM resource limit, no go */ 3700 if (map->size + grow_amount > vmemlim) { 3701 vm_map_unlock_read(map); 3702 rv = KERN_NO_SPACE; 3703 goto out; 3704 } 3705 #ifdef RACCT 3706 PROC_LOCK(p); 3707 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3708 PROC_UNLOCK(p); 3709 vm_map_unlock_read(map); 3710 rv = KERN_NO_SPACE; 3711 goto out; 3712 } 3713 PROC_UNLOCK(p); 3714 #endif 3715 3716 if (vm_map_lock_upgrade(map)) 3717 goto Retry; 3718 3719 if (stack_entry == next_entry) { 3720 /* 3721 * Growing downward. 3722 */ 3723 /* Get the preliminary new entry start value */ 3724 addr = stack_entry->start - grow_amount; 3725 3726 /* 3727 * If this puts us into the previous entry, cut back our 3728 * growth to the available space. Also, see the note above. 3729 */ 3730 if (addr < end) { 3731 stack_entry->avail_ssize = max_grow; 3732 addr = end; 3733 if (stack_guard_page) 3734 addr += PAGE_SIZE; 3735 } 3736 3737 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3738 next_entry->protection, next_entry->max_protection, 3739 MAP_STACK_GROWS_DOWN); 3740 3741 /* Adjust the available stack space by the amount we grew. */ 3742 if (rv == KERN_SUCCESS) { 3743 new_entry = prev_entry->next; 3744 KASSERT(new_entry == stack_entry->prev, ("foo")); 3745 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3746 KASSERT(new_entry->start == addr, ("foo")); 3747 KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 3748 0, ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 3749 grow_amount = new_entry->end - new_entry->start; 3750 new_entry->avail_ssize = stack_entry->avail_ssize - 3751 grow_amount; 3752 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3753 } 3754 } else { 3755 /* 3756 * Growing upward. 3757 */ 3758 addr = stack_entry->end + grow_amount; 3759 3760 /* 3761 * If this puts us into the next entry, cut back our growth 3762 * to the available space. Also, see the note above. 3763 */ 3764 if (addr > end) { 3765 stack_entry->avail_ssize = end - stack_entry->end; 3766 addr = end; 3767 if (stack_guard_page) 3768 addr -= PAGE_SIZE; 3769 } 3770 3771 grow_amount = addr - stack_entry->end; 3772 cred = stack_entry->cred; 3773 if (cred == NULL && stack_entry->object.vm_object != NULL) 3774 cred = stack_entry->object.vm_object->cred; 3775 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3776 rv = KERN_NO_SPACE; 3777 /* Grow the underlying object if applicable. */ 3778 else if (stack_entry->object.vm_object == NULL || 3779 vm_object_coalesce(stack_entry->object.vm_object, 3780 stack_entry->offset, 3781 (vm_size_t)(stack_entry->end - stack_entry->start), 3782 (vm_size_t)grow_amount, cred != NULL)) { 3783 map->size += (addr - stack_entry->end); 3784 /* Update the current entry. */ 3785 stack_entry->end = addr; 3786 stack_entry->avail_ssize -= grow_amount; 3787 vm_map_entry_resize_free(map, stack_entry); 3788 rv = KERN_SUCCESS; 3789 } else 3790 rv = KERN_FAILURE; 3791 } 3792 3793 if (rv == KERN_SUCCESS && is_procstack) 3794 vm->vm_ssize += btoc(grow_amount); 3795 3796 vm_map_unlock(map); 3797 3798 /* 3799 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3800 */ 3801 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3802 vm_map_wire(map, 3803 (stack_entry == next_entry) ? addr : addr - grow_amount, 3804 (stack_entry == next_entry) ? stack_entry->start : addr, 3805 (p->p_flag & P_SYSTEM) 3806 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3807 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3808 } 3809 3810 out: 3811 #ifdef RACCT 3812 if (rv != KERN_SUCCESS) { 3813 PROC_LOCK(p); 3814 error = racct_set(p, RACCT_VMEM, map->size); 3815 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3816 if (!old_mlock) { 3817 error = racct_set(p, RACCT_MEMLOCK, 3818 ptoa(pmap_wired_count(map->pmap))); 3819 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3820 } 3821 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3822 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3823 PROC_UNLOCK(p); 3824 } 3825 #endif 3826 3827 return (rv); 3828 } 3829 3830 /* 3831 * Unshare the specified VM space for exec. If other processes are 3832 * mapped to it, then create a new one. The new vmspace is null. 3833 */ 3834 int 3835 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3836 { 3837 struct vmspace *oldvmspace = p->p_vmspace; 3838 struct vmspace *newvmspace; 3839 3840 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 3841 ("vmspace_exec recursed")); 3842 newvmspace = vmspace_alloc(minuser, maxuser, NULL); 3843 if (newvmspace == NULL) 3844 return (ENOMEM); 3845 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3846 /* 3847 * This code is written like this for prototype purposes. The 3848 * goal is to avoid running down the vmspace here, but let the 3849 * other process's that are still using the vmspace to finally 3850 * run it down. Even though there is little or no chance of blocking 3851 * here, it is a good idea to keep this form for future mods. 3852 */ 3853 PROC_VMSPACE_LOCK(p); 3854 p->p_vmspace = newvmspace; 3855 PROC_VMSPACE_UNLOCK(p); 3856 if (p == curthread->td_proc) 3857 pmap_activate(curthread); 3858 curthread->td_pflags |= TDP_EXECVMSPC; 3859 return (0); 3860 } 3861 3862 /* 3863 * Unshare the specified VM space for forcing COW. This 3864 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3865 */ 3866 int 3867 vmspace_unshare(struct proc *p) 3868 { 3869 struct vmspace *oldvmspace = p->p_vmspace; 3870 struct vmspace *newvmspace; 3871 vm_ooffset_t fork_charge; 3872 3873 if (oldvmspace->vm_refcnt == 1) 3874 return (0); 3875 fork_charge = 0; 3876 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3877 if (newvmspace == NULL) 3878 return (ENOMEM); 3879 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3880 vmspace_free(newvmspace); 3881 return (ENOMEM); 3882 } 3883 PROC_VMSPACE_LOCK(p); 3884 p->p_vmspace = newvmspace; 3885 PROC_VMSPACE_UNLOCK(p); 3886 if (p == curthread->td_proc) 3887 pmap_activate(curthread); 3888 vmspace_free(oldvmspace); 3889 return (0); 3890 } 3891 3892 /* 3893 * vm_map_lookup: 3894 * 3895 * Finds the VM object, offset, and 3896 * protection for a given virtual address in the 3897 * specified map, assuming a page fault of the 3898 * type specified. 3899 * 3900 * Leaves the map in question locked for read; return 3901 * values are guaranteed until a vm_map_lookup_done 3902 * call is performed. Note that the map argument 3903 * is in/out; the returned map must be used in 3904 * the call to vm_map_lookup_done. 3905 * 3906 * A handle (out_entry) is returned for use in 3907 * vm_map_lookup_done, to make that fast. 3908 * 3909 * If a lookup is requested with "write protection" 3910 * specified, the map may be changed to perform virtual 3911 * copying operations, although the data referenced will 3912 * remain the same. 3913 */ 3914 int 3915 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3916 vm_offset_t vaddr, 3917 vm_prot_t fault_typea, 3918 vm_map_entry_t *out_entry, /* OUT */ 3919 vm_object_t *object, /* OUT */ 3920 vm_pindex_t *pindex, /* OUT */ 3921 vm_prot_t *out_prot, /* OUT */ 3922 boolean_t *wired) /* OUT */ 3923 { 3924 vm_map_entry_t entry; 3925 vm_map_t map = *var_map; 3926 vm_prot_t prot; 3927 vm_prot_t fault_type = fault_typea; 3928 vm_object_t eobject; 3929 vm_size_t size; 3930 struct ucred *cred; 3931 3932 RetryLookup:; 3933 3934 vm_map_lock_read(map); 3935 3936 /* 3937 * Lookup the faulting address. 3938 */ 3939 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3940 vm_map_unlock_read(map); 3941 return (KERN_INVALID_ADDRESS); 3942 } 3943 3944 entry = *out_entry; 3945 3946 /* 3947 * Handle submaps. 3948 */ 3949 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3950 vm_map_t old_map = map; 3951 3952 *var_map = map = entry->object.sub_map; 3953 vm_map_unlock_read(old_map); 3954 goto RetryLookup; 3955 } 3956 3957 /* 3958 * Check whether this task is allowed to have this page. 3959 */ 3960 prot = entry->protection; 3961 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3962 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3963 vm_map_unlock_read(map); 3964 return (KERN_PROTECTION_FAILURE); 3965 } 3966 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3967 (entry->eflags & MAP_ENTRY_COW) && 3968 (fault_type & VM_PROT_WRITE)) { 3969 vm_map_unlock_read(map); 3970 return (KERN_PROTECTION_FAILURE); 3971 } 3972 if ((fault_typea & VM_PROT_COPY) != 0 && 3973 (entry->max_protection & VM_PROT_WRITE) == 0 && 3974 (entry->eflags & MAP_ENTRY_COW) == 0) { 3975 vm_map_unlock_read(map); 3976 return (KERN_PROTECTION_FAILURE); 3977 } 3978 3979 /* 3980 * If this page is not pageable, we have to get it for all possible 3981 * accesses. 3982 */ 3983 *wired = (entry->wired_count != 0); 3984 if (*wired) 3985 fault_type = entry->protection; 3986 size = entry->end - entry->start; 3987 /* 3988 * If the entry was copy-on-write, we either ... 3989 */ 3990 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3991 /* 3992 * If we want to write the page, we may as well handle that 3993 * now since we've got the map locked. 3994 * 3995 * If we don't need to write the page, we just demote the 3996 * permissions allowed. 3997 */ 3998 if ((fault_type & VM_PROT_WRITE) != 0 || 3999 (fault_typea & VM_PROT_COPY) != 0) { 4000 /* 4001 * Make a new object, and place it in the object 4002 * chain. Note that no new references have appeared 4003 * -- one just moved from the map to the new 4004 * object. 4005 */ 4006 if (vm_map_lock_upgrade(map)) 4007 goto RetryLookup; 4008 4009 if (entry->cred == NULL) { 4010 /* 4011 * The debugger owner is charged for 4012 * the memory. 4013 */ 4014 cred = curthread->td_ucred; 4015 crhold(cred); 4016 if (!swap_reserve_by_cred(size, cred)) { 4017 crfree(cred); 4018 vm_map_unlock(map); 4019 return (KERN_RESOURCE_SHORTAGE); 4020 } 4021 entry->cred = cred; 4022 } 4023 vm_object_shadow(&entry->object.vm_object, 4024 &entry->offset, size); 4025 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4026 eobject = entry->object.vm_object; 4027 if (eobject->cred != NULL) { 4028 /* 4029 * The object was not shadowed. 4030 */ 4031 swap_release_by_cred(size, entry->cred); 4032 crfree(entry->cred); 4033 entry->cred = NULL; 4034 } else if (entry->cred != NULL) { 4035 VM_OBJECT_WLOCK(eobject); 4036 eobject->cred = entry->cred; 4037 eobject->charge = size; 4038 VM_OBJECT_WUNLOCK(eobject); 4039 entry->cred = NULL; 4040 } 4041 4042 vm_map_lock_downgrade(map); 4043 } else { 4044 /* 4045 * We're attempting to read a copy-on-write page -- 4046 * don't allow writes. 4047 */ 4048 prot &= ~VM_PROT_WRITE; 4049 } 4050 } 4051 4052 /* 4053 * Create an object if necessary. 4054 */ 4055 if (entry->object.vm_object == NULL && 4056 !map->system_map) { 4057 if (vm_map_lock_upgrade(map)) 4058 goto RetryLookup; 4059 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4060 atop(size)); 4061 entry->offset = 0; 4062 if (entry->cred != NULL) { 4063 VM_OBJECT_WLOCK(entry->object.vm_object); 4064 entry->object.vm_object->cred = entry->cred; 4065 entry->object.vm_object->charge = size; 4066 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4067 entry->cred = NULL; 4068 } 4069 vm_map_lock_downgrade(map); 4070 } 4071 4072 /* 4073 * Return the object/offset from this entry. If the entry was 4074 * copy-on-write or empty, it has been fixed up. 4075 */ 4076 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4077 *object = entry->object.vm_object; 4078 4079 *out_prot = prot; 4080 return (KERN_SUCCESS); 4081 } 4082 4083 /* 4084 * vm_map_lookup_locked: 4085 * 4086 * Lookup the faulting address. A version of vm_map_lookup that returns 4087 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4088 */ 4089 int 4090 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4091 vm_offset_t vaddr, 4092 vm_prot_t fault_typea, 4093 vm_map_entry_t *out_entry, /* OUT */ 4094 vm_object_t *object, /* OUT */ 4095 vm_pindex_t *pindex, /* OUT */ 4096 vm_prot_t *out_prot, /* OUT */ 4097 boolean_t *wired) /* OUT */ 4098 { 4099 vm_map_entry_t entry; 4100 vm_map_t map = *var_map; 4101 vm_prot_t prot; 4102 vm_prot_t fault_type = fault_typea; 4103 4104 /* 4105 * Lookup the faulting address. 4106 */ 4107 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4108 return (KERN_INVALID_ADDRESS); 4109 4110 entry = *out_entry; 4111 4112 /* 4113 * Fail if the entry refers to a submap. 4114 */ 4115 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4116 return (KERN_FAILURE); 4117 4118 /* 4119 * Check whether this task is allowed to have this page. 4120 */ 4121 prot = entry->protection; 4122 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4123 if ((fault_type & prot) != fault_type) 4124 return (KERN_PROTECTION_FAILURE); 4125 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 4126 (entry->eflags & MAP_ENTRY_COW) && 4127 (fault_type & VM_PROT_WRITE)) 4128 return (KERN_PROTECTION_FAILURE); 4129 4130 /* 4131 * If this page is not pageable, we have to get it for all possible 4132 * accesses. 4133 */ 4134 *wired = (entry->wired_count != 0); 4135 if (*wired) 4136 fault_type = entry->protection; 4137 4138 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4139 /* 4140 * Fail if the entry was copy-on-write for a write fault. 4141 */ 4142 if (fault_type & VM_PROT_WRITE) 4143 return (KERN_FAILURE); 4144 /* 4145 * We're attempting to read a copy-on-write page -- 4146 * don't allow writes. 4147 */ 4148 prot &= ~VM_PROT_WRITE; 4149 } 4150 4151 /* 4152 * Fail if an object should be created. 4153 */ 4154 if (entry->object.vm_object == NULL && !map->system_map) 4155 return (KERN_FAILURE); 4156 4157 /* 4158 * Return the object/offset from this entry. If the entry was 4159 * copy-on-write or empty, it has been fixed up. 4160 */ 4161 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4162 *object = entry->object.vm_object; 4163 4164 *out_prot = prot; 4165 return (KERN_SUCCESS); 4166 } 4167 4168 /* 4169 * vm_map_lookup_done: 4170 * 4171 * Releases locks acquired by a vm_map_lookup 4172 * (according to the handle returned by that lookup). 4173 */ 4174 void 4175 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4176 { 4177 /* 4178 * Unlock the main-level map 4179 */ 4180 vm_map_unlock_read(map); 4181 } 4182 4183 #include "opt_ddb.h" 4184 #ifdef DDB 4185 #include <sys/kernel.h> 4186 4187 #include <ddb/ddb.h> 4188 4189 static void 4190 vm_map_print(vm_map_t map) 4191 { 4192 vm_map_entry_t entry; 4193 4194 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4195 (void *)map, 4196 (void *)map->pmap, map->nentries, map->timestamp); 4197 4198 db_indent += 2; 4199 for (entry = map->header.next; entry != &map->header; 4200 entry = entry->next) { 4201 db_iprintf("map entry %p: start=%p, end=%p\n", 4202 (void *)entry, (void *)entry->start, (void *)entry->end); 4203 { 4204 static char *inheritance_name[4] = 4205 {"share", "copy", "none", "donate_copy"}; 4206 4207 db_iprintf(" prot=%x/%x/%s", 4208 entry->protection, 4209 entry->max_protection, 4210 inheritance_name[(int)(unsigned char)entry->inheritance]); 4211 if (entry->wired_count != 0) 4212 db_printf(", wired"); 4213 } 4214 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4215 db_printf(", share=%p, offset=0x%jx\n", 4216 (void *)entry->object.sub_map, 4217 (uintmax_t)entry->offset); 4218 if ((entry->prev == &map->header) || 4219 (entry->prev->object.sub_map != 4220 entry->object.sub_map)) { 4221 db_indent += 2; 4222 vm_map_print((vm_map_t)entry->object.sub_map); 4223 db_indent -= 2; 4224 } 4225 } else { 4226 if (entry->cred != NULL) 4227 db_printf(", ruid %d", entry->cred->cr_ruid); 4228 db_printf(", object=%p, offset=0x%jx", 4229 (void *)entry->object.vm_object, 4230 (uintmax_t)entry->offset); 4231 if (entry->object.vm_object && entry->object.vm_object->cred) 4232 db_printf(", obj ruid %d charge %jx", 4233 entry->object.vm_object->cred->cr_ruid, 4234 (uintmax_t)entry->object.vm_object->charge); 4235 if (entry->eflags & MAP_ENTRY_COW) 4236 db_printf(", copy (%s)", 4237 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4238 db_printf("\n"); 4239 4240 if ((entry->prev == &map->header) || 4241 (entry->prev->object.vm_object != 4242 entry->object.vm_object)) { 4243 db_indent += 2; 4244 vm_object_print((db_expr_t)(intptr_t) 4245 entry->object.vm_object, 4246 0, 0, (char *)0); 4247 db_indent -= 2; 4248 } 4249 } 4250 } 4251 db_indent -= 2; 4252 } 4253 4254 DB_SHOW_COMMAND(map, map) 4255 { 4256 4257 if (!have_addr) { 4258 db_printf("usage: show map <addr>\n"); 4259 return; 4260 } 4261 vm_map_print((vm_map_t)addr); 4262 } 4263 4264 DB_SHOW_COMMAND(procvm, procvm) 4265 { 4266 struct proc *p; 4267 4268 if (have_addr) { 4269 p = (struct proc *) addr; 4270 } else { 4271 p = curproc; 4272 } 4273 4274 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4275 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4276 (void *)vmspace_pmap(p->p_vmspace)); 4277 4278 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4279 } 4280 4281 #endif /* DDB */ 4282