1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/racct.h> 81 #include <sys/resourcevar.h> 82 #include <sys/rwlock.h> 83 #include <sys/file.h> 84 #include <sys/sysctl.h> 85 #include <sys/sysent.h> 86 #include <sys/shm.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_pageout.h> 94 #include <vm/vm_object.h> 95 #include <vm/vm_pager.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_extern.h> 98 #include <vm/vnode_pager.h> 99 #include <vm/swap_pager.h> 100 #include <vm/uma.h> 101 102 /* 103 * Virtual memory maps provide for the mapping, protection, 104 * and sharing of virtual memory objects. In addition, 105 * this module provides for an efficient virtual copy of 106 * memory from one map to another. 107 * 108 * Synchronization is required prior to most operations. 109 * 110 * Maps consist of an ordered doubly-linked list of simple 111 * entries; a self-adjusting binary search tree of these 112 * entries is used to speed up lookups. 113 * 114 * Since portions of maps are specified by start/end addresses, 115 * which may not align with existing map entries, all 116 * routines merely "clip" entries to these start/end values. 117 * [That is, an entry is split into two, bordering at a 118 * start or end value.] Note that these clippings may not 119 * always be necessary (as the two resulting entries are then 120 * not changed); however, the clipping is done for convenience. 121 * 122 * As mentioned above, virtual copy operations are performed 123 * by copying VM object references from one map to 124 * another, and then marking both regions as copy-on-write. 125 */ 126 127 static struct mtx map_sleep_mtx; 128 static uma_zone_t mapentzone; 129 static uma_zone_t kmapentzone; 130 static uma_zone_t mapzone; 131 static uma_zone_t vmspace_zone; 132 static int vmspace_zinit(void *mem, int size, int flags); 133 static int vm_map_zinit(void *mem, int ize, int flags); 134 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 135 vm_offset_t max); 136 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 137 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 138 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 139 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 140 vm_map_entry_t gap_entry); 141 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 142 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 143 #ifdef INVARIANTS 144 static void vm_map_zdtor(void *mem, int size, void *arg); 145 static void vmspace_zdtor(void *mem, int size, void *arg); 146 #endif 147 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 148 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 149 int cow); 150 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 151 vm_offset_t failed_addr); 152 153 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 154 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 155 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 156 157 /* 158 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 159 * stable. 160 */ 161 #define PROC_VMSPACE_LOCK(p) do { } while (0) 162 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 163 164 /* 165 * VM_MAP_RANGE_CHECK: [ internal use only ] 166 * 167 * Asserts that the starting and ending region 168 * addresses fall within the valid range of the map. 169 */ 170 #define VM_MAP_RANGE_CHECK(map, start, end) \ 171 { \ 172 if (start < vm_map_min(map)) \ 173 start = vm_map_min(map); \ 174 if (end > vm_map_max(map)) \ 175 end = vm_map_max(map); \ 176 if (start > end) \ 177 start = end; \ 178 } 179 180 /* 181 * vm_map_startup: 182 * 183 * Initialize the vm_map module. Must be called before 184 * any other vm_map routines. 185 * 186 * Map and entry structures are allocated from the general 187 * purpose memory pool with some exceptions: 188 * 189 * - The kernel map and kmem submap are allocated statically. 190 * - Kernel map entries are allocated out of a static pool. 191 * 192 * These restrictions are necessary since malloc() uses the 193 * maps and requires map entries. 194 */ 195 196 void 197 vm_map_startup(void) 198 { 199 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 200 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 201 #ifdef INVARIANTS 202 vm_map_zdtor, 203 #else 204 NULL, 205 #endif 206 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 207 uma_prealloc(mapzone, MAX_KMAP); 208 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 209 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 210 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 211 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 212 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 213 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 214 #ifdef INVARIANTS 215 vmspace_zdtor, 216 #else 217 NULL, 218 #endif 219 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 220 } 221 222 static int 223 vmspace_zinit(void *mem, int size, int flags) 224 { 225 struct vmspace *vm; 226 227 vm = (struct vmspace *)mem; 228 229 vm->vm_map.pmap = NULL; 230 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 231 PMAP_LOCK_INIT(vmspace_pmap(vm)); 232 return (0); 233 } 234 235 static int 236 vm_map_zinit(void *mem, int size, int flags) 237 { 238 vm_map_t map; 239 240 map = (vm_map_t)mem; 241 memset(map, 0, sizeof(*map)); 242 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 243 sx_init(&map->lock, "vm map (user)"); 244 return (0); 245 } 246 247 #ifdef INVARIANTS 248 static void 249 vmspace_zdtor(void *mem, int size, void *arg) 250 { 251 struct vmspace *vm; 252 253 vm = (struct vmspace *)mem; 254 255 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 256 } 257 static void 258 vm_map_zdtor(void *mem, int size, void *arg) 259 { 260 vm_map_t map; 261 262 map = (vm_map_t)mem; 263 KASSERT(map->nentries == 0, 264 ("map %p nentries == %d on free.", 265 map, map->nentries)); 266 KASSERT(map->size == 0, 267 ("map %p size == %lu on free.", 268 map, (unsigned long)map->size)); 269 } 270 #endif /* INVARIANTS */ 271 272 /* 273 * Allocate a vmspace structure, including a vm_map and pmap, 274 * and initialize those structures. The refcnt is set to 1. 275 * 276 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 277 */ 278 struct vmspace * 279 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 280 { 281 struct vmspace *vm; 282 283 vm = uma_zalloc(vmspace_zone, M_WAITOK); 284 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 285 if (!pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 #ifdef RACCT 304 static void 305 vmspace_container_reset(struct proc *p) 306 { 307 308 PROC_LOCK(p); 309 racct_set(p, RACCT_DATA, 0); 310 racct_set(p, RACCT_STACK, 0); 311 racct_set(p, RACCT_RSS, 0); 312 racct_set(p, RACCT_MEMLOCK, 0); 313 racct_set(p, RACCT_VMEM, 0); 314 PROC_UNLOCK(p); 315 } 316 #endif 317 318 static inline void 319 vmspace_dofree(struct vmspace *vm) 320 { 321 322 CTR1(KTR_VM, "vmspace_free: %p", vm); 323 324 /* 325 * Make sure any SysV shm is freed, it might not have been in 326 * exit1(). 327 */ 328 shmexit(vm); 329 330 /* 331 * Lock the map, to wait out all other references to it. 332 * Delete all of the mappings and pages they hold, then call 333 * the pmap module to reclaim anything left. 334 */ 335 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 336 vm_map_max(&vm->vm_map)); 337 338 pmap_release(vmspace_pmap(vm)); 339 vm->vm_map.pmap = NULL; 340 uma_zfree(vmspace_zone, vm); 341 } 342 343 void 344 vmspace_free(struct vmspace *vm) 345 { 346 347 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 348 "vmspace_free() called"); 349 350 if (vm->vm_refcnt == 0) 351 panic("vmspace_free: attempt to free already freed vmspace"); 352 353 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 354 vmspace_dofree(vm); 355 } 356 357 void 358 vmspace_exitfree(struct proc *p) 359 { 360 struct vmspace *vm; 361 362 PROC_VMSPACE_LOCK(p); 363 vm = p->p_vmspace; 364 p->p_vmspace = NULL; 365 PROC_VMSPACE_UNLOCK(p); 366 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 367 vmspace_free(vm); 368 } 369 370 void 371 vmspace_exit(struct thread *td) 372 { 373 int refcnt; 374 struct vmspace *vm; 375 struct proc *p; 376 377 /* 378 * Release user portion of address space. 379 * This releases references to vnodes, 380 * which could cause I/O if the file has been unlinked. 381 * Need to do this early enough that we can still sleep. 382 * 383 * The last exiting process to reach this point releases as 384 * much of the environment as it can. vmspace_dofree() is the 385 * slower fallback in case another process had a temporary 386 * reference to the vmspace. 387 */ 388 389 p = td->td_proc; 390 vm = p->p_vmspace; 391 atomic_add_int(&vmspace0.vm_refcnt, 1); 392 refcnt = vm->vm_refcnt; 393 do { 394 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 395 /* Switch now since other proc might free vmspace */ 396 PROC_VMSPACE_LOCK(p); 397 p->p_vmspace = &vmspace0; 398 PROC_VMSPACE_UNLOCK(p); 399 pmap_activate(td); 400 } 401 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1)); 402 if (refcnt == 1) { 403 if (p->p_vmspace != vm) { 404 /* vmspace not yet freed, switch back */ 405 PROC_VMSPACE_LOCK(p); 406 p->p_vmspace = vm; 407 PROC_VMSPACE_UNLOCK(p); 408 pmap_activate(td); 409 } 410 pmap_remove_pages(vmspace_pmap(vm)); 411 /* Switch now since this proc will free vmspace */ 412 PROC_VMSPACE_LOCK(p); 413 p->p_vmspace = &vmspace0; 414 PROC_VMSPACE_UNLOCK(p); 415 pmap_activate(td); 416 vmspace_dofree(vm); 417 } 418 #ifdef RACCT 419 if (racct_enable) 420 vmspace_container_reset(p); 421 #endif 422 } 423 424 /* Acquire reference to vmspace owned by another process. */ 425 426 struct vmspace * 427 vmspace_acquire_ref(struct proc *p) 428 { 429 struct vmspace *vm; 430 int refcnt; 431 432 PROC_VMSPACE_LOCK(p); 433 vm = p->p_vmspace; 434 if (vm == NULL) { 435 PROC_VMSPACE_UNLOCK(p); 436 return (NULL); 437 } 438 refcnt = vm->vm_refcnt; 439 do { 440 if (refcnt <= 0) { /* Avoid 0->1 transition */ 441 PROC_VMSPACE_UNLOCK(p); 442 return (NULL); 443 } 444 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1)); 445 if (vm != p->p_vmspace) { 446 PROC_VMSPACE_UNLOCK(p); 447 vmspace_free(vm); 448 return (NULL); 449 } 450 PROC_VMSPACE_UNLOCK(p); 451 return (vm); 452 } 453 454 /* 455 * Switch between vmspaces in an AIO kernel process. 456 * 457 * The new vmspace is either the vmspace of a user process obtained 458 * from an active AIO request or the initial vmspace of the AIO kernel 459 * process (when it is idling). Because user processes will block to 460 * drain any active AIO requests before proceeding in exit() or 461 * execve(), the reference count for vmspaces from AIO requests can 462 * never be 0. Similarly, AIO kernel processes hold an extra 463 * reference on their initial vmspace for the life of the process. As 464 * a result, the 'newvm' vmspace always has a non-zero reference 465 * count. This permits an additional reference on 'newvm' to be 466 * acquired via a simple atomic increment rather than the loop in 467 * vmspace_acquire_ref() above. 468 */ 469 void 470 vmspace_switch_aio(struct vmspace *newvm) 471 { 472 struct vmspace *oldvm; 473 474 /* XXX: Need some way to assert that this is an aio daemon. */ 475 476 KASSERT(newvm->vm_refcnt > 0, 477 ("vmspace_switch_aio: newvm unreferenced")); 478 479 oldvm = curproc->p_vmspace; 480 if (oldvm == newvm) 481 return; 482 483 /* 484 * Point to the new address space and refer to it. 485 */ 486 curproc->p_vmspace = newvm; 487 atomic_add_int(&newvm->vm_refcnt, 1); 488 489 /* Activate the new mapping. */ 490 pmap_activate(curthread); 491 492 vmspace_free(oldvm); 493 } 494 495 void 496 _vm_map_lock(vm_map_t map, const char *file, int line) 497 { 498 499 if (map->system_map) 500 mtx_lock_flags_(&map->system_mtx, 0, file, line); 501 else 502 sx_xlock_(&map->lock, file, line); 503 map->timestamp++; 504 } 505 506 void 507 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 508 { 509 vm_object_t object, object1; 510 struct vnode *vp; 511 512 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 513 return; 514 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 515 ("Submap with execs")); 516 object = entry->object.vm_object; 517 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 518 VM_OBJECT_RLOCK(object); 519 while ((object1 = object->backing_object) != NULL) { 520 VM_OBJECT_RLOCK(object1); 521 VM_OBJECT_RUNLOCK(object); 522 object = object1; 523 } 524 525 vp = NULL; 526 if (object->type == OBJT_DEAD) { 527 /* 528 * For OBJT_DEAD objects, v_writecount was handled in 529 * vnode_pager_dealloc(). 530 */ 531 } else if (object->type == OBJT_VNODE) { 532 vp = object->handle; 533 } else if (object->type == OBJT_SWAP) { 534 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0, 535 ("vm_map_entry_set_vnode_text: swap and !TMPFS " 536 "entry %p, object %p, add %d", entry, object, add)); 537 /* 538 * Tmpfs VREG node, which was reclaimed, has 539 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS. In 540 * this case there is no v_writecount to adjust. 541 */ 542 if ((object->flags & OBJ_TMPFS) != 0) 543 vp = object->un_pager.swp.swp_tmpfs; 544 } else { 545 KASSERT(0, 546 ("vm_map_entry_set_vnode_text: wrong object type, " 547 "entry %p, object %p, add %d", entry, object, add)); 548 } 549 if (vp != NULL) { 550 if (add) { 551 VOP_SET_TEXT_CHECKED(vp); 552 VM_OBJECT_RUNLOCK(object); 553 } else { 554 vhold(vp); 555 VM_OBJECT_RUNLOCK(object); 556 vn_lock(vp, LK_SHARED | LK_RETRY); 557 VOP_UNSET_TEXT_CHECKED(vp); 558 VOP_UNLOCK(vp, 0); 559 vdrop(vp); 560 } 561 } else { 562 VM_OBJECT_RUNLOCK(object); 563 } 564 } 565 566 static void 567 vm_map_process_deferred(void) 568 { 569 struct thread *td; 570 vm_map_entry_t entry, next; 571 vm_object_t object; 572 573 td = curthread; 574 entry = td->td_map_def_user; 575 td->td_map_def_user = NULL; 576 while (entry != NULL) { 577 next = entry->next; 578 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT | 579 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT | 580 MAP_ENTRY_VN_EXEC)); 581 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) { 582 /* 583 * Decrement the object's writemappings and 584 * possibly the vnode's v_writecount. 585 */ 586 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 587 ("Submap with writecount")); 588 object = entry->object.vm_object; 589 KASSERT(object != NULL, ("No object for writecount")); 590 vm_pager_release_writecount(object, entry->start, 591 entry->end); 592 } 593 vm_map_entry_set_vnode_text(entry, false); 594 vm_map_entry_deallocate(entry, FALSE); 595 entry = next; 596 } 597 } 598 599 void 600 _vm_map_unlock(vm_map_t map, const char *file, int line) 601 { 602 603 if (map->system_map) 604 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 605 else { 606 sx_xunlock_(&map->lock, file, line); 607 vm_map_process_deferred(); 608 } 609 } 610 611 void 612 _vm_map_lock_read(vm_map_t map, const char *file, int line) 613 { 614 615 if (map->system_map) 616 mtx_lock_flags_(&map->system_mtx, 0, file, line); 617 else 618 sx_slock_(&map->lock, file, line); 619 } 620 621 void 622 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 623 { 624 625 if (map->system_map) 626 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 627 else { 628 sx_sunlock_(&map->lock, file, line); 629 vm_map_process_deferred(); 630 } 631 } 632 633 int 634 _vm_map_trylock(vm_map_t map, const char *file, int line) 635 { 636 int error; 637 638 error = map->system_map ? 639 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 640 !sx_try_xlock_(&map->lock, file, line); 641 if (error == 0) 642 map->timestamp++; 643 return (error == 0); 644 } 645 646 int 647 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 648 { 649 int error; 650 651 error = map->system_map ? 652 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 653 !sx_try_slock_(&map->lock, file, line); 654 return (error == 0); 655 } 656 657 /* 658 * _vm_map_lock_upgrade: [ internal use only ] 659 * 660 * Tries to upgrade a read (shared) lock on the specified map to a write 661 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 662 * non-zero value if the upgrade fails. If the upgrade fails, the map is 663 * returned without a read or write lock held. 664 * 665 * Requires that the map be read locked. 666 */ 667 int 668 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 669 { 670 unsigned int last_timestamp; 671 672 if (map->system_map) { 673 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 674 } else { 675 if (!sx_try_upgrade_(&map->lock, file, line)) { 676 last_timestamp = map->timestamp; 677 sx_sunlock_(&map->lock, file, line); 678 vm_map_process_deferred(); 679 /* 680 * If the map's timestamp does not change while the 681 * map is unlocked, then the upgrade succeeds. 682 */ 683 sx_xlock_(&map->lock, file, line); 684 if (last_timestamp != map->timestamp) { 685 sx_xunlock_(&map->lock, file, line); 686 return (1); 687 } 688 } 689 } 690 map->timestamp++; 691 return (0); 692 } 693 694 void 695 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 696 { 697 698 if (map->system_map) { 699 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 700 } else 701 sx_downgrade_(&map->lock, file, line); 702 } 703 704 /* 705 * vm_map_locked: 706 * 707 * Returns a non-zero value if the caller holds a write (exclusive) lock 708 * on the specified map and the value "0" otherwise. 709 */ 710 int 711 vm_map_locked(vm_map_t map) 712 { 713 714 if (map->system_map) 715 return (mtx_owned(&map->system_mtx)); 716 else 717 return (sx_xlocked(&map->lock)); 718 } 719 720 #ifdef INVARIANTS 721 static void 722 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 723 { 724 725 if (map->system_map) 726 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 727 else 728 sx_assert_(&map->lock, SA_XLOCKED, file, line); 729 } 730 731 #define VM_MAP_ASSERT_LOCKED(map) \ 732 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 733 734 #ifdef DIAGNOSTIC 735 static int enable_vmmap_check = 1; 736 #else 737 static int enable_vmmap_check = 0; 738 #endif 739 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 740 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 741 742 static void _vm_map_assert_consistent(vm_map_t map); 743 744 #define VM_MAP_ASSERT_CONSISTENT(map) \ 745 _vm_map_assert_consistent(map) 746 #else 747 #define VM_MAP_ASSERT_LOCKED(map) 748 #define VM_MAP_ASSERT_CONSISTENT(map) 749 #endif /* INVARIANTS */ 750 751 /* 752 * _vm_map_unlock_and_wait: 753 * 754 * Atomically releases the lock on the specified map and puts the calling 755 * thread to sleep. The calling thread will remain asleep until either 756 * vm_map_wakeup() is performed on the map or the specified timeout is 757 * exceeded. 758 * 759 * WARNING! This function does not perform deferred deallocations of 760 * objects and map entries. Therefore, the calling thread is expected to 761 * reacquire the map lock after reawakening and later perform an ordinary 762 * unlock operation, such as vm_map_unlock(), before completing its 763 * operation on the map. 764 */ 765 int 766 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 767 { 768 769 mtx_lock(&map_sleep_mtx); 770 if (map->system_map) 771 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 772 else 773 sx_xunlock_(&map->lock, file, line); 774 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 775 timo)); 776 } 777 778 /* 779 * vm_map_wakeup: 780 * 781 * Awaken any threads that have slept on the map using 782 * vm_map_unlock_and_wait(). 783 */ 784 void 785 vm_map_wakeup(vm_map_t map) 786 { 787 788 /* 789 * Acquire and release map_sleep_mtx to prevent a wakeup() 790 * from being performed (and lost) between the map unlock 791 * and the msleep() in _vm_map_unlock_and_wait(). 792 */ 793 mtx_lock(&map_sleep_mtx); 794 mtx_unlock(&map_sleep_mtx); 795 wakeup(&map->root); 796 } 797 798 void 799 vm_map_busy(vm_map_t map) 800 { 801 802 VM_MAP_ASSERT_LOCKED(map); 803 map->busy++; 804 } 805 806 void 807 vm_map_unbusy(vm_map_t map) 808 { 809 810 VM_MAP_ASSERT_LOCKED(map); 811 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 812 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 813 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 814 wakeup(&map->busy); 815 } 816 } 817 818 void 819 vm_map_wait_busy(vm_map_t map) 820 { 821 822 VM_MAP_ASSERT_LOCKED(map); 823 while (map->busy) { 824 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 825 if (map->system_map) 826 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 827 else 828 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 829 } 830 map->timestamp++; 831 } 832 833 long 834 vmspace_resident_count(struct vmspace *vmspace) 835 { 836 return pmap_resident_count(vmspace_pmap(vmspace)); 837 } 838 839 /* 840 * vm_map_create: 841 * 842 * Creates and returns a new empty VM map with 843 * the given physical map structure, and having 844 * the given lower and upper address bounds. 845 */ 846 vm_map_t 847 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 848 { 849 vm_map_t result; 850 851 result = uma_zalloc(mapzone, M_WAITOK); 852 CTR1(KTR_VM, "vm_map_create: %p", result); 853 _vm_map_init(result, pmap, min, max); 854 return (result); 855 } 856 857 /* 858 * Initialize an existing vm_map structure 859 * such as that in the vmspace structure. 860 */ 861 static void 862 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 863 { 864 865 map->header.next = map->header.prev = &map->header; 866 map->header.eflags = MAP_ENTRY_HEADER; 867 map->needs_wakeup = FALSE; 868 map->system_map = 0; 869 map->pmap = pmap; 870 map->header.end = min; 871 map->header.start = max; 872 map->flags = 0; 873 map->root = NULL; 874 map->timestamp = 0; 875 map->busy = 0; 876 map->anon_loc = 0; 877 } 878 879 void 880 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 881 { 882 883 _vm_map_init(map, pmap, min, max); 884 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 885 sx_init(&map->lock, "user map"); 886 } 887 888 /* 889 * vm_map_entry_dispose: [ internal use only ] 890 * 891 * Inverse of vm_map_entry_create. 892 */ 893 static void 894 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 895 { 896 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 897 } 898 899 /* 900 * vm_map_entry_create: [ internal use only ] 901 * 902 * Allocates a VM map entry for insertion. 903 * No entry fields are filled in. 904 */ 905 static vm_map_entry_t 906 vm_map_entry_create(vm_map_t map) 907 { 908 vm_map_entry_t new_entry; 909 910 if (map->system_map) 911 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 912 else 913 new_entry = uma_zalloc(mapentzone, M_WAITOK); 914 if (new_entry == NULL) 915 panic("vm_map_entry_create: kernel resources exhausted"); 916 return (new_entry); 917 } 918 919 /* 920 * vm_map_entry_set_behavior: 921 * 922 * Set the expected access behavior, either normal, random, or 923 * sequential. 924 */ 925 static inline void 926 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 927 { 928 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 929 (behavior & MAP_ENTRY_BEHAV_MASK); 930 } 931 932 /* 933 * vm_map_entry_max_free_{left,right}: 934 * 935 * Compute the size of the largest free gap between two entries, 936 * one the root of a tree and the other the ancestor of that root 937 * that is the least or greatest ancestor found on the search path. 938 */ 939 static inline vm_size_t 940 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 941 { 942 943 return (root->left != NULL ? 944 root->left->max_free : root->start - left_ancestor->end); 945 } 946 947 static inline vm_size_t 948 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 949 { 950 951 return (root->right != NULL ? 952 root->right->max_free : right_ancestor->start - root->end); 953 } 954 955 #define SPLAY_LEFT_STEP(root, y, rlist, test) do { \ 956 vm_size_t max_free; \ 957 \ 958 /* \ 959 * Infer root->right->max_free == root->max_free when \ 960 * y->max_free < root->max_free || root->max_free == 0. \ 961 * Otherwise, look right to find it. \ 962 */ \ 963 y = root->left; \ 964 max_free = root->max_free; \ 965 KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist), \ 966 ("%s: max_free invariant fails", __func__)); \ 967 if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free) \ 968 max_free = vm_map_entry_max_free_right(root, rlist); \ 969 if (y != NULL && (test)) { \ 970 /* Rotate right and make y root. */ \ 971 root->left = y->right; \ 972 y->right = root; \ 973 if (max_free < y->max_free) \ 974 root->max_free = max_free = MAX(max_free, \ 975 vm_map_entry_max_free_left(root, y)); \ 976 root = y; \ 977 y = root->left; \ 978 } \ 979 /* Copy right->max_free. Put root on rlist. */ \ 980 root->max_free = max_free; \ 981 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 982 ("%s: max_free not copied from right", __func__)); \ 983 root->left = rlist; \ 984 rlist = root; \ 985 root = y; \ 986 } while (0) 987 988 #define SPLAY_RIGHT_STEP(root, y, llist, test) do { \ 989 vm_size_t max_free; \ 990 \ 991 /* \ 992 * Infer root->left->max_free == root->max_free when \ 993 * y->max_free < root->max_free || root->max_free == 0. \ 994 * Otherwise, look left to find it. \ 995 */ \ 996 y = root->right; \ 997 max_free = root->max_free; \ 998 KASSERT(max_free >= vm_map_entry_max_free_left(root, llist), \ 999 ("%s: max_free invariant fails", __func__)); \ 1000 if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free) \ 1001 max_free = vm_map_entry_max_free_left(root, llist); \ 1002 if (y != NULL && (test)) { \ 1003 /* Rotate left and make y root. */ \ 1004 root->right = y->left; \ 1005 y->left = root; \ 1006 if (max_free < y->max_free) \ 1007 root->max_free = max_free = MAX(max_free, \ 1008 vm_map_entry_max_free_right(root, y)); \ 1009 root = y; \ 1010 y = root->right; \ 1011 } \ 1012 /* Copy left->max_free. Put root on llist. */ \ 1013 root->max_free = max_free; \ 1014 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1015 ("%s: max_free not copied from left", __func__)); \ 1016 root->right = llist; \ 1017 llist = root; \ 1018 root = y; \ 1019 } while (0) 1020 1021 /* 1022 * Walk down the tree until we find addr or a NULL pointer where addr would go, 1023 * breaking off left and right subtrees of nodes less than, or greater than 1024 * addr. Treat pointers to nodes with max_free < length as NULL pointers. 1025 * llist and rlist are the two sides in reverse order (bottom-up), with llist 1026 * linked by the right pointer and rlist linked by the left pointer in the 1027 * vm_map_entry, and both lists terminated by &map->header. This function, and 1028 * the subsequent call to vm_map_splay_merge, rely on the start and end address 1029 * values in &map->header. 1030 */ 1031 static vm_map_entry_t 1032 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1033 vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist) 1034 { 1035 vm_map_entry_t llist, rlist, root, y; 1036 1037 llist = rlist = &map->header; 1038 root = map->root; 1039 while (root != NULL && root->max_free >= length) { 1040 KASSERT(llist->end <= root->start && root->end <= rlist->start, 1041 ("%s: root not within tree bounds", __func__)); 1042 if (addr < root->start) { 1043 SPLAY_LEFT_STEP(root, y, rlist, 1044 y->max_free >= length && addr < y->start); 1045 } else if (addr >= root->end) { 1046 SPLAY_RIGHT_STEP(root, y, llist, 1047 y->max_free >= length && addr >= y->end); 1048 } else 1049 break; 1050 } 1051 *out_llist = llist; 1052 *out_rlist = rlist; 1053 return (root); 1054 } 1055 1056 static void 1057 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist) 1058 { 1059 vm_map_entry_t rlist, y; 1060 1061 root = root->right; 1062 rlist = *iolist; 1063 while (root != NULL) 1064 SPLAY_LEFT_STEP(root, y, rlist, true); 1065 *iolist = rlist; 1066 } 1067 1068 static void 1069 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist) 1070 { 1071 vm_map_entry_t llist, y; 1072 1073 root = root->left; 1074 llist = *iolist; 1075 while (root != NULL) 1076 SPLAY_RIGHT_STEP(root, y, llist, true); 1077 *iolist = llist; 1078 } 1079 1080 static inline void 1081 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1082 { 1083 vm_map_entry_t tmp; 1084 1085 tmp = *b; 1086 *b = *a; 1087 *a = tmp; 1088 } 1089 1090 /* 1091 * Walk back up the two spines, flip the pointers and set max_free. The 1092 * subtrees of the root go at the bottom of llist and rlist. 1093 */ 1094 static void 1095 vm_map_splay_merge(vm_map_t map, vm_map_entry_t root, 1096 vm_map_entry_t llist, vm_map_entry_t rlist) 1097 { 1098 vm_map_entry_t prev; 1099 vm_size_t max_free_left, max_free_right; 1100 1101 max_free_left = vm_map_entry_max_free_left(root, llist); 1102 if (llist != &map->header) { 1103 prev = root->left; 1104 do { 1105 /* 1106 * The max_free values of the children of llist are in 1107 * llist->max_free and max_free_left. Update with the 1108 * max value. 1109 */ 1110 llist->max_free = max_free_left = 1111 MAX(llist->max_free, max_free_left); 1112 vm_map_entry_swap(&llist->right, &prev); 1113 vm_map_entry_swap(&prev, &llist); 1114 } while (llist != &map->header); 1115 root->left = prev; 1116 } 1117 max_free_right = vm_map_entry_max_free_right(root, rlist); 1118 if (rlist != &map->header) { 1119 prev = root->right; 1120 do { 1121 /* 1122 * The max_free values of the children of rlist are in 1123 * rlist->max_free and max_free_right. Update with the 1124 * max value. 1125 */ 1126 rlist->max_free = max_free_right = 1127 MAX(rlist->max_free, max_free_right); 1128 vm_map_entry_swap(&rlist->left, &prev); 1129 vm_map_entry_swap(&prev, &rlist); 1130 } while (rlist != &map->header); 1131 root->right = prev; 1132 } 1133 root->max_free = MAX(max_free_left, max_free_right); 1134 map->root = root; 1135 } 1136 1137 /* 1138 * vm_map_splay: 1139 * 1140 * The Sleator and Tarjan top-down splay algorithm with the 1141 * following variation. Max_free must be computed bottom-up, so 1142 * on the downward pass, maintain the left and right spines in 1143 * reverse order. Then, make a second pass up each side to fix 1144 * the pointers and compute max_free. The time bound is O(log n) 1145 * amortized. 1146 * 1147 * The new root is the vm_map_entry containing "addr", or else an 1148 * adjacent entry (lower if possible) if addr is not in the tree. 1149 * 1150 * The map must be locked, and leaves it so. 1151 * 1152 * Returns: the new root. 1153 */ 1154 static vm_map_entry_t 1155 vm_map_splay(vm_map_t map, vm_offset_t addr) 1156 { 1157 vm_map_entry_t llist, rlist, root; 1158 1159 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1160 if (root != NULL) { 1161 /* do nothing */ 1162 } else if (llist != &map->header) { 1163 /* 1164 * Recover the greatest node in the left 1165 * subtree and make it the root. 1166 */ 1167 root = llist; 1168 llist = root->right; 1169 root->right = NULL; 1170 } else if (rlist != &map->header) { 1171 /* 1172 * Recover the least node in the right 1173 * subtree and make it the root. 1174 */ 1175 root = rlist; 1176 rlist = root->left; 1177 root->left = NULL; 1178 } else { 1179 /* There is no root. */ 1180 return (NULL); 1181 } 1182 vm_map_splay_merge(map, root, llist, rlist); 1183 VM_MAP_ASSERT_CONSISTENT(map); 1184 return (root); 1185 } 1186 1187 /* 1188 * vm_map_entry_{un,}link: 1189 * 1190 * Insert/remove entries from maps. 1191 */ 1192 static void 1193 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1194 { 1195 vm_map_entry_t llist, rlist, root; 1196 1197 CTR3(KTR_VM, 1198 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1199 map->nentries, entry); 1200 VM_MAP_ASSERT_LOCKED(map); 1201 map->nentries++; 1202 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1203 KASSERT(root == NULL, 1204 ("vm_map_entry_link: link object already mapped")); 1205 entry->prev = llist; 1206 entry->next = rlist; 1207 llist->next = rlist->prev = entry; 1208 entry->left = entry->right = NULL; 1209 vm_map_splay_merge(map, entry, llist, rlist); 1210 VM_MAP_ASSERT_CONSISTENT(map); 1211 } 1212 1213 enum unlink_merge_type { 1214 UNLINK_MERGE_NONE, 1215 UNLINK_MERGE_NEXT 1216 }; 1217 1218 static void 1219 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1220 enum unlink_merge_type op) 1221 { 1222 vm_map_entry_t llist, rlist, root, y; 1223 1224 VM_MAP_ASSERT_LOCKED(map); 1225 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1226 KASSERT(root != NULL, 1227 ("vm_map_entry_unlink: unlink object not mapped")); 1228 1229 vm_map_splay_findnext(root, &rlist); 1230 switch (op) { 1231 case UNLINK_MERGE_NEXT: 1232 rlist->start = root->start; 1233 rlist->offset = root->offset; 1234 y = root->left; 1235 root = rlist; 1236 rlist = root->left; 1237 root->left = y; 1238 break; 1239 case UNLINK_MERGE_NONE: 1240 vm_map_splay_findprev(root, &llist); 1241 if (llist != &map->header) { 1242 root = llist; 1243 llist = root->right; 1244 root->right = NULL; 1245 } else if (rlist != &map->header) { 1246 root = rlist; 1247 rlist = root->left; 1248 root->left = NULL; 1249 } else 1250 root = NULL; 1251 break; 1252 } 1253 y = entry->next; 1254 y->prev = entry->prev; 1255 y->prev->next = y; 1256 if (root != NULL) 1257 vm_map_splay_merge(map, root, llist, rlist); 1258 else 1259 map->root = NULL; 1260 VM_MAP_ASSERT_CONSISTENT(map); 1261 map->nentries--; 1262 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1263 map->nentries, entry); 1264 } 1265 1266 /* 1267 * vm_map_entry_resize: 1268 * 1269 * Resize a vm_map_entry, recompute the amount of free space that 1270 * follows it and propagate that value up the tree. 1271 * 1272 * The map must be locked, and leaves it so. 1273 */ 1274 static void 1275 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1276 { 1277 vm_map_entry_t llist, rlist, root; 1278 1279 VM_MAP_ASSERT_LOCKED(map); 1280 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1281 KASSERT(root != NULL, 1282 ("%s: resize object not mapped", __func__)); 1283 vm_map_splay_findnext(root, &rlist); 1284 root->right = NULL; 1285 entry->end += grow_amount; 1286 vm_map_splay_merge(map, root, llist, rlist); 1287 VM_MAP_ASSERT_CONSISTENT(map); 1288 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1289 __func__, map, map->nentries, entry); 1290 } 1291 1292 /* 1293 * vm_map_lookup_entry: [ internal use only ] 1294 * 1295 * Finds the map entry containing (or 1296 * immediately preceding) the specified address 1297 * in the given map; the entry is returned 1298 * in the "entry" parameter. The boolean 1299 * result indicates whether the address is 1300 * actually contained in the map. 1301 */ 1302 boolean_t 1303 vm_map_lookup_entry( 1304 vm_map_t map, 1305 vm_offset_t address, 1306 vm_map_entry_t *entry) /* OUT */ 1307 { 1308 vm_map_entry_t cur, lbound; 1309 boolean_t locked; 1310 1311 /* 1312 * If the map is empty, then the map entry immediately preceding 1313 * "address" is the map's header. 1314 */ 1315 cur = map->root; 1316 if (cur == NULL) { 1317 *entry = &map->header; 1318 return (FALSE); 1319 } 1320 if (address >= cur->start && cur->end > address) { 1321 *entry = cur; 1322 return (TRUE); 1323 } 1324 if ((locked = vm_map_locked(map)) || 1325 sx_try_upgrade(&map->lock)) { 1326 /* 1327 * Splay requires a write lock on the map. However, it only 1328 * restructures the binary search tree; it does not otherwise 1329 * change the map. Thus, the map's timestamp need not change 1330 * on a temporary upgrade. 1331 */ 1332 cur = vm_map_splay(map, address); 1333 if (!locked) 1334 sx_downgrade(&map->lock); 1335 1336 /* 1337 * If "address" is contained within a map entry, the new root 1338 * is that map entry. Otherwise, the new root is a map entry 1339 * immediately before or after "address". 1340 */ 1341 if (address < cur->start) { 1342 *entry = &map->header; 1343 return (FALSE); 1344 } 1345 *entry = cur; 1346 return (address < cur->end); 1347 } 1348 /* 1349 * Since the map is only locked for read access, perform a 1350 * standard binary search tree lookup for "address". 1351 */ 1352 lbound = &map->header; 1353 do { 1354 if (address < cur->start) { 1355 cur = cur->left; 1356 } else if (cur->end <= address) { 1357 lbound = cur; 1358 cur = cur->right; 1359 } else { 1360 *entry = cur; 1361 return (TRUE); 1362 } 1363 } while (cur != NULL); 1364 *entry = lbound; 1365 return (FALSE); 1366 } 1367 1368 /* 1369 * vm_map_insert: 1370 * 1371 * Inserts the given whole VM object into the target 1372 * map at the specified address range. The object's 1373 * size should match that of the address range. 1374 * 1375 * Requires that the map be locked, and leaves it so. 1376 * 1377 * If object is non-NULL, ref count must be bumped by caller 1378 * prior to making call to account for the new entry. 1379 */ 1380 int 1381 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1382 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1383 { 1384 vm_map_entry_t new_entry, prev_entry; 1385 struct ucred *cred; 1386 vm_eflags_t protoeflags; 1387 vm_inherit_t inheritance; 1388 1389 VM_MAP_ASSERT_LOCKED(map); 1390 KASSERT(object != kernel_object || 1391 (cow & MAP_COPY_ON_WRITE) == 0, 1392 ("vm_map_insert: kernel object and COW")); 1393 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1394 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1395 KASSERT((prot & ~max) == 0, 1396 ("prot %#x is not subset of max_prot %#x", prot, max)); 1397 1398 /* 1399 * Check that the start and end points are not bogus. 1400 */ 1401 if (start < vm_map_min(map) || end > vm_map_max(map) || 1402 start >= end) 1403 return (KERN_INVALID_ADDRESS); 1404 1405 /* 1406 * Find the entry prior to the proposed starting address; if it's part 1407 * of an existing entry, this range is bogus. 1408 */ 1409 if (vm_map_lookup_entry(map, start, &prev_entry)) 1410 return (KERN_NO_SPACE); 1411 1412 /* 1413 * Assert that the next entry doesn't overlap the end point. 1414 */ 1415 if (prev_entry->next->start < end) 1416 return (KERN_NO_SPACE); 1417 1418 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1419 max != VM_PROT_NONE)) 1420 return (KERN_INVALID_ARGUMENT); 1421 1422 protoeflags = 0; 1423 if (cow & MAP_COPY_ON_WRITE) 1424 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1425 if (cow & MAP_NOFAULT) 1426 protoeflags |= MAP_ENTRY_NOFAULT; 1427 if (cow & MAP_DISABLE_SYNCER) 1428 protoeflags |= MAP_ENTRY_NOSYNC; 1429 if (cow & MAP_DISABLE_COREDUMP) 1430 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1431 if (cow & MAP_STACK_GROWS_DOWN) 1432 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1433 if (cow & MAP_STACK_GROWS_UP) 1434 protoeflags |= MAP_ENTRY_GROWS_UP; 1435 if (cow & MAP_WRITECOUNT) 1436 protoeflags |= MAP_ENTRY_WRITECNT; 1437 if (cow & MAP_VN_EXEC) 1438 protoeflags |= MAP_ENTRY_VN_EXEC; 1439 if ((cow & MAP_CREATE_GUARD) != 0) 1440 protoeflags |= MAP_ENTRY_GUARD; 1441 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1442 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1443 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1444 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1445 if (cow & MAP_INHERIT_SHARE) 1446 inheritance = VM_INHERIT_SHARE; 1447 else 1448 inheritance = VM_INHERIT_DEFAULT; 1449 1450 cred = NULL; 1451 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1452 goto charged; 1453 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1454 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1455 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1456 return (KERN_RESOURCE_SHORTAGE); 1457 KASSERT(object == NULL || 1458 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1459 object->cred == NULL, 1460 ("overcommit: vm_map_insert o %p", object)); 1461 cred = curthread->td_ucred; 1462 } 1463 1464 charged: 1465 /* Expand the kernel pmap, if necessary. */ 1466 if (map == kernel_map && end > kernel_vm_end) 1467 pmap_growkernel(end); 1468 if (object != NULL) { 1469 /* 1470 * OBJ_ONEMAPPING must be cleared unless this mapping 1471 * is trivially proven to be the only mapping for any 1472 * of the object's pages. (Object granularity 1473 * reference counting is insufficient to recognize 1474 * aliases with precision.) 1475 */ 1476 VM_OBJECT_WLOCK(object); 1477 if (object->ref_count > 1 || object->shadow_count != 0) 1478 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1479 VM_OBJECT_WUNLOCK(object); 1480 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1481 protoeflags && 1482 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1483 MAP_VN_EXEC)) == 0 && 1484 prev_entry->end == start && (prev_entry->cred == cred || 1485 (prev_entry->object.vm_object != NULL && 1486 prev_entry->object.vm_object->cred == cred)) && 1487 vm_object_coalesce(prev_entry->object.vm_object, 1488 prev_entry->offset, 1489 (vm_size_t)(prev_entry->end - prev_entry->start), 1490 (vm_size_t)(end - prev_entry->end), cred != NULL && 1491 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1492 /* 1493 * We were able to extend the object. Determine if we 1494 * can extend the previous map entry to include the 1495 * new range as well. 1496 */ 1497 if (prev_entry->inheritance == inheritance && 1498 prev_entry->protection == prot && 1499 prev_entry->max_protection == max && 1500 prev_entry->wired_count == 0) { 1501 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1502 0, ("prev_entry %p has incoherent wiring", 1503 prev_entry)); 1504 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1505 map->size += end - prev_entry->end; 1506 vm_map_entry_resize(map, prev_entry, 1507 end - prev_entry->end); 1508 vm_map_try_merge_entries(map, prev_entry, prev_entry->next); 1509 return (KERN_SUCCESS); 1510 } 1511 1512 /* 1513 * If we can extend the object but cannot extend the 1514 * map entry, we have to create a new map entry. We 1515 * must bump the ref count on the extended object to 1516 * account for it. object may be NULL. 1517 */ 1518 object = prev_entry->object.vm_object; 1519 offset = prev_entry->offset + 1520 (prev_entry->end - prev_entry->start); 1521 vm_object_reference(object); 1522 if (cred != NULL && object != NULL && object->cred != NULL && 1523 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1524 /* Object already accounts for this uid. */ 1525 cred = NULL; 1526 } 1527 } 1528 if (cred != NULL) 1529 crhold(cred); 1530 1531 /* 1532 * Create a new entry 1533 */ 1534 new_entry = vm_map_entry_create(map); 1535 new_entry->start = start; 1536 new_entry->end = end; 1537 new_entry->cred = NULL; 1538 1539 new_entry->eflags = protoeflags; 1540 new_entry->object.vm_object = object; 1541 new_entry->offset = offset; 1542 1543 new_entry->inheritance = inheritance; 1544 new_entry->protection = prot; 1545 new_entry->max_protection = max; 1546 new_entry->wired_count = 0; 1547 new_entry->wiring_thread = NULL; 1548 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1549 new_entry->next_read = start; 1550 1551 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1552 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1553 new_entry->cred = cred; 1554 1555 /* 1556 * Insert the new entry into the list 1557 */ 1558 vm_map_entry_link(map, new_entry); 1559 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1560 map->size += new_entry->end - new_entry->start; 1561 1562 /* 1563 * Try to coalesce the new entry with both the previous and next 1564 * entries in the list. Previously, we only attempted to coalesce 1565 * with the previous entry when object is NULL. Here, we handle the 1566 * other cases, which are less common. 1567 */ 1568 vm_map_try_merge_entries(map, prev_entry, new_entry); 1569 vm_map_try_merge_entries(map, new_entry, new_entry->next); 1570 1571 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1572 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1573 end - start, cow & MAP_PREFAULT_PARTIAL); 1574 } 1575 1576 return (KERN_SUCCESS); 1577 } 1578 1579 /* 1580 * vm_map_findspace: 1581 * 1582 * Find the first fit (lowest VM address) for "length" free bytes 1583 * beginning at address >= start in the given map. 1584 * 1585 * In a vm_map_entry, "max_free" is the maximum amount of 1586 * contiguous free space between an entry in its subtree and a 1587 * neighbor of that entry. This allows finding a free region in 1588 * one path down the tree, so O(log n) amortized with splay 1589 * trees. 1590 * 1591 * The map must be locked, and leaves it so. 1592 * 1593 * Returns: starting address if sufficient space, 1594 * vm_map_max(map)-length+1 if insufficient space. 1595 */ 1596 vm_offset_t 1597 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1598 { 1599 vm_map_entry_t llist, rlist, root, y; 1600 vm_size_t left_length; 1601 vm_offset_t gap_end; 1602 1603 /* 1604 * Request must fit within min/max VM address and must avoid 1605 * address wrap. 1606 */ 1607 start = MAX(start, vm_map_min(map)); 1608 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1609 return (vm_map_max(map) - length + 1); 1610 1611 /* Empty tree means wide open address space. */ 1612 if (map->root == NULL) 1613 return (start); 1614 1615 /* 1616 * After splay_split, if start is within an entry, push it to the start 1617 * of the following gap. If rlist is at the end of the gap containing 1618 * start, save the end of that gap in gap_end to see if the gap is big 1619 * enough; otherwise set gap_end to start skip gap-checking and move 1620 * directly to a search of the right subtree. 1621 */ 1622 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1623 gap_end = rlist->start; 1624 if (root != NULL) { 1625 start = root->end; 1626 if (root->right != NULL) 1627 gap_end = start; 1628 } else if (rlist != &map->header) { 1629 root = rlist; 1630 rlist = root->left; 1631 root->left = NULL; 1632 } else { 1633 root = llist; 1634 llist = root->right; 1635 root->right = NULL; 1636 } 1637 vm_map_splay_merge(map, root, llist, rlist); 1638 VM_MAP_ASSERT_CONSISTENT(map); 1639 if (length <= gap_end - start) 1640 return (start); 1641 1642 /* With max_free, can immediately tell if no solution. */ 1643 if (root->right == NULL || length > root->right->max_free) 1644 return (vm_map_max(map) - length + 1); 1645 1646 /* 1647 * Splay for the least large-enough gap in the right subtree. 1648 */ 1649 llist = rlist = &map->header; 1650 for (left_length = 0;; 1651 left_length = vm_map_entry_max_free_left(root, llist)) { 1652 if (length <= left_length) 1653 SPLAY_LEFT_STEP(root, y, rlist, 1654 length <= vm_map_entry_max_free_left(y, llist)); 1655 else 1656 SPLAY_RIGHT_STEP(root, y, llist, 1657 length > vm_map_entry_max_free_left(y, root)); 1658 if (root == NULL) 1659 break; 1660 } 1661 root = llist; 1662 llist = root->right; 1663 root->right = NULL; 1664 if (rlist != &map->header) { 1665 y = rlist; 1666 rlist = y->left; 1667 y->left = NULL; 1668 vm_map_splay_merge(map, y, &map->header, rlist); 1669 y->max_free = MAX( 1670 vm_map_entry_max_free_left(y, root), 1671 vm_map_entry_max_free_right(y, &map->header)); 1672 root->right = y; 1673 } 1674 vm_map_splay_merge(map, root, llist, &map->header); 1675 VM_MAP_ASSERT_CONSISTENT(map); 1676 return (root->end); 1677 } 1678 1679 int 1680 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1681 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1682 vm_prot_t max, int cow) 1683 { 1684 vm_offset_t end; 1685 int result; 1686 1687 end = start + length; 1688 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1689 object == NULL, 1690 ("vm_map_fixed: non-NULL backing object for stack")); 1691 vm_map_lock(map); 1692 VM_MAP_RANGE_CHECK(map, start, end); 1693 if ((cow & MAP_CHECK_EXCL) == 0) 1694 vm_map_delete(map, start, end); 1695 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1696 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1697 prot, max, cow); 1698 } else { 1699 result = vm_map_insert(map, object, offset, start, end, 1700 prot, max, cow); 1701 } 1702 vm_map_unlock(map); 1703 return (result); 1704 } 1705 1706 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1707 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1708 1709 static int cluster_anon = 1; 1710 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1711 &cluster_anon, 0, 1712 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 1713 1714 static bool 1715 clustering_anon_allowed(vm_offset_t addr) 1716 { 1717 1718 switch (cluster_anon) { 1719 case 0: 1720 return (false); 1721 case 1: 1722 return (addr == 0); 1723 case 2: 1724 default: 1725 return (true); 1726 } 1727 } 1728 1729 static long aslr_restarts; 1730 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 1731 &aslr_restarts, 0, 1732 "Number of aslr failures"); 1733 1734 #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) 1735 1736 /* 1737 * Searches for the specified amount of free space in the given map with the 1738 * specified alignment. Performs an address-ordered, first-fit search from 1739 * the given address "*addr", with an optional upper bound "max_addr". If the 1740 * parameter "alignment" is zero, then the alignment is computed from the 1741 * given (object, offset) pair so as to enable the greatest possible use of 1742 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1743 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1744 * 1745 * The map must be locked. Initially, there must be at least "length" bytes 1746 * of free space at the given address. 1747 */ 1748 static int 1749 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1750 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1751 vm_offset_t alignment) 1752 { 1753 vm_offset_t aligned_addr, free_addr; 1754 1755 VM_MAP_ASSERT_LOCKED(map); 1756 free_addr = *addr; 1757 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 1758 ("caller failed to provide space %#jx at address %p", 1759 (uintmax_t)length, (void *)free_addr)); 1760 for (;;) { 1761 /* 1762 * At the start of every iteration, the free space at address 1763 * "*addr" is at least "length" bytes. 1764 */ 1765 if (alignment == 0) 1766 pmap_align_superpage(object, offset, addr, length); 1767 else if ((*addr & (alignment - 1)) != 0) { 1768 *addr &= ~(alignment - 1); 1769 *addr += alignment; 1770 } 1771 aligned_addr = *addr; 1772 if (aligned_addr == free_addr) { 1773 /* 1774 * Alignment did not change "*addr", so "*addr" must 1775 * still provide sufficient free space. 1776 */ 1777 return (KERN_SUCCESS); 1778 } 1779 1780 /* 1781 * Test for address wrap on "*addr". A wrapped "*addr" could 1782 * be a valid address, in which case vm_map_findspace() cannot 1783 * be relied upon to fail. 1784 */ 1785 if (aligned_addr < free_addr) 1786 return (KERN_NO_SPACE); 1787 *addr = vm_map_findspace(map, aligned_addr, length); 1788 if (*addr + length > vm_map_max(map) || 1789 (max_addr != 0 && *addr + length > max_addr)) 1790 return (KERN_NO_SPACE); 1791 free_addr = *addr; 1792 if (free_addr == aligned_addr) { 1793 /* 1794 * If a successful call to vm_map_findspace() did not 1795 * change "*addr", then "*addr" must still be aligned 1796 * and provide sufficient free space. 1797 */ 1798 return (KERN_SUCCESS); 1799 } 1800 } 1801 } 1802 1803 /* 1804 * vm_map_find finds an unallocated region in the target address 1805 * map with the given length. The search is defined to be 1806 * first-fit from the specified address; the region found is 1807 * returned in the same parameter. 1808 * 1809 * If object is non-NULL, ref count must be bumped by caller 1810 * prior to making call to account for the new entry. 1811 */ 1812 int 1813 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1814 vm_offset_t *addr, /* IN/OUT */ 1815 vm_size_t length, vm_offset_t max_addr, int find_space, 1816 vm_prot_t prot, vm_prot_t max, int cow) 1817 { 1818 vm_offset_t alignment, curr_min_addr, min_addr; 1819 int gap, pidx, rv, try; 1820 bool cluster, en_aslr, update_anon; 1821 1822 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1823 object == NULL, 1824 ("vm_map_find: non-NULL backing object for stack")); 1825 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 1826 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 1827 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1828 (object->flags & OBJ_COLORED) == 0)) 1829 find_space = VMFS_ANY_SPACE; 1830 if (find_space >> 8 != 0) { 1831 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1832 alignment = (vm_offset_t)1 << (find_space >> 8); 1833 } else 1834 alignment = 0; 1835 en_aslr = (map->flags & MAP_ASLR) != 0; 1836 update_anon = cluster = clustering_anon_allowed(*addr) && 1837 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 1838 find_space != VMFS_NO_SPACE && object == NULL && 1839 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 1840 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 1841 curr_min_addr = min_addr = *addr; 1842 if (en_aslr && min_addr == 0 && !cluster && 1843 find_space != VMFS_NO_SPACE && 1844 (map->flags & MAP_ASLR_IGNSTART) != 0) 1845 curr_min_addr = min_addr = vm_map_min(map); 1846 try = 0; 1847 vm_map_lock(map); 1848 if (cluster) { 1849 curr_min_addr = map->anon_loc; 1850 if (curr_min_addr == 0) 1851 cluster = false; 1852 } 1853 if (find_space != VMFS_NO_SPACE) { 1854 KASSERT(find_space == VMFS_ANY_SPACE || 1855 find_space == VMFS_OPTIMAL_SPACE || 1856 find_space == VMFS_SUPER_SPACE || 1857 alignment != 0, ("unexpected VMFS flag")); 1858 again: 1859 /* 1860 * When creating an anonymous mapping, try clustering 1861 * with an existing anonymous mapping first. 1862 * 1863 * We make up to two attempts to find address space 1864 * for a given find_space value. The first attempt may 1865 * apply randomization or may cluster with an existing 1866 * anonymous mapping. If this first attempt fails, 1867 * perform a first-fit search of the available address 1868 * space. 1869 * 1870 * If all tries failed, and find_space is 1871 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 1872 * Again enable clustering and randomization. 1873 */ 1874 try++; 1875 MPASS(try <= 2); 1876 1877 if (try == 2) { 1878 /* 1879 * Second try: we failed either to find a 1880 * suitable region for randomizing the 1881 * allocation, or to cluster with an existing 1882 * mapping. Retry with free run. 1883 */ 1884 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 1885 vm_map_min(map) : min_addr; 1886 atomic_add_long(&aslr_restarts, 1); 1887 } 1888 1889 if (try == 1 && en_aslr && !cluster) { 1890 /* 1891 * Find space for allocation, including 1892 * gap needed for later randomization. 1893 */ 1894 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 1895 (find_space == VMFS_SUPER_SPACE || find_space == 1896 VMFS_OPTIMAL_SPACE) ? 1 : 0; 1897 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 1898 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 1899 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 1900 *addr = vm_map_findspace(map, curr_min_addr, 1901 length + gap * pagesizes[pidx]); 1902 if (*addr + length + gap * pagesizes[pidx] > 1903 vm_map_max(map)) 1904 goto again; 1905 /* And randomize the start address. */ 1906 *addr += (arc4random() % gap) * pagesizes[pidx]; 1907 if (max_addr != 0 && *addr + length > max_addr) 1908 goto again; 1909 } else { 1910 *addr = vm_map_findspace(map, curr_min_addr, length); 1911 if (*addr + length > vm_map_max(map) || 1912 (max_addr != 0 && *addr + length > max_addr)) { 1913 if (cluster) { 1914 cluster = false; 1915 MPASS(try == 1); 1916 goto again; 1917 } 1918 rv = KERN_NO_SPACE; 1919 goto done; 1920 } 1921 } 1922 1923 if (find_space != VMFS_ANY_SPACE && 1924 (rv = vm_map_alignspace(map, object, offset, addr, length, 1925 max_addr, alignment)) != KERN_SUCCESS) { 1926 if (find_space == VMFS_OPTIMAL_SPACE) { 1927 find_space = VMFS_ANY_SPACE; 1928 curr_min_addr = min_addr; 1929 cluster = update_anon; 1930 try = 0; 1931 goto again; 1932 } 1933 goto done; 1934 } 1935 } else if ((cow & MAP_REMAP) != 0) { 1936 if (*addr < vm_map_min(map) || 1937 *addr + length > vm_map_max(map) || 1938 *addr + length <= length) { 1939 rv = KERN_INVALID_ADDRESS; 1940 goto done; 1941 } 1942 vm_map_delete(map, *addr, *addr + length); 1943 } 1944 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1945 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 1946 max, cow); 1947 } else { 1948 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 1949 prot, max, cow); 1950 } 1951 if (rv == KERN_SUCCESS && update_anon) 1952 map->anon_loc = *addr + length; 1953 done: 1954 vm_map_unlock(map); 1955 return (rv); 1956 } 1957 1958 /* 1959 * vm_map_find_min() is a variant of vm_map_find() that takes an 1960 * additional parameter (min_addr) and treats the given address 1961 * (*addr) differently. Specifically, it treats *addr as a hint 1962 * and not as the minimum address where the mapping is created. 1963 * 1964 * This function works in two phases. First, it tries to 1965 * allocate above the hint. If that fails and the hint is 1966 * greater than min_addr, it performs a second pass, replacing 1967 * the hint with min_addr as the minimum address for the 1968 * allocation. 1969 */ 1970 int 1971 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1972 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 1973 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 1974 int cow) 1975 { 1976 vm_offset_t hint; 1977 int rv; 1978 1979 hint = *addr; 1980 for (;;) { 1981 rv = vm_map_find(map, object, offset, addr, length, max_addr, 1982 find_space, prot, max, cow); 1983 if (rv == KERN_SUCCESS || min_addr >= hint) 1984 return (rv); 1985 *addr = hint = min_addr; 1986 } 1987 } 1988 1989 /* 1990 * A map entry with any of the following flags set must not be merged with 1991 * another entry. 1992 */ 1993 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 1994 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC) 1995 1996 static bool 1997 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 1998 { 1999 2000 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2001 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2002 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2003 prev, entry)); 2004 return (prev->end == entry->start && 2005 prev->object.vm_object == entry->object.vm_object && 2006 (prev->object.vm_object == NULL || 2007 prev->offset + (prev->end - prev->start) == entry->offset) && 2008 prev->eflags == entry->eflags && 2009 prev->protection == entry->protection && 2010 prev->max_protection == entry->max_protection && 2011 prev->inheritance == entry->inheritance && 2012 prev->wired_count == entry->wired_count && 2013 prev->cred == entry->cred); 2014 } 2015 2016 static void 2017 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2018 { 2019 2020 /* 2021 * If the backing object is a vnode object, vm_object_deallocate() 2022 * calls vrele(). However, vrele() does not lock the vnode because 2023 * the vnode has additional references. Thus, the map lock can be 2024 * kept without causing a lock-order reversal with the vnode lock. 2025 * 2026 * Since we count the number of virtual page mappings in 2027 * object->un_pager.vnp.writemappings, the writemappings value 2028 * should not be adjusted when the entry is disposed of. 2029 */ 2030 if (entry->object.vm_object != NULL) 2031 vm_object_deallocate(entry->object.vm_object); 2032 if (entry->cred != NULL) 2033 crfree(entry->cred); 2034 vm_map_entry_dispose(map, entry); 2035 } 2036 2037 /* 2038 * vm_map_try_merge_entries: 2039 * 2040 * Compare the given map entry to its predecessor, and merge its precessor 2041 * into it if possible. The entry remains valid, and may be extended. 2042 * The predecessor may be deleted. 2043 * 2044 * The map must be locked. 2045 */ 2046 void 2047 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev, vm_map_entry_t entry) 2048 { 2049 2050 VM_MAP_ASSERT_LOCKED(map); 2051 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 && 2052 vm_map_mergeable_neighbors(prev, entry)) { 2053 vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT); 2054 vm_map_merged_neighbor_dispose(map, prev); 2055 } 2056 } 2057 2058 /* 2059 * vm_map_entry_back: 2060 * 2061 * Allocate an object to back a map entry. 2062 */ 2063 static inline void 2064 vm_map_entry_back(vm_map_entry_t entry) 2065 { 2066 vm_object_t object; 2067 2068 KASSERT(entry->object.vm_object == NULL, 2069 ("map entry %p has backing object", entry)); 2070 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2071 ("map entry %p is a submap", entry)); 2072 object = vm_object_allocate(OBJT_DEFAULT, 2073 atop(entry->end - entry->start)); 2074 entry->object.vm_object = object; 2075 entry->offset = 0; 2076 if (entry->cred != NULL) { 2077 object->cred = entry->cred; 2078 object->charge = entry->end - entry->start; 2079 entry->cred = NULL; 2080 } 2081 } 2082 2083 /* 2084 * vm_map_entry_charge_object 2085 * 2086 * If there is no object backing this entry, create one. Otherwise, if 2087 * the entry has cred, give it to the backing object. 2088 */ 2089 static inline void 2090 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2091 { 2092 2093 VM_MAP_ASSERT_LOCKED(map); 2094 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2095 ("map entry %p is a submap", entry)); 2096 if (entry->object.vm_object == NULL && !map->system_map && 2097 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2098 vm_map_entry_back(entry); 2099 else if (entry->object.vm_object != NULL && 2100 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2101 entry->cred != NULL) { 2102 VM_OBJECT_WLOCK(entry->object.vm_object); 2103 KASSERT(entry->object.vm_object->cred == NULL, 2104 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2105 entry->object.vm_object->cred = entry->cred; 2106 entry->object.vm_object->charge = entry->end - entry->start; 2107 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2108 entry->cred = NULL; 2109 } 2110 } 2111 2112 /* 2113 * vm_map_clip_start: [ internal use only ] 2114 * 2115 * Asserts that the given entry begins at or after 2116 * the specified address; if necessary, 2117 * it splits the entry into two. 2118 */ 2119 #define vm_map_clip_start(map, entry, startaddr) \ 2120 { \ 2121 if (startaddr > entry->start) \ 2122 _vm_map_clip_start(map, entry, startaddr); \ 2123 } 2124 2125 /* 2126 * This routine is called only when it is known that 2127 * the entry must be split. 2128 */ 2129 static void 2130 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 2131 { 2132 vm_map_entry_t new_entry; 2133 2134 VM_MAP_ASSERT_LOCKED(map); 2135 KASSERT(entry->end > start && entry->start < start, 2136 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 2137 2138 /* 2139 * Create a backing object now, if none exists, so that more individual 2140 * objects won't be created after the map entry is split. 2141 */ 2142 vm_map_entry_charge_object(map, entry); 2143 2144 /* Clone the entry. */ 2145 new_entry = vm_map_entry_create(map); 2146 *new_entry = *entry; 2147 2148 /* 2149 * Split off the front portion. Insert the new entry BEFORE this one, 2150 * so that this entry has the specified starting address. 2151 */ 2152 new_entry->end = start; 2153 entry->offset += (start - entry->start); 2154 entry->start = start; 2155 if (new_entry->cred != NULL) 2156 crhold(entry->cred); 2157 2158 vm_map_entry_link(map, new_entry); 2159 2160 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2161 vm_object_reference(new_entry->object.vm_object); 2162 vm_map_entry_set_vnode_text(new_entry, true); 2163 /* 2164 * The object->un_pager.vnp.writemappings for the 2165 * object of MAP_ENTRY_WRITECNT type entry shall be 2166 * kept as is here. The virtual pages are 2167 * re-distributed among the clipped entries, so the sum is 2168 * left the same. 2169 */ 2170 } 2171 } 2172 2173 /* 2174 * vm_map_clip_end: [ internal use only ] 2175 * 2176 * Asserts that the given entry ends at or before 2177 * the specified address; if necessary, 2178 * it splits the entry into two. 2179 */ 2180 #define vm_map_clip_end(map, entry, endaddr) \ 2181 { \ 2182 if ((endaddr) < (entry->end)) \ 2183 _vm_map_clip_end((map), (entry), (endaddr)); \ 2184 } 2185 2186 /* 2187 * This routine is called only when it is known that 2188 * the entry must be split. 2189 */ 2190 static void 2191 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 2192 { 2193 vm_map_entry_t new_entry; 2194 2195 VM_MAP_ASSERT_LOCKED(map); 2196 KASSERT(entry->start < end && entry->end > end, 2197 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 2198 2199 /* 2200 * Create a backing object now, if none exists, so that more individual 2201 * objects won't be created after the map entry is split. 2202 */ 2203 vm_map_entry_charge_object(map, entry); 2204 2205 /* Clone the entry. */ 2206 new_entry = vm_map_entry_create(map); 2207 *new_entry = *entry; 2208 2209 /* 2210 * Split off the back portion. Insert the new entry AFTER this one, 2211 * so that this entry has the specified ending address. 2212 */ 2213 new_entry->start = entry->end = end; 2214 new_entry->offset += (end - entry->start); 2215 if (new_entry->cred != NULL) 2216 crhold(entry->cred); 2217 2218 vm_map_entry_link(map, new_entry); 2219 2220 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2221 vm_object_reference(new_entry->object.vm_object); 2222 vm_map_entry_set_vnode_text(new_entry, true); 2223 } 2224 } 2225 2226 /* 2227 * vm_map_submap: [ kernel use only ] 2228 * 2229 * Mark the given range as handled by a subordinate map. 2230 * 2231 * This range must have been created with vm_map_find, 2232 * and no other operations may have been performed on this 2233 * range prior to calling vm_map_submap. 2234 * 2235 * Only a limited number of operations can be performed 2236 * within this rage after calling vm_map_submap: 2237 * vm_fault 2238 * [Don't try vm_map_copy!] 2239 * 2240 * To remove a submapping, one must first remove the 2241 * range from the superior map, and then destroy the 2242 * submap (if desired). [Better yet, don't try it.] 2243 */ 2244 int 2245 vm_map_submap( 2246 vm_map_t map, 2247 vm_offset_t start, 2248 vm_offset_t end, 2249 vm_map_t submap) 2250 { 2251 vm_map_entry_t entry; 2252 int result; 2253 2254 result = KERN_INVALID_ARGUMENT; 2255 2256 vm_map_lock(submap); 2257 submap->flags |= MAP_IS_SUB_MAP; 2258 vm_map_unlock(submap); 2259 2260 vm_map_lock(map); 2261 2262 VM_MAP_RANGE_CHECK(map, start, end); 2263 2264 if (vm_map_lookup_entry(map, start, &entry)) { 2265 vm_map_clip_start(map, entry, start); 2266 } else 2267 entry = entry->next; 2268 2269 vm_map_clip_end(map, entry, end); 2270 2271 if ((entry->start == start) && (entry->end == end) && 2272 ((entry->eflags & MAP_ENTRY_COW) == 0) && 2273 (entry->object.vm_object == NULL)) { 2274 entry->object.sub_map = submap; 2275 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2276 result = KERN_SUCCESS; 2277 } 2278 vm_map_unlock(map); 2279 2280 if (result != KERN_SUCCESS) { 2281 vm_map_lock(submap); 2282 submap->flags &= ~MAP_IS_SUB_MAP; 2283 vm_map_unlock(submap); 2284 } 2285 return (result); 2286 } 2287 2288 /* 2289 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2290 */ 2291 #define MAX_INIT_PT 96 2292 2293 /* 2294 * vm_map_pmap_enter: 2295 * 2296 * Preload the specified map's pmap with mappings to the specified 2297 * object's memory-resident pages. No further physical pages are 2298 * allocated, and no further virtual pages are retrieved from secondary 2299 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2300 * limited number of page mappings are created at the low-end of the 2301 * specified address range. (For this purpose, a superpage mapping 2302 * counts as one page mapping.) Otherwise, all resident pages within 2303 * the specified address range are mapped. 2304 */ 2305 static void 2306 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2307 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2308 { 2309 vm_offset_t start; 2310 vm_page_t p, p_start; 2311 vm_pindex_t mask, psize, threshold, tmpidx; 2312 2313 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2314 return; 2315 VM_OBJECT_RLOCK(object); 2316 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2317 VM_OBJECT_RUNLOCK(object); 2318 VM_OBJECT_WLOCK(object); 2319 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2320 pmap_object_init_pt(map->pmap, addr, object, pindex, 2321 size); 2322 VM_OBJECT_WUNLOCK(object); 2323 return; 2324 } 2325 VM_OBJECT_LOCK_DOWNGRADE(object); 2326 } 2327 2328 psize = atop(size); 2329 if (psize + pindex > object->size) { 2330 if (object->size < pindex) { 2331 VM_OBJECT_RUNLOCK(object); 2332 return; 2333 } 2334 psize = object->size - pindex; 2335 } 2336 2337 start = 0; 2338 p_start = NULL; 2339 threshold = MAX_INIT_PT; 2340 2341 p = vm_page_find_least(object, pindex); 2342 /* 2343 * Assert: the variable p is either (1) the page with the 2344 * least pindex greater than or equal to the parameter pindex 2345 * or (2) NULL. 2346 */ 2347 for (; 2348 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2349 p = TAILQ_NEXT(p, listq)) { 2350 /* 2351 * don't allow an madvise to blow away our really 2352 * free pages allocating pv entries. 2353 */ 2354 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2355 vm_page_count_severe()) || 2356 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2357 tmpidx >= threshold)) { 2358 psize = tmpidx; 2359 break; 2360 } 2361 if (vm_page_all_valid(p)) { 2362 if (p_start == NULL) { 2363 start = addr + ptoa(tmpidx); 2364 p_start = p; 2365 } 2366 /* Jump ahead if a superpage mapping is possible. */ 2367 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2368 (pagesizes[p->psind] - 1)) == 0) { 2369 mask = atop(pagesizes[p->psind]) - 1; 2370 if (tmpidx + mask < psize && 2371 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2372 p += mask; 2373 threshold += mask; 2374 } 2375 } 2376 } else if (p_start != NULL) { 2377 pmap_enter_object(map->pmap, start, addr + 2378 ptoa(tmpidx), p_start, prot); 2379 p_start = NULL; 2380 } 2381 } 2382 if (p_start != NULL) 2383 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2384 p_start, prot); 2385 VM_OBJECT_RUNLOCK(object); 2386 } 2387 2388 /* 2389 * vm_map_protect: 2390 * 2391 * Sets the protection of the specified address 2392 * region in the target map. If "set_max" is 2393 * specified, the maximum protection is to be set; 2394 * otherwise, only the current protection is affected. 2395 */ 2396 int 2397 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2398 vm_prot_t new_prot, boolean_t set_max) 2399 { 2400 vm_map_entry_t current, entry, in_tran; 2401 vm_object_t obj; 2402 struct ucred *cred; 2403 vm_prot_t old_prot; 2404 int rv; 2405 2406 if (start == end) 2407 return (KERN_SUCCESS); 2408 2409 again: 2410 in_tran = NULL; 2411 vm_map_lock(map); 2412 2413 /* 2414 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2415 * need to fault pages into the map and will drop the map lock while 2416 * doing so, and the VM object may end up in an inconsistent state if we 2417 * update the protection on the map entry in between faults. 2418 */ 2419 vm_map_wait_busy(map); 2420 2421 VM_MAP_RANGE_CHECK(map, start, end); 2422 2423 if (!vm_map_lookup_entry(map, start, &entry)) 2424 entry = entry->next; 2425 2426 /* 2427 * Make a first pass to check for protection violations. 2428 */ 2429 for (current = entry; current->start < end; current = current->next) { 2430 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2431 continue; 2432 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2433 vm_map_unlock(map); 2434 return (KERN_INVALID_ARGUMENT); 2435 } 2436 if ((new_prot & current->max_protection) != new_prot) { 2437 vm_map_unlock(map); 2438 return (KERN_PROTECTION_FAILURE); 2439 } 2440 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2441 in_tran = entry; 2442 } 2443 2444 /* 2445 * Postpone the operation until all in transition map entries 2446 * are stabilized. In-transition entry might already have its 2447 * pages wired and wired_count incremented, but 2448 * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other 2449 * threads because the map lock is dropped. In this case we 2450 * would miss our call to vm_fault_copy_entry(). 2451 */ 2452 if (in_tran != NULL) { 2453 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2454 vm_map_unlock_and_wait(map, 0); 2455 goto again; 2456 } 2457 2458 /* 2459 * Before changing the protections, try to reserve swap space for any 2460 * private (i.e., copy-on-write) mappings that are transitioning from 2461 * read-only to read/write access. If a reservation fails, break out 2462 * of this loop early and let the next loop simplify the entries, since 2463 * some may now be mergeable. 2464 */ 2465 rv = KERN_SUCCESS; 2466 vm_map_clip_start(map, entry, start); 2467 for (current = entry; current->start < end; current = current->next) { 2468 2469 vm_map_clip_end(map, current, end); 2470 2471 if (set_max || 2472 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 2473 ENTRY_CHARGED(current) || 2474 (current->eflags & MAP_ENTRY_GUARD) != 0) { 2475 continue; 2476 } 2477 2478 cred = curthread->td_ucred; 2479 obj = current->object.vm_object; 2480 2481 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 2482 if (!swap_reserve(current->end - current->start)) { 2483 rv = KERN_RESOURCE_SHORTAGE; 2484 end = current->end; 2485 break; 2486 } 2487 crhold(cred); 2488 current->cred = cred; 2489 continue; 2490 } 2491 2492 VM_OBJECT_WLOCK(obj); 2493 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2494 VM_OBJECT_WUNLOCK(obj); 2495 continue; 2496 } 2497 2498 /* 2499 * Charge for the whole object allocation now, since 2500 * we cannot distinguish between non-charged and 2501 * charged clipped mapping of the same object later. 2502 */ 2503 KASSERT(obj->charge == 0, 2504 ("vm_map_protect: object %p overcharged (entry %p)", 2505 obj, current)); 2506 if (!swap_reserve(ptoa(obj->size))) { 2507 VM_OBJECT_WUNLOCK(obj); 2508 rv = KERN_RESOURCE_SHORTAGE; 2509 end = current->end; 2510 break; 2511 } 2512 2513 crhold(cred); 2514 obj->cred = cred; 2515 obj->charge = ptoa(obj->size); 2516 VM_OBJECT_WUNLOCK(obj); 2517 } 2518 2519 /* 2520 * If enough swap space was available, go back and fix up protections. 2521 * Otherwise, just simplify entries, since some may have been modified. 2522 * [Note that clipping is not necessary the second time.] 2523 */ 2524 for (current = entry; current->start < end; 2525 vm_map_try_merge_entries(map, current->prev, current), 2526 current = current->next) { 2527 if (rv != KERN_SUCCESS || 2528 (current->eflags & MAP_ENTRY_GUARD) != 0) 2529 continue; 2530 2531 old_prot = current->protection; 2532 2533 if (set_max) 2534 current->protection = 2535 (current->max_protection = new_prot) & 2536 old_prot; 2537 else 2538 current->protection = new_prot; 2539 2540 /* 2541 * For user wired map entries, the normal lazy evaluation of 2542 * write access upgrades through soft page faults is 2543 * undesirable. Instead, immediately copy any pages that are 2544 * copy-on-write and enable write access in the physical map. 2545 */ 2546 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2547 (current->protection & VM_PROT_WRITE) != 0 && 2548 (old_prot & VM_PROT_WRITE) == 0) 2549 vm_fault_copy_entry(map, map, current, current, NULL); 2550 2551 /* 2552 * When restricting access, update the physical map. Worry 2553 * about copy-on-write here. 2554 */ 2555 if ((old_prot & ~current->protection) != 0) { 2556 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2557 VM_PROT_ALL) 2558 pmap_protect(map->pmap, current->start, 2559 current->end, 2560 current->protection & MASK(current)); 2561 #undef MASK 2562 } 2563 } 2564 vm_map_try_merge_entries(map, current->prev, current); 2565 vm_map_unlock(map); 2566 return (rv); 2567 } 2568 2569 /* 2570 * vm_map_madvise: 2571 * 2572 * This routine traverses a processes map handling the madvise 2573 * system call. Advisories are classified as either those effecting 2574 * the vm_map_entry structure, or those effecting the underlying 2575 * objects. 2576 */ 2577 int 2578 vm_map_madvise( 2579 vm_map_t map, 2580 vm_offset_t start, 2581 vm_offset_t end, 2582 int behav) 2583 { 2584 vm_map_entry_t current, entry; 2585 bool modify_map; 2586 2587 /* 2588 * Some madvise calls directly modify the vm_map_entry, in which case 2589 * we need to use an exclusive lock on the map and we need to perform 2590 * various clipping operations. Otherwise we only need a read-lock 2591 * on the map. 2592 */ 2593 switch(behav) { 2594 case MADV_NORMAL: 2595 case MADV_SEQUENTIAL: 2596 case MADV_RANDOM: 2597 case MADV_NOSYNC: 2598 case MADV_AUTOSYNC: 2599 case MADV_NOCORE: 2600 case MADV_CORE: 2601 if (start == end) 2602 return (0); 2603 modify_map = true; 2604 vm_map_lock(map); 2605 break; 2606 case MADV_WILLNEED: 2607 case MADV_DONTNEED: 2608 case MADV_FREE: 2609 if (start == end) 2610 return (0); 2611 modify_map = false; 2612 vm_map_lock_read(map); 2613 break; 2614 default: 2615 return (EINVAL); 2616 } 2617 2618 /* 2619 * Locate starting entry and clip if necessary. 2620 */ 2621 VM_MAP_RANGE_CHECK(map, start, end); 2622 2623 if (vm_map_lookup_entry(map, start, &entry)) { 2624 if (modify_map) 2625 vm_map_clip_start(map, entry, start); 2626 } else { 2627 entry = entry->next; 2628 } 2629 2630 if (modify_map) { 2631 /* 2632 * madvise behaviors that are implemented in the vm_map_entry. 2633 * 2634 * We clip the vm_map_entry so that behavioral changes are 2635 * limited to the specified address range. 2636 */ 2637 for (current = entry; current->start < end; 2638 current = current->next) { 2639 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2640 continue; 2641 2642 vm_map_clip_end(map, current, end); 2643 2644 switch (behav) { 2645 case MADV_NORMAL: 2646 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2647 break; 2648 case MADV_SEQUENTIAL: 2649 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2650 break; 2651 case MADV_RANDOM: 2652 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2653 break; 2654 case MADV_NOSYNC: 2655 current->eflags |= MAP_ENTRY_NOSYNC; 2656 break; 2657 case MADV_AUTOSYNC: 2658 current->eflags &= ~MAP_ENTRY_NOSYNC; 2659 break; 2660 case MADV_NOCORE: 2661 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2662 break; 2663 case MADV_CORE: 2664 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2665 break; 2666 default: 2667 break; 2668 } 2669 vm_map_try_merge_entries(map, current->prev, current); 2670 } 2671 vm_map_try_merge_entries(map, current->prev, current); 2672 vm_map_unlock(map); 2673 } else { 2674 vm_pindex_t pstart, pend; 2675 2676 /* 2677 * madvise behaviors that are implemented in the underlying 2678 * vm_object. 2679 * 2680 * Since we don't clip the vm_map_entry, we have to clip 2681 * the vm_object pindex and count. 2682 */ 2683 for (current = entry; current->start < end; 2684 current = current->next) { 2685 vm_offset_t useEnd, useStart; 2686 2687 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2688 continue; 2689 2690 /* 2691 * MADV_FREE would otherwise rewind time to 2692 * the creation of the shadow object. Because 2693 * we hold the VM map read-locked, neither the 2694 * entry's object nor the presence of a 2695 * backing object can change. 2696 */ 2697 if (behav == MADV_FREE && 2698 current->object.vm_object != NULL && 2699 current->object.vm_object->backing_object != NULL) 2700 continue; 2701 2702 pstart = OFF_TO_IDX(current->offset); 2703 pend = pstart + atop(current->end - current->start); 2704 useStart = current->start; 2705 useEnd = current->end; 2706 2707 if (current->start < start) { 2708 pstart += atop(start - current->start); 2709 useStart = start; 2710 } 2711 if (current->end > end) { 2712 pend -= atop(current->end - end); 2713 useEnd = end; 2714 } 2715 2716 if (pstart >= pend) 2717 continue; 2718 2719 /* 2720 * Perform the pmap_advise() before clearing 2721 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2722 * concurrent pmap operation, such as pmap_remove(), 2723 * could clear a reference in the pmap and set 2724 * PGA_REFERENCED on the page before the pmap_advise() 2725 * had completed. Consequently, the page would appear 2726 * referenced based upon an old reference that 2727 * occurred before this pmap_advise() ran. 2728 */ 2729 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2730 pmap_advise(map->pmap, useStart, useEnd, 2731 behav); 2732 2733 vm_object_madvise(current->object.vm_object, pstart, 2734 pend, behav); 2735 2736 /* 2737 * Pre-populate paging structures in the 2738 * WILLNEED case. For wired entries, the 2739 * paging structures are already populated. 2740 */ 2741 if (behav == MADV_WILLNEED && 2742 current->wired_count == 0) { 2743 vm_map_pmap_enter(map, 2744 useStart, 2745 current->protection, 2746 current->object.vm_object, 2747 pstart, 2748 ptoa(pend - pstart), 2749 MAP_PREFAULT_MADVISE 2750 ); 2751 } 2752 } 2753 vm_map_unlock_read(map); 2754 } 2755 return (0); 2756 } 2757 2758 2759 /* 2760 * vm_map_inherit: 2761 * 2762 * Sets the inheritance of the specified address 2763 * range in the target map. Inheritance 2764 * affects how the map will be shared with 2765 * child maps at the time of vmspace_fork. 2766 */ 2767 int 2768 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2769 vm_inherit_t new_inheritance) 2770 { 2771 vm_map_entry_t entry; 2772 vm_map_entry_t temp_entry; 2773 2774 switch (new_inheritance) { 2775 case VM_INHERIT_NONE: 2776 case VM_INHERIT_COPY: 2777 case VM_INHERIT_SHARE: 2778 case VM_INHERIT_ZERO: 2779 break; 2780 default: 2781 return (KERN_INVALID_ARGUMENT); 2782 } 2783 if (start == end) 2784 return (KERN_SUCCESS); 2785 vm_map_lock(map); 2786 VM_MAP_RANGE_CHECK(map, start, end); 2787 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2788 entry = temp_entry; 2789 vm_map_clip_start(map, entry, start); 2790 } else 2791 entry = temp_entry->next; 2792 while (entry->start < end) { 2793 vm_map_clip_end(map, entry, end); 2794 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 2795 new_inheritance != VM_INHERIT_ZERO) 2796 entry->inheritance = new_inheritance; 2797 vm_map_try_merge_entries(map, entry->prev, entry); 2798 entry = entry->next; 2799 } 2800 vm_map_try_merge_entries(map, entry->prev, entry); 2801 vm_map_unlock(map); 2802 return (KERN_SUCCESS); 2803 } 2804 2805 /* 2806 * vm_map_entry_in_transition: 2807 * 2808 * Release the map lock, and sleep until the entry is no longer in 2809 * transition. Awake and acquire the map lock. If the map changed while 2810 * another held the lock, lookup a possibly-changed entry at or after the 2811 * 'start' position of the old entry. 2812 */ 2813 static vm_map_entry_t 2814 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, 2815 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) 2816 { 2817 vm_map_entry_t entry; 2818 vm_offset_t start; 2819 u_int last_timestamp; 2820 2821 VM_MAP_ASSERT_LOCKED(map); 2822 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2823 ("not in-tranition map entry %p", in_entry)); 2824 /* 2825 * We have not yet clipped the entry. 2826 */ 2827 start = MAX(in_start, in_entry->start); 2828 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2829 last_timestamp = map->timestamp; 2830 if (vm_map_unlock_and_wait(map, 0)) { 2831 /* 2832 * Allow interruption of user wiring/unwiring? 2833 */ 2834 } 2835 vm_map_lock(map); 2836 if (last_timestamp + 1 == map->timestamp) 2837 return (in_entry); 2838 2839 /* 2840 * Look again for the entry because the map was modified while it was 2841 * unlocked. Specifically, the entry may have been clipped, merged, or 2842 * deleted. 2843 */ 2844 if (!vm_map_lookup_entry(map, start, &entry)) { 2845 if (!holes_ok) { 2846 *io_end = start; 2847 return (NULL); 2848 } 2849 entry = entry->next; 2850 } 2851 return (entry); 2852 } 2853 2854 /* 2855 * vm_map_unwire: 2856 * 2857 * Implements both kernel and user unwiring. 2858 */ 2859 int 2860 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2861 int flags) 2862 { 2863 vm_map_entry_t entry, first_entry; 2864 int rv; 2865 bool first_iteration, holes_ok, need_wakeup, user_unwire; 2866 2867 if (start == end) 2868 return (KERN_SUCCESS); 2869 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 2870 user_unwire = (flags & VM_MAP_WIRE_USER) != 0; 2871 vm_map_lock(map); 2872 VM_MAP_RANGE_CHECK(map, start, end); 2873 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2874 if (holes_ok) 2875 first_entry = first_entry->next; 2876 else { 2877 vm_map_unlock(map); 2878 return (KERN_INVALID_ADDRESS); 2879 } 2880 } 2881 first_iteration = true; 2882 entry = first_entry; 2883 rv = KERN_SUCCESS; 2884 while (entry->start < end) { 2885 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2886 /* 2887 * We have not yet clipped the entry. 2888 */ 2889 entry = vm_map_entry_in_transition(map, start, &end, 2890 holes_ok, entry); 2891 if (entry == NULL) { 2892 if (first_iteration) { 2893 vm_map_unlock(map); 2894 return (KERN_INVALID_ADDRESS); 2895 } 2896 rv = KERN_INVALID_ADDRESS; 2897 break; 2898 } 2899 first_entry = first_iteration ? entry : NULL; 2900 continue; 2901 } 2902 first_iteration = false; 2903 vm_map_clip_start(map, entry, start); 2904 vm_map_clip_end(map, entry, end); 2905 /* 2906 * Mark the entry in case the map lock is released. (See 2907 * above.) 2908 */ 2909 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2910 entry->wiring_thread == NULL, 2911 ("owned map entry %p", entry)); 2912 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2913 entry->wiring_thread = curthread; 2914 /* 2915 * Check the map for holes in the specified region. 2916 * If holes_ok, skip this check. 2917 */ 2918 if (!holes_ok && 2919 (entry->end < end && entry->next->start > entry->end)) { 2920 end = entry->end; 2921 rv = KERN_INVALID_ADDRESS; 2922 break; 2923 } 2924 /* 2925 * If system unwiring, require that the entry is system wired. 2926 */ 2927 if (!user_unwire && 2928 vm_map_entry_system_wired_count(entry) == 0) { 2929 end = entry->end; 2930 rv = KERN_INVALID_ARGUMENT; 2931 break; 2932 } 2933 entry = entry->next; 2934 } 2935 need_wakeup = false; 2936 if (first_entry == NULL && 2937 !vm_map_lookup_entry(map, start, &first_entry)) { 2938 KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); 2939 first_entry = first_entry->next; 2940 } 2941 for (entry = first_entry; entry->start < end; entry = entry->next) { 2942 /* 2943 * If holes_ok was specified, an empty 2944 * space in the unwired region could have been mapped 2945 * while the map lock was dropped for draining 2946 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2947 * could be simultaneously wiring this new mapping 2948 * entry. Detect these cases and skip any entries 2949 * marked as in transition by us. 2950 */ 2951 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2952 entry->wiring_thread != curthread) { 2953 KASSERT(holes_ok, 2954 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2955 continue; 2956 } 2957 2958 if (rv == KERN_SUCCESS && (!user_unwire || 2959 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2960 if (entry->wired_count == 1) 2961 vm_map_entry_unwire(map, entry); 2962 else 2963 entry->wired_count--; 2964 if (user_unwire) 2965 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2966 } 2967 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2968 ("vm_map_unwire: in-transition flag missing %p", entry)); 2969 KASSERT(entry->wiring_thread == curthread, 2970 ("vm_map_unwire: alien wire %p", entry)); 2971 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2972 entry->wiring_thread = NULL; 2973 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2974 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2975 need_wakeup = true; 2976 } 2977 vm_map_try_merge_entries(map, entry->prev, entry); 2978 } 2979 vm_map_try_merge_entries(map, entry->prev, entry); 2980 vm_map_unlock(map); 2981 if (need_wakeup) 2982 vm_map_wakeup(map); 2983 return (rv); 2984 } 2985 2986 static void 2987 vm_map_wire_user_count_sub(u_long npages) 2988 { 2989 2990 atomic_subtract_long(&vm_user_wire_count, npages); 2991 } 2992 2993 static bool 2994 vm_map_wire_user_count_add(u_long npages) 2995 { 2996 u_long wired; 2997 2998 wired = vm_user_wire_count; 2999 do { 3000 if (npages + wired > vm_page_max_user_wired) 3001 return (false); 3002 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3003 npages + wired)); 3004 3005 return (true); 3006 } 3007 3008 /* 3009 * vm_map_wire_entry_failure: 3010 * 3011 * Handle a wiring failure on the given entry. 3012 * 3013 * The map should be locked. 3014 */ 3015 static void 3016 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3017 vm_offset_t failed_addr) 3018 { 3019 3020 VM_MAP_ASSERT_LOCKED(map); 3021 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3022 entry->wired_count == 1, 3023 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3024 KASSERT(failed_addr < entry->end, 3025 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3026 3027 /* 3028 * If any pages at the start of this entry were successfully wired, 3029 * then unwire them. 3030 */ 3031 if (failed_addr > entry->start) { 3032 pmap_unwire(map->pmap, entry->start, failed_addr); 3033 vm_object_unwire(entry->object.vm_object, entry->offset, 3034 failed_addr - entry->start, PQ_ACTIVE); 3035 } 3036 3037 /* 3038 * Assign an out-of-range value to represent the failure to wire this 3039 * entry. 3040 */ 3041 entry->wired_count = -1; 3042 } 3043 3044 int 3045 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3046 { 3047 int rv; 3048 3049 vm_map_lock(map); 3050 rv = vm_map_wire_locked(map, start, end, flags); 3051 vm_map_unlock(map); 3052 return (rv); 3053 } 3054 3055 3056 /* 3057 * vm_map_wire_locked: 3058 * 3059 * Implements both kernel and user wiring. Returns with the map locked, 3060 * the map lock may be dropped. 3061 */ 3062 int 3063 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3064 { 3065 vm_map_entry_t entry, first_entry, tmp_entry; 3066 vm_offset_t faddr, saved_end, saved_start; 3067 u_long npages; 3068 u_int last_timestamp; 3069 int rv; 3070 bool first_iteration, holes_ok, need_wakeup, user_wire; 3071 vm_prot_t prot; 3072 3073 VM_MAP_ASSERT_LOCKED(map); 3074 3075 if (start == end) 3076 return (KERN_SUCCESS); 3077 prot = 0; 3078 if (flags & VM_MAP_WIRE_WRITE) 3079 prot |= VM_PROT_WRITE; 3080 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3081 user_wire = (flags & VM_MAP_WIRE_USER) != 0; 3082 VM_MAP_RANGE_CHECK(map, start, end); 3083 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3084 if (holes_ok) 3085 first_entry = first_entry->next; 3086 else 3087 return (KERN_INVALID_ADDRESS); 3088 } 3089 first_iteration = true; 3090 entry = first_entry; 3091 while (entry->start < end) { 3092 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3093 /* 3094 * We have not yet clipped the entry. 3095 */ 3096 entry = vm_map_entry_in_transition(map, start, &end, 3097 holes_ok, entry); 3098 if (entry == NULL) { 3099 if (first_iteration) 3100 return (KERN_INVALID_ADDRESS); 3101 rv = KERN_INVALID_ADDRESS; 3102 goto done; 3103 } 3104 first_entry = first_iteration ? entry : NULL; 3105 continue; 3106 } 3107 first_iteration = false; 3108 vm_map_clip_start(map, entry, start); 3109 vm_map_clip_end(map, entry, end); 3110 /* 3111 * Mark the entry in case the map lock is released. (See 3112 * above.) 3113 */ 3114 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3115 entry->wiring_thread == NULL, 3116 ("owned map entry %p", entry)); 3117 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3118 entry->wiring_thread = curthread; 3119 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3120 || (entry->protection & prot) != prot) { 3121 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3122 if (!holes_ok) { 3123 end = entry->end; 3124 rv = KERN_INVALID_ADDRESS; 3125 goto done; 3126 } 3127 } else if (entry->wired_count == 0) { 3128 entry->wired_count++; 3129 3130 npages = atop(entry->end - entry->start); 3131 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3132 vm_map_wire_entry_failure(map, entry, 3133 entry->start); 3134 end = entry->end; 3135 rv = KERN_RESOURCE_SHORTAGE; 3136 goto done; 3137 } 3138 3139 /* 3140 * Release the map lock, relying on the in-transition 3141 * mark. Mark the map busy for fork. 3142 */ 3143 saved_start = entry->start; 3144 saved_end = entry->end; 3145 last_timestamp = map->timestamp; 3146 vm_map_busy(map); 3147 vm_map_unlock(map); 3148 3149 faddr = saved_start; 3150 do { 3151 /* 3152 * Simulate a fault to get the page and enter 3153 * it into the physical map. 3154 */ 3155 if ((rv = vm_fault(map, faddr, 3156 VM_PROT_NONE, VM_FAULT_WIRE, NULL)) != 3157 KERN_SUCCESS) 3158 break; 3159 } while ((faddr += PAGE_SIZE) < saved_end); 3160 vm_map_lock(map); 3161 vm_map_unbusy(map); 3162 if (last_timestamp + 1 != map->timestamp) { 3163 /* 3164 * Look again for the entry because the map was 3165 * modified while it was unlocked. The entry 3166 * may have been clipped, but NOT merged or 3167 * deleted. 3168 */ 3169 if (!vm_map_lookup_entry(map, saved_start, 3170 &tmp_entry)) 3171 KASSERT(false, 3172 ("vm_map_wire: lookup failed")); 3173 if (entry == first_entry) 3174 first_entry = tmp_entry; 3175 else 3176 first_entry = NULL; 3177 entry = tmp_entry; 3178 while (entry->end < saved_end) { 3179 /* 3180 * In case of failure, handle entries 3181 * that were not fully wired here; 3182 * fully wired entries are handled 3183 * later. 3184 */ 3185 if (rv != KERN_SUCCESS && 3186 faddr < entry->end) 3187 vm_map_wire_entry_failure(map, 3188 entry, faddr); 3189 entry = entry->next; 3190 } 3191 } 3192 if (rv != KERN_SUCCESS) { 3193 vm_map_wire_entry_failure(map, entry, faddr); 3194 if (user_wire) 3195 vm_map_wire_user_count_sub(npages); 3196 end = entry->end; 3197 goto done; 3198 } 3199 } else if (!user_wire || 3200 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3201 entry->wired_count++; 3202 } 3203 /* 3204 * Check the map for holes in the specified region. 3205 * If holes_ok was specified, skip this check. 3206 */ 3207 if (!holes_ok && 3208 entry->end < end && entry->next->start > entry->end) { 3209 end = entry->end; 3210 rv = KERN_INVALID_ADDRESS; 3211 goto done; 3212 } 3213 entry = entry->next; 3214 } 3215 rv = KERN_SUCCESS; 3216 done: 3217 need_wakeup = false; 3218 if (first_entry == NULL && 3219 !vm_map_lookup_entry(map, start, &first_entry)) { 3220 KASSERT(holes_ok, ("vm_map_wire: lookup failed")); 3221 first_entry = first_entry->next; 3222 } 3223 for (entry = first_entry; entry->start < end; entry = entry->next) { 3224 /* 3225 * If holes_ok was specified, an empty 3226 * space in the unwired region could have been mapped 3227 * while the map lock was dropped for faulting in the 3228 * pages or draining MAP_ENTRY_IN_TRANSITION. 3229 * Moreover, another thread could be simultaneously 3230 * wiring this new mapping entry. Detect these cases 3231 * and skip any entries marked as in transition not by us. 3232 */ 3233 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3234 entry->wiring_thread != curthread) { 3235 KASSERT(holes_ok, 3236 ("vm_map_wire: !HOLESOK and new/changed entry")); 3237 continue; 3238 } 3239 3240 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { 3241 /* do nothing */ 3242 } else if (rv == KERN_SUCCESS) { 3243 if (user_wire) 3244 entry->eflags |= MAP_ENTRY_USER_WIRED; 3245 } else if (entry->wired_count == -1) { 3246 /* 3247 * Wiring failed on this entry. Thus, unwiring is 3248 * unnecessary. 3249 */ 3250 entry->wired_count = 0; 3251 } else if (!user_wire || 3252 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3253 /* 3254 * Undo the wiring. Wiring succeeded on this entry 3255 * but failed on a later entry. 3256 */ 3257 if (entry->wired_count == 1) { 3258 vm_map_entry_unwire(map, entry); 3259 if (user_wire) 3260 vm_map_wire_user_count_sub( 3261 atop(entry->end - entry->start)); 3262 } else 3263 entry->wired_count--; 3264 } 3265 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3266 ("vm_map_wire: in-transition flag missing %p", entry)); 3267 KASSERT(entry->wiring_thread == curthread, 3268 ("vm_map_wire: alien wire %p", entry)); 3269 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3270 MAP_ENTRY_WIRE_SKIPPED); 3271 entry->wiring_thread = NULL; 3272 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3273 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3274 need_wakeup = true; 3275 } 3276 vm_map_try_merge_entries(map, entry->prev, entry); 3277 } 3278 vm_map_try_merge_entries(map, entry->prev, entry); 3279 if (need_wakeup) 3280 vm_map_wakeup(map); 3281 return (rv); 3282 } 3283 3284 /* 3285 * vm_map_sync 3286 * 3287 * Push any dirty cached pages in the address range to their pager. 3288 * If syncio is TRUE, dirty pages are written synchronously. 3289 * If invalidate is TRUE, any cached pages are freed as well. 3290 * 3291 * If the size of the region from start to end is zero, we are 3292 * supposed to flush all modified pages within the region containing 3293 * start. Unfortunately, a region can be split or coalesced with 3294 * neighboring regions, making it difficult to determine what the 3295 * original region was. Therefore, we approximate this requirement by 3296 * flushing the current region containing start. 3297 * 3298 * Returns an error if any part of the specified range is not mapped. 3299 */ 3300 int 3301 vm_map_sync( 3302 vm_map_t map, 3303 vm_offset_t start, 3304 vm_offset_t end, 3305 boolean_t syncio, 3306 boolean_t invalidate) 3307 { 3308 vm_map_entry_t current; 3309 vm_map_entry_t entry; 3310 vm_size_t size; 3311 vm_object_t object; 3312 vm_ooffset_t offset; 3313 unsigned int last_timestamp; 3314 boolean_t failed; 3315 3316 vm_map_lock_read(map); 3317 VM_MAP_RANGE_CHECK(map, start, end); 3318 if (!vm_map_lookup_entry(map, start, &entry)) { 3319 vm_map_unlock_read(map); 3320 return (KERN_INVALID_ADDRESS); 3321 } else if (start == end) { 3322 start = entry->start; 3323 end = entry->end; 3324 } 3325 /* 3326 * Make a first pass to check for user-wired memory and holes. 3327 */ 3328 for (current = entry; current->start < end; current = current->next) { 3329 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 3330 vm_map_unlock_read(map); 3331 return (KERN_INVALID_ARGUMENT); 3332 } 3333 if (end > current->end && 3334 current->end != current->next->start) { 3335 vm_map_unlock_read(map); 3336 return (KERN_INVALID_ADDRESS); 3337 } 3338 } 3339 3340 if (invalidate) 3341 pmap_remove(map->pmap, start, end); 3342 failed = FALSE; 3343 3344 /* 3345 * Make a second pass, cleaning/uncaching pages from the indicated 3346 * objects as we go. 3347 */ 3348 for (current = entry; current->start < end;) { 3349 offset = current->offset + (start - current->start); 3350 size = (end <= current->end ? end : current->end) - start; 3351 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 3352 vm_map_t smap; 3353 vm_map_entry_t tentry; 3354 vm_size_t tsize; 3355 3356 smap = current->object.sub_map; 3357 vm_map_lock_read(smap); 3358 (void) vm_map_lookup_entry(smap, offset, &tentry); 3359 tsize = tentry->end - offset; 3360 if (tsize < size) 3361 size = tsize; 3362 object = tentry->object.vm_object; 3363 offset = tentry->offset + (offset - tentry->start); 3364 vm_map_unlock_read(smap); 3365 } else { 3366 object = current->object.vm_object; 3367 } 3368 vm_object_reference(object); 3369 last_timestamp = map->timestamp; 3370 vm_map_unlock_read(map); 3371 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3372 failed = TRUE; 3373 start += size; 3374 vm_object_deallocate(object); 3375 vm_map_lock_read(map); 3376 if (last_timestamp == map->timestamp || 3377 !vm_map_lookup_entry(map, start, ¤t)) 3378 current = current->next; 3379 } 3380 3381 vm_map_unlock_read(map); 3382 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3383 } 3384 3385 /* 3386 * vm_map_entry_unwire: [ internal use only ] 3387 * 3388 * Make the region specified by this entry pageable. 3389 * 3390 * The map in question should be locked. 3391 * [This is the reason for this routine's existence.] 3392 */ 3393 static void 3394 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3395 { 3396 vm_size_t size; 3397 3398 VM_MAP_ASSERT_LOCKED(map); 3399 KASSERT(entry->wired_count > 0, 3400 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3401 3402 size = entry->end - entry->start; 3403 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3404 vm_map_wire_user_count_sub(atop(size)); 3405 pmap_unwire(map->pmap, entry->start, entry->end); 3406 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3407 PQ_ACTIVE); 3408 entry->wired_count = 0; 3409 } 3410 3411 static void 3412 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3413 { 3414 3415 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3416 vm_object_deallocate(entry->object.vm_object); 3417 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3418 } 3419 3420 /* 3421 * vm_map_entry_delete: [ internal use only ] 3422 * 3423 * Deallocate the given entry from the target map. 3424 */ 3425 static void 3426 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3427 { 3428 vm_object_t object; 3429 vm_pindex_t offidxstart, offidxend, count, size1; 3430 vm_size_t size; 3431 3432 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3433 object = entry->object.vm_object; 3434 3435 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3436 MPASS(entry->cred == NULL); 3437 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3438 MPASS(object == NULL); 3439 vm_map_entry_deallocate(entry, map->system_map); 3440 return; 3441 } 3442 3443 size = entry->end - entry->start; 3444 map->size -= size; 3445 3446 if (entry->cred != NULL) { 3447 swap_release_by_cred(size, entry->cred); 3448 crfree(entry->cred); 3449 } 3450 3451 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 3452 (object != NULL)) { 3453 KASSERT(entry->cred == NULL || object->cred == NULL || 3454 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3455 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3456 count = atop(size); 3457 offidxstart = OFF_TO_IDX(entry->offset); 3458 offidxend = offidxstart + count; 3459 VM_OBJECT_WLOCK(object); 3460 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT | 3461 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 3462 object == kernel_object)) { 3463 vm_object_collapse(object); 3464 3465 /* 3466 * The option OBJPR_NOTMAPPED can be passed here 3467 * because vm_map_delete() already performed 3468 * pmap_remove() on the only mapping to this range 3469 * of pages. 3470 */ 3471 vm_object_page_remove(object, offidxstart, offidxend, 3472 OBJPR_NOTMAPPED); 3473 if (object->type == OBJT_SWAP) 3474 swap_pager_freespace(object, offidxstart, 3475 count); 3476 if (offidxend >= object->size && 3477 offidxstart < object->size) { 3478 size1 = object->size; 3479 object->size = offidxstart; 3480 if (object->cred != NULL) { 3481 size1 -= object->size; 3482 KASSERT(object->charge >= ptoa(size1), 3483 ("object %p charge < 0", object)); 3484 swap_release_by_cred(ptoa(size1), 3485 object->cred); 3486 object->charge -= ptoa(size1); 3487 } 3488 } 3489 } 3490 VM_OBJECT_WUNLOCK(object); 3491 } else 3492 entry->object.vm_object = NULL; 3493 if (map->system_map) 3494 vm_map_entry_deallocate(entry, TRUE); 3495 else { 3496 entry->next = curthread->td_map_def_user; 3497 curthread->td_map_def_user = entry; 3498 } 3499 } 3500 3501 /* 3502 * vm_map_delete: [ internal use only ] 3503 * 3504 * Deallocates the given address range from the target 3505 * map. 3506 */ 3507 int 3508 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3509 { 3510 vm_map_entry_t entry; 3511 vm_map_entry_t first_entry; 3512 3513 VM_MAP_ASSERT_LOCKED(map); 3514 if (start == end) 3515 return (KERN_SUCCESS); 3516 3517 /* 3518 * Find the start of the region, and clip it 3519 */ 3520 if (!vm_map_lookup_entry(map, start, &first_entry)) 3521 entry = first_entry->next; 3522 else { 3523 entry = first_entry; 3524 vm_map_clip_start(map, entry, start); 3525 } 3526 3527 /* 3528 * Step through all entries in this region 3529 */ 3530 while (entry->start < end) { 3531 vm_map_entry_t next; 3532 3533 /* 3534 * Wait for wiring or unwiring of an entry to complete. 3535 * Also wait for any system wirings to disappear on 3536 * user maps. 3537 */ 3538 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3539 (vm_map_pmap(map) != kernel_pmap && 3540 vm_map_entry_system_wired_count(entry) != 0)) { 3541 unsigned int last_timestamp; 3542 vm_offset_t saved_start; 3543 vm_map_entry_t tmp_entry; 3544 3545 saved_start = entry->start; 3546 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3547 last_timestamp = map->timestamp; 3548 (void) vm_map_unlock_and_wait(map, 0); 3549 vm_map_lock(map); 3550 if (last_timestamp + 1 != map->timestamp) { 3551 /* 3552 * Look again for the entry because the map was 3553 * modified while it was unlocked. 3554 * Specifically, the entry may have been 3555 * clipped, merged, or deleted. 3556 */ 3557 if (!vm_map_lookup_entry(map, saved_start, 3558 &tmp_entry)) 3559 entry = tmp_entry->next; 3560 else { 3561 entry = tmp_entry; 3562 vm_map_clip_start(map, entry, 3563 saved_start); 3564 } 3565 } 3566 continue; 3567 } 3568 vm_map_clip_end(map, entry, end); 3569 3570 next = entry->next; 3571 3572 /* 3573 * Unwire before removing addresses from the pmap; otherwise, 3574 * unwiring will put the entries back in the pmap. 3575 */ 3576 if (entry->wired_count != 0) 3577 vm_map_entry_unwire(map, entry); 3578 3579 /* 3580 * Remove mappings for the pages, but only if the 3581 * mappings could exist. For instance, it does not 3582 * make sense to call pmap_remove() for guard entries. 3583 */ 3584 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3585 entry->object.vm_object != NULL) 3586 pmap_remove(map->pmap, entry->start, entry->end); 3587 3588 if (entry->end == map->anon_loc) 3589 map->anon_loc = entry->start; 3590 3591 /* 3592 * Delete the entry only after removing all pmap 3593 * entries pointing to its pages. (Otherwise, its 3594 * page frames may be reallocated, and any modify bits 3595 * will be set in the wrong object!) 3596 */ 3597 vm_map_entry_delete(map, entry); 3598 entry = next; 3599 } 3600 return (KERN_SUCCESS); 3601 } 3602 3603 /* 3604 * vm_map_remove: 3605 * 3606 * Remove the given address range from the target map. 3607 * This is the exported form of vm_map_delete. 3608 */ 3609 int 3610 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3611 { 3612 int result; 3613 3614 vm_map_lock(map); 3615 VM_MAP_RANGE_CHECK(map, start, end); 3616 result = vm_map_delete(map, start, end); 3617 vm_map_unlock(map); 3618 return (result); 3619 } 3620 3621 /* 3622 * vm_map_check_protection: 3623 * 3624 * Assert that the target map allows the specified privilege on the 3625 * entire address region given. The entire region must be allocated. 3626 * 3627 * WARNING! This code does not and should not check whether the 3628 * contents of the region is accessible. For example a smaller file 3629 * might be mapped into a larger address space. 3630 * 3631 * NOTE! This code is also called by munmap(). 3632 * 3633 * The map must be locked. A read lock is sufficient. 3634 */ 3635 boolean_t 3636 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3637 vm_prot_t protection) 3638 { 3639 vm_map_entry_t entry; 3640 vm_map_entry_t tmp_entry; 3641 3642 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3643 return (FALSE); 3644 entry = tmp_entry; 3645 3646 while (start < end) { 3647 /* 3648 * No holes allowed! 3649 */ 3650 if (start < entry->start) 3651 return (FALSE); 3652 /* 3653 * Check protection associated with entry. 3654 */ 3655 if ((entry->protection & protection) != protection) 3656 return (FALSE); 3657 /* go to next entry */ 3658 start = entry->end; 3659 entry = entry->next; 3660 } 3661 return (TRUE); 3662 } 3663 3664 /* 3665 * vm_map_copy_entry: 3666 * 3667 * Copies the contents of the source entry to the destination 3668 * entry. The entries *must* be aligned properly. 3669 */ 3670 static void 3671 vm_map_copy_entry( 3672 vm_map_t src_map, 3673 vm_map_t dst_map, 3674 vm_map_entry_t src_entry, 3675 vm_map_entry_t dst_entry, 3676 vm_ooffset_t *fork_charge) 3677 { 3678 vm_object_t src_object; 3679 vm_map_entry_t fake_entry; 3680 vm_offset_t size; 3681 struct ucred *cred; 3682 int charged; 3683 3684 VM_MAP_ASSERT_LOCKED(dst_map); 3685 3686 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3687 return; 3688 3689 if (src_entry->wired_count == 0 || 3690 (src_entry->protection & VM_PROT_WRITE) == 0) { 3691 /* 3692 * If the source entry is marked needs_copy, it is already 3693 * write-protected. 3694 */ 3695 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3696 (src_entry->protection & VM_PROT_WRITE) != 0) { 3697 pmap_protect(src_map->pmap, 3698 src_entry->start, 3699 src_entry->end, 3700 src_entry->protection & ~VM_PROT_WRITE); 3701 } 3702 3703 /* 3704 * Make a copy of the object. 3705 */ 3706 size = src_entry->end - src_entry->start; 3707 if ((src_object = src_entry->object.vm_object) != NULL) { 3708 VM_OBJECT_WLOCK(src_object); 3709 charged = ENTRY_CHARGED(src_entry); 3710 if (src_object->handle == NULL && 3711 (src_object->type == OBJT_DEFAULT || 3712 src_object->type == OBJT_SWAP)) { 3713 vm_object_collapse(src_object); 3714 if ((src_object->flags & (OBJ_NOSPLIT | 3715 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3716 vm_object_split(src_entry); 3717 src_object = 3718 src_entry->object.vm_object; 3719 } 3720 } 3721 vm_object_reference_locked(src_object); 3722 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3723 if (src_entry->cred != NULL && 3724 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3725 KASSERT(src_object->cred == NULL, 3726 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3727 src_object)); 3728 src_object->cred = src_entry->cred; 3729 src_object->charge = size; 3730 } 3731 VM_OBJECT_WUNLOCK(src_object); 3732 dst_entry->object.vm_object = src_object; 3733 if (charged) { 3734 cred = curthread->td_ucred; 3735 crhold(cred); 3736 dst_entry->cred = cred; 3737 *fork_charge += size; 3738 if (!(src_entry->eflags & 3739 MAP_ENTRY_NEEDS_COPY)) { 3740 crhold(cred); 3741 src_entry->cred = cred; 3742 *fork_charge += size; 3743 } 3744 } 3745 src_entry->eflags |= MAP_ENTRY_COW | 3746 MAP_ENTRY_NEEDS_COPY; 3747 dst_entry->eflags |= MAP_ENTRY_COW | 3748 MAP_ENTRY_NEEDS_COPY; 3749 dst_entry->offset = src_entry->offset; 3750 if (src_entry->eflags & MAP_ENTRY_WRITECNT) { 3751 /* 3752 * MAP_ENTRY_WRITECNT cannot 3753 * indicate write reference from 3754 * src_entry, since the entry is 3755 * marked as needs copy. Allocate a 3756 * fake entry that is used to 3757 * decrement object->un_pager writecount 3758 * at the appropriate time. Attach 3759 * fake_entry to the deferred list. 3760 */ 3761 fake_entry = vm_map_entry_create(dst_map); 3762 fake_entry->eflags = MAP_ENTRY_WRITECNT; 3763 src_entry->eflags &= ~MAP_ENTRY_WRITECNT; 3764 vm_object_reference(src_object); 3765 fake_entry->object.vm_object = src_object; 3766 fake_entry->start = src_entry->start; 3767 fake_entry->end = src_entry->end; 3768 fake_entry->next = curthread->td_map_def_user; 3769 curthread->td_map_def_user = fake_entry; 3770 } 3771 3772 pmap_copy(dst_map->pmap, src_map->pmap, 3773 dst_entry->start, dst_entry->end - dst_entry->start, 3774 src_entry->start); 3775 } else { 3776 dst_entry->object.vm_object = NULL; 3777 dst_entry->offset = 0; 3778 if (src_entry->cred != NULL) { 3779 dst_entry->cred = curthread->td_ucred; 3780 crhold(dst_entry->cred); 3781 *fork_charge += size; 3782 } 3783 } 3784 } else { 3785 /* 3786 * We don't want to make writeable wired pages copy-on-write. 3787 * Immediately copy these pages into the new map by simulating 3788 * page faults. The new pages are pageable. 3789 */ 3790 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3791 fork_charge); 3792 } 3793 } 3794 3795 /* 3796 * vmspace_map_entry_forked: 3797 * Update the newly-forked vmspace each time a map entry is inherited 3798 * or copied. The values for vm_dsize and vm_tsize are approximate 3799 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3800 */ 3801 static void 3802 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3803 vm_map_entry_t entry) 3804 { 3805 vm_size_t entrysize; 3806 vm_offset_t newend; 3807 3808 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 3809 return; 3810 entrysize = entry->end - entry->start; 3811 vm2->vm_map.size += entrysize; 3812 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3813 vm2->vm_ssize += btoc(entrysize); 3814 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3815 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3816 newend = MIN(entry->end, 3817 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3818 vm2->vm_dsize += btoc(newend - entry->start); 3819 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3820 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3821 newend = MIN(entry->end, 3822 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3823 vm2->vm_tsize += btoc(newend - entry->start); 3824 } 3825 } 3826 3827 /* 3828 * vmspace_fork: 3829 * Create a new process vmspace structure and vm_map 3830 * based on those of an existing process. The new map 3831 * is based on the old map, according to the inheritance 3832 * values on the regions in that map. 3833 * 3834 * XXX It might be worth coalescing the entries added to the new vmspace. 3835 * 3836 * The source map must not be locked. 3837 */ 3838 struct vmspace * 3839 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3840 { 3841 struct vmspace *vm2; 3842 vm_map_t new_map, old_map; 3843 vm_map_entry_t new_entry, old_entry; 3844 vm_object_t object; 3845 int error, locked; 3846 vm_inherit_t inh; 3847 3848 old_map = &vm1->vm_map; 3849 /* Copy immutable fields of vm1 to vm2. */ 3850 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 3851 pmap_pinit); 3852 if (vm2 == NULL) 3853 return (NULL); 3854 3855 vm2->vm_taddr = vm1->vm_taddr; 3856 vm2->vm_daddr = vm1->vm_daddr; 3857 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3858 vm_map_lock(old_map); 3859 if (old_map->busy) 3860 vm_map_wait_busy(old_map); 3861 new_map = &vm2->vm_map; 3862 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3863 KASSERT(locked, ("vmspace_fork: lock failed")); 3864 3865 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 3866 if (error != 0) { 3867 sx_xunlock(&old_map->lock); 3868 sx_xunlock(&new_map->lock); 3869 vm_map_process_deferred(); 3870 vmspace_free(vm2); 3871 return (NULL); 3872 } 3873 3874 new_map->anon_loc = old_map->anon_loc; 3875 3876 old_entry = old_map->header.next; 3877 3878 while (old_entry != &old_map->header) { 3879 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3880 panic("vm_map_fork: encountered a submap"); 3881 3882 inh = old_entry->inheritance; 3883 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 3884 inh != VM_INHERIT_NONE) 3885 inh = VM_INHERIT_COPY; 3886 3887 switch (inh) { 3888 case VM_INHERIT_NONE: 3889 break; 3890 3891 case VM_INHERIT_SHARE: 3892 /* 3893 * Clone the entry, creating the shared object if necessary. 3894 */ 3895 object = old_entry->object.vm_object; 3896 if (object == NULL) { 3897 vm_map_entry_back(old_entry); 3898 object = old_entry->object.vm_object; 3899 } 3900 3901 /* 3902 * Add the reference before calling vm_object_shadow 3903 * to insure that a shadow object is created. 3904 */ 3905 vm_object_reference(object); 3906 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3907 vm_object_shadow(&old_entry->object.vm_object, 3908 &old_entry->offset, 3909 old_entry->end - old_entry->start); 3910 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3911 /* Transfer the second reference too. */ 3912 vm_object_reference( 3913 old_entry->object.vm_object); 3914 3915 /* 3916 * As in vm_map_merged_neighbor_dispose(), 3917 * the vnode lock will not be acquired in 3918 * this call to vm_object_deallocate(). 3919 */ 3920 vm_object_deallocate(object); 3921 object = old_entry->object.vm_object; 3922 } 3923 VM_OBJECT_WLOCK(object); 3924 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3925 if (old_entry->cred != NULL) { 3926 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3927 object->cred = old_entry->cred; 3928 object->charge = old_entry->end - old_entry->start; 3929 old_entry->cred = NULL; 3930 } 3931 3932 /* 3933 * Assert the correct state of the vnode 3934 * v_writecount while the object is locked, to 3935 * not relock it later for the assertion 3936 * correctness. 3937 */ 3938 if (old_entry->eflags & MAP_ENTRY_WRITECNT && 3939 object->type == OBJT_VNODE) { 3940 KASSERT(((struct vnode *)object->handle)-> 3941 v_writecount > 0, 3942 ("vmspace_fork: v_writecount %p", object)); 3943 KASSERT(object->un_pager.vnp.writemappings > 0, 3944 ("vmspace_fork: vnp.writecount %p", 3945 object)); 3946 } 3947 VM_OBJECT_WUNLOCK(object); 3948 3949 /* 3950 * Clone the entry, referencing the shared object. 3951 */ 3952 new_entry = vm_map_entry_create(new_map); 3953 *new_entry = *old_entry; 3954 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3955 MAP_ENTRY_IN_TRANSITION); 3956 new_entry->wiring_thread = NULL; 3957 new_entry->wired_count = 0; 3958 if (new_entry->eflags & MAP_ENTRY_WRITECNT) { 3959 vm_pager_update_writecount(object, 3960 new_entry->start, new_entry->end); 3961 } 3962 vm_map_entry_set_vnode_text(new_entry, true); 3963 3964 /* 3965 * Insert the entry into the new map -- we know we're 3966 * inserting at the end of the new map. 3967 */ 3968 vm_map_entry_link(new_map, new_entry); 3969 vmspace_map_entry_forked(vm1, vm2, new_entry); 3970 3971 /* 3972 * Update the physical map 3973 */ 3974 pmap_copy(new_map->pmap, old_map->pmap, 3975 new_entry->start, 3976 (old_entry->end - old_entry->start), 3977 old_entry->start); 3978 break; 3979 3980 case VM_INHERIT_COPY: 3981 /* 3982 * Clone the entry and link into the map. 3983 */ 3984 new_entry = vm_map_entry_create(new_map); 3985 *new_entry = *old_entry; 3986 /* 3987 * Copied entry is COW over the old object. 3988 */ 3989 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3990 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT); 3991 new_entry->wiring_thread = NULL; 3992 new_entry->wired_count = 0; 3993 new_entry->object.vm_object = NULL; 3994 new_entry->cred = NULL; 3995 vm_map_entry_link(new_map, new_entry); 3996 vmspace_map_entry_forked(vm1, vm2, new_entry); 3997 vm_map_copy_entry(old_map, new_map, old_entry, 3998 new_entry, fork_charge); 3999 vm_map_entry_set_vnode_text(new_entry, true); 4000 break; 4001 4002 case VM_INHERIT_ZERO: 4003 /* 4004 * Create a new anonymous mapping entry modelled from 4005 * the old one. 4006 */ 4007 new_entry = vm_map_entry_create(new_map); 4008 memset(new_entry, 0, sizeof(*new_entry)); 4009 4010 new_entry->start = old_entry->start; 4011 new_entry->end = old_entry->end; 4012 new_entry->eflags = old_entry->eflags & 4013 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4014 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC); 4015 new_entry->protection = old_entry->protection; 4016 new_entry->max_protection = old_entry->max_protection; 4017 new_entry->inheritance = VM_INHERIT_ZERO; 4018 4019 vm_map_entry_link(new_map, new_entry); 4020 vmspace_map_entry_forked(vm1, vm2, new_entry); 4021 4022 new_entry->cred = curthread->td_ucred; 4023 crhold(new_entry->cred); 4024 *fork_charge += (new_entry->end - new_entry->start); 4025 4026 break; 4027 } 4028 old_entry = old_entry->next; 4029 } 4030 /* 4031 * Use inlined vm_map_unlock() to postpone handling the deferred 4032 * map entries, which cannot be done until both old_map and 4033 * new_map locks are released. 4034 */ 4035 sx_xunlock(&old_map->lock); 4036 sx_xunlock(&new_map->lock); 4037 vm_map_process_deferred(); 4038 4039 return (vm2); 4040 } 4041 4042 /* 4043 * Create a process's stack for exec_new_vmspace(). This function is never 4044 * asked to wire the newly created stack. 4045 */ 4046 int 4047 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4048 vm_prot_t prot, vm_prot_t max, int cow) 4049 { 4050 vm_size_t growsize, init_ssize; 4051 rlim_t vmemlim; 4052 int rv; 4053 4054 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4055 growsize = sgrowsiz; 4056 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4057 vm_map_lock(map); 4058 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4059 /* If we would blow our VMEM resource limit, no go */ 4060 if (map->size + init_ssize > vmemlim) { 4061 rv = KERN_NO_SPACE; 4062 goto out; 4063 } 4064 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4065 max, cow); 4066 out: 4067 vm_map_unlock(map); 4068 return (rv); 4069 } 4070 4071 static int stack_guard_page = 1; 4072 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4073 &stack_guard_page, 0, 4074 "Specifies the number of guard pages for a stack that grows"); 4075 4076 static int 4077 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4078 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4079 { 4080 vm_map_entry_t new_entry, prev_entry; 4081 vm_offset_t bot, gap_bot, gap_top, top; 4082 vm_size_t init_ssize, sgp; 4083 int orient, rv; 4084 4085 /* 4086 * The stack orientation is piggybacked with the cow argument. 4087 * Extract it into orient and mask the cow argument so that we 4088 * don't pass it around further. 4089 */ 4090 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4091 KASSERT(orient != 0, ("No stack grow direction")); 4092 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4093 ("bi-dir stack")); 4094 4095 if (addrbos < vm_map_min(map) || 4096 addrbos + max_ssize > vm_map_max(map) || 4097 addrbos + max_ssize <= addrbos) 4098 return (KERN_INVALID_ADDRESS); 4099 sgp = (curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ? 0 : 4100 (vm_size_t)stack_guard_page * PAGE_SIZE; 4101 if (sgp >= max_ssize) 4102 return (KERN_INVALID_ARGUMENT); 4103 4104 init_ssize = growsize; 4105 if (max_ssize < init_ssize + sgp) 4106 init_ssize = max_ssize - sgp; 4107 4108 /* If addr is already mapped, no go */ 4109 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4110 return (KERN_NO_SPACE); 4111 4112 /* 4113 * If we can't accommodate max_ssize in the current mapping, no go. 4114 */ 4115 if (prev_entry->next->start < addrbos + max_ssize) 4116 return (KERN_NO_SPACE); 4117 4118 /* 4119 * We initially map a stack of only init_ssize. We will grow as 4120 * needed later. Depending on the orientation of the stack (i.e. 4121 * the grow direction) we either map at the top of the range, the 4122 * bottom of the range or in the middle. 4123 * 4124 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4125 * and cow to be 0. Possibly we should eliminate these as input 4126 * parameters, and just pass these values here in the insert call. 4127 */ 4128 if (orient == MAP_STACK_GROWS_DOWN) { 4129 bot = addrbos + max_ssize - init_ssize; 4130 top = bot + init_ssize; 4131 gap_bot = addrbos; 4132 gap_top = bot; 4133 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4134 bot = addrbos; 4135 top = bot + init_ssize; 4136 gap_bot = top; 4137 gap_top = addrbos + max_ssize; 4138 } 4139 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 4140 if (rv != KERN_SUCCESS) 4141 return (rv); 4142 new_entry = prev_entry->next; 4143 KASSERT(new_entry->end == top || new_entry->start == bot, 4144 ("Bad entry start/end for new stack entry")); 4145 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4146 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4147 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4148 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4149 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4150 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4151 if (gap_bot == gap_top) 4152 return (KERN_SUCCESS); 4153 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4154 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4155 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 4156 if (rv == KERN_SUCCESS) { 4157 /* 4158 * Gap can never successfully handle a fault, so 4159 * read-ahead logic is never used for it. Re-use 4160 * next_read of the gap entry to store 4161 * stack_guard_page for vm_map_growstack(). 4162 */ 4163 if (orient == MAP_STACK_GROWS_DOWN) 4164 new_entry->prev->next_read = sgp; 4165 else 4166 new_entry->next->next_read = sgp; 4167 } else { 4168 (void)vm_map_delete(map, bot, top); 4169 } 4170 return (rv); 4171 } 4172 4173 /* 4174 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4175 * successfully grow the stack. 4176 */ 4177 static int 4178 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4179 { 4180 vm_map_entry_t stack_entry; 4181 struct proc *p; 4182 struct vmspace *vm; 4183 struct ucred *cred; 4184 vm_offset_t gap_end, gap_start, grow_start; 4185 vm_size_t grow_amount, guard, max_grow; 4186 rlim_t lmemlim, stacklim, vmemlim; 4187 int rv, rv1; 4188 bool gap_deleted, grow_down, is_procstack; 4189 #ifdef notyet 4190 uint64_t limit; 4191 #endif 4192 #ifdef RACCT 4193 int error; 4194 #endif 4195 4196 p = curproc; 4197 vm = p->p_vmspace; 4198 4199 /* 4200 * Disallow stack growth when the access is performed by a 4201 * debugger or AIO daemon. The reason is that the wrong 4202 * resource limits are applied. 4203 */ 4204 if (p != initproc && (map != &p->p_vmspace->vm_map || 4205 p->p_textvp == NULL)) 4206 return (KERN_FAILURE); 4207 4208 MPASS(!map->system_map); 4209 4210 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4211 stacklim = lim_cur(curthread, RLIMIT_STACK); 4212 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4213 retry: 4214 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4215 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4216 return (KERN_FAILURE); 4217 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4218 return (KERN_SUCCESS); 4219 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4220 stack_entry = gap_entry->next; 4221 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4222 stack_entry->start != gap_entry->end) 4223 return (KERN_FAILURE); 4224 grow_amount = round_page(stack_entry->start - addr); 4225 grow_down = true; 4226 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4227 stack_entry = gap_entry->prev; 4228 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4229 stack_entry->end != gap_entry->start) 4230 return (KERN_FAILURE); 4231 grow_amount = round_page(addr + 1 - stack_entry->end); 4232 grow_down = false; 4233 } else { 4234 return (KERN_FAILURE); 4235 } 4236 guard = (curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ? 0 : 4237 gap_entry->next_read; 4238 max_grow = gap_entry->end - gap_entry->start; 4239 if (guard > max_grow) 4240 return (KERN_NO_SPACE); 4241 max_grow -= guard; 4242 if (grow_amount > max_grow) 4243 return (KERN_NO_SPACE); 4244 4245 /* 4246 * If this is the main process stack, see if we're over the stack 4247 * limit. 4248 */ 4249 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4250 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 4251 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4252 return (KERN_NO_SPACE); 4253 4254 #ifdef RACCT 4255 if (racct_enable) { 4256 PROC_LOCK(p); 4257 if (is_procstack && racct_set(p, RACCT_STACK, 4258 ctob(vm->vm_ssize) + grow_amount)) { 4259 PROC_UNLOCK(p); 4260 return (KERN_NO_SPACE); 4261 } 4262 PROC_UNLOCK(p); 4263 } 4264 #endif 4265 4266 grow_amount = roundup(grow_amount, sgrowsiz); 4267 if (grow_amount > max_grow) 4268 grow_amount = max_grow; 4269 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4270 grow_amount = trunc_page((vm_size_t)stacklim) - 4271 ctob(vm->vm_ssize); 4272 } 4273 4274 #ifdef notyet 4275 PROC_LOCK(p); 4276 limit = racct_get_available(p, RACCT_STACK); 4277 PROC_UNLOCK(p); 4278 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4279 grow_amount = limit - ctob(vm->vm_ssize); 4280 #endif 4281 4282 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4283 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4284 rv = KERN_NO_SPACE; 4285 goto out; 4286 } 4287 #ifdef RACCT 4288 if (racct_enable) { 4289 PROC_LOCK(p); 4290 if (racct_set(p, RACCT_MEMLOCK, 4291 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4292 PROC_UNLOCK(p); 4293 rv = KERN_NO_SPACE; 4294 goto out; 4295 } 4296 PROC_UNLOCK(p); 4297 } 4298 #endif 4299 } 4300 4301 /* If we would blow our VMEM resource limit, no go */ 4302 if (map->size + grow_amount > vmemlim) { 4303 rv = KERN_NO_SPACE; 4304 goto out; 4305 } 4306 #ifdef RACCT 4307 if (racct_enable) { 4308 PROC_LOCK(p); 4309 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4310 PROC_UNLOCK(p); 4311 rv = KERN_NO_SPACE; 4312 goto out; 4313 } 4314 PROC_UNLOCK(p); 4315 } 4316 #endif 4317 4318 if (vm_map_lock_upgrade(map)) { 4319 gap_entry = NULL; 4320 vm_map_lock_read(map); 4321 goto retry; 4322 } 4323 4324 if (grow_down) { 4325 grow_start = gap_entry->end - grow_amount; 4326 if (gap_entry->start + grow_amount == gap_entry->end) { 4327 gap_start = gap_entry->start; 4328 gap_end = gap_entry->end; 4329 vm_map_entry_delete(map, gap_entry); 4330 gap_deleted = true; 4331 } else { 4332 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4333 vm_map_entry_resize(map, gap_entry, -grow_amount); 4334 gap_deleted = false; 4335 } 4336 rv = vm_map_insert(map, NULL, 0, grow_start, 4337 grow_start + grow_amount, 4338 stack_entry->protection, stack_entry->max_protection, 4339 MAP_STACK_GROWS_DOWN); 4340 if (rv != KERN_SUCCESS) { 4341 if (gap_deleted) { 4342 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4343 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4344 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4345 MPASS(rv1 == KERN_SUCCESS); 4346 } else 4347 vm_map_entry_resize(map, gap_entry, 4348 grow_amount); 4349 } 4350 } else { 4351 grow_start = stack_entry->end; 4352 cred = stack_entry->cred; 4353 if (cred == NULL && stack_entry->object.vm_object != NULL) 4354 cred = stack_entry->object.vm_object->cred; 4355 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4356 rv = KERN_NO_SPACE; 4357 /* Grow the underlying object if applicable. */ 4358 else if (stack_entry->object.vm_object == NULL || 4359 vm_object_coalesce(stack_entry->object.vm_object, 4360 stack_entry->offset, 4361 (vm_size_t)(stack_entry->end - stack_entry->start), 4362 grow_amount, cred != NULL)) { 4363 if (gap_entry->start + grow_amount == gap_entry->end) { 4364 vm_map_entry_delete(map, gap_entry); 4365 vm_map_entry_resize(map, stack_entry, 4366 grow_amount); 4367 } else { 4368 gap_entry->start += grow_amount; 4369 stack_entry->end += grow_amount; 4370 } 4371 map->size += grow_amount; 4372 rv = KERN_SUCCESS; 4373 } else 4374 rv = KERN_FAILURE; 4375 } 4376 if (rv == KERN_SUCCESS && is_procstack) 4377 vm->vm_ssize += btoc(grow_amount); 4378 4379 /* 4380 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4381 */ 4382 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4383 rv = vm_map_wire_locked(map, grow_start, 4384 grow_start + grow_amount, 4385 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4386 } 4387 vm_map_lock_downgrade(map); 4388 4389 out: 4390 #ifdef RACCT 4391 if (racct_enable && rv != KERN_SUCCESS) { 4392 PROC_LOCK(p); 4393 error = racct_set(p, RACCT_VMEM, map->size); 4394 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4395 if (!old_mlock) { 4396 error = racct_set(p, RACCT_MEMLOCK, 4397 ptoa(pmap_wired_count(map->pmap))); 4398 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4399 } 4400 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4401 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4402 PROC_UNLOCK(p); 4403 } 4404 #endif 4405 4406 return (rv); 4407 } 4408 4409 /* 4410 * Unshare the specified VM space for exec. If other processes are 4411 * mapped to it, then create a new one. The new vmspace is null. 4412 */ 4413 int 4414 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4415 { 4416 struct vmspace *oldvmspace = p->p_vmspace; 4417 struct vmspace *newvmspace; 4418 4419 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4420 ("vmspace_exec recursed")); 4421 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4422 if (newvmspace == NULL) 4423 return (ENOMEM); 4424 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4425 /* 4426 * This code is written like this for prototype purposes. The 4427 * goal is to avoid running down the vmspace here, but let the 4428 * other process's that are still using the vmspace to finally 4429 * run it down. Even though there is little or no chance of blocking 4430 * here, it is a good idea to keep this form for future mods. 4431 */ 4432 PROC_VMSPACE_LOCK(p); 4433 p->p_vmspace = newvmspace; 4434 PROC_VMSPACE_UNLOCK(p); 4435 if (p == curthread->td_proc) 4436 pmap_activate(curthread); 4437 curthread->td_pflags |= TDP_EXECVMSPC; 4438 return (0); 4439 } 4440 4441 /* 4442 * Unshare the specified VM space for forcing COW. This 4443 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4444 */ 4445 int 4446 vmspace_unshare(struct proc *p) 4447 { 4448 struct vmspace *oldvmspace = p->p_vmspace; 4449 struct vmspace *newvmspace; 4450 vm_ooffset_t fork_charge; 4451 4452 if (oldvmspace->vm_refcnt == 1) 4453 return (0); 4454 fork_charge = 0; 4455 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4456 if (newvmspace == NULL) 4457 return (ENOMEM); 4458 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4459 vmspace_free(newvmspace); 4460 return (ENOMEM); 4461 } 4462 PROC_VMSPACE_LOCK(p); 4463 p->p_vmspace = newvmspace; 4464 PROC_VMSPACE_UNLOCK(p); 4465 if (p == curthread->td_proc) 4466 pmap_activate(curthread); 4467 vmspace_free(oldvmspace); 4468 return (0); 4469 } 4470 4471 /* 4472 * vm_map_lookup: 4473 * 4474 * Finds the VM object, offset, and 4475 * protection for a given virtual address in the 4476 * specified map, assuming a page fault of the 4477 * type specified. 4478 * 4479 * Leaves the map in question locked for read; return 4480 * values are guaranteed until a vm_map_lookup_done 4481 * call is performed. Note that the map argument 4482 * is in/out; the returned map must be used in 4483 * the call to vm_map_lookup_done. 4484 * 4485 * A handle (out_entry) is returned for use in 4486 * vm_map_lookup_done, to make that fast. 4487 * 4488 * If a lookup is requested with "write protection" 4489 * specified, the map may be changed to perform virtual 4490 * copying operations, although the data referenced will 4491 * remain the same. 4492 */ 4493 int 4494 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4495 vm_offset_t vaddr, 4496 vm_prot_t fault_typea, 4497 vm_map_entry_t *out_entry, /* OUT */ 4498 vm_object_t *object, /* OUT */ 4499 vm_pindex_t *pindex, /* OUT */ 4500 vm_prot_t *out_prot, /* OUT */ 4501 boolean_t *wired) /* OUT */ 4502 { 4503 vm_map_entry_t entry; 4504 vm_map_t map = *var_map; 4505 vm_prot_t prot; 4506 vm_prot_t fault_type = fault_typea; 4507 vm_object_t eobject; 4508 vm_size_t size; 4509 struct ucred *cred; 4510 4511 RetryLookup: 4512 4513 vm_map_lock_read(map); 4514 4515 RetryLookupLocked: 4516 /* 4517 * Lookup the faulting address. 4518 */ 4519 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4520 vm_map_unlock_read(map); 4521 return (KERN_INVALID_ADDRESS); 4522 } 4523 4524 entry = *out_entry; 4525 4526 /* 4527 * Handle submaps. 4528 */ 4529 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4530 vm_map_t old_map = map; 4531 4532 *var_map = map = entry->object.sub_map; 4533 vm_map_unlock_read(old_map); 4534 goto RetryLookup; 4535 } 4536 4537 /* 4538 * Check whether this task is allowed to have this page. 4539 */ 4540 prot = entry->protection; 4541 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4542 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4543 if (prot == VM_PROT_NONE && map != kernel_map && 4544 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4545 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4546 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4547 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4548 goto RetryLookupLocked; 4549 } 4550 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4551 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4552 vm_map_unlock_read(map); 4553 return (KERN_PROTECTION_FAILURE); 4554 } 4555 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4556 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4557 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4558 ("entry %p flags %x", entry, entry->eflags)); 4559 if ((fault_typea & VM_PROT_COPY) != 0 && 4560 (entry->max_protection & VM_PROT_WRITE) == 0 && 4561 (entry->eflags & MAP_ENTRY_COW) == 0) { 4562 vm_map_unlock_read(map); 4563 return (KERN_PROTECTION_FAILURE); 4564 } 4565 4566 /* 4567 * If this page is not pageable, we have to get it for all possible 4568 * accesses. 4569 */ 4570 *wired = (entry->wired_count != 0); 4571 if (*wired) 4572 fault_type = entry->protection; 4573 size = entry->end - entry->start; 4574 /* 4575 * If the entry was copy-on-write, we either ... 4576 */ 4577 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4578 /* 4579 * If we want to write the page, we may as well handle that 4580 * now since we've got the map locked. 4581 * 4582 * If we don't need to write the page, we just demote the 4583 * permissions allowed. 4584 */ 4585 if ((fault_type & VM_PROT_WRITE) != 0 || 4586 (fault_typea & VM_PROT_COPY) != 0) { 4587 /* 4588 * Make a new object, and place it in the object 4589 * chain. Note that no new references have appeared 4590 * -- one just moved from the map to the new 4591 * object. 4592 */ 4593 if (vm_map_lock_upgrade(map)) 4594 goto RetryLookup; 4595 4596 if (entry->cred == NULL) { 4597 /* 4598 * The debugger owner is charged for 4599 * the memory. 4600 */ 4601 cred = curthread->td_ucred; 4602 crhold(cred); 4603 if (!swap_reserve_by_cred(size, cred)) { 4604 crfree(cred); 4605 vm_map_unlock(map); 4606 return (KERN_RESOURCE_SHORTAGE); 4607 } 4608 entry->cred = cred; 4609 } 4610 vm_object_shadow(&entry->object.vm_object, 4611 &entry->offset, size); 4612 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4613 eobject = entry->object.vm_object; 4614 if (eobject->cred != NULL) { 4615 /* 4616 * The object was not shadowed. 4617 */ 4618 swap_release_by_cred(size, entry->cred); 4619 crfree(entry->cred); 4620 entry->cred = NULL; 4621 } else if (entry->cred != NULL) { 4622 VM_OBJECT_WLOCK(eobject); 4623 eobject->cred = entry->cred; 4624 eobject->charge = size; 4625 VM_OBJECT_WUNLOCK(eobject); 4626 entry->cred = NULL; 4627 } 4628 4629 vm_map_lock_downgrade(map); 4630 } else { 4631 /* 4632 * We're attempting to read a copy-on-write page -- 4633 * don't allow writes. 4634 */ 4635 prot &= ~VM_PROT_WRITE; 4636 } 4637 } 4638 4639 /* 4640 * Create an object if necessary. 4641 */ 4642 if (entry->object.vm_object == NULL && 4643 !map->system_map) { 4644 if (vm_map_lock_upgrade(map)) 4645 goto RetryLookup; 4646 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4647 atop(size)); 4648 entry->offset = 0; 4649 if (entry->cred != NULL) { 4650 VM_OBJECT_WLOCK(entry->object.vm_object); 4651 entry->object.vm_object->cred = entry->cred; 4652 entry->object.vm_object->charge = size; 4653 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4654 entry->cred = NULL; 4655 } 4656 vm_map_lock_downgrade(map); 4657 } 4658 4659 /* 4660 * Return the object/offset from this entry. If the entry was 4661 * copy-on-write or empty, it has been fixed up. 4662 */ 4663 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4664 *object = entry->object.vm_object; 4665 4666 *out_prot = prot; 4667 return (KERN_SUCCESS); 4668 } 4669 4670 /* 4671 * vm_map_lookup_locked: 4672 * 4673 * Lookup the faulting address. A version of vm_map_lookup that returns 4674 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4675 */ 4676 int 4677 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4678 vm_offset_t vaddr, 4679 vm_prot_t fault_typea, 4680 vm_map_entry_t *out_entry, /* OUT */ 4681 vm_object_t *object, /* OUT */ 4682 vm_pindex_t *pindex, /* OUT */ 4683 vm_prot_t *out_prot, /* OUT */ 4684 boolean_t *wired) /* OUT */ 4685 { 4686 vm_map_entry_t entry; 4687 vm_map_t map = *var_map; 4688 vm_prot_t prot; 4689 vm_prot_t fault_type = fault_typea; 4690 4691 /* 4692 * Lookup the faulting address. 4693 */ 4694 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4695 return (KERN_INVALID_ADDRESS); 4696 4697 entry = *out_entry; 4698 4699 /* 4700 * Fail if the entry refers to a submap. 4701 */ 4702 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4703 return (KERN_FAILURE); 4704 4705 /* 4706 * Check whether this task is allowed to have this page. 4707 */ 4708 prot = entry->protection; 4709 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4710 if ((fault_type & prot) != fault_type) 4711 return (KERN_PROTECTION_FAILURE); 4712 4713 /* 4714 * If this page is not pageable, we have to get it for all possible 4715 * accesses. 4716 */ 4717 *wired = (entry->wired_count != 0); 4718 if (*wired) 4719 fault_type = entry->protection; 4720 4721 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4722 /* 4723 * Fail if the entry was copy-on-write for a write fault. 4724 */ 4725 if (fault_type & VM_PROT_WRITE) 4726 return (KERN_FAILURE); 4727 /* 4728 * We're attempting to read a copy-on-write page -- 4729 * don't allow writes. 4730 */ 4731 prot &= ~VM_PROT_WRITE; 4732 } 4733 4734 /* 4735 * Fail if an object should be created. 4736 */ 4737 if (entry->object.vm_object == NULL && !map->system_map) 4738 return (KERN_FAILURE); 4739 4740 /* 4741 * Return the object/offset from this entry. If the entry was 4742 * copy-on-write or empty, it has been fixed up. 4743 */ 4744 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4745 *object = entry->object.vm_object; 4746 4747 *out_prot = prot; 4748 return (KERN_SUCCESS); 4749 } 4750 4751 /* 4752 * vm_map_lookup_done: 4753 * 4754 * Releases locks acquired by a vm_map_lookup 4755 * (according to the handle returned by that lookup). 4756 */ 4757 void 4758 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4759 { 4760 /* 4761 * Unlock the main-level map 4762 */ 4763 vm_map_unlock_read(map); 4764 } 4765 4766 vm_offset_t 4767 vm_map_max_KBI(const struct vm_map *map) 4768 { 4769 4770 return (vm_map_max(map)); 4771 } 4772 4773 vm_offset_t 4774 vm_map_min_KBI(const struct vm_map *map) 4775 { 4776 4777 return (vm_map_min(map)); 4778 } 4779 4780 pmap_t 4781 vm_map_pmap_KBI(vm_map_t map) 4782 { 4783 4784 return (map->pmap); 4785 } 4786 4787 #ifdef INVARIANTS 4788 static void 4789 _vm_map_assert_consistent(vm_map_t map) 4790 { 4791 vm_map_entry_t entry, prev; 4792 vm_size_t max_left, max_right; 4793 4794 if (!enable_vmmap_check) 4795 return; 4796 4797 prev = &map->header; 4798 VM_MAP_ENTRY_FOREACH(entry, map) { 4799 KASSERT(prev->end <= entry->start, 4800 ("map %p prev->end = %jx, start = %jx", map, 4801 (uintmax_t)prev->end, (uintmax_t)entry->start)); 4802 KASSERT(entry->start < entry->end, 4803 ("map %p start = %jx, end = %jx", map, 4804 (uintmax_t)entry->start, (uintmax_t)entry->end)); 4805 KASSERT(entry->end <= entry->next->start, 4806 ("map %p end = %jx, next->start = %jx", map, 4807 (uintmax_t)entry->end, (uintmax_t)entry->next->start)); 4808 KASSERT(entry->left == NULL || 4809 entry->left->start < entry->start, 4810 ("map %p left->start = %jx, start = %jx", map, 4811 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 4812 KASSERT(entry->right == NULL || 4813 entry->start < entry->right->start, 4814 ("map %p start = %jx, right->start = %jx", map, 4815 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 4816 max_left = vm_map_entry_max_free_left(entry, entry->prev); 4817 max_right = vm_map_entry_max_free_right(entry, entry->next); 4818 KASSERT(entry->max_free == MAX(max_left, max_right), 4819 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 4820 (uintmax_t)entry->max_free, 4821 (uintmax_t)max_left, (uintmax_t)max_right)); 4822 prev = entry; 4823 } 4824 KASSERT(prev->end <= entry->start, 4825 ("map %p prev->end = %jx, start = %jx", map, 4826 (uintmax_t)prev->end, (uintmax_t)entry->start)); 4827 } 4828 #endif 4829 4830 #include "opt_ddb.h" 4831 #ifdef DDB 4832 #include <sys/kernel.h> 4833 4834 #include <ddb/ddb.h> 4835 4836 static void 4837 vm_map_print(vm_map_t map) 4838 { 4839 vm_map_entry_t entry, prev; 4840 4841 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4842 (void *)map, 4843 (void *)map->pmap, map->nentries, map->timestamp); 4844 4845 db_indent += 2; 4846 prev = &map->header; 4847 VM_MAP_ENTRY_FOREACH(entry, map) { 4848 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 4849 (void *)entry, (void *)entry->start, (void *)entry->end, 4850 entry->eflags); 4851 { 4852 static char *inheritance_name[4] = 4853 {"share", "copy", "none", "donate_copy"}; 4854 4855 db_iprintf(" prot=%x/%x/%s", 4856 entry->protection, 4857 entry->max_protection, 4858 inheritance_name[(int)(unsigned char) 4859 entry->inheritance]); 4860 if (entry->wired_count != 0) 4861 db_printf(", wired"); 4862 } 4863 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4864 db_printf(", share=%p, offset=0x%jx\n", 4865 (void *)entry->object.sub_map, 4866 (uintmax_t)entry->offset); 4867 if (prev == &map->header || 4868 prev->object.sub_map != 4869 entry->object.sub_map) { 4870 db_indent += 2; 4871 vm_map_print((vm_map_t)entry->object.sub_map); 4872 db_indent -= 2; 4873 } 4874 } else { 4875 if (entry->cred != NULL) 4876 db_printf(", ruid %d", entry->cred->cr_ruid); 4877 db_printf(", object=%p, offset=0x%jx", 4878 (void *)entry->object.vm_object, 4879 (uintmax_t)entry->offset); 4880 if (entry->object.vm_object && entry->object.vm_object->cred) 4881 db_printf(", obj ruid %d charge %jx", 4882 entry->object.vm_object->cred->cr_ruid, 4883 (uintmax_t)entry->object.vm_object->charge); 4884 if (entry->eflags & MAP_ENTRY_COW) 4885 db_printf(", copy (%s)", 4886 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4887 db_printf("\n"); 4888 4889 if (prev == &map->header || 4890 prev->object.vm_object != 4891 entry->object.vm_object) { 4892 db_indent += 2; 4893 vm_object_print((db_expr_t)(intptr_t) 4894 entry->object.vm_object, 4895 0, 0, (char *)0); 4896 db_indent -= 2; 4897 } 4898 } 4899 prev = entry; 4900 } 4901 db_indent -= 2; 4902 } 4903 4904 DB_SHOW_COMMAND(map, map) 4905 { 4906 4907 if (!have_addr) { 4908 db_printf("usage: show map <addr>\n"); 4909 return; 4910 } 4911 vm_map_print((vm_map_t)addr); 4912 } 4913 4914 DB_SHOW_COMMAND(procvm, procvm) 4915 { 4916 struct proc *p; 4917 4918 if (have_addr) { 4919 p = db_lookup_proc(addr); 4920 } else { 4921 p = curproc; 4922 } 4923 4924 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4925 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4926 (void *)vmspace_pmap(p->p_vmspace)); 4927 4928 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4929 } 4930 4931 #endif /* DDB */ 4932