xref: /freebsd/sys/vm/vm_map.c (revision e9b148a3185f41e3a09e91ea75cae7828d908845)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vnode_pager.h>
99 #include <vm/swap_pager.h>
100 #include <vm/uma.h>
101 
102 /*
103  *	Virtual memory maps provide for the mapping, protection,
104  *	and sharing of virtual memory objects.  In addition,
105  *	this module provides for an efficient virtual copy of
106  *	memory from one map to another.
107  *
108  *	Synchronization is required prior to most operations.
109  *
110  *	Maps consist of an ordered doubly-linked list of simple
111  *	entries; a self-adjusting binary search tree of these
112  *	entries is used to speed up lookups.
113  *
114  *	Since portions of maps are specified by start/end addresses,
115  *	which may not align with existing map entries, all
116  *	routines merely "clip" entries to these start/end values.
117  *	[That is, an entry is split into two, bordering at a
118  *	start or end value.]  Note that these clippings may not
119  *	always be necessary (as the two resulting entries are then
120  *	not changed); however, the clipping is done for convenience.
121  *
122  *	As mentioned above, virtual copy operations are performed
123  *	by copying VM object references from one map to
124  *	another, and then marking both regions as copy-on-write.
125  */
126 
127 static struct mtx map_sleep_mtx;
128 static uma_zone_t mapentzone;
129 static uma_zone_t kmapentzone;
130 static uma_zone_t mapzone;
131 static uma_zone_t vmspace_zone;
132 static int vmspace_zinit(void *mem, int size, int flags);
133 static int vm_map_zinit(void *mem, int ize, int flags);
134 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
135     vm_offset_t max);
136 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
137 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
138 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
139 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
140     vm_map_entry_t gap_entry);
141 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
142     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
143 #ifdef INVARIANTS
144 static void vm_map_zdtor(void *mem, int size, void *arg);
145 static void vmspace_zdtor(void *mem, int size, void *arg);
146 #endif
147 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
148     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
149     int cow);
150 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
151     vm_offset_t failed_addr);
152 
153 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
154     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
155      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
156 
157 /*
158  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
159  * stable.
160  */
161 #define PROC_VMSPACE_LOCK(p) do { } while (0)
162 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
163 
164 /*
165  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
166  *
167  *	Asserts that the starting and ending region
168  *	addresses fall within the valid range of the map.
169  */
170 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
171 		{					\
172 		if (start < vm_map_min(map))		\
173 			start = vm_map_min(map);	\
174 		if (end > vm_map_max(map))		\
175 			end = vm_map_max(map);		\
176 		if (start > end)			\
177 			start = end;			\
178 		}
179 
180 /*
181  *	vm_map_startup:
182  *
183  *	Initialize the vm_map module.  Must be called before
184  *	any other vm_map routines.
185  *
186  *	Map and entry structures are allocated from the general
187  *	purpose memory pool with some exceptions:
188  *
189  *	- The kernel map and kmem submap are allocated statically.
190  *	- Kernel map entries are allocated out of a static pool.
191  *
192  *	These restrictions are necessary since malloc() uses the
193  *	maps and requires map entries.
194  */
195 
196 void
197 vm_map_startup(void)
198 {
199 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
200 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
201 #ifdef INVARIANTS
202 	    vm_map_zdtor,
203 #else
204 	    NULL,
205 #endif
206 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
207 	uma_prealloc(mapzone, MAX_KMAP);
208 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
209 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
210 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
211 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
212 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
213 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
214 #ifdef INVARIANTS
215 	    vmspace_zdtor,
216 #else
217 	    NULL,
218 #endif
219 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
220 }
221 
222 static int
223 vmspace_zinit(void *mem, int size, int flags)
224 {
225 	struct vmspace *vm;
226 
227 	vm = (struct vmspace *)mem;
228 
229 	vm->vm_map.pmap = NULL;
230 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
231 	PMAP_LOCK_INIT(vmspace_pmap(vm));
232 	return (0);
233 }
234 
235 static int
236 vm_map_zinit(void *mem, int size, int flags)
237 {
238 	vm_map_t map;
239 
240 	map = (vm_map_t)mem;
241 	memset(map, 0, sizeof(*map));
242 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
243 	sx_init(&map->lock, "vm map (user)");
244 	return (0);
245 }
246 
247 #ifdef INVARIANTS
248 static void
249 vmspace_zdtor(void *mem, int size, void *arg)
250 {
251 	struct vmspace *vm;
252 
253 	vm = (struct vmspace *)mem;
254 
255 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
256 }
257 static void
258 vm_map_zdtor(void *mem, int size, void *arg)
259 {
260 	vm_map_t map;
261 
262 	map = (vm_map_t)mem;
263 	KASSERT(map->nentries == 0,
264 	    ("map %p nentries == %d on free.",
265 	    map, map->nentries));
266 	KASSERT(map->size == 0,
267 	    ("map %p size == %lu on free.",
268 	    map, (unsigned long)map->size));
269 }
270 #endif	/* INVARIANTS */
271 
272 /*
273  * Allocate a vmspace structure, including a vm_map and pmap,
274  * and initialize those structures.  The refcnt is set to 1.
275  *
276  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
277  */
278 struct vmspace *
279 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
280 {
281 	struct vmspace *vm;
282 
283 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
284 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
285 	if (!pinit(vmspace_pmap(vm))) {
286 		uma_zfree(vmspace_zone, vm);
287 		return (NULL);
288 	}
289 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291 	vm->vm_refcnt = 1;
292 	vm->vm_shm = NULL;
293 	vm->vm_swrss = 0;
294 	vm->vm_tsize = 0;
295 	vm->vm_dsize = 0;
296 	vm->vm_ssize = 0;
297 	vm->vm_taddr = 0;
298 	vm->vm_daddr = 0;
299 	vm->vm_maxsaddr = 0;
300 	return (vm);
301 }
302 
303 #ifdef RACCT
304 static void
305 vmspace_container_reset(struct proc *p)
306 {
307 
308 	PROC_LOCK(p);
309 	racct_set(p, RACCT_DATA, 0);
310 	racct_set(p, RACCT_STACK, 0);
311 	racct_set(p, RACCT_RSS, 0);
312 	racct_set(p, RACCT_MEMLOCK, 0);
313 	racct_set(p, RACCT_VMEM, 0);
314 	PROC_UNLOCK(p);
315 }
316 #endif
317 
318 static inline void
319 vmspace_dofree(struct vmspace *vm)
320 {
321 
322 	CTR1(KTR_VM, "vmspace_free: %p", vm);
323 
324 	/*
325 	 * Make sure any SysV shm is freed, it might not have been in
326 	 * exit1().
327 	 */
328 	shmexit(vm);
329 
330 	/*
331 	 * Lock the map, to wait out all other references to it.
332 	 * Delete all of the mappings and pages they hold, then call
333 	 * the pmap module to reclaim anything left.
334 	 */
335 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
336 	    vm_map_max(&vm->vm_map));
337 
338 	pmap_release(vmspace_pmap(vm));
339 	vm->vm_map.pmap = NULL;
340 	uma_zfree(vmspace_zone, vm);
341 }
342 
343 void
344 vmspace_free(struct vmspace *vm)
345 {
346 
347 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
348 	    "vmspace_free() called");
349 
350 	if (vm->vm_refcnt == 0)
351 		panic("vmspace_free: attempt to free already freed vmspace");
352 
353 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
354 		vmspace_dofree(vm);
355 }
356 
357 void
358 vmspace_exitfree(struct proc *p)
359 {
360 	struct vmspace *vm;
361 
362 	PROC_VMSPACE_LOCK(p);
363 	vm = p->p_vmspace;
364 	p->p_vmspace = NULL;
365 	PROC_VMSPACE_UNLOCK(p);
366 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
367 	vmspace_free(vm);
368 }
369 
370 void
371 vmspace_exit(struct thread *td)
372 {
373 	int refcnt;
374 	struct vmspace *vm;
375 	struct proc *p;
376 
377 	/*
378 	 * Release user portion of address space.
379 	 * This releases references to vnodes,
380 	 * which could cause I/O if the file has been unlinked.
381 	 * Need to do this early enough that we can still sleep.
382 	 *
383 	 * The last exiting process to reach this point releases as
384 	 * much of the environment as it can. vmspace_dofree() is the
385 	 * slower fallback in case another process had a temporary
386 	 * reference to the vmspace.
387 	 */
388 
389 	p = td->td_proc;
390 	vm = p->p_vmspace;
391 	atomic_add_int(&vmspace0.vm_refcnt, 1);
392 	refcnt = vm->vm_refcnt;
393 	do {
394 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
395 			/* Switch now since other proc might free vmspace */
396 			PROC_VMSPACE_LOCK(p);
397 			p->p_vmspace = &vmspace0;
398 			PROC_VMSPACE_UNLOCK(p);
399 			pmap_activate(td);
400 		}
401 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
402 	if (refcnt == 1) {
403 		if (p->p_vmspace != vm) {
404 			/* vmspace not yet freed, switch back */
405 			PROC_VMSPACE_LOCK(p);
406 			p->p_vmspace = vm;
407 			PROC_VMSPACE_UNLOCK(p);
408 			pmap_activate(td);
409 		}
410 		pmap_remove_pages(vmspace_pmap(vm));
411 		/* Switch now since this proc will free vmspace */
412 		PROC_VMSPACE_LOCK(p);
413 		p->p_vmspace = &vmspace0;
414 		PROC_VMSPACE_UNLOCK(p);
415 		pmap_activate(td);
416 		vmspace_dofree(vm);
417 	}
418 #ifdef RACCT
419 	if (racct_enable)
420 		vmspace_container_reset(p);
421 #endif
422 }
423 
424 /* Acquire reference to vmspace owned by another process. */
425 
426 struct vmspace *
427 vmspace_acquire_ref(struct proc *p)
428 {
429 	struct vmspace *vm;
430 	int refcnt;
431 
432 	PROC_VMSPACE_LOCK(p);
433 	vm = p->p_vmspace;
434 	if (vm == NULL) {
435 		PROC_VMSPACE_UNLOCK(p);
436 		return (NULL);
437 	}
438 	refcnt = vm->vm_refcnt;
439 	do {
440 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
441 			PROC_VMSPACE_UNLOCK(p);
442 			return (NULL);
443 		}
444 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
445 	if (vm != p->p_vmspace) {
446 		PROC_VMSPACE_UNLOCK(p);
447 		vmspace_free(vm);
448 		return (NULL);
449 	}
450 	PROC_VMSPACE_UNLOCK(p);
451 	return (vm);
452 }
453 
454 /*
455  * Switch between vmspaces in an AIO kernel process.
456  *
457  * The new vmspace is either the vmspace of a user process obtained
458  * from an active AIO request or the initial vmspace of the AIO kernel
459  * process (when it is idling).  Because user processes will block to
460  * drain any active AIO requests before proceeding in exit() or
461  * execve(), the reference count for vmspaces from AIO requests can
462  * never be 0.  Similarly, AIO kernel processes hold an extra
463  * reference on their initial vmspace for the life of the process.  As
464  * a result, the 'newvm' vmspace always has a non-zero reference
465  * count.  This permits an additional reference on 'newvm' to be
466  * acquired via a simple atomic increment rather than the loop in
467  * vmspace_acquire_ref() above.
468  */
469 void
470 vmspace_switch_aio(struct vmspace *newvm)
471 {
472 	struct vmspace *oldvm;
473 
474 	/* XXX: Need some way to assert that this is an aio daemon. */
475 
476 	KASSERT(newvm->vm_refcnt > 0,
477 	    ("vmspace_switch_aio: newvm unreferenced"));
478 
479 	oldvm = curproc->p_vmspace;
480 	if (oldvm == newvm)
481 		return;
482 
483 	/*
484 	 * Point to the new address space and refer to it.
485 	 */
486 	curproc->p_vmspace = newvm;
487 	atomic_add_int(&newvm->vm_refcnt, 1);
488 
489 	/* Activate the new mapping. */
490 	pmap_activate(curthread);
491 
492 	vmspace_free(oldvm);
493 }
494 
495 void
496 _vm_map_lock(vm_map_t map, const char *file, int line)
497 {
498 
499 	if (map->system_map)
500 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
501 	else
502 		sx_xlock_(&map->lock, file, line);
503 	map->timestamp++;
504 }
505 
506 void
507 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
508 {
509 	vm_object_t object, object1;
510 	struct vnode *vp;
511 
512 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
513 		return;
514 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
515 	    ("Submap with execs"));
516 	object = entry->object.vm_object;
517 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
518 	VM_OBJECT_RLOCK(object);
519 	while ((object1 = object->backing_object) != NULL) {
520 		VM_OBJECT_RLOCK(object1);
521 		VM_OBJECT_RUNLOCK(object);
522 		object = object1;
523 	}
524 
525 	vp = NULL;
526 	if (object->type == OBJT_DEAD) {
527 		/*
528 		 * For OBJT_DEAD objects, v_writecount was handled in
529 		 * vnode_pager_dealloc().
530 		 */
531 	} else if (object->type == OBJT_VNODE) {
532 		vp = object->handle;
533 	} else if (object->type == OBJT_SWAP) {
534 		KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
535 		    ("vm_map_entry_set_vnode_text: swap and !TMPFS "
536 		    "entry %p, object %p, add %d", entry, object, add));
537 		/*
538 		 * Tmpfs VREG node, which was reclaimed, has
539 		 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
540 		 * this case there is no v_writecount to adjust.
541 		 */
542 		if ((object->flags & OBJ_TMPFS) != 0)
543 			vp = object->un_pager.swp.swp_tmpfs;
544 	} else {
545 		KASSERT(0,
546 		    ("vm_map_entry_set_vnode_text: wrong object type, "
547 		    "entry %p, object %p, add %d", entry, object, add));
548 	}
549 	if (vp != NULL) {
550 		if (add) {
551 			VOP_SET_TEXT_CHECKED(vp);
552 			VM_OBJECT_RUNLOCK(object);
553 		} else {
554 			vhold(vp);
555 			VM_OBJECT_RUNLOCK(object);
556 			vn_lock(vp, LK_SHARED | LK_RETRY);
557 			VOP_UNSET_TEXT_CHECKED(vp);
558 			VOP_UNLOCK(vp, 0);
559 			vdrop(vp);
560 		}
561 	} else {
562 		VM_OBJECT_RUNLOCK(object);
563 	}
564 }
565 
566 static void
567 vm_map_process_deferred(void)
568 {
569 	struct thread *td;
570 	vm_map_entry_t entry, next;
571 	vm_object_t object;
572 
573 	td = curthread;
574 	entry = td->td_map_def_user;
575 	td->td_map_def_user = NULL;
576 	while (entry != NULL) {
577 		next = entry->next;
578 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
579 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
580 		    MAP_ENTRY_VN_EXEC));
581 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
582 			/*
583 			 * Decrement the object's writemappings and
584 			 * possibly the vnode's v_writecount.
585 			 */
586 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
587 			    ("Submap with writecount"));
588 			object = entry->object.vm_object;
589 			KASSERT(object != NULL, ("No object for writecount"));
590 			vm_pager_release_writecount(object, entry->start,
591 			    entry->end);
592 		}
593 		vm_map_entry_set_vnode_text(entry, false);
594 		vm_map_entry_deallocate(entry, FALSE);
595 		entry = next;
596 	}
597 }
598 
599 void
600 _vm_map_unlock(vm_map_t map, const char *file, int line)
601 {
602 
603 	if (map->system_map)
604 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
605 	else {
606 		sx_xunlock_(&map->lock, file, line);
607 		vm_map_process_deferred();
608 	}
609 }
610 
611 void
612 _vm_map_lock_read(vm_map_t map, const char *file, int line)
613 {
614 
615 	if (map->system_map)
616 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
617 	else
618 		sx_slock_(&map->lock, file, line);
619 }
620 
621 void
622 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
623 {
624 
625 	if (map->system_map)
626 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
627 	else {
628 		sx_sunlock_(&map->lock, file, line);
629 		vm_map_process_deferred();
630 	}
631 }
632 
633 int
634 _vm_map_trylock(vm_map_t map, const char *file, int line)
635 {
636 	int error;
637 
638 	error = map->system_map ?
639 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
640 	    !sx_try_xlock_(&map->lock, file, line);
641 	if (error == 0)
642 		map->timestamp++;
643 	return (error == 0);
644 }
645 
646 int
647 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
648 {
649 	int error;
650 
651 	error = map->system_map ?
652 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
653 	    !sx_try_slock_(&map->lock, file, line);
654 	return (error == 0);
655 }
656 
657 /*
658  *	_vm_map_lock_upgrade:	[ internal use only ]
659  *
660  *	Tries to upgrade a read (shared) lock on the specified map to a write
661  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
662  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
663  *	returned without a read or write lock held.
664  *
665  *	Requires that the map be read locked.
666  */
667 int
668 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
669 {
670 	unsigned int last_timestamp;
671 
672 	if (map->system_map) {
673 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
674 	} else {
675 		if (!sx_try_upgrade_(&map->lock, file, line)) {
676 			last_timestamp = map->timestamp;
677 			sx_sunlock_(&map->lock, file, line);
678 			vm_map_process_deferred();
679 			/*
680 			 * If the map's timestamp does not change while the
681 			 * map is unlocked, then the upgrade succeeds.
682 			 */
683 			sx_xlock_(&map->lock, file, line);
684 			if (last_timestamp != map->timestamp) {
685 				sx_xunlock_(&map->lock, file, line);
686 				return (1);
687 			}
688 		}
689 	}
690 	map->timestamp++;
691 	return (0);
692 }
693 
694 void
695 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
696 {
697 
698 	if (map->system_map) {
699 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
700 	} else
701 		sx_downgrade_(&map->lock, file, line);
702 }
703 
704 /*
705  *	vm_map_locked:
706  *
707  *	Returns a non-zero value if the caller holds a write (exclusive) lock
708  *	on the specified map and the value "0" otherwise.
709  */
710 int
711 vm_map_locked(vm_map_t map)
712 {
713 
714 	if (map->system_map)
715 		return (mtx_owned(&map->system_mtx));
716 	else
717 		return (sx_xlocked(&map->lock));
718 }
719 
720 #ifdef INVARIANTS
721 static void
722 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
723 {
724 
725 	if (map->system_map)
726 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
727 	else
728 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
729 }
730 
731 #define	VM_MAP_ASSERT_LOCKED(map) \
732     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
733 
734 #ifdef DIAGNOSTIC
735 static int enable_vmmap_check = 1;
736 #else
737 static int enable_vmmap_check = 0;
738 #endif
739 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
740     &enable_vmmap_check, 0, "Enable vm map consistency checking");
741 
742 static void _vm_map_assert_consistent(vm_map_t map);
743 
744 #define VM_MAP_ASSERT_CONSISTENT(map) \
745     _vm_map_assert_consistent(map)
746 #else
747 #define	VM_MAP_ASSERT_LOCKED(map)
748 #define VM_MAP_ASSERT_CONSISTENT(map)
749 #endif /* INVARIANTS */
750 
751 /*
752  *	_vm_map_unlock_and_wait:
753  *
754  *	Atomically releases the lock on the specified map and puts the calling
755  *	thread to sleep.  The calling thread will remain asleep until either
756  *	vm_map_wakeup() is performed on the map or the specified timeout is
757  *	exceeded.
758  *
759  *	WARNING!  This function does not perform deferred deallocations of
760  *	objects and map	entries.  Therefore, the calling thread is expected to
761  *	reacquire the map lock after reawakening and later perform an ordinary
762  *	unlock operation, such as vm_map_unlock(), before completing its
763  *	operation on the map.
764  */
765 int
766 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
767 {
768 
769 	mtx_lock(&map_sleep_mtx);
770 	if (map->system_map)
771 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
772 	else
773 		sx_xunlock_(&map->lock, file, line);
774 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
775 	    timo));
776 }
777 
778 /*
779  *	vm_map_wakeup:
780  *
781  *	Awaken any threads that have slept on the map using
782  *	vm_map_unlock_and_wait().
783  */
784 void
785 vm_map_wakeup(vm_map_t map)
786 {
787 
788 	/*
789 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
790 	 * from being performed (and lost) between the map unlock
791 	 * and the msleep() in _vm_map_unlock_and_wait().
792 	 */
793 	mtx_lock(&map_sleep_mtx);
794 	mtx_unlock(&map_sleep_mtx);
795 	wakeup(&map->root);
796 }
797 
798 void
799 vm_map_busy(vm_map_t map)
800 {
801 
802 	VM_MAP_ASSERT_LOCKED(map);
803 	map->busy++;
804 }
805 
806 void
807 vm_map_unbusy(vm_map_t map)
808 {
809 
810 	VM_MAP_ASSERT_LOCKED(map);
811 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
812 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
813 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
814 		wakeup(&map->busy);
815 	}
816 }
817 
818 void
819 vm_map_wait_busy(vm_map_t map)
820 {
821 
822 	VM_MAP_ASSERT_LOCKED(map);
823 	while (map->busy) {
824 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
825 		if (map->system_map)
826 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
827 		else
828 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
829 	}
830 	map->timestamp++;
831 }
832 
833 long
834 vmspace_resident_count(struct vmspace *vmspace)
835 {
836 	return pmap_resident_count(vmspace_pmap(vmspace));
837 }
838 
839 /*
840  *	vm_map_create:
841  *
842  *	Creates and returns a new empty VM map with
843  *	the given physical map structure, and having
844  *	the given lower and upper address bounds.
845  */
846 vm_map_t
847 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
848 {
849 	vm_map_t result;
850 
851 	result = uma_zalloc(mapzone, M_WAITOK);
852 	CTR1(KTR_VM, "vm_map_create: %p", result);
853 	_vm_map_init(result, pmap, min, max);
854 	return (result);
855 }
856 
857 /*
858  * Initialize an existing vm_map structure
859  * such as that in the vmspace structure.
860  */
861 static void
862 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
863 {
864 
865 	map->header.next = map->header.prev = &map->header;
866 	map->header.eflags = MAP_ENTRY_HEADER;
867 	map->needs_wakeup = FALSE;
868 	map->system_map = 0;
869 	map->pmap = pmap;
870 	map->header.end = min;
871 	map->header.start = max;
872 	map->flags = 0;
873 	map->root = NULL;
874 	map->timestamp = 0;
875 	map->busy = 0;
876 	map->anon_loc = 0;
877 }
878 
879 void
880 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
881 {
882 
883 	_vm_map_init(map, pmap, min, max);
884 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
885 	sx_init(&map->lock, "user map");
886 }
887 
888 /*
889  *	vm_map_entry_dispose:	[ internal use only ]
890  *
891  *	Inverse of vm_map_entry_create.
892  */
893 static void
894 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
895 {
896 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
897 }
898 
899 /*
900  *	vm_map_entry_create:	[ internal use only ]
901  *
902  *	Allocates a VM map entry for insertion.
903  *	No entry fields are filled in.
904  */
905 static vm_map_entry_t
906 vm_map_entry_create(vm_map_t map)
907 {
908 	vm_map_entry_t new_entry;
909 
910 	if (map->system_map)
911 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
912 	else
913 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
914 	if (new_entry == NULL)
915 		panic("vm_map_entry_create: kernel resources exhausted");
916 	return (new_entry);
917 }
918 
919 /*
920  *	vm_map_entry_set_behavior:
921  *
922  *	Set the expected access behavior, either normal, random, or
923  *	sequential.
924  */
925 static inline void
926 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
927 {
928 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
929 	    (behavior & MAP_ENTRY_BEHAV_MASK);
930 }
931 
932 /*
933  *	vm_map_entry_max_free_{left,right}:
934  *
935  *	Compute the size of the largest free gap between two entries,
936  *	one the root of a tree and the other the ancestor of that root
937  *	that is the least or greatest ancestor found on the search path.
938  */
939 static inline vm_size_t
940 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
941 {
942 
943 	return (root->left != NULL ?
944 	    root->left->max_free : root->start - left_ancestor->end);
945 }
946 
947 static inline vm_size_t
948 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
949 {
950 
951 	return (root->right != NULL ?
952 	    root->right->max_free : right_ancestor->start - root->end);
953 }
954 
955 #define SPLAY_LEFT_STEP(root, y, rlist, test) do {			\
956 	vm_size_t max_free;						\
957 									\
958 	/*								\
959 	 * Infer root->right->max_free == root->max_free when		\
960 	 * y->max_free < root->max_free || root->max_free == 0.		\
961 	 * Otherwise, look right to find it.				\
962 	 */								\
963 	y = root->left;							\
964 	max_free = root->max_free;					\
965 	KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist),	\
966 	    ("%s: max_free invariant fails", __func__));		\
967 	if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)	\
968 		max_free = vm_map_entry_max_free_right(root, rlist);	\
969 	if (y != NULL && (test)) {					\
970 		/* Rotate right and make y root. */			\
971 		root->left = y->right;					\
972 		y->right = root;					\
973 		if (max_free < y->max_free)				\
974 			root->max_free = max_free = MAX(max_free,	\
975 			    vm_map_entry_max_free_left(root, y));	\
976 		root = y;						\
977 		y = root->left;						\
978 	}								\
979 	/* Copy right->max_free.  Put root on rlist. */			\
980 	root->max_free = max_free;					\
981 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
982 	    ("%s: max_free not copied from right", __func__));		\
983 	root->left = rlist;						\
984 	rlist = root;							\
985 	root = y;							\
986 } while (0)
987 
988 #define SPLAY_RIGHT_STEP(root, y, llist, test) do {			\
989 	vm_size_t max_free;						\
990 									\
991 	/*								\
992 	 * Infer root->left->max_free == root->max_free when		\
993 	 * y->max_free < root->max_free || root->max_free == 0.		\
994 	 * Otherwise, look left to find it.				\
995 	 */								\
996 	y = root->right;						\
997 	max_free = root->max_free;					\
998 	KASSERT(max_free >= vm_map_entry_max_free_left(root, llist),	\
999 	    ("%s: max_free invariant fails", __func__));		\
1000 	if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)	\
1001 		max_free = vm_map_entry_max_free_left(root, llist);	\
1002 	if (y != NULL && (test)) {					\
1003 		/* Rotate left and make y root. */			\
1004 		root->right = y->left;					\
1005 		y->left = root;						\
1006 		if (max_free < y->max_free)				\
1007 			root->max_free = max_free = MAX(max_free,	\
1008 			    vm_map_entry_max_free_right(root, y));	\
1009 		root = y;						\
1010 		y = root->right;					\
1011 	}								\
1012 	/* Copy left->max_free.  Put root on llist. */			\
1013 	root->max_free = max_free;					\
1014 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1015 	    ("%s: max_free not copied from left", __func__));		\
1016 	root->right = llist;						\
1017 	llist = root;							\
1018 	root = y;							\
1019 } while (0)
1020 
1021 /*
1022  * Walk down the tree until we find addr or a NULL pointer where addr would go,
1023  * breaking off left and right subtrees of nodes less than, or greater than
1024  * addr.  Treat pointers to nodes with max_free < length as NULL pointers.
1025  * llist and rlist are the two sides in reverse order (bottom-up), with llist
1026  * linked by the right pointer and rlist linked by the left pointer in the
1027  * vm_map_entry, and both lists terminated by &map->header.  This function, and
1028  * the subsequent call to vm_map_splay_merge, rely on the start and end address
1029  * values in &map->header.
1030  */
1031 static vm_map_entry_t
1032 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1033     vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist)
1034 {
1035 	vm_map_entry_t llist, rlist, root, y;
1036 
1037 	llist = rlist = &map->header;
1038 	root = map->root;
1039 	while (root != NULL && root->max_free >= length) {
1040 		KASSERT(llist->end <= root->start && root->end <= rlist->start,
1041 		    ("%s: root not within tree bounds", __func__));
1042 		if (addr < root->start) {
1043 			SPLAY_LEFT_STEP(root, y, rlist,
1044 			    y->max_free >= length && addr < y->start);
1045 		} else if (addr >= root->end) {
1046 			SPLAY_RIGHT_STEP(root, y, llist,
1047 			    y->max_free >= length && addr >= y->end);
1048 		} else
1049 			break;
1050 	}
1051 	*out_llist = llist;
1052 	*out_rlist = rlist;
1053 	return (root);
1054 }
1055 
1056 static void
1057 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist)
1058 {
1059 	vm_map_entry_t rlist, y;
1060 
1061 	root = root->right;
1062 	rlist = *iolist;
1063 	while (root != NULL)
1064 		SPLAY_LEFT_STEP(root, y, rlist, true);
1065 	*iolist = rlist;
1066 }
1067 
1068 static void
1069 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist)
1070 {
1071 	vm_map_entry_t llist, y;
1072 
1073 	root = root->left;
1074 	llist = *iolist;
1075 	while (root != NULL)
1076 		SPLAY_RIGHT_STEP(root, y, llist, true);
1077 	*iolist = llist;
1078 }
1079 
1080 static inline void
1081 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1082 {
1083 	vm_map_entry_t tmp;
1084 
1085 	tmp = *b;
1086 	*b = *a;
1087 	*a = tmp;
1088 }
1089 
1090 /*
1091  * Walk back up the two spines, flip the pointers and set max_free.  The
1092  * subtrees of the root go at the bottom of llist and rlist.
1093  */
1094 static void
1095 vm_map_splay_merge(vm_map_t map, vm_map_entry_t root,
1096     vm_map_entry_t llist, vm_map_entry_t rlist)
1097 {
1098 	vm_map_entry_t prev;
1099 	vm_size_t max_free_left, max_free_right;
1100 
1101 	max_free_left = vm_map_entry_max_free_left(root, llist);
1102 	if (llist != &map->header) {
1103 		prev = root->left;
1104 		do {
1105 			/*
1106 			 * The max_free values of the children of llist are in
1107 			 * llist->max_free and max_free_left.  Update with the
1108 			 * max value.
1109 			 */
1110 			llist->max_free = max_free_left =
1111 			    MAX(llist->max_free, max_free_left);
1112 			vm_map_entry_swap(&llist->right, &prev);
1113 			vm_map_entry_swap(&prev, &llist);
1114 		} while (llist != &map->header);
1115 		root->left = prev;
1116 	}
1117 	max_free_right = vm_map_entry_max_free_right(root, rlist);
1118 	if (rlist != &map->header) {
1119 		prev = root->right;
1120 		do {
1121 			/*
1122 			 * The max_free values of the children of rlist are in
1123 			 * rlist->max_free and max_free_right.  Update with the
1124 			 * max value.
1125 			 */
1126 			rlist->max_free = max_free_right =
1127 			    MAX(rlist->max_free, max_free_right);
1128 			vm_map_entry_swap(&rlist->left, &prev);
1129 			vm_map_entry_swap(&prev, &rlist);
1130 		} while (rlist != &map->header);
1131 		root->right = prev;
1132 	}
1133 	root->max_free = MAX(max_free_left, max_free_right);
1134 	map->root = root;
1135 }
1136 
1137 /*
1138  *	vm_map_splay:
1139  *
1140  *	The Sleator and Tarjan top-down splay algorithm with the
1141  *	following variation.  Max_free must be computed bottom-up, so
1142  *	on the downward pass, maintain the left and right spines in
1143  *	reverse order.  Then, make a second pass up each side to fix
1144  *	the pointers and compute max_free.  The time bound is O(log n)
1145  *	amortized.
1146  *
1147  *	The new root is the vm_map_entry containing "addr", or else an
1148  *	adjacent entry (lower if possible) if addr is not in the tree.
1149  *
1150  *	The map must be locked, and leaves it so.
1151  *
1152  *	Returns: the new root.
1153  */
1154 static vm_map_entry_t
1155 vm_map_splay(vm_map_t map, vm_offset_t addr)
1156 {
1157 	vm_map_entry_t llist, rlist, root;
1158 
1159 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1160 	if (root != NULL) {
1161 		/* do nothing */
1162 	} else if (llist != &map->header) {
1163 		/*
1164 		 * Recover the greatest node in the left
1165 		 * subtree and make it the root.
1166 		 */
1167 		root = llist;
1168 		llist = root->right;
1169 		root->right = NULL;
1170 	} else if (rlist != &map->header) {
1171 		/*
1172 		 * Recover the least node in the right
1173 		 * subtree and make it the root.
1174 		 */
1175 		root = rlist;
1176 		rlist = root->left;
1177 		root->left = NULL;
1178 	} else {
1179 		/* There is no root. */
1180 		return (NULL);
1181 	}
1182 	vm_map_splay_merge(map, root, llist, rlist);
1183 	VM_MAP_ASSERT_CONSISTENT(map);
1184 	return (root);
1185 }
1186 
1187 /*
1188  *	vm_map_entry_{un,}link:
1189  *
1190  *	Insert/remove entries from maps.
1191  */
1192 static void
1193 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1194 {
1195 	vm_map_entry_t llist, rlist, root;
1196 
1197 	CTR3(KTR_VM,
1198 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1199 	    map->nentries, entry);
1200 	VM_MAP_ASSERT_LOCKED(map);
1201 	map->nentries++;
1202 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1203 	KASSERT(root == NULL,
1204 	    ("vm_map_entry_link: link object already mapped"));
1205 	entry->prev = llist;
1206 	entry->next = rlist;
1207 	llist->next = rlist->prev = entry;
1208 	entry->left = entry->right = NULL;
1209 	vm_map_splay_merge(map, entry, llist, rlist);
1210 	VM_MAP_ASSERT_CONSISTENT(map);
1211 }
1212 
1213 enum unlink_merge_type {
1214 	UNLINK_MERGE_NONE,
1215 	UNLINK_MERGE_NEXT
1216 };
1217 
1218 static void
1219 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1220     enum unlink_merge_type op)
1221 {
1222 	vm_map_entry_t llist, rlist, root, y;
1223 
1224 	VM_MAP_ASSERT_LOCKED(map);
1225 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1226 	KASSERT(root != NULL,
1227 	    ("vm_map_entry_unlink: unlink object not mapped"));
1228 
1229 	vm_map_splay_findnext(root, &rlist);
1230 	switch (op) {
1231 	case UNLINK_MERGE_NEXT:
1232 		rlist->start = root->start;
1233 		rlist->offset = root->offset;
1234 		y = root->left;
1235 		root = rlist;
1236 		rlist = root->left;
1237 		root->left = y;
1238 		break;
1239 	case UNLINK_MERGE_NONE:
1240 		vm_map_splay_findprev(root, &llist);
1241 		if (llist != &map->header) {
1242 			root = llist;
1243 			llist = root->right;
1244 			root->right = NULL;
1245 		} else if (rlist != &map->header) {
1246 			root = rlist;
1247 			rlist = root->left;
1248 			root->left = NULL;
1249 		} else
1250 			root = NULL;
1251 		break;
1252 	}
1253 	y = entry->next;
1254 	y->prev = entry->prev;
1255 	y->prev->next = y;
1256 	if (root != NULL)
1257 		vm_map_splay_merge(map, root, llist, rlist);
1258 	else
1259 		map->root = NULL;
1260 	VM_MAP_ASSERT_CONSISTENT(map);
1261 	map->nentries--;
1262 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1263 	    map->nentries, entry);
1264 }
1265 
1266 /*
1267  *	vm_map_entry_resize:
1268  *
1269  *	Resize a vm_map_entry, recompute the amount of free space that
1270  *	follows it and propagate that value up the tree.
1271  *
1272  *	The map must be locked, and leaves it so.
1273  */
1274 static void
1275 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1276 {
1277 	vm_map_entry_t llist, rlist, root;
1278 
1279 	VM_MAP_ASSERT_LOCKED(map);
1280 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1281 	KASSERT(root != NULL,
1282 	    ("%s: resize object not mapped", __func__));
1283 	vm_map_splay_findnext(root, &rlist);
1284 	root->right = NULL;
1285 	entry->end += grow_amount;
1286 	vm_map_splay_merge(map, root, llist, rlist);
1287 	VM_MAP_ASSERT_CONSISTENT(map);
1288 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1289 	    __func__, map, map->nentries, entry);
1290 }
1291 
1292 /*
1293  *	vm_map_lookup_entry:	[ internal use only ]
1294  *
1295  *	Finds the map entry containing (or
1296  *	immediately preceding) the specified address
1297  *	in the given map; the entry is returned
1298  *	in the "entry" parameter.  The boolean
1299  *	result indicates whether the address is
1300  *	actually contained in the map.
1301  */
1302 boolean_t
1303 vm_map_lookup_entry(
1304 	vm_map_t map,
1305 	vm_offset_t address,
1306 	vm_map_entry_t *entry)	/* OUT */
1307 {
1308 	vm_map_entry_t cur, lbound;
1309 	boolean_t locked;
1310 
1311 	/*
1312 	 * If the map is empty, then the map entry immediately preceding
1313 	 * "address" is the map's header.
1314 	 */
1315 	cur = map->root;
1316 	if (cur == NULL) {
1317 		*entry = &map->header;
1318 		return (FALSE);
1319 	}
1320 	if (address >= cur->start && cur->end > address) {
1321 		*entry = cur;
1322 		return (TRUE);
1323 	}
1324 	if ((locked = vm_map_locked(map)) ||
1325 	    sx_try_upgrade(&map->lock)) {
1326 		/*
1327 		 * Splay requires a write lock on the map.  However, it only
1328 		 * restructures the binary search tree; it does not otherwise
1329 		 * change the map.  Thus, the map's timestamp need not change
1330 		 * on a temporary upgrade.
1331 		 */
1332 		cur = vm_map_splay(map, address);
1333 		if (!locked)
1334 			sx_downgrade(&map->lock);
1335 
1336 		/*
1337 		 * If "address" is contained within a map entry, the new root
1338 		 * is that map entry.  Otherwise, the new root is a map entry
1339 		 * immediately before or after "address".
1340 		 */
1341 		if (address < cur->start) {
1342 			*entry = &map->header;
1343 			return (FALSE);
1344 		}
1345 		*entry = cur;
1346 		return (address < cur->end);
1347 	}
1348 	/*
1349 	 * Since the map is only locked for read access, perform a
1350 	 * standard binary search tree lookup for "address".
1351 	 */
1352 	lbound = &map->header;
1353 	do {
1354 		if (address < cur->start) {
1355 			cur = cur->left;
1356 		} else if (cur->end <= address) {
1357 			lbound = cur;
1358 			cur = cur->right;
1359 		} else {
1360 			*entry = cur;
1361 			return (TRUE);
1362 		}
1363 	} while (cur != NULL);
1364 	*entry = lbound;
1365 	return (FALSE);
1366 }
1367 
1368 /*
1369  *	vm_map_insert:
1370  *
1371  *	Inserts the given whole VM object into the target
1372  *	map at the specified address range.  The object's
1373  *	size should match that of the address range.
1374  *
1375  *	Requires that the map be locked, and leaves it so.
1376  *
1377  *	If object is non-NULL, ref count must be bumped by caller
1378  *	prior to making call to account for the new entry.
1379  */
1380 int
1381 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1382     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1383 {
1384 	vm_map_entry_t new_entry, prev_entry;
1385 	struct ucred *cred;
1386 	vm_eflags_t protoeflags;
1387 	vm_inherit_t inheritance;
1388 
1389 	VM_MAP_ASSERT_LOCKED(map);
1390 	KASSERT(object != kernel_object ||
1391 	    (cow & MAP_COPY_ON_WRITE) == 0,
1392 	    ("vm_map_insert: kernel object and COW"));
1393 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1394 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1395 	KASSERT((prot & ~max) == 0,
1396 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1397 
1398 	/*
1399 	 * Check that the start and end points are not bogus.
1400 	 */
1401 	if (start < vm_map_min(map) || end > vm_map_max(map) ||
1402 	    start >= end)
1403 		return (KERN_INVALID_ADDRESS);
1404 
1405 	/*
1406 	 * Find the entry prior to the proposed starting address; if it's part
1407 	 * of an existing entry, this range is bogus.
1408 	 */
1409 	if (vm_map_lookup_entry(map, start, &prev_entry))
1410 		return (KERN_NO_SPACE);
1411 
1412 	/*
1413 	 * Assert that the next entry doesn't overlap the end point.
1414 	 */
1415 	if (prev_entry->next->start < end)
1416 		return (KERN_NO_SPACE);
1417 
1418 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1419 	    max != VM_PROT_NONE))
1420 		return (KERN_INVALID_ARGUMENT);
1421 
1422 	protoeflags = 0;
1423 	if (cow & MAP_COPY_ON_WRITE)
1424 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1425 	if (cow & MAP_NOFAULT)
1426 		protoeflags |= MAP_ENTRY_NOFAULT;
1427 	if (cow & MAP_DISABLE_SYNCER)
1428 		protoeflags |= MAP_ENTRY_NOSYNC;
1429 	if (cow & MAP_DISABLE_COREDUMP)
1430 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1431 	if (cow & MAP_STACK_GROWS_DOWN)
1432 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1433 	if (cow & MAP_STACK_GROWS_UP)
1434 		protoeflags |= MAP_ENTRY_GROWS_UP;
1435 	if (cow & MAP_WRITECOUNT)
1436 		protoeflags |= MAP_ENTRY_WRITECNT;
1437 	if (cow & MAP_VN_EXEC)
1438 		protoeflags |= MAP_ENTRY_VN_EXEC;
1439 	if ((cow & MAP_CREATE_GUARD) != 0)
1440 		protoeflags |= MAP_ENTRY_GUARD;
1441 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1442 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1443 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1444 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1445 	if (cow & MAP_INHERIT_SHARE)
1446 		inheritance = VM_INHERIT_SHARE;
1447 	else
1448 		inheritance = VM_INHERIT_DEFAULT;
1449 
1450 	cred = NULL;
1451 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1452 		goto charged;
1453 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1454 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1455 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1456 			return (KERN_RESOURCE_SHORTAGE);
1457 		KASSERT(object == NULL ||
1458 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1459 		    object->cred == NULL,
1460 		    ("overcommit: vm_map_insert o %p", object));
1461 		cred = curthread->td_ucred;
1462 	}
1463 
1464 charged:
1465 	/* Expand the kernel pmap, if necessary. */
1466 	if (map == kernel_map && end > kernel_vm_end)
1467 		pmap_growkernel(end);
1468 	if (object != NULL) {
1469 		/*
1470 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1471 		 * is trivially proven to be the only mapping for any
1472 		 * of the object's pages.  (Object granularity
1473 		 * reference counting is insufficient to recognize
1474 		 * aliases with precision.)
1475 		 */
1476 		VM_OBJECT_WLOCK(object);
1477 		if (object->ref_count > 1 || object->shadow_count != 0)
1478 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1479 		VM_OBJECT_WUNLOCK(object);
1480 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1481 	    protoeflags &&
1482 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1483 	    MAP_VN_EXEC)) == 0 &&
1484 	    prev_entry->end == start && (prev_entry->cred == cred ||
1485 	    (prev_entry->object.vm_object != NULL &&
1486 	    prev_entry->object.vm_object->cred == cred)) &&
1487 	    vm_object_coalesce(prev_entry->object.vm_object,
1488 	    prev_entry->offset,
1489 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1490 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1491 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1492 		/*
1493 		 * We were able to extend the object.  Determine if we
1494 		 * can extend the previous map entry to include the
1495 		 * new range as well.
1496 		 */
1497 		if (prev_entry->inheritance == inheritance &&
1498 		    prev_entry->protection == prot &&
1499 		    prev_entry->max_protection == max &&
1500 		    prev_entry->wired_count == 0) {
1501 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1502 			    0, ("prev_entry %p has incoherent wiring",
1503 			    prev_entry));
1504 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1505 				map->size += end - prev_entry->end;
1506 			vm_map_entry_resize(map, prev_entry,
1507 			    end - prev_entry->end);
1508 			vm_map_try_merge_entries(map, prev_entry, prev_entry->next);
1509 			return (KERN_SUCCESS);
1510 		}
1511 
1512 		/*
1513 		 * If we can extend the object but cannot extend the
1514 		 * map entry, we have to create a new map entry.  We
1515 		 * must bump the ref count on the extended object to
1516 		 * account for it.  object may be NULL.
1517 		 */
1518 		object = prev_entry->object.vm_object;
1519 		offset = prev_entry->offset +
1520 		    (prev_entry->end - prev_entry->start);
1521 		vm_object_reference(object);
1522 		if (cred != NULL && object != NULL && object->cred != NULL &&
1523 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1524 			/* Object already accounts for this uid. */
1525 			cred = NULL;
1526 		}
1527 	}
1528 	if (cred != NULL)
1529 		crhold(cred);
1530 
1531 	/*
1532 	 * Create a new entry
1533 	 */
1534 	new_entry = vm_map_entry_create(map);
1535 	new_entry->start = start;
1536 	new_entry->end = end;
1537 	new_entry->cred = NULL;
1538 
1539 	new_entry->eflags = protoeflags;
1540 	new_entry->object.vm_object = object;
1541 	new_entry->offset = offset;
1542 
1543 	new_entry->inheritance = inheritance;
1544 	new_entry->protection = prot;
1545 	new_entry->max_protection = max;
1546 	new_entry->wired_count = 0;
1547 	new_entry->wiring_thread = NULL;
1548 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1549 	new_entry->next_read = start;
1550 
1551 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1552 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1553 	new_entry->cred = cred;
1554 
1555 	/*
1556 	 * Insert the new entry into the list
1557 	 */
1558 	vm_map_entry_link(map, new_entry);
1559 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1560 		map->size += new_entry->end - new_entry->start;
1561 
1562 	/*
1563 	 * Try to coalesce the new entry with both the previous and next
1564 	 * entries in the list.  Previously, we only attempted to coalesce
1565 	 * with the previous entry when object is NULL.  Here, we handle the
1566 	 * other cases, which are less common.
1567 	 */
1568 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1569 	vm_map_try_merge_entries(map, new_entry, new_entry->next);
1570 
1571 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1572 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1573 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1574 	}
1575 
1576 	return (KERN_SUCCESS);
1577 }
1578 
1579 /*
1580  *	vm_map_findspace:
1581  *
1582  *	Find the first fit (lowest VM address) for "length" free bytes
1583  *	beginning at address >= start in the given map.
1584  *
1585  *	In a vm_map_entry, "max_free" is the maximum amount of
1586  *	contiguous free space between an entry in its subtree and a
1587  *	neighbor of that entry.  This allows finding a free region in
1588  *	one path down the tree, so O(log n) amortized with splay
1589  *	trees.
1590  *
1591  *	The map must be locked, and leaves it so.
1592  *
1593  *	Returns: starting address if sufficient space,
1594  *		 vm_map_max(map)-length+1 if insufficient space.
1595  */
1596 vm_offset_t
1597 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1598 {
1599 	vm_map_entry_t llist, rlist, root, y;
1600 	vm_size_t left_length;
1601 	vm_offset_t gap_end;
1602 
1603 	/*
1604 	 * Request must fit within min/max VM address and must avoid
1605 	 * address wrap.
1606 	 */
1607 	start = MAX(start, vm_map_min(map));
1608 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1609 		return (vm_map_max(map) - length + 1);
1610 
1611 	/* Empty tree means wide open address space. */
1612 	if (map->root == NULL)
1613 		return (start);
1614 
1615 	/*
1616 	 * After splay_split, if start is within an entry, push it to the start
1617 	 * of the following gap.  If rlist is at the end of the gap containing
1618 	 * start, save the end of that gap in gap_end to see if the gap is big
1619 	 * enough; otherwise set gap_end to start skip gap-checking and move
1620 	 * directly to a search of the right subtree.
1621 	 */
1622 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1623 	gap_end = rlist->start;
1624 	if (root != NULL) {
1625 		start = root->end;
1626 		if (root->right != NULL)
1627 			gap_end = start;
1628 	} else if (rlist != &map->header) {
1629 		root = rlist;
1630 		rlist = root->left;
1631 		root->left = NULL;
1632 	} else {
1633 		root = llist;
1634 		llist = root->right;
1635 		root->right = NULL;
1636 	}
1637 	vm_map_splay_merge(map, root, llist, rlist);
1638 	VM_MAP_ASSERT_CONSISTENT(map);
1639 	if (length <= gap_end - start)
1640 		return (start);
1641 
1642 	/* With max_free, can immediately tell if no solution. */
1643 	if (root->right == NULL || length > root->right->max_free)
1644 		return (vm_map_max(map) - length + 1);
1645 
1646 	/*
1647 	 * Splay for the least large-enough gap in the right subtree.
1648 	 */
1649 	llist = rlist = &map->header;
1650 	for (left_length = 0;;
1651 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1652 		if (length <= left_length)
1653 			SPLAY_LEFT_STEP(root, y, rlist,
1654 			    length <= vm_map_entry_max_free_left(y, llist));
1655 		else
1656 			SPLAY_RIGHT_STEP(root, y, llist,
1657 			    length > vm_map_entry_max_free_left(y, root));
1658 		if (root == NULL)
1659 			break;
1660 	}
1661 	root = llist;
1662 	llist = root->right;
1663 	root->right = NULL;
1664 	if (rlist != &map->header) {
1665 		y = rlist;
1666 		rlist = y->left;
1667 		y->left = NULL;
1668 		vm_map_splay_merge(map, y, &map->header, rlist);
1669 		y->max_free = MAX(
1670 		    vm_map_entry_max_free_left(y, root),
1671 		    vm_map_entry_max_free_right(y, &map->header));
1672 		root->right = y;
1673 	}
1674 	vm_map_splay_merge(map, root, llist, &map->header);
1675 	VM_MAP_ASSERT_CONSISTENT(map);
1676 	return (root->end);
1677 }
1678 
1679 int
1680 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1681     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1682     vm_prot_t max, int cow)
1683 {
1684 	vm_offset_t end;
1685 	int result;
1686 
1687 	end = start + length;
1688 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1689 	    object == NULL,
1690 	    ("vm_map_fixed: non-NULL backing object for stack"));
1691 	vm_map_lock(map);
1692 	VM_MAP_RANGE_CHECK(map, start, end);
1693 	if ((cow & MAP_CHECK_EXCL) == 0)
1694 		vm_map_delete(map, start, end);
1695 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1696 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1697 		    prot, max, cow);
1698 	} else {
1699 		result = vm_map_insert(map, object, offset, start, end,
1700 		    prot, max, cow);
1701 	}
1702 	vm_map_unlock(map);
1703 	return (result);
1704 }
1705 
1706 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1707 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1708 
1709 static int cluster_anon = 1;
1710 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1711     &cluster_anon, 0,
1712     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1713 
1714 static bool
1715 clustering_anon_allowed(vm_offset_t addr)
1716 {
1717 
1718 	switch (cluster_anon) {
1719 	case 0:
1720 		return (false);
1721 	case 1:
1722 		return (addr == 0);
1723 	case 2:
1724 	default:
1725 		return (true);
1726 	}
1727 }
1728 
1729 static long aslr_restarts;
1730 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1731     &aslr_restarts, 0,
1732     "Number of aslr failures");
1733 
1734 #define	MAP_32BIT_MAX_ADDR	((vm_offset_t)1 << 31)
1735 
1736 /*
1737  * Searches for the specified amount of free space in the given map with the
1738  * specified alignment.  Performs an address-ordered, first-fit search from
1739  * the given address "*addr", with an optional upper bound "max_addr".  If the
1740  * parameter "alignment" is zero, then the alignment is computed from the
1741  * given (object, offset) pair so as to enable the greatest possible use of
1742  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1743  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1744  *
1745  * The map must be locked.  Initially, there must be at least "length" bytes
1746  * of free space at the given address.
1747  */
1748 static int
1749 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1750     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1751     vm_offset_t alignment)
1752 {
1753 	vm_offset_t aligned_addr, free_addr;
1754 
1755 	VM_MAP_ASSERT_LOCKED(map);
1756 	free_addr = *addr;
1757 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1758 	    ("caller failed to provide space %#jx at address %p",
1759 	     (uintmax_t)length, (void *)free_addr));
1760 	for (;;) {
1761 		/*
1762 		 * At the start of every iteration, the free space at address
1763 		 * "*addr" is at least "length" bytes.
1764 		 */
1765 		if (alignment == 0)
1766 			pmap_align_superpage(object, offset, addr, length);
1767 		else if ((*addr & (alignment - 1)) != 0) {
1768 			*addr &= ~(alignment - 1);
1769 			*addr += alignment;
1770 		}
1771 		aligned_addr = *addr;
1772 		if (aligned_addr == free_addr) {
1773 			/*
1774 			 * Alignment did not change "*addr", so "*addr" must
1775 			 * still provide sufficient free space.
1776 			 */
1777 			return (KERN_SUCCESS);
1778 		}
1779 
1780 		/*
1781 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
1782 		 * be a valid address, in which case vm_map_findspace() cannot
1783 		 * be relied upon to fail.
1784 		 */
1785 		if (aligned_addr < free_addr)
1786 			return (KERN_NO_SPACE);
1787 		*addr = vm_map_findspace(map, aligned_addr, length);
1788 		if (*addr + length > vm_map_max(map) ||
1789 		    (max_addr != 0 && *addr + length > max_addr))
1790 			return (KERN_NO_SPACE);
1791 		free_addr = *addr;
1792 		if (free_addr == aligned_addr) {
1793 			/*
1794 			 * If a successful call to vm_map_findspace() did not
1795 			 * change "*addr", then "*addr" must still be aligned
1796 			 * and provide sufficient free space.
1797 			 */
1798 			return (KERN_SUCCESS);
1799 		}
1800 	}
1801 }
1802 
1803 /*
1804  *	vm_map_find finds an unallocated region in the target address
1805  *	map with the given length.  The search is defined to be
1806  *	first-fit from the specified address; the region found is
1807  *	returned in the same parameter.
1808  *
1809  *	If object is non-NULL, ref count must be bumped by caller
1810  *	prior to making call to account for the new entry.
1811  */
1812 int
1813 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1814 	    vm_offset_t *addr,	/* IN/OUT */
1815 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1816 	    vm_prot_t prot, vm_prot_t max, int cow)
1817 {
1818 	vm_offset_t alignment, curr_min_addr, min_addr;
1819 	int gap, pidx, rv, try;
1820 	bool cluster, en_aslr, update_anon;
1821 
1822 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1823 	    object == NULL,
1824 	    ("vm_map_find: non-NULL backing object for stack"));
1825 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1826 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1827 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1828 	    (object->flags & OBJ_COLORED) == 0))
1829 		find_space = VMFS_ANY_SPACE;
1830 	if (find_space >> 8 != 0) {
1831 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1832 		alignment = (vm_offset_t)1 << (find_space >> 8);
1833 	} else
1834 		alignment = 0;
1835 	en_aslr = (map->flags & MAP_ASLR) != 0;
1836 	update_anon = cluster = clustering_anon_allowed(*addr) &&
1837 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
1838 	    find_space != VMFS_NO_SPACE && object == NULL &&
1839 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
1840 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
1841 	curr_min_addr = min_addr = *addr;
1842 	if (en_aslr && min_addr == 0 && !cluster &&
1843 	    find_space != VMFS_NO_SPACE &&
1844 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
1845 		curr_min_addr = min_addr = vm_map_min(map);
1846 	try = 0;
1847 	vm_map_lock(map);
1848 	if (cluster) {
1849 		curr_min_addr = map->anon_loc;
1850 		if (curr_min_addr == 0)
1851 			cluster = false;
1852 	}
1853 	if (find_space != VMFS_NO_SPACE) {
1854 		KASSERT(find_space == VMFS_ANY_SPACE ||
1855 		    find_space == VMFS_OPTIMAL_SPACE ||
1856 		    find_space == VMFS_SUPER_SPACE ||
1857 		    alignment != 0, ("unexpected VMFS flag"));
1858 again:
1859 		/*
1860 		 * When creating an anonymous mapping, try clustering
1861 		 * with an existing anonymous mapping first.
1862 		 *
1863 		 * We make up to two attempts to find address space
1864 		 * for a given find_space value. The first attempt may
1865 		 * apply randomization or may cluster with an existing
1866 		 * anonymous mapping. If this first attempt fails,
1867 		 * perform a first-fit search of the available address
1868 		 * space.
1869 		 *
1870 		 * If all tries failed, and find_space is
1871 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
1872 		 * Again enable clustering and randomization.
1873 		 */
1874 		try++;
1875 		MPASS(try <= 2);
1876 
1877 		if (try == 2) {
1878 			/*
1879 			 * Second try: we failed either to find a
1880 			 * suitable region for randomizing the
1881 			 * allocation, or to cluster with an existing
1882 			 * mapping.  Retry with free run.
1883 			 */
1884 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
1885 			    vm_map_min(map) : min_addr;
1886 			atomic_add_long(&aslr_restarts, 1);
1887 		}
1888 
1889 		if (try == 1 && en_aslr && !cluster) {
1890 			/*
1891 			 * Find space for allocation, including
1892 			 * gap needed for later randomization.
1893 			 */
1894 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
1895 			    (find_space == VMFS_SUPER_SPACE || find_space ==
1896 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
1897 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
1898 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
1899 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
1900 			*addr = vm_map_findspace(map, curr_min_addr,
1901 			    length + gap * pagesizes[pidx]);
1902 			if (*addr + length + gap * pagesizes[pidx] >
1903 			    vm_map_max(map))
1904 				goto again;
1905 			/* And randomize the start address. */
1906 			*addr += (arc4random() % gap) * pagesizes[pidx];
1907 			if (max_addr != 0 && *addr + length > max_addr)
1908 				goto again;
1909 		} else {
1910 			*addr = vm_map_findspace(map, curr_min_addr, length);
1911 			if (*addr + length > vm_map_max(map) ||
1912 			    (max_addr != 0 && *addr + length > max_addr)) {
1913 				if (cluster) {
1914 					cluster = false;
1915 					MPASS(try == 1);
1916 					goto again;
1917 				}
1918 				rv = KERN_NO_SPACE;
1919 				goto done;
1920 			}
1921 		}
1922 
1923 		if (find_space != VMFS_ANY_SPACE &&
1924 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
1925 		    max_addr, alignment)) != KERN_SUCCESS) {
1926 			if (find_space == VMFS_OPTIMAL_SPACE) {
1927 				find_space = VMFS_ANY_SPACE;
1928 				curr_min_addr = min_addr;
1929 				cluster = update_anon;
1930 				try = 0;
1931 				goto again;
1932 			}
1933 			goto done;
1934 		}
1935 	} else if ((cow & MAP_REMAP) != 0) {
1936 		if (*addr < vm_map_min(map) ||
1937 		    *addr + length > vm_map_max(map) ||
1938 		    *addr + length <= length) {
1939 			rv = KERN_INVALID_ADDRESS;
1940 			goto done;
1941 		}
1942 		vm_map_delete(map, *addr, *addr + length);
1943 	}
1944 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1945 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1946 		    max, cow);
1947 	} else {
1948 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1949 		    prot, max, cow);
1950 	}
1951 	if (rv == KERN_SUCCESS && update_anon)
1952 		map->anon_loc = *addr + length;
1953 done:
1954 	vm_map_unlock(map);
1955 	return (rv);
1956 }
1957 
1958 /*
1959  *	vm_map_find_min() is a variant of vm_map_find() that takes an
1960  *	additional parameter (min_addr) and treats the given address
1961  *	(*addr) differently.  Specifically, it treats *addr as a hint
1962  *	and not as the minimum address where the mapping is created.
1963  *
1964  *	This function works in two phases.  First, it tries to
1965  *	allocate above the hint.  If that fails and the hint is
1966  *	greater than min_addr, it performs a second pass, replacing
1967  *	the hint with min_addr as the minimum address for the
1968  *	allocation.
1969  */
1970 int
1971 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1972     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1973     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1974     int cow)
1975 {
1976 	vm_offset_t hint;
1977 	int rv;
1978 
1979 	hint = *addr;
1980 	for (;;) {
1981 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
1982 		    find_space, prot, max, cow);
1983 		if (rv == KERN_SUCCESS || min_addr >= hint)
1984 			return (rv);
1985 		*addr = hint = min_addr;
1986 	}
1987 }
1988 
1989 /*
1990  * A map entry with any of the following flags set must not be merged with
1991  * another entry.
1992  */
1993 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
1994 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
1995 
1996 static bool
1997 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
1998 {
1999 
2000 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2001 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2002 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2003 	    prev, entry));
2004 	return (prev->end == entry->start &&
2005 	    prev->object.vm_object == entry->object.vm_object &&
2006 	    (prev->object.vm_object == NULL ||
2007 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2008 	    prev->eflags == entry->eflags &&
2009 	    prev->protection == entry->protection &&
2010 	    prev->max_protection == entry->max_protection &&
2011 	    prev->inheritance == entry->inheritance &&
2012 	    prev->wired_count == entry->wired_count &&
2013 	    prev->cred == entry->cred);
2014 }
2015 
2016 static void
2017 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2018 {
2019 
2020 	/*
2021 	 * If the backing object is a vnode object, vm_object_deallocate()
2022 	 * calls vrele().  However, vrele() does not lock the vnode because
2023 	 * the vnode has additional references.  Thus, the map lock can be
2024 	 * kept without causing a lock-order reversal with the vnode lock.
2025 	 *
2026 	 * Since we count the number of virtual page mappings in
2027 	 * object->un_pager.vnp.writemappings, the writemappings value
2028 	 * should not be adjusted when the entry is disposed of.
2029 	 */
2030 	if (entry->object.vm_object != NULL)
2031 		vm_object_deallocate(entry->object.vm_object);
2032 	if (entry->cred != NULL)
2033 		crfree(entry->cred);
2034 	vm_map_entry_dispose(map, entry);
2035 }
2036 
2037 /*
2038  *	vm_map_try_merge_entries:
2039  *
2040  *	Compare the given map entry to its predecessor, and merge its precessor
2041  *	into it if possible.  The entry remains valid, and may be extended.
2042  *	The predecessor may be deleted.
2043  *
2044  *	The map must be locked.
2045  */
2046 void
2047 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev, vm_map_entry_t entry)
2048 {
2049 
2050 	VM_MAP_ASSERT_LOCKED(map);
2051 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2052 	    vm_map_mergeable_neighbors(prev, entry)) {
2053 		vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT);
2054 		vm_map_merged_neighbor_dispose(map, prev);
2055 	}
2056 }
2057 
2058 /*
2059  *	vm_map_entry_back:
2060  *
2061  *	Allocate an object to back a map entry.
2062  */
2063 static inline void
2064 vm_map_entry_back(vm_map_entry_t entry)
2065 {
2066 	vm_object_t object;
2067 
2068 	KASSERT(entry->object.vm_object == NULL,
2069 	    ("map entry %p has backing object", entry));
2070 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2071 	    ("map entry %p is a submap", entry));
2072 	object = vm_object_allocate(OBJT_DEFAULT,
2073 	    atop(entry->end - entry->start));
2074 	entry->object.vm_object = object;
2075 	entry->offset = 0;
2076 	if (entry->cred != NULL) {
2077 		object->cred = entry->cred;
2078 		object->charge = entry->end - entry->start;
2079 		entry->cred = NULL;
2080 	}
2081 }
2082 
2083 /*
2084  *	vm_map_entry_charge_object
2085  *
2086  *	If there is no object backing this entry, create one.  Otherwise, if
2087  *	the entry has cred, give it to the backing object.
2088  */
2089 static inline void
2090 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2091 {
2092 
2093 	VM_MAP_ASSERT_LOCKED(map);
2094 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2095 	    ("map entry %p is a submap", entry));
2096 	if (entry->object.vm_object == NULL && !map->system_map &&
2097 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2098 		vm_map_entry_back(entry);
2099 	else if (entry->object.vm_object != NULL &&
2100 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2101 	    entry->cred != NULL) {
2102 		VM_OBJECT_WLOCK(entry->object.vm_object);
2103 		KASSERT(entry->object.vm_object->cred == NULL,
2104 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2105 		entry->object.vm_object->cred = entry->cred;
2106 		entry->object.vm_object->charge = entry->end - entry->start;
2107 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2108 		entry->cred = NULL;
2109 	}
2110 }
2111 
2112 /*
2113  *	vm_map_clip_start:	[ internal use only ]
2114  *
2115  *	Asserts that the given entry begins at or after
2116  *	the specified address; if necessary,
2117  *	it splits the entry into two.
2118  */
2119 #define vm_map_clip_start(map, entry, startaddr) \
2120 { \
2121 	if (startaddr > entry->start) \
2122 		_vm_map_clip_start(map, entry, startaddr); \
2123 }
2124 
2125 /*
2126  *	This routine is called only when it is known that
2127  *	the entry must be split.
2128  */
2129 static void
2130 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2131 {
2132 	vm_map_entry_t new_entry;
2133 
2134 	VM_MAP_ASSERT_LOCKED(map);
2135 	KASSERT(entry->end > start && entry->start < start,
2136 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
2137 
2138 	/*
2139 	 * Create a backing object now, if none exists, so that more individual
2140 	 * objects won't be created after the map entry is split.
2141 	 */
2142 	vm_map_entry_charge_object(map, entry);
2143 
2144 	/* Clone the entry. */
2145 	new_entry = vm_map_entry_create(map);
2146 	*new_entry = *entry;
2147 
2148 	/*
2149 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2150 	 * so that this entry has the specified starting address.
2151 	 */
2152 	new_entry->end = start;
2153 	entry->offset += (start - entry->start);
2154 	entry->start = start;
2155 	if (new_entry->cred != NULL)
2156 		crhold(entry->cred);
2157 
2158 	vm_map_entry_link(map, new_entry);
2159 
2160 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2161 		vm_object_reference(new_entry->object.vm_object);
2162 		vm_map_entry_set_vnode_text(new_entry, true);
2163 		/*
2164 		 * The object->un_pager.vnp.writemappings for the
2165 		 * object of MAP_ENTRY_WRITECNT type entry shall be
2166 		 * kept as is here.  The virtual pages are
2167 		 * re-distributed among the clipped entries, so the sum is
2168 		 * left the same.
2169 		 */
2170 	}
2171 }
2172 
2173 /*
2174  *	vm_map_clip_end:	[ internal use only ]
2175  *
2176  *	Asserts that the given entry ends at or before
2177  *	the specified address; if necessary,
2178  *	it splits the entry into two.
2179  */
2180 #define vm_map_clip_end(map, entry, endaddr) \
2181 { \
2182 	if ((endaddr) < (entry->end)) \
2183 		_vm_map_clip_end((map), (entry), (endaddr)); \
2184 }
2185 
2186 /*
2187  *	This routine is called only when it is known that
2188  *	the entry must be split.
2189  */
2190 static void
2191 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2192 {
2193 	vm_map_entry_t new_entry;
2194 
2195 	VM_MAP_ASSERT_LOCKED(map);
2196 	KASSERT(entry->start < end && entry->end > end,
2197 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
2198 
2199 	/*
2200 	 * Create a backing object now, if none exists, so that more individual
2201 	 * objects won't be created after the map entry is split.
2202 	 */
2203 	vm_map_entry_charge_object(map, entry);
2204 
2205 	/* Clone the entry. */
2206 	new_entry = vm_map_entry_create(map);
2207 	*new_entry = *entry;
2208 
2209 	/*
2210 	 * Split off the back portion.  Insert the new entry AFTER this one,
2211 	 * so that this entry has the specified ending address.
2212 	 */
2213 	new_entry->start = entry->end = end;
2214 	new_entry->offset += (end - entry->start);
2215 	if (new_entry->cred != NULL)
2216 		crhold(entry->cred);
2217 
2218 	vm_map_entry_link(map, new_entry);
2219 
2220 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2221 		vm_object_reference(new_entry->object.vm_object);
2222 		vm_map_entry_set_vnode_text(new_entry, true);
2223 	}
2224 }
2225 
2226 /*
2227  *	vm_map_submap:		[ kernel use only ]
2228  *
2229  *	Mark the given range as handled by a subordinate map.
2230  *
2231  *	This range must have been created with vm_map_find,
2232  *	and no other operations may have been performed on this
2233  *	range prior to calling vm_map_submap.
2234  *
2235  *	Only a limited number of operations can be performed
2236  *	within this rage after calling vm_map_submap:
2237  *		vm_fault
2238  *	[Don't try vm_map_copy!]
2239  *
2240  *	To remove a submapping, one must first remove the
2241  *	range from the superior map, and then destroy the
2242  *	submap (if desired).  [Better yet, don't try it.]
2243  */
2244 int
2245 vm_map_submap(
2246 	vm_map_t map,
2247 	vm_offset_t start,
2248 	vm_offset_t end,
2249 	vm_map_t submap)
2250 {
2251 	vm_map_entry_t entry;
2252 	int result;
2253 
2254 	result = KERN_INVALID_ARGUMENT;
2255 
2256 	vm_map_lock(submap);
2257 	submap->flags |= MAP_IS_SUB_MAP;
2258 	vm_map_unlock(submap);
2259 
2260 	vm_map_lock(map);
2261 
2262 	VM_MAP_RANGE_CHECK(map, start, end);
2263 
2264 	if (vm_map_lookup_entry(map, start, &entry)) {
2265 		vm_map_clip_start(map, entry, start);
2266 	} else
2267 		entry = entry->next;
2268 
2269 	vm_map_clip_end(map, entry, end);
2270 
2271 	if ((entry->start == start) && (entry->end == end) &&
2272 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2273 	    (entry->object.vm_object == NULL)) {
2274 		entry->object.sub_map = submap;
2275 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2276 		result = KERN_SUCCESS;
2277 	}
2278 	vm_map_unlock(map);
2279 
2280 	if (result != KERN_SUCCESS) {
2281 		vm_map_lock(submap);
2282 		submap->flags &= ~MAP_IS_SUB_MAP;
2283 		vm_map_unlock(submap);
2284 	}
2285 	return (result);
2286 }
2287 
2288 /*
2289  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2290  */
2291 #define	MAX_INIT_PT	96
2292 
2293 /*
2294  *	vm_map_pmap_enter:
2295  *
2296  *	Preload the specified map's pmap with mappings to the specified
2297  *	object's memory-resident pages.  No further physical pages are
2298  *	allocated, and no further virtual pages are retrieved from secondary
2299  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2300  *	limited number of page mappings are created at the low-end of the
2301  *	specified address range.  (For this purpose, a superpage mapping
2302  *	counts as one page mapping.)  Otherwise, all resident pages within
2303  *	the specified address range are mapped.
2304  */
2305 static void
2306 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2307     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2308 {
2309 	vm_offset_t start;
2310 	vm_page_t p, p_start;
2311 	vm_pindex_t mask, psize, threshold, tmpidx;
2312 
2313 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2314 		return;
2315 	VM_OBJECT_RLOCK(object);
2316 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2317 		VM_OBJECT_RUNLOCK(object);
2318 		VM_OBJECT_WLOCK(object);
2319 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2320 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2321 			    size);
2322 			VM_OBJECT_WUNLOCK(object);
2323 			return;
2324 		}
2325 		VM_OBJECT_LOCK_DOWNGRADE(object);
2326 	}
2327 
2328 	psize = atop(size);
2329 	if (psize + pindex > object->size) {
2330 		if (object->size < pindex) {
2331 			VM_OBJECT_RUNLOCK(object);
2332 			return;
2333 		}
2334 		psize = object->size - pindex;
2335 	}
2336 
2337 	start = 0;
2338 	p_start = NULL;
2339 	threshold = MAX_INIT_PT;
2340 
2341 	p = vm_page_find_least(object, pindex);
2342 	/*
2343 	 * Assert: the variable p is either (1) the page with the
2344 	 * least pindex greater than or equal to the parameter pindex
2345 	 * or (2) NULL.
2346 	 */
2347 	for (;
2348 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2349 	     p = TAILQ_NEXT(p, listq)) {
2350 		/*
2351 		 * don't allow an madvise to blow away our really
2352 		 * free pages allocating pv entries.
2353 		 */
2354 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2355 		    vm_page_count_severe()) ||
2356 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2357 		    tmpidx >= threshold)) {
2358 			psize = tmpidx;
2359 			break;
2360 		}
2361 		if (vm_page_all_valid(p)) {
2362 			if (p_start == NULL) {
2363 				start = addr + ptoa(tmpidx);
2364 				p_start = p;
2365 			}
2366 			/* Jump ahead if a superpage mapping is possible. */
2367 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2368 			    (pagesizes[p->psind] - 1)) == 0) {
2369 				mask = atop(pagesizes[p->psind]) - 1;
2370 				if (tmpidx + mask < psize &&
2371 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2372 					p += mask;
2373 					threshold += mask;
2374 				}
2375 			}
2376 		} else if (p_start != NULL) {
2377 			pmap_enter_object(map->pmap, start, addr +
2378 			    ptoa(tmpidx), p_start, prot);
2379 			p_start = NULL;
2380 		}
2381 	}
2382 	if (p_start != NULL)
2383 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2384 		    p_start, prot);
2385 	VM_OBJECT_RUNLOCK(object);
2386 }
2387 
2388 /*
2389  *	vm_map_protect:
2390  *
2391  *	Sets the protection of the specified address
2392  *	region in the target map.  If "set_max" is
2393  *	specified, the maximum protection is to be set;
2394  *	otherwise, only the current protection is affected.
2395  */
2396 int
2397 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2398 	       vm_prot_t new_prot, boolean_t set_max)
2399 {
2400 	vm_map_entry_t current, entry, in_tran;
2401 	vm_object_t obj;
2402 	struct ucred *cred;
2403 	vm_prot_t old_prot;
2404 	int rv;
2405 
2406 	if (start == end)
2407 		return (KERN_SUCCESS);
2408 
2409 again:
2410 	in_tran = NULL;
2411 	vm_map_lock(map);
2412 
2413 	/*
2414 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2415 	 * need to fault pages into the map and will drop the map lock while
2416 	 * doing so, and the VM object may end up in an inconsistent state if we
2417 	 * update the protection on the map entry in between faults.
2418 	 */
2419 	vm_map_wait_busy(map);
2420 
2421 	VM_MAP_RANGE_CHECK(map, start, end);
2422 
2423 	if (!vm_map_lookup_entry(map, start, &entry))
2424 		entry = entry->next;
2425 
2426 	/*
2427 	 * Make a first pass to check for protection violations.
2428 	 */
2429 	for (current = entry; current->start < end; current = current->next) {
2430 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2431 			continue;
2432 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2433 			vm_map_unlock(map);
2434 			return (KERN_INVALID_ARGUMENT);
2435 		}
2436 		if ((new_prot & current->max_protection) != new_prot) {
2437 			vm_map_unlock(map);
2438 			return (KERN_PROTECTION_FAILURE);
2439 		}
2440 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2441 			in_tran = entry;
2442 	}
2443 
2444 	/*
2445 	 * Postpone the operation until all in transition map entries
2446 	 * are stabilized.  In-transition entry might already have its
2447 	 * pages wired and wired_count incremented, but
2448 	 * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other
2449 	 * threads because the map lock is dropped.  In this case we
2450 	 * would miss our call to vm_fault_copy_entry().
2451 	 */
2452 	if (in_tran != NULL) {
2453 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2454 		vm_map_unlock_and_wait(map, 0);
2455 		goto again;
2456 	}
2457 
2458 	/*
2459 	 * Before changing the protections, try to reserve swap space for any
2460 	 * private (i.e., copy-on-write) mappings that are transitioning from
2461 	 * read-only to read/write access.  If a reservation fails, break out
2462 	 * of this loop early and let the next loop simplify the entries, since
2463 	 * some may now be mergeable.
2464 	 */
2465 	rv = KERN_SUCCESS;
2466 	vm_map_clip_start(map, entry, start);
2467 	for (current = entry; current->start < end; current = current->next) {
2468 
2469 		vm_map_clip_end(map, current, end);
2470 
2471 		if (set_max ||
2472 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2473 		    ENTRY_CHARGED(current) ||
2474 		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
2475 			continue;
2476 		}
2477 
2478 		cred = curthread->td_ucred;
2479 		obj = current->object.vm_object;
2480 
2481 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2482 			if (!swap_reserve(current->end - current->start)) {
2483 				rv = KERN_RESOURCE_SHORTAGE;
2484 				end = current->end;
2485 				break;
2486 			}
2487 			crhold(cred);
2488 			current->cred = cred;
2489 			continue;
2490 		}
2491 
2492 		VM_OBJECT_WLOCK(obj);
2493 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2494 			VM_OBJECT_WUNLOCK(obj);
2495 			continue;
2496 		}
2497 
2498 		/*
2499 		 * Charge for the whole object allocation now, since
2500 		 * we cannot distinguish between non-charged and
2501 		 * charged clipped mapping of the same object later.
2502 		 */
2503 		KASSERT(obj->charge == 0,
2504 		    ("vm_map_protect: object %p overcharged (entry %p)",
2505 		    obj, current));
2506 		if (!swap_reserve(ptoa(obj->size))) {
2507 			VM_OBJECT_WUNLOCK(obj);
2508 			rv = KERN_RESOURCE_SHORTAGE;
2509 			end = current->end;
2510 			break;
2511 		}
2512 
2513 		crhold(cred);
2514 		obj->cred = cred;
2515 		obj->charge = ptoa(obj->size);
2516 		VM_OBJECT_WUNLOCK(obj);
2517 	}
2518 
2519 	/*
2520 	 * If enough swap space was available, go back and fix up protections.
2521 	 * Otherwise, just simplify entries, since some may have been modified.
2522 	 * [Note that clipping is not necessary the second time.]
2523 	 */
2524 	for (current = entry; current->start < end;
2525 	    vm_map_try_merge_entries(map, current->prev, current),
2526 	    current = current->next) {
2527 		if (rv != KERN_SUCCESS ||
2528 		    (current->eflags & MAP_ENTRY_GUARD) != 0)
2529 			continue;
2530 
2531 		old_prot = current->protection;
2532 
2533 		if (set_max)
2534 			current->protection =
2535 			    (current->max_protection = new_prot) &
2536 			    old_prot;
2537 		else
2538 			current->protection = new_prot;
2539 
2540 		/*
2541 		 * For user wired map entries, the normal lazy evaluation of
2542 		 * write access upgrades through soft page faults is
2543 		 * undesirable.  Instead, immediately copy any pages that are
2544 		 * copy-on-write and enable write access in the physical map.
2545 		 */
2546 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2547 		    (current->protection & VM_PROT_WRITE) != 0 &&
2548 		    (old_prot & VM_PROT_WRITE) == 0)
2549 			vm_fault_copy_entry(map, map, current, current, NULL);
2550 
2551 		/*
2552 		 * When restricting access, update the physical map.  Worry
2553 		 * about copy-on-write here.
2554 		 */
2555 		if ((old_prot & ~current->protection) != 0) {
2556 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2557 							VM_PROT_ALL)
2558 			pmap_protect(map->pmap, current->start,
2559 			    current->end,
2560 			    current->protection & MASK(current));
2561 #undef	MASK
2562 		}
2563 	}
2564 	vm_map_try_merge_entries(map, current->prev, current);
2565 	vm_map_unlock(map);
2566 	return (rv);
2567 }
2568 
2569 /*
2570  *	vm_map_madvise:
2571  *
2572  *	This routine traverses a processes map handling the madvise
2573  *	system call.  Advisories are classified as either those effecting
2574  *	the vm_map_entry structure, or those effecting the underlying
2575  *	objects.
2576  */
2577 int
2578 vm_map_madvise(
2579 	vm_map_t map,
2580 	vm_offset_t start,
2581 	vm_offset_t end,
2582 	int behav)
2583 {
2584 	vm_map_entry_t current, entry;
2585 	bool modify_map;
2586 
2587 	/*
2588 	 * Some madvise calls directly modify the vm_map_entry, in which case
2589 	 * we need to use an exclusive lock on the map and we need to perform
2590 	 * various clipping operations.  Otherwise we only need a read-lock
2591 	 * on the map.
2592 	 */
2593 	switch(behav) {
2594 	case MADV_NORMAL:
2595 	case MADV_SEQUENTIAL:
2596 	case MADV_RANDOM:
2597 	case MADV_NOSYNC:
2598 	case MADV_AUTOSYNC:
2599 	case MADV_NOCORE:
2600 	case MADV_CORE:
2601 		if (start == end)
2602 			return (0);
2603 		modify_map = true;
2604 		vm_map_lock(map);
2605 		break;
2606 	case MADV_WILLNEED:
2607 	case MADV_DONTNEED:
2608 	case MADV_FREE:
2609 		if (start == end)
2610 			return (0);
2611 		modify_map = false;
2612 		vm_map_lock_read(map);
2613 		break;
2614 	default:
2615 		return (EINVAL);
2616 	}
2617 
2618 	/*
2619 	 * Locate starting entry and clip if necessary.
2620 	 */
2621 	VM_MAP_RANGE_CHECK(map, start, end);
2622 
2623 	if (vm_map_lookup_entry(map, start, &entry)) {
2624 		if (modify_map)
2625 			vm_map_clip_start(map, entry, start);
2626 	} else {
2627 		entry = entry->next;
2628 	}
2629 
2630 	if (modify_map) {
2631 		/*
2632 		 * madvise behaviors that are implemented in the vm_map_entry.
2633 		 *
2634 		 * We clip the vm_map_entry so that behavioral changes are
2635 		 * limited to the specified address range.
2636 		 */
2637 		for (current = entry; current->start < end;
2638 		    current = current->next) {
2639 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2640 				continue;
2641 
2642 			vm_map_clip_end(map, current, end);
2643 
2644 			switch (behav) {
2645 			case MADV_NORMAL:
2646 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2647 				break;
2648 			case MADV_SEQUENTIAL:
2649 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2650 				break;
2651 			case MADV_RANDOM:
2652 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2653 				break;
2654 			case MADV_NOSYNC:
2655 				current->eflags |= MAP_ENTRY_NOSYNC;
2656 				break;
2657 			case MADV_AUTOSYNC:
2658 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2659 				break;
2660 			case MADV_NOCORE:
2661 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2662 				break;
2663 			case MADV_CORE:
2664 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2665 				break;
2666 			default:
2667 				break;
2668 			}
2669 			vm_map_try_merge_entries(map, current->prev, current);
2670 		}
2671 		vm_map_try_merge_entries(map, current->prev, current);
2672 		vm_map_unlock(map);
2673 	} else {
2674 		vm_pindex_t pstart, pend;
2675 
2676 		/*
2677 		 * madvise behaviors that are implemented in the underlying
2678 		 * vm_object.
2679 		 *
2680 		 * Since we don't clip the vm_map_entry, we have to clip
2681 		 * the vm_object pindex and count.
2682 		 */
2683 		for (current = entry; current->start < end;
2684 		    current = current->next) {
2685 			vm_offset_t useEnd, useStart;
2686 
2687 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2688 				continue;
2689 
2690 			/*
2691 			 * MADV_FREE would otherwise rewind time to
2692 			 * the creation of the shadow object.  Because
2693 			 * we hold the VM map read-locked, neither the
2694 			 * entry's object nor the presence of a
2695 			 * backing object can change.
2696 			 */
2697 			if (behav == MADV_FREE &&
2698 			    current->object.vm_object != NULL &&
2699 			    current->object.vm_object->backing_object != NULL)
2700 				continue;
2701 
2702 			pstart = OFF_TO_IDX(current->offset);
2703 			pend = pstart + atop(current->end - current->start);
2704 			useStart = current->start;
2705 			useEnd = current->end;
2706 
2707 			if (current->start < start) {
2708 				pstart += atop(start - current->start);
2709 				useStart = start;
2710 			}
2711 			if (current->end > end) {
2712 				pend -= atop(current->end - end);
2713 				useEnd = end;
2714 			}
2715 
2716 			if (pstart >= pend)
2717 				continue;
2718 
2719 			/*
2720 			 * Perform the pmap_advise() before clearing
2721 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2722 			 * concurrent pmap operation, such as pmap_remove(),
2723 			 * could clear a reference in the pmap and set
2724 			 * PGA_REFERENCED on the page before the pmap_advise()
2725 			 * had completed.  Consequently, the page would appear
2726 			 * referenced based upon an old reference that
2727 			 * occurred before this pmap_advise() ran.
2728 			 */
2729 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2730 				pmap_advise(map->pmap, useStart, useEnd,
2731 				    behav);
2732 
2733 			vm_object_madvise(current->object.vm_object, pstart,
2734 			    pend, behav);
2735 
2736 			/*
2737 			 * Pre-populate paging structures in the
2738 			 * WILLNEED case.  For wired entries, the
2739 			 * paging structures are already populated.
2740 			 */
2741 			if (behav == MADV_WILLNEED &&
2742 			    current->wired_count == 0) {
2743 				vm_map_pmap_enter(map,
2744 				    useStart,
2745 				    current->protection,
2746 				    current->object.vm_object,
2747 				    pstart,
2748 				    ptoa(pend - pstart),
2749 				    MAP_PREFAULT_MADVISE
2750 				);
2751 			}
2752 		}
2753 		vm_map_unlock_read(map);
2754 	}
2755 	return (0);
2756 }
2757 
2758 
2759 /*
2760  *	vm_map_inherit:
2761  *
2762  *	Sets the inheritance of the specified address
2763  *	range in the target map.  Inheritance
2764  *	affects how the map will be shared with
2765  *	child maps at the time of vmspace_fork.
2766  */
2767 int
2768 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2769 	       vm_inherit_t new_inheritance)
2770 {
2771 	vm_map_entry_t entry;
2772 	vm_map_entry_t temp_entry;
2773 
2774 	switch (new_inheritance) {
2775 	case VM_INHERIT_NONE:
2776 	case VM_INHERIT_COPY:
2777 	case VM_INHERIT_SHARE:
2778 	case VM_INHERIT_ZERO:
2779 		break;
2780 	default:
2781 		return (KERN_INVALID_ARGUMENT);
2782 	}
2783 	if (start == end)
2784 		return (KERN_SUCCESS);
2785 	vm_map_lock(map);
2786 	VM_MAP_RANGE_CHECK(map, start, end);
2787 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2788 		entry = temp_entry;
2789 		vm_map_clip_start(map, entry, start);
2790 	} else
2791 		entry = temp_entry->next;
2792 	while (entry->start < end) {
2793 		vm_map_clip_end(map, entry, end);
2794 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2795 		    new_inheritance != VM_INHERIT_ZERO)
2796 			entry->inheritance = new_inheritance;
2797 		vm_map_try_merge_entries(map, entry->prev, entry);
2798 		entry = entry->next;
2799 	}
2800 	vm_map_try_merge_entries(map, entry->prev, entry);
2801 	vm_map_unlock(map);
2802 	return (KERN_SUCCESS);
2803 }
2804 
2805 /*
2806  *	vm_map_entry_in_transition:
2807  *
2808  *	Release the map lock, and sleep until the entry is no longer in
2809  *	transition.  Awake and acquire the map lock.  If the map changed while
2810  *	another held the lock, lookup a possibly-changed entry at or after the
2811  *	'start' position of the old entry.
2812  */
2813 static vm_map_entry_t
2814 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
2815     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
2816 {
2817 	vm_map_entry_t entry;
2818 	vm_offset_t start;
2819 	u_int last_timestamp;
2820 
2821 	VM_MAP_ASSERT_LOCKED(map);
2822 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2823 	    ("not in-tranition map entry %p", in_entry));
2824 	/*
2825 	 * We have not yet clipped the entry.
2826 	 */
2827 	start = MAX(in_start, in_entry->start);
2828 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2829 	last_timestamp = map->timestamp;
2830 	if (vm_map_unlock_and_wait(map, 0)) {
2831 		/*
2832 		 * Allow interruption of user wiring/unwiring?
2833 		 */
2834 	}
2835 	vm_map_lock(map);
2836 	if (last_timestamp + 1 == map->timestamp)
2837 		return (in_entry);
2838 
2839 	/*
2840 	 * Look again for the entry because the map was modified while it was
2841 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
2842 	 * deleted.
2843 	 */
2844 	if (!vm_map_lookup_entry(map, start, &entry)) {
2845 		if (!holes_ok) {
2846 			*io_end = start;
2847 			return (NULL);
2848 		}
2849 		entry = entry->next;
2850 	}
2851 	return (entry);
2852 }
2853 
2854 /*
2855  *	vm_map_unwire:
2856  *
2857  *	Implements both kernel and user unwiring.
2858  */
2859 int
2860 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2861     int flags)
2862 {
2863 	vm_map_entry_t entry, first_entry;
2864 	int rv;
2865 	bool first_iteration, holes_ok, need_wakeup, user_unwire;
2866 
2867 	if (start == end)
2868 		return (KERN_SUCCESS);
2869 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
2870 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
2871 	vm_map_lock(map);
2872 	VM_MAP_RANGE_CHECK(map, start, end);
2873 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2874 		if (holes_ok)
2875 			first_entry = first_entry->next;
2876 		else {
2877 			vm_map_unlock(map);
2878 			return (KERN_INVALID_ADDRESS);
2879 		}
2880 	}
2881 	first_iteration = true;
2882 	entry = first_entry;
2883 	rv = KERN_SUCCESS;
2884 	while (entry->start < end) {
2885 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2886 			/*
2887 			 * We have not yet clipped the entry.
2888 			 */
2889 			entry = vm_map_entry_in_transition(map, start, &end,
2890 			    holes_ok, entry);
2891 			if (entry == NULL) {
2892 				if (first_iteration) {
2893 					vm_map_unlock(map);
2894 					return (KERN_INVALID_ADDRESS);
2895 				}
2896 				rv = KERN_INVALID_ADDRESS;
2897 				break;
2898 			}
2899 			first_entry = first_iteration ? entry : NULL;
2900 			continue;
2901 		}
2902 		first_iteration = false;
2903 		vm_map_clip_start(map, entry, start);
2904 		vm_map_clip_end(map, entry, end);
2905 		/*
2906 		 * Mark the entry in case the map lock is released.  (See
2907 		 * above.)
2908 		 */
2909 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2910 		    entry->wiring_thread == NULL,
2911 		    ("owned map entry %p", entry));
2912 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2913 		entry->wiring_thread = curthread;
2914 		/*
2915 		 * Check the map for holes in the specified region.
2916 		 * If holes_ok, skip this check.
2917 		 */
2918 		if (!holes_ok &&
2919 		    (entry->end < end && entry->next->start > entry->end)) {
2920 			end = entry->end;
2921 			rv = KERN_INVALID_ADDRESS;
2922 			break;
2923 		}
2924 		/*
2925 		 * If system unwiring, require that the entry is system wired.
2926 		 */
2927 		if (!user_unwire &&
2928 		    vm_map_entry_system_wired_count(entry) == 0) {
2929 			end = entry->end;
2930 			rv = KERN_INVALID_ARGUMENT;
2931 			break;
2932 		}
2933 		entry = entry->next;
2934 	}
2935 	need_wakeup = false;
2936 	if (first_entry == NULL &&
2937 	    !vm_map_lookup_entry(map, start, &first_entry)) {
2938 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
2939 		first_entry = first_entry->next;
2940 	}
2941 	for (entry = first_entry; entry->start < end; entry = entry->next) {
2942 		/*
2943 		 * If holes_ok was specified, an empty
2944 		 * space in the unwired region could have been mapped
2945 		 * while the map lock was dropped for draining
2946 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2947 		 * could be simultaneously wiring this new mapping
2948 		 * entry.  Detect these cases and skip any entries
2949 		 * marked as in transition by us.
2950 		 */
2951 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2952 		    entry->wiring_thread != curthread) {
2953 			KASSERT(holes_ok,
2954 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2955 			continue;
2956 		}
2957 
2958 		if (rv == KERN_SUCCESS && (!user_unwire ||
2959 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2960 			if (entry->wired_count == 1)
2961 				vm_map_entry_unwire(map, entry);
2962 			else
2963 				entry->wired_count--;
2964 			if (user_unwire)
2965 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2966 		}
2967 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2968 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2969 		KASSERT(entry->wiring_thread == curthread,
2970 		    ("vm_map_unwire: alien wire %p", entry));
2971 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2972 		entry->wiring_thread = NULL;
2973 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2974 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2975 			need_wakeup = true;
2976 		}
2977 		vm_map_try_merge_entries(map, entry->prev, entry);
2978 	}
2979 	vm_map_try_merge_entries(map, entry->prev, entry);
2980 	vm_map_unlock(map);
2981 	if (need_wakeup)
2982 		vm_map_wakeup(map);
2983 	return (rv);
2984 }
2985 
2986 static void
2987 vm_map_wire_user_count_sub(u_long npages)
2988 {
2989 
2990 	atomic_subtract_long(&vm_user_wire_count, npages);
2991 }
2992 
2993 static bool
2994 vm_map_wire_user_count_add(u_long npages)
2995 {
2996 	u_long wired;
2997 
2998 	wired = vm_user_wire_count;
2999 	do {
3000 		if (npages + wired > vm_page_max_user_wired)
3001 			return (false);
3002 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3003 	    npages + wired));
3004 
3005 	return (true);
3006 }
3007 
3008 /*
3009  *	vm_map_wire_entry_failure:
3010  *
3011  *	Handle a wiring failure on the given entry.
3012  *
3013  *	The map should be locked.
3014  */
3015 static void
3016 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3017     vm_offset_t failed_addr)
3018 {
3019 
3020 	VM_MAP_ASSERT_LOCKED(map);
3021 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3022 	    entry->wired_count == 1,
3023 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3024 	KASSERT(failed_addr < entry->end,
3025 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3026 
3027 	/*
3028 	 * If any pages at the start of this entry were successfully wired,
3029 	 * then unwire them.
3030 	 */
3031 	if (failed_addr > entry->start) {
3032 		pmap_unwire(map->pmap, entry->start, failed_addr);
3033 		vm_object_unwire(entry->object.vm_object, entry->offset,
3034 		    failed_addr - entry->start, PQ_ACTIVE);
3035 	}
3036 
3037 	/*
3038 	 * Assign an out-of-range value to represent the failure to wire this
3039 	 * entry.
3040 	 */
3041 	entry->wired_count = -1;
3042 }
3043 
3044 int
3045 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3046 {
3047 	int rv;
3048 
3049 	vm_map_lock(map);
3050 	rv = vm_map_wire_locked(map, start, end, flags);
3051 	vm_map_unlock(map);
3052 	return (rv);
3053 }
3054 
3055 
3056 /*
3057  *	vm_map_wire_locked:
3058  *
3059  *	Implements both kernel and user wiring.  Returns with the map locked,
3060  *	the map lock may be dropped.
3061  */
3062 int
3063 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3064 {
3065 	vm_map_entry_t entry, first_entry, tmp_entry;
3066 	vm_offset_t faddr, saved_end, saved_start;
3067 	u_long npages;
3068 	u_int last_timestamp;
3069 	int rv;
3070 	bool first_iteration, holes_ok, need_wakeup, user_wire;
3071 	vm_prot_t prot;
3072 
3073 	VM_MAP_ASSERT_LOCKED(map);
3074 
3075 	if (start == end)
3076 		return (KERN_SUCCESS);
3077 	prot = 0;
3078 	if (flags & VM_MAP_WIRE_WRITE)
3079 		prot |= VM_PROT_WRITE;
3080 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3081 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3082 	VM_MAP_RANGE_CHECK(map, start, end);
3083 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3084 		if (holes_ok)
3085 			first_entry = first_entry->next;
3086 		else
3087 			return (KERN_INVALID_ADDRESS);
3088 	}
3089 	first_iteration = true;
3090 	entry = first_entry;
3091 	while (entry->start < end) {
3092 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3093 			/*
3094 			 * We have not yet clipped the entry.
3095 			 */
3096 			entry = vm_map_entry_in_transition(map, start, &end,
3097 			    holes_ok, entry);
3098 			if (entry == NULL) {
3099 				if (first_iteration)
3100 					return (KERN_INVALID_ADDRESS);
3101 				rv = KERN_INVALID_ADDRESS;
3102 				goto done;
3103 			}
3104 			first_entry = first_iteration ? entry : NULL;
3105 			continue;
3106 		}
3107 		first_iteration = false;
3108 		vm_map_clip_start(map, entry, start);
3109 		vm_map_clip_end(map, entry, end);
3110 		/*
3111 		 * Mark the entry in case the map lock is released.  (See
3112 		 * above.)
3113 		 */
3114 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3115 		    entry->wiring_thread == NULL,
3116 		    ("owned map entry %p", entry));
3117 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3118 		entry->wiring_thread = curthread;
3119 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3120 		    || (entry->protection & prot) != prot) {
3121 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3122 			if (!holes_ok) {
3123 				end = entry->end;
3124 				rv = KERN_INVALID_ADDRESS;
3125 				goto done;
3126 			}
3127 		} else if (entry->wired_count == 0) {
3128 			entry->wired_count++;
3129 
3130 			npages = atop(entry->end - entry->start);
3131 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3132 				vm_map_wire_entry_failure(map, entry,
3133 				    entry->start);
3134 				end = entry->end;
3135 				rv = KERN_RESOURCE_SHORTAGE;
3136 				goto done;
3137 			}
3138 
3139 			/*
3140 			 * Release the map lock, relying on the in-transition
3141 			 * mark.  Mark the map busy for fork.
3142 			 */
3143 			saved_start = entry->start;
3144 			saved_end = entry->end;
3145 			last_timestamp = map->timestamp;
3146 			vm_map_busy(map);
3147 			vm_map_unlock(map);
3148 
3149 			faddr = saved_start;
3150 			do {
3151 				/*
3152 				 * Simulate a fault to get the page and enter
3153 				 * it into the physical map.
3154 				 */
3155 				if ((rv = vm_fault(map, faddr,
3156 				    VM_PROT_NONE, VM_FAULT_WIRE, NULL)) !=
3157 				    KERN_SUCCESS)
3158 					break;
3159 			} while ((faddr += PAGE_SIZE) < saved_end);
3160 			vm_map_lock(map);
3161 			vm_map_unbusy(map);
3162 			if (last_timestamp + 1 != map->timestamp) {
3163 				/*
3164 				 * Look again for the entry because the map was
3165 				 * modified while it was unlocked.  The entry
3166 				 * may have been clipped, but NOT merged or
3167 				 * deleted.
3168 				 */
3169 				if (!vm_map_lookup_entry(map, saved_start,
3170 				    &tmp_entry))
3171 					KASSERT(false,
3172 					    ("vm_map_wire: lookup failed"));
3173 				if (entry == first_entry)
3174 					first_entry = tmp_entry;
3175 				else
3176 					first_entry = NULL;
3177 				entry = tmp_entry;
3178 				while (entry->end < saved_end) {
3179 					/*
3180 					 * In case of failure, handle entries
3181 					 * that were not fully wired here;
3182 					 * fully wired entries are handled
3183 					 * later.
3184 					 */
3185 					if (rv != KERN_SUCCESS &&
3186 					    faddr < entry->end)
3187 						vm_map_wire_entry_failure(map,
3188 						    entry, faddr);
3189 					entry = entry->next;
3190 				}
3191 			}
3192 			if (rv != KERN_SUCCESS) {
3193 				vm_map_wire_entry_failure(map, entry, faddr);
3194 				if (user_wire)
3195 					vm_map_wire_user_count_sub(npages);
3196 				end = entry->end;
3197 				goto done;
3198 			}
3199 		} else if (!user_wire ||
3200 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3201 			entry->wired_count++;
3202 		}
3203 		/*
3204 		 * Check the map for holes in the specified region.
3205 		 * If holes_ok was specified, skip this check.
3206 		 */
3207 		if (!holes_ok &&
3208 		    entry->end < end && entry->next->start > entry->end) {
3209 			end = entry->end;
3210 			rv = KERN_INVALID_ADDRESS;
3211 			goto done;
3212 		}
3213 		entry = entry->next;
3214 	}
3215 	rv = KERN_SUCCESS;
3216 done:
3217 	need_wakeup = false;
3218 	if (first_entry == NULL &&
3219 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3220 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3221 		first_entry = first_entry->next;
3222 	}
3223 	for (entry = first_entry; entry->start < end; entry = entry->next) {
3224 		/*
3225 		 * If holes_ok was specified, an empty
3226 		 * space in the unwired region could have been mapped
3227 		 * while the map lock was dropped for faulting in the
3228 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3229 		 * Moreover, another thread could be simultaneously
3230 		 * wiring this new mapping entry.  Detect these cases
3231 		 * and skip any entries marked as in transition not by us.
3232 		 */
3233 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3234 		    entry->wiring_thread != curthread) {
3235 			KASSERT(holes_ok,
3236 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3237 			continue;
3238 		}
3239 
3240 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3241 			/* do nothing */
3242 		} else if (rv == KERN_SUCCESS) {
3243 			if (user_wire)
3244 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3245 		} else if (entry->wired_count == -1) {
3246 			/*
3247 			 * Wiring failed on this entry.  Thus, unwiring is
3248 			 * unnecessary.
3249 			 */
3250 			entry->wired_count = 0;
3251 		} else if (!user_wire ||
3252 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3253 			/*
3254 			 * Undo the wiring.  Wiring succeeded on this entry
3255 			 * but failed on a later entry.
3256 			 */
3257 			if (entry->wired_count == 1) {
3258 				vm_map_entry_unwire(map, entry);
3259 				if (user_wire)
3260 					vm_map_wire_user_count_sub(
3261 					    atop(entry->end - entry->start));
3262 			} else
3263 				entry->wired_count--;
3264 		}
3265 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3266 		    ("vm_map_wire: in-transition flag missing %p", entry));
3267 		KASSERT(entry->wiring_thread == curthread,
3268 		    ("vm_map_wire: alien wire %p", entry));
3269 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3270 		    MAP_ENTRY_WIRE_SKIPPED);
3271 		entry->wiring_thread = NULL;
3272 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3273 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3274 			need_wakeup = true;
3275 		}
3276 		vm_map_try_merge_entries(map, entry->prev, entry);
3277 	}
3278 	vm_map_try_merge_entries(map, entry->prev, entry);
3279 	if (need_wakeup)
3280 		vm_map_wakeup(map);
3281 	return (rv);
3282 }
3283 
3284 /*
3285  * vm_map_sync
3286  *
3287  * Push any dirty cached pages in the address range to their pager.
3288  * If syncio is TRUE, dirty pages are written synchronously.
3289  * If invalidate is TRUE, any cached pages are freed as well.
3290  *
3291  * If the size of the region from start to end is zero, we are
3292  * supposed to flush all modified pages within the region containing
3293  * start.  Unfortunately, a region can be split or coalesced with
3294  * neighboring regions, making it difficult to determine what the
3295  * original region was.  Therefore, we approximate this requirement by
3296  * flushing the current region containing start.
3297  *
3298  * Returns an error if any part of the specified range is not mapped.
3299  */
3300 int
3301 vm_map_sync(
3302 	vm_map_t map,
3303 	vm_offset_t start,
3304 	vm_offset_t end,
3305 	boolean_t syncio,
3306 	boolean_t invalidate)
3307 {
3308 	vm_map_entry_t current;
3309 	vm_map_entry_t entry;
3310 	vm_size_t size;
3311 	vm_object_t object;
3312 	vm_ooffset_t offset;
3313 	unsigned int last_timestamp;
3314 	boolean_t failed;
3315 
3316 	vm_map_lock_read(map);
3317 	VM_MAP_RANGE_CHECK(map, start, end);
3318 	if (!vm_map_lookup_entry(map, start, &entry)) {
3319 		vm_map_unlock_read(map);
3320 		return (KERN_INVALID_ADDRESS);
3321 	} else if (start == end) {
3322 		start = entry->start;
3323 		end = entry->end;
3324 	}
3325 	/*
3326 	 * Make a first pass to check for user-wired memory and holes.
3327 	 */
3328 	for (current = entry; current->start < end; current = current->next) {
3329 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
3330 			vm_map_unlock_read(map);
3331 			return (KERN_INVALID_ARGUMENT);
3332 		}
3333 		if (end > current->end &&
3334 		    current->end != current->next->start) {
3335 			vm_map_unlock_read(map);
3336 			return (KERN_INVALID_ADDRESS);
3337 		}
3338 	}
3339 
3340 	if (invalidate)
3341 		pmap_remove(map->pmap, start, end);
3342 	failed = FALSE;
3343 
3344 	/*
3345 	 * Make a second pass, cleaning/uncaching pages from the indicated
3346 	 * objects as we go.
3347 	 */
3348 	for (current = entry; current->start < end;) {
3349 		offset = current->offset + (start - current->start);
3350 		size = (end <= current->end ? end : current->end) - start;
3351 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
3352 			vm_map_t smap;
3353 			vm_map_entry_t tentry;
3354 			vm_size_t tsize;
3355 
3356 			smap = current->object.sub_map;
3357 			vm_map_lock_read(smap);
3358 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3359 			tsize = tentry->end - offset;
3360 			if (tsize < size)
3361 				size = tsize;
3362 			object = tentry->object.vm_object;
3363 			offset = tentry->offset + (offset - tentry->start);
3364 			vm_map_unlock_read(smap);
3365 		} else {
3366 			object = current->object.vm_object;
3367 		}
3368 		vm_object_reference(object);
3369 		last_timestamp = map->timestamp;
3370 		vm_map_unlock_read(map);
3371 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3372 			failed = TRUE;
3373 		start += size;
3374 		vm_object_deallocate(object);
3375 		vm_map_lock_read(map);
3376 		if (last_timestamp == map->timestamp ||
3377 		    !vm_map_lookup_entry(map, start, &current))
3378 			current = current->next;
3379 	}
3380 
3381 	vm_map_unlock_read(map);
3382 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3383 }
3384 
3385 /*
3386  *	vm_map_entry_unwire:	[ internal use only ]
3387  *
3388  *	Make the region specified by this entry pageable.
3389  *
3390  *	The map in question should be locked.
3391  *	[This is the reason for this routine's existence.]
3392  */
3393 static void
3394 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3395 {
3396 	vm_size_t size;
3397 
3398 	VM_MAP_ASSERT_LOCKED(map);
3399 	KASSERT(entry->wired_count > 0,
3400 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3401 
3402 	size = entry->end - entry->start;
3403 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3404 		vm_map_wire_user_count_sub(atop(size));
3405 	pmap_unwire(map->pmap, entry->start, entry->end);
3406 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3407 	    PQ_ACTIVE);
3408 	entry->wired_count = 0;
3409 }
3410 
3411 static void
3412 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3413 {
3414 
3415 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3416 		vm_object_deallocate(entry->object.vm_object);
3417 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3418 }
3419 
3420 /*
3421  *	vm_map_entry_delete:	[ internal use only ]
3422  *
3423  *	Deallocate the given entry from the target map.
3424  */
3425 static void
3426 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3427 {
3428 	vm_object_t object;
3429 	vm_pindex_t offidxstart, offidxend, count, size1;
3430 	vm_size_t size;
3431 
3432 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3433 	object = entry->object.vm_object;
3434 
3435 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3436 		MPASS(entry->cred == NULL);
3437 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3438 		MPASS(object == NULL);
3439 		vm_map_entry_deallocate(entry, map->system_map);
3440 		return;
3441 	}
3442 
3443 	size = entry->end - entry->start;
3444 	map->size -= size;
3445 
3446 	if (entry->cred != NULL) {
3447 		swap_release_by_cred(size, entry->cred);
3448 		crfree(entry->cred);
3449 	}
3450 
3451 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3452 	    (object != NULL)) {
3453 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3454 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3455 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3456 		count = atop(size);
3457 		offidxstart = OFF_TO_IDX(entry->offset);
3458 		offidxend = offidxstart + count;
3459 		VM_OBJECT_WLOCK(object);
3460 		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3461 		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3462 		    object == kernel_object)) {
3463 			vm_object_collapse(object);
3464 
3465 			/*
3466 			 * The option OBJPR_NOTMAPPED can be passed here
3467 			 * because vm_map_delete() already performed
3468 			 * pmap_remove() on the only mapping to this range
3469 			 * of pages.
3470 			 */
3471 			vm_object_page_remove(object, offidxstart, offidxend,
3472 			    OBJPR_NOTMAPPED);
3473 			if (object->type == OBJT_SWAP)
3474 				swap_pager_freespace(object, offidxstart,
3475 				    count);
3476 			if (offidxend >= object->size &&
3477 			    offidxstart < object->size) {
3478 				size1 = object->size;
3479 				object->size = offidxstart;
3480 				if (object->cred != NULL) {
3481 					size1 -= object->size;
3482 					KASSERT(object->charge >= ptoa(size1),
3483 					    ("object %p charge < 0", object));
3484 					swap_release_by_cred(ptoa(size1),
3485 					    object->cred);
3486 					object->charge -= ptoa(size1);
3487 				}
3488 			}
3489 		}
3490 		VM_OBJECT_WUNLOCK(object);
3491 	} else
3492 		entry->object.vm_object = NULL;
3493 	if (map->system_map)
3494 		vm_map_entry_deallocate(entry, TRUE);
3495 	else {
3496 		entry->next = curthread->td_map_def_user;
3497 		curthread->td_map_def_user = entry;
3498 	}
3499 }
3500 
3501 /*
3502  *	vm_map_delete:	[ internal use only ]
3503  *
3504  *	Deallocates the given address range from the target
3505  *	map.
3506  */
3507 int
3508 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3509 {
3510 	vm_map_entry_t entry;
3511 	vm_map_entry_t first_entry;
3512 
3513 	VM_MAP_ASSERT_LOCKED(map);
3514 	if (start == end)
3515 		return (KERN_SUCCESS);
3516 
3517 	/*
3518 	 * Find the start of the region, and clip it
3519 	 */
3520 	if (!vm_map_lookup_entry(map, start, &first_entry))
3521 		entry = first_entry->next;
3522 	else {
3523 		entry = first_entry;
3524 		vm_map_clip_start(map, entry, start);
3525 	}
3526 
3527 	/*
3528 	 * Step through all entries in this region
3529 	 */
3530 	while (entry->start < end) {
3531 		vm_map_entry_t next;
3532 
3533 		/*
3534 		 * Wait for wiring or unwiring of an entry to complete.
3535 		 * Also wait for any system wirings to disappear on
3536 		 * user maps.
3537 		 */
3538 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3539 		    (vm_map_pmap(map) != kernel_pmap &&
3540 		    vm_map_entry_system_wired_count(entry) != 0)) {
3541 			unsigned int last_timestamp;
3542 			vm_offset_t saved_start;
3543 			vm_map_entry_t tmp_entry;
3544 
3545 			saved_start = entry->start;
3546 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3547 			last_timestamp = map->timestamp;
3548 			(void) vm_map_unlock_and_wait(map, 0);
3549 			vm_map_lock(map);
3550 			if (last_timestamp + 1 != map->timestamp) {
3551 				/*
3552 				 * Look again for the entry because the map was
3553 				 * modified while it was unlocked.
3554 				 * Specifically, the entry may have been
3555 				 * clipped, merged, or deleted.
3556 				 */
3557 				if (!vm_map_lookup_entry(map, saved_start,
3558 							 &tmp_entry))
3559 					entry = tmp_entry->next;
3560 				else {
3561 					entry = tmp_entry;
3562 					vm_map_clip_start(map, entry,
3563 							  saved_start);
3564 				}
3565 			}
3566 			continue;
3567 		}
3568 		vm_map_clip_end(map, entry, end);
3569 
3570 		next = entry->next;
3571 
3572 		/*
3573 		 * Unwire before removing addresses from the pmap; otherwise,
3574 		 * unwiring will put the entries back in the pmap.
3575 		 */
3576 		if (entry->wired_count != 0)
3577 			vm_map_entry_unwire(map, entry);
3578 
3579 		/*
3580 		 * Remove mappings for the pages, but only if the
3581 		 * mappings could exist.  For instance, it does not
3582 		 * make sense to call pmap_remove() for guard entries.
3583 		 */
3584 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3585 		    entry->object.vm_object != NULL)
3586 			pmap_remove(map->pmap, entry->start, entry->end);
3587 
3588 		if (entry->end == map->anon_loc)
3589 			map->anon_loc = entry->start;
3590 
3591 		/*
3592 		 * Delete the entry only after removing all pmap
3593 		 * entries pointing to its pages.  (Otherwise, its
3594 		 * page frames may be reallocated, and any modify bits
3595 		 * will be set in the wrong object!)
3596 		 */
3597 		vm_map_entry_delete(map, entry);
3598 		entry = next;
3599 	}
3600 	return (KERN_SUCCESS);
3601 }
3602 
3603 /*
3604  *	vm_map_remove:
3605  *
3606  *	Remove the given address range from the target map.
3607  *	This is the exported form of vm_map_delete.
3608  */
3609 int
3610 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3611 {
3612 	int result;
3613 
3614 	vm_map_lock(map);
3615 	VM_MAP_RANGE_CHECK(map, start, end);
3616 	result = vm_map_delete(map, start, end);
3617 	vm_map_unlock(map);
3618 	return (result);
3619 }
3620 
3621 /*
3622  *	vm_map_check_protection:
3623  *
3624  *	Assert that the target map allows the specified privilege on the
3625  *	entire address region given.  The entire region must be allocated.
3626  *
3627  *	WARNING!  This code does not and should not check whether the
3628  *	contents of the region is accessible.  For example a smaller file
3629  *	might be mapped into a larger address space.
3630  *
3631  *	NOTE!  This code is also called by munmap().
3632  *
3633  *	The map must be locked.  A read lock is sufficient.
3634  */
3635 boolean_t
3636 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3637 			vm_prot_t protection)
3638 {
3639 	vm_map_entry_t entry;
3640 	vm_map_entry_t tmp_entry;
3641 
3642 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3643 		return (FALSE);
3644 	entry = tmp_entry;
3645 
3646 	while (start < end) {
3647 		/*
3648 		 * No holes allowed!
3649 		 */
3650 		if (start < entry->start)
3651 			return (FALSE);
3652 		/*
3653 		 * Check protection associated with entry.
3654 		 */
3655 		if ((entry->protection & protection) != protection)
3656 			return (FALSE);
3657 		/* go to next entry */
3658 		start = entry->end;
3659 		entry = entry->next;
3660 	}
3661 	return (TRUE);
3662 }
3663 
3664 /*
3665  *	vm_map_copy_entry:
3666  *
3667  *	Copies the contents of the source entry to the destination
3668  *	entry.  The entries *must* be aligned properly.
3669  */
3670 static void
3671 vm_map_copy_entry(
3672 	vm_map_t src_map,
3673 	vm_map_t dst_map,
3674 	vm_map_entry_t src_entry,
3675 	vm_map_entry_t dst_entry,
3676 	vm_ooffset_t *fork_charge)
3677 {
3678 	vm_object_t src_object;
3679 	vm_map_entry_t fake_entry;
3680 	vm_offset_t size;
3681 	struct ucred *cred;
3682 	int charged;
3683 
3684 	VM_MAP_ASSERT_LOCKED(dst_map);
3685 
3686 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3687 		return;
3688 
3689 	if (src_entry->wired_count == 0 ||
3690 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3691 		/*
3692 		 * If the source entry is marked needs_copy, it is already
3693 		 * write-protected.
3694 		 */
3695 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3696 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3697 			pmap_protect(src_map->pmap,
3698 			    src_entry->start,
3699 			    src_entry->end,
3700 			    src_entry->protection & ~VM_PROT_WRITE);
3701 		}
3702 
3703 		/*
3704 		 * Make a copy of the object.
3705 		 */
3706 		size = src_entry->end - src_entry->start;
3707 		if ((src_object = src_entry->object.vm_object) != NULL) {
3708 			VM_OBJECT_WLOCK(src_object);
3709 			charged = ENTRY_CHARGED(src_entry);
3710 			if (src_object->handle == NULL &&
3711 			    (src_object->type == OBJT_DEFAULT ||
3712 			    src_object->type == OBJT_SWAP)) {
3713 				vm_object_collapse(src_object);
3714 				if ((src_object->flags & (OBJ_NOSPLIT |
3715 				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3716 					vm_object_split(src_entry);
3717 					src_object =
3718 					    src_entry->object.vm_object;
3719 				}
3720 			}
3721 			vm_object_reference_locked(src_object);
3722 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3723 			if (src_entry->cred != NULL &&
3724 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3725 				KASSERT(src_object->cred == NULL,
3726 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3727 				     src_object));
3728 				src_object->cred = src_entry->cred;
3729 				src_object->charge = size;
3730 			}
3731 			VM_OBJECT_WUNLOCK(src_object);
3732 			dst_entry->object.vm_object = src_object;
3733 			if (charged) {
3734 				cred = curthread->td_ucred;
3735 				crhold(cred);
3736 				dst_entry->cred = cred;
3737 				*fork_charge += size;
3738 				if (!(src_entry->eflags &
3739 				      MAP_ENTRY_NEEDS_COPY)) {
3740 					crhold(cred);
3741 					src_entry->cred = cred;
3742 					*fork_charge += size;
3743 				}
3744 			}
3745 			src_entry->eflags |= MAP_ENTRY_COW |
3746 			    MAP_ENTRY_NEEDS_COPY;
3747 			dst_entry->eflags |= MAP_ENTRY_COW |
3748 			    MAP_ENTRY_NEEDS_COPY;
3749 			dst_entry->offset = src_entry->offset;
3750 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
3751 				/*
3752 				 * MAP_ENTRY_WRITECNT cannot
3753 				 * indicate write reference from
3754 				 * src_entry, since the entry is
3755 				 * marked as needs copy.  Allocate a
3756 				 * fake entry that is used to
3757 				 * decrement object->un_pager writecount
3758 				 * at the appropriate time.  Attach
3759 				 * fake_entry to the deferred list.
3760 				 */
3761 				fake_entry = vm_map_entry_create(dst_map);
3762 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
3763 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
3764 				vm_object_reference(src_object);
3765 				fake_entry->object.vm_object = src_object;
3766 				fake_entry->start = src_entry->start;
3767 				fake_entry->end = src_entry->end;
3768 				fake_entry->next = curthread->td_map_def_user;
3769 				curthread->td_map_def_user = fake_entry;
3770 			}
3771 
3772 			pmap_copy(dst_map->pmap, src_map->pmap,
3773 			    dst_entry->start, dst_entry->end - dst_entry->start,
3774 			    src_entry->start);
3775 		} else {
3776 			dst_entry->object.vm_object = NULL;
3777 			dst_entry->offset = 0;
3778 			if (src_entry->cred != NULL) {
3779 				dst_entry->cred = curthread->td_ucred;
3780 				crhold(dst_entry->cred);
3781 				*fork_charge += size;
3782 			}
3783 		}
3784 	} else {
3785 		/*
3786 		 * We don't want to make writeable wired pages copy-on-write.
3787 		 * Immediately copy these pages into the new map by simulating
3788 		 * page faults.  The new pages are pageable.
3789 		 */
3790 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3791 		    fork_charge);
3792 	}
3793 }
3794 
3795 /*
3796  * vmspace_map_entry_forked:
3797  * Update the newly-forked vmspace each time a map entry is inherited
3798  * or copied.  The values for vm_dsize and vm_tsize are approximate
3799  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3800  */
3801 static void
3802 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3803     vm_map_entry_t entry)
3804 {
3805 	vm_size_t entrysize;
3806 	vm_offset_t newend;
3807 
3808 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3809 		return;
3810 	entrysize = entry->end - entry->start;
3811 	vm2->vm_map.size += entrysize;
3812 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3813 		vm2->vm_ssize += btoc(entrysize);
3814 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3815 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3816 		newend = MIN(entry->end,
3817 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3818 		vm2->vm_dsize += btoc(newend - entry->start);
3819 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3820 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3821 		newend = MIN(entry->end,
3822 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3823 		vm2->vm_tsize += btoc(newend - entry->start);
3824 	}
3825 }
3826 
3827 /*
3828  * vmspace_fork:
3829  * Create a new process vmspace structure and vm_map
3830  * based on those of an existing process.  The new map
3831  * is based on the old map, according to the inheritance
3832  * values on the regions in that map.
3833  *
3834  * XXX It might be worth coalescing the entries added to the new vmspace.
3835  *
3836  * The source map must not be locked.
3837  */
3838 struct vmspace *
3839 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3840 {
3841 	struct vmspace *vm2;
3842 	vm_map_t new_map, old_map;
3843 	vm_map_entry_t new_entry, old_entry;
3844 	vm_object_t object;
3845 	int error, locked;
3846 	vm_inherit_t inh;
3847 
3848 	old_map = &vm1->vm_map;
3849 	/* Copy immutable fields of vm1 to vm2. */
3850 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3851 	    pmap_pinit);
3852 	if (vm2 == NULL)
3853 		return (NULL);
3854 
3855 	vm2->vm_taddr = vm1->vm_taddr;
3856 	vm2->vm_daddr = vm1->vm_daddr;
3857 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3858 	vm_map_lock(old_map);
3859 	if (old_map->busy)
3860 		vm_map_wait_busy(old_map);
3861 	new_map = &vm2->vm_map;
3862 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3863 	KASSERT(locked, ("vmspace_fork: lock failed"));
3864 
3865 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
3866 	if (error != 0) {
3867 		sx_xunlock(&old_map->lock);
3868 		sx_xunlock(&new_map->lock);
3869 		vm_map_process_deferred();
3870 		vmspace_free(vm2);
3871 		return (NULL);
3872 	}
3873 
3874 	new_map->anon_loc = old_map->anon_loc;
3875 
3876 	old_entry = old_map->header.next;
3877 
3878 	while (old_entry != &old_map->header) {
3879 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3880 			panic("vm_map_fork: encountered a submap");
3881 
3882 		inh = old_entry->inheritance;
3883 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3884 		    inh != VM_INHERIT_NONE)
3885 			inh = VM_INHERIT_COPY;
3886 
3887 		switch (inh) {
3888 		case VM_INHERIT_NONE:
3889 			break;
3890 
3891 		case VM_INHERIT_SHARE:
3892 			/*
3893 			 * Clone the entry, creating the shared object if necessary.
3894 			 */
3895 			object = old_entry->object.vm_object;
3896 			if (object == NULL) {
3897 				vm_map_entry_back(old_entry);
3898 				object = old_entry->object.vm_object;
3899 			}
3900 
3901 			/*
3902 			 * Add the reference before calling vm_object_shadow
3903 			 * to insure that a shadow object is created.
3904 			 */
3905 			vm_object_reference(object);
3906 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3907 				vm_object_shadow(&old_entry->object.vm_object,
3908 				    &old_entry->offset,
3909 				    old_entry->end - old_entry->start);
3910 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3911 				/* Transfer the second reference too. */
3912 				vm_object_reference(
3913 				    old_entry->object.vm_object);
3914 
3915 				/*
3916 				 * As in vm_map_merged_neighbor_dispose(),
3917 				 * the vnode lock will not be acquired in
3918 				 * this call to vm_object_deallocate().
3919 				 */
3920 				vm_object_deallocate(object);
3921 				object = old_entry->object.vm_object;
3922 			}
3923 			VM_OBJECT_WLOCK(object);
3924 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3925 			if (old_entry->cred != NULL) {
3926 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3927 				object->cred = old_entry->cred;
3928 				object->charge = old_entry->end - old_entry->start;
3929 				old_entry->cred = NULL;
3930 			}
3931 
3932 			/*
3933 			 * Assert the correct state of the vnode
3934 			 * v_writecount while the object is locked, to
3935 			 * not relock it later for the assertion
3936 			 * correctness.
3937 			 */
3938 			if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
3939 			    object->type == OBJT_VNODE) {
3940 				KASSERT(((struct vnode *)object->handle)->
3941 				    v_writecount > 0,
3942 				    ("vmspace_fork: v_writecount %p", object));
3943 				KASSERT(object->un_pager.vnp.writemappings > 0,
3944 				    ("vmspace_fork: vnp.writecount %p",
3945 				    object));
3946 			}
3947 			VM_OBJECT_WUNLOCK(object);
3948 
3949 			/*
3950 			 * Clone the entry, referencing the shared object.
3951 			 */
3952 			new_entry = vm_map_entry_create(new_map);
3953 			*new_entry = *old_entry;
3954 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3955 			    MAP_ENTRY_IN_TRANSITION);
3956 			new_entry->wiring_thread = NULL;
3957 			new_entry->wired_count = 0;
3958 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
3959 				vm_pager_update_writecount(object,
3960 				    new_entry->start, new_entry->end);
3961 			}
3962 			vm_map_entry_set_vnode_text(new_entry, true);
3963 
3964 			/*
3965 			 * Insert the entry into the new map -- we know we're
3966 			 * inserting at the end of the new map.
3967 			 */
3968 			vm_map_entry_link(new_map, new_entry);
3969 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3970 
3971 			/*
3972 			 * Update the physical map
3973 			 */
3974 			pmap_copy(new_map->pmap, old_map->pmap,
3975 			    new_entry->start,
3976 			    (old_entry->end - old_entry->start),
3977 			    old_entry->start);
3978 			break;
3979 
3980 		case VM_INHERIT_COPY:
3981 			/*
3982 			 * Clone the entry and link into the map.
3983 			 */
3984 			new_entry = vm_map_entry_create(new_map);
3985 			*new_entry = *old_entry;
3986 			/*
3987 			 * Copied entry is COW over the old object.
3988 			 */
3989 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3990 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
3991 			new_entry->wiring_thread = NULL;
3992 			new_entry->wired_count = 0;
3993 			new_entry->object.vm_object = NULL;
3994 			new_entry->cred = NULL;
3995 			vm_map_entry_link(new_map, new_entry);
3996 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3997 			vm_map_copy_entry(old_map, new_map, old_entry,
3998 			    new_entry, fork_charge);
3999 			vm_map_entry_set_vnode_text(new_entry, true);
4000 			break;
4001 
4002 		case VM_INHERIT_ZERO:
4003 			/*
4004 			 * Create a new anonymous mapping entry modelled from
4005 			 * the old one.
4006 			 */
4007 			new_entry = vm_map_entry_create(new_map);
4008 			memset(new_entry, 0, sizeof(*new_entry));
4009 
4010 			new_entry->start = old_entry->start;
4011 			new_entry->end = old_entry->end;
4012 			new_entry->eflags = old_entry->eflags &
4013 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4014 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC);
4015 			new_entry->protection = old_entry->protection;
4016 			new_entry->max_protection = old_entry->max_protection;
4017 			new_entry->inheritance = VM_INHERIT_ZERO;
4018 
4019 			vm_map_entry_link(new_map, new_entry);
4020 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4021 
4022 			new_entry->cred = curthread->td_ucred;
4023 			crhold(new_entry->cred);
4024 			*fork_charge += (new_entry->end - new_entry->start);
4025 
4026 			break;
4027 		}
4028 		old_entry = old_entry->next;
4029 	}
4030 	/*
4031 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4032 	 * map entries, which cannot be done until both old_map and
4033 	 * new_map locks are released.
4034 	 */
4035 	sx_xunlock(&old_map->lock);
4036 	sx_xunlock(&new_map->lock);
4037 	vm_map_process_deferred();
4038 
4039 	return (vm2);
4040 }
4041 
4042 /*
4043  * Create a process's stack for exec_new_vmspace().  This function is never
4044  * asked to wire the newly created stack.
4045  */
4046 int
4047 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4048     vm_prot_t prot, vm_prot_t max, int cow)
4049 {
4050 	vm_size_t growsize, init_ssize;
4051 	rlim_t vmemlim;
4052 	int rv;
4053 
4054 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4055 	growsize = sgrowsiz;
4056 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4057 	vm_map_lock(map);
4058 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4059 	/* If we would blow our VMEM resource limit, no go */
4060 	if (map->size + init_ssize > vmemlim) {
4061 		rv = KERN_NO_SPACE;
4062 		goto out;
4063 	}
4064 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4065 	    max, cow);
4066 out:
4067 	vm_map_unlock(map);
4068 	return (rv);
4069 }
4070 
4071 static int stack_guard_page = 1;
4072 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4073     &stack_guard_page, 0,
4074     "Specifies the number of guard pages for a stack that grows");
4075 
4076 static int
4077 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4078     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4079 {
4080 	vm_map_entry_t new_entry, prev_entry;
4081 	vm_offset_t bot, gap_bot, gap_top, top;
4082 	vm_size_t init_ssize, sgp;
4083 	int orient, rv;
4084 
4085 	/*
4086 	 * The stack orientation is piggybacked with the cow argument.
4087 	 * Extract it into orient and mask the cow argument so that we
4088 	 * don't pass it around further.
4089 	 */
4090 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4091 	KASSERT(orient != 0, ("No stack grow direction"));
4092 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4093 	    ("bi-dir stack"));
4094 
4095 	if (addrbos < vm_map_min(map) ||
4096 	    addrbos + max_ssize > vm_map_max(map) ||
4097 	    addrbos + max_ssize <= addrbos)
4098 		return (KERN_INVALID_ADDRESS);
4099 	sgp = (curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ? 0 :
4100 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4101 	if (sgp >= max_ssize)
4102 		return (KERN_INVALID_ARGUMENT);
4103 
4104 	init_ssize = growsize;
4105 	if (max_ssize < init_ssize + sgp)
4106 		init_ssize = max_ssize - sgp;
4107 
4108 	/* If addr is already mapped, no go */
4109 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4110 		return (KERN_NO_SPACE);
4111 
4112 	/*
4113 	 * If we can't accommodate max_ssize in the current mapping, no go.
4114 	 */
4115 	if (prev_entry->next->start < addrbos + max_ssize)
4116 		return (KERN_NO_SPACE);
4117 
4118 	/*
4119 	 * We initially map a stack of only init_ssize.  We will grow as
4120 	 * needed later.  Depending on the orientation of the stack (i.e.
4121 	 * the grow direction) we either map at the top of the range, the
4122 	 * bottom of the range or in the middle.
4123 	 *
4124 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4125 	 * and cow to be 0.  Possibly we should eliminate these as input
4126 	 * parameters, and just pass these values here in the insert call.
4127 	 */
4128 	if (orient == MAP_STACK_GROWS_DOWN) {
4129 		bot = addrbos + max_ssize - init_ssize;
4130 		top = bot + init_ssize;
4131 		gap_bot = addrbos;
4132 		gap_top = bot;
4133 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4134 		bot = addrbos;
4135 		top = bot + init_ssize;
4136 		gap_bot = top;
4137 		gap_top = addrbos + max_ssize;
4138 	}
4139 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4140 	if (rv != KERN_SUCCESS)
4141 		return (rv);
4142 	new_entry = prev_entry->next;
4143 	KASSERT(new_entry->end == top || new_entry->start == bot,
4144 	    ("Bad entry start/end for new stack entry"));
4145 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4146 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4147 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4148 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4149 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4150 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4151 	if (gap_bot == gap_top)
4152 		return (KERN_SUCCESS);
4153 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4154 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4155 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4156 	if (rv == KERN_SUCCESS) {
4157 		/*
4158 		 * Gap can never successfully handle a fault, so
4159 		 * read-ahead logic is never used for it.  Re-use
4160 		 * next_read of the gap entry to store
4161 		 * stack_guard_page for vm_map_growstack().
4162 		 */
4163 		if (orient == MAP_STACK_GROWS_DOWN)
4164 			new_entry->prev->next_read = sgp;
4165 		else
4166 			new_entry->next->next_read = sgp;
4167 	} else {
4168 		(void)vm_map_delete(map, bot, top);
4169 	}
4170 	return (rv);
4171 }
4172 
4173 /*
4174  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4175  * successfully grow the stack.
4176  */
4177 static int
4178 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4179 {
4180 	vm_map_entry_t stack_entry;
4181 	struct proc *p;
4182 	struct vmspace *vm;
4183 	struct ucred *cred;
4184 	vm_offset_t gap_end, gap_start, grow_start;
4185 	vm_size_t grow_amount, guard, max_grow;
4186 	rlim_t lmemlim, stacklim, vmemlim;
4187 	int rv, rv1;
4188 	bool gap_deleted, grow_down, is_procstack;
4189 #ifdef notyet
4190 	uint64_t limit;
4191 #endif
4192 #ifdef RACCT
4193 	int error;
4194 #endif
4195 
4196 	p = curproc;
4197 	vm = p->p_vmspace;
4198 
4199 	/*
4200 	 * Disallow stack growth when the access is performed by a
4201 	 * debugger or AIO daemon.  The reason is that the wrong
4202 	 * resource limits are applied.
4203 	 */
4204 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4205 	    p->p_textvp == NULL))
4206 		return (KERN_FAILURE);
4207 
4208 	MPASS(!map->system_map);
4209 
4210 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4211 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4212 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4213 retry:
4214 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4215 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4216 		return (KERN_FAILURE);
4217 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4218 		return (KERN_SUCCESS);
4219 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4220 		stack_entry = gap_entry->next;
4221 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4222 		    stack_entry->start != gap_entry->end)
4223 			return (KERN_FAILURE);
4224 		grow_amount = round_page(stack_entry->start - addr);
4225 		grow_down = true;
4226 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4227 		stack_entry = gap_entry->prev;
4228 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4229 		    stack_entry->end != gap_entry->start)
4230 			return (KERN_FAILURE);
4231 		grow_amount = round_page(addr + 1 - stack_entry->end);
4232 		grow_down = false;
4233 	} else {
4234 		return (KERN_FAILURE);
4235 	}
4236 	guard = (curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ? 0 :
4237 	    gap_entry->next_read;
4238 	max_grow = gap_entry->end - gap_entry->start;
4239 	if (guard > max_grow)
4240 		return (KERN_NO_SPACE);
4241 	max_grow -= guard;
4242 	if (grow_amount > max_grow)
4243 		return (KERN_NO_SPACE);
4244 
4245 	/*
4246 	 * If this is the main process stack, see if we're over the stack
4247 	 * limit.
4248 	 */
4249 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4250 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4251 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4252 		return (KERN_NO_SPACE);
4253 
4254 #ifdef RACCT
4255 	if (racct_enable) {
4256 		PROC_LOCK(p);
4257 		if (is_procstack && racct_set(p, RACCT_STACK,
4258 		    ctob(vm->vm_ssize) + grow_amount)) {
4259 			PROC_UNLOCK(p);
4260 			return (KERN_NO_SPACE);
4261 		}
4262 		PROC_UNLOCK(p);
4263 	}
4264 #endif
4265 
4266 	grow_amount = roundup(grow_amount, sgrowsiz);
4267 	if (grow_amount > max_grow)
4268 		grow_amount = max_grow;
4269 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4270 		grow_amount = trunc_page((vm_size_t)stacklim) -
4271 		    ctob(vm->vm_ssize);
4272 	}
4273 
4274 #ifdef notyet
4275 	PROC_LOCK(p);
4276 	limit = racct_get_available(p, RACCT_STACK);
4277 	PROC_UNLOCK(p);
4278 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4279 		grow_amount = limit - ctob(vm->vm_ssize);
4280 #endif
4281 
4282 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4283 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4284 			rv = KERN_NO_SPACE;
4285 			goto out;
4286 		}
4287 #ifdef RACCT
4288 		if (racct_enable) {
4289 			PROC_LOCK(p);
4290 			if (racct_set(p, RACCT_MEMLOCK,
4291 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4292 				PROC_UNLOCK(p);
4293 				rv = KERN_NO_SPACE;
4294 				goto out;
4295 			}
4296 			PROC_UNLOCK(p);
4297 		}
4298 #endif
4299 	}
4300 
4301 	/* If we would blow our VMEM resource limit, no go */
4302 	if (map->size + grow_amount > vmemlim) {
4303 		rv = KERN_NO_SPACE;
4304 		goto out;
4305 	}
4306 #ifdef RACCT
4307 	if (racct_enable) {
4308 		PROC_LOCK(p);
4309 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4310 			PROC_UNLOCK(p);
4311 			rv = KERN_NO_SPACE;
4312 			goto out;
4313 		}
4314 		PROC_UNLOCK(p);
4315 	}
4316 #endif
4317 
4318 	if (vm_map_lock_upgrade(map)) {
4319 		gap_entry = NULL;
4320 		vm_map_lock_read(map);
4321 		goto retry;
4322 	}
4323 
4324 	if (grow_down) {
4325 		grow_start = gap_entry->end - grow_amount;
4326 		if (gap_entry->start + grow_amount == gap_entry->end) {
4327 			gap_start = gap_entry->start;
4328 			gap_end = gap_entry->end;
4329 			vm_map_entry_delete(map, gap_entry);
4330 			gap_deleted = true;
4331 		} else {
4332 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4333 			vm_map_entry_resize(map, gap_entry, -grow_amount);
4334 			gap_deleted = false;
4335 		}
4336 		rv = vm_map_insert(map, NULL, 0, grow_start,
4337 		    grow_start + grow_amount,
4338 		    stack_entry->protection, stack_entry->max_protection,
4339 		    MAP_STACK_GROWS_DOWN);
4340 		if (rv != KERN_SUCCESS) {
4341 			if (gap_deleted) {
4342 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
4343 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4344 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4345 				MPASS(rv1 == KERN_SUCCESS);
4346 			} else
4347 				vm_map_entry_resize(map, gap_entry,
4348 				    grow_amount);
4349 		}
4350 	} else {
4351 		grow_start = stack_entry->end;
4352 		cred = stack_entry->cred;
4353 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4354 			cred = stack_entry->object.vm_object->cred;
4355 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4356 			rv = KERN_NO_SPACE;
4357 		/* Grow the underlying object if applicable. */
4358 		else if (stack_entry->object.vm_object == NULL ||
4359 		    vm_object_coalesce(stack_entry->object.vm_object,
4360 		    stack_entry->offset,
4361 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4362 		    grow_amount, cred != NULL)) {
4363 			if (gap_entry->start + grow_amount == gap_entry->end) {
4364 				vm_map_entry_delete(map, gap_entry);
4365 				vm_map_entry_resize(map, stack_entry,
4366 				    grow_amount);
4367 			} else {
4368 				gap_entry->start += grow_amount;
4369 				stack_entry->end += grow_amount;
4370 			}
4371 			map->size += grow_amount;
4372 			rv = KERN_SUCCESS;
4373 		} else
4374 			rv = KERN_FAILURE;
4375 	}
4376 	if (rv == KERN_SUCCESS && is_procstack)
4377 		vm->vm_ssize += btoc(grow_amount);
4378 
4379 	/*
4380 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4381 	 */
4382 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4383 		rv = vm_map_wire_locked(map, grow_start,
4384 		    grow_start + grow_amount,
4385 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4386 	}
4387 	vm_map_lock_downgrade(map);
4388 
4389 out:
4390 #ifdef RACCT
4391 	if (racct_enable && rv != KERN_SUCCESS) {
4392 		PROC_LOCK(p);
4393 		error = racct_set(p, RACCT_VMEM, map->size);
4394 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4395 		if (!old_mlock) {
4396 			error = racct_set(p, RACCT_MEMLOCK,
4397 			    ptoa(pmap_wired_count(map->pmap)));
4398 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4399 		}
4400 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4401 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4402 		PROC_UNLOCK(p);
4403 	}
4404 #endif
4405 
4406 	return (rv);
4407 }
4408 
4409 /*
4410  * Unshare the specified VM space for exec.  If other processes are
4411  * mapped to it, then create a new one.  The new vmspace is null.
4412  */
4413 int
4414 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4415 {
4416 	struct vmspace *oldvmspace = p->p_vmspace;
4417 	struct vmspace *newvmspace;
4418 
4419 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4420 	    ("vmspace_exec recursed"));
4421 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4422 	if (newvmspace == NULL)
4423 		return (ENOMEM);
4424 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4425 	/*
4426 	 * This code is written like this for prototype purposes.  The
4427 	 * goal is to avoid running down the vmspace here, but let the
4428 	 * other process's that are still using the vmspace to finally
4429 	 * run it down.  Even though there is little or no chance of blocking
4430 	 * here, it is a good idea to keep this form for future mods.
4431 	 */
4432 	PROC_VMSPACE_LOCK(p);
4433 	p->p_vmspace = newvmspace;
4434 	PROC_VMSPACE_UNLOCK(p);
4435 	if (p == curthread->td_proc)
4436 		pmap_activate(curthread);
4437 	curthread->td_pflags |= TDP_EXECVMSPC;
4438 	return (0);
4439 }
4440 
4441 /*
4442  * Unshare the specified VM space for forcing COW.  This
4443  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4444  */
4445 int
4446 vmspace_unshare(struct proc *p)
4447 {
4448 	struct vmspace *oldvmspace = p->p_vmspace;
4449 	struct vmspace *newvmspace;
4450 	vm_ooffset_t fork_charge;
4451 
4452 	if (oldvmspace->vm_refcnt == 1)
4453 		return (0);
4454 	fork_charge = 0;
4455 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4456 	if (newvmspace == NULL)
4457 		return (ENOMEM);
4458 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4459 		vmspace_free(newvmspace);
4460 		return (ENOMEM);
4461 	}
4462 	PROC_VMSPACE_LOCK(p);
4463 	p->p_vmspace = newvmspace;
4464 	PROC_VMSPACE_UNLOCK(p);
4465 	if (p == curthread->td_proc)
4466 		pmap_activate(curthread);
4467 	vmspace_free(oldvmspace);
4468 	return (0);
4469 }
4470 
4471 /*
4472  *	vm_map_lookup:
4473  *
4474  *	Finds the VM object, offset, and
4475  *	protection for a given virtual address in the
4476  *	specified map, assuming a page fault of the
4477  *	type specified.
4478  *
4479  *	Leaves the map in question locked for read; return
4480  *	values are guaranteed until a vm_map_lookup_done
4481  *	call is performed.  Note that the map argument
4482  *	is in/out; the returned map must be used in
4483  *	the call to vm_map_lookup_done.
4484  *
4485  *	A handle (out_entry) is returned for use in
4486  *	vm_map_lookup_done, to make that fast.
4487  *
4488  *	If a lookup is requested with "write protection"
4489  *	specified, the map may be changed to perform virtual
4490  *	copying operations, although the data referenced will
4491  *	remain the same.
4492  */
4493 int
4494 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4495 	      vm_offset_t vaddr,
4496 	      vm_prot_t fault_typea,
4497 	      vm_map_entry_t *out_entry,	/* OUT */
4498 	      vm_object_t *object,		/* OUT */
4499 	      vm_pindex_t *pindex,		/* OUT */
4500 	      vm_prot_t *out_prot,		/* OUT */
4501 	      boolean_t *wired)			/* OUT */
4502 {
4503 	vm_map_entry_t entry;
4504 	vm_map_t map = *var_map;
4505 	vm_prot_t prot;
4506 	vm_prot_t fault_type = fault_typea;
4507 	vm_object_t eobject;
4508 	vm_size_t size;
4509 	struct ucred *cred;
4510 
4511 RetryLookup:
4512 
4513 	vm_map_lock_read(map);
4514 
4515 RetryLookupLocked:
4516 	/*
4517 	 * Lookup the faulting address.
4518 	 */
4519 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4520 		vm_map_unlock_read(map);
4521 		return (KERN_INVALID_ADDRESS);
4522 	}
4523 
4524 	entry = *out_entry;
4525 
4526 	/*
4527 	 * Handle submaps.
4528 	 */
4529 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4530 		vm_map_t old_map = map;
4531 
4532 		*var_map = map = entry->object.sub_map;
4533 		vm_map_unlock_read(old_map);
4534 		goto RetryLookup;
4535 	}
4536 
4537 	/*
4538 	 * Check whether this task is allowed to have this page.
4539 	 */
4540 	prot = entry->protection;
4541 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4542 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4543 		if (prot == VM_PROT_NONE && map != kernel_map &&
4544 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4545 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4546 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4547 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4548 			goto RetryLookupLocked;
4549 	}
4550 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4551 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4552 		vm_map_unlock_read(map);
4553 		return (KERN_PROTECTION_FAILURE);
4554 	}
4555 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4556 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4557 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4558 	    ("entry %p flags %x", entry, entry->eflags));
4559 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4560 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4561 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4562 		vm_map_unlock_read(map);
4563 		return (KERN_PROTECTION_FAILURE);
4564 	}
4565 
4566 	/*
4567 	 * If this page is not pageable, we have to get it for all possible
4568 	 * accesses.
4569 	 */
4570 	*wired = (entry->wired_count != 0);
4571 	if (*wired)
4572 		fault_type = entry->protection;
4573 	size = entry->end - entry->start;
4574 	/*
4575 	 * If the entry was copy-on-write, we either ...
4576 	 */
4577 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4578 		/*
4579 		 * If we want to write the page, we may as well handle that
4580 		 * now since we've got the map locked.
4581 		 *
4582 		 * If we don't need to write the page, we just demote the
4583 		 * permissions allowed.
4584 		 */
4585 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4586 		    (fault_typea & VM_PROT_COPY) != 0) {
4587 			/*
4588 			 * Make a new object, and place it in the object
4589 			 * chain.  Note that no new references have appeared
4590 			 * -- one just moved from the map to the new
4591 			 * object.
4592 			 */
4593 			if (vm_map_lock_upgrade(map))
4594 				goto RetryLookup;
4595 
4596 			if (entry->cred == NULL) {
4597 				/*
4598 				 * The debugger owner is charged for
4599 				 * the memory.
4600 				 */
4601 				cred = curthread->td_ucred;
4602 				crhold(cred);
4603 				if (!swap_reserve_by_cred(size, cred)) {
4604 					crfree(cred);
4605 					vm_map_unlock(map);
4606 					return (KERN_RESOURCE_SHORTAGE);
4607 				}
4608 				entry->cred = cred;
4609 			}
4610 			vm_object_shadow(&entry->object.vm_object,
4611 			    &entry->offset, size);
4612 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4613 			eobject = entry->object.vm_object;
4614 			if (eobject->cred != NULL) {
4615 				/*
4616 				 * The object was not shadowed.
4617 				 */
4618 				swap_release_by_cred(size, entry->cred);
4619 				crfree(entry->cred);
4620 				entry->cred = NULL;
4621 			} else if (entry->cred != NULL) {
4622 				VM_OBJECT_WLOCK(eobject);
4623 				eobject->cred = entry->cred;
4624 				eobject->charge = size;
4625 				VM_OBJECT_WUNLOCK(eobject);
4626 				entry->cred = NULL;
4627 			}
4628 
4629 			vm_map_lock_downgrade(map);
4630 		} else {
4631 			/*
4632 			 * We're attempting to read a copy-on-write page --
4633 			 * don't allow writes.
4634 			 */
4635 			prot &= ~VM_PROT_WRITE;
4636 		}
4637 	}
4638 
4639 	/*
4640 	 * Create an object if necessary.
4641 	 */
4642 	if (entry->object.vm_object == NULL &&
4643 	    !map->system_map) {
4644 		if (vm_map_lock_upgrade(map))
4645 			goto RetryLookup;
4646 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4647 		    atop(size));
4648 		entry->offset = 0;
4649 		if (entry->cred != NULL) {
4650 			VM_OBJECT_WLOCK(entry->object.vm_object);
4651 			entry->object.vm_object->cred = entry->cred;
4652 			entry->object.vm_object->charge = size;
4653 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4654 			entry->cred = NULL;
4655 		}
4656 		vm_map_lock_downgrade(map);
4657 	}
4658 
4659 	/*
4660 	 * Return the object/offset from this entry.  If the entry was
4661 	 * copy-on-write or empty, it has been fixed up.
4662 	 */
4663 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4664 	*object = entry->object.vm_object;
4665 
4666 	*out_prot = prot;
4667 	return (KERN_SUCCESS);
4668 }
4669 
4670 /*
4671  *	vm_map_lookup_locked:
4672  *
4673  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4674  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4675  */
4676 int
4677 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4678 		     vm_offset_t vaddr,
4679 		     vm_prot_t fault_typea,
4680 		     vm_map_entry_t *out_entry,	/* OUT */
4681 		     vm_object_t *object,	/* OUT */
4682 		     vm_pindex_t *pindex,	/* OUT */
4683 		     vm_prot_t *out_prot,	/* OUT */
4684 		     boolean_t *wired)		/* OUT */
4685 {
4686 	vm_map_entry_t entry;
4687 	vm_map_t map = *var_map;
4688 	vm_prot_t prot;
4689 	vm_prot_t fault_type = fault_typea;
4690 
4691 	/*
4692 	 * Lookup the faulting address.
4693 	 */
4694 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4695 		return (KERN_INVALID_ADDRESS);
4696 
4697 	entry = *out_entry;
4698 
4699 	/*
4700 	 * Fail if the entry refers to a submap.
4701 	 */
4702 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4703 		return (KERN_FAILURE);
4704 
4705 	/*
4706 	 * Check whether this task is allowed to have this page.
4707 	 */
4708 	prot = entry->protection;
4709 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4710 	if ((fault_type & prot) != fault_type)
4711 		return (KERN_PROTECTION_FAILURE);
4712 
4713 	/*
4714 	 * If this page is not pageable, we have to get it for all possible
4715 	 * accesses.
4716 	 */
4717 	*wired = (entry->wired_count != 0);
4718 	if (*wired)
4719 		fault_type = entry->protection;
4720 
4721 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4722 		/*
4723 		 * Fail if the entry was copy-on-write for a write fault.
4724 		 */
4725 		if (fault_type & VM_PROT_WRITE)
4726 			return (KERN_FAILURE);
4727 		/*
4728 		 * We're attempting to read a copy-on-write page --
4729 		 * don't allow writes.
4730 		 */
4731 		prot &= ~VM_PROT_WRITE;
4732 	}
4733 
4734 	/*
4735 	 * Fail if an object should be created.
4736 	 */
4737 	if (entry->object.vm_object == NULL && !map->system_map)
4738 		return (KERN_FAILURE);
4739 
4740 	/*
4741 	 * Return the object/offset from this entry.  If the entry was
4742 	 * copy-on-write or empty, it has been fixed up.
4743 	 */
4744 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4745 	*object = entry->object.vm_object;
4746 
4747 	*out_prot = prot;
4748 	return (KERN_SUCCESS);
4749 }
4750 
4751 /*
4752  *	vm_map_lookup_done:
4753  *
4754  *	Releases locks acquired by a vm_map_lookup
4755  *	(according to the handle returned by that lookup).
4756  */
4757 void
4758 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4759 {
4760 	/*
4761 	 * Unlock the main-level map
4762 	 */
4763 	vm_map_unlock_read(map);
4764 }
4765 
4766 vm_offset_t
4767 vm_map_max_KBI(const struct vm_map *map)
4768 {
4769 
4770 	return (vm_map_max(map));
4771 }
4772 
4773 vm_offset_t
4774 vm_map_min_KBI(const struct vm_map *map)
4775 {
4776 
4777 	return (vm_map_min(map));
4778 }
4779 
4780 pmap_t
4781 vm_map_pmap_KBI(vm_map_t map)
4782 {
4783 
4784 	return (map->pmap);
4785 }
4786 
4787 #ifdef INVARIANTS
4788 static void
4789 _vm_map_assert_consistent(vm_map_t map)
4790 {
4791 	vm_map_entry_t entry, prev;
4792 	vm_size_t max_left, max_right;
4793 
4794 	if (!enable_vmmap_check)
4795 		return;
4796 
4797 	prev = &map->header;
4798 	VM_MAP_ENTRY_FOREACH(entry, map) {
4799 		KASSERT(prev->end <= entry->start,
4800 		    ("map %p prev->end = %jx, start = %jx", map,
4801 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
4802 		KASSERT(entry->start < entry->end,
4803 		    ("map %p start = %jx, end = %jx", map,
4804 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
4805 		KASSERT(entry->end <= entry->next->start,
4806 		    ("map %p end = %jx, next->start = %jx", map,
4807 		    (uintmax_t)entry->end, (uintmax_t)entry->next->start));
4808 		KASSERT(entry->left == NULL ||
4809 		    entry->left->start < entry->start,
4810 		    ("map %p left->start = %jx, start = %jx", map,
4811 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
4812 		KASSERT(entry->right == NULL ||
4813 		    entry->start < entry->right->start,
4814 		    ("map %p start = %jx, right->start = %jx", map,
4815 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
4816 		max_left = vm_map_entry_max_free_left(entry, entry->prev);
4817 		max_right = vm_map_entry_max_free_right(entry, entry->next);
4818 		KASSERT(entry->max_free == MAX(max_left, max_right),
4819 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
4820 		    (uintmax_t)entry->max_free,
4821 		    (uintmax_t)max_left, (uintmax_t)max_right));
4822 		prev = entry;
4823 	}
4824 	KASSERT(prev->end <= entry->start,
4825 	    ("map %p prev->end = %jx, start = %jx", map,
4826 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
4827 }
4828 #endif
4829 
4830 #include "opt_ddb.h"
4831 #ifdef DDB
4832 #include <sys/kernel.h>
4833 
4834 #include <ddb/ddb.h>
4835 
4836 static void
4837 vm_map_print(vm_map_t map)
4838 {
4839 	vm_map_entry_t entry, prev;
4840 
4841 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4842 	    (void *)map,
4843 	    (void *)map->pmap, map->nentries, map->timestamp);
4844 
4845 	db_indent += 2;
4846 	prev = &map->header;
4847 	VM_MAP_ENTRY_FOREACH(entry, map) {
4848 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4849 		    (void *)entry, (void *)entry->start, (void *)entry->end,
4850 		    entry->eflags);
4851 		{
4852 			static char *inheritance_name[4] =
4853 			{"share", "copy", "none", "donate_copy"};
4854 
4855 			db_iprintf(" prot=%x/%x/%s",
4856 			    entry->protection,
4857 			    entry->max_protection,
4858 			    inheritance_name[(int)(unsigned char)
4859 			    entry->inheritance]);
4860 			if (entry->wired_count != 0)
4861 				db_printf(", wired");
4862 		}
4863 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4864 			db_printf(", share=%p, offset=0x%jx\n",
4865 			    (void *)entry->object.sub_map,
4866 			    (uintmax_t)entry->offset);
4867 			if (prev == &map->header ||
4868 			    prev->object.sub_map !=
4869 				entry->object.sub_map) {
4870 				db_indent += 2;
4871 				vm_map_print((vm_map_t)entry->object.sub_map);
4872 				db_indent -= 2;
4873 			}
4874 		} else {
4875 			if (entry->cred != NULL)
4876 				db_printf(", ruid %d", entry->cred->cr_ruid);
4877 			db_printf(", object=%p, offset=0x%jx",
4878 			    (void *)entry->object.vm_object,
4879 			    (uintmax_t)entry->offset);
4880 			if (entry->object.vm_object && entry->object.vm_object->cred)
4881 				db_printf(", obj ruid %d charge %jx",
4882 				    entry->object.vm_object->cred->cr_ruid,
4883 				    (uintmax_t)entry->object.vm_object->charge);
4884 			if (entry->eflags & MAP_ENTRY_COW)
4885 				db_printf(", copy (%s)",
4886 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4887 			db_printf("\n");
4888 
4889 			if (prev == &map->header ||
4890 			    prev->object.vm_object !=
4891 				entry->object.vm_object) {
4892 				db_indent += 2;
4893 				vm_object_print((db_expr_t)(intptr_t)
4894 						entry->object.vm_object,
4895 						0, 0, (char *)0);
4896 				db_indent -= 2;
4897 			}
4898 		}
4899 		prev = entry;
4900 	}
4901 	db_indent -= 2;
4902 }
4903 
4904 DB_SHOW_COMMAND(map, map)
4905 {
4906 
4907 	if (!have_addr) {
4908 		db_printf("usage: show map <addr>\n");
4909 		return;
4910 	}
4911 	vm_map_print((vm_map_t)addr);
4912 }
4913 
4914 DB_SHOW_COMMAND(procvm, procvm)
4915 {
4916 	struct proc *p;
4917 
4918 	if (have_addr) {
4919 		p = db_lookup_proc(addr);
4920 	} else {
4921 		p = curproc;
4922 	}
4923 
4924 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4925 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4926 	    (void *)vmspace_pmap(p->p_vmspace));
4927 
4928 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4929 }
4930 
4931 #endif /* DDB */
4932