1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $Id: vm_map.c,v 1.162 1999/05/16 05:07:31 alc Exp $ 65 */ 66 67 /* 68 * Virtual memory mapping module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/malloc.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/resourcevar.h> 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_prot.h> 83 #include <vm/vm_inherit.h> 84 #include <sys/lock.h> 85 #include <vm/pmap.h> 86 #include <vm/vm_map.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_object.h> 89 #include <vm/vm_pager.h> 90 #include <vm/vm_kern.h> 91 #include <vm/vm_extern.h> 92 #include <vm/default_pager.h> 93 #include <vm/swap_pager.h> 94 #include <vm/vm_zone.h> 95 96 /* 97 * Virtual memory maps provide for the mapping, protection, 98 * and sharing of virtual memory objects. In addition, 99 * this module provides for an efficient virtual copy of 100 * memory from one map to another. 101 * 102 * Synchronization is required prior to most operations. 103 * 104 * Maps consist of an ordered doubly-linked list of simple 105 * entries; a single hint is used to speed up lookups. 106 * 107 * Since portions of maps are specified by start/end addreses, 108 * which may not align with existing map entries, all 109 * routines merely "clip" entries to these start/end values. 110 * [That is, an entry is split into two, bordering at a 111 * start or end value.] Note that these clippings may not 112 * always be necessary (as the two resulting entries are then 113 * not changed); however, the clipping is done for convenience. 114 * 115 * As mentioned above, virtual copy operations are performed 116 * by copying VM object references from one map to 117 * another, and then marking both regions as copy-on-write. 118 */ 119 120 /* 121 * vm_map_startup: 122 * 123 * Initialize the vm_map module. Must be called before 124 * any other vm_map routines. 125 * 126 * Map and entry structures are allocated from the general 127 * purpose memory pool with some exceptions: 128 * 129 * - The kernel map and kmem submap are allocated statically. 130 * - Kernel map entries are allocated out of a static pool. 131 * 132 * These restrictions are necessary since malloc() uses the 133 * maps and requires map entries. 134 */ 135 136 extern char kstack[]; 137 extern int inmprotect; 138 139 static struct vm_zone kmapentzone_store, mapentzone_store, mapzone_store; 140 static vm_zone_t mapentzone, kmapentzone, mapzone, vmspace_zone; 141 static struct vm_object kmapentobj, mapentobj, mapobj; 142 #define MAP_ENTRY_INIT 128 143 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 144 static struct vm_map_entry kmap_entry_init[MAX_KMAPENT]; 145 static struct vm_map map_init[MAX_KMAP]; 146 147 static void _vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 148 static void _vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 149 static vm_map_entry_t vm_map_entry_create __P((vm_map_t)); 150 static void vm_map_entry_delete __P((vm_map_t, vm_map_entry_t)); 151 static void vm_map_entry_dispose __P((vm_map_t, vm_map_entry_t)); 152 static void vm_map_entry_unwire __P((vm_map_t, vm_map_entry_t)); 153 static void vm_map_copy_entry __P((vm_map_t, vm_map_t, vm_map_entry_t, 154 vm_map_entry_t)); 155 static void vm_map_split __P((vm_map_entry_t)); 156 157 void 158 vm_map_startup() 159 { 160 mapzone = &mapzone_store; 161 zbootinit(mapzone, "MAP", sizeof (struct vm_map), 162 map_init, MAX_KMAP); 163 kmapentzone = &kmapentzone_store; 164 zbootinit(kmapentzone, "KMAP ENTRY", sizeof (struct vm_map_entry), 165 kmap_entry_init, MAX_KMAPENT); 166 mapentzone = &mapentzone_store; 167 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 168 map_entry_init, MAX_MAPENT); 169 } 170 171 /* 172 * Allocate a vmspace structure, including a vm_map and pmap, 173 * and initialize those structures. The refcnt is set to 1. 174 * The remaining fields must be initialized by the caller. 175 */ 176 struct vmspace * 177 vmspace_alloc(min, max) 178 vm_offset_t min, max; 179 { 180 struct vmspace *vm; 181 182 vm = zalloc(vmspace_zone); 183 bzero(&vm->vm_map, sizeof vm->vm_map); 184 vm_map_init(&vm->vm_map, min, max); 185 pmap_pinit(vmspace_pmap(vm)); 186 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 187 vm->vm_refcnt = 1; 188 vm->vm_shm = NULL; 189 return (vm); 190 } 191 192 void 193 vm_init2(void) { 194 zinitna(kmapentzone, &kmapentobj, 195 NULL, 0, cnt.v_page_count / 4, ZONE_INTERRUPT, 1); 196 zinitna(mapentzone, &mapentobj, 197 NULL, 0, 0, 0, 1); 198 zinitna(mapzone, &mapobj, 199 NULL, 0, 0, 0, 1); 200 vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3); 201 pmap_init2(); 202 vm_object_init2(); 203 } 204 205 void 206 vmspace_free(vm) 207 struct vmspace *vm; 208 { 209 210 if (vm->vm_refcnt == 0) 211 panic("vmspace_free: attempt to free already freed vmspace"); 212 213 if (--vm->vm_refcnt == 0) { 214 215 /* 216 * Lock the map, to wait out all other references to it. 217 * Delete all of the mappings and pages they hold, then call 218 * the pmap module to reclaim anything left. 219 */ 220 vm_map_lock(&vm->vm_map); 221 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 222 vm->vm_map.max_offset); 223 vm_map_unlock(&vm->vm_map); 224 225 pmap_release(vmspace_pmap(vm)); 226 zfree(vmspace_zone, vm); 227 } 228 } 229 230 /* 231 * vm_map_create: 232 * 233 * Creates and returns a new empty VM map with 234 * the given physical map structure, and having 235 * the given lower and upper address bounds. 236 */ 237 vm_map_t 238 vm_map_create(pmap, min, max) 239 pmap_t pmap; 240 vm_offset_t min, max; 241 { 242 vm_map_t result; 243 244 result = zalloc(mapzone); 245 vm_map_init(result, min, max); 246 result->pmap = pmap; 247 return (result); 248 } 249 250 /* 251 * Initialize an existing vm_map structure 252 * such as that in the vmspace structure. 253 * The pmap is set elsewhere. 254 */ 255 void 256 vm_map_init(map, min, max) 257 struct vm_map *map; 258 vm_offset_t min, max; 259 { 260 map->header.next = map->header.prev = &map->header; 261 map->nentries = 0; 262 map->size = 0; 263 map->system_map = 0; 264 map->min_offset = min; 265 map->max_offset = max; 266 map->first_free = &map->header; 267 map->hint = &map->header; 268 map->timestamp = 0; 269 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); 270 } 271 272 /* 273 * vm_map_entry_dispose: [ internal use only ] 274 * 275 * Inverse of vm_map_entry_create. 276 */ 277 static void 278 vm_map_entry_dispose(map, entry) 279 vm_map_t map; 280 vm_map_entry_t entry; 281 { 282 zfree((map->system_map || !mapentzone) ? kmapentzone : mapentzone, entry); 283 } 284 285 /* 286 * vm_map_entry_create: [ internal use only ] 287 * 288 * Allocates a VM map entry for insertion. 289 * No entry fields are filled in. This routine is 290 */ 291 static vm_map_entry_t 292 vm_map_entry_create(map) 293 vm_map_t map; 294 { 295 return zalloc((map->system_map || !mapentzone) ? kmapentzone : mapentzone); 296 } 297 298 /* 299 * vm_map_entry_{un,}link: 300 * 301 * Insert/remove entries from maps. 302 */ 303 static __inline void 304 vm_map_entry_link(vm_map_t map, 305 vm_map_entry_t after_where, 306 vm_map_entry_t entry) 307 { 308 map->nentries++; 309 entry->prev = after_where; 310 entry->next = after_where->next; 311 entry->next->prev = entry; 312 after_where->next = entry; 313 } 314 315 static __inline void 316 vm_map_entry_unlink(vm_map_t map, 317 vm_map_entry_t entry) 318 { 319 vm_map_entry_t prev = entry->prev; 320 vm_map_entry_t next = entry->next; 321 322 next->prev = prev; 323 prev->next = next; 324 map->nentries--; 325 } 326 327 /* 328 * SAVE_HINT: 329 * 330 * Saves the specified entry as the hint for 331 * future lookups. 332 */ 333 #define SAVE_HINT(map,value) \ 334 (map)->hint = (value); 335 336 /* 337 * vm_map_lookup_entry: [ internal use only ] 338 * 339 * Finds the map entry containing (or 340 * immediately preceding) the specified address 341 * in the given map; the entry is returned 342 * in the "entry" parameter. The boolean 343 * result indicates whether the address is 344 * actually contained in the map. 345 */ 346 boolean_t 347 vm_map_lookup_entry(map, address, entry) 348 vm_map_t map; 349 vm_offset_t address; 350 vm_map_entry_t *entry; /* OUT */ 351 { 352 vm_map_entry_t cur; 353 vm_map_entry_t last; 354 355 /* 356 * Start looking either from the head of the list, or from the hint. 357 */ 358 359 cur = map->hint; 360 361 if (cur == &map->header) 362 cur = cur->next; 363 364 if (address >= cur->start) { 365 /* 366 * Go from hint to end of list. 367 * 368 * But first, make a quick check to see if we are already looking 369 * at the entry we want (which is usually the case). Note also 370 * that we don't need to save the hint here... it is the same 371 * hint (unless we are at the header, in which case the hint 372 * didn't buy us anything anyway). 373 */ 374 last = &map->header; 375 if ((cur != last) && (cur->end > address)) { 376 *entry = cur; 377 return (TRUE); 378 } 379 } else { 380 /* 381 * Go from start to hint, *inclusively* 382 */ 383 last = cur->next; 384 cur = map->header.next; 385 } 386 387 /* 388 * Search linearly 389 */ 390 391 while (cur != last) { 392 if (cur->end > address) { 393 if (address >= cur->start) { 394 /* 395 * Save this lookup for future hints, and 396 * return 397 */ 398 399 *entry = cur; 400 SAVE_HINT(map, cur); 401 return (TRUE); 402 } 403 break; 404 } 405 cur = cur->next; 406 } 407 *entry = cur->prev; 408 SAVE_HINT(map, *entry); 409 return (FALSE); 410 } 411 412 /* 413 * vm_map_insert: 414 * 415 * Inserts the given whole VM object into the target 416 * map at the specified address range. The object's 417 * size should match that of the address range. 418 * 419 * Requires that the map be locked, and leaves it so. 420 * 421 * If object is non-NULL, ref count must be bumped by caller 422 * prior to making call to account for the new entry. 423 */ 424 int 425 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 426 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 427 int cow) 428 { 429 vm_map_entry_t new_entry; 430 vm_map_entry_t prev_entry; 431 vm_map_entry_t temp_entry; 432 u_char protoeflags; 433 434 if ((object != NULL) && (cow & MAP_NOFAULT)) { 435 panic("vm_map_insert: paradoxical MAP_NOFAULT request"); 436 } 437 438 /* 439 * Check that the start and end points are not bogus. 440 */ 441 442 if ((start < map->min_offset) || (end > map->max_offset) || 443 (start >= end)) 444 return (KERN_INVALID_ADDRESS); 445 446 /* 447 * Find the entry prior to the proposed starting address; if it's part 448 * of an existing entry, this range is bogus. 449 */ 450 451 if (vm_map_lookup_entry(map, start, &temp_entry)) 452 return (KERN_NO_SPACE); 453 454 prev_entry = temp_entry; 455 456 /* 457 * Assert that the next entry doesn't overlap the end point. 458 */ 459 460 if ((prev_entry->next != &map->header) && 461 (prev_entry->next->start < end)) 462 return (KERN_NO_SPACE); 463 464 protoeflags = 0; 465 466 if (cow & MAP_COPY_ON_WRITE) 467 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 468 469 if (cow & MAP_NOFAULT) 470 protoeflags |= MAP_ENTRY_NOFAULT; 471 472 if (object) { 473 /* 474 * When object is non-NULL, it could be shared with another 475 * process. We have to set or clear OBJ_ONEMAPPING 476 * appropriately. 477 */ 478 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 479 vm_object_clear_flag(object, OBJ_ONEMAPPING); 480 } else { 481 vm_object_set_flag(object, OBJ_ONEMAPPING); 482 } 483 } else if ( 484 (prev_entry != &map->header) && 485 ((prev_entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) && 486 ((prev_entry->object.vm_object == NULL) || 487 (prev_entry->object.vm_object->type == OBJT_DEFAULT) || 488 (prev_entry->object.vm_object->type == OBJT_SWAP)) && 489 (prev_entry->end == start) && 490 (prev_entry->wired_count == 0) 491 ) { 492 if ((protoeflags == prev_entry->eflags) && 493 ((cow & MAP_NOFAULT) || 494 vm_object_coalesce(prev_entry->object.vm_object, 495 OFF_TO_IDX(prev_entry->offset), 496 (vm_size_t) (prev_entry->end - prev_entry->start), 497 (vm_size_t) (end - prev_entry->end)))) { 498 499 /* 500 * We were able to extend the object. Determine if we 501 * can extend the previous map entry to include the 502 * new range as well. 503 */ 504 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 505 (prev_entry->protection == prot) && 506 (prev_entry->max_protection == max)) { 507 508 map->size += (end - prev_entry->end); 509 prev_entry->end = end; 510 return (KERN_SUCCESS); 511 } 512 513 /* 514 * If we can extend the object but cannot extend the 515 * map entry, we have to create a new map entry. We 516 * must bump the ref count on the extended object to 517 * account for it. 518 */ 519 object = prev_entry->object.vm_object; 520 offset = prev_entry->offset + 521 (prev_entry->end - prev_entry->start); 522 vm_object_reference(object); 523 } 524 } 525 526 /* 527 * NOTE: if conditionals fail, object can be NULL here. This occurs 528 * in things like the buffer map where we manage kva but do not manage 529 * backing objects. 530 */ 531 532 /* 533 * Create a new entry 534 */ 535 536 new_entry = vm_map_entry_create(map); 537 new_entry->start = start; 538 new_entry->end = end; 539 540 new_entry->eflags = protoeflags; 541 new_entry->object.vm_object = object; 542 new_entry->offset = offset; 543 new_entry->avail_ssize = 0; 544 545 new_entry->inheritance = VM_INHERIT_DEFAULT; 546 new_entry->protection = prot; 547 new_entry->max_protection = max; 548 new_entry->wired_count = 0; 549 550 /* 551 * Insert the new entry into the list 552 */ 553 554 vm_map_entry_link(map, prev_entry, new_entry); 555 map->size += new_entry->end - new_entry->start; 556 557 /* 558 * Update the free space hint 559 */ 560 if ((map->first_free == prev_entry) && 561 (prev_entry->end >= new_entry->start)) 562 map->first_free = new_entry; 563 564 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) 565 pmap_object_init_pt(map->pmap, start, 566 object, OFF_TO_IDX(offset), end - start, 567 cow & MAP_PREFAULT_PARTIAL); 568 569 return (KERN_SUCCESS); 570 } 571 572 int 573 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 574 vm_prot_t prot, vm_prot_t max, int cow) 575 { 576 vm_map_entry_t prev_entry; 577 vm_map_entry_t new_stack_entry; 578 vm_size_t init_ssize; 579 int rv; 580 581 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS) 582 return (KERN_NO_SPACE); 583 584 if (max_ssize < SGROWSIZ) 585 init_ssize = max_ssize; 586 else 587 init_ssize = SGROWSIZ; 588 589 vm_map_lock(map); 590 591 /* If addr is already mapped, no go */ 592 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 593 vm_map_unlock(map); 594 return (KERN_NO_SPACE); 595 } 596 597 /* If we can't accomodate max_ssize in the current mapping, 598 * no go. However, we need to be aware that subsequent user 599 * mappings might map into the space we have reserved for 600 * stack, and currently this space is not protected. 601 * 602 * Hopefully we will at least detect this condition 603 * when we try to grow the stack. 604 */ 605 if ((prev_entry->next != &map->header) && 606 (prev_entry->next->start < addrbos + max_ssize)) { 607 vm_map_unlock(map); 608 return (KERN_NO_SPACE); 609 } 610 611 /* We initially map a stack of only init_ssize. We will 612 * grow as needed later. Since this is to be a grow 613 * down stack, we map at the top of the range. 614 * 615 * Note: we would normally expect prot and max to be 616 * VM_PROT_ALL, and cow to be 0. Possibly we should 617 * eliminate these as input parameters, and just 618 * pass these values here in the insert call. 619 */ 620 rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize, 621 addrbos + max_ssize, prot, max, cow); 622 623 /* Now set the avail_ssize amount */ 624 if (rv == KERN_SUCCESS){ 625 new_stack_entry = prev_entry->next; 626 if (new_stack_entry->end != addrbos + max_ssize || 627 new_stack_entry->start != addrbos + max_ssize - init_ssize) 628 panic ("Bad entry start/end for new stack entry"); 629 else 630 new_stack_entry->avail_ssize = max_ssize - init_ssize; 631 } 632 633 vm_map_unlock(map); 634 return (rv); 635 } 636 637 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 638 * desired address is already mapped, or if we successfully grow 639 * the stack. Also returns KERN_SUCCESS if addr is outside the 640 * stack range (this is strange, but preserves compatibility with 641 * the grow function in vm_machdep.c). 642 */ 643 int 644 vm_map_growstack (struct proc *p, vm_offset_t addr) 645 { 646 vm_map_entry_t prev_entry; 647 vm_map_entry_t stack_entry; 648 vm_map_entry_t new_stack_entry; 649 struct vmspace *vm = p->p_vmspace; 650 vm_map_t map = &vm->vm_map; 651 vm_offset_t end; 652 int grow_amount; 653 int rv; 654 int is_procstack; 655 Retry: 656 vm_map_lock_read(map); 657 658 /* If addr is already in the entry range, no need to grow.*/ 659 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 660 vm_map_unlock_read(map); 661 return (KERN_SUCCESS); 662 } 663 664 if ((stack_entry = prev_entry->next) == &map->header) { 665 vm_map_unlock_read(map); 666 return (KERN_SUCCESS); 667 } 668 if (prev_entry == &map->header) 669 end = stack_entry->start - stack_entry->avail_ssize; 670 else 671 end = prev_entry->end; 672 673 /* This next test mimics the old grow function in vm_machdep.c. 674 * It really doesn't quite make sense, but we do it anyway 675 * for compatibility. 676 * 677 * If not growable stack, return success. This signals the 678 * caller to proceed as he would normally with normal vm. 679 */ 680 if (stack_entry->avail_ssize < 1 || 681 addr >= stack_entry->start || 682 addr < stack_entry->start - stack_entry->avail_ssize) { 683 vm_map_unlock_read(map); 684 return (KERN_SUCCESS); 685 } 686 687 /* Find the minimum grow amount */ 688 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 689 if (grow_amount > stack_entry->avail_ssize) { 690 vm_map_unlock_read(map); 691 return (KERN_NO_SPACE); 692 } 693 694 /* If there is no longer enough space between the entries 695 * nogo, and adjust the available space. Note: this 696 * should only happen if the user has mapped into the 697 * stack area after the stack was created, and is 698 * probably an error. 699 * 700 * This also effectively destroys any guard page the user 701 * might have intended by limiting the stack size. 702 */ 703 if (grow_amount > stack_entry->start - end) { 704 if (vm_map_lock_upgrade(map)) 705 goto Retry; 706 707 stack_entry->avail_ssize = stack_entry->start - end; 708 709 vm_map_unlock(map); 710 return (KERN_NO_SPACE); 711 } 712 713 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 714 715 /* If this is the main process stack, see if we're over the 716 * stack limit. 717 */ 718 if (is_procstack && (vm->vm_ssize + grow_amount > 719 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 720 vm_map_unlock_read(map); 721 return (KERN_NO_SPACE); 722 } 723 724 /* Round up the grow amount modulo SGROWSIZ */ 725 grow_amount = roundup (grow_amount, SGROWSIZ); 726 if (grow_amount > stack_entry->avail_ssize) { 727 grow_amount = stack_entry->avail_ssize; 728 } 729 if (is_procstack && (vm->vm_ssize + grow_amount > 730 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 731 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 732 vm->vm_ssize; 733 } 734 735 if (vm_map_lock_upgrade(map)) 736 goto Retry; 737 738 /* Get the preliminary new entry start value */ 739 addr = stack_entry->start - grow_amount; 740 741 /* If this puts us into the previous entry, cut back our growth 742 * to the available space. Also, see the note above. 743 */ 744 if (addr < end) { 745 stack_entry->avail_ssize = stack_entry->start - end; 746 addr = end; 747 } 748 749 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 750 stack_entry->protection, 751 stack_entry->max_protection, 752 0); 753 754 /* Adjust the available stack space by the amount we grew. */ 755 if (rv == KERN_SUCCESS) { 756 new_stack_entry = prev_entry->next; 757 if (new_stack_entry->end != stack_entry->start || 758 new_stack_entry->start != addr) 759 panic ("Bad stack grow start/end in new stack entry"); 760 else { 761 new_stack_entry->avail_ssize = stack_entry->avail_ssize - 762 (new_stack_entry->end - 763 new_stack_entry->start); 764 if (is_procstack) 765 vm->vm_ssize += new_stack_entry->end - 766 new_stack_entry->start; 767 } 768 } 769 770 vm_map_unlock(map); 771 return (rv); 772 773 } 774 775 /* 776 * Find sufficient space for `length' bytes in the given map, starting at 777 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 778 */ 779 int 780 vm_map_findspace(map, start, length, addr) 781 vm_map_t map; 782 vm_offset_t start; 783 vm_size_t length; 784 vm_offset_t *addr; 785 { 786 vm_map_entry_t entry, next; 787 vm_offset_t end; 788 789 if (start < map->min_offset) 790 start = map->min_offset; 791 if (start > map->max_offset) 792 return (1); 793 794 /* 795 * Look for the first possible address; if there's already something 796 * at this address, we have to start after it. 797 */ 798 if (start == map->min_offset) { 799 if ((entry = map->first_free) != &map->header) 800 start = entry->end; 801 } else { 802 vm_map_entry_t tmp; 803 804 if (vm_map_lookup_entry(map, start, &tmp)) 805 start = tmp->end; 806 entry = tmp; 807 } 808 809 /* 810 * Look through the rest of the map, trying to fit a new region in the 811 * gap between existing regions, or after the very last region. 812 */ 813 for (;; start = (entry = next)->end) { 814 /* 815 * Find the end of the proposed new region. Be sure we didn't 816 * go beyond the end of the map, or wrap around the address; 817 * if so, we lose. Otherwise, if this is the last entry, or 818 * if the proposed new region fits before the next entry, we 819 * win. 820 */ 821 end = start + length; 822 if (end > map->max_offset || end < start) 823 return (1); 824 next = entry->next; 825 if (next == &map->header || next->start >= end) 826 break; 827 } 828 SAVE_HINT(map, entry); 829 *addr = start; 830 if (map == kernel_map) { 831 vm_offset_t ksize; 832 if ((ksize = round_page(start + length)) > kernel_vm_end) { 833 pmap_growkernel(ksize); 834 } 835 } 836 return (0); 837 } 838 839 /* 840 * vm_map_find finds an unallocated region in the target address 841 * map with the given length. The search is defined to be 842 * first-fit from the specified address; the region found is 843 * returned in the same parameter. 844 * 845 * If object is non-NULL, ref count must be bumped by caller 846 * prior to making call to account for the new entry. 847 */ 848 int 849 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 850 vm_offset_t *addr, /* IN/OUT */ 851 vm_size_t length, boolean_t find_space, vm_prot_t prot, 852 vm_prot_t max, int cow) 853 { 854 vm_offset_t start; 855 int result, s = 0; 856 857 start = *addr; 858 859 if (map == kmem_map || map == mb_map) 860 s = splvm(); 861 862 vm_map_lock(map); 863 if (find_space) { 864 if (vm_map_findspace(map, start, length, addr)) { 865 vm_map_unlock(map); 866 if (map == kmem_map || map == mb_map) 867 splx(s); 868 return (KERN_NO_SPACE); 869 } 870 start = *addr; 871 } 872 result = vm_map_insert(map, object, offset, 873 start, start + length, prot, max, cow); 874 vm_map_unlock(map); 875 876 if (map == kmem_map || map == mb_map) 877 splx(s); 878 879 return (result); 880 } 881 882 /* 883 * vm_map_simplify_entry: 884 * 885 * Simplify the given map entry by merging with either neighbor. 886 */ 887 void 888 vm_map_simplify_entry(map, entry) 889 vm_map_t map; 890 vm_map_entry_t entry; 891 { 892 vm_map_entry_t next, prev; 893 vm_size_t prevsize, esize; 894 895 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 896 return; 897 898 prev = entry->prev; 899 if (prev != &map->header) { 900 prevsize = prev->end - prev->start; 901 if ( (prev->end == entry->start) && 902 (prev->object.vm_object == entry->object.vm_object) && 903 (!prev->object.vm_object || 904 (prev->offset + prevsize == entry->offset)) && 905 (prev->eflags == entry->eflags) && 906 (prev->protection == entry->protection) && 907 (prev->max_protection == entry->max_protection) && 908 (prev->inheritance == entry->inheritance) && 909 (prev->wired_count == entry->wired_count)) { 910 if (map->first_free == prev) 911 map->first_free = entry; 912 if (map->hint == prev) 913 map->hint = entry; 914 vm_map_entry_unlink(map, prev); 915 entry->start = prev->start; 916 entry->offset = prev->offset; 917 if (prev->object.vm_object) 918 vm_object_deallocate(prev->object.vm_object); 919 vm_map_entry_dispose(map, prev); 920 } 921 } 922 923 next = entry->next; 924 if (next != &map->header) { 925 esize = entry->end - entry->start; 926 if ((entry->end == next->start) && 927 (next->object.vm_object == entry->object.vm_object) && 928 (!entry->object.vm_object || 929 (entry->offset + esize == next->offset)) && 930 (next->eflags == entry->eflags) && 931 (next->protection == entry->protection) && 932 (next->max_protection == entry->max_protection) && 933 (next->inheritance == entry->inheritance) && 934 (next->wired_count == entry->wired_count)) { 935 if (map->first_free == next) 936 map->first_free = entry; 937 if (map->hint == next) 938 map->hint = entry; 939 vm_map_entry_unlink(map, next); 940 entry->end = next->end; 941 if (next->object.vm_object) 942 vm_object_deallocate(next->object.vm_object); 943 vm_map_entry_dispose(map, next); 944 } 945 } 946 } 947 /* 948 * vm_map_clip_start: [ internal use only ] 949 * 950 * Asserts that the given entry begins at or after 951 * the specified address; if necessary, 952 * it splits the entry into two. 953 */ 954 #define vm_map_clip_start(map, entry, startaddr) \ 955 { \ 956 if (startaddr > entry->start) \ 957 _vm_map_clip_start(map, entry, startaddr); \ 958 else if (entry->object.vm_object && (entry->object.vm_object->ref_count == 1)) \ 959 vm_object_set_flag(entry->object.vm_object, OBJ_ONEMAPPING); \ 960 } 961 962 /* 963 * This routine is called only when it is known that 964 * the entry must be split. 965 */ 966 static void 967 _vm_map_clip_start(map, entry, start) 968 vm_map_t map; 969 vm_map_entry_t entry; 970 vm_offset_t start; 971 { 972 vm_map_entry_t new_entry; 973 974 /* 975 * Split off the front portion -- note that we must insert the new 976 * entry BEFORE this one, so that this entry has the specified 977 * starting address. 978 */ 979 980 vm_map_simplify_entry(map, entry); 981 982 /* 983 * If there is no object backing this entry, we might as well create 984 * one now. If we defer it, an object can get created after the map 985 * is clipped, and individual objects will be created for the split-up 986 * map. This is a bit of a hack, but is also about the best place to 987 * put this improvement. 988 */ 989 990 if (entry->object.vm_object == NULL) { 991 vm_object_t object; 992 object = vm_object_allocate(OBJT_DEFAULT, 993 atop(entry->end - entry->start)); 994 entry->object.vm_object = object; 995 entry->offset = 0; 996 } 997 998 new_entry = vm_map_entry_create(map); 999 *new_entry = *entry; 1000 1001 new_entry->end = start; 1002 entry->offset += (start - entry->start); 1003 entry->start = start; 1004 1005 vm_map_entry_link(map, entry->prev, new_entry); 1006 1007 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1008 if (new_entry->object.vm_object->ref_count == 1) 1009 vm_object_set_flag(new_entry->object.vm_object, 1010 OBJ_ONEMAPPING); 1011 vm_object_reference(new_entry->object.vm_object); 1012 } 1013 } 1014 1015 /* 1016 * vm_map_clip_end: [ internal use only ] 1017 * 1018 * Asserts that the given entry ends at or before 1019 * the specified address; if necessary, 1020 * it splits the entry into two. 1021 */ 1022 1023 #define vm_map_clip_end(map, entry, endaddr) \ 1024 { \ 1025 if (endaddr < entry->end) \ 1026 _vm_map_clip_end(map, entry, endaddr); \ 1027 else if (entry->object.vm_object && (entry->object.vm_object->ref_count == 1)) \ 1028 vm_object_set_flag(entry->object.vm_object, OBJ_ONEMAPPING); \ 1029 } 1030 1031 /* 1032 * This routine is called only when it is known that 1033 * the entry must be split. 1034 */ 1035 static void 1036 _vm_map_clip_end(map, entry, end) 1037 vm_map_t map; 1038 vm_map_entry_t entry; 1039 vm_offset_t end; 1040 { 1041 vm_map_entry_t new_entry; 1042 1043 /* 1044 * If there is no object backing this entry, we might as well create 1045 * one now. If we defer it, an object can get created after the map 1046 * is clipped, and individual objects will be created for the split-up 1047 * map. This is a bit of a hack, but is also about the best place to 1048 * put this improvement. 1049 */ 1050 1051 if (entry->object.vm_object == NULL) { 1052 vm_object_t object; 1053 object = vm_object_allocate(OBJT_DEFAULT, 1054 atop(entry->end - entry->start)); 1055 entry->object.vm_object = object; 1056 entry->offset = 0; 1057 } 1058 1059 /* 1060 * Create a new entry and insert it AFTER the specified entry 1061 */ 1062 1063 new_entry = vm_map_entry_create(map); 1064 *new_entry = *entry; 1065 1066 new_entry->start = entry->end = end; 1067 new_entry->offset += (end - entry->start); 1068 1069 vm_map_entry_link(map, entry, new_entry); 1070 1071 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1072 if (new_entry->object.vm_object->ref_count == 1) 1073 vm_object_set_flag(new_entry->object.vm_object, 1074 OBJ_ONEMAPPING); 1075 vm_object_reference(new_entry->object.vm_object); 1076 } 1077 } 1078 1079 /* 1080 * VM_MAP_RANGE_CHECK: [ internal use only ] 1081 * 1082 * Asserts that the starting and ending region 1083 * addresses fall within the valid range of the map. 1084 */ 1085 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1086 { \ 1087 if (start < vm_map_min(map)) \ 1088 start = vm_map_min(map); \ 1089 if (end > vm_map_max(map)) \ 1090 end = vm_map_max(map); \ 1091 if (start > end) \ 1092 start = end; \ 1093 } 1094 1095 /* 1096 * vm_map_submap: [ kernel use only ] 1097 * 1098 * Mark the given range as handled by a subordinate map. 1099 * 1100 * This range must have been created with vm_map_find, 1101 * and no other operations may have been performed on this 1102 * range prior to calling vm_map_submap. 1103 * 1104 * Only a limited number of operations can be performed 1105 * within this rage after calling vm_map_submap: 1106 * vm_fault 1107 * [Don't try vm_map_copy!] 1108 * 1109 * To remove a submapping, one must first remove the 1110 * range from the superior map, and then destroy the 1111 * submap (if desired). [Better yet, don't try it.] 1112 */ 1113 int 1114 vm_map_submap(map, start, end, submap) 1115 vm_map_t map; 1116 vm_offset_t start; 1117 vm_offset_t end; 1118 vm_map_t submap; 1119 { 1120 vm_map_entry_t entry; 1121 int result = KERN_INVALID_ARGUMENT; 1122 1123 vm_map_lock(map); 1124 1125 VM_MAP_RANGE_CHECK(map, start, end); 1126 1127 if (vm_map_lookup_entry(map, start, &entry)) { 1128 vm_map_clip_start(map, entry, start); 1129 } else 1130 entry = entry->next; 1131 1132 vm_map_clip_end(map, entry, end); 1133 1134 if ((entry->start == start) && (entry->end == end) && 1135 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1136 (entry->object.vm_object == NULL)) { 1137 entry->object.sub_map = submap; 1138 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1139 result = KERN_SUCCESS; 1140 } 1141 vm_map_unlock(map); 1142 1143 return (result); 1144 } 1145 1146 /* 1147 * vm_map_protect: 1148 * 1149 * Sets the protection of the specified address 1150 * region in the target map. If "set_max" is 1151 * specified, the maximum protection is to be set; 1152 * otherwise, only the current protection is affected. 1153 */ 1154 int 1155 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1156 vm_prot_t new_prot, boolean_t set_max) 1157 { 1158 vm_map_entry_t current; 1159 vm_map_entry_t entry; 1160 1161 vm_map_lock(map); 1162 1163 VM_MAP_RANGE_CHECK(map, start, end); 1164 1165 if (vm_map_lookup_entry(map, start, &entry)) { 1166 vm_map_clip_start(map, entry, start); 1167 } else { 1168 entry = entry->next; 1169 } 1170 1171 /* 1172 * Make a first pass to check for protection violations. 1173 */ 1174 1175 current = entry; 1176 while ((current != &map->header) && (current->start < end)) { 1177 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1178 vm_map_unlock(map); 1179 return (KERN_INVALID_ARGUMENT); 1180 } 1181 if ((new_prot & current->max_protection) != new_prot) { 1182 vm_map_unlock(map); 1183 return (KERN_PROTECTION_FAILURE); 1184 } 1185 current = current->next; 1186 } 1187 1188 /* 1189 * Go back and fix up protections. [Note that clipping is not 1190 * necessary the second time.] 1191 */ 1192 1193 current = entry; 1194 1195 while ((current != &map->header) && (current->start < end)) { 1196 vm_prot_t old_prot; 1197 1198 vm_map_clip_end(map, current, end); 1199 1200 old_prot = current->protection; 1201 if (set_max) 1202 current->protection = 1203 (current->max_protection = new_prot) & 1204 old_prot; 1205 else 1206 current->protection = new_prot; 1207 1208 /* 1209 * Update physical map if necessary. Worry about copy-on-write 1210 * here -- CHECK THIS XXX 1211 */ 1212 1213 if (current->protection != old_prot) { 1214 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1215 VM_PROT_ALL) 1216 1217 pmap_protect(map->pmap, current->start, 1218 current->end, 1219 current->protection & MASK(entry)); 1220 #undef MASK 1221 } 1222 1223 vm_map_simplify_entry(map, current); 1224 1225 current = current->next; 1226 } 1227 1228 vm_map_unlock(map); 1229 return (KERN_SUCCESS); 1230 } 1231 1232 /* 1233 * vm_map_madvise: 1234 * 1235 * This routine traverses a processes map handling the madvise 1236 * system call. 1237 */ 1238 void 1239 vm_map_madvise(map, start, end, advise) 1240 vm_map_t map; 1241 vm_offset_t start, end; 1242 int advise; 1243 { 1244 vm_map_entry_t current; 1245 vm_map_entry_t entry; 1246 1247 vm_map_lock(map); 1248 1249 VM_MAP_RANGE_CHECK(map, start, end); 1250 1251 if (vm_map_lookup_entry(map, start, &entry)) { 1252 vm_map_clip_start(map, entry, start); 1253 } else 1254 entry = entry->next; 1255 1256 for(current = entry; 1257 (current != &map->header) && (current->start < end); 1258 current = current->next) { 1259 vm_size_t size; 1260 1261 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1262 continue; 1263 } 1264 1265 vm_map_clip_end(map, current, end); 1266 size = current->end - current->start; 1267 1268 /* 1269 * Create an object if needed 1270 */ 1271 if (current->object.vm_object == NULL) { 1272 vm_object_t object; 1273 if ((advise == MADV_FREE) || (advise == MADV_DONTNEED)) 1274 continue; 1275 object = vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(size)); 1276 current->object.vm_object = object; 1277 current->offset = 0; 1278 } 1279 1280 switch (advise) { 1281 case MADV_NORMAL: 1282 current->object.vm_object->behavior = OBJ_NORMAL; 1283 break; 1284 case MADV_SEQUENTIAL: 1285 current->object.vm_object->behavior = OBJ_SEQUENTIAL; 1286 break; 1287 case MADV_RANDOM: 1288 current->object.vm_object->behavior = OBJ_RANDOM; 1289 break; 1290 /* 1291 * Right now, we could handle DONTNEED and WILLNEED with common code. 1292 * They are mostly the same, except for the potential async reads (NYI). 1293 */ 1294 case MADV_FREE: 1295 case MADV_DONTNEED: 1296 { 1297 vm_pindex_t pindex; 1298 int count; 1299 pindex = OFF_TO_IDX(current->offset); 1300 count = OFF_TO_IDX(size); 1301 /* 1302 * MADV_DONTNEED removes the page from all 1303 * pmaps, so pmap_remove is not necessary. 1304 */ 1305 vm_object_madvise(current->object.vm_object, 1306 pindex, count, advise); 1307 } 1308 break; 1309 1310 case MADV_WILLNEED: 1311 { 1312 vm_pindex_t pindex; 1313 int count; 1314 pindex = OFF_TO_IDX(current->offset); 1315 count = OFF_TO_IDX(size); 1316 vm_object_madvise(current->object.vm_object, 1317 pindex, count, advise); 1318 pmap_object_init_pt(map->pmap, current->start, 1319 current->object.vm_object, pindex, 1320 (count << PAGE_SHIFT), 0); 1321 } 1322 break; 1323 1324 default: 1325 break; 1326 } 1327 } 1328 1329 vm_map_simplify_entry(map, entry); 1330 vm_map_unlock(map); 1331 return; 1332 } 1333 1334 1335 /* 1336 * vm_map_inherit: 1337 * 1338 * Sets the inheritance of the specified address 1339 * range in the target map. Inheritance 1340 * affects how the map will be shared with 1341 * child maps at the time of vm_map_fork. 1342 */ 1343 int 1344 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1345 vm_inherit_t new_inheritance) 1346 { 1347 vm_map_entry_t entry; 1348 vm_map_entry_t temp_entry; 1349 1350 switch (new_inheritance) { 1351 case VM_INHERIT_NONE: 1352 case VM_INHERIT_COPY: 1353 case VM_INHERIT_SHARE: 1354 break; 1355 default: 1356 return (KERN_INVALID_ARGUMENT); 1357 } 1358 1359 vm_map_lock(map); 1360 1361 VM_MAP_RANGE_CHECK(map, start, end); 1362 1363 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1364 entry = temp_entry; 1365 vm_map_clip_start(map, entry, start); 1366 } else 1367 entry = temp_entry->next; 1368 1369 while ((entry != &map->header) && (entry->start < end)) { 1370 vm_map_clip_end(map, entry, end); 1371 1372 entry->inheritance = new_inheritance; 1373 1374 vm_map_simplify_entry(map, entry); 1375 1376 entry = entry->next; 1377 } 1378 1379 vm_map_unlock(map); 1380 return (KERN_SUCCESS); 1381 } 1382 1383 /* 1384 * Implement the semantics of mlock 1385 */ 1386 int 1387 vm_map_user_pageable(map, start, end, new_pageable) 1388 vm_map_t map; 1389 vm_offset_t start; 1390 vm_offset_t end; 1391 boolean_t new_pageable; 1392 { 1393 vm_map_entry_t entry; 1394 vm_map_entry_t start_entry; 1395 vm_offset_t estart; 1396 int rv; 1397 1398 vm_map_lock(map); 1399 VM_MAP_RANGE_CHECK(map, start, end); 1400 1401 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1402 vm_map_unlock(map); 1403 return (KERN_INVALID_ADDRESS); 1404 } 1405 1406 if (new_pageable) { 1407 1408 entry = start_entry; 1409 vm_map_clip_start(map, entry, start); 1410 1411 /* 1412 * Now decrement the wiring count for each region. If a region 1413 * becomes completely unwired, unwire its physical pages and 1414 * mappings. 1415 */ 1416 while ((entry != &map->header) && (entry->start < end)) { 1417 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1418 vm_map_clip_end(map, entry, end); 1419 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1420 entry->wired_count--; 1421 if (entry->wired_count == 0) 1422 vm_fault_unwire(map, entry->start, entry->end); 1423 } 1424 vm_map_simplify_entry(map,entry); 1425 entry = entry->next; 1426 } 1427 } else { 1428 1429 entry = start_entry; 1430 1431 while ((entry != &map->header) && (entry->start < end)) { 1432 1433 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1434 entry = entry->next; 1435 continue; 1436 } 1437 1438 if (entry->wired_count != 0) { 1439 entry->wired_count++; 1440 entry->eflags |= MAP_ENTRY_USER_WIRED; 1441 entry = entry->next; 1442 continue; 1443 } 1444 1445 /* Here on entry being newly wired */ 1446 1447 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1448 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1449 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) { 1450 1451 vm_object_shadow(&entry->object.vm_object, 1452 &entry->offset, 1453 atop(entry->end - entry->start)); 1454 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1455 1456 } else if (entry->object.vm_object == NULL) { 1457 1458 entry->object.vm_object = 1459 vm_object_allocate(OBJT_DEFAULT, 1460 atop(entry->end - entry->start)); 1461 entry->offset = (vm_offset_t) 0; 1462 1463 } 1464 } 1465 1466 vm_map_clip_start(map, entry, start); 1467 vm_map_clip_end(map, entry, end); 1468 1469 entry->wired_count++; 1470 entry->eflags |= MAP_ENTRY_USER_WIRED; 1471 estart = entry->start; 1472 1473 /* First we need to allow map modifications */ 1474 vm_map_set_recursive(map); 1475 vm_map_lock_downgrade(map); 1476 map->timestamp++; 1477 1478 rv = vm_fault_user_wire(map, entry->start, entry->end); 1479 if (rv) { 1480 1481 entry->wired_count--; 1482 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1483 1484 vm_map_clear_recursive(map); 1485 vm_map_unlock(map); 1486 1487 (void) vm_map_user_pageable(map, start, entry->start, TRUE); 1488 return rv; 1489 } 1490 1491 vm_map_clear_recursive(map); 1492 if (vm_map_lock_upgrade(map)) { 1493 vm_map_lock(map); 1494 if (vm_map_lookup_entry(map, estart, &entry) 1495 == FALSE) { 1496 vm_map_unlock(map); 1497 (void) vm_map_user_pageable(map, 1498 start, 1499 estart, 1500 TRUE); 1501 return (KERN_INVALID_ADDRESS); 1502 } 1503 } 1504 vm_map_simplify_entry(map,entry); 1505 } 1506 } 1507 map->timestamp++; 1508 vm_map_unlock(map); 1509 return KERN_SUCCESS; 1510 } 1511 1512 /* 1513 * vm_map_pageable: 1514 * 1515 * Sets the pageability of the specified address 1516 * range in the target map. Regions specified 1517 * as not pageable require locked-down physical 1518 * memory and physical page maps. 1519 * 1520 * The map must not be locked, but a reference 1521 * must remain to the map throughout the call. 1522 */ 1523 int 1524 vm_map_pageable(map, start, end, new_pageable) 1525 vm_map_t map; 1526 vm_offset_t start; 1527 vm_offset_t end; 1528 boolean_t new_pageable; 1529 { 1530 vm_map_entry_t entry; 1531 vm_map_entry_t start_entry; 1532 vm_offset_t failed = 0; 1533 int rv; 1534 1535 vm_map_lock(map); 1536 1537 VM_MAP_RANGE_CHECK(map, start, end); 1538 1539 /* 1540 * Only one pageability change may take place at one time, since 1541 * vm_fault assumes it will be called only once for each 1542 * wiring/unwiring. Therefore, we have to make sure we're actually 1543 * changing the pageability for the entire region. We do so before 1544 * making any changes. 1545 */ 1546 1547 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1548 vm_map_unlock(map); 1549 return (KERN_INVALID_ADDRESS); 1550 } 1551 entry = start_entry; 1552 1553 /* 1554 * Actions are rather different for wiring and unwiring, so we have 1555 * two separate cases. 1556 */ 1557 1558 if (new_pageable) { 1559 1560 vm_map_clip_start(map, entry, start); 1561 1562 /* 1563 * Unwiring. First ensure that the range to be unwired is 1564 * really wired down and that there are no holes. 1565 */ 1566 while ((entry != &map->header) && (entry->start < end)) { 1567 1568 if (entry->wired_count == 0 || 1569 (entry->end < end && 1570 (entry->next == &map->header || 1571 entry->next->start > entry->end))) { 1572 vm_map_unlock(map); 1573 return (KERN_INVALID_ARGUMENT); 1574 } 1575 entry = entry->next; 1576 } 1577 1578 /* 1579 * Now decrement the wiring count for each region. If a region 1580 * becomes completely unwired, unwire its physical pages and 1581 * mappings. 1582 */ 1583 entry = start_entry; 1584 while ((entry != &map->header) && (entry->start < end)) { 1585 vm_map_clip_end(map, entry, end); 1586 1587 entry->wired_count--; 1588 if (entry->wired_count == 0) 1589 vm_fault_unwire(map, entry->start, entry->end); 1590 1591 vm_map_simplify_entry(map, entry); 1592 1593 entry = entry->next; 1594 } 1595 } else { 1596 /* 1597 * Wiring. We must do this in two passes: 1598 * 1599 * 1. Holding the write lock, we create any shadow or zero-fill 1600 * objects that need to be created. Then we clip each map 1601 * entry to the region to be wired and increment its wiring 1602 * count. We create objects before clipping the map entries 1603 * to avoid object proliferation. 1604 * 1605 * 2. We downgrade to a read lock, and call vm_fault_wire to 1606 * fault in the pages for any newly wired area (wired_count is 1607 * 1). 1608 * 1609 * Downgrading to a read lock for vm_fault_wire avoids a possible 1610 * deadlock with another process that may have faulted on one 1611 * of the pages to be wired (it would mark the page busy, 1612 * blocking us, then in turn block on the map lock that we 1613 * hold). Because of problems in the recursive lock package, 1614 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 1615 * any actions that require the write lock must be done 1616 * beforehand. Because we keep the read lock on the map, the 1617 * copy-on-write status of the entries we modify here cannot 1618 * change. 1619 */ 1620 1621 /* 1622 * Pass 1. 1623 */ 1624 while ((entry != &map->header) && (entry->start < end)) { 1625 if (entry->wired_count == 0) { 1626 1627 /* 1628 * Perform actions of vm_map_lookup that need 1629 * the write lock on the map: create a shadow 1630 * object for a copy-on-write region, or an 1631 * object for a zero-fill region. 1632 * 1633 * We don't have to do this for entries that 1634 * point to sub maps, because we won't 1635 * hold the lock on the sub map. 1636 */ 1637 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1638 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1639 if (copyflag && 1640 ((entry->protection & VM_PROT_WRITE) != 0)) { 1641 1642 vm_object_shadow(&entry->object.vm_object, 1643 &entry->offset, 1644 atop(entry->end - entry->start)); 1645 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1646 } else if (entry->object.vm_object == NULL) { 1647 entry->object.vm_object = 1648 vm_object_allocate(OBJT_DEFAULT, 1649 atop(entry->end - entry->start)); 1650 entry->offset = (vm_offset_t) 0; 1651 } 1652 } 1653 } 1654 vm_map_clip_start(map, entry, start); 1655 vm_map_clip_end(map, entry, end); 1656 entry->wired_count++; 1657 1658 /* 1659 * Check for holes 1660 */ 1661 if (entry->end < end && 1662 (entry->next == &map->header || 1663 entry->next->start > entry->end)) { 1664 /* 1665 * Found one. Object creation actions do not 1666 * need to be undone, but the wired counts 1667 * need to be restored. 1668 */ 1669 while (entry != &map->header && entry->end > start) { 1670 entry->wired_count--; 1671 entry = entry->prev; 1672 } 1673 vm_map_unlock(map); 1674 return (KERN_INVALID_ARGUMENT); 1675 } 1676 entry = entry->next; 1677 } 1678 1679 /* 1680 * Pass 2. 1681 */ 1682 1683 /* 1684 * HACK HACK HACK HACK 1685 * 1686 * If we are wiring in the kernel map or a submap of it, 1687 * unlock the map to avoid deadlocks. We trust that the 1688 * kernel is well-behaved, and therefore will not do 1689 * anything destructive to this region of the map while 1690 * we have it unlocked. We cannot trust user processes 1691 * to do the same. 1692 * 1693 * HACK HACK HACK HACK 1694 */ 1695 if (vm_map_pmap(map) == kernel_pmap) { 1696 vm_map_unlock(map); /* trust me ... */ 1697 } else { 1698 vm_map_set_recursive(map); 1699 vm_map_lock_downgrade(map); 1700 } 1701 1702 rv = 0; 1703 entry = start_entry; 1704 while (entry != &map->header && entry->start < end) { 1705 /* 1706 * If vm_fault_wire fails for any page we need to undo 1707 * what has been done. We decrement the wiring count 1708 * for those pages which have not yet been wired (now) 1709 * and unwire those that have (later). 1710 * 1711 * XXX this violates the locking protocol on the map, 1712 * needs to be fixed. 1713 */ 1714 if (rv) 1715 entry->wired_count--; 1716 else if (entry->wired_count == 1) { 1717 rv = vm_fault_wire(map, entry->start, entry->end); 1718 if (rv) { 1719 failed = entry->start; 1720 entry->wired_count--; 1721 } 1722 } 1723 entry = entry->next; 1724 } 1725 1726 if (vm_map_pmap(map) == kernel_pmap) { 1727 vm_map_lock(map); 1728 } else { 1729 vm_map_clear_recursive(map); 1730 } 1731 if (rv) { 1732 vm_map_unlock(map); 1733 (void) vm_map_pageable(map, start, failed, TRUE); 1734 return (rv); 1735 } 1736 vm_map_simplify_entry(map, start_entry); 1737 } 1738 1739 vm_map_unlock(map); 1740 1741 return (KERN_SUCCESS); 1742 } 1743 1744 /* 1745 * vm_map_clean 1746 * 1747 * Push any dirty cached pages in the address range to their pager. 1748 * If syncio is TRUE, dirty pages are written synchronously. 1749 * If invalidate is TRUE, any cached pages are freed as well. 1750 * 1751 * Returns an error if any part of the specified range is not mapped. 1752 */ 1753 int 1754 vm_map_clean(map, start, end, syncio, invalidate) 1755 vm_map_t map; 1756 vm_offset_t start; 1757 vm_offset_t end; 1758 boolean_t syncio; 1759 boolean_t invalidate; 1760 { 1761 vm_map_entry_t current; 1762 vm_map_entry_t entry; 1763 vm_size_t size; 1764 vm_object_t object; 1765 vm_ooffset_t offset; 1766 1767 vm_map_lock_read(map); 1768 VM_MAP_RANGE_CHECK(map, start, end); 1769 if (!vm_map_lookup_entry(map, start, &entry)) { 1770 vm_map_unlock_read(map); 1771 return (KERN_INVALID_ADDRESS); 1772 } 1773 /* 1774 * Make a first pass to check for holes. 1775 */ 1776 for (current = entry; current->start < end; current = current->next) { 1777 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1778 vm_map_unlock_read(map); 1779 return (KERN_INVALID_ARGUMENT); 1780 } 1781 if (end > current->end && 1782 (current->next == &map->header || 1783 current->end != current->next->start)) { 1784 vm_map_unlock_read(map); 1785 return (KERN_INVALID_ADDRESS); 1786 } 1787 } 1788 1789 if (invalidate) 1790 pmap_remove(vm_map_pmap(map), start, end); 1791 /* 1792 * Make a second pass, cleaning/uncaching pages from the indicated 1793 * objects as we go. 1794 */ 1795 for (current = entry; current->start < end; current = current->next) { 1796 offset = current->offset + (start - current->start); 1797 size = (end <= current->end ? end : current->end) - start; 1798 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1799 vm_map_t smap; 1800 vm_map_entry_t tentry; 1801 vm_size_t tsize; 1802 1803 smap = current->object.sub_map; 1804 vm_map_lock_read(smap); 1805 (void) vm_map_lookup_entry(smap, offset, &tentry); 1806 tsize = tentry->end - offset; 1807 if (tsize < size) 1808 size = tsize; 1809 object = tentry->object.vm_object; 1810 offset = tentry->offset + (offset - tentry->start); 1811 vm_map_unlock_read(smap); 1812 } else { 1813 object = current->object.vm_object; 1814 } 1815 /* 1816 * Note that there is absolutely no sense in writing out 1817 * anonymous objects, so we track down the vnode object 1818 * to write out. 1819 * We invalidate (remove) all pages from the address space 1820 * anyway, for semantic correctness. 1821 */ 1822 while (object->backing_object) { 1823 object = object->backing_object; 1824 offset += object->backing_object_offset; 1825 if (object->size < OFF_TO_IDX( offset + size)) 1826 size = IDX_TO_OFF(object->size) - offset; 1827 } 1828 if (object && (object->type == OBJT_VNODE)) { 1829 /* 1830 * Flush pages if writing is allowed. XXX should we continue 1831 * on an error? 1832 * 1833 * XXX Doing async I/O and then removing all the pages from 1834 * the object before it completes is probably a very bad 1835 * idea. 1836 */ 1837 if (current->protection & VM_PROT_WRITE) { 1838 int flags; 1839 if (object->type == OBJT_VNODE) 1840 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curproc); 1841 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1842 flags |= invalidate ? OBJPC_INVAL : 0; 1843 vm_object_page_clean(object, 1844 OFF_TO_IDX(offset), 1845 OFF_TO_IDX(offset + size + PAGE_MASK), 1846 flags); 1847 if (invalidate) { 1848 vm_object_pip_wait(object, "objmcl"); 1849 vm_object_page_remove(object, 1850 OFF_TO_IDX(offset), 1851 OFF_TO_IDX(offset + size + PAGE_MASK), 1852 FALSE); 1853 } 1854 if (object->type == OBJT_VNODE) 1855 VOP_UNLOCK(object->handle, 0, curproc); 1856 } 1857 } 1858 start += size; 1859 } 1860 1861 vm_map_unlock_read(map); 1862 return (KERN_SUCCESS); 1863 } 1864 1865 /* 1866 * vm_map_entry_unwire: [ internal use only ] 1867 * 1868 * Make the region specified by this entry pageable. 1869 * 1870 * The map in question should be locked. 1871 * [This is the reason for this routine's existence.] 1872 */ 1873 static void 1874 vm_map_entry_unwire(map, entry) 1875 vm_map_t map; 1876 vm_map_entry_t entry; 1877 { 1878 vm_fault_unwire(map, entry->start, entry->end); 1879 entry->wired_count = 0; 1880 } 1881 1882 /* 1883 * vm_map_entry_delete: [ internal use only ] 1884 * 1885 * Deallocate the given entry from the target map. 1886 */ 1887 static void 1888 vm_map_entry_delete(map, entry) 1889 vm_map_t map; 1890 vm_map_entry_t entry; 1891 { 1892 vm_map_entry_unlink(map, entry); 1893 map->size -= entry->end - entry->start; 1894 1895 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1896 vm_object_deallocate(entry->object.vm_object); 1897 } 1898 1899 vm_map_entry_dispose(map, entry); 1900 } 1901 1902 /* 1903 * vm_map_delete: [ internal use only ] 1904 * 1905 * Deallocates the given address range from the target 1906 * map. 1907 */ 1908 int 1909 vm_map_delete(map, start, end) 1910 vm_map_t map; 1911 vm_offset_t start; 1912 vm_offset_t end; 1913 { 1914 vm_object_t object; 1915 vm_map_entry_t entry; 1916 vm_map_entry_t first_entry; 1917 1918 /* 1919 * Find the start of the region, and clip it 1920 */ 1921 1922 if (!vm_map_lookup_entry(map, start, &first_entry)) 1923 entry = first_entry->next; 1924 else { 1925 entry = first_entry; 1926 vm_map_clip_start(map, entry, start); 1927 /* 1928 * Fix the lookup hint now, rather than each time though the 1929 * loop. 1930 */ 1931 SAVE_HINT(map, entry->prev); 1932 } 1933 1934 /* 1935 * Save the free space hint 1936 */ 1937 1938 if (entry == &map->header) { 1939 map->first_free = &map->header; 1940 } else if (map->first_free->start >= start) { 1941 map->first_free = entry->prev; 1942 } 1943 1944 /* 1945 * Step through all entries in this region 1946 */ 1947 1948 while ((entry != &map->header) && (entry->start < end)) { 1949 vm_map_entry_t next; 1950 vm_offset_t s, e; 1951 vm_pindex_t offidxstart, offidxend, count; 1952 1953 vm_map_clip_end(map, entry, end); 1954 1955 s = entry->start; 1956 e = entry->end; 1957 next = entry->next; 1958 1959 offidxstart = OFF_TO_IDX(entry->offset); 1960 count = OFF_TO_IDX(e - s); 1961 object = entry->object.vm_object; 1962 1963 /* 1964 * Unwire before removing addresses from the pmap; otherwise, 1965 * unwiring will put the entries back in the pmap. 1966 */ 1967 if (entry->wired_count != 0) { 1968 vm_map_entry_unwire(map, entry); 1969 } 1970 1971 offidxend = offidxstart + count; 1972 1973 if ((object == kernel_object) || (object == kmem_object)) { 1974 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 1975 } else { 1976 pmap_remove(map->pmap, s, e); 1977 if (object != NULL && 1978 object->ref_count != 1 && 1979 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && 1980 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 1981 vm_object_collapse(object); 1982 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 1983 if (object->type == OBJT_SWAP) { 1984 swap_pager_freespace(object, offidxstart, count); 1985 } 1986 if (offidxend >= object->size && 1987 offidxstart < object->size) { 1988 object->size = offidxstart; 1989 } 1990 } 1991 } 1992 1993 /* 1994 * Delete the entry (which may delete the object) only after 1995 * removing all pmap entries pointing to its pages. 1996 * (Otherwise, its page frames may be reallocated, and any 1997 * modify bits will be set in the wrong object!) 1998 */ 1999 vm_map_entry_delete(map, entry); 2000 entry = next; 2001 } 2002 return (KERN_SUCCESS); 2003 } 2004 2005 /* 2006 * vm_map_remove: 2007 * 2008 * Remove the given address range from the target map. 2009 * This is the exported form of vm_map_delete. 2010 */ 2011 int 2012 vm_map_remove(map, start, end) 2013 vm_map_t map; 2014 vm_offset_t start; 2015 vm_offset_t end; 2016 { 2017 int result, s = 0; 2018 2019 if (map == kmem_map || map == mb_map) 2020 s = splvm(); 2021 2022 vm_map_lock(map); 2023 VM_MAP_RANGE_CHECK(map, start, end); 2024 result = vm_map_delete(map, start, end); 2025 vm_map_unlock(map); 2026 2027 if (map == kmem_map || map == mb_map) 2028 splx(s); 2029 2030 return (result); 2031 } 2032 2033 /* 2034 * vm_map_check_protection: 2035 * 2036 * Assert that the target map allows the specified 2037 * privilege on the entire address region given. 2038 * The entire region must be allocated. 2039 */ 2040 boolean_t 2041 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2042 vm_prot_t protection) 2043 { 2044 vm_map_entry_t entry; 2045 vm_map_entry_t tmp_entry; 2046 2047 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 2048 return (FALSE); 2049 } 2050 entry = tmp_entry; 2051 2052 while (start < end) { 2053 if (entry == &map->header) { 2054 return (FALSE); 2055 } 2056 /* 2057 * No holes allowed! 2058 */ 2059 2060 if (start < entry->start) { 2061 return (FALSE); 2062 } 2063 /* 2064 * Check protection associated with entry. 2065 */ 2066 2067 if ((entry->protection & protection) != protection) { 2068 return (FALSE); 2069 } 2070 /* go to next entry */ 2071 2072 start = entry->end; 2073 entry = entry->next; 2074 } 2075 return (TRUE); 2076 } 2077 2078 /* 2079 * Split the pages in a map entry into a new object. This affords 2080 * easier removal of unused pages, and keeps object inheritance from 2081 * being a negative impact on memory usage. 2082 */ 2083 static void 2084 vm_map_split(entry) 2085 vm_map_entry_t entry; 2086 { 2087 vm_page_t m; 2088 vm_object_t orig_object, new_object, source; 2089 vm_offset_t s, e; 2090 vm_pindex_t offidxstart, offidxend, idx; 2091 vm_size_t size; 2092 vm_ooffset_t offset; 2093 2094 orig_object = entry->object.vm_object; 2095 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 2096 return; 2097 if (orig_object->ref_count <= 1) 2098 return; 2099 2100 offset = entry->offset; 2101 s = entry->start; 2102 e = entry->end; 2103 2104 offidxstart = OFF_TO_IDX(offset); 2105 offidxend = offidxstart + OFF_TO_IDX(e - s); 2106 size = offidxend - offidxstart; 2107 2108 new_object = vm_pager_allocate(orig_object->type, 2109 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL); 2110 if (new_object == NULL) 2111 return; 2112 2113 source = orig_object->backing_object; 2114 if (source != NULL) { 2115 vm_object_reference(source); /* Referenced by new_object */ 2116 TAILQ_INSERT_TAIL(&source->shadow_head, 2117 new_object, shadow_list); 2118 vm_object_clear_flag(source, OBJ_ONEMAPPING); 2119 new_object->backing_object_offset = 2120 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart); 2121 new_object->backing_object = source; 2122 source->shadow_count++; 2123 source->generation++; 2124 } 2125 2126 for (idx = 0; idx < size; idx++) { 2127 vm_page_t m; 2128 2129 retry: 2130 m = vm_page_lookup(orig_object, offidxstart + idx); 2131 if (m == NULL) 2132 continue; 2133 2134 /* 2135 * We must wait for pending I/O to complete before we can 2136 * rename the page. 2137 * 2138 * We do not have to VM_PROT_NONE the page as mappings should 2139 * not be changed by this operation. 2140 */ 2141 if (vm_page_sleep_busy(m, TRUE, "spltwt")) 2142 goto retry; 2143 2144 vm_page_busy(m); 2145 vm_page_rename(m, new_object, idx); 2146 /* page automatically made dirty by rename and cache handled */ 2147 vm_page_busy(m); 2148 } 2149 2150 if (orig_object->type == OBJT_SWAP) { 2151 vm_object_pip_add(orig_object, 1); 2152 /* 2153 * copy orig_object pages into new_object 2154 * and destroy unneeded pages in 2155 * shadow object. 2156 */ 2157 swap_pager_copy(orig_object, new_object, offidxstart, 0); 2158 vm_object_pip_wakeup(orig_object); 2159 } 2160 2161 for (idx = 0; idx < size; idx++) { 2162 m = vm_page_lookup(new_object, idx); 2163 if (m) { 2164 vm_page_wakeup(m); 2165 } 2166 } 2167 2168 entry->object.vm_object = new_object; 2169 entry->offset = 0LL; 2170 vm_object_deallocate(orig_object); 2171 } 2172 2173 /* 2174 * vm_map_copy_entry: 2175 * 2176 * Copies the contents of the source entry to the destination 2177 * entry. The entries *must* be aligned properly. 2178 */ 2179 static void 2180 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry) 2181 vm_map_t src_map, dst_map; 2182 vm_map_entry_t src_entry, dst_entry; 2183 { 2184 vm_object_t src_object; 2185 2186 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2187 return; 2188 2189 if (src_entry->wired_count == 0) { 2190 2191 /* 2192 * If the source entry is marked needs_copy, it is already 2193 * write-protected. 2194 */ 2195 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2196 pmap_protect(src_map->pmap, 2197 src_entry->start, 2198 src_entry->end, 2199 src_entry->protection & ~VM_PROT_WRITE); 2200 } 2201 2202 /* 2203 * Make a copy of the object. 2204 */ 2205 if ((src_object = src_entry->object.vm_object) != NULL) { 2206 2207 if ((src_object->handle == NULL) && 2208 (src_object->type == OBJT_DEFAULT || 2209 src_object->type == OBJT_SWAP)) { 2210 vm_object_collapse(src_object); 2211 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2212 vm_map_split(src_entry); 2213 src_object = src_entry->object.vm_object; 2214 } 2215 } 2216 2217 vm_object_reference(src_object); 2218 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2219 dst_entry->object.vm_object = src_object; 2220 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2221 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2222 dst_entry->offset = src_entry->offset; 2223 } else { 2224 dst_entry->object.vm_object = NULL; 2225 dst_entry->offset = 0; 2226 } 2227 2228 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2229 dst_entry->end - dst_entry->start, src_entry->start); 2230 } else { 2231 /* 2232 * Of course, wired down pages can't be set copy-on-write. 2233 * Cause wired pages to be copied into the new map by 2234 * simulating faults (the new pages are pageable) 2235 */ 2236 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2237 } 2238 } 2239 2240 /* 2241 * vmspace_fork: 2242 * Create a new process vmspace structure and vm_map 2243 * based on those of an existing process. The new map 2244 * is based on the old map, according to the inheritance 2245 * values on the regions in that map. 2246 * 2247 * The source map must not be locked. 2248 */ 2249 struct vmspace * 2250 vmspace_fork(vm1) 2251 struct vmspace *vm1; 2252 { 2253 struct vmspace *vm2; 2254 vm_map_t old_map = &vm1->vm_map; 2255 vm_map_t new_map; 2256 vm_map_entry_t old_entry; 2257 vm_map_entry_t new_entry; 2258 vm_object_t object; 2259 2260 vm_map_lock(old_map); 2261 2262 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2263 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2264 (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy); 2265 new_map = &vm2->vm_map; /* XXX */ 2266 new_map->timestamp = 1; 2267 2268 old_entry = old_map->header.next; 2269 2270 while (old_entry != &old_map->header) { 2271 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2272 panic("vm_map_fork: encountered a submap"); 2273 2274 switch (old_entry->inheritance) { 2275 case VM_INHERIT_NONE: 2276 break; 2277 2278 case VM_INHERIT_SHARE: 2279 /* 2280 * Clone the entry, creating the shared object if necessary. 2281 */ 2282 object = old_entry->object.vm_object; 2283 if (object == NULL) { 2284 object = vm_object_allocate(OBJT_DEFAULT, 2285 atop(old_entry->end - old_entry->start)); 2286 old_entry->object.vm_object = object; 2287 old_entry->offset = (vm_offset_t) 0; 2288 } else if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2289 vm_object_shadow(&old_entry->object.vm_object, 2290 &old_entry->offset, 2291 atop(old_entry->end - old_entry->start)); 2292 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2293 object = old_entry->object.vm_object; 2294 } 2295 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2296 2297 /* 2298 * Clone the entry, referencing the shared object. 2299 */ 2300 new_entry = vm_map_entry_create(new_map); 2301 *new_entry = *old_entry; 2302 new_entry->wired_count = 0; 2303 vm_object_reference(object); 2304 2305 /* 2306 * Insert the entry into the new map -- we know we're 2307 * inserting at the end of the new map. 2308 */ 2309 2310 vm_map_entry_link(new_map, new_map->header.prev, 2311 new_entry); 2312 2313 /* 2314 * Update the physical map 2315 */ 2316 2317 pmap_copy(new_map->pmap, old_map->pmap, 2318 new_entry->start, 2319 (old_entry->end - old_entry->start), 2320 old_entry->start); 2321 break; 2322 2323 case VM_INHERIT_COPY: 2324 /* 2325 * Clone the entry and link into the map. 2326 */ 2327 new_entry = vm_map_entry_create(new_map); 2328 *new_entry = *old_entry; 2329 new_entry->wired_count = 0; 2330 new_entry->object.vm_object = NULL; 2331 vm_map_entry_link(new_map, new_map->header.prev, 2332 new_entry); 2333 vm_map_copy_entry(old_map, new_map, old_entry, 2334 new_entry); 2335 break; 2336 } 2337 old_entry = old_entry->next; 2338 } 2339 2340 new_map->size = old_map->size; 2341 vm_map_unlock(old_map); 2342 2343 return (vm2); 2344 } 2345 2346 /* 2347 * Unshare the specified VM space for exec. If other processes are 2348 * mapped to it, then create a new one. The new vmspace is null. 2349 */ 2350 2351 void 2352 vmspace_exec(struct proc *p) { 2353 struct vmspace *oldvmspace = p->p_vmspace; 2354 struct vmspace *newvmspace; 2355 vm_map_t map = &p->p_vmspace->vm_map; 2356 2357 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 2358 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 2359 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy); 2360 /* 2361 * This code is written like this for prototype purposes. The 2362 * goal is to avoid running down the vmspace here, but let the 2363 * other process's that are still using the vmspace to finally 2364 * run it down. Even though there is little or no chance of blocking 2365 * here, it is a good idea to keep this form for future mods. 2366 */ 2367 vmspace_free(oldvmspace); 2368 p->p_vmspace = newvmspace; 2369 if (p == curproc) 2370 pmap_activate(p); 2371 } 2372 2373 /* 2374 * Unshare the specified VM space for forcing COW. This 2375 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 2376 */ 2377 2378 void 2379 vmspace_unshare(struct proc *p) { 2380 struct vmspace *oldvmspace = p->p_vmspace; 2381 struct vmspace *newvmspace; 2382 2383 if (oldvmspace->vm_refcnt == 1) 2384 return; 2385 newvmspace = vmspace_fork(oldvmspace); 2386 vmspace_free(oldvmspace); 2387 p->p_vmspace = newvmspace; 2388 if (p == curproc) 2389 pmap_activate(p); 2390 } 2391 2392 2393 /* 2394 * vm_map_lookup: 2395 * 2396 * Finds the VM object, offset, and 2397 * protection for a given virtual address in the 2398 * specified map, assuming a page fault of the 2399 * type specified. 2400 * 2401 * Leaves the map in question locked for read; return 2402 * values are guaranteed until a vm_map_lookup_done 2403 * call is performed. Note that the map argument 2404 * is in/out; the returned map must be used in 2405 * the call to vm_map_lookup_done. 2406 * 2407 * A handle (out_entry) is returned for use in 2408 * vm_map_lookup_done, to make that fast. 2409 * 2410 * If a lookup is requested with "write protection" 2411 * specified, the map may be changed to perform virtual 2412 * copying operations, although the data referenced will 2413 * remain the same. 2414 */ 2415 int 2416 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 2417 vm_offset_t vaddr, 2418 vm_prot_t fault_typea, 2419 vm_map_entry_t *out_entry, /* OUT */ 2420 vm_object_t *object, /* OUT */ 2421 vm_pindex_t *pindex, /* OUT */ 2422 vm_prot_t *out_prot, /* OUT */ 2423 boolean_t *wired) /* OUT */ 2424 { 2425 vm_map_entry_t entry; 2426 vm_map_t map = *var_map; 2427 vm_prot_t prot; 2428 vm_prot_t fault_type = fault_typea; 2429 2430 RetryLookup:; 2431 2432 /* 2433 * Lookup the faulting address. 2434 */ 2435 2436 vm_map_lock_read(map); 2437 2438 #define RETURN(why) \ 2439 { \ 2440 vm_map_unlock_read(map); \ 2441 return(why); \ 2442 } 2443 2444 /* 2445 * If the map has an interesting hint, try it before calling full 2446 * blown lookup routine. 2447 */ 2448 2449 entry = map->hint; 2450 2451 *out_entry = entry; 2452 2453 if ((entry == &map->header) || 2454 (vaddr < entry->start) || (vaddr >= entry->end)) { 2455 vm_map_entry_t tmp_entry; 2456 2457 /* 2458 * Entry was either not a valid hint, or the vaddr was not 2459 * contained in the entry, so do a full lookup. 2460 */ 2461 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) 2462 RETURN(KERN_INVALID_ADDRESS); 2463 2464 entry = tmp_entry; 2465 *out_entry = entry; 2466 } 2467 2468 /* 2469 * Handle submaps. 2470 */ 2471 2472 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2473 vm_map_t old_map = map; 2474 2475 *var_map = map = entry->object.sub_map; 2476 vm_map_unlock_read(old_map); 2477 goto RetryLookup; 2478 } 2479 2480 /* 2481 * Check whether this task is allowed to have this page. 2482 * Note the special case for MAP_ENTRY_COW 2483 * pages with an override. This is to implement a forced 2484 * COW for debuggers. 2485 */ 2486 2487 if (fault_type & VM_PROT_OVERRIDE_WRITE) 2488 prot = entry->max_protection; 2489 else 2490 prot = entry->protection; 2491 2492 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 2493 if ((fault_type & prot) != fault_type) { 2494 RETURN(KERN_PROTECTION_FAILURE); 2495 } 2496 2497 if (entry->wired_count && (fault_type & VM_PROT_WRITE) && 2498 (entry->eflags & MAP_ENTRY_COW) && 2499 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 2500 RETURN(KERN_PROTECTION_FAILURE); 2501 } 2502 2503 /* 2504 * If this page is not pageable, we have to get it for all possible 2505 * accesses. 2506 */ 2507 2508 *wired = (entry->wired_count != 0); 2509 if (*wired) 2510 prot = fault_type = entry->protection; 2511 2512 /* 2513 * If the entry was copy-on-write, we either ... 2514 */ 2515 2516 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2517 /* 2518 * If we want to write the page, we may as well handle that 2519 * now since we've got the map locked. 2520 * 2521 * If we don't need to write the page, we just demote the 2522 * permissions allowed. 2523 */ 2524 2525 if (fault_type & VM_PROT_WRITE) { 2526 /* 2527 * Make a new object, and place it in the object 2528 * chain. Note that no new references have appeared 2529 * -- one just moved from the map to the new 2530 * object. 2531 */ 2532 2533 if (vm_map_lock_upgrade(map)) 2534 goto RetryLookup; 2535 2536 vm_object_shadow( 2537 &entry->object.vm_object, 2538 &entry->offset, 2539 atop(entry->end - entry->start)); 2540 2541 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2542 vm_map_lock_downgrade(map); 2543 } else { 2544 /* 2545 * We're attempting to read a copy-on-write page -- 2546 * don't allow writes. 2547 */ 2548 2549 prot &= ~VM_PROT_WRITE; 2550 } 2551 } 2552 2553 /* 2554 * Create an object if necessary. 2555 */ 2556 if (entry->object.vm_object == NULL) { 2557 if (vm_map_lock_upgrade(map)) 2558 goto RetryLookup; 2559 2560 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 2561 atop(entry->end - entry->start)); 2562 entry->offset = 0; 2563 vm_map_lock_downgrade(map); 2564 } 2565 2566 /* 2567 * Return the object/offset from this entry. If the entry was 2568 * copy-on-write or empty, it has been fixed up. 2569 */ 2570 2571 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 2572 *object = entry->object.vm_object; 2573 2574 /* 2575 * Return whether this is the only map sharing this data. 2576 */ 2577 2578 *out_prot = prot; 2579 return (KERN_SUCCESS); 2580 2581 #undef RETURN 2582 } 2583 2584 /* 2585 * vm_map_lookup_done: 2586 * 2587 * Releases locks acquired by a vm_map_lookup 2588 * (according to the handle returned by that lookup). 2589 */ 2590 2591 void 2592 vm_map_lookup_done(map, entry) 2593 vm_map_t map; 2594 vm_map_entry_t entry; 2595 { 2596 /* 2597 * Unlock the main-level map 2598 */ 2599 2600 vm_map_unlock_read(map); 2601 } 2602 2603 /* 2604 * Implement uiomove with VM operations. This handles (and collateral changes) 2605 * support every combination of source object modification, and COW type 2606 * operations. 2607 */ 2608 int 2609 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages) 2610 vm_map_t mapa; 2611 vm_object_t srcobject; 2612 off_t cp; 2613 int cnta; 2614 vm_offset_t uaddra; 2615 int *npages; 2616 { 2617 vm_map_t map; 2618 vm_object_t first_object, oldobject, object; 2619 vm_map_entry_t entry; 2620 vm_prot_t prot; 2621 boolean_t wired; 2622 int tcnt, rv; 2623 vm_offset_t uaddr, start, end, tend; 2624 vm_pindex_t first_pindex, osize, oindex; 2625 off_t ooffset; 2626 int cnt; 2627 2628 if (npages) 2629 *npages = 0; 2630 2631 cnt = cnta; 2632 uaddr = uaddra; 2633 2634 while (cnt > 0) { 2635 map = mapa; 2636 2637 if ((vm_map_lookup(&map, uaddr, 2638 VM_PROT_READ, &entry, &first_object, 2639 &first_pindex, &prot, &wired)) != KERN_SUCCESS) { 2640 return EFAULT; 2641 } 2642 2643 vm_map_clip_start(map, entry, uaddr); 2644 2645 tcnt = cnt; 2646 tend = uaddr + tcnt; 2647 if (tend > entry->end) { 2648 tcnt = entry->end - uaddr; 2649 tend = entry->end; 2650 } 2651 2652 vm_map_clip_end(map, entry, tend); 2653 2654 start = entry->start; 2655 end = entry->end; 2656 2657 osize = atop(tcnt); 2658 2659 oindex = OFF_TO_IDX(cp); 2660 if (npages) { 2661 vm_pindex_t idx; 2662 for (idx = 0; idx < osize; idx++) { 2663 vm_page_t m; 2664 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) { 2665 vm_map_lookup_done(map, entry); 2666 return 0; 2667 } 2668 /* 2669 * disallow busy or invalid pages, but allow 2670 * m->busy pages if they are entirely valid. 2671 */ 2672 if ((m->flags & PG_BUSY) || 2673 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) { 2674 vm_map_lookup_done(map, entry); 2675 return 0; 2676 } 2677 } 2678 } 2679 2680 /* 2681 * If we are changing an existing map entry, just redirect 2682 * the object, and change mappings. 2683 */ 2684 if ((first_object->type == OBJT_VNODE) && 2685 ((oldobject = entry->object.vm_object) == first_object)) { 2686 2687 if ((entry->offset != cp) || (oldobject != srcobject)) { 2688 /* 2689 * Remove old window into the file 2690 */ 2691 pmap_remove (map->pmap, uaddr, tend); 2692 2693 /* 2694 * Force copy on write for mmaped regions 2695 */ 2696 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2697 2698 /* 2699 * Point the object appropriately 2700 */ 2701 if (oldobject != srcobject) { 2702 2703 /* 2704 * Set the object optimization hint flag 2705 */ 2706 vm_object_set_flag(srcobject, OBJ_OPT); 2707 vm_object_reference(srcobject); 2708 entry->object.vm_object = srcobject; 2709 2710 if (oldobject) { 2711 vm_object_deallocate(oldobject); 2712 } 2713 } 2714 2715 entry->offset = cp; 2716 map->timestamp++; 2717 } else { 2718 pmap_remove (map->pmap, uaddr, tend); 2719 } 2720 2721 } else if ((first_object->ref_count == 1) && 2722 (first_object->size == osize) && 2723 ((first_object->type == OBJT_DEFAULT) || 2724 (first_object->type == OBJT_SWAP)) ) { 2725 2726 oldobject = first_object->backing_object; 2727 2728 if ((first_object->backing_object_offset != cp) || 2729 (oldobject != srcobject)) { 2730 /* 2731 * Remove old window into the file 2732 */ 2733 pmap_remove (map->pmap, uaddr, tend); 2734 2735 /* 2736 * Remove unneeded old pages 2737 */ 2738 vm_object_page_remove(first_object, 0, 0, 0); 2739 2740 /* 2741 * Invalidate swap space 2742 */ 2743 if (first_object->type == OBJT_SWAP) { 2744 swap_pager_freespace(first_object, 2745 0, 2746 first_object->size); 2747 } 2748 2749 /* 2750 * Force copy on write for mmaped regions 2751 */ 2752 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2753 2754 /* 2755 * Point the object appropriately 2756 */ 2757 if (oldobject != srcobject) { 2758 2759 /* 2760 * Set the object optimization hint flag 2761 */ 2762 vm_object_set_flag(srcobject, OBJ_OPT); 2763 vm_object_reference(srcobject); 2764 2765 if (oldobject) { 2766 TAILQ_REMOVE(&oldobject->shadow_head, 2767 first_object, shadow_list); 2768 oldobject->shadow_count--; 2769 vm_object_deallocate(oldobject); 2770 } 2771 2772 TAILQ_INSERT_TAIL(&srcobject->shadow_head, 2773 first_object, shadow_list); 2774 srcobject->shadow_count++; 2775 2776 first_object->backing_object = srcobject; 2777 } 2778 first_object->backing_object_offset = cp; 2779 map->timestamp++; 2780 } else { 2781 pmap_remove (map->pmap, uaddr, tend); 2782 } 2783 /* 2784 * Otherwise, we have to do a logical mmap. 2785 */ 2786 } else { 2787 2788 vm_object_set_flag(srcobject, OBJ_OPT); 2789 vm_object_reference(srcobject); 2790 2791 pmap_remove (map->pmap, uaddr, tend); 2792 2793 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2794 vm_map_lock_upgrade(map); 2795 2796 if (entry == &map->header) { 2797 map->first_free = &map->header; 2798 } else if (map->first_free->start >= start) { 2799 map->first_free = entry->prev; 2800 } 2801 2802 SAVE_HINT(map, entry->prev); 2803 vm_map_entry_delete(map, entry); 2804 2805 object = srcobject; 2806 ooffset = cp; 2807 2808 rv = vm_map_insert(map, object, ooffset, start, tend, 2809 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE); 2810 2811 if (rv != KERN_SUCCESS) 2812 panic("vm_uiomove: could not insert new entry: %d", rv); 2813 } 2814 2815 /* 2816 * Map the window directly, if it is already in memory 2817 */ 2818 pmap_object_init_pt(map->pmap, uaddr, 2819 srcobject, oindex, tcnt, 0); 2820 2821 map->timestamp++; 2822 vm_map_unlock(map); 2823 2824 cnt -= tcnt; 2825 uaddr += tcnt; 2826 cp += tcnt; 2827 if (npages) 2828 *npages += osize; 2829 } 2830 return 0; 2831 } 2832 2833 /* 2834 * Performs the copy_on_write operations necessary to allow the virtual copies 2835 * into user space to work. This has to be called for write(2) system calls 2836 * from other processes, file unlinking, and file size shrinkage. 2837 */ 2838 void 2839 vm_freeze_copyopts(object, froma, toa) 2840 vm_object_t object; 2841 vm_pindex_t froma, toa; 2842 { 2843 int rv; 2844 vm_object_t robject; 2845 vm_pindex_t idx; 2846 2847 if ((object == NULL) || 2848 ((object->flags & OBJ_OPT) == 0)) 2849 return; 2850 2851 if (object->shadow_count > object->ref_count) 2852 panic("vm_freeze_copyopts: sc > rc"); 2853 2854 while((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) { 2855 vm_pindex_t bo_pindex; 2856 vm_page_t m_in, m_out; 2857 2858 bo_pindex = OFF_TO_IDX(robject->backing_object_offset); 2859 2860 vm_object_reference(robject); 2861 2862 vm_object_pip_wait(robject, "objfrz"); 2863 2864 if (robject->ref_count == 1) { 2865 vm_object_deallocate(robject); 2866 continue; 2867 } 2868 2869 vm_object_pip_add(robject, 1); 2870 2871 for (idx = 0; idx < robject->size; idx++) { 2872 2873 m_out = vm_page_grab(robject, idx, 2874 VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 2875 2876 if (m_out->valid == 0) { 2877 m_in = vm_page_grab(object, bo_pindex + idx, 2878 VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 2879 if (m_in->valid == 0) { 2880 rv = vm_pager_get_pages(object, &m_in, 1, 0); 2881 if (rv != VM_PAGER_OK) { 2882 printf("vm_freeze_copyopts: cannot read page from file: %x\n", m_in->pindex); 2883 continue; 2884 } 2885 vm_page_deactivate(m_in); 2886 } 2887 2888 vm_page_protect(m_in, VM_PROT_NONE); 2889 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out)); 2890 m_out->valid = m_in->valid; 2891 vm_page_dirty(m_out); 2892 vm_page_activate(m_out); 2893 vm_page_wakeup(m_in); 2894 } 2895 vm_page_wakeup(m_out); 2896 } 2897 2898 object->shadow_count--; 2899 object->ref_count--; 2900 TAILQ_REMOVE(&object->shadow_head, robject, shadow_list); 2901 robject->backing_object = NULL; 2902 robject->backing_object_offset = 0; 2903 2904 vm_object_pip_wakeup(robject); 2905 vm_object_deallocate(robject); 2906 } 2907 2908 vm_object_clear_flag(object, OBJ_OPT); 2909 } 2910 2911 #include "opt_ddb.h" 2912 #ifdef DDB 2913 #include <sys/kernel.h> 2914 2915 #include <ddb/ddb.h> 2916 2917 /* 2918 * vm_map_print: [ debug ] 2919 */ 2920 DB_SHOW_COMMAND(map, vm_map_print) 2921 { 2922 static int nlines; 2923 /* XXX convert args. */ 2924 vm_map_t map = (vm_map_t)addr; 2925 boolean_t full = have_addr; 2926 2927 vm_map_entry_t entry; 2928 2929 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 2930 (void *)map, 2931 (void *)map->pmap, map->nentries, map->timestamp); 2932 nlines++; 2933 2934 if (!full && db_indent) 2935 return; 2936 2937 db_indent += 2; 2938 for (entry = map->header.next; entry != &map->header; 2939 entry = entry->next) { 2940 db_iprintf("map entry %p: start=%p, end=%p\n", 2941 (void *)entry, (void *)entry->start, (void *)entry->end); 2942 nlines++; 2943 { 2944 static char *inheritance_name[4] = 2945 {"share", "copy", "none", "donate_copy"}; 2946 2947 db_iprintf(" prot=%x/%x/%s", 2948 entry->protection, 2949 entry->max_protection, 2950 inheritance_name[(int)(unsigned char)entry->inheritance]); 2951 if (entry->wired_count != 0) 2952 db_printf(", wired"); 2953 } 2954 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2955 /* XXX no %qd in kernel. Truncate entry->offset. */ 2956 db_printf(", share=%p, offset=0x%lx\n", 2957 (void *)entry->object.sub_map, 2958 (long)entry->offset); 2959 nlines++; 2960 if ((entry->prev == &map->header) || 2961 (entry->prev->object.sub_map != 2962 entry->object.sub_map)) { 2963 db_indent += 2; 2964 vm_map_print((db_expr_t)(intptr_t) 2965 entry->object.sub_map, 2966 full, 0, (char *)0); 2967 db_indent -= 2; 2968 } 2969 } else { 2970 /* XXX no %qd in kernel. Truncate entry->offset. */ 2971 db_printf(", object=%p, offset=0x%lx", 2972 (void *)entry->object.vm_object, 2973 (long)entry->offset); 2974 if (entry->eflags & MAP_ENTRY_COW) 2975 db_printf(", copy (%s)", 2976 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 2977 db_printf("\n"); 2978 nlines++; 2979 2980 if ((entry->prev == &map->header) || 2981 (entry->prev->object.vm_object != 2982 entry->object.vm_object)) { 2983 db_indent += 2; 2984 vm_object_print((db_expr_t)(intptr_t) 2985 entry->object.vm_object, 2986 full, 0, (char *)0); 2987 nlines += 4; 2988 db_indent -= 2; 2989 } 2990 } 2991 } 2992 db_indent -= 2; 2993 if (db_indent == 0) 2994 nlines = 0; 2995 } 2996 2997 2998 DB_SHOW_COMMAND(procvm, procvm) 2999 { 3000 struct proc *p; 3001 3002 if (have_addr) { 3003 p = (struct proc *) addr; 3004 } else { 3005 p = curproc; 3006 } 3007 3008 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3009 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3010 (void *)vmspace_pmap(p->p_vmspace)); 3011 3012 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3013 } 3014 3015 #endif /* DDB */ 3016