1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $Id: vm_map.c,v 1.56 1996/09/08 23:49:47 dyson Exp $ 65 */ 66 67 /* 68 * Virtual memory mapping module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/malloc.h> 74 #include <sys/proc.h> 75 #include <sys/queue.h> 76 #include <sys/vmmeter.h> 77 #include <sys/mman.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/vm_prot.h> 82 #include <vm/vm_inherit.h> 83 #include <vm/lock.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_pager.h> 90 #include <vm/vm_extern.h> 91 #include <vm/default_pager.h> 92 93 /* 94 * Virtual memory maps provide for the mapping, protection, 95 * and sharing of virtual memory objects. In addition, 96 * this module provides for an efficient virtual copy of 97 * memory from one map to another. 98 * 99 * Synchronization is required prior to most operations. 100 * 101 * Maps consist of an ordered doubly-linked list of simple 102 * entries; a single hint is used to speed up lookups. 103 * 104 * In order to properly represent the sharing of virtual 105 * memory regions among maps, the map structure is bi-level. 106 * Top-level ("address") maps refer to regions of sharable 107 * virtual memory. These regions are implemented as 108 * ("sharing") maps, which then refer to the actual virtual 109 * memory objects. When two address maps "share" memory, 110 * their top-level maps both have references to the same 111 * sharing map. When memory is virtual-copied from one 112 * address map to another, the references in the sharing 113 * maps are actually copied -- no copying occurs at the 114 * virtual memory object level. 115 * 116 * Since portions of maps are specified by start/end addreses, 117 * which may not align with existing map entries, all 118 * routines merely "clip" entries to these start/end values. 119 * [That is, an entry is split into two, bordering at a 120 * start or end value.] Note that these clippings may not 121 * always be necessary (as the two resulting entries are then 122 * not changed); however, the clipping is done for convenience. 123 * No attempt is currently made to "glue back together" two 124 * abutting entries. 125 * 126 * As mentioned above, virtual copy operations are performed 127 * by copying VM object references from one sharing map to 128 * another, and then marking both regions as copy-on-write. 129 * It is important to note that only one writeable reference 130 * to a VM object region exists in any map -- this means that 131 * shadow object creation can be delayed until a write operation 132 * occurs. 133 */ 134 135 /* 136 * vm_map_startup: 137 * 138 * Initialize the vm_map module. Must be called before 139 * any other vm_map routines. 140 * 141 * Map and entry structures are allocated from the general 142 * purpose memory pool with some exceptions: 143 * 144 * - The kernel map and kmem submap are allocated statically. 145 * - Kernel map entries are allocated out of a static pool. 146 * 147 * These restrictions are necessary since malloc() uses the 148 * maps and requires map entries. 149 */ 150 151 vm_offset_t kentry_data; 152 vm_size_t kentry_data_size; 153 static vm_map_entry_t kentry_free; 154 static vm_map_t kmap_free; 155 extern char kstack[]; 156 157 static int kentry_count; 158 static vm_offset_t mapvm_start, mapvm, mapvmmax; 159 static int mapvmpgcnt; 160 161 static struct vm_map_entry *mappool; 162 static int mappoolcnt; 163 #define KENTRY_LOW_WATER 128 164 165 static void _vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 166 static void _vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 167 static vm_map_entry_t vm_map_entry_create __P((vm_map_t)); 168 static void vm_map_entry_delete __P((vm_map_t, vm_map_entry_t)); 169 static __inline void vm_map_entry_dispose __P((vm_map_t, vm_map_entry_t)); 170 static void vm_map_entry_unwire __P((vm_map_t, vm_map_entry_t)); 171 static void vm_map_copy_entry __P((vm_map_t, vm_map_t, vm_map_entry_t, 172 vm_map_entry_t)); 173 static void vm_map_simplify_entry __P((vm_map_t, vm_map_entry_t)); 174 175 void 176 vm_map_startup() 177 { 178 register int i; 179 register vm_map_entry_t mep; 180 vm_map_t mp; 181 182 /* 183 * Static map structures for allocation before initialization of 184 * kernel map or kmem map. vm_map_create knows how to deal with them. 185 */ 186 kmap_free = mp = (vm_map_t) kentry_data; 187 i = MAX_KMAP; 188 while (--i > 0) { 189 mp->header.next = (vm_map_entry_t) (mp + 1); 190 mp++; 191 } 192 mp++->header.next = NULL; 193 194 /* 195 * Form a free list of statically allocated kernel map entries with 196 * the rest. 197 */ 198 kentry_free = mep = (vm_map_entry_t) mp; 199 kentry_count = i = (kentry_data_size - MAX_KMAP * sizeof *mp) / sizeof *mep; 200 while (--i > 0) { 201 mep->next = mep + 1; 202 mep++; 203 } 204 mep->next = NULL; 205 } 206 207 /* 208 * Allocate a vmspace structure, including a vm_map and pmap, 209 * and initialize those structures. The refcnt is set to 1. 210 * The remaining fields must be initialized by the caller. 211 */ 212 struct vmspace * 213 vmspace_alloc(min, max, pageable) 214 vm_offset_t min, max; 215 int pageable; 216 { 217 register struct vmspace *vm; 218 219 if (mapvmpgcnt == 0 && mapvm == 0) { 220 mapvmpgcnt = (cnt.v_page_count * sizeof(struct vm_map_entry) + PAGE_SIZE - 1) / PAGE_SIZE; 221 mapvm_start = mapvm = kmem_alloc_pageable(kernel_map, 222 mapvmpgcnt * PAGE_SIZE); 223 mapvmmax = mapvm_start + mapvmpgcnt * PAGE_SIZE; 224 if (!mapvm) 225 mapvmpgcnt = 0; 226 } 227 MALLOC(vm, struct vmspace *, sizeof(struct vmspace), M_VMMAP, M_WAITOK); 228 bzero(vm, (caddr_t) &vm->vm_startcopy - (caddr_t) vm); 229 vm_map_init(&vm->vm_map, min, max, pageable); 230 pmap_pinit(&vm->vm_pmap); 231 vm->vm_map.pmap = &vm->vm_pmap; /* XXX */ 232 vm->vm_refcnt = 1; 233 return (vm); 234 } 235 236 void 237 vmspace_free(vm) 238 register struct vmspace *vm; 239 { 240 241 if (vm->vm_refcnt == 0) 242 panic("vmspace_free: attempt to free already freed vmspace"); 243 244 if (--vm->vm_refcnt == 0) { 245 246 /* 247 * Lock the map, to wait out all other references to it. 248 * Delete all of the mappings and pages they hold, then call 249 * the pmap module to reclaim anything left. 250 */ 251 vm_map_lock(&vm->vm_map); 252 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 253 vm->vm_map.max_offset); 254 vm_map_unlock(&vm->vm_map); 255 256 while( vm->vm_map.ref_count != 1) 257 tsleep(&vm->vm_map.ref_count, PVM, "vmsfre", 0); 258 --vm->vm_map.ref_count; 259 vm_object_pmap_remove(vm->vm_upages_obj, 260 0, vm->vm_upages_obj->size); 261 vm_object_deallocate(vm->vm_upages_obj); 262 pmap_release(&vm->vm_pmap); 263 FREE(vm, M_VMMAP); 264 } else { 265 wakeup(&vm->vm_map.ref_count); 266 } 267 } 268 269 /* 270 * vm_map_create: 271 * 272 * Creates and returns a new empty VM map with 273 * the given physical map structure, and having 274 * the given lower and upper address bounds. 275 */ 276 vm_map_t 277 vm_map_create(pmap, min, max, pageable) 278 pmap_t pmap; 279 vm_offset_t min, max; 280 boolean_t pageable; 281 { 282 register vm_map_t result; 283 284 if (kmem_map == NULL) { 285 result = kmap_free; 286 kmap_free = (vm_map_t) result->header.next; 287 if (result == NULL) 288 panic("vm_map_create: out of maps"); 289 } else 290 MALLOC(result, vm_map_t, sizeof(struct vm_map), 291 M_VMMAP, M_WAITOK); 292 293 vm_map_init(result, min, max, pageable); 294 result->pmap = pmap; 295 return (result); 296 } 297 298 /* 299 * Initialize an existing vm_map structure 300 * such as that in the vmspace structure. 301 * The pmap is set elsewhere. 302 */ 303 void 304 vm_map_init(map, min, max, pageable) 305 register struct vm_map *map; 306 vm_offset_t min, max; 307 boolean_t pageable; 308 { 309 map->header.next = map->header.prev = &map->header; 310 map->nentries = 0; 311 map->size = 0; 312 map->ref_count = 1; 313 map->is_main_map = TRUE; 314 map->min_offset = min; 315 map->max_offset = max; 316 map->entries_pageable = pageable; 317 map->first_free = &map->header; 318 map->hint = &map->header; 319 map->timestamp = 0; 320 lock_init(&map->lock, TRUE); 321 } 322 323 /* 324 * vm_map_entry_dispose: [ internal use only ] 325 * 326 * Inverse of vm_map_entry_create. 327 */ 328 static __inline void 329 vm_map_entry_dispose(map, entry) 330 vm_map_t map; 331 vm_map_entry_t entry; 332 { 333 int s; 334 335 if (kentry_count < KENTRY_LOW_WATER) { 336 s = splvm(); 337 entry->next = kentry_free; 338 kentry_free = entry; 339 ++kentry_count; 340 splx(s); 341 } else { 342 entry->next = mappool; 343 mappool = entry; 344 ++mappoolcnt; 345 } 346 } 347 348 /* 349 * vm_map_entry_create: [ internal use only ] 350 * 351 * Allocates a VM map entry for insertion. 352 * No entry fields are filled in. This routine is 353 */ 354 static vm_map_entry_t 355 vm_map_entry_create(map) 356 vm_map_t map; 357 { 358 vm_map_entry_t entry; 359 int i; 360 int s; 361 362 /* 363 * This is a *very* nasty (and sort of incomplete) hack!!!! 364 */ 365 if (kentry_count < KENTRY_LOW_WATER) { 366 s = splvm(); 367 if (mapvmpgcnt && mapvm) { 368 vm_page_t m; 369 370 m = vm_page_alloc(kernel_object, 371 OFF_TO_IDX(mapvm - VM_MIN_KERNEL_ADDRESS), 372 (map == kmem_map || map == mb_map) ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL); 373 374 if (m) { 375 int newentries; 376 377 newentries = (PAGE_SIZE / sizeof(struct vm_map_entry)); 378 vm_page_wire(m); 379 PAGE_WAKEUP(m); 380 m->valid = VM_PAGE_BITS_ALL; 381 pmap_kenter(mapvm, VM_PAGE_TO_PHYS(m)); 382 m->flags |= PG_WRITEABLE; 383 384 entry = (vm_map_entry_t) mapvm; 385 mapvm += PAGE_SIZE; 386 --mapvmpgcnt; 387 388 for (i = 0; i < newentries; i++) { 389 vm_map_entry_dispose(kernel_map, entry); 390 entry++; 391 } 392 } 393 } 394 splx(s); 395 } 396 397 if (map == kernel_map || map == kmem_map || map == mb_map || map == pager_map) { 398 s = splvm(); 399 entry = kentry_free; 400 if (entry) { 401 kentry_free = entry->next; 402 --kentry_count; 403 } else { 404 panic("vm_map_entry_create: out of map entries for kernel"); 405 } 406 splx(s); 407 } else { 408 entry = mappool; 409 if (entry) { 410 mappool = entry->next; 411 --mappoolcnt; 412 } else { 413 MALLOC(entry, vm_map_entry_t, sizeof(struct vm_map_entry), 414 M_VMMAPENT, M_WAITOK); 415 } 416 } 417 418 return (entry); 419 } 420 421 /* 422 * vm_map_entry_{un,}link: 423 * 424 * Insert/remove entries from maps. 425 */ 426 #define vm_map_entry_link(map, after_where, entry) \ 427 { \ 428 (map)->nentries++; \ 429 (entry)->prev = (after_where); \ 430 (entry)->next = (after_where)->next; \ 431 (entry)->prev->next = (entry); \ 432 (entry)->next->prev = (entry); \ 433 } 434 #define vm_map_entry_unlink(map, entry) \ 435 { \ 436 (map)->nentries--; \ 437 (entry)->next->prev = (entry)->prev; \ 438 (entry)->prev->next = (entry)->next; \ 439 } 440 441 /* 442 * vm_map_reference: 443 * 444 * Creates another valid reference to the given map. 445 * 446 */ 447 void 448 vm_map_reference(map) 449 register vm_map_t map; 450 { 451 if (map == NULL) 452 return; 453 454 map->ref_count++; 455 } 456 457 /* 458 * vm_map_deallocate: 459 * 460 * Removes a reference from the specified map, 461 * destroying it if no references remain. 462 * The map should not be locked. 463 */ 464 void 465 vm_map_deallocate(map) 466 register vm_map_t map; 467 { 468 register int c; 469 470 if (map == NULL) 471 return; 472 473 c = map->ref_count; 474 475 if (c == 0) 476 panic("vm_map_deallocate: deallocating already freed map"); 477 478 if (c != 1) { 479 --map->ref_count; 480 wakeup(&map->ref_count); 481 return; 482 } 483 /* 484 * Lock the map, to wait out all other references to it. 485 */ 486 487 vm_map_lock(map); 488 (void) vm_map_delete(map, map->min_offset, map->max_offset); 489 --map->ref_count; 490 if( map->ref_count != 0) { 491 vm_map_unlock(map); 492 return; 493 } 494 495 pmap_destroy(map->pmap); 496 FREE(map, M_VMMAP); 497 } 498 499 /* 500 * SAVE_HINT: 501 * 502 * Saves the specified entry as the hint for 503 * future lookups. 504 */ 505 #define SAVE_HINT(map,value) \ 506 (map)->hint = (value); 507 508 /* 509 * vm_map_lookup_entry: [ internal use only ] 510 * 511 * Finds the map entry containing (or 512 * immediately preceding) the specified address 513 * in the given map; the entry is returned 514 * in the "entry" parameter. The boolean 515 * result indicates whether the address is 516 * actually contained in the map. 517 */ 518 boolean_t 519 vm_map_lookup_entry(map, address, entry) 520 register vm_map_t map; 521 register vm_offset_t address; 522 vm_map_entry_t *entry; /* OUT */ 523 { 524 register vm_map_entry_t cur; 525 register vm_map_entry_t last; 526 527 /* 528 * Start looking either from the head of the list, or from the hint. 529 */ 530 531 cur = map->hint; 532 533 if (cur == &map->header) 534 cur = cur->next; 535 536 if (address >= cur->start) { 537 /* 538 * Go from hint to end of list. 539 * 540 * But first, make a quick check to see if we are already looking 541 * at the entry we want (which is usually the case). Note also 542 * that we don't need to save the hint here... it is the same 543 * hint (unless we are at the header, in which case the hint 544 * didn't buy us anything anyway). 545 */ 546 last = &map->header; 547 if ((cur != last) && (cur->end > address)) { 548 *entry = cur; 549 return (TRUE); 550 } 551 } else { 552 /* 553 * Go from start to hint, *inclusively* 554 */ 555 last = cur->next; 556 cur = map->header.next; 557 } 558 559 /* 560 * Search linearly 561 */ 562 563 while (cur != last) { 564 if (cur->end > address) { 565 if (address >= cur->start) { 566 /* 567 * Save this lookup for future hints, and 568 * return 569 */ 570 571 *entry = cur; 572 SAVE_HINT(map, cur); 573 return (TRUE); 574 } 575 break; 576 } 577 cur = cur->next; 578 } 579 *entry = cur->prev; 580 SAVE_HINT(map, *entry); 581 return (FALSE); 582 } 583 584 /* 585 * vm_map_insert: 586 * 587 * Inserts the given whole VM object into the target 588 * map at the specified address range. The object's 589 * size should match that of the address range. 590 * 591 * Requires that the map be locked, and leaves it so. 592 */ 593 int 594 vm_map_insert(map, object, offset, start, end, prot, max, cow) 595 vm_map_t map; 596 vm_object_t object; 597 vm_ooffset_t offset; 598 vm_offset_t start; 599 vm_offset_t end; 600 vm_prot_t prot, max; 601 int cow; 602 { 603 register vm_map_entry_t new_entry; 604 register vm_map_entry_t prev_entry; 605 vm_map_entry_t temp_entry; 606 vm_object_t prev_object; 607 608 /* 609 * Check that the start and end points are not bogus. 610 */ 611 612 if ((start < map->min_offset) || (end > map->max_offset) || 613 (start >= end)) 614 return (KERN_INVALID_ADDRESS); 615 616 /* 617 * Find the entry prior to the proposed starting address; if it's part 618 * of an existing entry, this range is bogus. 619 */ 620 621 if (vm_map_lookup_entry(map, start, &temp_entry)) 622 return (KERN_NO_SPACE); 623 624 prev_entry = temp_entry; 625 626 /* 627 * Assert that the next entry doesn't overlap the end point. 628 */ 629 630 if ((prev_entry->next != &map->header) && 631 (prev_entry->next->start < end)) 632 return (KERN_NO_SPACE); 633 634 if ((prev_entry != &map->header) && 635 (prev_entry->end == start) && 636 ((object == NULL) || (prev_entry->object.vm_object == object)) && 637 (prev_entry->is_a_map == FALSE) && 638 (prev_entry->is_sub_map == FALSE) && 639 (prev_entry->inheritance == VM_INHERIT_DEFAULT) && 640 (prev_entry->protection == prot) && 641 (prev_entry->max_protection == max) && 642 (prev_entry->wired_count == 0)) { 643 644 645 /* 646 * See if we can avoid creating a new entry by extending one of our 647 * neighbors. 648 */ 649 if (object == NULL) { 650 if (vm_object_coalesce(prev_entry->object.vm_object, 651 OFF_TO_IDX(prev_entry->offset), 652 (vm_size_t) (prev_entry->end 653 - prev_entry->start), 654 (vm_size_t) (end - prev_entry->end))) { 655 656 /* 657 * Coalesced the two objects - can extend the 658 * previous map entry to include the new 659 * range. 660 */ 661 map->size += (end - prev_entry->end); 662 prev_entry->end = end; 663 prev_object = prev_entry->object.vm_object; 664 default_pager_convert_to_swapq(prev_object); 665 return (KERN_SUCCESS); 666 } 667 } 668 } 669 /* 670 * Create a new entry 671 */ 672 673 new_entry = vm_map_entry_create(map); 674 new_entry->start = start; 675 new_entry->end = end; 676 677 new_entry->is_a_map = FALSE; 678 new_entry->is_sub_map = FALSE; 679 new_entry->object.vm_object = object; 680 new_entry->offset = offset; 681 682 if (cow & MAP_COPY_NEEDED) 683 new_entry->needs_copy = TRUE; 684 else 685 new_entry->needs_copy = FALSE; 686 687 if (cow & MAP_COPY_ON_WRITE) 688 new_entry->copy_on_write = TRUE; 689 else 690 new_entry->copy_on_write = FALSE; 691 692 if (map->is_main_map) { 693 new_entry->inheritance = VM_INHERIT_DEFAULT; 694 new_entry->protection = prot; 695 new_entry->max_protection = max; 696 new_entry->wired_count = 0; 697 } 698 /* 699 * Insert the new entry into the list 700 */ 701 702 vm_map_entry_link(map, prev_entry, new_entry); 703 map->size += new_entry->end - new_entry->start; 704 705 /* 706 * Update the free space hint 707 */ 708 if ((map->first_free == prev_entry) && 709 (prev_entry->end >= new_entry->start)) 710 map->first_free = new_entry; 711 712 default_pager_convert_to_swapq(object); 713 return (KERN_SUCCESS); 714 } 715 716 /* 717 * Find sufficient space for `length' bytes in the given map, starting at 718 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 719 */ 720 int 721 vm_map_findspace(map, start, length, addr) 722 register vm_map_t map; 723 register vm_offset_t start; 724 vm_size_t length; 725 vm_offset_t *addr; 726 { 727 register vm_map_entry_t entry, next; 728 register vm_offset_t end; 729 730 if (start < map->min_offset) 731 start = map->min_offset; 732 if (start > map->max_offset) 733 return (1); 734 735 /* 736 * Look for the first possible address; if there's already something 737 * at this address, we have to start after it. 738 */ 739 if (start == map->min_offset) { 740 if ((entry = map->first_free) != &map->header) 741 start = entry->end; 742 } else { 743 vm_map_entry_t tmp; 744 745 if (vm_map_lookup_entry(map, start, &tmp)) 746 start = tmp->end; 747 entry = tmp; 748 } 749 750 /* 751 * Look through the rest of the map, trying to fit a new region in the 752 * gap between existing regions, or after the very last region. 753 */ 754 for (;; start = (entry = next)->end) { 755 /* 756 * Find the end of the proposed new region. Be sure we didn't 757 * go beyond the end of the map, or wrap around the address; 758 * if so, we lose. Otherwise, if this is the last entry, or 759 * if the proposed new region fits before the next entry, we 760 * win. 761 */ 762 end = start + length; 763 if (end > map->max_offset || end < start) 764 return (1); 765 next = entry->next; 766 if (next == &map->header || next->start >= end) 767 break; 768 } 769 SAVE_HINT(map, entry); 770 *addr = start; 771 if (map == kernel_map && round_page(start + length) > kernel_vm_end) 772 pmap_growkernel(round_page(start + length)); 773 return (0); 774 } 775 776 /* 777 * vm_map_find finds an unallocated region in the target address 778 * map with the given length. The search is defined to be 779 * first-fit from the specified address; the region found is 780 * returned in the same parameter. 781 * 782 */ 783 int 784 vm_map_find(map, object, offset, addr, length, find_space, prot, max, cow) 785 vm_map_t map; 786 vm_object_t object; 787 vm_ooffset_t offset; 788 vm_offset_t *addr; /* IN/OUT */ 789 vm_size_t length; 790 boolean_t find_space; 791 vm_prot_t prot, max; 792 int cow; 793 { 794 register vm_offset_t start; 795 int result, s = 0; 796 797 start = *addr; 798 799 if (map == kmem_map || map == mb_map) 800 s = splvm(); 801 802 vm_map_lock(map); 803 if (find_space) { 804 if (vm_map_findspace(map, start, length, addr)) { 805 vm_map_unlock(map); 806 if (map == kmem_map || map == mb_map) 807 splx(s); 808 return (KERN_NO_SPACE); 809 } 810 start = *addr; 811 } 812 result = vm_map_insert(map, object, offset, 813 start, start + length, prot, max, cow); 814 vm_map_unlock(map); 815 816 if (map == kmem_map || map == mb_map) 817 splx(s); 818 819 return (result); 820 } 821 822 /* 823 * vm_map_simplify_entry: [ internal use only ] 824 * 825 * Simplify the given map entry by: 826 * removing extra sharing maps 827 * [XXX maybe later] merging with a neighbor 828 */ 829 static void 830 vm_map_simplify_entry(map, entry) 831 vm_map_t map; 832 vm_map_entry_t entry; 833 { 834 vm_map_entry_t next, prev; 835 vm_size_t nextsize, prevsize, esize; 836 837 /* 838 * If this entry corresponds to a sharing map, then see if we can 839 * remove the level of indirection. If it's not a sharing map, then it 840 * points to a VM object, so see if we can merge with either of our 841 * neighbors. 842 */ 843 844 if (entry->is_sub_map || entry->is_a_map || entry->wired_count) 845 return; 846 847 prev = entry->prev; 848 if (prev != &map->header) { 849 prevsize = prev->end - prev->start; 850 if ( (prev->end == entry->start) && 851 (prev->object.vm_object == entry->object.vm_object) && 852 (!prev->object.vm_object || (prev->object.vm_object->behavior == entry->object.vm_object->behavior)) && 853 (!prev->object.vm_object || 854 (prev->offset + prevsize == entry->offset)) && 855 (prev->needs_copy == entry->needs_copy) && 856 (prev->copy_on_write == entry->copy_on_write) && 857 (prev->protection == entry->protection) && 858 (prev->max_protection == entry->max_protection) && 859 (prev->inheritance == entry->inheritance) && 860 (prev->is_a_map == FALSE) && 861 (prev->is_sub_map == FALSE) && 862 (prev->wired_count == 0)) { 863 if (map->first_free == prev) 864 map->first_free = entry; 865 if (map->hint == prev) 866 map->hint = entry; 867 vm_map_entry_unlink(map, prev); 868 entry->start = prev->start; 869 entry->offset = prev->offset; 870 if (prev->object.vm_object) 871 vm_object_deallocate(prev->object.vm_object); 872 vm_map_entry_dispose(map, prev); 873 } 874 } 875 876 next = entry->next; 877 if (next != &map->header) { 878 nextsize = next->end - next->start; 879 esize = entry->end - entry->start; 880 if ((entry->end == next->start) && 881 (next->object.vm_object == entry->object.vm_object) && 882 (!next->object.vm_object || (next->object.vm_object->behavior == entry->object.vm_object->behavior)) && 883 (!entry->object.vm_object || 884 (entry->offset + esize == next->offset)) && 885 (next->needs_copy == entry->needs_copy) && 886 (next->copy_on_write == entry->copy_on_write) && 887 (next->protection == entry->protection) && 888 (next->max_protection == entry->max_protection) && 889 (next->inheritance == entry->inheritance) && 890 (next->is_a_map == FALSE) && 891 (next->is_sub_map == FALSE) && 892 (next->wired_count == 0)) { 893 if (map->first_free == next) 894 map->first_free = entry; 895 if (map->hint == next) 896 map->hint = entry; 897 vm_map_entry_unlink(map, next); 898 entry->end = next->end; 899 if (next->object.vm_object) 900 vm_object_deallocate(next->object.vm_object); 901 vm_map_entry_dispose(map, next); 902 } 903 } 904 } 905 /* 906 * vm_map_clip_start: [ internal use only ] 907 * 908 * Asserts that the given entry begins at or after 909 * the specified address; if necessary, 910 * it splits the entry into two. 911 */ 912 #define vm_map_clip_start(map, entry, startaddr) \ 913 { \ 914 if (startaddr > entry->start) \ 915 _vm_map_clip_start(map, entry, startaddr); \ 916 } 917 918 /* 919 * This routine is called only when it is known that 920 * the entry must be split. 921 */ 922 static void 923 _vm_map_clip_start(map, entry, start) 924 register vm_map_t map; 925 register vm_map_entry_t entry; 926 register vm_offset_t start; 927 { 928 register vm_map_entry_t new_entry; 929 930 /* 931 * Split off the front portion -- note that we must insert the new 932 * entry BEFORE this one, so that this entry has the specified 933 * starting address. 934 */ 935 936 vm_map_simplify_entry(map, entry); 937 938 new_entry = vm_map_entry_create(map); 939 *new_entry = *entry; 940 941 new_entry->end = start; 942 entry->offset += (start - entry->start); 943 entry->start = start; 944 945 vm_map_entry_link(map, entry->prev, new_entry); 946 947 if (entry->is_a_map || entry->is_sub_map) 948 vm_map_reference(new_entry->object.share_map); 949 else 950 vm_object_reference(new_entry->object.vm_object); 951 } 952 953 /* 954 * vm_map_clip_end: [ internal use only ] 955 * 956 * Asserts that the given entry ends at or before 957 * the specified address; if necessary, 958 * it splits the entry into two. 959 */ 960 961 #define vm_map_clip_end(map, entry, endaddr) \ 962 { \ 963 if (endaddr < entry->end) \ 964 _vm_map_clip_end(map, entry, endaddr); \ 965 } 966 967 /* 968 * This routine is called only when it is known that 969 * the entry must be split. 970 */ 971 static void 972 _vm_map_clip_end(map, entry, end) 973 register vm_map_t map; 974 register vm_map_entry_t entry; 975 register vm_offset_t end; 976 { 977 register vm_map_entry_t new_entry; 978 979 /* 980 * Create a new entry and insert it AFTER the specified entry 981 */ 982 983 new_entry = vm_map_entry_create(map); 984 *new_entry = *entry; 985 986 new_entry->start = entry->end = end; 987 new_entry->offset += (end - entry->start); 988 989 vm_map_entry_link(map, entry, new_entry); 990 991 if (entry->is_a_map || entry->is_sub_map) 992 vm_map_reference(new_entry->object.share_map); 993 else 994 vm_object_reference(new_entry->object.vm_object); 995 } 996 997 /* 998 * VM_MAP_RANGE_CHECK: [ internal use only ] 999 * 1000 * Asserts that the starting and ending region 1001 * addresses fall within the valid range of the map. 1002 */ 1003 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1004 { \ 1005 if (start < vm_map_min(map)) \ 1006 start = vm_map_min(map); \ 1007 if (end > vm_map_max(map)) \ 1008 end = vm_map_max(map); \ 1009 if (start > end) \ 1010 start = end; \ 1011 } 1012 1013 /* 1014 * vm_map_submap: [ kernel use only ] 1015 * 1016 * Mark the given range as handled by a subordinate map. 1017 * 1018 * This range must have been created with vm_map_find, 1019 * and no other operations may have been performed on this 1020 * range prior to calling vm_map_submap. 1021 * 1022 * Only a limited number of operations can be performed 1023 * within this rage after calling vm_map_submap: 1024 * vm_fault 1025 * [Don't try vm_map_copy!] 1026 * 1027 * To remove a submapping, one must first remove the 1028 * range from the superior map, and then destroy the 1029 * submap (if desired). [Better yet, don't try it.] 1030 */ 1031 int 1032 vm_map_submap(map, start, end, submap) 1033 register vm_map_t map; 1034 register vm_offset_t start; 1035 register vm_offset_t end; 1036 vm_map_t submap; 1037 { 1038 vm_map_entry_t entry; 1039 register int result = KERN_INVALID_ARGUMENT; 1040 1041 vm_map_lock(map); 1042 1043 VM_MAP_RANGE_CHECK(map, start, end); 1044 1045 if (vm_map_lookup_entry(map, start, &entry)) { 1046 vm_map_clip_start(map, entry, start); 1047 } else 1048 entry = entry->next; 1049 1050 vm_map_clip_end(map, entry, end); 1051 1052 if ((entry->start == start) && (entry->end == end) && 1053 (!entry->is_a_map) && 1054 (entry->object.vm_object == NULL) && 1055 (!entry->copy_on_write)) { 1056 entry->is_a_map = FALSE; 1057 entry->is_sub_map = TRUE; 1058 vm_map_reference(entry->object.sub_map = submap); 1059 result = KERN_SUCCESS; 1060 } 1061 vm_map_unlock(map); 1062 1063 return (result); 1064 } 1065 1066 /* 1067 * vm_map_protect: 1068 * 1069 * Sets the protection of the specified address 1070 * region in the target map. If "set_max" is 1071 * specified, the maximum protection is to be set; 1072 * otherwise, only the current protection is affected. 1073 */ 1074 int 1075 vm_map_protect(map, start, end, new_prot, set_max) 1076 register vm_map_t map; 1077 register vm_offset_t start; 1078 register vm_offset_t end; 1079 register vm_prot_t new_prot; 1080 register boolean_t set_max; 1081 { 1082 register vm_map_entry_t current; 1083 vm_map_entry_t entry; 1084 1085 vm_map_lock(map); 1086 1087 VM_MAP_RANGE_CHECK(map, start, end); 1088 1089 if (vm_map_lookup_entry(map, start, &entry)) { 1090 vm_map_clip_start(map, entry, start); 1091 } else 1092 entry = entry->next; 1093 1094 /* 1095 * Make a first pass to check for protection violations. 1096 */ 1097 1098 current = entry; 1099 while ((current != &map->header) && (current->start < end)) { 1100 if (current->is_sub_map) { 1101 vm_map_unlock(map); 1102 return (KERN_INVALID_ARGUMENT); 1103 } 1104 if ((new_prot & current->max_protection) != new_prot) { 1105 vm_map_unlock(map); 1106 return (KERN_PROTECTION_FAILURE); 1107 } 1108 current = current->next; 1109 } 1110 1111 /* 1112 * Go back and fix up protections. [Note that clipping is not 1113 * necessary the second time.] 1114 */ 1115 1116 current = entry; 1117 1118 while ((current != &map->header) && (current->start < end)) { 1119 vm_prot_t old_prot; 1120 1121 vm_map_clip_end(map, current, end); 1122 1123 old_prot = current->protection; 1124 if (set_max) 1125 current->protection = 1126 (current->max_protection = new_prot) & 1127 old_prot; 1128 else 1129 current->protection = new_prot; 1130 1131 /* 1132 * Update physical map if necessary. Worry about copy-on-write 1133 * here -- CHECK THIS XXX 1134 */ 1135 1136 if (current->protection != old_prot) { 1137 #define MASK(entry) ((entry)->copy_on_write ? ~VM_PROT_WRITE : \ 1138 VM_PROT_ALL) 1139 #define max(a,b) ((a) > (b) ? (a) : (b)) 1140 1141 if (current->is_a_map) { 1142 vm_map_entry_t share_entry; 1143 vm_offset_t share_end; 1144 1145 vm_map_lock(current->object.share_map); 1146 (void) vm_map_lookup_entry( 1147 current->object.share_map, 1148 current->offset, 1149 &share_entry); 1150 share_end = current->offset + 1151 (current->end - current->start); 1152 while ((share_entry != 1153 ¤t->object.share_map->header) && 1154 (share_entry->start < share_end)) { 1155 1156 pmap_protect(map->pmap, 1157 (max(share_entry->start, 1158 current->offset) - 1159 current->offset + 1160 current->start), 1161 min(share_entry->end, 1162 share_end) - 1163 current->offset + 1164 current->start, 1165 current->protection & 1166 MASK(share_entry)); 1167 1168 share_entry = share_entry->next; 1169 } 1170 vm_map_unlock(current->object.share_map); 1171 } else 1172 pmap_protect(map->pmap, current->start, 1173 current->end, 1174 current->protection & MASK(entry)); 1175 #undef max 1176 #undef MASK 1177 } 1178 current = current->next; 1179 } 1180 1181 vm_map_simplify_entry(map, entry); 1182 vm_map_unlock(map); 1183 return (KERN_SUCCESS); 1184 } 1185 1186 /* 1187 * vm_map_madvise: 1188 * 1189 * This routine traverses a processes map handling the madvise 1190 * system call. 1191 */ 1192 void 1193 vm_map_madvise(map, pmap, start, end, advise) 1194 vm_map_t map; 1195 pmap_t pmap; 1196 vm_offset_t start, end; 1197 int advise; 1198 { 1199 register vm_map_entry_t current; 1200 vm_map_entry_t entry; 1201 1202 vm_map_lock(map); 1203 1204 VM_MAP_RANGE_CHECK(map, start, end); 1205 1206 if (vm_map_lookup_entry(map, start, &entry)) { 1207 vm_map_clip_start(map, entry, start); 1208 } else 1209 entry = entry->next; 1210 1211 for(current = entry; 1212 (current != &map->header) && (current->start < end); 1213 current = current->next) { 1214 if (current->is_a_map || current->is_sub_map) { 1215 continue; 1216 } 1217 vm_map_clip_end(map, current, end); 1218 switch (advise) { 1219 case MADV_NORMAL: 1220 current->object.vm_object->behavior = OBJ_NORMAL; 1221 break; 1222 case MADV_SEQUENTIAL: 1223 current->object.vm_object->behavior = OBJ_SEQUENTIAL; 1224 break; 1225 case MADV_RANDOM: 1226 current->object.vm_object->behavior = OBJ_RANDOM; 1227 break; 1228 /* 1229 * Right now, we could handle DONTNEED and WILLNEED with common code. 1230 * They are mostly the same, except for the potential async reads (NYI). 1231 */ 1232 case MADV_FREE: 1233 case MADV_DONTNEED: 1234 { 1235 vm_pindex_t pindex; 1236 int count; 1237 vm_size_t size = current->end - current->start; 1238 pindex = OFF_TO_IDX(entry->offset); 1239 count = OFF_TO_IDX(size); 1240 /* 1241 * MADV_DONTNEED removes the page from all 1242 * pmaps, so pmap_remove is not necessary. 1243 */ 1244 vm_object_madvise(current->object.vm_object, 1245 pindex, count, advise); 1246 } 1247 break; 1248 1249 case MADV_WILLNEED: 1250 { 1251 vm_pindex_t pindex; 1252 int count; 1253 vm_size_t size = current->end - current->start; 1254 pindex = OFF_TO_IDX(current->offset); 1255 count = OFF_TO_IDX(size); 1256 vm_object_madvise(current->object.vm_object, 1257 pindex, count, advise); 1258 pmap_object_init_pt(pmap, current->start, 1259 current->object.vm_object, pindex, 1260 (count << PAGE_SHIFT), 0); 1261 } 1262 break; 1263 1264 default: 1265 break; 1266 } 1267 } 1268 1269 vm_map_simplify_entry(map, entry); 1270 vm_map_unlock(map); 1271 return; 1272 } 1273 1274 1275 /* 1276 * vm_map_inherit: 1277 * 1278 * Sets the inheritance of the specified address 1279 * range in the target map. Inheritance 1280 * affects how the map will be shared with 1281 * child maps at the time of vm_map_fork. 1282 */ 1283 int 1284 vm_map_inherit(map, start, end, new_inheritance) 1285 register vm_map_t map; 1286 register vm_offset_t start; 1287 register vm_offset_t end; 1288 register vm_inherit_t new_inheritance; 1289 { 1290 register vm_map_entry_t entry; 1291 vm_map_entry_t temp_entry; 1292 1293 switch (new_inheritance) { 1294 case VM_INHERIT_NONE: 1295 case VM_INHERIT_COPY: 1296 case VM_INHERIT_SHARE: 1297 break; 1298 default: 1299 return (KERN_INVALID_ARGUMENT); 1300 } 1301 1302 vm_map_lock(map); 1303 1304 VM_MAP_RANGE_CHECK(map, start, end); 1305 1306 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1307 entry = temp_entry; 1308 vm_map_clip_start(map, entry, start); 1309 } else 1310 entry = temp_entry->next; 1311 1312 while ((entry != &map->header) && (entry->start < end)) { 1313 vm_map_clip_end(map, entry, end); 1314 1315 entry->inheritance = new_inheritance; 1316 1317 entry = entry->next; 1318 } 1319 1320 vm_map_simplify_entry(map, temp_entry); 1321 vm_map_unlock(map); 1322 return (KERN_SUCCESS); 1323 } 1324 1325 /* 1326 * vm_map_pageable: 1327 * 1328 * Sets the pageability of the specified address 1329 * range in the target map. Regions specified 1330 * as not pageable require locked-down physical 1331 * memory and physical page maps. 1332 * 1333 * The map must not be locked, but a reference 1334 * must remain to the map throughout the call. 1335 */ 1336 int 1337 vm_map_pageable(map, start, end, new_pageable) 1338 register vm_map_t map; 1339 register vm_offset_t start; 1340 register vm_offset_t end; 1341 register boolean_t new_pageable; 1342 { 1343 register vm_map_entry_t entry; 1344 vm_map_entry_t start_entry; 1345 register vm_offset_t failed = 0; 1346 int rv; 1347 1348 vm_map_lock(map); 1349 1350 VM_MAP_RANGE_CHECK(map, start, end); 1351 1352 /* 1353 * Only one pageability change may take place at one time, since 1354 * vm_fault assumes it will be called only once for each 1355 * wiring/unwiring. Therefore, we have to make sure we're actually 1356 * changing the pageability for the entire region. We do so before 1357 * making any changes. 1358 */ 1359 1360 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1361 vm_map_unlock(map); 1362 return (KERN_INVALID_ADDRESS); 1363 } 1364 entry = start_entry; 1365 1366 /* 1367 * Actions are rather different for wiring and unwiring, so we have 1368 * two separate cases. 1369 */ 1370 1371 if (new_pageable) { 1372 1373 vm_map_clip_start(map, entry, start); 1374 1375 /* 1376 * Unwiring. First ensure that the range to be unwired is 1377 * really wired down and that there are no holes. 1378 */ 1379 while ((entry != &map->header) && (entry->start < end)) { 1380 1381 if (entry->wired_count == 0 || 1382 (entry->end < end && 1383 (entry->next == &map->header || 1384 entry->next->start > entry->end))) { 1385 vm_map_unlock(map); 1386 return (KERN_INVALID_ARGUMENT); 1387 } 1388 entry = entry->next; 1389 } 1390 1391 /* 1392 * Now decrement the wiring count for each region. If a region 1393 * becomes completely unwired, unwire its physical pages and 1394 * mappings. 1395 */ 1396 lock_set_recursive(&map->lock); 1397 1398 entry = start_entry; 1399 while ((entry != &map->header) && (entry->start < end)) { 1400 vm_map_clip_end(map, entry, end); 1401 1402 entry->wired_count--; 1403 if (entry->wired_count == 0) 1404 vm_fault_unwire(map, entry->start, entry->end); 1405 1406 entry = entry->next; 1407 } 1408 vm_map_simplify_entry(map, start_entry); 1409 lock_clear_recursive(&map->lock); 1410 } else { 1411 /* 1412 * Wiring. We must do this in two passes: 1413 * 1414 * 1. Holding the write lock, we create any shadow or zero-fill 1415 * objects that need to be created. Then we clip each map 1416 * entry to the region to be wired and increment its wiring 1417 * count. We create objects before clipping the map entries 1418 * to avoid object proliferation. 1419 * 1420 * 2. We downgrade to a read lock, and call vm_fault_wire to 1421 * fault in the pages for any newly wired area (wired_count is 1422 * 1). 1423 * 1424 * Downgrading to a read lock for vm_fault_wire avoids a possible 1425 * deadlock with another process that may have faulted on one 1426 * of the pages to be wired (it would mark the page busy, 1427 * blocking us, then in turn block on the map lock that we 1428 * hold). Because of problems in the recursive lock package, 1429 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 1430 * any actions that require the write lock must be done 1431 * beforehand. Because we keep the read lock on the map, the 1432 * copy-on-write status of the entries we modify here cannot 1433 * change. 1434 */ 1435 1436 /* 1437 * Pass 1. 1438 */ 1439 while ((entry != &map->header) && (entry->start < end)) { 1440 if (entry->wired_count == 0) { 1441 1442 /* 1443 * Perform actions of vm_map_lookup that need 1444 * the write lock on the map: create a shadow 1445 * object for a copy-on-write region, or an 1446 * object for a zero-fill region. 1447 * 1448 * We don't have to do this for entries that 1449 * point to sharing maps, because we won't 1450 * hold the lock on the sharing map. 1451 */ 1452 if (!entry->is_a_map && !entry->is_sub_map) { 1453 int copyflag = entry->needs_copy; 1454 if (copyflag && 1455 ((entry->protection & VM_PROT_WRITE) != 0)) { 1456 1457 vm_object_shadow(&entry->object.vm_object, 1458 &entry->offset, 1459 OFF_TO_IDX(entry->end 1460 - entry->start)); 1461 entry->needs_copy = FALSE; 1462 } else if (entry->object.vm_object == NULL) { 1463 entry->object.vm_object = 1464 vm_object_allocate(OBJT_DEFAULT, 1465 OFF_TO_IDX(entry->end - entry->start)); 1466 entry->offset = (vm_offset_t) 0; 1467 } 1468 default_pager_convert_to_swapq(entry->object.vm_object); 1469 } 1470 } 1471 vm_map_clip_start(map, entry, start); 1472 vm_map_clip_end(map, entry, end); 1473 entry->wired_count++; 1474 1475 /* 1476 * Check for holes 1477 */ 1478 if (entry->end < end && 1479 (entry->next == &map->header || 1480 entry->next->start > entry->end)) { 1481 /* 1482 * Found one. Object creation actions do not 1483 * need to be undone, but the wired counts 1484 * need to be restored. 1485 */ 1486 while (entry != &map->header && entry->end > start) { 1487 entry->wired_count--; 1488 entry = entry->prev; 1489 } 1490 vm_map_unlock(map); 1491 return (KERN_INVALID_ARGUMENT); 1492 } 1493 entry = entry->next; 1494 } 1495 1496 /* 1497 * Pass 2. 1498 */ 1499 1500 /* 1501 * HACK HACK HACK HACK 1502 * 1503 * If we are wiring in the kernel map or a submap of it, 1504 * unlock the map to avoid deadlocks. We trust that the 1505 * kernel is well-behaved, and therefore will not do 1506 * anything destructive to this region of the map while 1507 * we have it unlocked. We cannot trust user processes 1508 * to do the same. 1509 * 1510 * HACK HACK HACK HACK 1511 */ 1512 if (vm_map_pmap(map) == kernel_pmap) { 1513 vm_map_unlock(map); /* trust me ... */ 1514 } else { 1515 lock_set_recursive(&map->lock); 1516 lock_write_to_read(&map->lock); 1517 } 1518 1519 rv = 0; 1520 entry = start_entry; 1521 while (entry != &map->header && entry->start < end) { 1522 /* 1523 * If vm_fault_wire fails for any page we need to undo 1524 * what has been done. We decrement the wiring count 1525 * for those pages which have not yet been wired (now) 1526 * and unwire those that have (later). 1527 * 1528 * XXX this violates the locking protocol on the map, 1529 * needs to be fixed. 1530 */ 1531 if (rv) 1532 entry->wired_count--; 1533 else if (entry->wired_count == 1) { 1534 rv = vm_fault_wire(map, entry->start, entry->end); 1535 if (rv) { 1536 failed = entry->start; 1537 entry->wired_count--; 1538 } 1539 } 1540 entry = entry->next; 1541 } 1542 1543 if (vm_map_pmap(map) == kernel_pmap) { 1544 vm_map_lock(map); 1545 } else { 1546 lock_clear_recursive(&map->lock); 1547 } 1548 if (rv) { 1549 vm_map_unlock(map); 1550 (void) vm_map_pageable(map, start, failed, TRUE); 1551 return (rv); 1552 } 1553 } 1554 1555 vm_map_unlock(map); 1556 1557 return (KERN_SUCCESS); 1558 } 1559 1560 /* 1561 * vm_map_clean 1562 * 1563 * Push any dirty cached pages in the address range to their pager. 1564 * If syncio is TRUE, dirty pages are written synchronously. 1565 * If invalidate is TRUE, any cached pages are freed as well. 1566 * 1567 * Returns an error if any part of the specified range is not mapped. 1568 */ 1569 int 1570 vm_map_clean(map, start, end, syncio, invalidate) 1571 vm_map_t map; 1572 vm_offset_t start; 1573 vm_offset_t end; 1574 boolean_t syncio; 1575 boolean_t invalidate; 1576 { 1577 register vm_map_entry_t current; 1578 vm_map_entry_t entry; 1579 vm_size_t size; 1580 vm_object_t object; 1581 vm_ooffset_t offset; 1582 1583 vm_map_lock_read(map); 1584 VM_MAP_RANGE_CHECK(map, start, end); 1585 if (!vm_map_lookup_entry(map, start, &entry)) { 1586 vm_map_unlock_read(map); 1587 return (KERN_INVALID_ADDRESS); 1588 } 1589 /* 1590 * Make a first pass to check for holes. 1591 */ 1592 for (current = entry; current->start < end; current = current->next) { 1593 if (current->is_sub_map) { 1594 vm_map_unlock_read(map); 1595 return (KERN_INVALID_ARGUMENT); 1596 } 1597 if (end > current->end && 1598 (current->next == &map->header || 1599 current->end != current->next->start)) { 1600 vm_map_unlock_read(map); 1601 return (KERN_INVALID_ADDRESS); 1602 } 1603 } 1604 1605 /* 1606 * Make a second pass, cleaning/uncaching pages from the indicated 1607 * objects as we go. 1608 */ 1609 for (current = entry; current->start < end; current = current->next) { 1610 offset = current->offset + (start - current->start); 1611 size = (end <= current->end ? end : current->end) - start; 1612 if (current->is_a_map || current->is_sub_map) { 1613 register vm_map_t smap; 1614 vm_map_entry_t tentry; 1615 vm_size_t tsize; 1616 1617 smap = current->object.share_map; 1618 vm_map_lock_read(smap); 1619 (void) vm_map_lookup_entry(smap, offset, &tentry); 1620 tsize = tentry->end - offset; 1621 if (tsize < size) 1622 size = tsize; 1623 object = tentry->object.vm_object; 1624 offset = tentry->offset + (offset - tentry->start); 1625 vm_map_unlock_read(smap); 1626 } else { 1627 object = current->object.vm_object; 1628 } 1629 /* 1630 * Note that there is absolutely no sense in writing out 1631 * anonymous objects, so we track down the vnode object 1632 * to write out. 1633 * We invalidate (remove) all pages from the address space 1634 * anyway, for semantic correctness. 1635 */ 1636 while (object->backing_object) { 1637 object = object->backing_object; 1638 offset += object->backing_object_offset; 1639 if (object->size < OFF_TO_IDX( offset + size)) 1640 size = IDX_TO_OFF(object->size) - offset; 1641 } 1642 if (invalidate) 1643 pmap_remove(vm_map_pmap(map), current->start, 1644 current->start + size); 1645 if (object && (object->type == OBJT_VNODE)) { 1646 /* 1647 * Flush pages if writing is allowed. XXX should we continue 1648 * on an error? 1649 * 1650 * XXX Doing async I/O and then removing all the pages from 1651 * the object before it completes is probably a very bad 1652 * idea. 1653 */ 1654 if (current->protection & VM_PROT_WRITE) { 1655 vm_object_page_clean(object, 1656 OFF_TO_IDX(offset), 1657 OFF_TO_IDX(offset + size), 1658 (syncio||invalidate)?1:0, TRUE); 1659 if (invalidate) 1660 vm_object_page_remove(object, 1661 OFF_TO_IDX(offset), 1662 OFF_TO_IDX(offset + size), 1663 FALSE); 1664 } 1665 } 1666 start += size; 1667 } 1668 1669 vm_map_unlock_read(map); 1670 return (KERN_SUCCESS); 1671 } 1672 1673 /* 1674 * vm_map_entry_unwire: [ internal use only ] 1675 * 1676 * Make the region specified by this entry pageable. 1677 * 1678 * The map in question should be locked. 1679 * [This is the reason for this routine's existence.] 1680 */ 1681 static __inline void 1682 vm_map_entry_unwire(map, entry) 1683 vm_map_t map; 1684 register vm_map_entry_t entry; 1685 { 1686 vm_fault_unwire(map, entry->start, entry->end); 1687 entry->wired_count = 0; 1688 } 1689 1690 /* 1691 * vm_map_entry_delete: [ internal use only ] 1692 * 1693 * Deallocate the given entry from the target map. 1694 */ 1695 static __inline void 1696 vm_map_entry_delete(map, entry) 1697 register vm_map_t map; 1698 register vm_map_entry_t entry; 1699 { 1700 vm_map_entry_unlink(map, entry); 1701 map->size -= entry->end - entry->start; 1702 1703 if (entry->is_a_map || entry->is_sub_map) { 1704 vm_map_deallocate(entry->object.share_map); 1705 } else { 1706 vm_object_deallocate(entry->object.vm_object); 1707 } 1708 1709 vm_map_entry_dispose(map, entry); 1710 } 1711 1712 /* 1713 * vm_map_delete: [ internal use only ] 1714 * 1715 * Deallocates the given address range from the target 1716 * map. 1717 * 1718 * When called with a sharing map, removes pages from 1719 * that region from all physical maps. 1720 */ 1721 int 1722 vm_map_delete(map, start, end) 1723 register vm_map_t map; 1724 vm_offset_t start; 1725 register vm_offset_t end; 1726 { 1727 register vm_map_entry_t entry; 1728 vm_map_entry_t first_entry; 1729 1730 /* 1731 * Find the start of the region, and clip it 1732 */ 1733 1734 if (!vm_map_lookup_entry(map, start, &first_entry)) 1735 entry = first_entry->next; 1736 else { 1737 entry = first_entry; 1738 vm_map_clip_start(map, entry, start); 1739 1740 /* 1741 * Fix the lookup hint now, rather than each time though the 1742 * loop. 1743 */ 1744 1745 SAVE_HINT(map, entry->prev); 1746 } 1747 1748 /* 1749 * Save the free space hint 1750 */ 1751 1752 if (entry == &map->header) { 1753 map->first_free = &map->header; 1754 } else if (map->first_free->start >= start) 1755 map->first_free = entry->prev; 1756 1757 /* 1758 * Step through all entries in this region 1759 */ 1760 1761 while ((entry != &map->header) && (entry->start < end)) { 1762 vm_map_entry_t next; 1763 vm_offset_t s, e; 1764 vm_object_t object; 1765 vm_ooffset_t offset; 1766 1767 vm_map_clip_end(map, entry, end); 1768 1769 next = entry->next; 1770 s = entry->start; 1771 e = entry->end; 1772 offset = entry->offset; 1773 1774 /* 1775 * Unwire before removing addresses from the pmap; otherwise, 1776 * unwiring will put the entries back in the pmap. 1777 */ 1778 1779 object = entry->object.vm_object; 1780 if (entry->wired_count != 0) 1781 vm_map_entry_unwire(map, entry); 1782 1783 /* 1784 * If this is a sharing map, we must remove *all* references 1785 * to this data, since we can't find all of the physical maps 1786 * which are sharing it. 1787 */ 1788 1789 if (object == kernel_object || object == kmem_object) { 1790 vm_object_page_remove(object, OFF_TO_IDX(offset), 1791 OFF_TO_IDX(offset + (e - s)), FALSE); 1792 } else if (!map->is_main_map) { 1793 vm_object_pmap_remove(object, 1794 OFF_TO_IDX(offset), 1795 OFF_TO_IDX(offset + (e - s))); 1796 } else { 1797 pmap_remove(map->pmap, s, e); 1798 } 1799 1800 /* 1801 * Delete the entry (which may delete the object) only after 1802 * removing all pmap entries pointing to its pages. 1803 * (Otherwise, its page frames may be reallocated, and any 1804 * modify bits will be set in the wrong object!) 1805 */ 1806 1807 vm_map_entry_delete(map, entry); 1808 entry = next; 1809 } 1810 return (KERN_SUCCESS); 1811 } 1812 1813 /* 1814 * vm_map_remove: 1815 * 1816 * Remove the given address range from the target map. 1817 * This is the exported form of vm_map_delete. 1818 */ 1819 int 1820 vm_map_remove(map, start, end) 1821 register vm_map_t map; 1822 register vm_offset_t start; 1823 register vm_offset_t end; 1824 { 1825 register int result, s = 0; 1826 1827 if (map == kmem_map || map == mb_map) 1828 s = splvm(); 1829 1830 vm_map_lock(map); 1831 VM_MAP_RANGE_CHECK(map, start, end); 1832 result = vm_map_delete(map, start, end); 1833 vm_map_unlock(map); 1834 1835 if (map == kmem_map || map == mb_map) 1836 splx(s); 1837 1838 return (result); 1839 } 1840 1841 /* 1842 * vm_map_check_protection: 1843 * 1844 * Assert that the target map allows the specified 1845 * privilege on the entire address region given. 1846 * The entire region must be allocated. 1847 */ 1848 boolean_t 1849 vm_map_check_protection(map, start, end, protection) 1850 register vm_map_t map; 1851 register vm_offset_t start; 1852 register vm_offset_t end; 1853 register vm_prot_t protection; 1854 { 1855 register vm_map_entry_t entry; 1856 vm_map_entry_t tmp_entry; 1857 1858 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 1859 return (FALSE); 1860 } 1861 entry = tmp_entry; 1862 1863 while (start < end) { 1864 if (entry == &map->header) { 1865 return (FALSE); 1866 } 1867 /* 1868 * No holes allowed! 1869 */ 1870 1871 if (start < entry->start) { 1872 return (FALSE); 1873 } 1874 /* 1875 * Check protection associated with entry. 1876 */ 1877 1878 if ((entry->protection & protection) != protection) { 1879 return (FALSE); 1880 } 1881 /* go to next entry */ 1882 1883 start = entry->end; 1884 entry = entry->next; 1885 } 1886 return (TRUE); 1887 } 1888 1889 /* 1890 * vm_map_copy_entry: 1891 * 1892 * Copies the contents of the source entry to the destination 1893 * entry. The entries *must* be aligned properly. 1894 */ 1895 static void 1896 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry) 1897 vm_map_t src_map, dst_map; 1898 register vm_map_entry_t src_entry, dst_entry; 1899 { 1900 if (src_entry->is_sub_map || dst_entry->is_sub_map) 1901 return; 1902 1903 if (src_entry->wired_count == 0) { 1904 1905 /* 1906 * If the source entry is marked needs_copy, it is already 1907 * write-protected. 1908 */ 1909 if (!src_entry->needs_copy) { 1910 1911 boolean_t su; 1912 1913 /* 1914 * If the source entry has only one mapping, we can 1915 * just protect the virtual address range. 1916 */ 1917 if (!(su = src_map->is_main_map)) { 1918 su = (src_map->ref_count == 1); 1919 } 1920 if (su) { 1921 pmap_protect(src_map->pmap, 1922 src_entry->start, 1923 src_entry->end, 1924 src_entry->protection & ~VM_PROT_WRITE); 1925 } else { 1926 vm_object_pmap_copy(src_entry->object.vm_object, 1927 OFF_TO_IDX(src_entry->offset), 1928 OFF_TO_IDX(src_entry->offset + (src_entry->end 1929 - src_entry->start))); 1930 } 1931 } 1932 1933 /* 1934 * Make a copy of the object. 1935 */ 1936 if (src_entry->object.vm_object) { 1937 if ((src_entry->object.vm_object->handle == NULL) && 1938 (src_entry->object.vm_object->type == OBJT_DEFAULT || 1939 src_entry->object.vm_object->type == OBJT_SWAP)) 1940 vm_object_collapse(src_entry->object.vm_object); 1941 ++src_entry->object.vm_object->ref_count; 1942 src_entry->copy_on_write = TRUE; 1943 src_entry->needs_copy = TRUE; 1944 1945 dst_entry->needs_copy = TRUE; 1946 dst_entry->copy_on_write = TRUE; 1947 dst_entry->object.vm_object = 1948 src_entry->object.vm_object; 1949 dst_entry->offset = src_entry->offset; 1950 } else { 1951 dst_entry->object.vm_object = NULL; 1952 dst_entry->offset = 0; 1953 } 1954 1955 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 1956 dst_entry->end - dst_entry->start, src_entry->start); 1957 } else { 1958 /* 1959 * Of course, wired down pages can't be set copy-on-write. 1960 * Cause wired pages to be copied into the new map by 1961 * simulating faults (the new pages are pageable) 1962 */ 1963 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 1964 } 1965 } 1966 1967 /* 1968 * vmspace_fork: 1969 * Create a new process vmspace structure and vm_map 1970 * based on those of an existing process. The new map 1971 * is based on the old map, according to the inheritance 1972 * values on the regions in that map. 1973 * 1974 * The source map must not be locked. 1975 */ 1976 struct vmspace * 1977 vmspace_fork(vm1) 1978 register struct vmspace *vm1; 1979 { 1980 register struct vmspace *vm2; 1981 vm_map_t old_map = &vm1->vm_map; 1982 vm_map_t new_map; 1983 vm_map_entry_t old_entry; 1984 vm_map_entry_t new_entry; 1985 pmap_t new_pmap; 1986 vm_object_t object; 1987 1988 vm_map_lock(old_map); 1989 1990 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, 1991 old_map->entries_pageable); 1992 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 1993 (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy); 1994 new_pmap = &vm2->vm_pmap; /* XXX */ 1995 new_map = &vm2->vm_map; /* XXX */ 1996 1997 old_entry = old_map->header.next; 1998 1999 while (old_entry != &old_map->header) { 2000 if (old_entry->is_sub_map) 2001 panic("vm_map_fork: encountered a submap"); 2002 2003 switch (old_entry->inheritance) { 2004 case VM_INHERIT_NONE: 2005 break; 2006 2007 case VM_INHERIT_SHARE: 2008 /* 2009 * Clone the entry, referencing the sharing map. 2010 */ 2011 new_entry = vm_map_entry_create(new_map); 2012 *new_entry = *old_entry; 2013 new_entry->wired_count = 0; 2014 object = new_entry->object.vm_object; 2015 ++object->ref_count; 2016 2017 /* 2018 * Insert the entry into the new map -- we know we're 2019 * inserting at the end of the new map. 2020 */ 2021 2022 vm_map_entry_link(new_map, new_map->header.prev, 2023 new_entry); 2024 2025 /* 2026 * Update the physical map 2027 */ 2028 2029 pmap_copy(new_map->pmap, old_map->pmap, 2030 new_entry->start, 2031 (old_entry->end - old_entry->start), 2032 old_entry->start); 2033 break; 2034 2035 case VM_INHERIT_COPY: 2036 /* 2037 * Clone the entry and link into the map. 2038 */ 2039 new_entry = vm_map_entry_create(new_map); 2040 *new_entry = *old_entry; 2041 new_entry->wired_count = 0; 2042 new_entry->object.vm_object = NULL; 2043 new_entry->is_a_map = FALSE; 2044 vm_map_entry_link(new_map, new_map->header.prev, 2045 new_entry); 2046 vm_map_copy_entry(old_map, new_map, old_entry, 2047 new_entry); 2048 break; 2049 } 2050 old_entry = old_entry->next; 2051 } 2052 2053 new_map->size = old_map->size; 2054 vm_map_unlock(old_map); 2055 2056 return (vm2); 2057 } 2058 2059 /* 2060 * vm_map_lookup: 2061 * 2062 * Finds the VM object, offset, and 2063 * protection for a given virtual address in the 2064 * specified map, assuming a page fault of the 2065 * type specified. 2066 * 2067 * Leaves the map in question locked for read; return 2068 * values are guaranteed until a vm_map_lookup_done 2069 * call is performed. Note that the map argument 2070 * is in/out; the returned map must be used in 2071 * the call to vm_map_lookup_done. 2072 * 2073 * A handle (out_entry) is returned for use in 2074 * vm_map_lookup_done, to make that fast. 2075 * 2076 * If a lookup is requested with "write protection" 2077 * specified, the map may be changed to perform virtual 2078 * copying operations, although the data referenced will 2079 * remain the same. 2080 */ 2081 int 2082 vm_map_lookup(var_map, vaddr, fault_type, out_entry, 2083 object, pindex, out_prot, wired, single_use) 2084 vm_map_t *var_map; /* IN/OUT */ 2085 register vm_offset_t vaddr; 2086 register vm_prot_t fault_type; 2087 2088 vm_map_entry_t *out_entry; /* OUT */ 2089 vm_object_t *object; /* OUT */ 2090 vm_pindex_t *pindex; /* OUT */ 2091 vm_prot_t *out_prot; /* OUT */ 2092 boolean_t *wired; /* OUT */ 2093 boolean_t *single_use; /* OUT */ 2094 { 2095 vm_map_t share_map; 2096 vm_offset_t share_offset; 2097 register vm_map_entry_t entry; 2098 register vm_map_t map = *var_map; 2099 register vm_prot_t prot; 2100 register boolean_t su; 2101 2102 RetryLookup:; 2103 2104 /* 2105 * Lookup the faulting address. 2106 */ 2107 2108 vm_map_lock_read(map); 2109 2110 #define RETURN(why) \ 2111 { \ 2112 vm_map_unlock_read(map); \ 2113 return(why); \ 2114 } 2115 2116 /* 2117 * If the map has an interesting hint, try it before calling full 2118 * blown lookup routine. 2119 */ 2120 2121 entry = map->hint; 2122 2123 *out_entry = entry; 2124 2125 if ((entry == &map->header) || 2126 (vaddr < entry->start) || (vaddr >= entry->end)) { 2127 vm_map_entry_t tmp_entry; 2128 2129 /* 2130 * Entry was either not a valid hint, or the vaddr was not 2131 * contained in the entry, so do a full lookup. 2132 */ 2133 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) 2134 RETURN(KERN_INVALID_ADDRESS); 2135 2136 entry = tmp_entry; 2137 *out_entry = entry; 2138 } 2139 /* 2140 * Handle submaps. 2141 */ 2142 2143 if (entry->is_sub_map) { 2144 vm_map_t old_map = map; 2145 2146 *var_map = map = entry->object.sub_map; 2147 vm_map_unlock_read(old_map); 2148 goto RetryLookup; 2149 } 2150 /* 2151 * Check whether this task is allowed to have this page. 2152 */ 2153 2154 prot = entry->protection; 2155 if ((fault_type & (prot)) != fault_type) 2156 RETURN(KERN_PROTECTION_FAILURE); 2157 2158 /* 2159 * If this page is not pageable, we have to get it for all possible 2160 * accesses. 2161 */ 2162 2163 *wired = (entry->wired_count != 0); 2164 if (*wired) 2165 prot = fault_type = entry->protection; 2166 2167 /* 2168 * If we don't already have a VM object, track it down. 2169 */ 2170 2171 su = !entry->is_a_map; 2172 if (su) { 2173 share_map = map; 2174 share_offset = vaddr; 2175 } else { 2176 vm_map_entry_t share_entry; 2177 2178 /* 2179 * Compute the sharing map, and offset into it. 2180 */ 2181 2182 share_map = entry->object.share_map; 2183 share_offset = (vaddr - entry->start) + entry->offset; 2184 2185 /* 2186 * Look for the backing store object and offset 2187 */ 2188 2189 vm_map_lock_read(share_map); 2190 2191 if (!vm_map_lookup_entry(share_map, share_offset, 2192 &share_entry)) { 2193 vm_map_unlock_read(share_map); 2194 RETURN(KERN_INVALID_ADDRESS); 2195 } 2196 entry = share_entry; 2197 } 2198 2199 /* 2200 * If the entry was copy-on-write, we either ... 2201 */ 2202 2203 if (entry->needs_copy) { 2204 /* 2205 * If we want to write the page, we may as well handle that 2206 * now since we've got the sharing map locked. 2207 * 2208 * If we don't need to write the page, we just demote the 2209 * permissions allowed. 2210 */ 2211 2212 if (fault_type & VM_PROT_WRITE) { 2213 /* 2214 * Make a new object, and place it in the object 2215 * chain. Note that no new references have appeared 2216 * -- one just moved from the share map to the new 2217 * object. 2218 */ 2219 2220 if (lock_read_to_write(&share_map->lock)) { 2221 if (share_map != map) 2222 vm_map_unlock_read(map); 2223 goto RetryLookup; 2224 } 2225 vm_object_shadow( 2226 &entry->object.vm_object, 2227 &entry->offset, 2228 OFF_TO_IDX(entry->end - entry->start)); 2229 2230 entry->needs_copy = FALSE; 2231 2232 lock_write_to_read(&share_map->lock); 2233 } else { 2234 /* 2235 * We're attempting to read a copy-on-write page -- 2236 * don't allow writes. 2237 */ 2238 2239 prot &= (~VM_PROT_WRITE); 2240 } 2241 } 2242 /* 2243 * Create an object if necessary. 2244 */ 2245 if (entry->object.vm_object == NULL) { 2246 2247 if (lock_read_to_write(&share_map->lock)) { 2248 if (share_map != map) 2249 vm_map_unlock_read(map); 2250 goto RetryLookup; 2251 } 2252 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 2253 OFF_TO_IDX(entry->end - entry->start)); 2254 entry->offset = 0; 2255 lock_write_to_read(&share_map->lock); 2256 } 2257 2258 if (entry->object.vm_object != NULL) 2259 default_pager_convert_to_swapq(entry->object.vm_object); 2260 /* 2261 * Return the object/offset from this entry. If the entry was 2262 * copy-on-write or empty, it has been fixed up. 2263 */ 2264 2265 *pindex = OFF_TO_IDX((share_offset - entry->start) + entry->offset); 2266 *object = entry->object.vm_object; 2267 2268 /* 2269 * Return whether this is the only map sharing this data. 2270 */ 2271 2272 if (!su) { 2273 su = (share_map->ref_count == 1); 2274 } 2275 *out_prot = prot; 2276 *single_use = su; 2277 2278 return (KERN_SUCCESS); 2279 2280 #undef RETURN 2281 } 2282 2283 /* 2284 * vm_map_lookup_done: 2285 * 2286 * Releases locks acquired by a vm_map_lookup 2287 * (according to the handle returned by that lookup). 2288 */ 2289 2290 void 2291 vm_map_lookup_done(map, entry) 2292 register vm_map_t map; 2293 vm_map_entry_t entry; 2294 { 2295 /* 2296 * If this entry references a map, unlock it first. 2297 */ 2298 2299 if (entry->is_a_map) 2300 vm_map_unlock_read(entry->object.share_map); 2301 2302 /* 2303 * Unlock the main-level map 2304 */ 2305 2306 vm_map_unlock_read(map); 2307 } 2308 2309 /* 2310 * Routine: vm_map_simplify 2311 * Purpose: 2312 * Attempt to simplify the map representation in 2313 * the vicinity of the given starting address. 2314 * Note: 2315 * This routine is intended primarily to keep the 2316 * kernel maps more compact -- they generally don't 2317 * benefit from the "expand a map entry" technology 2318 * at allocation time because the adjacent entry 2319 * is often wired down. 2320 */ 2321 void 2322 vm_map_simplify(map, start) 2323 vm_map_t map; 2324 vm_offset_t start; 2325 { 2326 vm_map_entry_t this_entry; 2327 vm_map_entry_t prev_entry; 2328 2329 vm_map_lock(map); 2330 if ((vm_map_lookup_entry(map, start, &this_entry)) && 2331 ((prev_entry = this_entry->prev) != &map->header) && 2332 (prev_entry->end == start) && 2333 (prev_entry->object.vm_object == this_entry->object.vm_object) && 2334 ((prev_entry->offset + (prev_entry->end - prev_entry->start)) 2335 == this_entry->offset) && 2336 2337 (map->is_main_map) && 2338 2339 (prev_entry->is_a_map == FALSE) && 2340 (prev_entry->is_sub_map == FALSE) && 2341 2342 (this_entry->is_a_map == FALSE) && 2343 (this_entry->is_sub_map == FALSE) && 2344 2345 (prev_entry->inheritance == this_entry->inheritance) && 2346 (prev_entry->protection == this_entry->protection) && 2347 (prev_entry->max_protection == this_entry->max_protection) && 2348 (prev_entry->wired_count == this_entry->wired_count) && 2349 2350 (prev_entry->copy_on_write == this_entry->copy_on_write) && 2351 (prev_entry->needs_copy == this_entry->needs_copy)) { 2352 if (map->first_free == this_entry) 2353 map->first_free = prev_entry; 2354 if (map->hint == this_entry) 2355 SAVE_HINT(map, prev_entry); 2356 vm_map_entry_unlink(map, this_entry); 2357 prev_entry->end = this_entry->end; 2358 if (this_entry->object.vm_object) 2359 vm_object_deallocate(this_entry->object.vm_object); 2360 vm_map_entry_dispose(map, this_entry); 2361 } 2362 vm_map_unlock(map); 2363 } 2364 2365 #include "opt_ddb.h" 2366 #ifdef DDB 2367 #include <sys/kernel.h> 2368 2369 #include <ddb/ddb.h> 2370 2371 /* 2372 * vm_map_print: [ debug ] 2373 */ 2374 DB_SHOW_COMMAND(map, vm_map_print) 2375 { 2376 /* XXX convert args. */ 2377 register vm_map_t map = (vm_map_t)addr; 2378 boolean_t full = have_addr; 2379 2380 register vm_map_entry_t entry; 2381 2382 db_iprintf("%s map 0x%x: pmap=0x%x,ref=%d,nentries=%d,version=%d\n", 2383 (map->is_main_map ? "Task" : "Share"), 2384 (int) map, (int) (map->pmap), map->ref_count, map->nentries, 2385 map->timestamp); 2386 2387 if (!full && db_indent) 2388 return; 2389 2390 db_indent += 2; 2391 for (entry = map->header.next; entry != &map->header; 2392 entry = entry->next) { 2393 db_iprintf("map entry 0x%x: start=0x%x, end=0x%x, ", 2394 (int) entry, (int) entry->start, (int) entry->end); 2395 if (map->is_main_map) { 2396 static char *inheritance_name[4] = 2397 {"share", "copy", "none", "donate_copy"}; 2398 2399 db_printf("prot=%x/%x/%s, ", 2400 entry->protection, 2401 entry->max_protection, 2402 inheritance_name[entry->inheritance]); 2403 if (entry->wired_count != 0) 2404 db_printf("wired, "); 2405 } 2406 if (entry->is_a_map || entry->is_sub_map) { 2407 db_printf("share=0x%x, offset=0x%x\n", 2408 (int) entry->object.share_map, 2409 (int) entry->offset); 2410 if ((entry->prev == &map->header) || 2411 (!entry->prev->is_a_map) || 2412 (entry->prev->object.share_map != 2413 entry->object.share_map)) { 2414 db_indent += 2; 2415 vm_map_print((int)entry->object.share_map, 2416 full, 0, (char *)0); 2417 db_indent -= 2; 2418 } 2419 } else { 2420 db_printf("object=0x%x, offset=0x%x", 2421 (int) entry->object.vm_object, 2422 (int) entry->offset); 2423 if (entry->copy_on_write) 2424 db_printf(", copy (%s)", 2425 entry->needs_copy ? "needed" : "done"); 2426 db_printf("\n"); 2427 2428 if ((entry->prev == &map->header) || 2429 (entry->prev->is_a_map) || 2430 (entry->prev->object.vm_object != 2431 entry->object.vm_object)) { 2432 db_indent += 2; 2433 vm_object_print((int)entry->object.vm_object, 2434 full, 0, (char *)0); 2435 db_indent -= 2; 2436 } 2437 } 2438 } 2439 db_indent -= 2; 2440 } 2441 #endif /* DDB */ 2442