1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/racct.h> 81 #include <sys/resourcevar.h> 82 #include <sys/rwlock.h> 83 #include <sys/file.h> 84 #include <sys/sysctl.h> 85 #include <sys/sysent.h> 86 #include <sys/shm.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_object.h> 94 #include <vm/vm_pager.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vnode_pager.h> 98 #include <vm/swap_pager.h> 99 #include <vm/uma.h> 100 101 /* 102 * Virtual memory maps provide for the mapping, protection, 103 * and sharing of virtual memory objects. In addition, 104 * this module provides for an efficient virtual copy of 105 * memory from one map to another. 106 * 107 * Synchronization is required prior to most operations. 108 * 109 * Maps consist of an ordered doubly-linked list of simple 110 * entries; a self-adjusting binary search tree of these 111 * entries is used to speed up lookups. 112 * 113 * Since portions of maps are specified by start/end addresses, 114 * which may not align with existing map entries, all 115 * routines merely "clip" entries to these start/end values. 116 * [That is, an entry is split into two, bordering at a 117 * start or end value.] Note that these clippings may not 118 * always be necessary (as the two resulting entries are then 119 * not changed); however, the clipping is done for convenience. 120 * 121 * As mentioned above, virtual copy operations are performed 122 * by copying VM object references from one map to 123 * another, and then marking both regions as copy-on-write. 124 */ 125 126 static struct mtx map_sleep_mtx; 127 static uma_zone_t mapentzone; 128 static uma_zone_t kmapentzone; 129 static uma_zone_t mapzone; 130 static uma_zone_t vmspace_zone; 131 static int vmspace_zinit(void *mem, int size, int flags); 132 static int vm_map_zinit(void *mem, int ize, int flags); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 139 vm_map_entry_t gap_entry); 140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 141 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 142 #ifdef INVARIANTS 143 static void vm_map_zdtor(void *mem, int size, void *arg); 144 static void vmspace_zdtor(void *mem, int size, void *arg); 145 #endif 146 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 147 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 148 int cow); 149 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 150 vm_offset_t failed_addr); 151 152 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 153 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 154 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 155 156 /* 157 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 158 * stable. 159 */ 160 #define PROC_VMSPACE_LOCK(p) do { } while (0) 161 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 162 163 /* 164 * VM_MAP_RANGE_CHECK: [ internal use only ] 165 * 166 * Asserts that the starting and ending region 167 * addresses fall within the valid range of the map. 168 */ 169 #define VM_MAP_RANGE_CHECK(map, start, end) \ 170 { \ 171 if (start < vm_map_min(map)) \ 172 start = vm_map_min(map); \ 173 if (end > vm_map_max(map)) \ 174 end = vm_map_max(map); \ 175 if (start > end) \ 176 start = end; \ 177 } 178 179 /* 180 * vm_map_startup: 181 * 182 * Initialize the vm_map module. Must be called before 183 * any other vm_map routines. 184 * 185 * Map and entry structures are allocated from the general 186 * purpose memory pool with some exceptions: 187 * 188 * - The kernel map and kmem submap are allocated statically. 189 * - Kernel map entries are allocated out of a static pool. 190 * 191 * These restrictions are necessary since malloc() uses the 192 * maps and requires map entries. 193 */ 194 195 void 196 vm_map_startup(void) 197 { 198 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 199 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 200 #ifdef INVARIANTS 201 vm_map_zdtor, 202 #else 203 NULL, 204 #endif 205 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 206 uma_prealloc(mapzone, MAX_KMAP); 207 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 208 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 209 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 210 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 211 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 212 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 213 #ifdef INVARIANTS 214 vmspace_zdtor, 215 #else 216 NULL, 217 #endif 218 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 219 } 220 221 static int 222 vmspace_zinit(void *mem, int size, int flags) 223 { 224 struct vmspace *vm; 225 226 vm = (struct vmspace *)mem; 227 228 vm->vm_map.pmap = NULL; 229 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 230 PMAP_LOCK_INIT(vmspace_pmap(vm)); 231 return (0); 232 } 233 234 static int 235 vm_map_zinit(void *mem, int size, int flags) 236 { 237 vm_map_t map; 238 239 map = (vm_map_t)mem; 240 memset(map, 0, sizeof(*map)); 241 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 242 sx_init(&map->lock, "vm map (user)"); 243 return (0); 244 } 245 246 #ifdef INVARIANTS 247 static void 248 vmspace_zdtor(void *mem, int size, void *arg) 249 { 250 struct vmspace *vm; 251 252 vm = (struct vmspace *)mem; 253 254 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 255 } 256 static void 257 vm_map_zdtor(void *mem, int size, void *arg) 258 { 259 vm_map_t map; 260 261 map = (vm_map_t)mem; 262 KASSERT(map->nentries == 0, 263 ("map %p nentries == %d on free.", 264 map, map->nentries)); 265 KASSERT(map->size == 0, 266 ("map %p size == %lu on free.", 267 map, (unsigned long)map->size)); 268 } 269 #endif /* INVARIANTS */ 270 271 /* 272 * Allocate a vmspace structure, including a vm_map and pmap, 273 * and initialize those structures. The refcnt is set to 1. 274 * 275 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 276 */ 277 struct vmspace * 278 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 279 { 280 struct vmspace *vm; 281 282 vm = uma_zalloc(vmspace_zone, M_WAITOK); 283 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 284 if (!pinit(vmspace_pmap(vm))) { 285 uma_zfree(vmspace_zone, vm); 286 return (NULL); 287 } 288 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 289 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 290 vm->vm_refcnt = 1; 291 vm->vm_shm = NULL; 292 vm->vm_swrss = 0; 293 vm->vm_tsize = 0; 294 vm->vm_dsize = 0; 295 vm->vm_ssize = 0; 296 vm->vm_taddr = 0; 297 vm->vm_daddr = 0; 298 vm->vm_maxsaddr = 0; 299 return (vm); 300 } 301 302 #ifdef RACCT 303 static void 304 vmspace_container_reset(struct proc *p) 305 { 306 307 PROC_LOCK(p); 308 racct_set(p, RACCT_DATA, 0); 309 racct_set(p, RACCT_STACK, 0); 310 racct_set(p, RACCT_RSS, 0); 311 racct_set(p, RACCT_MEMLOCK, 0); 312 racct_set(p, RACCT_VMEM, 0); 313 PROC_UNLOCK(p); 314 } 315 #endif 316 317 static inline void 318 vmspace_dofree(struct vmspace *vm) 319 { 320 321 CTR1(KTR_VM, "vmspace_free: %p", vm); 322 323 /* 324 * Make sure any SysV shm is freed, it might not have been in 325 * exit1(). 326 */ 327 shmexit(vm); 328 329 /* 330 * Lock the map, to wait out all other references to it. 331 * Delete all of the mappings and pages they hold, then call 332 * the pmap module to reclaim anything left. 333 */ 334 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 335 vm_map_max(&vm->vm_map)); 336 337 pmap_release(vmspace_pmap(vm)); 338 vm->vm_map.pmap = NULL; 339 uma_zfree(vmspace_zone, vm); 340 } 341 342 void 343 vmspace_free(struct vmspace *vm) 344 { 345 346 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 347 "vmspace_free() called"); 348 349 if (vm->vm_refcnt == 0) 350 panic("vmspace_free: attempt to free already freed vmspace"); 351 352 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 353 vmspace_dofree(vm); 354 } 355 356 void 357 vmspace_exitfree(struct proc *p) 358 { 359 struct vmspace *vm; 360 361 PROC_VMSPACE_LOCK(p); 362 vm = p->p_vmspace; 363 p->p_vmspace = NULL; 364 PROC_VMSPACE_UNLOCK(p); 365 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 366 vmspace_free(vm); 367 } 368 369 void 370 vmspace_exit(struct thread *td) 371 { 372 int refcnt; 373 struct vmspace *vm; 374 struct proc *p; 375 376 /* 377 * Release user portion of address space. 378 * This releases references to vnodes, 379 * which could cause I/O if the file has been unlinked. 380 * Need to do this early enough that we can still sleep. 381 * 382 * The last exiting process to reach this point releases as 383 * much of the environment as it can. vmspace_dofree() is the 384 * slower fallback in case another process had a temporary 385 * reference to the vmspace. 386 */ 387 388 p = td->td_proc; 389 vm = p->p_vmspace; 390 atomic_add_int(&vmspace0.vm_refcnt, 1); 391 refcnt = vm->vm_refcnt; 392 do { 393 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 394 /* Switch now since other proc might free vmspace */ 395 PROC_VMSPACE_LOCK(p); 396 p->p_vmspace = &vmspace0; 397 PROC_VMSPACE_UNLOCK(p); 398 pmap_activate(td); 399 } 400 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1)); 401 if (refcnt == 1) { 402 if (p->p_vmspace != vm) { 403 /* vmspace not yet freed, switch back */ 404 PROC_VMSPACE_LOCK(p); 405 p->p_vmspace = vm; 406 PROC_VMSPACE_UNLOCK(p); 407 pmap_activate(td); 408 } 409 pmap_remove_pages(vmspace_pmap(vm)); 410 /* Switch now since this proc will free vmspace */ 411 PROC_VMSPACE_LOCK(p); 412 p->p_vmspace = &vmspace0; 413 PROC_VMSPACE_UNLOCK(p); 414 pmap_activate(td); 415 vmspace_dofree(vm); 416 } 417 #ifdef RACCT 418 if (racct_enable) 419 vmspace_container_reset(p); 420 #endif 421 } 422 423 /* Acquire reference to vmspace owned by another process. */ 424 425 struct vmspace * 426 vmspace_acquire_ref(struct proc *p) 427 { 428 struct vmspace *vm; 429 int refcnt; 430 431 PROC_VMSPACE_LOCK(p); 432 vm = p->p_vmspace; 433 if (vm == NULL) { 434 PROC_VMSPACE_UNLOCK(p); 435 return (NULL); 436 } 437 refcnt = vm->vm_refcnt; 438 do { 439 if (refcnt <= 0) { /* Avoid 0->1 transition */ 440 PROC_VMSPACE_UNLOCK(p); 441 return (NULL); 442 } 443 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1)); 444 if (vm != p->p_vmspace) { 445 PROC_VMSPACE_UNLOCK(p); 446 vmspace_free(vm); 447 return (NULL); 448 } 449 PROC_VMSPACE_UNLOCK(p); 450 return (vm); 451 } 452 453 /* 454 * Switch between vmspaces in an AIO kernel process. 455 * 456 * The AIO kernel processes switch to and from a user process's 457 * vmspace while performing an I/O operation on behalf of a user 458 * process. The new vmspace is either the vmspace of a user process 459 * obtained from an active AIO request or the initial vmspace of the 460 * AIO kernel process (when it is idling). Because user processes 461 * will block to drain any active AIO requests before proceeding in 462 * exit() or execve(), the vmspace reference count for these vmspaces 463 * can never be 0. This allows for a much simpler implementation than 464 * the loop in vmspace_acquire_ref() above. Similarly, AIO kernel 465 * processes hold an extra reference on their initial vmspace for the 466 * life of the process so that this guarantee is true for any vmspace 467 * passed as 'newvm'. 468 */ 469 void 470 vmspace_switch_aio(struct vmspace *newvm) 471 { 472 struct vmspace *oldvm; 473 474 /* XXX: Need some way to assert that this is an aio daemon. */ 475 476 KASSERT(newvm->vm_refcnt > 0, 477 ("vmspace_switch_aio: newvm unreferenced")); 478 479 oldvm = curproc->p_vmspace; 480 if (oldvm == newvm) 481 return; 482 483 /* 484 * Point to the new address space and refer to it. 485 */ 486 curproc->p_vmspace = newvm; 487 atomic_add_int(&newvm->vm_refcnt, 1); 488 489 /* Activate the new mapping. */ 490 pmap_activate(curthread); 491 492 /* Remove the daemon's reference to the old address space. */ 493 KASSERT(oldvm->vm_refcnt > 1, 494 ("vmspace_switch_aio: oldvm dropping last reference")); 495 vmspace_free(oldvm); 496 } 497 498 void 499 _vm_map_lock(vm_map_t map, const char *file, int line) 500 { 501 502 if (map->system_map) 503 mtx_lock_flags_(&map->system_mtx, 0, file, line); 504 else 505 sx_xlock_(&map->lock, file, line); 506 map->timestamp++; 507 } 508 509 static void 510 vm_map_process_deferred(void) 511 { 512 struct thread *td; 513 vm_map_entry_t entry, next; 514 vm_object_t object; 515 516 td = curthread; 517 entry = td->td_map_def_user; 518 td->td_map_def_user = NULL; 519 while (entry != NULL) { 520 next = entry->next; 521 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 522 /* 523 * Decrement the object's writemappings and 524 * possibly the vnode's v_writecount. 525 */ 526 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 527 ("Submap with writecount")); 528 object = entry->object.vm_object; 529 KASSERT(object != NULL, ("No object for writecount")); 530 vnode_pager_release_writecount(object, entry->start, 531 entry->end); 532 } 533 vm_map_entry_deallocate(entry, FALSE); 534 entry = next; 535 } 536 } 537 538 void 539 _vm_map_unlock(vm_map_t map, const char *file, int line) 540 { 541 542 if (map->system_map) 543 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 544 else { 545 sx_xunlock_(&map->lock, file, line); 546 vm_map_process_deferred(); 547 } 548 } 549 550 void 551 _vm_map_lock_read(vm_map_t map, const char *file, int line) 552 { 553 554 if (map->system_map) 555 mtx_lock_flags_(&map->system_mtx, 0, file, line); 556 else 557 sx_slock_(&map->lock, file, line); 558 } 559 560 void 561 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 562 { 563 564 if (map->system_map) 565 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 566 else { 567 sx_sunlock_(&map->lock, file, line); 568 vm_map_process_deferred(); 569 } 570 } 571 572 int 573 _vm_map_trylock(vm_map_t map, const char *file, int line) 574 { 575 int error; 576 577 error = map->system_map ? 578 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 579 !sx_try_xlock_(&map->lock, file, line); 580 if (error == 0) 581 map->timestamp++; 582 return (error == 0); 583 } 584 585 int 586 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 587 { 588 int error; 589 590 error = map->system_map ? 591 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 592 !sx_try_slock_(&map->lock, file, line); 593 return (error == 0); 594 } 595 596 /* 597 * _vm_map_lock_upgrade: [ internal use only ] 598 * 599 * Tries to upgrade a read (shared) lock on the specified map to a write 600 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 601 * non-zero value if the upgrade fails. If the upgrade fails, the map is 602 * returned without a read or write lock held. 603 * 604 * Requires that the map be read locked. 605 */ 606 int 607 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 608 { 609 unsigned int last_timestamp; 610 611 if (map->system_map) { 612 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 613 } else { 614 if (!sx_try_upgrade_(&map->lock, file, line)) { 615 last_timestamp = map->timestamp; 616 sx_sunlock_(&map->lock, file, line); 617 vm_map_process_deferred(); 618 /* 619 * If the map's timestamp does not change while the 620 * map is unlocked, then the upgrade succeeds. 621 */ 622 sx_xlock_(&map->lock, file, line); 623 if (last_timestamp != map->timestamp) { 624 sx_xunlock_(&map->lock, file, line); 625 return (1); 626 } 627 } 628 } 629 map->timestamp++; 630 return (0); 631 } 632 633 void 634 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 635 { 636 637 if (map->system_map) { 638 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 639 } else 640 sx_downgrade_(&map->lock, file, line); 641 } 642 643 /* 644 * vm_map_locked: 645 * 646 * Returns a non-zero value if the caller holds a write (exclusive) lock 647 * on the specified map and the value "0" otherwise. 648 */ 649 int 650 vm_map_locked(vm_map_t map) 651 { 652 653 if (map->system_map) 654 return (mtx_owned(&map->system_mtx)); 655 else 656 return (sx_xlocked(&map->lock)); 657 } 658 659 #ifdef INVARIANTS 660 static void 661 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 662 { 663 664 if (map->system_map) 665 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 666 else 667 sx_assert_(&map->lock, SA_XLOCKED, file, line); 668 } 669 670 #define VM_MAP_ASSERT_LOCKED(map) \ 671 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 672 673 #ifdef DIAGNOSTIC 674 static int enable_vmmap_check = 1; 675 #else 676 static int enable_vmmap_check = 0; 677 #endif 678 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 679 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 680 681 static void 682 _vm_map_assert_consistent(vm_map_t map) 683 { 684 vm_map_entry_t entry; 685 vm_map_entry_t child; 686 vm_size_t max_left, max_right; 687 688 if (!enable_vmmap_check) 689 return; 690 691 for (entry = map->header.next; entry != &map->header; 692 entry = entry->next) { 693 KASSERT(entry->prev->end <= entry->start, 694 ("map %p prev->end = %jx, start = %jx", map, 695 (uintmax_t)entry->prev->end, (uintmax_t)entry->start)); 696 KASSERT(entry->start < entry->end, 697 ("map %p start = %jx, end = %jx", map, 698 (uintmax_t)entry->start, (uintmax_t)entry->end)); 699 KASSERT(entry->end <= entry->next->start, 700 ("map %p end = %jx, next->start = %jx", map, 701 (uintmax_t)entry->end, (uintmax_t)entry->next->start)); 702 KASSERT(entry->left == NULL || 703 entry->left->start < entry->start, 704 ("map %p left->start = %jx, start = %jx", map, 705 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 706 KASSERT(entry->right == NULL || 707 entry->start < entry->right->start, 708 ("map %p start = %jx, right->start = %jx", map, 709 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 710 child = entry->left; 711 max_left = (child != NULL) ? child->max_free : 712 entry->start - entry->prev->end; 713 child = entry->right; 714 max_right = (child != NULL) ? child->max_free : 715 entry->next->start - entry->end; 716 KASSERT(entry->max_free == MAX(max_left, max_right), 717 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 718 (uintmax_t)entry->max_free, 719 (uintmax_t)max_left, (uintmax_t)max_right)); 720 } 721 } 722 723 #define VM_MAP_ASSERT_CONSISTENT(map) \ 724 _vm_map_assert_consistent(map) 725 #else 726 #define VM_MAP_ASSERT_LOCKED(map) 727 #define VM_MAP_ASSERT_CONSISTENT(map) 728 #endif /* INVARIANTS */ 729 730 /* 731 * _vm_map_unlock_and_wait: 732 * 733 * Atomically releases the lock on the specified map and puts the calling 734 * thread to sleep. The calling thread will remain asleep until either 735 * vm_map_wakeup() is performed on the map or the specified timeout is 736 * exceeded. 737 * 738 * WARNING! This function does not perform deferred deallocations of 739 * objects and map entries. Therefore, the calling thread is expected to 740 * reacquire the map lock after reawakening and later perform an ordinary 741 * unlock operation, such as vm_map_unlock(), before completing its 742 * operation on the map. 743 */ 744 int 745 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 746 { 747 748 mtx_lock(&map_sleep_mtx); 749 if (map->system_map) 750 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 751 else 752 sx_xunlock_(&map->lock, file, line); 753 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 754 timo)); 755 } 756 757 /* 758 * vm_map_wakeup: 759 * 760 * Awaken any threads that have slept on the map using 761 * vm_map_unlock_and_wait(). 762 */ 763 void 764 vm_map_wakeup(vm_map_t map) 765 { 766 767 /* 768 * Acquire and release map_sleep_mtx to prevent a wakeup() 769 * from being performed (and lost) between the map unlock 770 * and the msleep() in _vm_map_unlock_and_wait(). 771 */ 772 mtx_lock(&map_sleep_mtx); 773 mtx_unlock(&map_sleep_mtx); 774 wakeup(&map->root); 775 } 776 777 void 778 vm_map_busy(vm_map_t map) 779 { 780 781 VM_MAP_ASSERT_LOCKED(map); 782 map->busy++; 783 } 784 785 void 786 vm_map_unbusy(vm_map_t map) 787 { 788 789 VM_MAP_ASSERT_LOCKED(map); 790 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 791 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 792 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 793 wakeup(&map->busy); 794 } 795 } 796 797 void 798 vm_map_wait_busy(vm_map_t map) 799 { 800 801 VM_MAP_ASSERT_LOCKED(map); 802 while (map->busy) { 803 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 804 if (map->system_map) 805 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 806 else 807 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 808 } 809 map->timestamp++; 810 } 811 812 long 813 vmspace_resident_count(struct vmspace *vmspace) 814 { 815 return pmap_resident_count(vmspace_pmap(vmspace)); 816 } 817 818 /* 819 * vm_map_create: 820 * 821 * Creates and returns a new empty VM map with 822 * the given physical map structure, and having 823 * the given lower and upper address bounds. 824 */ 825 vm_map_t 826 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 827 { 828 vm_map_t result; 829 830 result = uma_zalloc(mapzone, M_WAITOK); 831 CTR1(KTR_VM, "vm_map_create: %p", result); 832 _vm_map_init(result, pmap, min, max); 833 return (result); 834 } 835 836 /* 837 * Initialize an existing vm_map structure 838 * such as that in the vmspace structure. 839 */ 840 static void 841 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 842 { 843 844 map->header.next = map->header.prev = &map->header; 845 map->header.eflags = MAP_ENTRY_HEADER; 846 map->needs_wakeup = FALSE; 847 map->system_map = 0; 848 map->pmap = pmap; 849 map->header.end = min; 850 map->header.start = max; 851 map->flags = 0; 852 map->root = NULL; 853 map->timestamp = 0; 854 map->busy = 0; 855 map->anon_loc = 0; 856 } 857 858 void 859 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 860 { 861 862 _vm_map_init(map, pmap, min, max); 863 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 864 sx_init(&map->lock, "user map"); 865 } 866 867 /* 868 * vm_map_entry_dispose: [ internal use only ] 869 * 870 * Inverse of vm_map_entry_create. 871 */ 872 static void 873 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 874 { 875 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 876 } 877 878 /* 879 * vm_map_entry_create: [ internal use only ] 880 * 881 * Allocates a VM map entry for insertion. 882 * No entry fields are filled in. 883 */ 884 static vm_map_entry_t 885 vm_map_entry_create(vm_map_t map) 886 { 887 vm_map_entry_t new_entry; 888 889 if (map->system_map) 890 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 891 else 892 new_entry = uma_zalloc(mapentzone, M_WAITOK); 893 if (new_entry == NULL) 894 panic("vm_map_entry_create: kernel resources exhausted"); 895 return (new_entry); 896 } 897 898 /* 899 * vm_map_entry_set_behavior: 900 * 901 * Set the expected access behavior, either normal, random, or 902 * sequential. 903 */ 904 static inline void 905 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 906 { 907 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 908 (behavior & MAP_ENTRY_BEHAV_MASK); 909 } 910 911 /* 912 * vm_map_entry_set_max_free: 913 * 914 * Set the max_free field in a vm_map_entry. 915 */ 916 static inline void 917 vm_map_entry_set_max_free(vm_map_entry_t entry) 918 { 919 vm_map_entry_t child; 920 vm_size_t max_left, max_right; 921 922 child = entry->left; 923 max_left = (child != NULL) ? child->max_free : 924 entry->start - entry->prev->end; 925 child = entry->right; 926 max_right = (child != NULL) ? child->max_free : 927 entry->next->start - entry->end; 928 entry->max_free = MAX(max_left, max_right); 929 } 930 931 #define SPLAY_LEFT_STEP(root, y, rlist, test) do { \ 932 y = root->left; \ 933 if (y != NULL && (test)) { \ 934 /* Rotate right and make y root. */ \ 935 root->left = y->right; \ 936 y->right = root; \ 937 vm_map_entry_set_max_free(root); \ 938 root = y; \ 939 y = root->left; \ 940 } \ 941 /* Put root on rlist. */ \ 942 root->left = rlist; \ 943 rlist = root; \ 944 root = y; \ 945 } while (0) 946 947 #define SPLAY_RIGHT_STEP(root, y, llist, test) do { \ 948 y = root->right; \ 949 if (y != NULL && (test)) { \ 950 /* Rotate left and make y root. */ \ 951 root->right = y->left; \ 952 y->left = root; \ 953 vm_map_entry_set_max_free(root); \ 954 root = y; \ 955 y = root->right; \ 956 } \ 957 /* Put root on llist. */ \ 958 root->right = llist; \ 959 llist = root; \ 960 root = y; \ 961 } while (0) 962 963 /* 964 * Walk down the tree until we find addr or a NULL pointer where addr would go, 965 * breaking off left and right subtrees of nodes less than, or greater than 966 * addr. Treat pointers to nodes with max_free < length as NULL pointers. 967 * llist and rlist are the two sides in reverse order (bottom-up), with llist 968 * linked by the right pointer and rlist linked by the left pointer in the 969 * vm_map_entry. 970 */ 971 static vm_map_entry_t 972 vm_map_splay_split(vm_offset_t addr, vm_size_t length, 973 vm_map_entry_t root, vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist) 974 { 975 vm_map_entry_t llist, rlist; 976 vm_map_entry_t y; 977 978 llist = NULL; 979 rlist = NULL; 980 while (root != NULL && root->max_free >= length) { 981 if (addr < root->start) { 982 SPLAY_LEFT_STEP(root, y, rlist, 983 y->max_free >= length && addr < y->start); 984 } else if (addr >= root->end) { 985 SPLAY_RIGHT_STEP(root, y, llist, 986 y->max_free >= length && addr >= y->end); 987 } else 988 break; 989 } 990 *out_llist = llist; 991 *out_rlist = rlist; 992 return (root); 993 } 994 995 static void 996 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist) 997 { 998 vm_map_entry_t rlist, y; 999 1000 root = root->right; 1001 rlist = *iolist; 1002 while (root != NULL) 1003 SPLAY_LEFT_STEP(root, y, rlist, true); 1004 *iolist = rlist; 1005 } 1006 1007 static void 1008 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist) 1009 { 1010 vm_map_entry_t llist, y; 1011 1012 root = root->left; 1013 llist = *iolist; 1014 while (root != NULL) 1015 SPLAY_RIGHT_STEP(root, y, llist, true); 1016 *iolist = llist; 1017 } 1018 1019 /* 1020 * Walk back up the two spines, flip the pointers and set max_free. The 1021 * subtrees of the root go at the bottom of llist and rlist. 1022 */ 1023 static vm_map_entry_t 1024 vm_map_splay_merge(vm_map_entry_t root, 1025 vm_map_entry_t llist, vm_map_entry_t rlist, 1026 vm_map_entry_t ltree, vm_map_entry_t rtree) 1027 { 1028 vm_map_entry_t y; 1029 1030 while (llist != NULL) { 1031 y = llist->right; 1032 llist->right = ltree; 1033 vm_map_entry_set_max_free(llist); 1034 ltree = llist; 1035 llist = y; 1036 } 1037 while (rlist != NULL) { 1038 y = rlist->left; 1039 rlist->left = rtree; 1040 vm_map_entry_set_max_free(rlist); 1041 rtree = rlist; 1042 rlist = y; 1043 } 1044 1045 /* 1046 * Final assembly: add ltree and rtree as subtrees of root. 1047 */ 1048 root->left = ltree; 1049 root->right = rtree; 1050 vm_map_entry_set_max_free(root); 1051 1052 return (root); 1053 } 1054 1055 /* 1056 * vm_map_entry_splay: 1057 * 1058 * The Sleator and Tarjan top-down splay algorithm with the 1059 * following variation. Max_free must be computed bottom-up, so 1060 * on the downward pass, maintain the left and right spines in 1061 * reverse order. Then, make a second pass up each side to fix 1062 * the pointers and compute max_free. The time bound is O(log n) 1063 * amortized. 1064 * 1065 * The new root is the vm_map_entry containing "addr", or else an 1066 * adjacent entry (lower if possible) if addr is not in the tree. 1067 * 1068 * The map must be locked, and leaves it so. 1069 * 1070 * Returns: the new root. 1071 */ 1072 static vm_map_entry_t 1073 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 1074 { 1075 vm_map_entry_t llist, rlist; 1076 1077 root = vm_map_splay_split(addr, 0, root, &llist, &rlist); 1078 if (root != NULL) { 1079 /* do nothing */ 1080 } else if (llist != NULL) { 1081 /* 1082 * Recover the greatest node in the left 1083 * subtree and make it the root. 1084 */ 1085 root = llist; 1086 llist = root->right; 1087 root->right = NULL; 1088 } else if (rlist != NULL) { 1089 /* 1090 * Recover the least node in the right 1091 * subtree and make it the root. 1092 */ 1093 root = rlist; 1094 rlist = root->left; 1095 root->left = NULL; 1096 } else { 1097 /* There is no root. */ 1098 return (NULL); 1099 } 1100 return (vm_map_splay_merge(root, llist, rlist, 1101 root->left, root->right)); 1102 } 1103 1104 /* 1105 * vm_map_entry_{un,}link: 1106 * 1107 * Insert/remove entries from maps. 1108 */ 1109 static void 1110 vm_map_entry_link(vm_map_t map, 1111 vm_map_entry_t entry) 1112 { 1113 vm_map_entry_t llist, rlist, root; 1114 1115 CTR3(KTR_VM, 1116 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1117 map->nentries, entry); 1118 VM_MAP_ASSERT_LOCKED(map); 1119 map->nentries++; 1120 root = map->root; 1121 root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist); 1122 KASSERT(root == NULL, 1123 ("vm_map_entry_link: link object already mapped")); 1124 entry->prev = (llist == NULL) ? &map->header : llist; 1125 entry->next = (rlist == NULL) ? &map->header : rlist; 1126 entry->prev->next = entry->next->prev = entry; 1127 root = vm_map_splay_merge(entry, llist, rlist, NULL, NULL); 1128 map->root = entry; 1129 VM_MAP_ASSERT_CONSISTENT(map); 1130 } 1131 1132 enum unlink_merge_type { 1133 UNLINK_MERGE_PREV, 1134 UNLINK_MERGE_NONE, 1135 UNLINK_MERGE_NEXT 1136 }; 1137 1138 static void 1139 vm_map_entry_unlink(vm_map_t map, 1140 vm_map_entry_t entry, 1141 enum unlink_merge_type op) 1142 { 1143 vm_map_entry_t llist, rlist, root, y; 1144 1145 VM_MAP_ASSERT_LOCKED(map); 1146 llist = entry->prev; 1147 rlist = entry->next; 1148 llist->next = rlist; 1149 rlist->prev = llist; 1150 root = map->root; 1151 root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist); 1152 KASSERT(root != NULL, 1153 ("vm_map_entry_unlink: unlink object not mapped")); 1154 1155 switch (op) { 1156 case UNLINK_MERGE_PREV: 1157 vm_map_splay_findprev(root, &llist); 1158 llist->end = root->end; 1159 y = root->right; 1160 root = llist; 1161 llist = root->right; 1162 root->right = y; 1163 break; 1164 case UNLINK_MERGE_NEXT: 1165 vm_map_splay_findnext(root, &rlist); 1166 rlist->start = root->start; 1167 rlist->offset = root->offset; 1168 y = root->left; 1169 root = rlist; 1170 rlist = root->left; 1171 root->left = y; 1172 break; 1173 case UNLINK_MERGE_NONE: 1174 vm_map_splay_findprev(root, &llist); 1175 vm_map_splay_findnext(root, &rlist); 1176 if (llist != NULL) { 1177 root = llist; 1178 llist = root->right; 1179 root->right = NULL; 1180 } else if (rlist != NULL) { 1181 root = rlist; 1182 rlist = root->left; 1183 root->left = NULL; 1184 } else 1185 root = NULL; 1186 break; 1187 } 1188 if (root != NULL) 1189 root = vm_map_splay_merge(root, llist, rlist, 1190 root->left, root->right); 1191 map->root = root; 1192 VM_MAP_ASSERT_CONSISTENT(map); 1193 map->nentries--; 1194 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1195 map->nentries, entry); 1196 } 1197 1198 /* 1199 * vm_map_entry_resize_free: 1200 * 1201 * Recompute the amount of free space following a modified vm_map_entry 1202 * and propagate those values up the tree. Call this function after 1203 * resizing a map entry in-place by changing the end value, without a 1204 * call to vm_map_entry_link() or _unlink(). 1205 * 1206 * The map must be locked, and leaves it so. 1207 */ 1208 static void 1209 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1210 { 1211 vm_map_entry_t llist, rlist, root; 1212 1213 VM_MAP_ASSERT_LOCKED(map); 1214 root = map->root; 1215 root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist); 1216 KASSERT(root != NULL, 1217 ("vm_map_entry_resize_free: resize_free object not mapped")); 1218 vm_map_splay_findnext(root, &rlist); 1219 root->right = NULL; 1220 map->root = vm_map_splay_merge(root, llist, rlist, 1221 root->left, root->right); 1222 VM_MAP_ASSERT_CONSISTENT(map); 1223 CTR3(KTR_VM, "vm_map_entry_resize_free: map %p, nentries %d, entry %p", map, 1224 map->nentries, entry); 1225 } 1226 1227 /* 1228 * vm_map_lookup_entry: [ internal use only ] 1229 * 1230 * Finds the map entry containing (or 1231 * immediately preceding) the specified address 1232 * in the given map; the entry is returned 1233 * in the "entry" parameter. The boolean 1234 * result indicates whether the address is 1235 * actually contained in the map. 1236 */ 1237 boolean_t 1238 vm_map_lookup_entry( 1239 vm_map_t map, 1240 vm_offset_t address, 1241 vm_map_entry_t *entry) /* OUT */ 1242 { 1243 vm_map_entry_t cur, lbound; 1244 boolean_t locked; 1245 1246 /* 1247 * If the map is empty, then the map entry immediately preceding 1248 * "address" is the map's header. 1249 */ 1250 cur = map->root; 1251 if (cur == NULL) { 1252 *entry = &map->header; 1253 return (FALSE); 1254 } 1255 if (address >= cur->start && cur->end > address) { 1256 *entry = cur; 1257 return (TRUE); 1258 } 1259 if ((locked = vm_map_locked(map)) || 1260 sx_try_upgrade(&map->lock)) { 1261 /* 1262 * Splay requires a write lock on the map. However, it only 1263 * restructures the binary search tree; it does not otherwise 1264 * change the map. Thus, the map's timestamp need not change 1265 * on a temporary upgrade. 1266 */ 1267 map->root = cur = vm_map_entry_splay(address, cur); 1268 VM_MAP_ASSERT_CONSISTENT(map); 1269 if (!locked) 1270 sx_downgrade(&map->lock); 1271 1272 /* 1273 * If "address" is contained within a map entry, the new root 1274 * is that map entry. Otherwise, the new root is a map entry 1275 * immediately before or after "address". 1276 */ 1277 if (address < cur->start) { 1278 *entry = &map->header; 1279 return (FALSE); 1280 } 1281 *entry = cur; 1282 return (address < cur->end); 1283 } 1284 /* 1285 * Since the map is only locked for read access, perform a 1286 * standard binary search tree lookup for "address". 1287 */ 1288 lbound = &map->header; 1289 do { 1290 if (address < cur->start) { 1291 cur = cur->left; 1292 } else if (cur->end <= address) { 1293 lbound = cur; 1294 cur = cur->right; 1295 } else { 1296 *entry = cur; 1297 return (TRUE); 1298 } 1299 } while (cur != NULL); 1300 *entry = lbound; 1301 return (FALSE); 1302 } 1303 1304 /* 1305 * vm_map_insert: 1306 * 1307 * Inserts the given whole VM object into the target 1308 * map at the specified address range. The object's 1309 * size should match that of the address range. 1310 * 1311 * Requires that the map be locked, and leaves it so. 1312 * 1313 * If object is non-NULL, ref count must be bumped by caller 1314 * prior to making call to account for the new entry. 1315 */ 1316 int 1317 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1318 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1319 { 1320 vm_map_entry_t new_entry, prev_entry, temp_entry; 1321 struct ucred *cred; 1322 vm_eflags_t protoeflags; 1323 vm_inherit_t inheritance; 1324 1325 VM_MAP_ASSERT_LOCKED(map); 1326 KASSERT(object != kernel_object || 1327 (cow & MAP_COPY_ON_WRITE) == 0, 1328 ("vm_map_insert: kernel object and COW")); 1329 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1330 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1331 KASSERT((prot & ~max) == 0, 1332 ("prot %#x is not subset of max_prot %#x", prot, max)); 1333 1334 /* 1335 * Check that the start and end points are not bogus. 1336 */ 1337 if (start < vm_map_min(map) || end > vm_map_max(map) || 1338 start >= end) 1339 return (KERN_INVALID_ADDRESS); 1340 1341 /* 1342 * Find the entry prior to the proposed starting address; if it's part 1343 * of an existing entry, this range is bogus. 1344 */ 1345 if (vm_map_lookup_entry(map, start, &temp_entry)) 1346 return (KERN_NO_SPACE); 1347 1348 prev_entry = temp_entry; 1349 1350 /* 1351 * Assert that the next entry doesn't overlap the end point. 1352 */ 1353 if (prev_entry->next->start < end) 1354 return (KERN_NO_SPACE); 1355 1356 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1357 max != VM_PROT_NONE)) 1358 return (KERN_INVALID_ARGUMENT); 1359 1360 protoeflags = 0; 1361 if (cow & MAP_COPY_ON_WRITE) 1362 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1363 if (cow & MAP_NOFAULT) 1364 protoeflags |= MAP_ENTRY_NOFAULT; 1365 if (cow & MAP_DISABLE_SYNCER) 1366 protoeflags |= MAP_ENTRY_NOSYNC; 1367 if (cow & MAP_DISABLE_COREDUMP) 1368 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1369 if (cow & MAP_STACK_GROWS_DOWN) 1370 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1371 if (cow & MAP_STACK_GROWS_UP) 1372 protoeflags |= MAP_ENTRY_GROWS_UP; 1373 if (cow & MAP_VN_WRITECOUNT) 1374 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1375 if ((cow & MAP_CREATE_GUARD) != 0) 1376 protoeflags |= MAP_ENTRY_GUARD; 1377 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1378 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1379 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1380 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1381 if (cow & MAP_INHERIT_SHARE) 1382 inheritance = VM_INHERIT_SHARE; 1383 else 1384 inheritance = VM_INHERIT_DEFAULT; 1385 1386 cred = NULL; 1387 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1388 goto charged; 1389 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1390 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1391 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1392 return (KERN_RESOURCE_SHORTAGE); 1393 KASSERT(object == NULL || 1394 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1395 object->cred == NULL, 1396 ("overcommit: vm_map_insert o %p", object)); 1397 cred = curthread->td_ucred; 1398 } 1399 1400 charged: 1401 /* Expand the kernel pmap, if necessary. */ 1402 if (map == kernel_map && end > kernel_vm_end) 1403 pmap_growkernel(end); 1404 if (object != NULL) { 1405 /* 1406 * OBJ_ONEMAPPING must be cleared unless this mapping 1407 * is trivially proven to be the only mapping for any 1408 * of the object's pages. (Object granularity 1409 * reference counting is insufficient to recognize 1410 * aliases with precision.) 1411 */ 1412 VM_OBJECT_WLOCK(object); 1413 if (object->ref_count > 1 || object->shadow_count != 0) 1414 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1415 VM_OBJECT_WUNLOCK(object); 1416 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1417 protoeflags && 1418 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 && 1419 prev_entry->end == start && (prev_entry->cred == cred || 1420 (prev_entry->object.vm_object != NULL && 1421 prev_entry->object.vm_object->cred == cred)) && 1422 vm_object_coalesce(prev_entry->object.vm_object, 1423 prev_entry->offset, 1424 (vm_size_t)(prev_entry->end - prev_entry->start), 1425 (vm_size_t)(end - prev_entry->end), cred != NULL && 1426 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1427 /* 1428 * We were able to extend the object. Determine if we 1429 * can extend the previous map entry to include the 1430 * new range as well. 1431 */ 1432 if (prev_entry->inheritance == inheritance && 1433 prev_entry->protection == prot && 1434 prev_entry->max_protection == max && 1435 prev_entry->wired_count == 0) { 1436 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1437 0, ("prev_entry %p has incoherent wiring", 1438 prev_entry)); 1439 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1440 map->size += end - prev_entry->end; 1441 prev_entry->end = end; 1442 vm_map_entry_resize_free(map, prev_entry); 1443 vm_map_simplify_entry(map, prev_entry); 1444 return (KERN_SUCCESS); 1445 } 1446 1447 /* 1448 * If we can extend the object but cannot extend the 1449 * map entry, we have to create a new map entry. We 1450 * must bump the ref count on the extended object to 1451 * account for it. object may be NULL. 1452 */ 1453 object = prev_entry->object.vm_object; 1454 offset = prev_entry->offset + 1455 (prev_entry->end - prev_entry->start); 1456 vm_object_reference(object); 1457 if (cred != NULL && object != NULL && object->cred != NULL && 1458 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1459 /* Object already accounts for this uid. */ 1460 cred = NULL; 1461 } 1462 } 1463 if (cred != NULL) 1464 crhold(cred); 1465 1466 /* 1467 * Create a new entry 1468 */ 1469 new_entry = vm_map_entry_create(map); 1470 new_entry->start = start; 1471 new_entry->end = end; 1472 new_entry->cred = NULL; 1473 1474 new_entry->eflags = protoeflags; 1475 new_entry->object.vm_object = object; 1476 new_entry->offset = offset; 1477 1478 new_entry->inheritance = inheritance; 1479 new_entry->protection = prot; 1480 new_entry->max_protection = max; 1481 new_entry->wired_count = 0; 1482 new_entry->wiring_thread = NULL; 1483 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1484 new_entry->next_read = start; 1485 1486 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1487 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1488 new_entry->cred = cred; 1489 1490 /* 1491 * Insert the new entry into the list 1492 */ 1493 vm_map_entry_link(map, new_entry); 1494 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1495 map->size += new_entry->end - new_entry->start; 1496 1497 /* 1498 * Try to coalesce the new entry with both the previous and next 1499 * entries in the list. Previously, we only attempted to coalesce 1500 * with the previous entry when object is NULL. Here, we handle the 1501 * other cases, which are less common. 1502 */ 1503 vm_map_simplify_entry(map, new_entry); 1504 1505 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1506 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1507 end - start, cow & MAP_PREFAULT_PARTIAL); 1508 } 1509 1510 return (KERN_SUCCESS); 1511 } 1512 1513 /* 1514 * vm_map_findspace: 1515 * 1516 * Find the first fit (lowest VM address) for "length" free bytes 1517 * beginning at address >= start in the given map. 1518 * 1519 * In a vm_map_entry, "max_free" is the maximum amount of 1520 * contiguous free space between an entry in its subtree and a 1521 * neighbor of that entry. This allows finding a free region in 1522 * one path down the tree, so O(log n) amortized with splay 1523 * trees. 1524 * 1525 * The map must be locked, and leaves it so. 1526 * 1527 * Returns: starting address if sufficient space, 1528 * vm_map_max(map)-length+1 if insufficient space. 1529 */ 1530 vm_offset_t 1531 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1532 { 1533 vm_map_entry_t llist, rlist, root, y; 1534 vm_size_t left_length; 1535 1536 /* 1537 * Request must fit within min/max VM address and must avoid 1538 * address wrap. 1539 */ 1540 start = MAX(start, vm_map_min(map)); 1541 if (start + length > vm_map_max(map) || start + length < start) 1542 return (vm_map_max(map) - length + 1); 1543 1544 /* Empty tree means wide open address space. */ 1545 if (map->root == NULL) 1546 return (start); 1547 1548 /* 1549 * After splay, if start comes before root node, then there 1550 * must be a gap from start to the root. 1551 */ 1552 root = vm_map_splay_split(start, length, map->root, 1553 &llist, &rlist); 1554 if (root != NULL) 1555 start = root->end; 1556 else if (rlist != NULL) { 1557 root = rlist; 1558 rlist = root->left; 1559 root->left = NULL; 1560 } else { 1561 root = llist; 1562 llist = root->right; 1563 root->right = NULL; 1564 } 1565 map->root = vm_map_splay_merge(root, llist, rlist, 1566 root->left, root->right); 1567 VM_MAP_ASSERT_CONSISTENT(map); 1568 if (start + length <= root->start) 1569 return (start); 1570 1571 /* 1572 * Root is the last node that might begin its gap before 1573 * start, and this is the last comparison where address 1574 * wrap might be a problem. 1575 */ 1576 if (root->right == NULL && 1577 start + length <= vm_map_max(map)) 1578 return (start); 1579 1580 /* With max_free, can immediately tell if no solution. */ 1581 if (root->right == NULL || length > root->right->max_free) 1582 return (vm_map_max(map) - length + 1); 1583 1584 /* 1585 * Splay for the least large-enough gap in the right subtree. 1586 */ 1587 llist = NULL; 1588 rlist = NULL; 1589 for (left_length = 0; ; 1590 left_length = root->left != NULL ? 1591 root->left->max_free : root->start - llist->end) { 1592 if (length <= left_length) 1593 SPLAY_LEFT_STEP(root, y, rlist, 1594 length <= (y->left != NULL ? 1595 y->left->max_free : y->start - llist->end)); 1596 else 1597 SPLAY_RIGHT_STEP(root, y, llist, 1598 length > (y->left != NULL ? 1599 y->left->max_free : y->start - root->end)); 1600 if (root == NULL) 1601 break; 1602 } 1603 root = llist; 1604 llist = root->right; 1605 if ((y = rlist) == NULL) 1606 root->right = NULL; 1607 else { 1608 rlist = y->left; 1609 y->left = NULL; 1610 root->right = y->right; 1611 } 1612 root = vm_map_splay_merge(root, llist, rlist, 1613 root->left, root->right); 1614 if (y != NULL) { 1615 y->right = root->right; 1616 vm_map_entry_set_max_free(y); 1617 root->right = y; 1618 vm_map_entry_set_max_free(root); 1619 } 1620 map->root = root; 1621 VM_MAP_ASSERT_CONSISTENT(map); 1622 return (root->end); 1623 } 1624 1625 int 1626 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1627 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1628 vm_prot_t max, int cow) 1629 { 1630 vm_offset_t end; 1631 int result; 1632 1633 end = start + length; 1634 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1635 object == NULL, 1636 ("vm_map_fixed: non-NULL backing object for stack")); 1637 vm_map_lock(map); 1638 VM_MAP_RANGE_CHECK(map, start, end); 1639 if ((cow & MAP_CHECK_EXCL) == 0) 1640 vm_map_delete(map, start, end); 1641 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1642 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1643 prot, max, cow); 1644 } else { 1645 result = vm_map_insert(map, object, offset, start, end, 1646 prot, max, cow); 1647 } 1648 vm_map_unlock(map); 1649 return (result); 1650 } 1651 1652 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1653 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1654 1655 static int cluster_anon = 1; 1656 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1657 &cluster_anon, 0, 1658 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 1659 1660 static bool 1661 clustering_anon_allowed(vm_offset_t addr) 1662 { 1663 1664 switch (cluster_anon) { 1665 case 0: 1666 return (false); 1667 case 1: 1668 return (addr == 0); 1669 case 2: 1670 default: 1671 return (true); 1672 } 1673 } 1674 1675 static long aslr_restarts; 1676 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 1677 &aslr_restarts, 0, 1678 "Number of aslr failures"); 1679 1680 #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) 1681 1682 /* 1683 * Searches for the specified amount of free space in the given map with the 1684 * specified alignment. Performs an address-ordered, first-fit search from 1685 * the given address "*addr", with an optional upper bound "max_addr". If the 1686 * parameter "alignment" is zero, then the alignment is computed from the 1687 * given (object, offset) pair so as to enable the greatest possible use of 1688 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1689 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1690 * 1691 * The map must be locked. Initially, there must be at least "length" bytes 1692 * of free space at the given address. 1693 */ 1694 static int 1695 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1696 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1697 vm_offset_t alignment) 1698 { 1699 vm_offset_t aligned_addr, free_addr; 1700 1701 VM_MAP_ASSERT_LOCKED(map); 1702 free_addr = *addr; 1703 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 1704 ("caller failed to provide space %d at address %p", 1705 (int)length, (void*)free_addr)); 1706 for (;;) { 1707 /* 1708 * At the start of every iteration, the free space at address 1709 * "*addr" is at least "length" bytes. 1710 */ 1711 if (alignment == 0) 1712 pmap_align_superpage(object, offset, addr, length); 1713 else if ((*addr & (alignment - 1)) != 0) { 1714 *addr &= ~(alignment - 1); 1715 *addr += alignment; 1716 } 1717 aligned_addr = *addr; 1718 if (aligned_addr == free_addr) { 1719 /* 1720 * Alignment did not change "*addr", so "*addr" must 1721 * still provide sufficient free space. 1722 */ 1723 return (KERN_SUCCESS); 1724 } 1725 1726 /* 1727 * Test for address wrap on "*addr". A wrapped "*addr" could 1728 * be a valid address, in which case vm_map_findspace() cannot 1729 * be relied upon to fail. 1730 */ 1731 if (aligned_addr < free_addr) 1732 return (KERN_NO_SPACE); 1733 *addr = vm_map_findspace(map, aligned_addr, length); 1734 if (*addr + length > vm_map_max(map) || 1735 (max_addr != 0 && *addr + length > max_addr)) 1736 return (KERN_NO_SPACE); 1737 free_addr = *addr; 1738 if (free_addr == aligned_addr) { 1739 /* 1740 * If a successful call to vm_map_findspace() did not 1741 * change "*addr", then "*addr" must still be aligned 1742 * and provide sufficient free space. 1743 */ 1744 return (KERN_SUCCESS); 1745 } 1746 } 1747 } 1748 1749 /* 1750 * vm_map_find finds an unallocated region in the target address 1751 * map with the given length. The search is defined to be 1752 * first-fit from the specified address; the region found is 1753 * returned in the same parameter. 1754 * 1755 * If object is non-NULL, ref count must be bumped by caller 1756 * prior to making call to account for the new entry. 1757 */ 1758 int 1759 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1760 vm_offset_t *addr, /* IN/OUT */ 1761 vm_size_t length, vm_offset_t max_addr, int find_space, 1762 vm_prot_t prot, vm_prot_t max, int cow) 1763 { 1764 vm_offset_t alignment, curr_min_addr, min_addr; 1765 int gap, pidx, rv, try; 1766 bool cluster, en_aslr, update_anon; 1767 1768 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1769 object == NULL, 1770 ("vm_map_find: non-NULL backing object for stack")); 1771 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 1772 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 1773 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1774 (object->flags & OBJ_COLORED) == 0)) 1775 find_space = VMFS_ANY_SPACE; 1776 if (find_space >> 8 != 0) { 1777 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1778 alignment = (vm_offset_t)1 << (find_space >> 8); 1779 } else 1780 alignment = 0; 1781 en_aslr = (map->flags & MAP_ASLR) != 0; 1782 update_anon = cluster = clustering_anon_allowed(*addr) && 1783 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 1784 find_space != VMFS_NO_SPACE && object == NULL && 1785 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 1786 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 1787 curr_min_addr = min_addr = *addr; 1788 if (en_aslr && min_addr == 0 && !cluster && 1789 find_space != VMFS_NO_SPACE && 1790 (map->flags & MAP_ASLR_IGNSTART) != 0) 1791 curr_min_addr = min_addr = vm_map_min(map); 1792 try = 0; 1793 vm_map_lock(map); 1794 if (cluster) { 1795 curr_min_addr = map->anon_loc; 1796 if (curr_min_addr == 0) 1797 cluster = false; 1798 } 1799 if (find_space != VMFS_NO_SPACE) { 1800 KASSERT(find_space == VMFS_ANY_SPACE || 1801 find_space == VMFS_OPTIMAL_SPACE || 1802 find_space == VMFS_SUPER_SPACE || 1803 alignment != 0, ("unexpected VMFS flag")); 1804 again: 1805 /* 1806 * When creating an anonymous mapping, try clustering 1807 * with an existing anonymous mapping first. 1808 * 1809 * We make up to two attempts to find address space 1810 * for a given find_space value. The first attempt may 1811 * apply randomization or may cluster with an existing 1812 * anonymous mapping. If this first attempt fails, 1813 * perform a first-fit search of the available address 1814 * space. 1815 * 1816 * If all tries failed, and find_space is 1817 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 1818 * Again enable clustering and randomization. 1819 */ 1820 try++; 1821 MPASS(try <= 2); 1822 1823 if (try == 2) { 1824 /* 1825 * Second try: we failed either to find a 1826 * suitable region for randomizing the 1827 * allocation, or to cluster with an existing 1828 * mapping. Retry with free run. 1829 */ 1830 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 1831 vm_map_min(map) : min_addr; 1832 atomic_add_long(&aslr_restarts, 1); 1833 } 1834 1835 if (try == 1 && en_aslr && !cluster) { 1836 /* 1837 * Find space for allocation, including 1838 * gap needed for later randomization. 1839 */ 1840 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 1841 (find_space == VMFS_SUPER_SPACE || find_space == 1842 VMFS_OPTIMAL_SPACE) ? 1 : 0; 1843 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 1844 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 1845 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 1846 *addr = vm_map_findspace(map, curr_min_addr, 1847 length + gap * pagesizes[pidx]); 1848 if (*addr + length + gap * pagesizes[pidx] > 1849 vm_map_max(map)) 1850 goto again; 1851 /* And randomize the start address. */ 1852 *addr += (arc4random() % gap) * pagesizes[pidx]; 1853 if (max_addr != 0 && *addr + length > max_addr) 1854 goto again; 1855 } else { 1856 *addr = vm_map_findspace(map, curr_min_addr, length); 1857 if (*addr + length > vm_map_max(map) || 1858 (max_addr != 0 && *addr + length > max_addr)) { 1859 if (cluster) { 1860 cluster = false; 1861 MPASS(try == 1); 1862 goto again; 1863 } 1864 rv = KERN_NO_SPACE; 1865 goto done; 1866 } 1867 } 1868 1869 if (find_space != VMFS_ANY_SPACE && 1870 (rv = vm_map_alignspace(map, object, offset, addr, length, 1871 max_addr, alignment)) != KERN_SUCCESS) { 1872 if (find_space == VMFS_OPTIMAL_SPACE) { 1873 find_space = VMFS_ANY_SPACE; 1874 curr_min_addr = min_addr; 1875 cluster = update_anon; 1876 try = 0; 1877 goto again; 1878 } 1879 goto done; 1880 } 1881 } else if ((cow & MAP_REMAP) != 0) { 1882 if (*addr < vm_map_min(map) || 1883 *addr + length > vm_map_max(map) || 1884 *addr + length <= length) { 1885 rv = KERN_INVALID_ADDRESS; 1886 goto done; 1887 } 1888 vm_map_delete(map, *addr, *addr + length); 1889 } 1890 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1891 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 1892 max, cow); 1893 } else { 1894 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 1895 prot, max, cow); 1896 } 1897 if (rv == KERN_SUCCESS && update_anon) 1898 map->anon_loc = *addr + length; 1899 done: 1900 vm_map_unlock(map); 1901 return (rv); 1902 } 1903 1904 /* 1905 * vm_map_find_min() is a variant of vm_map_find() that takes an 1906 * additional parameter (min_addr) and treats the given address 1907 * (*addr) differently. Specifically, it treats *addr as a hint 1908 * and not as the minimum address where the mapping is created. 1909 * 1910 * This function works in two phases. First, it tries to 1911 * allocate above the hint. If that fails and the hint is 1912 * greater than min_addr, it performs a second pass, replacing 1913 * the hint with min_addr as the minimum address for the 1914 * allocation. 1915 */ 1916 int 1917 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1918 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 1919 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 1920 int cow) 1921 { 1922 vm_offset_t hint; 1923 int rv; 1924 1925 hint = *addr; 1926 for (;;) { 1927 rv = vm_map_find(map, object, offset, addr, length, max_addr, 1928 find_space, prot, max, cow); 1929 if (rv == KERN_SUCCESS || min_addr >= hint) 1930 return (rv); 1931 *addr = hint = min_addr; 1932 } 1933 } 1934 1935 /* 1936 * A map entry with any of the following flags set must not be merged with 1937 * another entry. 1938 */ 1939 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 1940 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP) 1941 1942 static bool 1943 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 1944 { 1945 1946 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 1947 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 1948 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 1949 prev, entry)); 1950 return (prev->end == entry->start && 1951 prev->object.vm_object == entry->object.vm_object && 1952 (prev->object.vm_object == NULL || 1953 prev->offset + (prev->end - prev->start) == entry->offset) && 1954 prev->eflags == entry->eflags && 1955 prev->protection == entry->protection && 1956 prev->max_protection == entry->max_protection && 1957 prev->inheritance == entry->inheritance && 1958 prev->wired_count == entry->wired_count && 1959 prev->cred == entry->cred); 1960 } 1961 1962 static void 1963 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 1964 { 1965 1966 /* 1967 * If the backing object is a vnode object, vm_object_deallocate() 1968 * calls vrele(). However, vrele() does not lock the vnode because 1969 * the vnode has additional references. Thus, the map lock can be 1970 * kept without causing a lock-order reversal with the vnode lock. 1971 * 1972 * Since we count the number of virtual page mappings in 1973 * object->un_pager.vnp.writemappings, the writemappings value 1974 * should not be adjusted when the entry is disposed of. 1975 */ 1976 if (entry->object.vm_object != NULL) 1977 vm_object_deallocate(entry->object.vm_object); 1978 if (entry->cred != NULL) 1979 crfree(entry->cred); 1980 vm_map_entry_dispose(map, entry); 1981 } 1982 1983 /* 1984 * vm_map_simplify_entry: 1985 * 1986 * Simplify the given map entry by merging with either neighbor. This 1987 * routine also has the ability to merge with both neighbors. 1988 * 1989 * The map must be locked. 1990 * 1991 * This routine guarantees that the passed entry remains valid (though 1992 * possibly extended). When merging, this routine may delete one or 1993 * both neighbors. 1994 */ 1995 void 1996 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1997 { 1998 vm_map_entry_t next, prev; 1999 2000 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0) 2001 return; 2002 prev = entry->prev; 2003 if (vm_map_mergeable_neighbors(prev, entry)) { 2004 vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT); 2005 vm_map_merged_neighbor_dispose(map, prev); 2006 } 2007 next = entry->next; 2008 if (vm_map_mergeable_neighbors(entry, next)) { 2009 vm_map_entry_unlink(map, next, UNLINK_MERGE_PREV); 2010 vm_map_merged_neighbor_dispose(map, next); 2011 } 2012 } 2013 2014 /* 2015 * vm_map_clip_start: [ internal use only ] 2016 * 2017 * Asserts that the given entry begins at or after 2018 * the specified address; if necessary, 2019 * it splits the entry into two. 2020 */ 2021 #define vm_map_clip_start(map, entry, startaddr) \ 2022 { \ 2023 if (startaddr > entry->start) \ 2024 _vm_map_clip_start(map, entry, startaddr); \ 2025 } 2026 2027 /* 2028 * This routine is called only when it is known that 2029 * the entry must be split. 2030 */ 2031 static void 2032 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 2033 { 2034 vm_map_entry_t new_entry; 2035 2036 VM_MAP_ASSERT_LOCKED(map); 2037 KASSERT(entry->end > start && entry->start < start, 2038 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 2039 2040 /* 2041 * Split off the front portion -- note that we must insert the new 2042 * entry BEFORE this one, so that this entry has the specified 2043 * starting address. 2044 */ 2045 vm_map_simplify_entry(map, entry); 2046 2047 /* 2048 * If there is no object backing this entry, we might as well create 2049 * one now. If we defer it, an object can get created after the map 2050 * is clipped, and individual objects will be created for the split-up 2051 * map. This is a bit of a hack, but is also about the best place to 2052 * put this improvement. 2053 */ 2054 if (entry->object.vm_object == NULL && !map->system_map && 2055 (entry->eflags & MAP_ENTRY_GUARD) == 0) { 2056 vm_object_t object; 2057 object = vm_object_allocate(OBJT_DEFAULT, 2058 atop(entry->end - entry->start)); 2059 entry->object.vm_object = object; 2060 entry->offset = 0; 2061 if (entry->cred != NULL) { 2062 object->cred = entry->cred; 2063 object->charge = entry->end - entry->start; 2064 entry->cred = NULL; 2065 } 2066 } else if (entry->object.vm_object != NULL && 2067 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2068 entry->cred != NULL) { 2069 VM_OBJECT_WLOCK(entry->object.vm_object); 2070 KASSERT(entry->object.vm_object->cred == NULL, 2071 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 2072 entry->object.vm_object->cred = entry->cred; 2073 entry->object.vm_object->charge = entry->end - entry->start; 2074 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2075 entry->cred = NULL; 2076 } 2077 2078 new_entry = vm_map_entry_create(map); 2079 *new_entry = *entry; 2080 2081 new_entry->end = start; 2082 entry->offset += (start - entry->start); 2083 entry->start = start; 2084 if (new_entry->cred != NULL) 2085 crhold(entry->cred); 2086 2087 vm_map_entry_link(map, new_entry); 2088 2089 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2090 vm_object_reference(new_entry->object.vm_object); 2091 /* 2092 * The object->un_pager.vnp.writemappings for the 2093 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 2094 * kept as is here. The virtual pages are 2095 * re-distributed among the clipped entries, so the sum is 2096 * left the same. 2097 */ 2098 } 2099 } 2100 2101 /* 2102 * vm_map_clip_end: [ internal use only ] 2103 * 2104 * Asserts that the given entry ends at or before 2105 * the specified address; if necessary, 2106 * it splits the entry into two. 2107 */ 2108 #define vm_map_clip_end(map, entry, endaddr) \ 2109 { \ 2110 if ((endaddr) < (entry->end)) \ 2111 _vm_map_clip_end((map), (entry), (endaddr)); \ 2112 } 2113 2114 /* 2115 * This routine is called only when it is known that 2116 * the entry must be split. 2117 */ 2118 static void 2119 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 2120 { 2121 vm_map_entry_t new_entry; 2122 2123 VM_MAP_ASSERT_LOCKED(map); 2124 KASSERT(entry->start < end && entry->end > end, 2125 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 2126 2127 /* 2128 * If there is no object backing this entry, we might as well create 2129 * one now. If we defer it, an object can get created after the map 2130 * is clipped, and individual objects will be created for the split-up 2131 * map. This is a bit of a hack, but is also about the best place to 2132 * put this improvement. 2133 */ 2134 if (entry->object.vm_object == NULL && !map->system_map && 2135 (entry->eflags & MAP_ENTRY_GUARD) == 0) { 2136 vm_object_t object; 2137 object = vm_object_allocate(OBJT_DEFAULT, 2138 atop(entry->end - entry->start)); 2139 entry->object.vm_object = object; 2140 entry->offset = 0; 2141 if (entry->cred != NULL) { 2142 object->cred = entry->cred; 2143 object->charge = entry->end - entry->start; 2144 entry->cred = NULL; 2145 } 2146 } else if (entry->object.vm_object != NULL && 2147 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2148 entry->cred != NULL) { 2149 VM_OBJECT_WLOCK(entry->object.vm_object); 2150 KASSERT(entry->object.vm_object->cred == NULL, 2151 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 2152 entry->object.vm_object->cred = entry->cred; 2153 entry->object.vm_object->charge = entry->end - entry->start; 2154 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2155 entry->cred = NULL; 2156 } 2157 2158 /* 2159 * Create a new entry and insert it AFTER the specified entry 2160 */ 2161 new_entry = vm_map_entry_create(map); 2162 *new_entry = *entry; 2163 2164 new_entry->start = entry->end = end; 2165 new_entry->offset += (end - entry->start); 2166 if (new_entry->cred != NULL) 2167 crhold(entry->cred); 2168 2169 vm_map_entry_link(map, new_entry); 2170 2171 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2172 vm_object_reference(new_entry->object.vm_object); 2173 } 2174 } 2175 2176 /* 2177 * vm_map_submap: [ kernel use only ] 2178 * 2179 * Mark the given range as handled by a subordinate map. 2180 * 2181 * This range must have been created with vm_map_find, 2182 * and no other operations may have been performed on this 2183 * range prior to calling vm_map_submap. 2184 * 2185 * Only a limited number of operations can be performed 2186 * within this rage after calling vm_map_submap: 2187 * vm_fault 2188 * [Don't try vm_map_copy!] 2189 * 2190 * To remove a submapping, one must first remove the 2191 * range from the superior map, and then destroy the 2192 * submap (if desired). [Better yet, don't try it.] 2193 */ 2194 int 2195 vm_map_submap( 2196 vm_map_t map, 2197 vm_offset_t start, 2198 vm_offset_t end, 2199 vm_map_t submap) 2200 { 2201 vm_map_entry_t entry; 2202 int result; 2203 2204 result = KERN_INVALID_ARGUMENT; 2205 2206 vm_map_lock(submap); 2207 submap->flags |= MAP_IS_SUB_MAP; 2208 vm_map_unlock(submap); 2209 2210 vm_map_lock(map); 2211 2212 VM_MAP_RANGE_CHECK(map, start, end); 2213 2214 if (vm_map_lookup_entry(map, start, &entry)) { 2215 vm_map_clip_start(map, entry, start); 2216 } else 2217 entry = entry->next; 2218 2219 vm_map_clip_end(map, entry, end); 2220 2221 if ((entry->start == start) && (entry->end == end) && 2222 ((entry->eflags & MAP_ENTRY_COW) == 0) && 2223 (entry->object.vm_object == NULL)) { 2224 entry->object.sub_map = submap; 2225 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2226 result = KERN_SUCCESS; 2227 } 2228 vm_map_unlock(map); 2229 2230 if (result != KERN_SUCCESS) { 2231 vm_map_lock(submap); 2232 submap->flags &= ~MAP_IS_SUB_MAP; 2233 vm_map_unlock(submap); 2234 } 2235 return (result); 2236 } 2237 2238 /* 2239 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2240 */ 2241 #define MAX_INIT_PT 96 2242 2243 /* 2244 * vm_map_pmap_enter: 2245 * 2246 * Preload the specified map's pmap with mappings to the specified 2247 * object's memory-resident pages. No further physical pages are 2248 * allocated, and no further virtual pages are retrieved from secondary 2249 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2250 * limited number of page mappings are created at the low-end of the 2251 * specified address range. (For this purpose, a superpage mapping 2252 * counts as one page mapping.) Otherwise, all resident pages within 2253 * the specified address range are mapped. 2254 */ 2255 static void 2256 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2257 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2258 { 2259 vm_offset_t start; 2260 vm_page_t p, p_start; 2261 vm_pindex_t mask, psize, threshold, tmpidx; 2262 2263 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2264 return; 2265 VM_OBJECT_RLOCK(object); 2266 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2267 VM_OBJECT_RUNLOCK(object); 2268 VM_OBJECT_WLOCK(object); 2269 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2270 pmap_object_init_pt(map->pmap, addr, object, pindex, 2271 size); 2272 VM_OBJECT_WUNLOCK(object); 2273 return; 2274 } 2275 VM_OBJECT_LOCK_DOWNGRADE(object); 2276 } 2277 2278 psize = atop(size); 2279 if (psize + pindex > object->size) { 2280 if (object->size < pindex) { 2281 VM_OBJECT_RUNLOCK(object); 2282 return; 2283 } 2284 psize = object->size - pindex; 2285 } 2286 2287 start = 0; 2288 p_start = NULL; 2289 threshold = MAX_INIT_PT; 2290 2291 p = vm_page_find_least(object, pindex); 2292 /* 2293 * Assert: the variable p is either (1) the page with the 2294 * least pindex greater than or equal to the parameter pindex 2295 * or (2) NULL. 2296 */ 2297 for (; 2298 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2299 p = TAILQ_NEXT(p, listq)) { 2300 /* 2301 * don't allow an madvise to blow away our really 2302 * free pages allocating pv entries. 2303 */ 2304 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2305 vm_page_count_severe()) || 2306 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2307 tmpidx >= threshold)) { 2308 psize = tmpidx; 2309 break; 2310 } 2311 if (p->valid == VM_PAGE_BITS_ALL) { 2312 if (p_start == NULL) { 2313 start = addr + ptoa(tmpidx); 2314 p_start = p; 2315 } 2316 /* Jump ahead if a superpage mapping is possible. */ 2317 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2318 (pagesizes[p->psind] - 1)) == 0) { 2319 mask = atop(pagesizes[p->psind]) - 1; 2320 if (tmpidx + mask < psize && 2321 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2322 p += mask; 2323 threshold += mask; 2324 } 2325 } 2326 } else if (p_start != NULL) { 2327 pmap_enter_object(map->pmap, start, addr + 2328 ptoa(tmpidx), p_start, prot); 2329 p_start = NULL; 2330 } 2331 } 2332 if (p_start != NULL) 2333 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2334 p_start, prot); 2335 VM_OBJECT_RUNLOCK(object); 2336 } 2337 2338 /* 2339 * vm_map_protect: 2340 * 2341 * Sets the protection of the specified address 2342 * region in the target map. If "set_max" is 2343 * specified, the maximum protection is to be set; 2344 * otherwise, only the current protection is affected. 2345 */ 2346 int 2347 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2348 vm_prot_t new_prot, boolean_t set_max) 2349 { 2350 vm_map_entry_t current, entry; 2351 vm_object_t obj; 2352 struct ucred *cred; 2353 vm_prot_t old_prot; 2354 2355 if (start == end) 2356 return (KERN_SUCCESS); 2357 2358 vm_map_lock(map); 2359 2360 /* 2361 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2362 * need to fault pages into the map and will drop the map lock while 2363 * doing so, and the VM object may end up in an inconsistent state if we 2364 * update the protection on the map entry in between faults. 2365 */ 2366 vm_map_wait_busy(map); 2367 2368 VM_MAP_RANGE_CHECK(map, start, end); 2369 2370 if (vm_map_lookup_entry(map, start, &entry)) { 2371 vm_map_clip_start(map, entry, start); 2372 } else { 2373 entry = entry->next; 2374 } 2375 2376 /* 2377 * Make a first pass to check for protection violations. 2378 */ 2379 for (current = entry; current->start < end; current = current->next) { 2380 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2381 continue; 2382 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2383 vm_map_unlock(map); 2384 return (KERN_INVALID_ARGUMENT); 2385 } 2386 if ((new_prot & current->max_protection) != new_prot) { 2387 vm_map_unlock(map); 2388 return (KERN_PROTECTION_FAILURE); 2389 } 2390 } 2391 2392 /* 2393 * Do an accounting pass for private read-only mappings that 2394 * now will do cow due to allowed write (e.g. debugger sets 2395 * breakpoint on text segment) 2396 */ 2397 for (current = entry; current->start < end; current = current->next) { 2398 2399 vm_map_clip_end(map, current, end); 2400 2401 if (set_max || 2402 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 2403 ENTRY_CHARGED(current) || 2404 (current->eflags & MAP_ENTRY_GUARD) != 0) { 2405 continue; 2406 } 2407 2408 cred = curthread->td_ucred; 2409 obj = current->object.vm_object; 2410 2411 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 2412 if (!swap_reserve(current->end - current->start)) { 2413 vm_map_unlock(map); 2414 return (KERN_RESOURCE_SHORTAGE); 2415 } 2416 crhold(cred); 2417 current->cred = cred; 2418 continue; 2419 } 2420 2421 VM_OBJECT_WLOCK(obj); 2422 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2423 VM_OBJECT_WUNLOCK(obj); 2424 continue; 2425 } 2426 2427 /* 2428 * Charge for the whole object allocation now, since 2429 * we cannot distinguish between non-charged and 2430 * charged clipped mapping of the same object later. 2431 */ 2432 KASSERT(obj->charge == 0, 2433 ("vm_map_protect: object %p overcharged (entry %p)", 2434 obj, current)); 2435 if (!swap_reserve(ptoa(obj->size))) { 2436 VM_OBJECT_WUNLOCK(obj); 2437 vm_map_unlock(map); 2438 return (KERN_RESOURCE_SHORTAGE); 2439 } 2440 2441 crhold(cred); 2442 obj->cred = cred; 2443 obj->charge = ptoa(obj->size); 2444 VM_OBJECT_WUNLOCK(obj); 2445 } 2446 2447 /* 2448 * Go back and fix up protections. [Note that clipping is not 2449 * necessary the second time.] 2450 */ 2451 for (current = entry; current->start < end; current = current->next) { 2452 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2453 continue; 2454 2455 old_prot = current->protection; 2456 2457 if (set_max) 2458 current->protection = 2459 (current->max_protection = new_prot) & 2460 old_prot; 2461 else 2462 current->protection = new_prot; 2463 2464 /* 2465 * For user wired map entries, the normal lazy evaluation of 2466 * write access upgrades through soft page faults is 2467 * undesirable. Instead, immediately copy any pages that are 2468 * copy-on-write and enable write access in the physical map. 2469 */ 2470 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2471 (current->protection & VM_PROT_WRITE) != 0 && 2472 (old_prot & VM_PROT_WRITE) == 0) 2473 vm_fault_copy_entry(map, map, current, current, NULL); 2474 2475 /* 2476 * When restricting access, update the physical map. Worry 2477 * about copy-on-write here. 2478 */ 2479 if ((old_prot & ~current->protection) != 0) { 2480 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2481 VM_PROT_ALL) 2482 pmap_protect(map->pmap, current->start, 2483 current->end, 2484 current->protection & MASK(current)); 2485 #undef MASK 2486 } 2487 vm_map_simplify_entry(map, current); 2488 } 2489 vm_map_unlock(map); 2490 return (KERN_SUCCESS); 2491 } 2492 2493 /* 2494 * vm_map_madvise: 2495 * 2496 * This routine traverses a processes map handling the madvise 2497 * system call. Advisories are classified as either those effecting 2498 * the vm_map_entry structure, or those effecting the underlying 2499 * objects. 2500 */ 2501 int 2502 vm_map_madvise( 2503 vm_map_t map, 2504 vm_offset_t start, 2505 vm_offset_t end, 2506 int behav) 2507 { 2508 vm_map_entry_t current, entry; 2509 bool modify_map; 2510 2511 /* 2512 * Some madvise calls directly modify the vm_map_entry, in which case 2513 * we need to use an exclusive lock on the map and we need to perform 2514 * various clipping operations. Otherwise we only need a read-lock 2515 * on the map. 2516 */ 2517 switch(behav) { 2518 case MADV_NORMAL: 2519 case MADV_SEQUENTIAL: 2520 case MADV_RANDOM: 2521 case MADV_NOSYNC: 2522 case MADV_AUTOSYNC: 2523 case MADV_NOCORE: 2524 case MADV_CORE: 2525 if (start == end) 2526 return (0); 2527 modify_map = true; 2528 vm_map_lock(map); 2529 break; 2530 case MADV_WILLNEED: 2531 case MADV_DONTNEED: 2532 case MADV_FREE: 2533 if (start == end) 2534 return (0); 2535 modify_map = false; 2536 vm_map_lock_read(map); 2537 break; 2538 default: 2539 return (EINVAL); 2540 } 2541 2542 /* 2543 * Locate starting entry and clip if necessary. 2544 */ 2545 VM_MAP_RANGE_CHECK(map, start, end); 2546 2547 if (vm_map_lookup_entry(map, start, &entry)) { 2548 if (modify_map) 2549 vm_map_clip_start(map, entry, start); 2550 } else { 2551 entry = entry->next; 2552 } 2553 2554 if (modify_map) { 2555 /* 2556 * madvise behaviors that are implemented in the vm_map_entry. 2557 * 2558 * We clip the vm_map_entry so that behavioral changes are 2559 * limited to the specified address range. 2560 */ 2561 for (current = entry; current->start < end; 2562 current = current->next) { 2563 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2564 continue; 2565 2566 vm_map_clip_end(map, current, end); 2567 2568 switch (behav) { 2569 case MADV_NORMAL: 2570 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2571 break; 2572 case MADV_SEQUENTIAL: 2573 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2574 break; 2575 case MADV_RANDOM: 2576 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2577 break; 2578 case MADV_NOSYNC: 2579 current->eflags |= MAP_ENTRY_NOSYNC; 2580 break; 2581 case MADV_AUTOSYNC: 2582 current->eflags &= ~MAP_ENTRY_NOSYNC; 2583 break; 2584 case MADV_NOCORE: 2585 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2586 break; 2587 case MADV_CORE: 2588 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2589 break; 2590 default: 2591 break; 2592 } 2593 vm_map_simplify_entry(map, current); 2594 } 2595 vm_map_unlock(map); 2596 } else { 2597 vm_pindex_t pstart, pend; 2598 2599 /* 2600 * madvise behaviors that are implemented in the underlying 2601 * vm_object. 2602 * 2603 * Since we don't clip the vm_map_entry, we have to clip 2604 * the vm_object pindex and count. 2605 */ 2606 for (current = entry; current->start < end; 2607 current = current->next) { 2608 vm_offset_t useEnd, useStart; 2609 2610 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2611 continue; 2612 2613 pstart = OFF_TO_IDX(current->offset); 2614 pend = pstart + atop(current->end - current->start); 2615 useStart = current->start; 2616 useEnd = current->end; 2617 2618 if (current->start < start) { 2619 pstart += atop(start - current->start); 2620 useStart = start; 2621 } 2622 if (current->end > end) { 2623 pend -= atop(current->end - end); 2624 useEnd = end; 2625 } 2626 2627 if (pstart >= pend) 2628 continue; 2629 2630 /* 2631 * Perform the pmap_advise() before clearing 2632 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2633 * concurrent pmap operation, such as pmap_remove(), 2634 * could clear a reference in the pmap and set 2635 * PGA_REFERENCED on the page before the pmap_advise() 2636 * had completed. Consequently, the page would appear 2637 * referenced based upon an old reference that 2638 * occurred before this pmap_advise() ran. 2639 */ 2640 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2641 pmap_advise(map->pmap, useStart, useEnd, 2642 behav); 2643 2644 vm_object_madvise(current->object.vm_object, pstart, 2645 pend, behav); 2646 2647 /* 2648 * Pre-populate paging structures in the 2649 * WILLNEED case. For wired entries, the 2650 * paging structures are already populated. 2651 */ 2652 if (behav == MADV_WILLNEED && 2653 current->wired_count == 0) { 2654 vm_map_pmap_enter(map, 2655 useStart, 2656 current->protection, 2657 current->object.vm_object, 2658 pstart, 2659 ptoa(pend - pstart), 2660 MAP_PREFAULT_MADVISE 2661 ); 2662 } 2663 } 2664 vm_map_unlock_read(map); 2665 } 2666 return (0); 2667 } 2668 2669 2670 /* 2671 * vm_map_inherit: 2672 * 2673 * Sets the inheritance of the specified address 2674 * range in the target map. Inheritance 2675 * affects how the map will be shared with 2676 * child maps at the time of vmspace_fork. 2677 */ 2678 int 2679 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2680 vm_inherit_t new_inheritance) 2681 { 2682 vm_map_entry_t entry; 2683 vm_map_entry_t temp_entry; 2684 2685 switch (new_inheritance) { 2686 case VM_INHERIT_NONE: 2687 case VM_INHERIT_COPY: 2688 case VM_INHERIT_SHARE: 2689 case VM_INHERIT_ZERO: 2690 break; 2691 default: 2692 return (KERN_INVALID_ARGUMENT); 2693 } 2694 if (start == end) 2695 return (KERN_SUCCESS); 2696 vm_map_lock(map); 2697 VM_MAP_RANGE_CHECK(map, start, end); 2698 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2699 entry = temp_entry; 2700 vm_map_clip_start(map, entry, start); 2701 } else 2702 entry = temp_entry->next; 2703 while (entry->start < end) { 2704 vm_map_clip_end(map, entry, end); 2705 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 2706 new_inheritance != VM_INHERIT_ZERO) 2707 entry->inheritance = new_inheritance; 2708 vm_map_simplify_entry(map, entry); 2709 entry = entry->next; 2710 } 2711 vm_map_unlock(map); 2712 return (KERN_SUCCESS); 2713 } 2714 2715 /* 2716 * vm_map_unwire: 2717 * 2718 * Implements both kernel and user unwiring. 2719 */ 2720 int 2721 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2722 int flags) 2723 { 2724 vm_map_entry_t entry, first_entry, tmp_entry; 2725 vm_offset_t saved_start; 2726 unsigned int last_timestamp; 2727 int rv; 2728 boolean_t need_wakeup, result, user_unwire; 2729 2730 if (start == end) 2731 return (KERN_SUCCESS); 2732 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2733 vm_map_lock(map); 2734 VM_MAP_RANGE_CHECK(map, start, end); 2735 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2736 if (flags & VM_MAP_WIRE_HOLESOK) 2737 first_entry = first_entry->next; 2738 else { 2739 vm_map_unlock(map); 2740 return (KERN_INVALID_ADDRESS); 2741 } 2742 } 2743 last_timestamp = map->timestamp; 2744 entry = first_entry; 2745 while (entry->start < end) { 2746 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2747 /* 2748 * We have not yet clipped the entry. 2749 */ 2750 saved_start = (start >= entry->start) ? start : 2751 entry->start; 2752 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2753 if (vm_map_unlock_and_wait(map, 0)) { 2754 /* 2755 * Allow interruption of user unwiring? 2756 */ 2757 } 2758 vm_map_lock(map); 2759 if (last_timestamp+1 != map->timestamp) { 2760 /* 2761 * Look again for the entry because the map was 2762 * modified while it was unlocked. 2763 * Specifically, the entry may have been 2764 * clipped, merged, or deleted. 2765 */ 2766 if (!vm_map_lookup_entry(map, saved_start, 2767 &tmp_entry)) { 2768 if (flags & VM_MAP_WIRE_HOLESOK) 2769 tmp_entry = tmp_entry->next; 2770 else { 2771 if (saved_start == start) { 2772 /* 2773 * First_entry has been deleted. 2774 */ 2775 vm_map_unlock(map); 2776 return (KERN_INVALID_ADDRESS); 2777 } 2778 end = saved_start; 2779 rv = KERN_INVALID_ADDRESS; 2780 goto done; 2781 } 2782 } 2783 if (entry == first_entry) 2784 first_entry = tmp_entry; 2785 else 2786 first_entry = NULL; 2787 entry = tmp_entry; 2788 } 2789 last_timestamp = map->timestamp; 2790 continue; 2791 } 2792 vm_map_clip_start(map, entry, start); 2793 vm_map_clip_end(map, entry, end); 2794 /* 2795 * Mark the entry in case the map lock is released. (See 2796 * above.) 2797 */ 2798 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2799 entry->wiring_thread == NULL, 2800 ("owned map entry %p", entry)); 2801 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2802 entry->wiring_thread = curthread; 2803 /* 2804 * Check the map for holes in the specified region. 2805 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2806 */ 2807 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2808 (entry->end < end && entry->next->start > entry->end)) { 2809 end = entry->end; 2810 rv = KERN_INVALID_ADDRESS; 2811 goto done; 2812 } 2813 /* 2814 * If system unwiring, require that the entry is system wired. 2815 */ 2816 if (!user_unwire && 2817 vm_map_entry_system_wired_count(entry) == 0) { 2818 end = entry->end; 2819 rv = KERN_INVALID_ARGUMENT; 2820 goto done; 2821 } 2822 entry = entry->next; 2823 } 2824 rv = KERN_SUCCESS; 2825 done: 2826 need_wakeup = FALSE; 2827 if (first_entry == NULL) { 2828 result = vm_map_lookup_entry(map, start, &first_entry); 2829 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2830 first_entry = first_entry->next; 2831 else 2832 KASSERT(result, ("vm_map_unwire: lookup failed")); 2833 } 2834 for (entry = first_entry; entry->start < end; entry = entry->next) { 2835 /* 2836 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2837 * space in the unwired region could have been mapped 2838 * while the map lock was dropped for draining 2839 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2840 * could be simultaneously wiring this new mapping 2841 * entry. Detect these cases and skip any entries 2842 * marked as in transition by us. 2843 */ 2844 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2845 entry->wiring_thread != curthread) { 2846 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2847 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2848 continue; 2849 } 2850 2851 if (rv == KERN_SUCCESS && (!user_unwire || 2852 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2853 if (user_unwire) 2854 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2855 if (entry->wired_count == 1) 2856 vm_map_entry_unwire(map, entry); 2857 else 2858 entry->wired_count--; 2859 } 2860 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2861 ("vm_map_unwire: in-transition flag missing %p", entry)); 2862 KASSERT(entry->wiring_thread == curthread, 2863 ("vm_map_unwire: alien wire %p", entry)); 2864 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2865 entry->wiring_thread = NULL; 2866 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2867 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2868 need_wakeup = TRUE; 2869 } 2870 vm_map_simplify_entry(map, entry); 2871 } 2872 vm_map_unlock(map); 2873 if (need_wakeup) 2874 vm_map_wakeup(map); 2875 return (rv); 2876 } 2877 2878 /* 2879 * vm_map_wire_entry_failure: 2880 * 2881 * Handle a wiring failure on the given entry. 2882 * 2883 * The map should be locked. 2884 */ 2885 static void 2886 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 2887 vm_offset_t failed_addr) 2888 { 2889 2890 VM_MAP_ASSERT_LOCKED(map); 2891 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 2892 entry->wired_count == 1, 2893 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 2894 KASSERT(failed_addr < entry->end, 2895 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 2896 2897 /* 2898 * If any pages at the start of this entry were successfully wired, 2899 * then unwire them. 2900 */ 2901 if (failed_addr > entry->start) { 2902 pmap_unwire(map->pmap, entry->start, failed_addr); 2903 vm_object_unwire(entry->object.vm_object, entry->offset, 2904 failed_addr - entry->start, PQ_ACTIVE); 2905 } 2906 2907 /* 2908 * Assign an out-of-range value to represent the failure to wire this 2909 * entry. 2910 */ 2911 entry->wired_count = -1; 2912 } 2913 2914 /* 2915 * vm_map_wire: 2916 * 2917 * Implements both kernel and user wiring. 2918 */ 2919 int 2920 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2921 int flags) 2922 { 2923 vm_map_entry_t entry, first_entry, tmp_entry; 2924 vm_offset_t faddr, saved_end, saved_start; 2925 unsigned int last_timestamp; 2926 int rv; 2927 boolean_t need_wakeup, result, user_wire; 2928 vm_prot_t prot; 2929 2930 if (start == end) 2931 return (KERN_SUCCESS); 2932 prot = 0; 2933 if (flags & VM_MAP_WIRE_WRITE) 2934 prot |= VM_PROT_WRITE; 2935 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2936 vm_map_lock(map); 2937 VM_MAP_RANGE_CHECK(map, start, end); 2938 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2939 if (flags & VM_MAP_WIRE_HOLESOK) 2940 first_entry = first_entry->next; 2941 else { 2942 vm_map_unlock(map); 2943 return (KERN_INVALID_ADDRESS); 2944 } 2945 } 2946 last_timestamp = map->timestamp; 2947 entry = first_entry; 2948 while (entry->start < end) { 2949 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2950 /* 2951 * We have not yet clipped the entry. 2952 */ 2953 saved_start = (start >= entry->start) ? start : 2954 entry->start; 2955 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2956 if (vm_map_unlock_and_wait(map, 0)) { 2957 /* 2958 * Allow interruption of user wiring? 2959 */ 2960 } 2961 vm_map_lock(map); 2962 if (last_timestamp + 1 != map->timestamp) { 2963 /* 2964 * Look again for the entry because the map was 2965 * modified while it was unlocked. 2966 * Specifically, the entry may have been 2967 * clipped, merged, or deleted. 2968 */ 2969 if (!vm_map_lookup_entry(map, saved_start, 2970 &tmp_entry)) { 2971 if (flags & VM_MAP_WIRE_HOLESOK) 2972 tmp_entry = tmp_entry->next; 2973 else { 2974 if (saved_start == start) { 2975 /* 2976 * first_entry has been deleted. 2977 */ 2978 vm_map_unlock(map); 2979 return (KERN_INVALID_ADDRESS); 2980 } 2981 end = saved_start; 2982 rv = KERN_INVALID_ADDRESS; 2983 goto done; 2984 } 2985 } 2986 if (entry == first_entry) 2987 first_entry = tmp_entry; 2988 else 2989 first_entry = NULL; 2990 entry = tmp_entry; 2991 } 2992 last_timestamp = map->timestamp; 2993 continue; 2994 } 2995 vm_map_clip_start(map, entry, start); 2996 vm_map_clip_end(map, entry, end); 2997 /* 2998 * Mark the entry in case the map lock is released. (See 2999 * above.) 3000 */ 3001 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3002 entry->wiring_thread == NULL, 3003 ("owned map entry %p", entry)); 3004 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3005 entry->wiring_thread = curthread; 3006 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3007 || (entry->protection & prot) != prot) { 3008 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3009 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 3010 end = entry->end; 3011 rv = KERN_INVALID_ADDRESS; 3012 goto done; 3013 } 3014 goto next_entry; 3015 } 3016 if (entry->wired_count == 0) { 3017 entry->wired_count++; 3018 saved_start = entry->start; 3019 saved_end = entry->end; 3020 3021 /* 3022 * Release the map lock, relying on the in-transition 3023 * mark. Mark the map busy for fork. 3024 */ 3025 vm_map_busy(map); 3026 vm_map_unlock(map); 3027 3028 faddr = saved_start; 3029 do { 3030 /* 3031 * Simulate a fault to get the page and enter 3032 * it into the physical map. 3033 */ 3034 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 3035 VM_FAULT_WIRE)) != KERN_SUCCESS) 3036 break; 3037 } while ((faddr += PAGE_SIZE) < saved_end); 3038 vm_map_lock(map); 3039 vm_map_unbusy(map); 3040 if (last_timestamp + 1 != map->timestamp) { 3041 /* 3042 * Look again for the entry because the map was 3043 * modified while it was unlocked. The entry 3044 * may have been clipped, but NOT merged or 3045 * deleted. 3046 */ 3047 result = vm_map_lookup_entry(map, saved_start, 3048 &tmp_entry); 3049 KASSERT(result, ("vm_map_wire: lookup failed")); 3050 if (entry == first_entry) 3051 first_entry = tmp_entry; 3052 else 3053 first_entry = NULL; 3054 entry = tmp_entry; 3055 while (entry->end < saved_end) { 3056 /* 3057 * In case of failure, handle entries 3058 * that were not fully wired here; 3059 * fully wired entries are handled 3060 * later. 3061 */ 3062 if (rv != KERN_SUCCESS && 3063 faddr < entry->end) 3064 vm_map_wire_entry_failure(map, 3065 entry, faddr); 3066 entry = entry->next; 3067 } 3068 } 3069 last_timestamp = map->timestamp; 3070 if (rv != KERN_SUCCESS) { 3071 vm_map_wire_entry_failure(map, entry, faddr); 3072 end = entry->end; 3073 goto done; 3074 } 3075 } else if (!user_wire || 3076 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3077 entry->wired_count++; 3078 } 3079 /* 3080 * Check the map for holes in the specified region. 3081 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 3082 */ 3083 next_entry: 3084 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 && 3085 entry->end < end && entry->next->start > entry->end) { 3086 end = entry->end; 3087 rv = KERN_INVALID_ADDRESS; 3088 goto done; 3089 } 3090 entry = entry->next; 3091 } 3092 rv = KERN_SUCCESS; 3093 done: 3094 need_wakeup = FALSE; 3095 if (first_entry == NULL) { 3096 result = vm_map_lookup_entry(map, start, &first_entry); 3097 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 3098 first_entry = first_entry->next; 3099 else 3100 KASSERT(result, ("vm_map_wire: lookup failed")); 3101 } 3102 for (entry = first_entry; entry->start < end; entry = entry->next) { 3103 /* 3104 * If VM_MAP_WIRE_HOLESOK was specified, an empty 3105 * space in the unwired region could have been mapped 3106 * while the map lock was dropped for faulting in the 3107 * pages or draining MAP_ENTRY_IN_TRANSITION. 3108 * Moreover, another thread could be simultaneously 3109 * wiring this new mapping entry. Detect these cases 3110 * and skip any entries marked as in transition not by us. 3111 */ 3112 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3113 entry->wiring_thread != curthread) { 3114 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 3115 ("vm_map_wire: !HOLESOK and new/changed entry")); 3116 continue; 3117 } 3118 3119 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 3120 goto next_entry_done; 3121 3122 if (rv == KERN_SUCCESS) { 3123 if (user_wire) 3124 entry->eflags |= MAP_ENTRY_USER_WIRED; 3125 } else if (entry->wired_count == -1) { 3126 /* 3127 * Wiring failed on this entry. Thus, unwiring is 3128 * unnecessary. 3129 */ 3130 entry->wired_count = 0; 3131 } else if (!user_wire || 3132 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3133 /* 3134 * Undo the wiring. Wiring succeeded on this entry 3135 * but failed on a later entry. 3136 */ 3137 if (entry->wired_count == 1) 3138 vm_map_entry_unwire(map, entry); 3139 else 3140 entry->wired_count--; 3141 } 3142 next_entry_done: 3143 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3144 ("vm_map_wire: in-transition flag missing %p", entry)); 3145 KASSERT(entry->wiring_thread == curthread, 3146 ("vm_map_wire: alien wire %p", entry)); 3147 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3148 MAP_ENTRY_WIRE_SKIPPED); 3149 entry->wiring_thread = NULL; 3150 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3151 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3152 need_wakeup = TRUE; 3153 } 3154 vm_map_simplify_entry(map, entry); 3155 } 3156 vm_map_unlock(map); 3157 if (need_wakeup) 3158 vm_map_wakeup(map); 3159 return (rv); 3160 } 3161 3162 /* 3163 * vm_map_sync 3164 * 3165 * Push any dirty cached pages in the address range to their pager. 3166 * If syncio is TRUE, dirty pages are written synchronously. 3167 * If invalidate is TRUE, any cached pages are freed as well. 3168 * 3169 * If the size of the region from start to end is zero, we are 3170 * supposed to flush all modified pages within the region containing 3171 * start. Unfortunately, a region can be split or coalesced with 3172 * neighboring regions, making it difficult to determine what the 3173 * original region was. Therefore, we approximate this requirement by 3174 * flushing the current region containing start. 3175 * 3176 * Returns an error if any part of the specified range is not mapped. 3177 */ 3178 int 3179 vm_map_sync( 3180 vm_map_t map, 3181 vm_offset_t start, 3182 vm_offset_t end, 3183 boolean_t syncio, 3184 boolean_t invalidate) 3185 { 3186 vm_map_entry_t current; 3187 vm_map_entry_t entry; 3188 vm_size_t size; 3189 vm_object_t object; 3190 vm_ooffset_t offset; 3191 unsigned int last_timestamp; 3192 boolean_t failed; 3193 3194 vm_map_lock_read(map); 3195 VM_MAP_RANGE_CHECK(map, start, end); 3196 if (!vm_map_lookup_entry(map, start, &entry)) { 3197 vm_map_unlock_read(map); 3198 return (KERN_INVALID_ADDRESS); 3199 } else if (start == end) { 3200 start = entry->start; 3201 end = entry->end; 3202 } 3203 /* 3204 * Make a first pass to check for user-wired memory and holes. 3205 */ 3206 for (current = entry; current->start < end; current = current->next) { 3207 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 3208 vm_map_unlock_read(map); 3209 return (KERN_INVALID_ARGUMENT); 3210 } 3211 if (end > current->end && 3212 current->end != current->next->start) { 3213 vm_map_unlock_read(map); 3214 return (KERN_INVALID_ADDRESS); 3215 } 3216 } 3217 3218 if (invalidate) 3219 pmap_remove(map->pmap, start, end); 3220 failed = FALSE; 3221 3222 /* 3223 * Make a second pass, cleaning/uncaching pages from the indicated 3224 * objects as we go. 3225 */ 3226 for (current = entry; current->start < end;) { 3227 offset = current->offset + (start - current->start); 3228 size = (end <= current->end ? end : current->end) - start; 3229 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 3230 vm_map_t smap; 3231 vm_map_entry_t tentry; 3232 vm_size_t tsize; 3233 3234 smap = current->object.sub_map; 3235 vm_map_lock_read(smap); 3236 (void) vm_map_lookup_entry(smap, offset, &tentry); 3237 tsize = tentry->end - offset; 3238 if (tsize < size) 3239 size = tsize; 3240 object = tentry->object.vm_object; 3241 offset = tentry->offset + (offset - tentry->start); 3242 vm_map_unlock_read(smap); 3243 } else { 3244 object = current->object.vm_object; 3245 } 3246 vm_object_reference(object); 3247 last_timestamp = map->timestamp; 3248 vm_map_unlock_read(map); 3249 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3250 failed = TRUE; 3251 start += size; 3252 vm_object_deallocate(object); 3253 vm_map_lock_read(map); 3254 if (last_timestamp == map->timestamp || 3255 !vm_map_lookup_entry(map, start, ¤t)) 3256 current = current->next; 3257 } 3258 3259 vm_map_unlock_read(map); 3260 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3261 } 3262 3263 /* 3264 * vm_map_entry_unwire: [ internal use only ] 3265 * 3266 * Make the region specified by this entry pageable. 3267 * 3268 * The map in question should be locked. 3269 * [This is the reason for this routine's existence.] 3270 */ 3271 static void 3272 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3273 { 3274 3275 VM_MAP_ASSERT_LOCKED(map); 3276 KASSERT(entry->wired_count > 0, 3277 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3278 pmap_unwire(map->pmap, entry->start, entry->end); 3279 vm_object_unwire(entry->object.vm_object, entry->offset, entry->end - 3280 entry->start, PQ_ACTIVE); 3281 entry->wired_count = 0; 3282 } 3283 3284 static void 3285 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3286 { 3287 3288 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3289 vm_object_deallocate(entry->object.vm_object); 3290 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3291 } 3292 3293 /* 3294 * vm_map_entry_delete: [ internal use only ] 3295 * 3296 * Deallocate the given entry from the target map. 3297 */ 3298 static void 3299 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3300 { 3301 vm_object_t object; 3302 vm_pindex_t offidxstart, offidxend, count, size1; 3303 vm_size_t size; 3304 3305 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3306 object = entry->object.vm_object; 3307 3308 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3309 MPASS(entry->cred == NULL); 3310 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3311 MPASS(object == NULL); 3312 vm_map_entry_deallocate(entry, map->system_map); 3313 return; 3314 } 3315 3316 size = entry->end - entry->start; 3317 map->size -= size; 3318 3319 if (entry->cred != NULL) { 3320 swap_release_by_cred(size, entry->cred); 3321 crfree(entry->cred); 3322 } 3323 3324 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 3325 (object != NULL)) { 3326 KASSERT(entry->cred == NULL || object->cred == NULL || 3327 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3328 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3329 count = atop(size); 3330 offidxstart = OFF_TO_IDX(entry->offset); 3331 offidxend = offidxstart + count; 3332 VM_OBJECT_WLOCK(object); 3333 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT | 3334 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 3335 object == kernel_object)) { 3336 vm_object_collapse(object); 3337 3338 /* 3339 * The option OBJPR_NOTMAPPED can be passed here 3340 * because vm_map_delete() already performed 3341 * pmap_remove() on the only mapping to this range 3342 * of pages. 3343 */ 3344 vm_object_page_remove(object, offidxstart, offidxend, 3345 OBJPR_NOTMAPPED); 3346 if (object->type == OBJT_SWAP) 3347 swap_pager_freespace(object, offidxstart, 3348 count); 3349 if (offidxend >= object->size && 3350 offidxstart < object->size) { 3351 size1 = object->size; 3352 object->size = offidxstart; 3353 if (object->cred != NULL) { 3354 size1 -= object->size; 3355 KASSERT(object->charge >= ptoa(size1), 3356 ("object %p charge < 0", object)); 3357 swap_release_by_cred(ptoa(size1), 3358 object->cred); 3359 object->charge -= ptoa(size1); 3360 } 3361 } 3362 } 3363 VM_OBJECT_WUNLOCK(object); 3364 } else 3365 entry->object.vm_object = NULL; 3366 if (map->system_map) 3367 vm_map_entry_deallocate(entry, TRUE); 3368 else { 3369 entry->next = curthread->td_map_def_user; 3370 curthread->td_map_def_user = entry; 3371 } 3372 } 3373 3374 /* 3375 * vm_map_delete: [ internal use only ] 3376 * 3377 * Deallocates the given address range from the target 3378 * map. 3379 */ 3380 int 3381 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3382 { 3383 vm_map_entry_t entry; 3384 vm_map_entry_t first_entry; 3385 3386 VM_MAP_ASSERT_LOCKED(map); 3387 if (start == end) 3388 return (KERN_SUCCESS); 3389 3390 /* 3391 * Find the start of the region, and clip it 3392 */ 3393 if (!vm_map_lookup_entry(map, start, &first_entry)) 3394 entry = first_entry->next; 3395 else { 3396 entry = first_entry; 3397 vm_map_clip_start(map, entry, start); 3398 } 3399 3400 /* 3401 * Step through all entries in this region 3402 */ 3403 while (entry->start < end) { 3404 vm_map_entry_t next; 3405 3406 /* 3407 * Wait for wiring or unwiring of an entry to complete. 3408 * Also wait for any system wirings to disappear on 3409 * user maps. 3410 */ 3411 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3412 (vm_map_pmap(map) != kernel_pmap && 3413 vm_map_entry_system_wired_count(entry) != 0)) { 3414 unsigned int last_timestamp; 3415 vm_offset_t saved_start; 3416 vm_map_entry_t tmp_entry; 3417 3418 saved_start = entry->start; 3419 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3420 last_timestamp = map->timestamp; 3421 (void) vm_map_unlock_and_wait(map, 0); 3422 vm_map_lock(map); 3423 if (last_timestamp + 1 != map->timestamp) { 3424 /* 3425 * Look again for the entry because the map was 3426 * modified while it was unlocked. 3427 * Specifically, the entry may have been 3428 * clipped, merged, or deleted. 3429 */ 3430 if (!vm_map_lookup_entry(map, saved_start, 3431 &tmp_entry)) 3432 entry = tmp_entry->next; 3433 else { 3434 entry = tmp_entry; 3435 vm_map_clip_start(map, entry, 3436 saved_start); 3437 } 3438 } 3439 continue; 3440 } 3441 vm_map_clip_end(map, entry, end); 3442 3443 next = entry->next; 3444 3445 /* 3446 * Unwire before removing addresses from the pmap; otherwise, 3447 * unwiring will put the entries back in the pmap. 3448 */ 3449 if (entry->wired_count != 0) 3450 vm_map_entry_unwire(map, entry); 3451 3452 /* 3453 * Remove mappings for the pages, but only if the 3454 * mappings could exist. For instance, it does not 3455 * make sense to call pmap_remove() for guard entries. 3456 */ 3457 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3458 entry->object.vm_object != NULL) 3459 pmap_remove(map->pmap, entry->start, entry->end); 3460 3461 if (entry->end == map->anon_loc) 3462 map->anon_loc = entry->start; 3463 3464 /* 3465 * Delete the entry only after removing all pmap 3466 * entries pointing to its pages. (Otherwise, its 3467 * page frames may be reallocated, and any modify bits 3468 * will be set in the wrong object!) 3469 */ 3470 vm_map_entry_delete(map, entry); 3471 entry = next; 3472 } 3473 return (KERN_SUCCESS); 3474 } 3475 3476 /* 3477 * vm_map_remove: 3478 * 3479 * Remove the given address range from the target map. 3480 * This is the exported form of vm_map_delete. 3481 */ 3482 int 3483 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3484 { 3485 int result; 3486 3487 vm_map_lock(map); 3488 VM_MAP_RANGE_CHECK(map, start, end); 3489 result = vm_map_delete(map, start, end); 3490 vm_map_unlock(map); 3491 return (result); 3492 } 3493 3494 /* 3495 * vm_map_check_protection: 3496 * 3497 * Assert that the target map allows the specified privilege on the 3498 * entire address region given. The entire region must be allocated. 3499 * 3500 * WARNING! This code does not and should not check whether the 3501 * contents of the region is accessible. For example a smaller file 3502 * might be mapped into a larger address space. 3503 * 3504 * NOTE! This code is also called by munmap(). 3505 * 3506 * The map must be locked. A read lock is sufficient. 3507 */ 3508 boolean_t 3509 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3510 vm_prot_t protection) 3511 { 3512 vm_map_entry_t entry; 3513 vm_map_entry_t tmp_entry; 3514 3515 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3516 return (FALSE); 3517 entry = tmp_entry; 3518 3519 while (start < end) { 3520 /* 3521 * No holes allowed! 3522 */ 3523 if (start < entry->start) 3524 return (FALSE); 3525 /* 3526 * Check protection associated with entry. 3527 */ 3528 if ((entry->protection & protection) != protection) 3529 return (FALSE); 3530 /* go to next entry */ 3531 start = entry->end; 3532 entry = entry->next; 3533 } 3534 return (TRUE); 3535 } 3536 3537 /* 3538 * vm_map_copy_entry: 3539 * 3540 * Copies the contents of the source entry to the destination 3541 * entry. The entries *must* be aligned properly. 3542 */ 3543 static void 3544 vm_map_copy_entry( 3545 vm_map_t src_map, 3546 vm_map_t dst_map, 3547 vm_map_entry_t src_entry, 3548 vm_map_entry_t dst_entry, 3549 vm_ooffset_t *fork_charge) 3550 { 3551 vm_object_t src_object; 3552 vm_map_entry_t fake_entry; 3553 vm_offset_t size; 3554 struct ucred *cred; 3555 int charged; 3556 3557 VM_MAP_ASSERT_LOCKED(dst_map); 3558 3559 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3560 return; 3561 3562 if (src_entry->wired_count == 0 || 3563 (src_entry->protection & VM_PROT_WRITE) == 0) { 3564 /* 3565 * If the source entry is marked needs_copy, it is already 3566 * write-protected. 3567 */ 3568 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3569 (src_entry->protection & VM_PROT_WRITE) != 0) { 3570 pmap_protect(src_map->pmap, 3571 src_entry->start, 3572 src_entry->end, 3573 src_entry->protection & ~VM_PROT_WRITE); 3574 } 3575 3576 /* 3577 * Make a copy of the object. 3578 */ 3579 size = src_entry->end - src_entry->start; 3580 if ((src_object = src_entry->object.vm_object) != NULL) { 3581 VM_OBJECT_WLOCK(src_object); 3582 charged = ENTRY_CHARGED(src_entry); 3583 if (src_object->handle == NULL && 3584 (src_object->type == OBJT_DEFAULT || 3585 src_object->type == OBJT_SWAP)) { 3586 vm_object_collapse(src_object); 3587 if ((src_object->flags & (OBJ_NOSPLIT | 3588 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3589 vm_object_split(src_entry); 3590 src_object = 3591 src_entry->object.vm_object; 3592 } 3593 } 3594 vm_object_reference_locked(src_object); 3595 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3596 if (src_entry->cred != NULL && 3597 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3598 KASSERT(src_object->cred == NULL, 3599 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3600 src_object)); 3601 src_object->cred = src_entry->cred; 3602 src_object->charge = size; 3603 } 3604 VM_OBJECT_WUNLOCK(src_object); 3605 dst_entry->object.vm_object = src_object; 3606 if (charged) { 3607 cred = curthread->td_ucred; 3608 crhold(cred); 3609 dst_entry->cred = cred; 3610 *fork_charge += size; 3611 if (!(src_entry->eflags & 3612 MAP_ENTRY_NEEDS_COPY)) { 3613 crhold(cred); 3614 src_entry->cred = cred; 3615 *fork_charge += size; 3616 } 3617 } 3618 src_entry->eflags |= MAP_ENTRY_COW | 3619 MAP_ENTRY_NEEDS_COPY; 3620 dst_entry->eflags |= MAP_ENTRY_COW | 3621 MAP_ENTRY_NEEDS_COPY; 3622 dst_entry->offset = src_entry->offset; 3623 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3624 /* 3625 * MAP_ENTRY_VN_WRITECNT cannot 3626 * indicate write reference from 3627 * src_entry, since the entry is 3628 * marked as needs copy. Allocate a 3629 * fake entry that is used to 3630 * decrement object->un_pager.vnp.writecount 3631 * at the appropriate time. Attach 3632 * fake_entry to the deferred list. 3633 */ 3634 fake_entry = vm_map_entry_create(dst_map); 3635 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3636 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3637 vm_object_reference(src_object); 3638 fake_entry->object.vm_object = src_object; 3639 fake_entry->start = src_entry->start; 3640 fake_entry->end = src_entry->end; 3641 fake_entry->next = curthread->td_map_def_user; 3642 curthread->td_map_def_user = fake_entry; 3643 } 3644 3645 pmap_copy(dst_map->pmap, src_map->pmap, 3646 dst_entry->start, dst_entry->end - dst_entry->start, 3647 src_entry->start); 3648 } else { 3649 dst_entry->object.vm_object = NULL; 3650 dst_entry->offset = 0; 3651 if (src_entry->cred != NULL) { 3652 dst_entry->cred = curthread->td_ucred; 3653 crhold(dst_entry->cred); 3654 *fork_charge += size; 3655 } 3656 } 3657 } else { 3658 /* 3659 * We don't want to make writeable wired pages copy-on-write. 3660 * Immediately copy these pages into the new map by simulating 3661 * page faults. The new pages are pageable. 3662 */ 3663 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3664 fork_charge); 3665 } 3666 } 3667 3668 /* 3669 * vmspace_map_entry_forked: 3670 * Update the newly-forked vmspace each time a map entry is inherited 3671 * or copied. The values for vm_dsize and vm_tsize are approximate 3672 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3673 */ 3674 static void 3675 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3676 vm_map_entry_t entry) 3677 { 3678 vm_size_t entrysize; 3679 vm_offset_t newend; 3680 3681 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 3682 return; 3683 entrysize = entry->end - entry->start; 3684 vm2->vm_map.size += entrysize; 3685 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3686 vm2->vm_ssize += btoc(entrysize); 3687 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3688 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3689 newend = MIN(entry->end, 3690 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3691 vm2->vm_dsize += btoc(newend - entry->start); 3692 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3693 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3694 newend = MIN(entry->end, 3695 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3696 vm2->vm_tsize += btoc(newend - entry->start); 3697 } 3698 } 3699 3700 /* 3701 * vmspace_fork: 3702 * Create a new process vmspace structure and vm_map 3703 * based on those of an existing process. The new map 3704 * is based on the old map, according to the inheritance 3705 * values on the regions in that map. 3706 * 3707 * XXX It might be worth coalescing the entries added to the new vmspace. 3708 * 3709 * The source map must not be locked. 3710 */ 3711 struct vmspace * 3712 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3713 { 3714 struct vmspace *vm2; 3715 vm_map_t new_map, old_map; 3716 vm_map_entry_t new_entry, old_entry; 3717 vm_object_t object; 3718 int error, locked; 3719 vm_inherit_t inh; 3720 3721 old_map = &vm1->vm_map; 3722 /* Copy immutable fields of vm1 to vm2. */ 3723 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 3724 pmap_pinit); 3725 if (vm2 == NULL) 3726 return (NULL); 3727 3728 vm2->vm_taddr = vm1->vm_taddr; 3729 vm2->vm_daddr = vm1->vm_daddr; 3730 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3731 vm_map_lock(old_map); 3732 if (old_map->busy) 3733 vm_map_wait_busy(old_map); 3734 new_map = &vm2->vm_map; 3735 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3736 KASSERT(locked, ("vmspace_fork: lock failed")); 3737 3738 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 3739 if (error != 0) { 3740 sx_xunlock(&old_map->lock); 3741 sx_xunlock(&new_map->lock); 3742 vm_map_process_deferred(); 3743 vmspace_free(vm2); 3744 return (NULL); 3745 } 3746 3747 new_map->anon_loc = old_map->anon_loc; 3748 3749 old_entry = old_map->header.next; 3750 3751 while (old_entry != &old_map->header) { 3752 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3753 panic("vm_map_fork: encountered a submap"); 3754 3755 inh = old_entry->inheritance; 3756 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 3757 inh != VM_INHERIT_NONE) 3758 inh = VM_INHERIT_COPY; 3759 3760 switch (inh) { 3761 case VM_INHERIT_NONE: 3762 break; 3763 3764 case VM_INHERIT_SHARE: 3765 /* 3766 * Clone the entry, creating the shared object if necessary. 3767 */ 3768 object = old_entry->object.vm_object; 3769 if (object == NULL) { 3770 object = vm_object_allocate(OBJT_DEFAULT, 3771 atop(old_entry->end - old_entry->start)); 3772 old_entry->object.vm_object = object; 3773 old_entry->offset = 0; 3774 if (old_entry->cred != NULL) { 3775 object->cred = old_entry->cred; 3776 object->charge = old_entry->end - 3777 old_entry->start; 3778 old_entry->cred = NULL; 3779 } 3780 } 3781 3782 /* 3783 * Add the reference before calling vm_object_shadow 3784 * to insure that a shadow object is created. 3785 */ 3786 vm_object_reference(object); 3787 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3788 vm_object_shadow(&old_entry->object.vm_object, 3789 &old_entry->offset, 3790 old_entry->end - old_entry->start); 3791 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3792 /* Transfer the second reference too. */ 3793 vm_object_reference( 3794 old_entry->object.vm_object); 3795 3796 /* 3797 * As in vm_map_simplify_entry(), the 3798 * vnode lock will not be acquired in 3799 * this call to vm_object_deallocate(). 3800 */ 3801 vm_object_deallocate(object); 3802 object = old_entry->object.vm_object; 3803 } 3804 VM_OBJECT_WLOCK(object); 3805 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3806 if (old_entry->cred != NULL) { 3807 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3808 object->cred = old_entry->cred; 3809 object->charge = old_entry->end - old_entry->start; 3810 old_entry->cred = NULL; 3811 } 3812 3813 /* 3814 * Assert the correct state of the vnode 3815 * v_writecount while the object is locked, to 3816 * not relock it later for the assertion 3817 * correctness. 3818 */ 3819 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3820 object->type == OBJT_VNODE) { 3821 KASSERT(((struct vnode *)object->handle)-> 3822 v_writecount > 0, 3823 ("vmspace_fork: v_writecount %p", object)); 3824 KASSERT(object->un_pager.vnp.writemappings > 0, 3825 ("vmspace_fork: vnp.writecount %p", 3826 object)); 3827 } 3828 VM_OBJECT_WUNLOCK(object); 3829 3830 /* 3831 * Clone the entry, referencing the shared object. 3832 */ 3833 new_entry = vm_map_entry_create(new_map); 3834 *new_entry = *old_entry; 3835 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3836 MAP_ENTRY_IN_TRANSITION); 3837 new_entry->wiring_thread = NULL; 3838 new_entry->wired_count = 0; 3839 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3840 vnode_pager_update_writecount(object, 3841 new_entry->start, new_entry->end); 3842 } 3843 3844 /* 3845 * Insert the entry into the new map -- we know we're 3846 * inserting at the end of the new map. 3847 */ 3848 vm_map_entry_link(new_map, new_entry); 3849 vmspace_map_entry_forked(vm1, vm2, new_entry); 3850 3851 /* 3852 * Update the physical map 3853 */ 3854 pmap_copy(new_map->pmap, old_map->pmap, 3855 new_entry->start, 3856 (old_entry->end - old_entry->start), 3857 old_entry->start); 3858 break; 3859 3860 case VM_INHERIT_COPY: 3861 /* 3862 * Clone the entry and link into the map. 3863 */ 3864 new_entry = vm_map_entry_create(new_map); 3865 *new_entry = *old_entry; 3866 /* 3867 * Copied entry is COW over the old object. 3868 */ 3869 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3870 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3871 new_entry->wiring_thread = NULL; 3872 new_entry->wired_count = 0; 3873 new_entry->object.vm_object = NULL; 3874 new_entry->cred = NULL; 3875 vm_map_entry_link(new_map, new_entry); 3876 vmspace_map_entry_forked(vm1, vm2, new_entry); 3877 vm_map_copy_entry(old_map, new_map, old_entry, 3878 new_entry, fork_charge); 3879 break; 3880 3881 case VM_INHERIT_ZERO: 3882 /* 3883 * Create a new anonymous mapping entry modelled from 3884 * the old one. 3885 */ 3886 new_entry = vm_map_entry_create(new_map); 3887 memset(new_entry, 0, sizeof(*new_entry)); 3888 3889 new_entry->start = old_entry->start; 3890 new_entry->end = old_entry->end; 3891 new_entry->eflags = old_entry->eflags & 3892 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 3893 MAP_ENTRY_VN_WRITECNT); 3894 new_entry->protection = old_entry->protection; 3895 new_entry->max_protection = old_entry->max_protection; 3896 new_entry->inheritance = VM_INHERIT_ZERO; 3897 3898 vm_map_entry_link(new_map, new_entry); 3899 vmspace_map_entry_forked(vm1, vm2, new_entry); 3900 3901 new_entry->cred = curthread->td_ucred; 3902 crhold(new_entry->cred); 3903 *fork_charge += (new_entry->end - new_entry->start); 3904 3905 break; 3906 } 3907 old_entry = old_entry->next; 3908 } 3909 /* 3910 * Use inlined vm_map_unlock() to postpone handling the deferred 3911 * map entries, which cannot be done until both old_map and 3912 * new_map locks are released. 3913 */ 3914 sx_xunlock(&old_map->lock); 3915 sx_xunlock(&new_map->lock); 3916 vm_map_process_deferred(); 3917 3918 return (vm2); 3919 } 3920 3921 /* 3922 * Create a process's stack for exec_new_vmspace(). This function is never 3923 * asked to wire the newly created stack. 3924 */ 3925 int 3926 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3927 vm_prot_t prot, vm_prot_t max, int cow) 3928 { 3929 vm_size_t growsize, init_ssize; 3930 rlim_t vmemlim; 3931 int rv; 3932 3933 MPASS((map->flags & MAP_WIREFUTURE) == 0); 3934 growsize = sgrowsiz; 3935 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3936 vm_map_lock(map); 3937 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 3938 /* If we would blow our VMEM resource limit, no go */ 3939 if (map->size + init_ssize > vmemlim) { 3940 rv = KERN_NO_SPACE; 3941 goto out; 3942 } 3943 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 3944 max, cow); 3945 out: 3946 vm_map_unlock(map); 3947 return (rv); 3948 } 3949 3950 static int stack_guard_page = 1; 3951 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 3952 &stack_guard_page, 0, 3953 "Specifies the number of guard pages for a stack that grows"); 3954 3955 static int 3956 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3957 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 3958 { 3959 vm_map_entry_t new_entry, prev_entry; 3960 vm_offset_t bot, gap_bot, gap_top, top; 3961 vm_size_t init_ssize, sgp; 3962 int orient, rv; 3963 3964 /* 3965 * The stack orientation is piggybacked with the cow argument. 3966 * Extract it into orient and mask the cow argument so that we 3967 * don't pass it around further. 3968 */ 3969 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 3970 KASSERT(orient != 0, ("No stack grow direction")); 3971 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 3972 ("bi-dir stack")); 3973 3974 if (addrbos < vm_map_min(map) || 3975 addrbos + max_ssize > vm_map_max(map) || 3976 addrbos + max_ssize <= addrbos) 3977 return (KERN_INVALID_ADDRESS); 3978 sgp = (vm_size_t)stack_guard_page * PAGE_SIZE; 3979 if (sgp >= max_ssize) 3980 return (KERN_INVALID_ARGUMENT); 3981 3982 init_ssize = growsize; 3983 if (max_ssize < init_ssize + sgp) 3984 init_ssize = max_ssize - sgp; 3985 3986 /* If addr is already mapped, no go */ 3987 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 3988 return (KERN_NO_SPACE); 3989 3990 /* 3991 * If we can't accommodate max_ssize in the current mapping, no go. 3992 */ 3993 if (prev_entry->next->start < addrbos + max_ssize) 3994 return (KERN_NO_SPACE); 3995 3996 /* 3997 * We initially map a stack of only init_ssize. We will grow as 3998 * needed later. Depending on the orientation of the stack (i.e. 3999 * the grow direction) we either map at the top of the range, the 4000 * bottom of the range or in the middle. 4001 * 4002 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4003 * and cow to be 0. Possibly we should eliminate these as input 4004 * parameters, and just pass these values here in the insert call. 4005 */ 4006 if (orient == MAP_STACK_GROWS_DOWN) { 4007 bot = addrbos + max_ssize - init_ssize; 4008 top = bot + init_ssize; 4009 gap_bot = addrbos; 4010 gap_top = bot; 4011 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4012 bot = addrbos; 4013 top = bot + init_ssize; 4014 gap_bot = top; 4015 gap_top = addrbos + max_ssize; 4016 } 4017 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 4018 if (rv != KERN_SUCCESS) 4019 return (rv); 4020 new_entry = prev_entry->next; 4021 KASSERT(new_entry->end == top || new_entry->start == bot, 4022 ("Bad entry start/end for new stack entry")); 4023 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4024 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4025 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4026 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4027 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4028 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4029 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4030 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4031 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 4032 if (rv != KERN_SUCCESS) 4033 (void)vm_map_delete(map, bot, top); 4034 return (rv); 4035 } 4036 4037 /* 4038 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4039 * successfully grow the stack. 4040 */ 4041 static int 4042 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4043 { 4044 vm_map_entry_t stack_entry; 4045 struct proc *p; 4046 struct vmspace *vm; 4047 struct ucred *cred; 4048 vm_offset_t gap_end, gap_start, grow_start; 4049 size_t grow_amount, guard, max_grow; 4050 rlim_t lmemlim, stacklim, vmemlim; 4051 int rv, rv1; 4052 bool gap_deleted, grow_down, is_procstack; 4053 #ifdef notyet 4054 uint64_t limit; 4055 #endif 4056 #ifdef RACCT 4057 int error; 4058 #endif 4059 4060 p = curproc; 4061 vm = p->p_vmspace; 4062 4063 /* 4064 * Disallow stack growth when the access is performed by a 4065 * debugger or AIO daemon. The reason is that the wrong 4066 * resource limits are applied. 4067 */ 4068 if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL) 4069 return (KERN_FAILURE); 4070 4071 MPASS(!map->system_map); 4072 4073 guard = stack_guard_page * PAGE_SIZE; 4074 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4075 stacklim = lim_cur(curthread, RLIMIT_STACK); 4076 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4077 retry: 4078 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4079 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4080 return (KERN_FAILURE); 4081 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4082 return (KERN_SUCCESS); 4083 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4084 stack_entry = gap_entry->next; 4085 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4086 stack_entry->start != gap_entry->end) 4087 return (KERN_FAILURE); 4088 grow_amount = round_page(stack_entry->start - addr); 4089 grow_down = true; 4090 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4091 stack_entry = gap_entry->prev; 4092 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4093 stack_entry->end != gap_entry->start) 4094 return (KERN_FAILURE); 4095 grow_amount = round_page(addr + 1 - stack_entry->end); 4096 grow_down = false; 4097 } else { 4098 return (KERN_FAILURE); 4099 } 4100 max_grow = gap_entry->end - gap_entry->start; 4101 if (guard > max_grow) 4102 return (KERN_NO_SPACE); 4103 max_grow -= guard; 4104 if (grow_amount > max_grow) 4105 return (KERN_NO_SPACE); 4106 4107 /* 4108 * If this is the main process stack, see if we're over the stack 4109 * limit. 4110 */ 4111 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4112 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 4113 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4114 return (KERN_NO_SPACE); 4115 4116 #ifdef RACCT 4117 if (racct_enable) { 4118 PROC_LOCK(p); 4119 if (is_procstack && racct_set(p, RACCT_STACK, 4120 ctob(vm->vm_ssize) + grow_amount)) { 4121 PROC_UNLOCK(p); 4122 return (KERN_NO_SPACE); 4123 } 4124 PROC_UNLOCK(p); 4125 } 4126 #endif 4127 4128 grow_amount = roundup(grow_amount, sgrowsiz); 4129 if (grow_amount > max_grow) 4130 grow_amount = max_grow; 4131 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4132 grow_amount = trunc_page((vm_size_t)stacklim) - 4133 ctob(vm->vm_ssize); 4134 } 4135 4136 #ifdef notyet 4137 PROC_LOCK(p); 4138 limit = racct_get_available(p, RACCT_STACK); 4139 PROC_UNLOCK(p); 4140 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4141 grow_amount = limit - ctob(vm->vm_ssize); 4142 #endif 4143 4144 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4145 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4146 rv = KERN_NO_SPACE; 4147 goto out; 4148 } 4149 #ifdef RACCT 4150 if (racct_enable) { 4151 PROC_LOCK(p); 4152 if (racct_set(p, RACCT_MEMLOCK, 4153 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4154 PROC_UNLOCK(p); 4155 rv = KERN_NO_SPACE; 4156 goto out; 4157 } 4158 PROC_UNLOCK(p); 4159 } 4160 #endif 4161 } 4162 4163 /* If we would blow our VMEM resource limit, no go */ 4164 if (map->size + grow_amount > vmemlim) { 4165 rv = KERN_NO_SPACE; 4166 goto out; 4167 } 4168 #ifdef RACCT 4169 if (racct_enable) { 4170 PROC_LOCK(p); 4171 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4172 PROC_UNLOCK(p); 4173 rv = KERN_NO_SPACE; 4174 goto out; 4175 } 4176 PROC_UNLOCK(p); 4177 } 4178 #endif 4179 4180 if (vm_map_lock_upgrade(map)) { 4181 gap_entry = NULL; 4182 vm_map_lock_read(map); 4183 goto retry; 4184 } 4185 4186 if (grow_down) { 4187 grow_start = gap_entry->end - grow_amount; 4188 if (gap_entry->start + grow_amount == gap_entry->end) { 4189 gap_start = gap_entry->start; 4190 gap_end = gap_entry->end; 4191 vm_map_entry_delete(map, gap_entry); 4192 gap_deleted = true; 4193 } else { 4194 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4195 gap_entry->end -= grow_amount; 4196 vm_map_entry_resize_free(map, gap_entry); 4197 gap_deleted = false; 4198 } 4199 rv = vm_map_insert(map, NULL, 0, grow_start, 4200 grow_start + grow_amount, 4201 stack_entry->protection, stack_entry->max_protection, 4202 MAP_STACK_GROWS_DOWN); 4203 if (rv != KERN_SUCCESS) { 4204 if (gap_deleted) { 4205 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4206 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4207 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4208 MPASS(rv1 == KERN_SUCCESS); 4209 } else { 4210 gap_entry->end += grow_amount; 4211 vm_map_entry_resize_free(map, gap_entry); 4212 } 4213 } 4214 } else { 4215 grow_start = stack_entry->end; 4216 cred = stack_entry->cred; 4217 if (cred == NULL && stack_entry->object.vm_object != NULL) 4218 cred = stack_entry->object.vm_object->cred; 4219 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4220 rv = KERN_NO_SPACE; 4221 /* Grow the underlying object if applicable. */ 4222 else if (stack_entry->object.vm_object == NULL || 4223 vm_object_coalesce(stack_entry->object.vm_object, 4224 stack_entry->offset, 4225 (vm_size_t)(stack_entry->end - stack_entry->start), 4226 (vm_size_t)grow_amount, cred != NULL)) { 4227 if (gap_entry->start + grow_amount == gap_entry->end) 4228 vm_map_entry_delete(map, gap_entry); 4229 else 4230 gap_entry->start += grow_amount; 4231 stack_entry->end += grow_amount; 4232 map->size += grow_amount; 4233 vm_map_entry_resize_free(map, stack_entry); 4234 rv = KERN_SUCCESS; 4235 } else 4236 rv = KERN_FAILURE; 4237 } 4238 if (rv == KERN_SUCCESS && is_procstack) 4239 vm->vm_ssize += btoc(grow_amount); 4240 4241 /* 4242 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4243 */ 4244 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4245 vm_map_unlock(map); 4246 vm_map_wire(map, grow_start, grow_start + grow_amount, 4247 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4248 vm_map_lock_read(map); 4249 } else 4250 vm_map_lock_downgrade(map); 4251 4252 out: 4253 #ifdef RACCT 4254 if (racct_enable && rv != KERN_SUCCESS) { 4255 PROC_LOCK(p); 4256 error = racct_set(p, RACCT_VMEM, map->size); 4257 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4258 if (!old_mlock) { 4259 error = racct_set(p, RACCT_MEMLOCK, 4260 ptoa(pmap_wired_count(map->pmap))); 4261 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4262 } 4263 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4264 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4265 PROC_UNLOCK(p); 4266 } 4267 #endif 4268 4269 return (rv); 4270 } 4271 4272 /* 4273 * Unshare the specified VM space for exec. If other processes are 4274 * mapped to it, then create a new one. The new vmspace is null. 4275 */ 4276 int 4277 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4278 { 4279 struct vmspace *oldvmspace = p->p_vmspace; 4280 struct vmspace *newvmspace; 4281 4282 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4283 ("vmspace_exec recursed")); 4284 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4285 if (newvmspace == NULL) 4286 return (ENOMEM); 4287 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4288 /* 4289 * This code is written like this for prototype purposes. The 4290 * goal is to avoid running down the vmspace here, but let the 4291 * other process's that are still using the vmspace to finally 4292 * run it down. Even though there is little or no chance of blocking 4293 * here, it is a good idea to keep this form for future mods. 4294 */ 4295 PROC_VMSPACE_LOCK(p); 4296 p->p_vmspace = newvmspace; 4297 PROC_VMSPACE_UNLOCK(p); 4298 if (p == curthread->td_proc) 4299 pmap_activate(curthread); 4300 curthread->td_pflags |= TDP_EXECVMSPC; 4301 return (0); 4302 } 4303 4304 /* 4305 * Unshare the specified VM space for forcing COW. This 4306 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4307 */ 4308 int 4309 vmspace_unshare(struct proc *p) 4310 { 4311 struct vmspace *oldvmspace = p->p_vmspace; 4312 struct vmspace *newvmspace; 4313 vm_ooffset_t fork_charge; 4314 4315 if (oldvmspace->vm_refcnt == 1) 4316 return (0); 4317 fork_charge = 0; 4318 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4319 if (newvmspace == NULL) 4320 return (ENOMEM); 4321 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4322 vmspace_free(newvmspace); 4323 return (ENOMEM); 4324 } 4325 PROC_VMSPACE_LOCK(p); 4326 p->p_vmspace = newvmspace; 4327 PROC_VMSPACE_UNLOCK(p); 4328 if (p == curthread->td_proc) 4329 pmap_activate(curthread); 4330 vmspace_free(oldvmspace); 4331 return (0); 4332 } 4333 4334 /* 4335 * vm_map_lookup: 4336 * 4337 * Finds the VM object, offset, and 4338 * protection for a given virtual address in the 4339 * specified map, assuming a page fault of the 4340 * type specified. 4341 * 4342 * Leaves the map in question locked for read; return 4343 * values are guaranteed until a vm_map_lookup_done 4344 * call is performed. Note that the map argument 4345 * is in/out; the returned map must be used in 4346 * the call to vm_map_lookup_done. 4347 * 4348 * A handle (out_entry) is returned for use in 4349 * vm_map_lookup_done, to make that fast. 4350 * 4351 * If a lookup is requested with "write protection" 4352 * specified, the map may be changed to perform virtual 4353 * copying operations, although the data referenced will 4354 * remain the same. 4355 */ 4356 int 4357 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4358 vm_offset_t vaddr, 4359 vm_prot_t fault_typea, 4360 vm_map_entry_t *out_entry, /* OUT */ 4361 vm_object_t *object, /* OUT */ 4362 vm_pindex_t *pindex, /* OUT */ 4363 vm_prot_t *out_prot, /* OUT */ 4364 boolean_t *wired) /* OUT */ 4365 { 4366 vm_map_entry_t entry; 4367 vm_map_t map = *var_map; 4368 vm_prot_t prot; 4369 vm_prot_t fault_type = fault_typea; 4370 vm_object_t eobject; 4371 vm_size_t size; 4372 struct ucred *cred; 4373 4374 RetryLookup: 4375 4376 vm_map_lock_read(map); 4377 4378 RetryLookupLocked: 4379 /* 4380 * Lookup the faulting address. 4381 */ 4382 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4383 vm_map_unlock_read(map); 4384 return (KERN_INVALID_ADDRESS); 4385 } 4386 4387 entry = *out_entry; 4388 4389 /* 4390 * Handle submaps. 4391 */ 4392 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4393 vm_map_t old_map = map; 4394 4395 *var_map = map = entry->object.sub_map; 4396 vm_map_unlock_read(old_map); 4397 goto RetryLookup; 4398 } 4399 4400 /* 4401 * Check whether this task is allowed to have this page. 4402 */ 4403 prot = entry->protection; 4404 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4405 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4406 if (prot == VM_PROT_NONE && map != kernel_map && 4407 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4408 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4409 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4410 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4411 goto RetryLookupLocked; 4412 } 4413 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4414 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4415 vm_map_unlock_read(map); 4416 return (KERN_PROTECTION_FAILURE); 4417 } 4418 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4419 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4420 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4421 ("entry %p flags %x", entry, entry->eflags)); 4422 if ((fault_typea & VM_PROT_COPY) != 0 && 4423 (entry->max_protection & VM_PROT_WRITE) == 0 && 4424 (entry->eflags & MAP_ENTRY_COW) == 0) { 4425 vm_map_unlock_read(map); 4426 return (KERN_PROTECTION_FAILURE); 4427 } 4428 4429 /* 4430 * If this page is not pageable, we have to get it for all possible 4431 * accesses. 4432 */ 4433 *wired = (entry->wired_count != 0); 4434 if (*wired) 4435 fault_type = entry->protection; 4436 size = entry->end - entry->start; 4437 /* 4438 * If the entry was copy-on-write, we either ... 4439 */ 4440 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4441 /* 4442 * If we want to write the page, we may as well handle that 4443 * now since we've got the map locked. 4444 * 4445 * If we don't need to write the page, we just demote the 4446 * permissions allowed. 4447 */ 4448 if ((fault_type & VM_PROT_WRITE) != 0 || 4449 (fault_typea & VM_PROT_COPY) != 0) { 4450 /* 4451 * Make a new object, and place it in the object 4452 * chain. Note that no new references have appeared 4453 * -- one just moved from the map to the new 4454 * object. 4455 */ 4456 if (vm_map_lock_upgrade(map)) 4457 goto RetryLookup; 4458 4459 if (entry->cred == NULL) { 4460 /* 4461 * The debugger owner is charged for 4462 * the memory. 4463 */ 4464 cred = curthread->td_ucred; 4465 crhold(cred); 4466 if (!swap_reserve_by_cred(size, cred)) { 4467 crfree(cred); 4468 vm_map_unlock(map); 4469 return (KERN_RESOURCE_SHORTAGE); 4470 } 4471 entry->cred = cred; 4472 } 4473 vm_object_shadow(&entry->object.vm_object, 4474 &entry->offset, size); 4475 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4476 eobject = entry->object.vm_object; 4477 if (eobject->cred != NULL) { 4478 /* 4479 * The object was not shadowed. 4480 */ 4481 swap_release_by_cred(size, entry->cred); 4482 crfree(entry->cred); 4483 entry->cred = NULL; 4484 } else if (entry->cred != NULL) { 4485 VM_OBJECT_WLOCK(eobject); 4486 eobject->cred = entry->cred; 4487 eobject->charge = size; 4488 VM_OBJECT_WUNLOCK(eobject); 4489 entry->cred = NULL; 4490 } 4491 4492 vm_map_lock_downgrade(map); 4493 } else { 4494 /* 4495 * We're attempting to read a copy-on-write page -- 4496 * don't allow writes. 4497 */ 4498 prot &= ~VM_PROT_WRITE; 4499 } 4500 } 4501 4502 /* 4503 * Create an object if necessary. 4504 */ 4505 if (entry->object.vm_object == NULL && 4506 !map->system_map) { 4507 if (vm_map_lock_upgrade(map)) 4508 goto RetryLookup; 4509 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4510 atop(size)); 4511 entry->offset = 0; 4512 if (entry->cred != NULL) { 4513 VM_OBJECT_WLOCK(entry->object.vm_object); 4514 entry->object.vm_object->cred = entry->cred; 4515 entry->object.vm_object->charge = size; 4516 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4517 entry->cred = NULL; 4518 } 4519 vm_map_lock_downgrade(map); 4520 } 4521 4522 /* 4523 * Return the object/offset from this entry. If the entry was 4524 * copy-on-write or empty, it has been fixed up. 4525 */ 4526 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4527 *object = entry->object.vm_object; 4528 4529 *out_prot = prot; 4530 return (KERN_SUCCESS); 4531 } 4532 4533 /* 4534 * vm_map_lookup_locked: 4535 * 4536 * Lookup the faulting address. A version of vm_map_lookup that returns 4537 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4538 */ 4539 int 4540 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4541 vm_offset_t vaddr, 4542 vm_prot_t fault_typea, 4543 vm_map_entry_t *out_entry, /* OUT */ 4544 vm_object_t *object, /* OUT */ 4545 vm_pindex_t *pindex, /* OUT */ 4546 vm_prot_t *out_prot, /* OUT */ 4547 boolean_t *wired) /* OUT */ 4548 { 4549 vm_map_entry_t entry; 4550 vm_map_t map = *var_map; 4551 vm_prot_t prot; 4552 vm_prot_t fault_type = fault_typea; 4553 4554 /* 4555 * Lookup the faulting address. 4556 */ 4557 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4558 return (KERN_INVALID_ADDRESS); 4559 4560 entry = *out_entry; 4561 4562 /* 4563 * Fail if the entry refers to a submap. 4564 */ 4565 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4566 return (KERN_FAILURE); 4567 4568 /* 4569 * Check whether this task is allowed to have this page. 4570 */ 4571 prot = entry->protection; 4572 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4573 if ((fault_type & prot) != fault_type) 4574 return (KERN_PROTECTION_FAILURE); 4575 4576 /* 4577 * If this page is not pageable, we have to get it for all possible 4578 * accesses. 4579 */ 4580 *wired = (entry->wired_count != 0); 4581 if (*wired) 4582 fault_type = entry->protection; 4583 4584 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4585 /* 4586 * Fail if the entry was copy-on-write for a write fault. 4587 */ 4588 if (fault_type & VM_PROT_WRITE) 4589 return (KERN_FAILURE); 4590 /* 4591 * We're attempting to read a copy-on-write page -- 4592 * don't allow writes. 4593 */ 4594 prot &= ~VM_PROT_WRITE; 4595 } 4596 4597 /* 4598 * Fail if an object should be created. 4599 */ 4600 if (entry->object.vm_object == NULL && !map->system_map) 4601 return (KERN_FAILURE); 4602 4603 /* 4604 * Return the object/offset from this entry. If the entry was 4605 * copy-on-write or empty, it has been fixed up. 4606 */ 4607 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4608 *object = entry->object.vm_object; 4609 4610 *out_prot = prot; 4611 return (KERN_SUCCESS); 4612 } 4613 4614 /* 4615 * vm_map_lookup_done: 4616 * 4617 * Releases locks acquired by a vm_map_lookup 4618 * (according to the handle returned by that lookup). 4619 */ 4620 void 4621 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4622 { 4623 /* 4624 * Unlock the main-level map 4625 */ 4626 vm_map_unlock_read(map); 4627 } 4628 4629 vm_offset_t 4630 vm_map_max_KBI(const struct vm_map *map) 4631 { 4632 4633 return (vm_map_max(map)); 4634 } 4635 4636 vm_offset_t 4637 vm_map_min_KBI(const struct vm_map *map) 4638 { 4639 4640 return (vm_map_min(map)); 4641 } 4642 4643 pmap_t 4644 vm_map_pmap_KBI(vm_map_t map) 4645 { 4646 4647 return (map->pmap); 4648 } 4649 4650 #include "opt_ddb.h" 4651 #ifdef DDB 4652 #include <sys/kernel.h> 4653 4654 #include <ddb/ddb.h> 4655 4656 static void 4657 vm_map_print(vm_map_t map) 4658 { 4659 vm_map_entry_t entry; 4660 4661 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4662 (void *)map, 4663 (void *)map->pmap, map->nentries, map->timestamp); 4664 4665 db_indent += 2; 4666 for (entry = map->header.next; entry != &map->header; 4667 entry = entry->next) { 4668 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 4669 (void *)entry, (void *)entry->start, (void *)entry->end, 4670 entry->eflags); 4671 { 4672 static char *inheritance_name[4] = 4673 {"share", "copy", "none", "donate_copy"}; 4674 4675 db_iprintf(" prot=%x/%x/%s", 4676 entry->protection, 4677 entry->max_protection, 4678 inheritance_name[(int)(unsigned char)entry->inheritance]); 4679 if (entry->wired_count != 0) 4680 db_printf(", wired"); 4681 } 4682 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4683 db_printf(", share=%p, offset=0x%jx\n", 4684 (void *)entry->object.sub_map, 4685 (uintmax_t)entry->offset); 4686 if ((entry->prev == &map->header) || 4687 (entry->prev->object.sub_map != 4688 entry->object.sub_map)) { 4689 db_indent += 2; 4690 vm_map_print((vm_map_t)entry->object.sub_map); 4691 db_indent -= 2; 4692 } 4693 } else { 4694 if (entry->cred != NULL) 4695 db_printf(", ruid %d", entry->cred->cr_ruid); 4696 db_printf(", object=%p, offset=0x%jx", 4697 (void *)entry->object.vm_object, 4698 (uintmax_t)entry->offset); 4699 if (entry->object.vm_object && entry->object.vm_object->cred) 4700 db_printf(", obj ruid %d charge %jx", 4701 entry->object.vm_object->cred->cr_ruid, 4702 (uintmax_t)entry->object.vm_object->charge); 4703 if (entry->eflags & MAP_ENTRY_COW) 4704 db_printf(", copy (%s)", 4705 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4706 db_printf("\n"); 4707 4708 if ((entry->prev == &map->header) || 4709 (entry->prev->object.vm_object != 4710 entry->object.vm_object)) { 4711 db_indent += 2; 4712 vm_object_print((db_expr_t)(intptr_t) 4713 entry->object.vm_object, 4714 0, 0, (char *)0); 4715 db_indent -= 2; 4716 } 4717 } 4718 } 4719 db_indent -= 2; 4720 } 4721 4722 DB_SHOW_COMMAND(map, map) 4723 { 4724 4725 if (!have_addr) { 4726 db_printf("usage: show map <addr>\n"); 4727 return; 4728 } 4729 vm_map_print((vm_map_t)addr); 4730 } 4731 4732 DB_SHOW_COMMAND(procvm, procvm) 4733 { 4734 struct proc *p; 4735 4736 if (have_addr) { 4737 p = db_lookup_proc(addr); 4738 } else { 4739 p = curproc; 4740 } 4741 4742 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4743 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4744 (void *)vmspace_pmap(p->p_vmspace)); 4745 4746 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4747 } 4748 4749 #endif /* DDB */ 4750