1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/file.h> 81 #include <sys/sysctl.h> 82 #include <sys/sysent.h> 83 #include <sys/shm.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_kern.h> 93 #include <vm/vm_extern.h> 94 #include <vm/vnode_pager.h> 95 #include <vm/swap_pager.h> 96 #include <vm/uma.h> 97 98 /* 99 * Virtual memory maps provide for the mapping, protection, 100 * and sharing of virtual memory objects. In addition, 101 * this module provides for an efficient virtual copy of 102 * memory from one map to another. 103 * 104 * Synchronization is required prior to most operations. 105 * 106 * Maps consist of an ordered doubly-linked list of simple 107 * entries; a self-adjusting binary search tree of these 108 * entries is used to speed up lookups. 109 * 110 * Since portions of maps are specified by start/end addresses, 111 * which may not align with existing map entries, all 112 * routines merely "clip" entries to these start/end values. 113 * [That is, an entry is split into two, bordering at a 114 * start or end value.] Note that these clippings may not 115 * always be necessary (as the two resulting entries are then 116 * not changed); however, the clipping is done for convenience. 117 * 118 * As mentioned above, virtual copy operations are performed 119 * by copying VM object references from one map to 120 * another, and then marking both regions as copy-on-write. 121 */ 122 123 static struct mtx map_sleep_mtx; 124 static uma_zone_t mapentzone; 125 static uma_zone_t kmapentzone; 126 static uma_zone_t mapzone; 127 static uma_zone_t vmspace_zone; 128 static struct vm_object kmapentobj; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static void vmspace_zfini(void *mem, int size); 131 static int vm_map_zinit(void *mem, int ize, int flags); 132 static void vm_map_zfini(void *mem, int size); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 137 #ifdef INVARIANTS 138 static void vm_map_zdtor(void *mem, int size, void *arg); 139 static void vmspace_zdtor(void *mem, int size, void *arg); 140 #endif 141 142 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 143 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 144 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 145 146 /* 147 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 148 * stable. 149 */ 150 #define PROC_VMSPACE_LOCK(p) do { } while (0) 151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 152 153 /* 154 * VM_MAP_RANGE_CHECK: [ internal use only ] 155 * 156 * Asserts that the starting and ending region 157 * addresses fall within the valid range of the map. 158 */ 159 #define VM_MAP_RANGE_CHECK(map, start, end) \ 160 { \ 161 if (start < vm_map_min(map)) \ 162 start = vm_map_min(map); \ 163 if (end > vm_map_max(map)) \ 164 end = vm_map_max(map); \ 165 if (start > end) \ 166 start = end; \ 167 } 168 169 /* 170 * vm_map_startup: 171 * 172 * Initialize the vm_map module. Must be called before 173 * any other vm_map routines. 174 * 175 * Map and entry structures are allocated from the general 176 * purpose memory pool with some exceptions: 177 * 178 * - The kernel map and kmem submap are allocated statically. 179 * - Kernel map entries are allocated out of a static pool. 180 * 181 * These restrictions are necessary since malloc() uses the 182 * maps and requires map entries. 183 */ 184 185 void 186 vm_map_startup(void) 187 { 188 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 189 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 190 #ifdef INVARIANTS 191 vm_map_zdtor, 192 #else 193 NULL, 194 #endif 195 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 196 uma_prealloc(mapzone, MAX_KMAP); 197 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 198 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 199 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 200 uma_prealloc(kmapentzone, MAX_KMAPENT); 201 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 202 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 203 } 204 205 static void 206 vmspace_zfini(void *mem, int size) 207 { 208 struct vmspace *vm; 209 210 vm = (struct vmspace *)mem; 211 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 212 } 213 214 static int 215 vmspace_zinit(void *mem, int size, int flags) 216 { 217 struct vmspace *vm; 218 219 vm = (struct vmspace *)mem; 220 221 vm->vm_map.pmap = NULL; 222 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 223 return (0); 224 } 225 226 static void 227 vm_map_zfini(void *mem, int size) 228 { 229 vm_map_t map; 230 231 map = (vm_map_t)mem; 232 mtx_destroy(&map->system_mtx); 233 sx_destroy(&map->lock); 234 } 235 236 static int 237 vm_map_zinit(void *mem, int size, int flags) 238 { 239 vm_map_t map; 240 241 map = (vm_map_t)mem; 242 map->nentries = 0; 243 map->size = 0; 244 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 245 sx_init(&map->lock, "user map"); 246 return (0); 247 } 248 249 #ifdef INVARIANTS 250 static void 251 vmspace_zdtor(void *mem, int size, void *arg) 252 { 253 struct vmspace *vm; 254 255 vm = (struct vmspace *)mem; 256 257 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 258 } 259 static void 260 vm_map_zdtor(void *mem, int size, void *arg) 261 { 262 vm_map_t map; 263 264 map = (vm_map_t)mem; 265 KASSERT(map->nentries == 0, 266 ("map %p nentries == %d on free.", 267 map, map->nentries)); 268 KASSERT(map->size == 0, 269 ("map %p size == %lu on free.", 270 map, (unsigned long)map->size)); 271 } 272 #endif /* INVARIANTS */ 273 274 /* 275 * Allocate a vmspace structure, including a vm_map and pmap, 276 * and initialize those structures. The refcnt is set to 1. 277 */ 278 struct vmspace * 279 vmspace_alloc(min, max) 280 vm_offset_t min, max; 281 { 282 struct vmspace *vm; 283 284 vm = uma_zalloc(vmspace_zone, M_WAITOK); 285 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 void 304 vm_init2(void) 305 { 306 uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count, 307 (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 + 308 maxproc * 2 + maxfiles); 309 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 310 #ifdef INVARIANTS 311 vmspace_zdtor, 312 #else 313 NULL, 314 #endif 315 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 316 } 317 318 static void 319 vmspace_container_reset(struct proc *p) 320 { 321 322 #ifdef RACCT 323 PROC_LOCK(p); 324 racct_set(p, RACCT_DATA, 0); 325 racct_set(p, RACCT_STACK, 0); 326 racct_set(p, RACCT_RSS, 0); 327 racct_set(p, RACCT_MEMLOCK, 0); 328 racct_set(p, RACCT_VMEM, 0); 329 PROC_UNLOCK(p); 330 #endif 331 } 332 333 static inline void 334 vmspace_dofree(struct vmspace *vm) 335 { 336 337 CTR1(KTR_VM, "vmspace_free: %p", vm); 338 339 /* 340 * Make sure any SysV shm is freed, it might not have been in 341 * exit1(). 342 */ 343 shmexit(vm); 344 345 /* 346 * Lock the map, to wait out all other references to it. 347 * Delete all of the mappings and pages they hold, then call 348 * the pmap module to reclaim anything left. 349 */ 350 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 351 vm->vm_map.max_offset); 352 353 pmap_release(vmspace_pmap(vm)); 354 vm->vm_map.pmap = NULL; 355 uma_zfree(vmspace_zone, vm); 356 } 357 358 void 359 vmspace_free(struct vmspace *vm) 360 { 361 362 if (vm->vm_refcnt == 0) 363 panic("vmspace_free: attempt to free already freed vmspace"); 364 365 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 366 vmspace_dofree(vm); 367 } 368 369 void 370 vmspace_exitfree(struct proc *p) 371 { 372 struct vmspace *vm; 373 374 PROC_VMSPACE_LOCK(p); 375 vm = p->p_vmspace; 376 p->p_vmspace = NULL; 377 PROC_VMSPACE_UNLOCK(p); 378 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 379 vmspace_free(vm); 380 } 381 382 void 383 vmspace_exit(struct thread *td) 384 { 385 int refcnt; 386 struct vmspace *vm; 387 struct proc *p; 388 389 /* 390 * Release user portion of address space. 391 * This releases references to vnodes, 392 * which could cause I/O if the file has been unlinked. 393 * Need to do this early enough that we can still sleep. 394 * 395 * The last exiting process to reach this point releases as 396 * much of the environment as it can. vmspace_dofree() is the 397 * slower fallback in case another process had a temporary 398 * reference to the vmspace. 399 */ 400 401 p = td->td_proc; 402 vm = p->p_vmspace; 403 atomic_add_int(&vmspace0.vm_refcnt, 1); 404 do { 405 refcnt = vm->vm_refcnt; 406 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 407 /* Switch now since other proc might free vmspace */ 408 PROC_VMSPACE_LOCK(p); 409 p->p_vmspace = &vmspace0; 410 PROC_VMSPACE_UNLOCK(p); 411 pmap_activate(td); 412 } 413 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 414 if (refcnt == 1) { 415 if (p->p_vmspace != vm) { 416 /* vmspace not yet freed, switch back */ 417 PROC_VMSPACE_LOCK(p); 418 p->p_vmspace = vm; 419 PROC_VMSPACE_UNLOCK(p); 420 pmap_activate(td); 421 } 422 pmap_remove_pages(vmspace_pmap(vm)); 423 /* Switch now since this proc will free vmspace */ 424 PROC_VMSPACE_LOCK(p); 425 p->p_vmspace = &vmspace0; 426 PROC_VMSPACE_UNLOCK(p); 427 pmap_activate(td); 428 vmspace_dofree(vm); 429 } 430 vmspace_container_reset(p); 431 } 432 433 /* Acquire reference to vmspace owned by another process. */ 434 435 struct vmspace * 436 vmspace_acquire_ref(struct proc *p) 437 { 438 struct vmspace *vm; 439 int refcnt; 440 441 PROC_VMSPACE_LOCK(p); 442 vm = p->p_vmspace; 443 if (vm == NULL) { 444 PROC_VMSPACE_UNLOCK(p); 445 return (NULL); 446 } 447 do { 448 refcnt = vm->vm_refcnt; 449 if (refcnt <= 0) { /* Avoid 0->1 transition */ 450 PROC_VMSPACE_UNLOCK(p); 451 return (NULL); 452 } 453 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 454 if (vm != p->p_vmspace) { 455 PROC_VMSPACE_UNLOCK(p); 456 vmspace_free(vm); 457 return (NULL); 458 } 459 PROC_VMSPACE_UNLOCK(p); 460 return (vm); 461 } 462 463 void 464 _vm_map_lock(vm_map_t map, const char *file, int line) 465 { 466 467 if (map->system_map) 468 mtx_lock_flags_(&map->system_mtx, 0, file, line); 469 else 470 sx_xlock_(&map->lock, file, line); 471 map->timestamp++; 472 } 473 474 static void 475 vm_map_process_deferred(void) 476 { 477 struct thread *td; 478 vm_map_entry_t entry; 479 vm_object_t object; 480 481 td = curthread; 482 while ((entry = td->td_map_def_user) != NULL) { 483 td->td_map_def_user = entry->next; 484 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 485 /* 486 * Decrement the object's writemappings and 487 * possibly the vnode's v_writecount. 488 */ 489 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 490 ("Submap with writecount")); 491 object = entry->object.vm_object; 492 KASSERT(object != NULL, ("No object for writecount")); 493 vnode_pager_release_writecount(object, entry->start, 494 entry->end); 495 } 496 vm_map_entry_deallocate(entry, FALSE); 497 } 498 } 499 500 void 501 _vm_map_unlock(vm_map_t map, const char *file, int line) 502 { 503 504 if (map->system_map) 505 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 506 else { 507 sx_xunlock_(&map->lock, file, line); 508 vm_map_process_deferred(); 509 } 510 } 511 512 void 513 _vm_map_lock_read(vm_map_t map, const char *file, int line) 514 { 515 516 if (map->system_map) 517 mtx_lock_flags_(&map->system_mtx, 0, file, line); 518 else 519 sx_slock_(&map->lock, file, line); 520 } 521 522 void 523 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 524 { 525 526 if (map->system_map) 527 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 528 else { 529 sx_sunlock_(&map->lock, file, line); 530 vm_map_process_deferred(); 531 } 532 } 533 534 int 535 _vm_map_trylock(vm_map_t map, const char *file, int line) 536 { 537 int error; 538 539 error = map->system_map ? 540 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 541 !sx_try_xlock_(&map->lock, file, line); 542 if (error == 0) 543 map->timestamp++; 544 return (error == 0); 545 } 546 547 int 548 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 549 { 550 int error; 551 552 error = map->system_map ? 553 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 554 !sx_try_slock_(&map->lock, file, line); 555 return (error == 0); 556 } 557 558 /* 559 * _vm_map_lock_upgrade: [ internal use only ] 560 * 561 * Tries to upgrade a read (shared) lock on the specified map to a write 562 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 563 * non-zero value if the upgrade fails. If the upgrade fails, the map is 564 * returned without a read or write lock held. 565 * 566 * Requires that the map be read locked. 567 */ 568 int 569 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 570 { 571 unsigned int last_timestamp; 572 573 if (map->system_map) { 574 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 575 } else { 576 if (!sx_try_upgrade_(&map->lock, file, line)) { 577 last_timestamp = map->timestamp; 578 sx_sunlock_(&map->lock, file, line); 579 vm_map_process_deferred(); 580 /* 581 * If the map's timestamp does not change while the 582 * map is unlocked, then the upgrade succeeds. 583 */ 584 sx_xlock_(&map->lock, file, line); 585 if (last_timestamp != map->timestamp) { 586 sx_xunlock_(&map->lock, file, line); 587 return (1); 588 } 589 } 590 } 591 map->timestamp++; 592 return (0); 593 } 594 595 void 596 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 597 { 598 599 if (map->system_map) { 600 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 601 } else 602 sx_downgrade_(&map->lock, file, line); 603 } 604 605 /* 606 * vm_map_locked: 607 * 608 * Returns a non-zero value if the caller holds a write (exclusive) lock 609 * on the specified map and the value "0" otherwise. 610 */ 611 int 612 vm_map_locked(vm_map_t map) 613 { 614 615 if (map->system_map) 616 return (mtx_owned(&map->system_mtx)); 617 else 618 return (sx_xlocked(&map->lock)); 619 } 620 621 #ifdef INVARIANTS 622 static void 623 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 624 { 625 626 if (map->system_map) 627 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 628 else 629 sx_assert_(&map->lock, SA_XLOCKED, file, line); 630 } 631 632 #define VM_MAP_ASSERT_LOCKED(map) \ 633 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 634 #else 635 #define VM_MAP_ASSERT_LOCKED(map) 636 #endif 637 638 /* 639 * _vm_map_unlock_and_wait: 640 * 641 * Atomically releases the lock on the specified map and puts the calling 642 * thread to sleep. The calling thread will remain asleep until either 643 * vm_map_wakeup() is performed on the map or the specified timeout is 644 * exceeded. 645 * 646 * WARNING! This function does not perform deferred deallocations of 647 * objects and map entries. Therefore, the calling thread is expected to 648 * reacquire the map lock after reawakening and later perform an ordinary 649 * unlock operation, such as vm_map_unlock(), before completing its 650 * operation on the map. 651 */ 652 int 653 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 654 { 655 656 mtx_lock(&map_sleep_mtx); 657 if (map->system_map) 658 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 659 else 660 sx_xunlock_(&map->lock, file, line); 661 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 662 timo)); 663 } 664 665 /* 666 * vm_map_wakeup: 667 * 668 * Awaken any threads that have slept on the map using 669 * vm_map_unlock_and_wait(). 670 */ 671 void 672 vm_map_wakeup(vm_map_t map) 673 { 674 675 /* 676 * Acquire and release map_sleep_mtx to prevent a wakeup() 677 * from being performed (and lost) between the map unlock 678 * and the msleep() in _vm_map_unlock_and_wait(). 679 */ 680 mtx_lock(&map_sleep_mtx); 681 mtx_unlock(&map_sleep_mtx); 682 wakeup(&map->root); 683 } 684 685 void 686 vm_map_busy(vm_map_t map) 687 { 688 689 VM_MAP_ASSERT_LOCKED(map); 690 map->busy++; 691 } 692 693 void 694 vm_map_unbusy(vm_map_t map) 695 { 696 697 VM_MAP_ASSERT_LOCKED(map); 698 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 699 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 700 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 701 wakeup(&map->busy); 702 } 703 } 704 705 void 706 vm_map_wait_busy(vm_map_t map) 707 { 708 709 VM_MAP_ASSERT_LOCKED(map); 710 while (map->busy) { 711 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 712 if (map->system_map) 713 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 714 else 715 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 716 } 717 map->timestamp++; 718 } 719 720 long 721 vmspace_resident_count(struct vmspace *vmspace) 722 { 723 return pmap_resident_count(vmspace_pmap(vmspace)); 724 } 725 726 long 727 vmspace_wired_count(struct vmspace *vmspace) 728 { 729 return pmap_wired_count(vmspace_pmap(vmspace)); 730 } 731 732 /* 733 * vm_map_create: 734 * 735 * Creates and returns a new empty VM map with 736 * the given physical map structure, and having 737 * the given lower and upper address bounds. 738 */ 739 vm_map_t 740 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 741 { 742 vm_map_t result; 743 744 result = uma_zalloc(mapzone, M_WAITOK); 745 CTR1(KTR_VM, "vm_map_create: %p", result); 746 _vm_map_init(result, pmap, min, max); 747 return (result); 748 } 749 750 /* 751 * Initialize an existing vm_map structure 752 * such as that in the vmspace structure. 753 */ 754 static void 755 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 756 { 757 758 map->header.next = map->header.prev = &map->header; 759 map->needs_wakeup = FALSE; 760 map->system_map = 0; 761 map->pmap = pmap; 762 map->min_offset = min; 763 map->max_offset = max; 764 map->flags = 0; 765 map->root = NULL; 766 map->timestamp = 0; 767 map->busy = 0; 768 } 769 770 void 771 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 772 { 773 774 _vm_map_init(map, pmap, min, max); 775 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 776 sx_init(&map->lock, "user map"); 777 } 778 779 /* 780 * vm_map_entry_dispose: [ internal use only ] 781 * 782 * Inverse of vm_map_entry_create. 783 */ 784 static void 785 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 786 { 787 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 788 } 789 790 /* 791 * vm_map_entry_create: [ internal use only ] 792 * 793 * Allocates a VM map entry for insertion. 794 * No entry fields are filled in. 795 */ 796 static vm_map_entry_t 797 vm_map_entry_create(vm_map_t map) 798 { 799 vm_map_entry_t new_entry; 800 801 if (map->system_map) 802 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 803 else 804 new_entry = uma_zalloc(mapentzone, M_WAITOK); 805 if (new_entry == NULL) 806 panic("vm_map_entry_create: kernel resources exhausted"); 807 return (new_entry); 808 } 809 810 /* 811 * vm_map_entry_set_behavior: 812 * 813 * Set the expected access behavior, either normal, random, or 814 * sequential. 815 */ 816 static inline void 817 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 818 { 819 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 820 (behavior & MAP_ENTRY_BEHAV_MASK); 821 } 822 823 /* 824 * vm_map_entry_set_max_free: 825 * 826 * Set the max_free field in a vm_map_entry. 827 */ 828 static inline void 829 vm_map_entry_set_max_free(vm_map_entry_t entry) 830 { 831 832 entry->max_free = entry->adj_free; 833 if (entry->left != NULL && entry->left->max_free > entry->max_free) 834 entry->max_free = entry->left->max_free; 835 if (entry->right != NULL && entry->right->max_free > entry->max_free) 836 entry->max_free = entry->right->max_free; 837 } 838 839 /* 840 * vm_map_entry_splay: 841 * 842 * The Sleator and Tarjan top-down splay algorithm with the 843 * following variation. Max_free must be computed bottom-up, so 844 * on the downward pass, maintain the left and right spines in 845 * reverse order. Then, make a second pass up each side to fix 846 * the pointers and compute max_free. The time bound is O(log n) 847 * amortized. 848 * 849 * The new root is the vm_map_entry containing "addr", or else an 850 * adjacent entry (lower or higher) if addr is not in the tree. 851 * 852 * The map must be locked, and leaves it so. 853 * 854 * Returns: the new root. 855 */ 856 static vm_map_entry_t 857 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 858 { 859 vm_map_entry_t llist, rlist; 860 vm_map_entry_t ltree, rtree; 861 vm_map_entry_t y; 862 863 /* Special case of empty tree. */ 864 if (root == NULL) 865 return (root); 866 867 /* 868 * Pass One: Splay down the tree until we find addr or a NULL 869 * pointer where addr would go. llist and rlist are the two 870 * sides in reverse order (bottom-up), with llist linked by 871 * the right pointer and rlist linked by the left pointer in 872 * the vm_map_entry. Wait until Pass Two to set max_free on 873 * the two spines. 874 */ 875 llist = NULL; 876 rlist = NULL; 877 for (;;) { 878 /* root is never NULL in here. */ 879 if (addr < root->start) { 880 y = root->left; 881 if (y == NULL) 882 break; 883 if (addr < y->start && y->left != NULL) { 884 /* Rotate right and put y on rlist. */ 885 root->left = y->right; 886 y->right = root; 887 vm_map_entry_set_max_free(root); 888 root = y->left; 889 y->left = rlist; 890 rlist = y; 891 } else { 892 /* Put root on rlist. */ 893 root->left = rlist; 894 rlist = root; 895 root = y; 896 } 897 } else if (addr >= root->end) { 898 y = root->right; 899 if (y == NULL) 900 break; 901 if (addr >= y->end && y->right != NULL) { 902 /* Rotate left and put y on llist. */ 903 root->right = y->left; 904 y->left = root; 905 vm_map_entry_set_max_free(root); 906 root = y->right; 907 y->right = llist; 908 llist = y; 909 } else { 910 /* Put root on llist. */ 911 root->right = llist; 912 llist = root; 913 root = y; 914 } 915 } else 916 break; 917 } 918 919 /* 920 * Pass Two: Walk back up the two spines, flip the pointers 921 * and set max_free. The subtrees of the root go at the 922 * bottom of llist and rlist. 923 */ 924 ltree = root->left; 925 while (llist != NULL) { 926 y = llist->right; 927 llist->right = ltree; 928 vm_map_entry_set_max_free(llist); 929 ltree = llist; 930 llist = y; 931 } 932 rtree = root->right; 933 while (rlist != NULL) { 934 y = rlist->left; 935 rlist->left = rtree; 936 vm_map_entry_set_max_free(rlist); 937 rtree = rlist; 938 rlist = y; 939 } 940 941 /* 942 * Final assembly: add ltree and rtree as subtrees of root. 943 */ 944 root->left = ltree; 945 root->right = rtree; 946 vm_map_entry_set_max_free(root); 947 948 return (root); 949 } 950 951 /* 952 * vm_map_entry_{un,}link: 953 * 954 * Insert/remove entries from maps. 955 */ 956 static void 957 vm_map_entry_link(vm_map_t map, 958 vm_map_entry_t after_where, 959 vm_map_entry_t entry) 960 { 961 962 CTR4(KTR_VM, 963 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 964 map->nentries, entry, after_where); 965 VM_MAP_ASSERT_LOCKED(map); 966 map->nentries++; 967 entry->prev = after_where; 968 entry->next = after_where->next; 969 entry->next->prev = entry; 970 after_where->next = entry; 971 972 if (after_where != &map->header) { 973 if (after_where != map->root) 974 vm_map_entry_splay(after_where->start, map->root); 975 entry->right = after_where->right; 976 entry->left = after_where; 977 after_where->right = NULL; 978 after_where->adj_free = entry->start - after_where->end; 979 vm_map_entry_set_max_free(after_where); 980 } else { 981 entry->right = map->root; 982 entry->left = NULL; 983 } 984 entry->adj_free = (entry->next == &map->header ? map->max_offset : 985 entry->next->start) - entry->end; 986 vm_map_entry_set_max_free(entry); 987 map->root = entry; 988 } 989 990 static void 991 vm_map_entry_unlink(vm_map_t map, 992 vm_map_entry_t entry) 993 { 994 vm_map_entry_t next, prev, root; 995 996 VM_MAP_ASSERT_LOCKED(map); 997 if (entry != map->root) 998 vm_map_entry_splay(entry->start, map->root); 999 if (entry->left == NULL) 1000 root = entry->right; 1001 else { 1002 root = vm_map_entry_splay(entry->start, entry->left); 1003 root->right = entry->right; 1004 root->adj_free = (entry->next == &map->header ? map->max_offset : 1005 entry->next->start) - root->end; 1006 vm_map_entry_set_max_free(root); 1007 } 1008 map->root = root; 1009 1010 prev = entry->prev; 1011 next = entry->next; 1012 next->prev = prev; 1013 prev->next = next; 1014 map->nentries--; 1015 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1016 map->nentries, entry); 1017 } 1018 1019 /* 1020 * vm_map_entry_resize_free: 1021 * 1022 * Recompute the amount of free space following a vm_map_entry 1023 * and propagate that value up the tree. Call this function after 1024 * resizing a map entry in-place, that is, without a call to 1025 * vm_map_entry_link() or _unlink(). 1026 * 1027 * The map must be locked, and leaves it so. 1028 */ 1029 static void 1030 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1031 { 1032 1033 /* 1034 * Using splay trees without parent pointers, propagating 1035 * max_free up the tree is done by moving the entry to the 1036 * root and making the change there. 1037 */ 1038 if (entry != map->root) 1039 map->root = vm_map_entry_splay(entry->start, map->root); 1040 1041 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1042 entry->next->start) - entry->end; 1043 vm_map_entry_set_max_free(entry); 1044 } 1045 1046 /* 1047 * vm_map_lookup_entry: [ internal use only ] 1048 * 1049 * Finds the map entry containing (or 1050 * immediately preceding) the specified address 1051 * in the given map; the entry is returned 1052 * in the "entry" parameter. The boolean 1053 * result indicates whether the address is 1054 * actually contained in the map. 1055 */ 1056 boolean_t 1057 vm_map_lookup_entry( 1058 vm_map_t map, 1059 vm_offset_t address, 1060 vm_map_entry_t *entry) /* OUT */ 1061 { 1062 vm_map_entry_t cur; 1063 boolean_t locked; 1064 1065 /* 1066 * If the map is empty, then the map entry immediately preceding 1067 * "address" is the map's header. 1068 */ 1069 cur = map->root; 1070 if (cur == NULL) 1071 *entry = &map->header; 1072 else if (address >= cur->start && cur->end > address) { 1073 *entry = cur; 1074 return (TRUE); 1075 } else if ((locked = vm_map_locked(map)) || 1076 sx_try_upgrade(&map->lock)) { 1077 /* 1078 * Splay requires a write lock on the map. However, it only 1079 * restructures the binary search tree; it does not otherwise 1080 * change the map. Thus, the map's timestamp need not change 1081 * on a temporary upgrade. 1082 */ 1083 map->root = cur = vm_map_entry_splay(address, cur); 1084 if (!locked) 1085 sx_downgrade(&map->lock); 1086 1087 /* 1088 * If "address" is contained within a map entry, the new root 1089 * is that map entry. Otherwise, the new root is a map entry 1090 * immediately before or after "address". 1091 */ 1092 if (address >= cur->start) { 1093 *entry = cur; 1094 if (cur->end > address) 1095 return (TRUE); 1096 } else 1097 *entry = cur->prev; 1098 } else 1099 /* 1100 * Since the map is only locked for read access, perform a 1101 * standard binary search tree lookup for "address". 1102 */ 1103 for (;;) { 1104 if (address < cur->start) { 1105 if (cur->left == NULL) { 1106 *entry = cur->prev; 1107 break; 1108 } 1109 cur = cur->left; 1110 } else if (cur->end > address) { 1111 *entry = cur; 1112 return (TRUE); 1113 } else { 1114 if (cur->right == NULL) { 1115 *entry = cur; 1116 break; 1117 } 1118 cur = cur->right; 1119 } 1120 } 1121 return (FALSE); 1122 } 1123 1124 /* 1125 * vm_map_insert: 1126 * 1127 * Inserts the given whole VM object into the target 1128 * map at the specified address range. The object's 1129 * size should match that of the address range. 1130 * 1131 * Requires that the map be locked, and leaves it so. 1132 * 1133 * If object is non-NULL, ref count must be bumped by caller 1134 * prior to making call to account for the new entry. 1135 */ 1136 int 1137 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1138 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1139 int cow) 1140 { 1141 vm_map_entry_t new_entry; 1142 vm_map_entry_t prev_entry; 1143 vm_map_entry_t temp_entry; 1144 vm_eflags_t protoeflags; 1145 struct ucred *cred; 1146 vm_inherit_t inheritance; 1147 boolean_t charge_prev_obj; 1148 1149 VM_MAP_ASSERT_LOCKED(map); 1150 1151 /* 1152 * Check that the start and end points are not bogus. 1153 */ 1154 if ((start < map->min_offset) || (end > map->max_offset) || 1155 (start >= end)) 1156 return (KERN_INVALID_ADDRESS); 1157 1158 /* 1159 * Find the entry prior to the proposed starting address; if it's part 1160 * of an existing entry, this range is bogus. 1161 */ 1162 if (vm_map_lookup_entry(map, start, &temp_entry)) 1163 return (KERN_NO_SPACE); 1164 1165 prev_entry = temp_entry; 1166 1167 /* 1168 * Assert that the next entry doesn't overlap the end point. 1169 */ 1170 if ((prev_entry->next != &map->header) && 1171 (prev_entry->next->start < end)) 1172 return (KERN_NO_SPACE); 1173 1174 protoeflags = 0; 1175 charge_prev_obj = FALSE; 1176 1177 if (cow & MAP_COPY_ON_WRITE) 1178 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1179 1180 if (cow & MAP_NOFAULT) { 1181 protoeflags |= MAP_ENTRY_NOFAULT; 1182 1183 KASSERT(object == NULL, 1184 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1185 } 1186 if (cow & MAP_DISABLE_SYNCER) 1187 protoeflags |= MAP_ENTRY_NOSYNC; 1188 if (cow & MAP_DISABLE_COREDUMP) 1189 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1190 if (cow & MAP_VN_WRITECOUNT) 1191 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1192 if (cow & MAP_INHERIT_SHARE) 1193 inheritance = VM_INHERIT_SHARE; 1194 else 1195 inheritance = VM_INHERIT_DEFAULT; 1196 1197 cred = NULL; 1198 KASSERT((object != kmem_object && object != kernel_object) || 1199 ((object == kmem_object || object == kernel_object) && 1200 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1201 ("kmem or kernel object and cow")); 1202 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1203 goto charged; 1204 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1205 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1206 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1207 return (KERN_RESOURCE_SHORTAGE); 1208 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1209 object->cred == NULL, 1210 ("OVERCOMMIT: vm_map_insert o %p", object)); 1211 cred = curthread->td_ucred; 1212 crhold(cred); 1213 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1214 charge_prev_obj = TRUE; 1215 } 1216 1217 charged: 1218 /* Expand the kernel pmap, if necessary. */ 1219 if (map == kernel_map && end > kernel_vm_end) 1220 pmap_growkernel(end); 1221 if (object != NULL) { 1222 /* 1223 * OBJ_ONEMAPPING must be cleared unless this mapping 1224 * is trivially proven to be the only mapping for any 1225 * of the object's pages. (Object granularity 1226 * reference counting is insufficient to recognize 1227 * aliases with precision.) 1228 */ 1229 VM_OBJECT_LOCK(object); 1230 if (object->ref_count > 1 || object->shadow_count != 0) 1231 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1232 VM_OBJECT_UNLOCK(object); 1233 } 1234 else if ((prev_entry != &map->header) && 1235 (prev_entry->eflags == protoeflags) && 1236 (prev_entry->end == start) && 1237 (prev_entry->wired_count == 0) && 1238 (prev_entry->cred == cred || 1239 (prev_entry->object.vm_object != NULL && 1240 (prev_entry->object.vm_object->cred == cred))) && 1241 vm_object_coalesce(prev_entry->object.vm_object, 1242 prev_entry->offset, 1243 (vm_size_t)(prev_entry->end - prev_entry->start), 1244 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1245 /* 1246 * We were able to extend the object. Determine if we 1247 * can extend the previous map entry to include the 1248 * new range as well. 1249 */ 1250 if ((prev_entry->inheritance == inheritance) && 1251 (prev_entry->protection == prot) && 1252 (prev_entry->max_protection == max)) { 1253 map->size += (end - prev_entry->end); 1254 prev_entry->end = end; 1255 vm_map_entry_resize_free(map, prev_entry); 1256 vm_map_simplify_entry(map, prev_entry); 1257 if (cred != NULL) 1258 crfree(cred); 1259 return (KERN_SUCCESS); 1260 } 1261 1262 /* 1263 * If we can extend the object but cannot extend the 1264 * map entry, we have to create a new map entry. We 1265 * must bump the ref count on the extended object to 1266 * account for it. object may be NULL. 1267 */ 1268 object = prev_entry->object.vm_object; 1269 offset = prev_entry->offset + 1270 (prev_entry->end - prev_entry->start); 1271 vm_object_reference(object); 1272 if (cred != NULL && object != NULL && object->cred != NULL && 1273 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1274 /* Object already accounts for this uid. */ 1275 crfree(cred); 1276 cred = NULL; 1277 } 1278 } 1279 1280 /* 1281 * NOTE: if conditionals fail, object can be NULL here. This occurs 1282 * in things like the buffer map where we manage kva but do not manage 1283 * backing objects. 1284 */ 1285 1286 /* 1287 * Create a new entry 1288 */ 1289 new_entry = vm_map_entry_create(map); 1290 new_entry->start = start; 1291 new_entry->end = end; 1292 new_entry->cred = NULL; 1293 1294 new_entry->eflags = protoeflags; 1295 new_entry->object.vm_object = object; 1296 new_entry->offset = offset; 1297 new_entry->avail_ssize = 0; 1298 1299 new_entry->inheritance = inheritance; 1300 new_entry->protection = prot; 1301 new_entry->max_protection = max; 1302 new_entry->wired_count = 0; 1303 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1304 new_entry->next_read = OFF_TO_IDX(offset); 1305 1306 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1307 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1308 new_entry->cred = cred; 1309 1310 /* 1311 * Insert the new entry into the list 1312 */ 1313 vm_map_entry_link(map, prev_entry, new_entry); 1314 map->size += new_entry->end - new_entry->start; 1315 1316 /* 1317 * It may be possible to merge the new entry with the next and/or 1318 * previous entries. However, due to MAP_STACK_* being a hack, a 1319 * panic can result from merging such entries. 1320 */ 1321 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1322 vm_map_simplify_entry(map, new_entry); 1323 1324 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1325 vm_map_pmap_enter(map, start, prot, 1326 object, OFF_TO_IDX(offset), end - start, 1327 cow & MAP_PREFAULT_PARTIAL); 1328 } 1329 1330 return (KERN_SUCCESS); 1331 } 1332 1333 /* 1334 * vm_map_findspace: 1335 * 1336 * Find the first fit (lowest VM address) for "length" free bytes 1337 * beginning at address >= start in the given map. 1338 * 1339 * In a vm_map_entry, "adj_free" is the amount of free space 1340 * adjacent (higher address) to this entry, and "max_free" is the 1341 * maximum amount of contiguous free space in its subtree. This 1342 * allows finding a free region in one path down the tree, so 1343 * O(log n) amortized with splay trees. 1344 * 1345 * The map must be locked, and leaves it so. 1346 * 1347 * Returns: 0 on success, and starting address in *addr, 1348 * 1 if insufficient space. 1349 */ 1350 int 1351 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1352 vm_offset_t *addr) /* OUT */ 1353 { 1354 vm_map_entry_t entry; 1355 vm_offset_t st; 1356 1357 /* 1358 * Request must fit within min/max VM address and must avoid 1359 * address wrap. 1360 */ 1361 if (start < map->min_offset) 1362 start = map->min_offset; 1363 if (start + length > map->max_offset || start + length < start) 1364 return (1); 1365 1366 /* Empty tree means wide open address space. */ 1367 if (map->root == NULL) { 1368 *addr = start; 1369 return (0); 1370 } 1371 1372 /* 1373 * After splay, if start comes before root node, then there 1374 * must be a gap from start to the root. 1375 */ 1376 map->root = vm_map_entry_splay(start, map->root); 1377 if (start + length <= map->root->start) { 1378 *addr = start; 1379 return (0); 1380 } 1381 1382 /* 1383 * Root is the last node that might begin its gap before 1384 * start, and this is the last comparison where address 1385 * wrap might be a problem. 1386 */ 1387 st = (start > map->root->end) ? start : map->root->end; 1388 if (length <= map->root->end + map->root->adj_free - st) { 1389 *addr = st; 1390 return (0); 1391 } 1392 1393 /* With max_free, can immediately tell if no solution. */ 1394 entry = map->root->right; 1395 if (entry == NULL || length > entry->max_free) 1396 return (1); 1397 1398 /* 1399 * Search the right subtree in the order: left subtree, root, 1400 * right subtree (first fit). The previous splay implies that 1401 * all regions in the right subtree have addresses > start. 1402 */ 1403 while (entry != NULL) { 1404 if (entry->left != NULL && entry->left->max_free >= length) 1405 entry = entry->left; 1406 else if (entry->adj_free >= length) { 1407 *addr = entry->end; 1408 return (0); 1409 } else 1410 entry = entry->right; 1411 } 1412 1413 /* Can't get here, so panic if we do. */ 1414 panic("vm_map_findspace: max_free corrupt"); 1415 } 1416 1417 int 1418 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1419 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1420 vm_prot_t max, int cow) 1421 { 1422 vm_offset_t end; 1423 int result; 1424 1425 end = start + length; 1426 vm_map_lock(map); 1427 VM_MAP_RANGE_CHECK(map, start, end); 1428 (void) vm_map_delete(map, start, end); 1429 result = vm_map_insert(map, object, offset, start, end, prot, 1430 max, cow); 1431 vm_map_unlock(map); 1432 return (result); 1433 } 1434 1435 /* 1436 * vm_map_find finds an unallocated region in the target address 1437 * map with the given length. The search is defined to be 1438 * first-fit from the specified address; the region found is 1439 * returned in the same parameter. 1440 * 1441 * If object is non-NULL, ref count must be bumped by caller 1442 * prior to making call to account for the new entry. 1443 */ 1444 int 1445 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1446 vm_offset_t *addr, /* IN/OUT */ 1447 vm_size_t length, int find_space, vm_prot_t prot, 1448 vm_prot_t max, int cow) 1449 { 1450 vm_offset_t start; 1451 int result; 1452 1453 start = *addr; 1454 vm_map_lock(map); 1455 do { 1456 if (find_space != VMFS_NO_SPACE) { 1457 if (vm_map_findspace(map, start, length, addr)) { 1458 vm_map_unlock(map); 1459 return (KERN_NO_SPACE); 1460 } 1461 switch (find_space) { 1462 case VMFS_ALIGNED_SPACE: 1463 pmap_align_superpage(object, offset, addr, 1464 length); 1465 break; 1466 #ifdef VMFS_TLB_ALIGNED_SPACE 1467 case VMFS_TLB_ALIGNED_SPACE: 1468 pmap_align_tlb(addr); 1469 break; 1470 #endif 1471 default: 1472 break; 1473 } 1474 1475 start = *addr; 1476 } 1477 result = vm_map_insert(map, object, offset, start, start + 1478 length, prot, max, cow); 1479 } while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE 1480 #ifdef VMFS_TLB_ALIGNED_SPACE 1481 || find_space == VMFS_TLB_ALIGNED_SPACE 1482 #endif 1483 )); 1484 vm_map_unlock(map); 1485 return (result); 1486 } 1487 1488 /* 1489 * vm_map_simplify_entry: 1490 * 1491 * Simplify the given map entry by merging with either neighbor. This 1492 * routine also has the ability to merge with both neighbors. 1493 * 1494 * The map must be locked. 1495 * 1496 * This routine guarentees that the passed entry remains valid (though 1497 * possibly extended). When merging, this routine may delete one or 1498 * both neighbors. 1499 */ 1500 void 1501 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1502 { 1503 vm_map_entry_t next, prev; 1504 vm_size_t prevsize, esize; 1505 1506 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1507 return; 1508 1509 prev = entry->prev; 1510 if (prev != &map->header) { 1511 prevsize = prev->end - prev->start; 1512 if ( (prev->end == entry->start) && 1513 (prev->object.vm_object == entry->object.vm_object) && 1514 (!prev->object.vm_object || 1515 (prev->offset + prevsize == entry->offset)) && 1516 (prev->eflags == entry->eflags) && 1517 (prev->protection == entry->protection) && 1518 (prev->max_protection == entry->max_protection) && 1519 (prev->inheritance == entry->inheritance) && 1520 (prev->wired_count == entry->wired_count) && 1521 (prev->cred == entry->cred)) { 1522 vm_map_entry_unlink(map, prev); 1523 entry->start = prev->start; 1524 entry->offset = prev->offset; 1525 if (entry->prev != &map->header) 1526 vm_map_entry_resize_free(map, entry->prev); 1527 1528 /* 1529 * If the backing object is a vnode object, 1530 * vm_object_deallocate() calls vrele(). 1531 * However, vrele() does not lock the vnode 1532 * because the vnode has additional 1533 * references. Thus, the map lock can be kept 1534 * without causing a lock-order reversal with 1535 * the vnode lock. 1536 * 1537 * Since we count the number of virtual page 1538 * mappings in object->un_pager.vnp.writemappings, 1539 * the writemappings value should not be adjusted 1540 * when the entry is disposed of. 1541 */ 1542 if (prev->object.vm_object) 1543 vm_object_deallocate(prev->object.vm_object); 1544 if (prev->cred != NULL) 1545 crfree(prev->cred); 1546 vm_map_entry_dispose(map, prev); 1547 } 1548 } 1549 1550 next = entry->next; 1551 if (next != &map->header) { 1552 esize = entry->end - entry->start; 1553 if ((entry->end == next->start) && 1554 (next->object.vm_object == entry->object.vm_object) && 1555 (!entry->object.vm_object || 1556 (entry->offset + esize == next->offset)) && 1557 (next->eflags == entry->eflags) && 1558 (next->protection == entry->protection) && 1559 (next->max_protection == entry->max_protection) && 1560 (next->inheritance == entry->inheritance) && 1561 (next->wired_count == entry->wired_count) && 1562 (next->cred == entry->cred)) { 1563 vm_map_entry_unlink(map, next); 1564 entry->end = next->end; 1565 vm_map_entry_resize_free(map, entry); 1566 1567 /* 1568 * See comment above. 1569 */ 1570 if (next->object.vm_object) 1571 vm_object_deallocate(next->object.vm_object); 1572 if (next->cred != NULL) 1573 crfree(next->cred); 1574 vm_map_entry_dispose(map, next); 1575 } 1576 } 1577 } 1578 /* 1579 * vm_map_clip_start: [ internal use only ] 1580 * 1581 * Asserts that the given entry begins at or after 1582 * the specified address; if necessary, 1583 * it splits the entry into two. 1584 */ 1585 #define vm_map_clip_start(map, entry, startaddr) \ 1586 { \ 1587 if (startaddr > entry->start) \ 1588 _vm_map_clip_start(map, entry, startaddr); \ 1589 } 1590 1591 /* 1592 * This routine is called only when it is known that 1593 * the entry must be split. 1594 */ 1595 static void 1596 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1597 { 1598 vm_map_entry_t new_entry; 1599 1600 VM_MAP_ASSERT_LOCKED(map); 1601 1602 /* 1603 * Split off the front portion -- note that we must insert the new 1604 * entry BEFORE this one, so that this entry has the specified 1605 * starting address. 1606 */ 1607 vm_map_simplify_entry(map, entry); 1608 1609 /* 1610 * If there is no object backing this entry, we might as well create 1611 * one now. If we defer it, an object can get created after the map 1612 * is clipped, and individual objects will be created for the split-up 1613 * map. This is a bit of a hack, but is also about the best place to 1614 * put this improvement. 1615 */ 1616 if (entry->object.vm_object == NULL && !map->system_map) { 1617 vm_object_t object; 1618 object = vm_object_allocate(OBJT_DEFAULT, 1619 atop(entry->end - entry->start)); 1620 entry->object.vm_object = object; 1621 entry->offset = 0; 1622 if (entry->cred != NULL) { 1623 object->cred = entry->cred; 1624 object->charge = entry->end - entry->start; 1625 entry->cred = NULL; 1626 } 1627 } else if (entry->object.vm_object != NULL && 1628 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1629 entry->cred != NULL) { 1630 VM_OBJECT_LOCK(entry->object.vm_object); 1631 KASSERT(entry->object.vm_object->cred == NULL, 1632 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1633 entry->object.vm_object->cred = entry->cred; 1634 entry->object.vm_object->charge = entry->end - entry->start; 1635 VM_OBJECT_UNLOCK(entry->object.vm_object); 1636 entry->cred = NULL; 1637 } 1638 1639 new_entry = vm_map_entry_create(map); 1640 *new_entry = *entry; 1641 1642 new_entry->end = start; 1643 entry->offset += (start - entry->start); 1644 entry->start = start; 1645 if (new_entry->cred != NULL) 1646 crhold(entry->cred); 1647 1648 vm_map_entry_link(map, entry->prev, new_entry); 1649 1650 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1651 vm_object_reference(new_entry->object.vm_object); 1652 /* 1653 * The object->un_pager.vnp.writemappings for the 1654 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1655 * kept as is here. The virtual pages are 1656 * re-distributed among the clipped entries, so the sum is 1657 * left the same. 1658 */ 1659 } 1660 } 1661 1662 /* 1663 * vm_map_clip_end: [ internal use only ] 1664 * 1665 * Asserts that the given entry ends at or before 1666 * the specified address; if necessary, 1667 * it splits the entry into two. 1668 */ 1669 #define vm_map_clip_end(map, entry, endaddr) \ 1670 { \ 1671 if ((endaddr) < (entry->end)) \ 1672 _vm_map_clip_end((map), (entry), (endaddr)); \ 1673 } 1674 1675 /* 1676 * This routine is called only when it is known that 1677 * the entry must be split. 1678 */ 1679 static void 1680 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1681 { 1682 vm_map_entry_t new_entry; 1683 1684 VM_MAP_ASSERT_LOCKED(map); 1685 1686 /* 1687 * If there is no object backing this entry, we might as well create 1688 * one now. If we defer it, an object can get created after the map 1689 * is clipped, and individual objects will be created for the split-up 1690 * map. This is a bit of a hack, but is also about the best place to 1691 * put this improvement. 1692 */ 1693 if (entry->object.vm_object == NULL && !map->system_map) { 1694 vm_object_t object; 1695 object = vm_object_allocate(OBJT_DEFAULT, 1696 atop(entry->end - entry->start)); 1697 entry->object.vm_object = object; 1698 entry->offset = 0; 1699 if (entry->cred != NULL) { 1700 object->cred = entry->cred; 1701 object->charge = entry->end - entry->start; 1702 entry->cred = NULL; 1703 } 1704 } else if (entry->object.vm_object != NULL && 1705 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1706 entry->cred != NULL) { 1707 VM_OBJECT_LOCK(entry->object.vm_object); 1708 KASSERT(entry->object.vm_object->cred == NULL, 1709 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1710 entry->object.vm_object->cred = entry->cred; 1711 entry->object.vm_object->charge = entry->end - entry->start; 1712 VM_OBJECT_UNLOCK(entry->object.vm_object); 1713 entry->cred = NULL; 1714 } 1715 1716 /* 1717 * Create a new entry and insert it AFTER the specified entry 1718 */ 1719 new_entry = vm_map_entry_create(map); 1720 *new_entry = *entry; 1721 1722 new_entry->start = entry->end = end; 1723 new_entry->offset += (end - entry->start); 1724 if (new_entry->cred != NULL) 1725 crhold(entry->cred); 1726 1727 vm_map_entry_link(map, entry, new_entry); 1728 1729 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1730 vm_object_reference(new_entry->object.vm_object); 1731 } 1732 } 1733 1734 /* 1735 * vm_map_submap: [ kernel use only ] 1736 * 1737 * Mark the given range as handled by a subordinate map. 1738 * 1739 * This range must have been created with vm_map_find, 1740 * and no other operations may have been performed on this 1741 * range prior to calling vm_map_submap. 1742 * 1743 * Only a limited number of operations can be performed 1744 * within this rage after calling vm_map_submap: 1745 * vm_fault 1746 * [Don't try vm_map_copy!] 1747 * 1748 * To remove a submapping, one must first remove the 1749 * range from the superior map, and then destroy the 1750 * submap (if desired). [Better yet, don't try it.] 1751 */ 1752 int 1753 vm_map_submap( 1754 vm_map_t map, 1755 vm_offset_t start, 1756 vm_offset_t end, 1757 vm_map_t submap) 1758 { 1759 vm_map_entry_t entry; 1760 int result = KERN_INVALID_ARGUMENT; 1761 1762 vm_map_lock(map); 1763 1764 VM_MAP_RANGE_CHECK(map, start, end); 1765 1766 if (vm_map_lookup_entry(map, start, &entry)) { 1767 vm_map_clip_start(map, entry, start); 1768 } else 1769 entry = entry->next; 1770 1771 vm_map_clip_end(map, entry, end); 1772 1773 if ((entry->start == start) && (entry->end == end) && 1774 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1775 (entry->object.vm_object == NULL)) { 1776 entry->object.sub_map = submap; 1777 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1778 result = KERN_SUCCESS; 1779 } 1780 vm_map_unlock(map); 1781 1782 return (result); 1783 } 1784 1785 /* 1786 * The maximum number of pages to map 1787 */ 1788 #define MAX_INIT_PT 96 1789 1790 /* 1791 * vm_map_pmap_enter: 1792 * 1793 * Preload read-only mappings for the given object's resident pages into 1794 * the given map. This eliminates the soft faults on process startup and 1795 * immediately after an mmap(2). Because these are speculative mappings, 1796 * cached pages are not reactivated and mapped. 1797 */ 1798 void 1799 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1800 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1801 { 1802 vm_offset_t start; 1803 vm_page_t p, p_start; 1804 vm_pindex_t psize, tmpidx; 1805 1806 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1807 return; 1808 VM_OBJECT_LOCK(object); 1809 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1810 pmap_object_init_pt(map->pmap, addr, object, pindex, size); 1811 goto unlock_return; 1812 } 1813 1814 psize = atop(size); 1815 1816 if ((flags & MAP_PREFAULT_PARTIAL) && psize > MAX_INIT_PT && 1817 object->resident_page_count > MAX_INIT_PT) 1818 goto unlock_return; 1819 1820 if (psize + pindex > object->size) { 1821 if (object->size < pindex) 1822 goto unlock_return; 1823 psize = object->size - pindex; 1824 } 1825 1826 start = 0; 1827 p_start = NULL; 1828 1829 p = vm_page_find_least(object, pindex); 1830 /* 1831 * Assert: the variable p is either (1) the page with the 1832 * least pindex greater than or equal to the parameter pindex 1833 * or (2) NULL. 1834 */ 1835 for (; 1836 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1837 p = TAILQ_NEXT(p, listq)) { 1838 /* 1839 * don't allow an madvise to blow away our really 1840 * free pages allocating pv entries. 1841 */ 1842 if ((flags & MAP_PREFAULT_MADVISE) && 1843 cnt.v_free_count < cnt.v_free_reserved) { 1844 psize = tmpidx; 1845 break; 1846 } 1847 if (p->valid == VM_PAGE_BITS_ALL) { 1848 if (p_start == NULL) { 1849 start = addr + ptoa(tmpidx); 1850 p_start = p; 1851 } 1852 } else if (p_start != NULL) { 1853 pmap_enter_object(map->pmap, start, addr + 1854 ptoa(tmpidx), p_start, prot); 1855 p_start = NULL; 1856 } 1857 } 1858 if (p_start != NULL) 1859 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1860 p_start, prot); 1861 unlock_return: 1862 VM_OBJECT_UNLOCK(object); 1863 } 1864 1865 /* 1866 * vm_map_protect: 1867 * 1868 * Sets the protection of the specified address 1869 * region in the target map. If "set_max" is 1870 * specified, the maximum protection is to be set; 1871 * otherwise, only the current protection is affected. 1872 */ 1873 int 1874 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1875 vm_prot_t new_prot, boolean_t set_max) 1876 { 1877 vm_map_entry_t current, entry; 1878 vm_object_t obj; 1879 struct ucred *cred; 1880 vm_prot_t old_prot; 1881 1882 vm_map_lock(map); 1883 1884 VM_MAP_RANGE_CHECK(map, start, end); 1885 1886 if (vm_map_lookup_entry(map, start, &entry)) { 1887 vm_map_clip_start(map, entry, start); 1888 } else { 1889 entry = entry->next; 1890 } 1891 1892 /* 1893 * Make a first pass to check for protection violations. 1894 */ 1895 current = entry; 1896 while ((current != &map->header) && (current->start < end)) { 1897 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1898 vm_map_unlock(map); 1899 return (KERN_INVALID_ARGUMENT); 1900 } 1901 if ((new_prot & current->max_protection) != new_prot) { 1902 vm_map_unlock(map); 1903 return (KERN_PROTECTION_FAILURE); 1904 } 1905 current = current->next; 1906 } 1907 1908 1909 /* 1910 * Do an accounting pass for private read-only mappings that 1911 * now will do cow due to allowed write (e.g. debugger sets 1912 * breakpoint on text segment) 1913 */ 1914 for (current = entry; (current != &map->header) && 1915 (current->start < end); current = current->next) { 1916 1917 vm_map_clip_end(map, current, end); 1918 1919 if (set_max || 1920 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1921 ENTRY_CHARGED(current)) { 1922 continue; 1923 } 1924 1925 cred = curthread->td_ucred; 1926 obj = current->object.vm_object; 1927 1928 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1929 if (!swap_reserve(current->end - current->start)) { 1930 vm_map_unlock(map); 1931 return (KERN_RESOURCE_SHORTAGE); 1932 } 1933 crhold(cred); 1934 current->cred = cred; 1935 continue; 1936 } 1937 1938 VM_OBJECT_LOCK(obj); 1939 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1940 VM_OBJECT_UNLOCK(obj); 1941 continue; 1942 } 1943 1944 /* 1945 * Charge for the whole object allocation now, since 1946 * we cannot distinguish between non-charged and 1947 * charged clipped mapping of the same object later. 1948 */ 1949 KASSERT(obj->charge == 0, 1950 ("vm_map_protect: object %p overcharged\n", obj)); 1951 if (!swap_reserve(ptoa(obj->size))) { 1952 VM_OBJECT_UNLOCK(obj); 1953 vm_map_unlock(map); 1954 return (KERN_RESOURCE_SHORTAGE); 1955 } 1956 1957 crhold(cred); 1958 obj->cred = cred; 1959 obj->charge = ptoa(obj->size); 1960 VM_OBJECT_UNLOCK(obj); 1961 } 1962 1963 /* 1964 * Go back and fix up protections. [Note that clipping is not 1965 * necessary the second time.] 1966 */ 1967 current = entry; 1968 while ((current != &map->header) && (current->start < end)) { 1969 old_prot = current->protection; 1970 1971 if (set_max) 1972 current->protection = 1973 (current->max_protection = new_prot) & 1974 old_prot; 1975 else 1976 current->protection = new_prot; 1977 1978 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1979 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1980 (current->protection & VM_PROT_WRITE) != 0 && 1981 (old_prot & VM_PROT_WRITE) == 0) { 1982 vm_fault_copy_entry(map, map, current, current, NULL); 1983 } 1984 1985 /* 1986 * When restricting access, update the physical map. Worry 1987 * about copy-on-write here. 1988 */ 1989 if ((old_prot & ~current->protection) != 0) { 1990 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1991 VM_PROT_ALL) 1992 pmap_protect(map->pmap, current->start, 1993 current->end, 1994 current->protection & MASK(current)); 1995 #undef MASK 1996 } 1997 vm_map_simplify_entry(map, current); 1998 current = current->next; 1999 } 2000 vm_map_unlock(map); 2001 return (KERN_SUCCESS); 2002 } 2003 2004 /* 2005 * vm_map_madvise: 2006 * 2007 * This routine traverses a processes map handling the madvise 2008 * system call. Advisories are classified as either those effecting 2009 * the vm_map_entry structure, or those effecting the underlying 2010 * objects. 2011 */ 2012 int 2013 vm_map_madvise( 2014 vm_map_t map, 2015 vm_offset_t start, 2016 vm_offset_t end, 2017 int behav) 2018 { 2019 vm_map_entry_t current, entry; 2020 int modify_map = 0; 2021 2022 /* 2023 * Some madvise calls directly modify the vm_map_entry, in which case 2024 * we need to use an exclusive lock on the map and we need to perform 2025 * various clipping operations. Otherwise we only need a read-lock 2026 * on the map. 2027 */ 2028 switch(behav) { 2029 case MADV_NORMAL: 2030 case MADV_SEQUENTIAL: 2031 case MADV_RANDOM: 2032 case MADV_NOSYNC: 2033 case MADV_AUTOSYNC: 2034 case MADV_NOCORE: 2035 case MADV_CORE: 2036 modify_map = 1; 2037 vm_map_lock(map); 2038 break; 2039 case MADV_WILLNEED: 2040 case MADV_DONTNEED: 2041 case MADV_FREE: 2042 vm_map_lock_read(map); 2043 break; 2044 default: 2045 return (KERN_INVALID_ARGUMENT); 2046 } 2047 2048 /* 2049 * Locate starting entry and clip if necessary. 2050 */ 2051 VM_MAP_RANGE_CHECK(map, start, end); 2052 2053 if (vm_map_lookup_entry(map, start, &entry)) { 2054 if (modify_map) 2055 vm_map_clip_start(map, entry, start); 2056 } else { 2057 entry = entry->next; 2058 } 2059 2060 if (modify_map) { 2061 /* 2062 * madvise behaviors that are implemented in the vm_map_entry. 2063 * 2064 * We clip the vm_map_entry so that behavioral changes are 2065 * limited to the specified address range. 2066 */ 2067 for (current = entry; 2068 (current != &map->header) && (current->start < end); 2069 current = current->next 2070 ) { 2071 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2072 continue; 2073 2074 vm_map_clip_end(map, current, end); 2075 2076 switch (behav) { 2077 case MADV_NORMAL: 2078 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2079 break; 2080 case MADV_SEQUENTIAL: 2081 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2082 break; 2083 case MADV_RANDOM: 2084 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2085 break; 2086 case MADV_NOSYNC: 2087 current->eflags |= MAP_ENTRY_NOSYNC; 2088 break; 2089 case MADV_AUTOSYNC: 2090 current->eflags &= ~MAP_ENTRY_NOSYNC; 2091 break; 2092 case MADV_NOCORE: 2093 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2094 break; 2095 case MADV_CORE: 2096 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2097 break; 2098 default: 2099 break; 2100 } 2101 vm_map_simplify_entry(map, current); 2102 } 2103 vm_map_unlock(map); 2104 } else { 2105 vm_pindex_t pstart, pend; 2106 2107 /* 2108 * madvise behaviors that are implemented in the underlying 2109 * vm_object. 2110 * 2111 * Since we don't clip the vm_map_entry, we have to clip 2112 * the vm_object pindex and count. 2113 */ 2114 for (current = entry; 2115 (current != &map->header) && (current->start < end); 2116 current = current->next 2117 ) { 2118 vm_offset_t useStart; 2119 2120 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2121 continue; 2122 2123 pstart = OFF_TO_IDX(current->offset); 2124 pend = pstart + atop(current->end - current->start); 2125 useStart = current->start; 2126 2127 if (current->start < start) { 2128 pstart += atop(start - current->start); 2129 useStart = start; 2130 } 2131 if (current->end > end) 2132 pend -= atop(current->end - end); 2133 2134 if (pstart >= pend) 2135 continue; 2136 2137 vm_object_madvise(current->object.vm_object, pstart, 2138 pend, behav); 2139 if (behav == MADV_WILLNEED) { 2140 vm_map_pmap_enter(map, 2141 useStart, 2142 current->protection, 2143 current->object.vm_object, 2144 pstart, 2145 ptoa(pend - pstart), 2146 MAP_PREFAULT_MADVISE 2147 ); 2148 } 2149 } 2150 vm_map_unlock_read(map); 2151 } 2152 return (0); 2153 } 2154 2155 2156 /* 2157 * vm_map_inherit: 2158 * 2159 * Sets the inheritance of the specified address 2160 * range in the target map. Inheritance 2161 * affects how the map will be shared with 2162 * child maps at the time of vmspace_fork. 2163 */ 2164 int 2165 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2166 vm_inherit_t new_inheritance) 2167 { 2168 vm_map_entry_t entry; 2169 vm_map_entry_t temp_entry; 2170 2171 switch (new_inheritance) { 2172 case VM_INHERIT_NONE: 2173 case VM_INHERIT_COPY: 2174 case VM_INHERIT_SHARE: 2175 break; 2176 default: 2177 return (KERN_INVALID_ARGUMENT); 2178 } 2179 vm_map_lock(map); 2180 VM_MAP_RANGE_CHECK(map, start, end); 2181 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2182 entry = temp_entry; 2183 vm_map_clip_start(map, entry, start); 2184 } else 2185 entry = temp_entry->next; 2186 while ((entry != &map->header) && (entry->start < end)) { 2187 vm_map_clip_end(map, entry, end); 2188 entry->inheritance = new_inheritance; 2189 vm_map_simplify_entry(map, entry); 2190 entry = entry->next; 2191 } 2192 vm_map_unlock(map); 2193 return (KERN_SUCCESS); 2194 } 2195 2196 /* 2197 * vm_map_unwire: 2198 * 2199 * Implements both kernel and user unwiring. 2200 */ 2201 int 2202 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2203 int flags) 2204 { 2205 vm_map_entry_t entry, first_entry, tmp_entry; 2206 vm_offset_t saved_start; 2207 unsigned int last_timestamp; 2208 int rv; 2209 boolean_t need_wakeup, result, user_unwire; 2210 2211 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2212 vm_map_lock(map); 2213 VM_MAP_RANGE_CHECK(map, start, end); 2214 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2215 if (flags & VM_MAP_WIRE_HOLESOK) 2216 first_entry = first_entry->next; 2217 else { 2218 vm_map_unlock(map); 2219 return (KERN_INVALID_ADDRESS); 2220 } 2221 } 2222 last_timestamp = map->timestamp; 2223 entry = first_entry; 2224 while (entry != &map->header && entry->start < end) { 2225 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2226 /* 2227 * We have not yet clipped the entry. 2228 */ 2229 saved_start = (start >= entry->start) ? start : 2230 entry->start; 2231 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2232 if (vm_map_unlock_and_wait(map, 0)) { 2233 /* 2234 * Allow interruption of user unwiring? 2235 */ 2236 } 2237 vm_map_lock(map); 2238 if (last_timestamp+1 != map->timestamp) { 2239 /* 2240 * Look again for the entry because the map was 2241 * modified while it was unlocked. 2242 * Specifically, the entry may have been 2243 * clipped, merged, or deleted. 2244 */ 2245 if (!vm_map_lookup_entry(map, saved_start, 2246 &tmp_entry)) { 2247 if (flags & VM_MAP_WIRE_HOLESOK) 2248 tmp_entry = tmp_entry->next; 2249 else { 2250 if (saved_start == start) { 2251 /* 2252 * First_entry has been deleted. 2253 */ 2254 vm_map_unlock(map); 2255 return (KERN_INVALID_ADDRESS); 2256 } 2257 end = saved_start; 2258 rv = KERN_INVALID_ADDRESS; 2259 goto done; 2260 } 2261 } 2262 if (entry == first_entry) 2263 first_entry = tmp_entry; 2264 else 2265 first_entry = NULL; 2266 entry = tmp_entry; 2267 } 2268 last_timestamp = map->timestamp; 2269 continue; 2270 } 2271 vm_map_clip_start(map, entry, start); 2272 vm_map_clip_end(map, entry, end); 2273 /* 2274 * Mark the entry in case the map lock is released. (See 2275 * above.) 2276 */ 2277 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2278 /* 2279 * Check the map for holes in the specified region. 2280 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2281 */ 2282 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2283 (entry->end < end && (entry->next == &map->header || 2284 entry->next->start > entry->end))) { 2285 end = entry->end; 2286 rv = KERN_INVALID_ADDRESS; 2287 goto done; 2288 } 2289 /* 2290 * If system unwiring, require that the entry is system wired. 2291 */ 2292 if (!user_unwire && 2293 vm_map_entry_system_wired_count(entry) == 0) { 2294 end = entry->end; 2295 rv = KERN_INVALID_ARGUMENT; 2296 goto done; 2297 } 2298 entry = entry->next; 2299 } 2300 rv = KERN_SUCCESS; 2301 done: 2302 need_wakeup = FALSE; 2303 if (first_entry == NULL) { 2304 result = vm_map_lookup_entry(map, start, &first_entry); 2305 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2306 first_entry = first_entry->next; 2307 else 2308 KASSERT(result, ("vm_map_unwire: lookup failed")); 2309 } 2310 entry = first_entry; 2311 while (entry != &map->header && entry->start < end) { 2312 if (rv == KERN_SUCCESS && (!user_unwire || 2313 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2314 if (user_unwire) 2315 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2316 entry->wired_count--; 2317 if (entry->wired_count == 0) { 2318 /* 2319 * Retain the map lock. 2320 */ 2321 vm_fault_unwire(map, entry->start, entry->end, 2322 entry->object.vm_object != NULL && 2323 (entry->object.vm_object->type == OBJT_DEVICE || 2324 entry->object.vm_object->type == OBJT_SG)); 2325 } 2326 } 2327 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2328 ("vm_map_unwire: in-transition flag missing")); 2329 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2330 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2331 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2332 need_wakeup = TRUE; 2333 } 2334 vm_map_simplify_entry(map, entry); 2335 entry = entry->next; 2336 } 2337 vm_map_unlock(map); 2338 if (need_wakeup) 2339 vm_map_wakeup(map); 2340 return (rv); 2341 } 2342 2343 /* 2344 * vm_map_wire: 2345 * 2346 * Implements both kernel and user wiring. 2347 */ 2348 int 2349 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2350 int flags) 2351 { 2352 vm_map_entry_t entry, first_entry, tmp_entry; 2353 vm_offset_t saved_end, saved_start; 2354 unsigned int last_timestamp; 2355 int rv; 2356 boolean_t fictitious, need_wakeup, result, user_wire; 2357 vm_prot_t prot; 2358 2359 prot = 0; 2360 if (flags & VM_MAP_WIRE_WRITE) 2361 prot |= VM_PROT_WRITE; 2362 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2363 vm_map_lock(map); 2364 VM_MAP_RANGE_CHECK(map, start, end); 2365 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2366 if (flags & VM_MAP_WIRE_HOLESOK) 2367 first_entry = first_entry->next; 2368 else { 2369 vm_map_unlock(map); 2370 return (KERN_INVALID_ADDRESS); 2371 } 2372 } 2373 last_timestamp = map->timestamp; 2374 entry = first_entry; 2375 while (entry != &map->header && entry->start < end) { 2376 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2377 /* 2378 * We have not yet clipped the entry. 2379 */ 2380 saved_start = (start >= entry->start) ? start : 2381 entry->start; 2382 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2383 if (vm_map_unlock_and_wait(map, 0)) { 2384 /* 2385 * Allow interruption of user wiring? 2386 */ 2387 } 2388 vm_map_lock(map); 2389 if (last_timestamp + 1 != map->timestamp) { 2390 /* 2391 * Look again for the entry because the map was 2392 * modified while it was unlocked. 2393 * Specifically, the entry may have been 2394 * clipped, merged, or deleted. 2395 */ 2396 if (!vm_map_lookup_entry(map, saved_start, 2397 &tmp_entry)) { 2398 if (flags & VM_MAP_WIRE_HOLESOK) 2399 tmp_entry = tmp_entry->next; 2400 else { 2401 if (saved_start == start) { 2402 /* 2403 * first_entry has been deleted. 2404 */ 2405 vm_map_unlock(map); 2406 return (KERN_INVALID_ADDRESS); 2407 } 2408 end = saved_start; 2409 rv = KERN_INVALID_ADDRESS; 2410 goto done; 2411 } 2412 } 2413 if (entry == first_entry) 2414 first_entry = tmp_entry; 2415 else 2416 first_entry = NULL; 2417 entry = tmp_entry; 2418 } 2419 last_timestamp = map->timestamp; 2420 continue; 2421 } 2422 vm_map_clip_start(map, entry, start); 2423 vm_map_clip_end(map, entry, end); 2424 /* 2425 * Mark the entry in case the map lock is released. (See 2426 * above.) 2427 */ 2428 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2429 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2430 || (entry->protection & prot) != prot) { 2431 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2432 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2433 end = entry->end; 2434 rv = KERN_INVALID_ADDRESS; 2435 goto done; 2436 } 2437 goto next_entry; 2438 } 2439 if (entry->wired_count == 0) { 2440 entry->wired_count++; 2441 saved_start = entry->start; 2442 saved_end = entry->end; 2443 fictitious = entry->object.vm_object != NULL && 2444 (entry->object.vm_object->type == OBJT_DEVICE || 2445 entry->object.vm_object->type == OBJT_SG); 2446 /* 2447 * Release the map lock, relying on the in-transition 2448 * mark. Mark the map busy for fork. 2449 */ 2450 vm_map_busy(map); 2451 vm_map_unlock(map); 2452 rv = vm_fault_wire(map, saved_start, saved_end, 2453 fictitious); 2454 vm_map_lock(map); 2455 vm_map_unbusy(map); 2456 if (last_timestamp + 1 != map->timestamp) { 2457 /* 2458 * Look again for the entry because the map was 2459 * modified while it was unlocked. The entry 2460 * may have been clipped, but NOT merged or 2461 * deleted. 2462 */ 2463 result = vm_map_lookup_entry(map, saved_start, 2464 &tmp_entry); 2465 KASSERT(result, ("vm_map_wire: lookup failed")); 2466 if (entry == first_entry) 2467 first_entry = tmp_entry; 2468 else 2469 first_entry = NULL; 2470 entry = tmp_entry; 2471 while (entry->end < saved_end) { 2472 if (rv != KERN_SUCCESS) { 2473 KASSERT(entry->wired_count == 1, 2474 ("vm_map_wire: bad count")); 2475 entry->wired_count = -1; 2476 } 2477 entry = entry->next; 2478 } 2479 } 2480 last_timestamp = map->timestamp; 2481 if (rv != KERN_SUCCESS) { 2482 KASSERT(entry->wired_count == 1, 2483 ("vm_map_wire: bad count")); 2484 /* 2485 * Assign an out-of-range value to represent 2486 * the failure to wire this entry. 2487 */ 2488 entry->wired_count = -1; 2489 end = entry->end; 2490 goto done; 2491 } 2492 } else if (!user_wire || 2493 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2494 entry->wired_count++; 2495 } 2496 /* 2497 * Check the map for holes in the specified region. 2498 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2499 */ 2500 next_entry: 2501 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2502 (entry->end < end && (entry->next == &map->header || 2503 entry->next->start > entry->end))) { 2504 end = entry->end; 2505 rv = KERN_INVALID_ADDRESS; 2506 goto done; 2507 } 2508 entry = entry->next; 2509 } 2510 rv = KERN_SUCCESS; 2511 done: 2512 need_wakeup = FALSE; 2513 if (first_entry == NULL) { 2514 result = vm_map_lookup_entry(map, start, &first_entry); 2515 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2516 first_entry = first_entry->next; 2517 else 2518 KASSERT(result, ("vm_map_wire: lookup failed")); 2519 } 2520 entry = first_entry; 2521 while (entry != &map->header && entry->start < end) { 2522 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2523 goto next_entry_done; 2524 if (rv == KERN_SUCCESS) { 2525 if (user_wire) 2526 entry->eflags |= MAP_ENTRY_USER_WIRED; 2527 } else if (entry->wired_count == -1) { 2528 /* 2529 * Wiring failed on this entry. Thus, unwiring is 2530 * unnecessary. 2531 */ 2532 entry->wired_count = 0; 2533 } else { 2534 if (!user_wire || 2535 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2536 entry->wired_count--; 2537 if (entry->wired_count == 0) { 2538 /* 2539 * Retain the map lock. 2540 */ 2541 vm_fault_unwire(map, entry->start, entry->end, 2542 entry->object.vm_object != NULL && 2543 (entry->object.vm_object->type == OBJT_DEVICE || 2544 entry->object.vm_object->type == OBJT_SG)); 2545 } 2546 } 2547 next_entry_done: 2548 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2549 ("vm_map_wire: in-transition flag missing")); 2550 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED); 2551 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2552 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2553 need_wakeup = TRUE; 2554 } 2555 vm_map_simplify_entry(map, entry); 2556 entry = entry->next; 2557 } 2558 vm_map_unlock(map); 2559 if (need_wakeup) 2560 vm_map_wakeup(map); 2561 return (rv); 2562 } 2563 2564 /* 2565 * vm_map_sync 2566 * 2567 * Push any dirty cached pages in the address range to their pager. 2568 * If syncio is TRUE, dirty pages are written synchronously. 2569 * If invalidate is TRUE, any cached pages are freed as well. 2570 * 2571 * If the size of the region from start to end is zero, we are 2572 * supposed to flush all modified pages within the region containing 2573 * start. Unfortunately, a region can be split or coalesced with 2574 * neighboring regions, making it difficult to determine what the 2575 * original region was. Therefore, we approximate this requirement by 2576 * flushing the current region containing start. 2577 * 2578 * Returns an error if any part of the specified range is not mapped. 2579 */ 2580 int 2581 vm_map_sync( 2582 vm_map_t map, 2583 vm_offset_t start, 2584 vm_offset_t end, 2585 boolean_t syncio, 2586 boolean_t invalidate) 2587 { 2588 vm_map_entry_t current; 2589 vm_map_entry_t entry; 2590 vm_size_t size; 2591 vm_object_t object; 2592 vm_ooffset_t offset; 2593 unsigned int last_timestamp; 2594 boolean_t failed; 2595 2596 vm_map_lock_read(map); 2597 VM_MAP_RANGE_CHECK(map, start, end); 2598 if (!vm_map_lookup_entry(map, start, &entry)) { 2599 vm_map_unlock_read(map); 2600 return (KERN_INVALID_ADDRESS); 2601 } else if (start == end) { 2602 start = entry->start; 2603 end = entry->end; 2604 } 2605 /* 2606 * Make a first pass to check for user-wired memory and holes. 2607 */ 2608 for (current = entry; current != &map->header && current->start < end; 2609 current = current->next) { 2610 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2611 vm_map_unlock_read(map); 2612 return (KERN_INVALID_ARGUMENT); 2613 } 2614 if (end > current->end && 2615 (current->next == &map->header || 2616 current->end != current->next->start)) { 2617 vm_map_unlock_read(map); 2618 return (KERN_INVALID_ADDRESS); 2619 } 2620 } 2621 2622 if (invalidate) 2623 pmap_remove(map->pmap, start, end); 2624 failed = FALSE; 2625 2626 /* 2627 * Make a second pass, cleaning/uncaching pages from the indicated 2628 * objects as we go. 2629 */ 2630 for (current = entry; current != &map->header && current->start < end;) { 2631 offset = current->offset + (start - current->start); 2632 size = (end <= current->end ? end : current->end) - start; 2633 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2634 vm_map_t smap; 2635 vm_map_entry_t tentry; 2636 vm_size_t tsize; 2637 2638 smap = current->object.sub_map; 2639 vm_map_lock_read(smap); 2640 (void) vm_map_lookup_entry(smap, offset, &tentry); 2641 tsize = tentry->end - offset; 2642 if (tsize < size) 2643 size = tsize; 2644 object = tentry->object.vm_object; 2645 offset = tentry->offset + (offset - tentry->start); 2646 vm_map_unlock_read(smap); 2647 } else { 2648 object = current->object.vm_object; 2649 } 2650 vm_object_reference(object); 2651 last_timestamp = map->timestamp; 2652 vm_map_unlock_read(map); 2653 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2654 failed = TRUE; 2655 start += size; 2656 vm_object_deallocate(object); 2657 vm_map_lock_read(map); 2658 if (last_timestamp == map->timestamp || 2659 !vm_map_lookup_entry(map, start, ¤t)) 2660 current = current->next; 2661 } 2662 2663 vm_map_unlock_read(map); 2664 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2665 } 2666 2667 /* 2668 * vm_map_entry_unwire: [ internal use only ] 2669 * 2670 * Make the region specified by this entry pageable. 2671 * 2672 * The map in question should be locked. 2673 * [This is the reason for this routine's existence.] 2674 */ 2675 static void 2676 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2677 { 2678 vm_fault_unwire(map, entry->start, entry->end, 2679 entry->object.vm_object != NULL && 2680 (entry->object.vm_object->type == OBJT_DEVICE || 2681 entry->object.vm_object->type == OBJT_SG)); 2682 entry->wired_count = 0; 2683 } 2684 2685 static void 2686 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2687 { 2688 2689 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2690 vm_object_deallocate(entry->object.vm_object); 2691 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2692 } 2693 2694 /* 2695 * vm_map_entry_delete: [ internal use only ] 2696 * 2697 * Deallocate the given entry from the target map. 2698 */ 2699 static void 2700 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2701 { 2702 vm_object_t object; 2703 vm_pindex_t offidxstart, offidxend, count, size1; 2704 vm_ooffset_t size; 2705 2706 vm_map_entry_unlink(map, entry); 2707 object = entry->object.vm_object; 2708 size = entry->end - entry->start; 2709 map->size -= size; 2710 2711 if (entry->cred != NULL) { 2712 swap_release_by_cred(size, entry->cred); 2713 crfree(entry->cred); 2714 } 2715 2716 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2717 (object != NULL)) { 2718 KASSERT(entry->cred == NULL || object->cred == NULL || 2719 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2720 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2721 count = OFF_TO_IDX(size); 2722 offidxstart = OFF_TO_IDX(entry->offset); 2723 offidxend = offidxstart + count; 2724 VM_OBJECT_LOCK(object); 2725 if (object->ref_count != 1 && 2726 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2727 object == kernel_object || object == kmem_object)) { 2728 vm_object_collapse(object); 2729 2730 /* 2731 * The option OBJPR_NOTMAPPED can be passed here 2732 * because vm_map_delete() already performed 2733 * pmap_remove() on the only mapping to this range 2734 * of pages. 2735 */ 2736 vm_object_page_remove(object, offidxstart, offidxend, 2737 OBJPR_NOTMAPPED); 2738 if (object->type == OBJT_SWAP) 2739 swap_pager_freespace(object, offidxstart, count); 2740 if (offidxend >= object->size && 2741 offidxstart < object->size) { 2742 size1 = object->size; 2743 object->size = offidxstart; 2744 if (object->cred != NULL) { 2745 size1 -= object->size; 2746 KASSERT(object->charge >= ptoa(size1), 2747 ("vm_map_entry_delete: object->charge < 0")); 2748 swap_release_by_cred(ptoa(size1), object->cred); 2749 object->charge -= ptoa(size1); 2750 } 2751 } 2752 } 2753 VM_OBJECT_UNLOCK(object); 2754 } else 2755 entry->object.vm_object = NULL; 2756 if (map->system_map) 2757 vm_map_entry_deallocate(entry, TRUE); 2758 else { 2759 entry->next = curthread->td_map_def_user; 2760 curthread->td_map_def_user = entry; 2761 } 2762 } 2763 2764 /* 2765 * vm_map_delete: [ internal use only ] 2766 * 2767 * Deallocates the given address range from the target 2768 * map. 2769 */ 2770 int 2771 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2772 { 2773 vm_map_entry_t entry; 2774 vm_map_entry_t first_entry; 2775 2776 VM_MAP_ASSERT_LOCKED(map); 2777 2778 /* 2779 * Find the start of the region, and clip it 2780 */ 2781 if (!vm_map_lookup_entry(map, start, &first_entry)) 2782 entry = first_entry->next; 2783 else { 2784 entry = first_entry; 2785 vm_map_clip_start(map, entry, start); 2786 } 2787 2788 /* 2789 * Step through all entries in this region 2790 */ 2791 while ((entry != &map->header) && (entry->start < end)) { 2792 vm_map_entry_t next; 2793 2794 /* 2795 * Wait for wiring or unwiring of an entry to complete. 2796 * Also wait for any system wirings to disappear on 2797 * user maps. 2798 */ 2799 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2800 (vm_map_pmap(map) != kernel_pmap && 2801 vm_map_entry_system_wired_count(entry) != 0)) { 2802 unsigned int last_timestamp; 2803 vm_offset_t saved_start; 2804 vm_map_entry_t tmp_entry; 2805 2806 saved_start = entry->start; 2807 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2808 last_timestamp = map->timestamp; 2809 (void) vm_map_unlock_and_wait(map, 0); 2810 vm_map_lock(map); 2811 if (last_timestamp + 1 != map->timestamp) { 2812 /* 2813 * Look again for the entry because the map was 2814 * modified while it was unlocked. 2815 * Specifically, the entry may have been 2816 * clipped, merged, or deleted. 2817 */ 2818 if (!vm_map_lookup_entry(map, saved_start, 2819 &tmp_entry)) 2820 entry = tmp_entry->next; 2821 else { 2822 entry = tmp_entry; 2823 vm_map_clip_start(map, entry, 2824 saved_start); 2825 } 2826 } 2827 continue; 2828 } 2829 vm_map_clip_end(map, entry, end); 2830 2831 next = entry->next; 2832 2833 /* 2834 * Unwire before removing addresses from the pmap; otherwise, 2835 * unwiring will put the entries back in the pmap. 2836 */ 2837 if (entry->wired_count != 0) { 2838 vm_map_entry_unwire(map, entry); 2839 } 2840 2841 pmap_remove(map->pmap, entry->start, entry->end); 2842 2843 /* 2844 * Delete the entry only after removing all pmap 2845 * entries pointing to its pages. (Otherwise, its 2846 * page frames may be reallocated, and any modify bits 2847 * will be set in the wrong object!) 2848 */ 2849 vm_map_entry_delete(map, entry); 2850 entry = next; 2851 } 2852 return (KERN_SUCCESS); 2853 } 2854 2855 /* 2856 * vm_map_remove: 2857 * 2858 * Remove the given address range from the target map. 2859 * This is the exported form of vm_map_delete. 2860 */ 2861 int 2862 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2863 { 2864 int result; 2865 2866 vm_map_lock(map); 2867 VM_MAP_RANGE_CHECK(map, start, end); 2868 result = vm_map_delete(map, start, end); 2869 vm_map_unlock(map); 2870 return (result); 2871 } 2872 2873 /* 2874 * vm_map_check_protection: 2875 * 2876 * Assert that the target map allows the specified privilege on the 2877 * entire address region given. The entire region must be allocated. 2878 * 2879 * WARNING! This code does not and should not check whether the 2880 * contents of the region is accessible. For example a smaller file 2881 * might be mapped into a larger address space. 2882 * 2883 * NOTE! This code is also called by munmap(). 2884 * 2885 * The map must be locked. A read lock is sufficient. 2886 */ 2887 boolean_t 2888 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2889 vm_prot_t protection) 2890 { 2891 vm_map_entry_t entry; 2892 vm_map_entry_t tmp_entry; 2893 2894 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2895 return (FALSE); 2896 entry = tmp_entry; 2897 2898 while (start < end) { 2899 if (entry == &map->header) 2900 return (FALSE); 2901 /* 2902 * No holes allowed! 2903 */ 2904 if (start < entry->start) 2905 return (FALSE); 2906 /* 2907 * Check protection associated with entry. 2908 */ 2909 if ((entry->protection & protection) != protection) 2910 return (FALSE); 2911 /* go to next entry */ 2912 start = entry->end; 2913 entry = entry->next; 2914 } 2915 return (TRUE); 2916 } 2917 2918 /* 2919 * vm_map_copy_entry: 2920 * 2921 * Copies the contents of the source entry to the destination 2922 * entry. The entries *must* be aligned properly. 2923 */ 2924 static void 2925 vm_map_copy_entry( 2926 vm_map_t src_map, 2927 vm_map_t dst_map, 2928 vm_map_entry_t src_entry, 2929 vm_map_entry_t dst_entry, 2930 vm_ooffset_t *fork_charge) 2931 { 2932 vm_object_t src_object; 2933 vm_map_entry_t fake_entry; 2934 vm_offset_t size; 2935 struct ucred *cred; 2936 int charged; 2937 2938 VM_MAP_ASSERT_LOCKED(dst_map); 2939 2940 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2941 return; 2942 2943 if (src_entry->wired_count == 0) { 2944 2945 /* 2946 * If the source entry is marked needs_copy, it is already 2947 * write-protected. 2948 */ 2949 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2950 pmap_protect(src_map->pmap, 2951 src_entry->start, 2952 src_entry->end, 2953 src_entry->protection & ~VM_PROT_WRITE); 2954 } 2955 2956 /* 2957 * Make a copy of the object. 2958 */ 2959 size = src_entry->end - src_entry->start; 2960 if ((src_object = src_entry->object.vm_object) != NULL) { 2961 VM_OBJECT_LOCK(src_object); 2962 charged = ENTRY_CHARGED(src_entry); 2963 if ((src_object->handle == NULL) && 2964 (src_object->type == OBJT_DEFAULT || 2965 src_object->type == OBJT_SWAP)) { 2966 vm_object_collapse(src_object); 2967 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2968 vm_object_split(src_entry); 2969 src_object = src_entry->object.vm_object; 2970 } 2971 } 2972 vm_object_reference_locked(src_object); 2973 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2974 if (src_entry->cred != NULL && 2975 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 2976 KASSERT(src_object->cred == NULL, 2977 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 2978 src_object)); 2979 src_object->cred = src_entry->cred; 2980 src_object->charge = size; 2981 } 2982 VM_OBJECT_UNLOCK(src_object); 2983 dst_entry->object.vm_object = src_object; 2984 if (charged) { 2985 cred = curthread->td_ucred; 2986 crhold(cred); 2987 dst_entry->cred = cred; 2988 *fork_charge += size; 2989 if (!(src_entry->eflags & 2990 MAP_ENTRY_NEEDS_COPY)) { 2991 crhold(cred); 2992 src_entry->cred = cred; 2993 *fork_charge += size; 2994 } 2995 } 2996 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2997 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2998 dst_entry->offset = src_entry->offset; 2999 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3000 /* 3001 * MAP_ENTRY_VN_WRITECNT cannot 3002 * indicate write reference from 3003 * src_entry, since the entry is 3004 * marked as needs copy. Allocate a 3005 * fake entry that is used to 3006 * decrement object->un_pager.vnp.writecount 3007 * at the appropriate time. Attach 3008 * fake_entry to the deferred list. 3009 */ 3010 fake_entry = vm_map_entry_create(dst_map); 3011 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3012 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3013 vm_object_reference(src_object); 3014 fake_entry->object.vm_object = src_object; 3015 fake_entry->start = src_entry->start; 3016 fake_entry->end = src_entry->end; 3017 fake_entry->next = curthread->td_map_def_user; 3018 curthread->td_map_def_user = fake_entry; 3019 } 3020 } else { 3021 dst_entry->object.vm_object = NULL; 3022 dst_entry->offset = 0; 3023 if (src_entry->cred != NULL) { 3024 dst_entry->cred = curthread->td_ucred; 3025 crhold(dst_entry->cred); 3026 *fork_charge += size; 3027 } 3028 } 3029 3030 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3031 dst_entry->end - dst_entry->start, src_entry->start); 3032 } else { 3033 /* 3034 * Of course, wired down pages can't be set copy-on-write. 3035 * Cause wired pages to be copied into the new map by 3036 * simulating faults (the new pages are pageable) 3037 */ 3038 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3039 fork_charge); 3040 } 3041 } 3042 3043 /* 3044 * vmspace_map_entry_forked: 3045 * Update the newly-forked vmspace each time a map entry is inherited 3046 * or copied. The values for vm_dsize and vm_tsize are approximate 3047 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3048 */ 3049 static void 3050 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3051 vm_map_entry_t entry) 3052 { 3053 vm_size_t entrysize; 3054 vm_offset_t newend; 3055 3056 entrysize = entry->end - entry->start; 3057 vm2->vm_map.size += entrysize; 3058 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3059 vm2->vm_ssize += btoc(entrysize); 3060 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3061 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3062 newend = MIN(entry->end, 3063 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3064 vm2->vm_dsize += btoc(newend - entry->start); 3065 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3066 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3067 newend = MIN(entry->end, 3068 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3069 vm2->vm_tsize += btoc(newend - entry->start); 3070 } 3071 } 3072 3073 /* 3074 * vmspace_fork: 3075 * Create a new process vmspace structure and vm_map 3076 * based on those of an existing process. The new map 3077 * is based on the old map, according to the inheritance 3078 * values on the regions in that map. 3079 * 3080 * XXX It might be worth coalescing the entries added to the new vmspace. 3081 * 3082 * The source map must not be locked. 3083 */ 3084 struct vmspace * 3085 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3086 { 3087 struct vmspace *vm2; 3088 vm_map_t new_map, old_map; 3089 vm_map_entry_t new_entry, old_entry; 3090 vm_object_t object; 3091 int locked; 3092 3093 old_map = &vm1->vm_map; 3094 /* Copy immutable fields of vm1 to vm2. */ 3095 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3096 if (vm2 == NULL) 3097 return (NULL); 3098 vm2->vm_taddr = vm1->vm_taddr; 3099 vm2->vm_daddr = vm1->vm_daddr; 3100 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3101 vm_map_lock(old_map); 3102 if (old_map->busy) 3103 vm_map_wait_busy(old_map); 3104 new_map = &vm2->vm_map; 3105 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3106 KASSERT(locked, ("vmspace_fork: lock failed")); 3107 3108 old_entry = old_map->header.next; 3109 3110 while (old_entry != &old_map->header) { 3111 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3112 panic("vm_map_fork: encountered a submap"); 3113 3114 switch (old_entry->inheritance) { 3115 case VM_INHERIT_NONE: 3116 break; 3117 3118 case VM_INHERIT_SHARE: 3119 /* 3120 * Clone the entry, creating the shared object if necessary. 3121 */ 3122 object = old_entry->object.vm_object; 3123 if (object == NULL) { 3124 object = vm_object_allocate(OBJT_DEFAULT, 3125 atop(old_entry->end - old_entry->start)); 3126 old_entry->object.vm_object = object; 3127 old_entry->offset = 0; 3128 if (old_entry->cred != NULL) { 3129 object->cred = old_entry->cred; 3130 object->charge = old_entry->end - 3131 old_entry->start; 3132 old_entry->cred = NULL; 3133 } 3134 } 3135 3136 /* 3137 * Add the reference before calling vm_object_shadow 3138 * to insure that a shadow object is created. 3139 */ 3140 vm_object_reference(object); 3141 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3142 vm_object_shadow(&old_entry->object.vm_object, 3143 &old_entry->offset, 3144 old_entry->end - old_entry->start); 3145 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3146 /* Transfer the second reference too. */ 3147 vm_object_reference( 3148 old_entry->object.vm_object); 3149 3150 /* 3151 * As in vm_map_simplify_entry(), the 3152 * vnode lock will not be acquired in 3153 * this call to vm_object_deallocate(). 3154 */ 3155 vm_object_deallocate(object); 3156 object = old_entry->object.vm_object; 3157 } 3158 VM_OBJECT_LOCK(object); 3159 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3160 if (old_entry->cred != NULL) { 3161 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3162 object->cred = old_entry->cred; 3163 object->charge = old_entry->end - old_entry->start; 3164 old_entry->cred = NULL; 3165 } 3166 VM_OBJECT_UNLOCK(object); 3167 3168 /* 3169 * Clone the entry, referencing the shared object. 3170 */ 3171 new_entry = vm_map_entry_create(new_map); 3172 *new_entry = *old_entry; 3173 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3174 MAP_ENTRY_IN_TRANSITION); 3175 new_entry->wired_count = 0; 3176 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3177 object = new_entry->object.vm_object; 3178 KASSERT(((struct vnode *)object->handle)-> 3179 v_writecount > 0, 3180 ("vmspace_fork: v_writecount")); 3181 KASSERT(object->un_pager.vnp.writemappings > 0, 3182 ("vmspace_fork: vnp.writecount")); 3183 vnode_pager_update_writecount(object, 3184 new_entry->start, new_entry->end); 3185 } 3186 3187 /* 3188 * Insert the entry into the new map -- we know we're 3189 * inserting at the end of the new map. 3190 */ 3191 vm_map_entry_link(new_map, new_map->header.prev, 3192 new_entry); 3193 vmspace_map_entry_forked(vm1, vm2, new_entry); 3194 3195 /* 3196 * Update the physical map 3197 */ 3198 pmap_copy(new_map->pmap, old_map->pmap, 3199 new_entry->start, 3200 (old_entry->end - old_entry->start), 3201 old_entry->start); 3202 break; 3203 3204 case VM_INHERIT_COPY: 3205 /* 3206 * Clone the entry and link into the map. 3207 */ 3208 new_entry = vm_map_entry_create(new_map); 3209 *new_entry = *old_entry; 3210 /* 3211 * Copied entry is COW over the old object. 3212 */ 3213 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3214 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3215 new_entry->wired_count = 0; 3216 new_entry->object.vm_object = NULL; 3217 new_entry->cred = NULL; 3218 vm_map_entry_link(new_map, new_map->header.prev, 3219 new_entry); 3220 vmspace_map_entry_forked(vm1, vm2, new_entry); 3221 vm_map_copy_entry(old_map, new_map, old_entry, 3222 new_entry, fork_charge); 3223 break; 3224 } 3225 old_entry = old_entry->next; 3226 } 3227 /* 3228 * Use inlined vm_map_unlock() to postpone handling the deferred 3229 * map entries, which cannot be done until both old_map and 3230 * new_map locks are released. 3231 */ 3232 sx_xunlock(&old_map->lock); 3233 sx_xunlock(&new_map->lock); 3234 vm_map_process_deferred(); 3235 3236 return (vm2); 3237 } 3238 3239 int 3240 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3241 vm_prot_t prot, vm_prot_t max, int cow) 3242 { 3243 vm_map_entry_t new_entry, prev_entry; 3244 vm_offset_t bot, top; 3245 vm_size_t init_ssize; 3246 int orient, rv; 3247 rlim_t vmemlim; 3248 3249 /* 3250 * The stack orientation is piggybacked with the cow argument. 3251 * Extract it into orient and mask the cow argument so that we 3252 * don't pass it around further. 3253 * NOTE: We explicitly allow bi-directional stacks. 3254 */ 3255 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3256 cow &= ~orient; 3257 KASSERT(orient != 0, ("No stack grow direction")); 3258 3259 if (addrbos < vm_map_min(map) || 3260 addrbos > vm_map_max(map) || 3261 addrbos + max_ssize < addrbos) 3262 return (KERN_NO_SPACE); 3263 3264 init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz; 3265 3266 PROC_LOCK(curthread->td_proc); 3267 vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM); 3268 PROC_UNLOCK(curthread->td_proc); 3269 3270 vm_map_lock(map); 3271 3272 /* If addr is already mapped, no go */ 3273 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3274 vm_map_unlock(map); 3275 return (KERN_NO_SPACE); 3276 } 3277 3278 /* If we would blow our VMEM resource limit, no go */ 3279 if (map->size + init_ssize > vmemlim) { 3280 vm_map_unlock(map); 3281 return (KERN_NO_SPACE); 3282 } 3283 3284 /* 3285 * If we can't accomodate max_ssize in the current mapping, no go. 3286 * However, we need to be aware that subsequent user mappings might 3287 * map into the space we have reserved for stack, and currently this 3288 * space is not protected. 3289 * 3290 * Hopefully we will at least detect this condition when we try to 3291 * grow the stack. 3292 */ 3293 if ((prev_entry->next != &map->header) && 3294 (prev_entry->next->start < addrbos + max_ssize)) { 3295 vm_map_unlock(map); 3296 return (KERN_NO_SPACE); 3297 } 3298 3299 /* 3300 * We initially map a stack of only init_ssize. We will grow as 3301 * needed later. Depending on the orientation of the stack (i.e. 3302 * the grow direction) we either map at the top of the range, the 3303 * bottom of the range or in the middle. 3304 * 3305 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3306 * and cow to be 0. Possibly we should eliminate these as input 3307 * parameters, and just pass these values here in the insert call. 3308 */ 3309 if (orient == MAP_STACK_GROWS_DOWN) 3310 bot = addrbos + max_ssize - init_ssize; 3311 else if (orient == MAP_STACK_GROWS_UP) 3312 bot = addrbos; 3313 else 3314 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3315 top = bot + init_ssize; 3316 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3317 3318 /* Now set the avail_ssize amount. */ 3319 if (rv == KERN_SUCCESS) { 3320 if (prev_entry != &map->header) 3321 vm_map_clip_end(map, prev_entry, bot); 3322 new_entry = prev_entry->next; 3323 if (new_entry->end != top || new_entry->start != bot) 3324 panic("Bad entry start/end for new stack entry"); 3325 3326 new_entry->avail_ssize = max_ssize - init_ssize; 3327 if (orient & MAP_STACK_GROWS_DOWN) 3328 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3329 if (orient & MAP_STACK_GROWS_UP) 3330 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3331 } 3332 3333 vm_map_unlock(map); 3334 return (rv); 3335 } 3336 3337 static int stack_guard_page = 0; 3338 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3339 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3340 &stack_guard_page, 0, 3341 "Insert stack guard page ahead of the growable segments."); 3342 3343 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3344 * desired address is already mapped, or if we successfully grow 3345 * the stack. Also returns KERN_SUCCESS if addr is outside the 3346 * stack range (this is strange, but preserves compatibility with 3347 * the grow function in vm_machdep.c). 3348 */ 3349 int 3350 vm_map_growstack(struct proc *p, vm_offset_t addr) 3351 { 3352 vm_map_entry_t next_entry, prev_entry; 3353 vm_map_entry_t new_entry, stack_entry; 3354 struct vmspace *vm = p->p_vmspace; 3355 vm_map_t map = &vm->vm_map; 3356 vm_offset_t end; 3357 size_t grow_amount, max_grow; 3358 rlim_t stacklim, vmemlim; 3359 int is_procstack, rv; 3360 struct ucred *cred; 3361 #ifdef notyet 3362 uint64_t limit; 3363 #endif 3364 #ifdef RACCT 3365 int error; 3366 #endif 3367 3368 Retry: 3369 PROC_LOCK(p); 3370 stacklim = lim_cur(p, RLIMIT_STACK); 3371 vmemlim = lim_cur(p, RLIMIT_VMEM); 3372 PROC_UNLOCK(p); 3373 3374 vm_map_lock_read(map); 3375 3376 /* If addr is already in the entry range, no need to grow.*/ 3377 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3378 vm_map_unlock_read(map); 3379 return (KERN_SUCCESS); 3380 } 3381 3382 next_entry = prev_entry->next; 3383 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3384 /* 3385 * This entry does not grow upwards. Since the address lies 3386 * beyond this entry, the next entry (if one exists) has to 3387 * be a downward growable entry. The entry list header is 3388 * never a growable entry, so it suffices to check the flags. 3389 */ 3390 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3391 vm_map_unlock_read(map); 3392 return (KERN_SUCCESS); 3393 } 3394 stack_entry = next_entry; 3395 } else { 3396 /* 3397 * This entry grows upward. If the next entry does not at 3398 * least grow downwards, this is the entry we need to grow. 3399 * otherwise we have two possible choices and we have to 3400 * select one. 3401 */ 3402 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3403 /* 3404 * We have two choices; grow the entry closest to 3405 * the address to minimize the amount of growth. 3406 */ 3407 if (addr - prev_entry->end <= next_entry->start - addr) 3408 stack_entry = prev_entry; 3409 else 3410 stack_entry = next_entry; 3411 } else 3412 stack_entry = prev_entry; 3413 } 3414 3415 if (stack_entry == next_entry) { 3416 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3417 KASSERT(addr < stack_entry->start, ("foo")); 3418 end = (prev_entry != &map->header) ? prev_entry->end : 3419 stack_entry->start - stack_entry->avail_ssize; 3420 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3421 max_grow = stack_entry->start - end; 3422 } else { 3423 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3424 KASSERT(addr >= stack_entry->end, ("foo")); 3425 end = (next_entry != &map->header) ? next_entry->start : 3426 stack_entry->end + stack_entry->avail_ssize; 3427 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3428 max_grow = end - stack_entry->end; 3429 } 3430 3431 if (grow_amount > stack_entry->avail_ssize) { 3432 vm_map_unlock_read(map); 3433 return (KERN_NO_SPACE); 3434 } 3435 3436 /* 3437 * If there is no longer enough space between the entries nogo, and 3438 * adjust the available space. Note: this should only happen if the 3439 * user has mapped into the stack area after the stack was created, 3440 * and is probably an error. 3441 * 3442 * This also effectively destroys any guard page the user might have 3443 * intended by limiting the stack size. 3444 */ 3445 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3446 if (vm_map_lock_upgrade(map)) 3447 goto Retry; 3448 3449 stack_entry->avail_ssize = max_grow; 3450 3451 vm_map_unlock(map); 3452 return (KERN_NO_SPACE); 3453 } 3454 3455 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3456 3457 /* 3458 * If this is the main process stack, see if we're over the stack 3459 * limit. 3460 */ 3461 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3462 vm_map_unlock_read(map); 3463 return (KERN_NO_SPACE); 3464 } 3465 #ifdef RACCT 3466 PROC_LOCK(p); 3467 if (is_procstack && 3468 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3469 PROC_UNLOCK(p); 3470 vm_map_unlock_read(map); 3471 return (KERN_NO_SPACE); 3472 } 3473 PROC_UNLOCK(p); 3474 #endif 3475 3476 /* Round up the grow amount modulo SGROWSIZ */ 3477 grow_amount = roundup (grow_amount, sgrowsiz); 3478 if (grow_amount > stack_entry->avail_ssize) 3479 grow_amount = stack_entry->avail_ssize; 3480 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3481 grow_amount = trunc_page((vm_size_t)stacklim) - 3482 ctob(vm->vm_ssize); 3483 } 3484 #ifdef notyet 3485 PROC_LOCK(p); 3486 limit = racct_get_available(p, RACCT_STACK); 3487 PROC_UNLOCK(p); 3488 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3489 grow_amount = limit - ctob(vm->vm_ssize); 3490 #endif 3491 3492 /* If we would blow our VMEM resource limit, no go */ 3493 if (map->size + grow_amount > vmemlim) { 3494 vm_map_unlock_read(map); 3495 rv = KERN_NO_SPACE; 3496 goto out; 3497 } 3498 #ifdef RACCT 3499 PROC_LOCK(p); 3500 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3501 PROC_UNLOCK(p); 3502 vm_map_unlock_read(map); 3503 rv = KERN_NO_SPACE; 3504 goto out; 3505 } 3506 PROC_UNLOCK(p); 3507 #endif 3508 3509 if (vm_map_lock_upgrade(map)) 3510 goto Retry; 3511 3512 if (stack_entry == next_entry) { 3513 /* 3514 * Growing downward. 3515 */ 3516 /* Get the preliminary new entry start value */ 3517 addr = stack_entry->start - grow_amount; 3518 3519 /* 3520 * If this puts us into the previous entry, cut back our 3521 * growth to the available space. Also, see the note above. 3522 */ 3523 if (addr < end) { 3524 stack_entry->avail_ssize = max_grow; 3525 addr = end; 3526 if (stack_guard_page) 3527 addr += PAGE_SIZE; 3528 } 3529 3530 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3531 p->p_sysent->sv_stackprot, VM_PROT_ALL, 0); 3532 3533 /* Adjust the available stack space by the amount we grew. */ 3534 if (rv == KERN_SUCCESS) { 3535 if (prev_entry != &map->header) 3536 vm_map_clip_end(map, prev_entry, addr); 3537 new_entry = prev_entry->next; 3538 KASSERT(new_entry == stack_entry->prev, ("foo")); 3539 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3540 KASSERT(new_entry->start == addr, ("foo")); 3541 grow_amount = new_entry->end - new_entry->start; 3542 new_entry->avail_ssize = stack_entry->avail_ssize - 3543 grow_amount; 3544 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3545 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3546 } 3547 } else { 3548 /* 3549 * Growing upward. 3550 */ 3551 addr = stack_entry->end + grow_amount; 3552 3553 /* 3554 * If this puts us into the next entry, cut back our growth 3555 * to the available space. Also, see the note above. 3556 */ 3557 if (addr > end) { 3558 stack_entry->avail_ssize = end - stack_entry->end; 3559 addr = end; 3560 if (stack_guard_page) 3561 addr -= PAGE_SIZE; 3562 } 3563 3564 grow_amount = addr - stack_entry->end; 3565 cred = stack_entry->cred; 3566 if (cred == NULL && stack_entry->object.vm_object != NULL) 3567 cred = stack_entry->object.vm_object->cred; 3568 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3569 rv = KERN_NO_SPACE; 3570 /* Grow the underlying object if applicable. */ 3571 else if (stack_entry->object.vm_object == NULL || 3572 vm_object_coalesce(stack_entry->object.vm_object, 3573 stack_entry->offset, 3574 (vm_size_t)(stack_entry->end - stack_entry->start), 3575 (vm_size_t)grow_amount, cred != NULL)) { 3576 map->size += (addr - stack_entry->end); 3577 /* Update the current entry. */ 3578 stack_entry->end = addr; 3579 stack_entry->avail_ssize -= grow_amount; 3580 vm_map_entry_resize_free(map, stack_entry); 3581 rv = KERN_SUCCESS; 3582 3583 if (next_entry != &map->header) 3584 vm_map_clip_start(map, next_entry, addr); 3585 } else 3586 rv = KERN_FAILURE; 3587 } 3588 3589 if (rv == KERN_SUCCESS && is_procstack) 3590 vm->vm_ssize += btoc(grow_amount); 3591 3592 vm_map_unlock(map); 3593 3594 /* 3595 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3596 */ 3597 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3598 vm_map_wire(map, 3599 (stack_entry == next_entry) ? addr : addr - grow_amount, 3600 (stack_entry == next_entry) ? stack_entry->start : addr, 3601 (p->p_flag & P_SYSTEM) 3602 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3603 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3604 } 3605 3606 out: 3607 #ifdef RACCT 3608 if (rv != KERN_SUCCESS) { 3609 PROC_LOCK(p); 3610 error = racct_set(p, RACCT_VMEM, map->size); 3611 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3612 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3613 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3614 PROC_UNLOCK(p); 3615 } 3616 #endif 3617 3618 return (rv); 3619 } 3620 3621 /* 3622 * Unshare the specified VM space for exec. If other processes are 3623 * mapped to it, then create a new one. The new vmspace is null. 3624 */ 3625 int 3626 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3627 { 3628 struct vmspace *oldvmspace = p->p_vmspace; 3629 struct vmspace *newvmspace; 3630 3631 newvmspace = vmspace_alloc(minuser, maxuser); 3632 if (newvmspace == NULL) 3633 return (ENOMEM); 3634 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3635 /* 3636 * This code is written like this for prototype purposes. The 3637 * goal is to avoid running down the vmspace here, but let the 3638 * other process's that are still using the vmspace to finally 3639 * run it down. Even though there is little or no chance of blocking 3640 * here, it is a good idea to keep this form for future mods. 3641 */ 3642 PROC_VMSPACE_LOCK(p); 3643 p->p_vmspace = newvmspace; 3644 PROC_VMSPACE_UNLOCK(p); 3645 if (p == curthread->td_proc) 3646 pmap_activate(curthread); 3647 vmspace_free(oldvmspace); 3648 return (0); 3649 } 3650 3651 /* 3652 * Unshare the specified VM space for forcing COW. This 3653 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3654 */ 3655 int 3656 vmspace_unshare(struct proc *p) 3657 { 3658 struct vmspace *oldvmspace = p->p_vmspace; 3659 struct vmspace *newvmspace; 3660 vm_ooffset_t fork_charge; 3661 3662 if (oldvmspace->vm_refcnt == 1) 3663 return (0); 3664 fork_charge = 0; 3665 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3666 if (newvmspace == NULL) 3667 return (ENOMEM); 3668 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3669 vmspace_free(newvmspace); 3670 return (ENOMEM); 3671 } 3672 PROC_VMSPACE_LOCK(p); 3673 p->p_vmspace = newvmspace; 3674 PROC_VMSPACE_UNLOCK(p); 3675 if (p == curthread->td_proc) 3676 pmap_activate(curthread); 3677 vmspace_free(oldvmspace); 3678 return (0); 3679 } 3680 3681 /* 3682 * vm_map_lookup: 3683 * 3684 * Finds the VM object, offset, and 3685 * protection for a given virtual address in the 3686 * specified map, assuming a page fault of the 3687 * type specified. 3688 * 3689 * Leaves the map in question locked for read; return 3690 * values are guaranteed until a vm_map_lookup_done 3691 * call is performed. Note that the map argument 3692 * is in/out; the returned map must be used in 3693 * the call to vm_map_lookup_done. 3694 * 3695 * A handle (out_entry) is returned for use in 3696 * vm_map_lookup_done, to make that fast. 3697 * 3698 * If a lookup is requested with "write protection" 3699 * specified, the map may be changed to perform virtual 3700 * copying operations, although the data referenced will 3701 * remain the same. 3702 */ 3703 int 3704 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3705 vm_offset_t vaddr, 3706 vm_prot_t fault_typea, 3707 vm_map_entry_t *out_entry, /* OUT */ 3708 vm_object_t *object, /* OUT */ 3709 vm_pindex_t *pindex, /* OUT */ 3710 vm_prot_t *out_prot, /* OUT */ 3711 boolean_t *wired) /* OUT */ 3712 { 3713 vm_map_entry_t entry; 3714 vm_map_t map = *var_map; 3715 vm_prot_t prot; 3716 vm_prot_t fault_type = fault_typea; 3717 vm_object_t eobject; 3718 vm_size_t size; 3719 struct ucred *cred; 3720 3721 RetryLookup:; 3722 3723 vm_map_lock_read(map); 3724 3725 /* 3726 * Lookup the faulting address. 3727 */ 3728 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3729 vm_map_unlock_read(map); 3730 return (KERN_INVALID_ADDRESS); 3731 } 3732 3733 entry = *out_entry; 3734 3735 /* 3736 * Handle submaps. 3737 */ 3738 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3739 vm_map_t old_map = map; 3740 3741 *var_map = map = entry->object.sub_map; 3742 vm_map_unlock_read(old_map); 3743 goto RetryLookup; 3744 } 3745 3746 /* 3747 * Check whether this task is allowed to have this page. 3748 */ 3749 prot = entry->protection; 3750 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3751 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3752 vm_map_unlock_read(map); 3753 return (KERN_PROTECTION_FAILURE); 3754 } 3755 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3756 (entry->eflags & MAP_ENTRY_COW) && 3757 (fault_type & VM_PROT_WRITE)) { 3758 vm_map_unlock_read(map); 3759 return (KERN_PROTECTION_FAILURE); 3760 } 3761 3762 /* 3763 * If this page is not pageable, we have to get it for all possible 3764 * accesses. 3765 */ 3766 *wired = (entry->wired_count != 0); 3767 if (*wired) 3768 fault_type = entry->protection; 3769 size = entry->end - entry->start; 3770 /* 3771 * If the entry was copy-on-write, we either ... 3772 */ 3773 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3774 /* 3775 * If we want to write the page, we may as well handle that 3776 * now since we've got the map locked. 3777 * 3778 * If we don't need to write the page, we just demote the 3779 * permissions allowed. 3780 */ 3781 if ((fault_type & VM_PROT_WRITE) != 0 || 3782 (fault_typea & VM_PROT_COPY) != 0) { 3783 /* 3784 * Make a new object, and place it in the object 3785 * chain. Note that no new references have appeared 3786 * -- one just moved from the map to the new 3787 * object. 3788 */ 3789 if (vm_map_lock_upgrade(map)) 3790 goto RetryLookup; 3791 3792 if (entry->cred == NULL) { 3793 /* 3794 * The debugger owner is charged for 3795 * the memory. 3796 */ 3797 cred = curthread->td_ucred; 3798 crhold(cred); 3799 if (!swap_reserve_by_cred(size, cred)) { 3800 crfree(cred); 3801 vm_map_unlock(map); 3802 return (KERN_RESOURCE_SHORTAGE); 3803 } 3804 entry->cred = cred; 3805 } 3806 vm_object_shadow(&entry->object.vm_object, 3807 &entry->offset, size); 3808 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3809 eobject = entry->object.vm_object; 3810 if (eobject->cred != NULL) { 3811 /* 3812 * The object was not shadowed. 3813 */ 3814 swap_release_by_cred(size, entry->cred); 3815 crfree(entry->cred); 3816 entry->cred = NULL; 3817 } else if (entry->cred != NULL) { 3818 VM_OBJECT_LOCK(eobject); 3819 eobject->cred = entry->cred; 3820 eobject->charge = size; 3821 VM_OBJECT_UNLOCK(eobject); 3822 entry->cred = NULL; 3823 } 3824 3825 vm_map_lock_downgrade(map); 3826 } else { 3827 /* 3828 * We're attempting to read a copy-on-write page -- 3829 * don't allow writes. 3830 */ 3831 prot &= ~VM_PROT_WRITE; 3832 } 3833 } 3834 3835 /* 3836 * Create an object if necessary. 3837 */ 3838 if (entry->object.vm_object == NULL && 3839 !map->system_map) { 3840 if (vm_map_lock_upgrade(map)) 3841 goto RetryLookup; 3842 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3843 atop(size)); 3844 entry->offset = 0; 3845 if (entry->cred != NULL) { 3846 VM_OBJECT_LOCK(entry->object.vm_object); 3847 entry->object.vm_object->cred = entry->cred; 3848 entry->object.vm_object->charge = size; 3849 VM_OBJECT_UNLOCK(entry->object.vm_object); 3850 entry->cred = NULL; 3851 } 3852 vm_map_lock_downgrade(map); 3853 } 3854 3855 /* 3856 * Return the object/offset from this entry. If the entry was 3857 * copy-on-write or empty, it has been fixed up. 3858 */ 3859 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3860 *object = entry->object.vm_object; 3861 3862 *out_prot = prot; 3863 return (KERN_SUCCESS); 3864 } 3865 3866 /* 3867 * vm_map_lookup_locked: 3868 * 3869 * Lookup the faulting address. A version of vm_map_lookup that returns 3870 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3871 */ 3872 int 3873 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3874 vm_offset_t vaddr, 3875 vm_prot_t fault_typea, 3876 vm_map_entry_t *out_entry, /* OUT */ 3877 vm_object_t *object, /* OUT */ 3878 vm_pindex_t *pindex, /* OUT */ 3879 vm_prot_t *out_prot, /* OUT */ 3880 boolean_t *wired) /* OUT */ 3881 { 3882 vm_map_entry_t entry; 3883 vm_map_t map = *var_map; 3884 vm_prot_t prot; 3885 vm_prot_t fault_type = fault_typea; 3886 3887 /* 3888 * Lookup the faulting address. 3889 */ 3890 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 3891 return (KERN_INVALID_ADDRESS); 3892 3893 entry = *out_entry; 3894 3895 /* 3896 * Fail if the entry refers to a submap. 3897 */ 3898 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3899 return (KERN_FAILURE); 3900 3901 /* 3902 * Check whether this task is allowed to have this page. 3903 */ 3904 prot = entry->protection; 3905 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 3906 if ((fault_type & prot) != fault_type) 3907 return (KERN_PROTECTION_FAILURE); 3908 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3909 (entry->eflags & MAP_ENTRY_COW) && 3910 (fault_type & VM_PROT_WRITE)) 3911 return (KERN_PROTECTION_FAILURE); 3912 3913 /* 3914 * If this page is not pageable, we have to get it for all possible 3915 * accesses. 3916 */ 3917 *wired = (entry->wired_count != 0); 3918 if (*wired) 3919 fault_type = entry->protection; 3920 3921 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3922 /* 3923 * Fail if the entry was copy-on-write for a write fault. 3924 */ 3925 if (fault_type & VM_PROT_WRITE) 3926 return (KERN_FAILURE); 3927 /* 3928 * We're attempting to read a copy-on-write page -- 3929 * don't allow writes. 3930 */ 3931 prot &= ~VM_PROT_WRITE; 3932 } 3933 3934 /* 3935 * Fail if an object should be created. 3936 */ 3937 if (entry->object.vm_object == NULL && !map->system_map) 3938 return (KERN_FAILURE); 3939 3940 /* 3941 * Return the object/offset from this entry. If the entry was 3942 * copy-on-write or empty, it has been fixed up. 3943 */ 3944 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3945 *object = entry->object.vm_object; 3946 3947 *out_prot = prot; 3948 return (KERN_SUCCESS); 3949 } 3950 3951 /* 3952 * vm_map_lookup_done: 3953 * 3954 * Releases locks acquired by a vm_map_lookup 3955 * (according to the handle returned by that lookup). 3956 */ 3957 void 3958 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 3959 { 3960 /* 3961 * Unlock the main-level map 3962 */ 3963 vm_map_unlock_read(map); 3964 } 3965 3966 #include "opt_ddb.h" 3967 #ifdef DDB 3968 #include <sys/kernel.h> 3969 3970 #include <ddb/ddb.h> 3971 3972 /* 3973 * vm_map_print: [ debug ] 3974 */ 3975 DB_SHOW_COMMAND(map, vm_map_print) 3976 { 3977 static int nlines; 3978 /* XXX convert args. */ 3979 vm_map_t map = (vm_map_t)addr; 3980 boolean_t full = have_addr; 3981 3982 vm_map_entry_t entry; 3983 3984 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3985 (void *)map, 3986 (void *)map->pmap, map->nentries, map->timestamp); 3987 nlines++; 3988 3989 if (!full && db_indent) 3990 return; 3991 3992 db_indent += 2; 3993 for (entry = map->header.next; entry != &map->header; 3994 entry = entry->next) { 3995 db_iprintf("map entry %p: start=%p, end=%p\n", 3996 (void *)entry, (void *)entry->start, (void *)entry->end); 3997 nlines++; 3998 { 3999 static char *inheritance_name[4] = 4000 {"share", "copy", "none", "donate_copy"}; 4001 4002 db_iprintf(" prot=%x/%x/%s", 4003 entry->protection, 4004 entry->max_protection, 4005 inheritance_name[(int)(unsigned char)entry->inheritance]); 4006 if (entry->wired_count != 0) 4007 db_printf(", wired"); 4008 } 4009 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4010 db_printf(", share=%p, offset=0x%jx\n", 4011 (void *)entry->object.sub_map, 4012 (uintmax_t)entry->offset); 4013 nlines++; 4014 if ((entry->prev == &map->header) || 4015 (entry->prev->object.sub_map != 4016 entry->object.sub_map)) { 4017 db_indent += 2; 4018 vm_map_print((db_expr_t)(intptr_t) 4019 entry->object.sub_map, 4020 full, 0, (char *)0); 4021 db_indent -= 2; 4022 } 4023 } else { 4024 if (entry->cred != NULL) 4025 db_printf(", ruid %d", entry->cred->cr_ruid); 4026 db_printf(", object=%p, offset=0x%jx", 4027 (void *)entry->object.vm_object, 4028 (uintmax_t)entry->offset); 4029 if (entry->object.vm_object && entry->object.vm_object->cred) 4030 db_printf(", obj ruid %d charge %jx", 4031 entry->object.vm_object->cred->cr_ruid, 4032 (uintmax_t)entry->object.vm_object->charge); 4033 if (entry->eflags & MAP_ENTRY_COW) 4034 db_printf(", copy (%s)", 4035 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4036 db_printf("\n"); 4037 nlines++; 4038 4039 if ((entry->prev == &map->header) || 4040 (entry->prev->object.vm_object != 4041 entry->object.vm_object)) { 4042 db_indent += 2; 4043 vm_object_print((db_expr_t)(intptr_t) 4044 entry->object.vm_object, 4045 full, 0, (char *)0); 4046 nlines += 4; 4047 db_indent -= 2; 4048 } 4049 } 4050 } 4051 db_indent -= 2; 4052 if (db_indent == 0) 4053 nlines = 0; 4054 } 4055 4056 4057 DB_SHOW_COMMAND(procvm, procvm) 4058 { 4059 struct proc *p; 4060 4061 if (have_addr) { 4062 p = (struct proc *) addr; 4063 } else { 4064 p = curproc; 4065 } 4066 4067 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4068 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4069 (void *)vmspace_pmap(p->p_vmspace)); 4070 4071 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 4072 } 4073 4074 #endif /* DDB */ 4075