xref: /freebsd/sys/vm/vm_map.c (revision e3514747256465c52c3b2aedc9795f52c0d3efe9)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
137     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
138 #ifdef INVARIANTS
139 static void vm_map_zdtor(void *mem, int size, void *arg);
140 static void vmspace_zdtor(void *mem, int size, void *arg);
141 #endif
142 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
143     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
144     int cow);
145 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
146     vm_offset_t failed_addr);
147 
148 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
149     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151 
152 /*
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158 
159 /*
160  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
161  *
162  *	Asserts that the starting and ending region
163  *	addresses fall within the valid range of the map.
164  */
165 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
166 		{					\
167 		if (start < vm_map_min(map))		\
168 			start = vm_map_min(map);	\
169 		if (end > vm_map_max(map))		\
170 			end = vm_map_max(map);		\
171 		if (start > end)			\
172 			start = end;			\
173 		}
174 
175 /*
176  *	vm_map_startup:
177  *
178  *	Initialize the vm_map module.  Must be called before
179  *	any other vm_map routines.
180  *
181  *	Map and entry structures are allocated from the general
182  *	purpose memory pool with some exceptions:
183  *
184  *	- The kernel map and kmem submap are allocated statically.
185  *	- Kernel map entries are allocated out of a static pool.
186  *
187  *	These restrictions are necessary since malloc() uses the
188  *	maps and requires map entries.
189  */
190 
191 void
192 vm_map_startup(void)
193 {
194 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
195 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
196 #ifdef INVARIANTS
197 	    vm_map_zdtor,
198 #else
199 	    NULL,
200 #endif
201 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
202 	uma_prealloc(mapzone, MAX_KMAP);
203 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
204 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
205 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
206 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
207 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
208 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
209 #ifdef INVARIANTS
210 	    vmspace_zdtor,
211 #else
212 	    NULL,
213 #endif
214 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
215 }
216 
217 static int
218 vmspace_zinit(void *mem, int size, int flags)
219 {
220 	struct vmspace *vm;
221 
222 	vm = (struct vmspace *)mem;
223 
224 	vm->vm_map.pmap = NULL;
225 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
226 	PMAP_LOCK_INIT(vmspace_pmap(vm));
227 	return (0);
228 }
229 
230 static int
231 vm_map_zinit(void *mem, int size, int flags)
232 {
233 	vm_map_t map;
234 
235 	map = (vm_map_t)mem;
236 	memset(map, 0, sizeof(*map));
237 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
238 	sx_init(&map->lock, "vm map (user)");
239 	return (0);
240 }
241 
242 #ifdef INVARIANTS
243 static void
244 vmspace_zdtor(void *mem, int size, void *arg)
245 {
246 	struct vmspace *vm;
247 
248 	vm = (struct vmspace *)mem;
249 
250 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
251 }
252 static void
253 vm_map_zdtor(void *mem, int size, void *arg)
254 {
255 	vm_map_t map;
256 
257 	map = (vm_map_t)mem;
258 	KASSERT(map->nentries == 0,
259 	    ("map %p nentries == %d on free.",
260 	    map, map->nentries));
261 	KASSERT(map->size == 0,
262 	    ("map %p size == %lu on free.",
263 	    map, (unsigned long)map->size));
264 }
265 #endif	/* INVARIANTS */
266 
267 /*
268  * Allocate a vmspace structure, including a vm_map and pmap,
269  * and initialize those structures.  The refcnt is set to 1.
270  *
271  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
272  */
273 struct vmspace *
274 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
275 {
276 	struct vmspace *vm;
277 
278 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
279 
280 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
281 
282 	if (pinit == NULL)
283 		pinit = &pmap_pinit;
284 
285 	if (!pinit(vmspace_pmap(vm))) {
286 		uma_zfree(vmspace_zone, vm);
287 		return (NULL);
288 	}
289 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291 	vm->vm_refcnt = 1;
292 	vm->vm_shm = NULL;
293 	vm->vm_swrss = 0;
294 	vm->vm_tsize = 0;
295 	vm->vm_dsize = 0;
296 	vm->vm_ssize = 0;
297 	vm->vm_taddr = 0;
298 	vm->vm_daddr = 0;
299 	vm->vm_maxsaddr = 0;
300 	return (vm);
301 }
302 
303 #ifdef RACCT
304 static void
305 vmspace_container_reset(struct proc *p)
306 {
307 
308 	PROC_LOCK(p);
309 	racct_set(p, RACCT_DATA, 0);
310 	racct_set(p, RACCT_STACK, 0);
311 	racct_set(p, RACCT_RSS, 0);
312 	racct_set(p, RACCT_MEMLOCK, 0);
313 	racct_set(p, RACCT_VMEM, 0);
314 	PROC_UNLOCK(p);
315 }
316 #endif
317 
318 static inline void
319 vmspace_dofree(struct vmspace *vm)
320 {
321 
322 	CTR1(KTR_VM, "vmspace_free: %p", vm);
323 
324 	/*
325 	 * Make sure any SysV shm is freed, it might not have been in
326 	 * exit1().
327 	 */
328 	shmexit(vm);
329 
330 	/*
331 	 * Lock the map, to wait out all other references to it.
332 	 * Delete all of the mappings and pages they hold, then call
333 	 * the pmap module to reclaim anything left.
334 	 */
335 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
336 	    vm->vm_map.max_offset);
337 
338 	pmap_release(vmspace_pmap(vm));
339 	vm->vm_map.pmap = NULL;
340 	uma_zfree(vmspace_zone, vm);
341 }
342 
343 void
344 vmspace_free(struct vmspace *vm)
345 {
346 
347 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
348 	    "vmspace_free() called");
349 
350 	if (vm->vm_refcnt == 0)
351 		panic("vmspace_free: attempt to free already freed vmspace");
352 
353 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
354 		vmspace_dofree(vm);
355 }
356 
357 void
358 vmspace_exitfree(struct proc *p)
359 {
360 	struct vmspace *vm;
361 
362 	PROC_VMSPACE_LOCK(p);
363 	vm = p->p_vmspace;
364 	p->p_vmspace = NULL;
365 	PROC_VMSPACE_UNLOCK(p);
366 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
367 	vmspace_free(vm);
368 }
369 
370 void
371 vmspace_exit(struct thread *td)
372 {
373 	int refcnt;
374 	struct vmspace *vm;
375 	struct proc *p;
376 
377 	/*
378 	 * Release user portion of address space.
379 	 * This releases references to vnodes,
380 	 * which could cause I/O if the file has been unlinked.
381 	 * Need to do this early enough that we can still sleep.
382 	 *
383 	 * The last exiting process to reach this point releases as
384 	 * much of the environment as it can. vmspace_dofree() is the
385 	 * slower fallback in case another process had a temporary
386 	 * reference to the vmspace.
387 	 */
388 
389 	p = td->td_proc;
390 	vm = p->p_vmspace;
391 	atomic_add_int(&vmspace0.vm_refcnt, 1);
392 	do {
393 		refcnt = vm->vm_refcnt;
394 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
395 			/* Switch now since other proc might free vmspace */
396 			PROC_VMSPACE_LOCK(p);
397 			p->p_vmspace = &vmspace0;
398 			PROC_VMSPACE_UNLOCK(p);
399 			pmap_activate(td);
400 		}
401 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
402 	if (refcnt == 1) {
403 		if (p->p_vmspace != vm) {
404 			/* vmspace not yet freed, switch back */
405 			PROC_VMSPACE_LOCK(p);
406 			p->p_vmspace = vm;
407 			PROC_VMSPACE_UNLOCK(p);
408 			pmap_activate(td);
409 		}
410 		pmap_remove_pages(vmspace_pmap(vm));
411 		/* Switch now since this proc will free vmspace */
412 		PROC_VMSPACE_LOCK(p);
413 		p->p_vmspace = &vmspace0;
414 		PROC_VMSPACE_UNLOCK(p);
415 		pmap_activate(td);
416 		vmspace_dofree(vm);
417 	}
418 #ifdef RACCT
419 	if (racct_enable)
420 		vmspace_container_reset(p);
421 #endif
422 }
423 
424 /* Acquire reference to vmspace owned by another process. */
425 
426 struct vmspace *
427 vmspace_acquire_ref(struct proc *p)
428 {
429 	struct vmspace *vm;
430 	int refcnt;
431 
432 	PROC_VMSPACE_LOCK(p);
433 	vm = p->p_vmspace;
434 	if (vm == NULL) {
435 		PROC_VMSPACE_UNLOCK(p);
436 		return (NULL);
437 	}
438 	do {
439 		refcnt = vm->vm_refcnt;
440 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
441 			PROC_VMSPACE_UNLOCK(p);
442 			return (NULL);
443 		}
444 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
445 	if (vm != p->p_vmspace) {
446 		PROC_VMSPACE_UNLOCK(p);
447 		vmspace_free(vm);
448 		return (NULL);
449 	}
450 	PROC_VMSPACE_UNLOCK(p);
451 	return (vm);
452 }
453 
454 /*
455  * Switch between vmspaces in an AIO kernel process.
456  *
457  * The AIO kernel processes switch to and from a user process's
458  * vmspace while performing an I/O operation on behalf of a user
459  * process.  The new vmspace is either the vmspace of a user process
460  * obtained from an active AIO request or the initial vmspace of the
461  * AIO kernel process (when it is idling).  Because user processes
462  * will block to drain any active AIO requests before proceeding in
463  * exit() or execve(), the vmspace reference count for these vmspaces
464  * can never be 0.  This allows for a much simpler implementation than
465  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
466  * processes hold an extra reference on their initial vmspace for the
467  * life of the process so that this guarantee is true for any vmspace
468  * passed as 'newvm'.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473 	struct vmspace *oldvm;
474 
475 	/* XXX: Need some way to assert that this is an aio daemon. */
476 
477 	KASSERT(newvm->vm_refcnt > 0,
478 	    ("vmspace_switch_aio: newvm unreferenced"));
479 
480 	oldvm = curproc->p_vmspace;
481 	if (oldvm == newvm)
482 		return;
483 
484 	/*
485 	 * Point to the new address space and refer to it.
486 	 */
487 	curproc->p_vmspace = newvm;
488 	atomic_add_int(&newvm->vm_refcnt, 1);
489 
490 	/* Activate the new mapping. */
491 	pmap_activate(curthread);
492 
493 	/* Remove the daemon's reference to the old address space. */
494 	KASSERT(oldvm->vm_refcnt > 1,
495 	    ("vmspace_switch_aio: oldvm dropping last reference"));
496 	vmspace_free(oldvm);
497 }
498 
499 void
500 _vm_map_lock(vm_map_t map, const char *file, int line)
501 {
502 
503 	if (map->system_map)
504 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
505 	else
506 		sx_xlock_(&map->lock, file, line);
507 	map->timestamp++;
508 }
509 
510 static void
511 vm_map_process_deferred(void)
512 {
513 	struct thread *td;
514 	vm_map_entry_t entry, next;
515 	vm_object_t object;
516 
517 	td = curthread;
518 	entry = td->td_map_def_user;
519 	td->td_map_def_user = NULL;
520 	while (entry != NULL) {
521 		next = entry->next;
522 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
523 			/*
524 			 * Decrement the object's writemappings and
525 			 * possibly the vnode's v_writecount.
526 			 */
527 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
528 			    ("Submap with writecount"));
529 			object = entry->object.vm_object;
530 			KASSERT(object != NULL, ("No object for writecount"));
531 			vnode_pager_release_writecount(object, entry->start,
532 			    entry->end);
533 		}
534 		vm_map_entry_deallocate(entry, FALSE);
535 		entry = next;
536 	}
537 }
538 
539 void
540 _vm_map_unlock(vm_map_t map, const char *file, int line)
541 {
542 
543 	if (map->system_map)
544 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
545 	else {
546 		sx_xunlock_(&map->lock, file, line);
547 		vm_map_process_deferred();
548 	}
549 }
550 
551 void
552 _vm_map_lock_read(vm_map_t map, const char *file, int line)
553 {
554 
555 	if (map->system_map)
556 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
557 	else
558 		sx_slock_(&map->lock, file, line);
559 }
560 
561 void
562 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
563 {
564 
565 	if (map->system_map)
566 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
567 	else {
568 		sx_sunlock_(&map->lock, file, line);
569 		vm_map_process_deferred();
570 	}
571 }
572 
573 int
574 _vm_map_trylock(vm_map_t map, const char *file, int line)
575 {
576 	int error;
577 
578 	error = map->system_map ?
579 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
580 	    !sx_try_xlock_(&map->lock, file, line);
581 	if (error == 0)
582 		map->timestamp++;
583 	return (error == 0);
584 }
585 
586 int
587 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
588 {
589 	int error;
590 
591 	error = map->system_map ?
592 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
593 	    !sx_try_slock_(&map->lock, file, line);
594 	return (error == 0);
595 }
596 
597 /*
598  *	_vm_map_lock_upgrade:	[ internal use only ]
599  *
600  *	Tries to upgrade a read (shared) lock on the specified map to a write
601  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
602  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
603  *	returned without a read or write lock held.
604  *
605  *	Requires that the map be read locked.
606  */
607 int
608 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
609 {
610 	unsigned int last_timestamp;
611 
612 	if (map->system_map) {
613 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
614 	} else {
615 		if (!sx_try_upgrade_(&map->lock, file, line)) {
616 			last_timestamp = map->timestamp;
617 			sx_sunlock_(&map->lock, file, line);
618 			vm_map_process_deferred();
619 			/*
620 			 * If the map's timestamp does not change while the
621 			 * map is unlocked, then the upgrade succeeds.
622 			 */
623 			sx_xlock_(&map->lock, file, line);
624 			if (last_timestamp != map->timestamp) {
625 				sx_xunlock_(&map->lock, file, line);
626 				return (1);
627 			}
628 		}
629 	}
630 	map->timestamp++;
631 	return (0);
632 }
633 
634 void
635 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
636 {
637 
638 	if (map->system_map) {
639 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
640 	} else
641 		sx_downgrade_(&map->lock, file, line);
642 }
643 
644 /*
645  *	vm_map_locked:
646  *
647  *	Returns a non-zero value if the caller holds a write (exclusive) lock
648  *	on the specified map and the value "0" otherwise.
649  */
650 int
651 vm_map_locked(vm_map_t map)
652 {
653 
654 	if (map->system_map)
655 		return (mtx_owned(&map->system_mtx));
656 	else
657 		return (sx_xlocked(&map->lock));
658 }
659 
660 #ifdef INVARIANTS
661 static void
662 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
663 {
664 
665 	if (map->system_map)
666 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
667 	else
668 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
669 }
670 
671 #define	VM_MAP_ASSERT_LOCKED(map) \
672     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
673 #else
674 #define	VM_MAP_ASSERT_LOCKED(map)
675 #endif
676 
677 /*
678  *	_vm_map_unlock_and_wait:
679  *
680  *	Atomically releases the lock on the specified map and puts the calling
681  *	thread to sleep.  The calling thread will remain asleep until either
682  *	vm_map_wakeup() is performed on the map or the specified timeout is
683  *	exceeded.
684  *
685  *	WARNING!  This function does not perform deferred deallocations of
686  *	objects and map	entries.  Therefore, the calling thread is expected to
687  *	reacquire the map lock after reawakening and later perform an ordinary
688  *	unlock operation, such as vm_map_unlock(), before completing its
689  *	operation on the map.
690  */
691 int
692 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
693 {
694 
695 	mtx_lock(&map_sleep_mtx);
696 	if (map->system_map)
697 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
698 	else
699 		sx_xunlock_(&map->lock, file, line);
700 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
701 	    timo));
702 }
703 
704 /*
705  *	vm_map_wakeup:
706  *
707  *	Awaken any threads that have slept on the map using
708  *	vm_map_unlock_and_wait().
709  */
710 void
711 vm_map_wakeup(vm_map_t map)
712 {
713 
714 	/*
715 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
716 	 * from being performed (and lost) between the map unlock
717 	 * and the msleep() in _vm_map_unlock_and_wait().
718 	 */
719 	mtx_lock(&map_sleep_mtx);
720 	mtx_unlock(&map_sleep_mtx);
721 	wakeup(&map->root);
722 }
723 
724 void
725 vm_map_busy(vm_map_t map)
726 {
727 
728 	VM_MAP_ASSERT_LOCKED(map);
729 	map->busy++;
730 }
731 
732 void
733 vm_map_unbusy(vm_map_t map)
734 {
735 
736 	VM_MAP_ASSERT_LOCKED(map);
737 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
738 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
739 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
740 		wakeup(&map->busy);
741 	}
742 }
743 
744 void
745 vm_map_wait_busy(vm_map_t map)
746 {
747 
748 	VM_MAP_ASSERT_LOCKED(map);
749 	while (map->busy) {
750 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
751 		if (map->system_map)
752 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
753 		else
754 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
755 	}
756 	map->timestamp++;
757 }
758 
759 long
760 vmspace_resident_count(struct vmspace *vmspace)
761 {
762 	return pmap_resident_count(vmspace_pmap(vmspace));
763 }
764 
765 /*
766  *	vm_map_create:
767  *
768  *	Creates and returns a new empty VM map with
769  *	the given physical map structure, and having
770  *	the given lower and upper address bounds.
771  */
772 vm_map_t
773 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
774 {
775 	vm_map_t result;
776 
777 	result = uma_zalloc(mapzone, M_WAITOK);
778 	CTR1(KTR_VM, "vm_map_create: %p", result);
779 	_vm_map_init(result, pmap, min, max);
780 	return (result);
781 }
782 
783 /*
784  * Initialize an existing vm_map structure
785  * such as that in the vmspace structure.
786  */
787 static void
788 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
789 {
790 
791 	map->header.next = map->header.prev = &map->header;
792 	map->needs_wakeup = FALSE;
793 	map->system_map = 0;
794 	map->pmap = pmap;
795 	map->min_offset = min;
796 	map->max_offset = max;
797 	map->flags = 0;
798 	map->root = NULL;
799 	map->timestamp = 0;
800 	map->busy = 0;
801 }
802 
803 void
804 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
805 {
806 
807 	_vm_map_init(map, pmap, min, max);
808 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
809 	sx_init(&map->lock, "user map");
810 }
811 
812 /*
813  *	vm_map_entry_dispose:	[ internal use only ]
814  *
815  *	Inverse of vm_map_entry_create.
816  */
817 static void
818 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
819 {
820 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
821 }
822 
823 /*
824  *	vm_map_entry_create:	[ internal use only ]
825  *
826  *	Allocates a VM map entry for insertion.
827  *	No entry fields are filled in.
828  */
829 static vm_map_entry_t
830 vm_map_entry_create(vm_map_t map)
831 {
832 	vm_map_entry_t new_entry;
833 
834 	if (map->system_map)
835 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
836 	else
837 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
838 	if (new_entry == NULL)
839 		panic("vm_map_entry_create: kernel resources exhausted");
840 	return (new_entry);
841 }
842 
843 /*
844  *	vm_map_entry_set_behavior:
845  *
846  *	Set the expected access behavior, either normal, random, or
847  *	sequential.
848  */
849 static inline void
850 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
851 {
852 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
853 	    (behavior & MAP_ENTRY_BEHAV_MASK);
854 }
855 
856 /*
857  *	vm_map_entry_set_max_free:
858  *
859  *	Set the max_free field in a vm_map_entry.
860  */
861 static inline void
862 vm_map_entry_set_max_free(vm_map_entry_t entry)
863 {
864 
865 	entry->max_free = entry->adj_free;
866 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
867 		entry->max_free = entry->left->max_free;
868 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
869 		entry->max_free = entry->right->max_free;
870 }
871 
872 /*
873  *	vm_map_entry_splay:
874  *
875  *	The Sleator and Tarjan top-down splay algorithm with the
876  *	following variation.  Max_free must be computed bottom-up, so
877  *	on the downward pass, maintain the left and right spines in
878  *	reverse order.  Then, make a second pass up each side to fix
879  *	the pointers and compute max_free.  The time bound is O(log n)
880  *	amortized.
881  *
882  *	The new root is the vm_map_entry containing "addr", or else an
883  *	adjacent entry (lower or higher) if addr is not in the tree.
884  *
885  *	The map must be locked, and leaves it so.
886  *
887  *	Returns: the new root.
888  */
889 static vm_map_entry_t
890 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
891 {
892 	vm_map_entry_t llist, rlist;
893 	vm_map_entry_t ltree, rtree;
894 	vm_map_entry_t y;
895 
896 	/* Special case of empty tree. */
897 	if (root == NULL)
898 		return (root);
899 
900 	/*
901 	 * Pass One: Splay down the tree until we find addr or a NULL
902 	 * pointer where addr would go.  llist and rlist are the two
903 	 * sides in reverse order (bottom-up), with llist linked by
904 	 * the right pointer and rlist linked by the left pointer in
905 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
906 	 * the two spines.
907 	 */
908 	llist = NULL;
909 	rlist = NULL;
910 	for (;;) {
911 		/* root is never NULL in here. */
912 		if (addr < root->start) {
913 			y = root->left;
914 			if (y == NULL)
915 				break;
916 			if (addr < y->start && y->left != NULL) {
917 				/* Rotate right and put y on rlist. */
918 				root->left = y->right;
919 				y->right = root;
920 				vm_map_entry_set_max_free(root);
921 				root = y->left;
922 				y->left = rlist;
923 				rlist = y;
924 			} else {
925 				/* Put root on rlist. */
926 				root->left = rlist;
927 				rlist = root;
928 				root = y;
929 			}
930 		} else if (addr >= root->end) {
931 			y = root->right;
932 			if (y == NULL)
933 				break;
934 			if (addr >= y->end && y->right != NULL) {
935 				/* Rotate left and put y on llist. */
936 				root->right = y->left;
937 				y->left = root;
938 				vm_map_entry_set_max_free(root);
939 				root = y->right;
940 				y->right = llist;
941 				llist = y;
942 			} else {
943 				/* Put root on llist. */
944 				root->right = llist;
945 				llist = root;
946 				root = y;
947 			}
948 		} else
949 			break;
950 	}
951 
952 	/*
953 	 * Pass Two: Walk back up the two spines, flip the pointers
954 	 * and set max_free.  The subtrees of the root go at the
955 	 * bottom of llist and rlist.
956 	 */
957 	ltree = root->left;
958 	while (llist != NULL) {
959 		y = llist->right;
960 		llist->right = ltree;
961 		vm_map_entry_set_max_free(llist);
962 		ltree = llist;
963 		llist = y;
964 	}
965 	rtree = root->right;
966 	while (rlist != NULL) {
967 		y = rlist->left;
968 		rlist->left = rtree;
969 		vm_map_entry_set_max_free(rlist);
970 		rtree = rlist;
971 		rlist = y;
972 	}
973 
974 	/*
975 	 * Final assembly: add ltree and rtree as subtrees of root.
976 	 */
977 	root->left = ltree;
978 	root->right = rtree;
979 	vm_map_entry_set_max_free(root);
980 
981 	return (root);
982 }
983 
984 /*
985  *	vm_map_entry_{un,}link:
986  *
987  *	Insert/remove entries from maps.
988  */
989 static void
990 vm_map_entry_link(vm_map_t map,
991 		  vm_map_entry_t after_where,
992 		  vm_map_entry_t entry)
993 {
994 
995 	CTR4(KTR_VM,
996 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
997 	    map->nentries, entry, after_where);
998 	VM_MAP_ASSERT_LOCKED(map);
999 	KASSERT(after_where == &map->header ||
1000 	    after_where->end <= entry->start,
1001 	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
1002 	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
1003 	KASSERT(after_where->next == &map->header ||
1004 	    entry->end <= after_where->next->start,
1005 	    ("vm_map_entry_link: new end %jx next start %jx overlap",
1006 	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1007 
1008 	map->nentries++;
1009 	entry->prev = after_where;
1010 	entry->next = after_where->next;
1011 	entry->next->prev = entry;
1012 	after_where->next = entry;
1013 
1014 	if (after_where != &map->header) {
1015 		if (after_where != map->root)
1016 			vm_map_entry_splay(after_where->start, map->root);
1017 		entry->right = after_where->right;
1018 		entry->left = after_where;
1019 		after_where->right = NULL;
1020 		after_where->adj_free = entry->start - after_where->end;
1021 		vm_map_entry_set_max_free(after_where);
1022 	} else {
1023 		entry->right = map->root;
1024 		entry->left = NULL;
1025 	}
1026 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1027 	    entry->next->start) - entry->end;
1028 	vm_map_entry_set_max_free(entry);
1029 	map->root = entry;
1030 }
1031 
1032 static void
1033 vm_map_entry_unlink(vm_map_t map,
1034 		    vm_map_entry_t entry)
1035 {
1036 	vm_map_entry_t next, prev, root;
1037 
1038 	VM_MAP_ASSERT_LOCKED(map);
1039 	if (entry != map->root)
1040 		vm_map_entry_splay(entry->start, map->root);
1041 	if (entry->left == NULL)
1042 		root = entry->right;
1043 	else {
1044 		root = vm_map_entry_splay(entry->start, entry->left);
1045 		root->right = entry->right;
1046 		root->adj_free = (entry->next == &map->header ? map->max_offset :
1047 		    entry->next->start) - root->end;
1048 		vm_map_entry_set_max_free(root);
1049 	}
1050 	map->root = root;
1051 
1052 	prev = entry->prev;
1053 	next = entry->next;
1054 	next->prev = prev;
1055 	prev->next = next;
1056 	map->nentries--;
1057 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1058 	    map->nentries, entry);
1059 }
1060 
1061 /*
1062  *	vm_map_entry_resize_free:
1063  *
1064  *	Recompute the amount of free space following a vm_map_entry
1065  *	and propagate that value up the tree.  Call this function after
1066  *	resizing a map entry in-place, that is, without a call to
1067  *	vm_map_entry_link() or _unlink().
1068  *
1069  *	The map must be locked, and leaves it so.
1070  */
1071 static void
1072 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1073 {
1074 
1075 	/*
1076 	 * Using splay trees without parent pointers, propagating
1077 	 * max_free up the tree is done by moving the entry to the
1078 	 * root and making the change there.
1079 	 */
1080 	if (entry != map->root)
1081 		map->root = vm_map_entry_splay(entry->start, map->root);
1082 
1083 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1084 	    entry->next->start) - entry->end;
1085 	vm_map_entry_set_max_free(entry);
1086 }
1087 
1088 /*
1089  *	vm_map_lookup_entry:	[ internal use only ]
1090  *
1091  *	Finds the map entry containing (or
1092  *	immediately preceding) the specified address
1093  *	in the given map; the entry is returned
1094  *	in the "entry" parameter.  The boolean
1095  *	result indicates whether the address is
1096  *	actually contained in the map.
1097  */
1098 boolean_t
1099 vm_map_lookup_entry(
1100 	vm_map_t map,
1101 	vm_offset_t address,
1102 	vm_map_entry_t *entry)	/* OUT */
1103 {
1104 	vm_map_entry_t cur;
1105 	boolean_t locked;
1106 
1107 	/*
1108 	 * If the map is empty, then the map entry immediately preceding
1109 	 * "address" is the map's header.
1110 	 */
1111 	cur = map->root;
1112 	if (cur == NULL)
1113 		*entry = &map->header;
1114 	else if (address >= cur->start && cur->end > address) {
1115 		*entry = cur;
1116 		return (TRUE);
1117 	} else if ((locked = vm_map_locked(map)) ||
1118 	    sx_try_upgrade(&map->lock)) {
1119 		/*
1120 		 * Splay requires a write lock on the map.  However, it only
1121 		 * restructures the binary search tree; it does not otherwise
1122 		 * change the map.  Thus, the map's timestamp need not change
1123 		 * on a temporary upgrade.
1124 		 */
1125 		map->root = cur = vm_map_entry_splay(address, cur);
1126 		if (!locked)
1127 			sx_downgrade(&map->lock);
1128 
1129 		/*
1130 		 * If "address" is contained within a map entry, the new root
1131 		 * is that map entry.  Otherwise, the new root is a map entry
1132 		 * immediately before or after "address".
1133 		 */
1134 		if (address >= cur->start) {
1135 			*entry = cur;
1136 			if (cur->end > address)
1137 				return (TRUE);
1138 		} else
1139 			*entry = cur->prev;
1140 	} else
1141 		/*
1142 		 * Since the map is only locked for read access, perform a
1143 		 * standard binary search tree lookup for "address".
1144 		 */
1145 		for (;;) {
1146 			if (address < cur->start) {
1147 				if (cur->left == NULL) {
1148 					*entry = cur->prev;
1149 					break;
1150 				}
1151 				cur = cur->left;
1152 			} else if (cur->end > address) {
1153 				*entry = cur;
1154 				return (TRUE);
1155 			} else {
1156 				if (cur->right == NULL) {
1157 					*entry = cur;
1158 					break;
1159 				}
1160 				cur = cur->right;
1161 			}
1162 		}
1163 	return (FALSE);
1164 }
1165 
1166 /*
1167  *	vm_map_insert:
1168  *
1169  *	Inserts the given whole VM object into the target
1170  *	map at the specified address range.  The object's
1171  *	size should match that of the address range.
1172  *
1173  *	Requires that the map be locked, and leaves it so.
1174  *
1175  *	If object is non-NULL, ref count must be bumped by caller
1176  *	prior to making call to account for the new entry.
1177  */
1178 int
1179 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1180     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1181 {
1182 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1183 	struct ucred *cred;
1184 	vm_eflags_t protoeflags;
1185 	vm_inherit_t inheritance;
1186 
1187 	VM_MAP_ASSERT_LOCKED(map);
1188 	KASSERT((object != kmem_object && object != kernel_object) ||
1189 	    (cow & MAP_COPY_ON_WRITE) == 0,
1190 	    ("vm_map_insert: kmem or kernel object and COW"));
1191 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1192 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1193 
1194 	/*
1195 	 * Check that the start and end points are not bogus.
1196 	 */
1197 	if (start < map->min_offset || end > map->max_offset || start >= end)
1198 		return (KERN_INVALID_ADDRESS);
1199 
1200 	/*
1201 	 * Find the entry prior to the proposed starting address; if it's part
1202 	 * of an existing entry, this range is bogus.
1203 	 */
1204 	if (vm_map_lookup_entry(map, start, &temp_entry))
1205 		return (KERN_NO_SPACE);
1206 
1207 	prev_entry = temp_entry;
1208 
1209 	/*
1210 	 * Assert that the next entry doesn't overlap the end point.
1211 	 */
1212 	if (prev_entry->next != &map->header && prev_entry->next->start < end)
1213 		return (KERN_NO_SPACE);
1214 
1215 	protoeflags = 0;
1216 	if (cow & MAP_COPY_ON_WRITE)
1217 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1218 	if (cow & MAP_NOFAULT)
1219 		protoeflags |= MAP_ENTRY_NOFAULT;
1220 	if (cow & MAP_DISABLE_SYNCER)
1221 		protoeflags |= MAP_ENTRY_NOSYNC;
1222 	if (cow & MAP_DISABLE_COREDUMP)
1223 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1224 	if (cow & MAP_STACK_GROWS_DOWN)
1225 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1226 	if (cow & MAP_STACK_GROWS_UP)
1227 		protoeflags |= MAP_ENTRY_GROWS_UP;
1228 	if (cow & MAP_VN_WRITECOUNT)
1229 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1230 	if (cow & MAP_INHERIT_SHARE)
1231 		inheritance = VM_INHERIT_SHARE;
1232 	else
1233 		inheritance = VM_INHERIT_DEFAULT;
1234 
1235 	cred = NULL;
1236 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1237 		goto charged;
1238 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1239 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1240 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1241 			return (KERN_RESOURCE_SHORTAGE);
1242 		KASSERT(object == NULL ||
1243 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1244 		    object->cred == NULL,
1245 		    ("overcommit: vm_map_insert o %p", object));
1246 		cred = curthread->td_ucred;
1247 	}
1248 
1249 charged:
1250 	/* Expand the kernel pmap, if necessary. */
1251 	if (map == kernel_map && end > kernel_vm_end)
1252 		pmap_growkernel(end);
1253 	if (object != NULL) {
1254 		/*
1255 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1256 		 * is trivially proven to be the only mapping for any
1257 		 * of the object's pages.  (Object granularity
1258 		 * reference counting is insufficient to recognize
1259 		 * aliases with precision.)
1260 		 */
1261 		VM_OBJECT_WLOCK(object);
1262 		if (object->ref_count > 1 || object->shadow_count != 0)
1263 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1264 		VM_OBJECT_WUNLOCK(object);
1265 	} else if (prev_entry != &map->header &&
1266 	    prev_entry->eflags == protoeflags &&
1267 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1268 	    prev_entry->end == start && prev_entry->wired_count == 0 &&
1269 	    (prev_entry->cred == cred ||
1270 	    (prev_entry->object.vm_object != NULL &&
1271 	    prev_entry->object.vm_object->cred == cred)) &&
1272 	    vm_object_coalesce(prev_entry->object.vm_object,
1273 	    prev_entry->offset,
1274 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1275 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1276 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1277 		/*
1278 		 * We were able to extend the object.  Determine if we
1279 		 * can extend the previous map entry to include the
1280 		 * new range as well.
1281 		 */
1282 		if (prev_entry->inheritance == inheritance &&
1283 		    prev_entry->protection == prot &&
1284 		    prev_entry->max_protection == max) {
1285 			map->size += end - prev_entry->end;
1286 			prev_entry->end = end;
1287 			vm_map_entry_resize_free(map, prev_entry);
1288 			vm_map_simplify_entry(map, prev_entry);
1289 			return (KERN_SUCCESS);
1290 		}
1291 
1292 		/*
1293 		 * If we can extend the object but cannot extend the
1294 		 * map entry, we have to create a new map entry.  We
1295 		 * must bump the ref count on the extended object to
1296 		 * account for it.  object may be NULL.
1297 		 */
1298 		object = prev_entry->object.vm_object;
1299 		offset = prev_entry->offset +
1300 		    (prev_entry->end - prev_entry->start);
1301 		vm_object_reference(object);
1302 		if (cred != NULL && object != NULL && object->cred != NULL &&
1303 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1304 			/* Object already accounts for this uid. */
1305 			cred = NULL;
1306 		}
1307 	}
1308 	if (cred != NULL)
1309 		crhold(cred);
1310 
1311 	/*
1312 	 * Create a new entry
1313 	 */
1314 	new_entry = vm_map_entry_create(map);
1315 	new_entry->start = start;
1316 	new_entry->end = end;
1317 	new_entry->cred = NULL;
1318 
1319 	new_entry->eflags = protoeflags;
1320 	new_entry->object.vm_object = object;
1321 	new_entry->offset = offset;
1322 	new_entry->avail_ssize = 0;
1323 
1324 	new_entry->inheritance = inheritance;
1325 	new_entry->protection = prot;
1326 	new_entry->max_protection = max;
1327 	new_entry->wired_count = 0;
1328 	new_entry->wiring_thread = NULL;
1329 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1330 	new_entry->next_read = start;
1331 
1332 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1333 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1334 	new_entry->cred = cred;
1335 
1336 	/*
1337 	 * Insert the new entry into the list
1338 	 */
1339 	vm_map_entry_link(map, prev_entry, new_entry);
1340 	map->size += new_entry->end - new_entry->start;
1341 
1342 	/*
1343 	 * Try to coalesce the new entry with both the previous and next
1344 	 * entries in the list.  Previously, we only attempted to coalesce
1345 	 * with the previous entry when object is NULL.  Here, we handle the
1346 	 * other cases, which are less common.
1347 	 */
1348 	vm_map_simplify_entry(map, new_entry);
1349 
1350 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1351 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1352 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1353 	}
1354 
1355 	return (KERN_SUCCESS);
1356 }
1357 
1358 /*
1359  *	vm_map_findspace:
1360  *
1361  *	Find the first fit (lowest VM address) for "length" free bytes
1362  *	beginning at address >= start in the given map.
1363  *
1364  *	In a vm_map_entry, "adj_free" is the amount of free space
1365  *	adjacent (higher address) to this entry, and "max_free" is the
1366  *	maximum amount of contiguous free space in its subtree.  This
1367  *	allows finding a free region in one path down the tree, so
1368  *	O(log n) amortized with splay trees.
1369  *
1370  *	The map must be locked, and leaves it so.
1371  *
1372  *	Returns: 0 on success, and starting address in *addr,
1373  *		 1 if insufficient space.
1374  */
1375 int
1376 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1377     vm_offset_t *addr)	/* OUT */
1378 {
1379 	vm_map_entry_t entry;
1380 	vm_offset_t st;
1381 
1382 	/*
1383 	 * Request must fit within min/max VM address and must avoid
1384 	 * address wrap.
1385 	 */
1386 	if (start < map->min_offset)
1387 		start = map->min_offset;
1388 	if (start + length > map->max_offset || start + length < start)
1389 		return (1);
1390 
1391 	/* Empty tree means wide open address space. */
1392 	if (map->root == NULL) {
1393 		*addr = start;
1394 		return (0);
1395 	}
1396 
1397 	/*
1398 	 * After splay, if start comes before root node, then there
1399 	 * must be a gap from start to the root.
1400 	 */
1401 	map->root = vm_map_entry_splay(start, map->root);
1402 	if (start + length <= map->root->start) {
1403 		*addr = start;
1404 		return (0);
1405 	}
1406 
1407 	/*
1408 	 * Root is the last node that might begin its gap before
1409 	 * start, and this is the last comparison where address
1410 	 * wrap might be a problem.
1411 	 */
1412 	st = (start > map->root->end) ? start : map->root->end;
1413 	if (length <= map->root->end + map->root->adj_free - st) {
1414 		*addr = st;
1415 		return (0);
1416 	}
1417 
1418 	/* With max_free, can immediately tell if no solution. */
1419 	entry = map->root->right;
1420 	if (entry == NULL || length > entry->max_free)
1421 		return (1);
1422 
1423 	/*
1424 	 * Search the right subtree in the order: left subtree, root,
1425 	 * right subtree (first fit).  The previous splay implies that
1426 	 * all regions in the right subtree have addresses > start.
1427 	 */
1428 	while (entry != NULL) {
1429 		if (entry->left != NULL && entry->left->max_free >= length)
1430 			entry = entry->left;
1431 		else if (entry->adj_free >= length) {
1432 			*addr = entry->end;
1433 			return (0);
1434 		} else
1435 			entry = entry->right;
1436 	}
1437 
1438 	/* Can't get here, so panic if we do. */
1439 	panic("vm_map_findspace: max_free corrupt");
1440 }
1441 
1442 int
1443 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1444     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1445     vm_prot_t max, int cow)
1446 {
1447 	vm_offset_t end;
1448 	int result;
1449 
1450 	end = start + length;
1451 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1452 	    object == NULL,
1453 	    ("vm_map_fixed: non-NULL backing object for stack"));
1454 	vm_map_lock(map);
1455 	VM_MAP_RANGE_CHECK(map, start, end);
1456 	if ((cow & MAP_CHECK_EXCL) == 0)
1457 		vm_map_delete(map, start, end);
1458 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1459 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1460 		    prot, max, cow);
1461 	} else {
1462 		result = vm_map_insert(map, object, offset, start, end,
1463 		    prot, max, cow);
1464 	}
1465 	vm_map_unlock(map);
1466 	return (result);
1467 }
1468 
1469 /*
1470  *	vm_map_find finds an unallocated region in the target address
1471  *	map with the given length.  The search is defined to be
1472  *	first-fit from the specified address; the region found is
1473  *	returned in the same parameter.
1474  *
1475  *	If object is non-NULL, ref count must be bumped by caller
1476  *	prior to making call to account for the new entry.
1477  */
1478 int
1479 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1480 	    vm_offset_t *addr,	/* IN/OUT */
1481 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1482 	    vm_prot_t prot, vm_prot_t max, int cow)
1483 {
1484 	vm_offset_t alignment, initial_addr, start;
1485 	int result;
1486 
1487 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1488 	    object == NULL,
1489 	    ("vm_map_find: non-NULL backing object for stack"));
1490 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1491 	    (object->flags & OBJ_COLORED) == 0))
1492 		find_space = VMFS_ANY_SPACE;
1493 	if (find_space >> 8 != 0) {
1494 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1495 		alignment = (vm_offset_t)1 << (find_space >> 8);
1496 	} else
1497 		alignment = 0;
1498 	initial_addr = *addr;
1499 again:
1500 	start = initial_addr;
1501 	vm_map_lock(map);
1502 	do {
1503 		if (find_space != VMFS_NO_SPACE) {
1504 			if (vm_map_findspace(map, start, length, addr) ||
1505 			    (max_addr != 0 && *addr + length > max_addr)) {
1506 				vm_map_unlock(map);
1507 				if (find_space == VMFS_OPTIMAL_SPACE) {
1508 					find_space = VMFS_ANY_SPACE;
1509 					goto again;
1510 				}
1511 				return (KERN_NO_SPACE);
1512 			}
1513 			switch (find_space) {
1514 			case VMFS_SUPER_SPACE:
1515 			case VMFS_OPTIMAL_SPACE:
1516 				pmap_align_superpage(object, offset, addr,
1517 				    length);
1518 				break;
1519 			case VMFS_ANY_SPACE:
1520 				break;
1521 			default:
1522 				if ((*addr & (alignment - 1)) != 0) {
1523 					*addr &= ~(alignment - 1);
1524 					*addr += alignment;
1525 				}
1526 				break;
1527 			}
1528 
1529 			start = *addr;
1530 		}
1531 		if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1532 			result = vm_map_stack_locked(map, start, length,
1533 			    sgrowsiz, prot, max, cow);
1534 		} else {
1535 			result = vm_map_insert(map, object, offset, start,
1536 			    start + length, prot, max, cow);
1537 		}
1538 	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1539 	    find_space != VMFS_ANY_SPACE);
1540 	vm_map_unlock(map);
1541 	return (result);
1542 }
1543 
1544 /*
1545  *	vm_map_simplify_entry:
1546  *
1547  *	Simplify the given map entry by merging with either neighbor.  This
1548  *	routine also has the ability to merge with both neighbors.
1549  *
1550  *	The map must be locked.
1551  *
1552  *	This routine guarantees that the passed entry remains valid (though
1553  *	possibly extended).  When merging, this routine may delete one or
1554  *	both neighbors.
1555  */
1556 void
1557 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1558 {
1559 	vm_map_entry_t next, prev;
1560 	vm_size_t prevsize, esize;
1561 
1562 	if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1563 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1564 		return;
1565 
1566 	prev = entry->prev;
1567 	if (prev != &map->header) {
1568 		prevsize = prev->end - prev->start;
1569 		if ( (prev->end == entry->start) &&
1570 		     (prev->object.vm_object == entry->object.vm_object) &&
1571 		     (!prev->object.vm_object ||
1572 			(prev->offset + prevsize == entry->offset)) &&
1573 		     (prev->eflags == entry->eflags) &&
1574 		     (prev->protection == entry->protection) &&
1575 		     (prev->max_protection == entry->max_protection) &&
1576 		     (prev->inheritance == entry->inheritance) &&
1577 		     (prev->wired_count == entry->wired_count) &&
1578 		     (prev->cred == entry->cred)) {
1579 			vm_map_entry_unlink(map, prev);
1580 			entry->start = prev->start;
1581 			entry->offset = prev->offset;
1582 			if (entry->prev != &map->header)
1583 				vm_map_entry_resize_free(map, entry->prev);
1584 
1585 			/*
1586 			 * If the backing object is a vnode object,
1587 			 * vm_object_deallocate() calls vrele().
1588 			 * However, vrele() does not lock the vnode
1589 			 * because the vnode has additional
1590 			 * references.  Thus, the map lock can be kept
1591 			 * without causing a lock-order reversal with
1592 			 * the vnode lock.
1593 			 *
1594 			 * Since we count the number of virtual page
1595 			 * mappings in object->un_pager.vnp.writemappings,
1596 			 * the writemappings value should not be adjusted
1597 			 * when the entry is disposed of.
1598 			 */
1599 			if (prev->object.vm_object)
1600 				vm_object_deallocate(prev->object.vm_object);
1601 			if (prev->cred != NULL)
1602 				crfree(prev->cred);
1603 			vm_map_entry_dispose(map, prev);
1604 		}
1605 	}
1606 
1607 	next = entry->next;
1608 	if (next != &map->header) {
1609 		esize = entry->end - entry->start;
1610 		if ((entry->end == next->start) &&
1611 		    (next->object.vm_object == entry->object.vm_object) &&
1612 		     (!entry->object.vm_object ||
1613 			(entry->offset + esize == next->offset)) &&
1614 		    (next->eflags == entry->eflags) &&
1615 		    (next->protection == entry->protection) &&
1616 		    (next->max_protection == entry->max_protection) &&
1617 		    (next->inheritance == entry->inheritance) &&
1618 		    (next->wired_count == entry->wired_count) &&
1619 		    (next->cred == entry->cred)) {
1620 			vm_map_entry_unlink(map, next);
1621 			entry->end = next->end;
1622 			vm_map_entry_resize_free(map, entry);
1623 
1624 			/*
1625 			 * See comment above.
1626 			 */
1627 			if (next->object.vm_object)
1628 				vm_object_deallocate(next->object.vm_object);
1629 			if (next->cred != NULL)
1630 				crfree(next->cred);
1631 			vm_map_entry_dispose(map, next);
1632 		}
1633 	}
1634 }
1635 /*
1636  *	vm_map_clip_start:	[ internal use only ]
1637  *
1638  *	Asserts that the given entry begins at or after
1639  *	the specified address; if necessary,
1640  *	it splits the entry into two.
1641  */
1642 #define vm_map_clip_start(map, entry, startaddr) \
1643 { \
1644 	if (startaddr > entry->start) \
1645 		_vm_map_clip_start(map, entry, startaddr); \
1646 }
1647 
1648 /*
1649  *	This routine is called only when it is known that
1650  *	the entry must be split.
1651  */
1652 static void
1653 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1654 {
1655 	vm_map_entry_t new_entry;
1656 
1657 	VM_MAP_ASSERT_LOCKED(map);
1658 	KASSERT(entry->end > start && entry->start < start,
1659 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
1660 
1661 	/*
1662 	 * Split off the front portion -- note that we must insert the new
1663 	 * entry BEFORE this one, so that this entry has the specified
1664 	 * starting address.
1665 	 */
1666 	vm_map_simplify_entry(map, entry);
1667 
1668 	/*
1669 	 * If there is no object backing this entry, we might as well create
1670 	 * one now.  If we defer it, an object can get created after the map
1671 	 * is clipped, and individual objects will be created for the split-up
1672 	 * map.  This is a bit of a hack, but is also about the best place to
1673 	 * put this improvement.
1674 	 */
1675 	if (entry->object.vm_object == NULL && !map->system_map) {
1676 		vm_object_t object;
1677 		object = vm_object_allocate(OBJT_DEFAULT,
1678 				atop(entry->end - entry->start));
1679 		entry->object.vm_object = object;
1680 		entry->offset = 0;
1681 		if (entry->cred != NULL) {
1682 			object->cred = entry->cred;
1683 			object->charge = entry->end - entry->start;
1684 			entry->cred = NULL;
1685 		}
1686 	} else if (entry->object.vm_object != NULL &&
1687 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1688 		   entry->cred != NULL) {
1689 		VM_OBJECT_WLOCK(entry->object.vm_object);
1690 		KASSERT(entry->object.vm_object->cred == NULL,
1691 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1692 		entry->object.vm_object->cred = entry->cred;
1693 		entry->object.vm_object->charge = entry->end - entry->start;
1694 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1695 		entry->cred = NULL;
1696 	}
1697 
1698 	new_entry = vm_map_entry_create(map);
1699 	*new_entry = *entry;
1700 
1701 	new_entry->end = start;
1702 	entry->offset += (start - entry->start);
1703 	entry->start = start;
1704 	if (new_entry->cred != NULL)
1705 		crhold(entry->cred);
1706 
1707 	vm_map_entry_link(map, entry->prev, new_entry);
1708 
1709 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1710 		vm_object_reference(new_entry->object.vm_object);
1711 		/*
1712 		 * The object->un_pager.vnp.writemappings for the
1713 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1714 		 * kept as is here.  The virtual pages are
1715 		 * re-distributed among the clipped entries, so the sum is
1716 		 * left the same.
1717 		 */
1718 	}
1719 }
1720 
1721 /*
1722  *	vm_map_clip_end:	[ internal use only ]
1723  *
1724  *	Asserts that the given entry ends at or before
1725  *	the specified address; if necessary,
1726  *	it splits the entry into two.
1727  */
1728 #define vm_map_clip_end(map, entry, endaddr) \
1729 { \
1730 	if ((endaddr) < (entry->end)) \
1731 		_vm_map_clip_end((map), (entry), (endaddr)); \
1732 }
1733 
1734 /*
1735  *	This routine is called only when it is known that
1736  *	the entry must be split.
1737  */
1738 static void
1739 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1740 {
1741 	vm_map_entry_t new_entry;
1742 
1743 	VM_MAP_ASSERT_LOCKED(map);
1744 	KASSERT(entry->start < end && entry->end > end,
1745 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
1746 
1747 	/*
1748 	 * If there is no object backing this entry, we might as well create
1749 	 * one now.  If we defer it, an object can get created after the map
1750 	 * is clipped, and individual objects will be created for the split-up
1751 	 * map.  This is a bit of a hack, but is also about the best place to
1752 	 * put this improvement.
1753 	 */
1754 	if (entry->object.vm_object == NULL && !map->system_map) {
1755 		vm_object_t object;
1756 		object = vm_object_allocate(OBJT_DEFAULT,
1757 				atop(entry->end - entry->start));
1758 		entry->object.vm_object = object;
1759 		entry->offset = 0;
1760 		if (entry->cred != NULL) {
1761 			object->cred = entry->cred;
1762 			object->charge = entry->end - entry->start;
1763 			entry->cred = NULL;
1764 		}
1765 	} else if (entry->object.vm_object != NULL &&
1766 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1767 		   entry->cred != NULL) {
1768 		VM_OBJECT_WLOCK(entry->object.vm_object);
1769 		KASSERT(entry->object.vm_object->cred == NULL,
1770 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1771 		entry->object.vm_object->cred = entry->cred;
1772 		entry->object.vm_object->charge = entry->end - entry->start;
1773 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1774 		entry->cred = NULL;
1775 	}
1776 
1777 	/*
1778 	 * Create a new entry and insert it AFTER the specified entry
1779 	 */
1780 	new_entry = vm_map_entry_create(map);
1781 	*new_entry = *entry;
1782 
1783 	new_entry->start = entry->end = end;
1784 	new_entry->offset += (end - entry->start);
1785 	if (new_entry->cred != NULL)
1786 		crhold(entry->cred);
1787 
1788 	vm_map_entry_link(map, entry, new_entry);
1789 
1790 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1791 		vm_object_reference(new_entry->object.vm_object);
1792 	}
1793 }
1794 
1795 /*
1796  *	vm_map_submap:		[ kernel use only ]
1797  *
1798  *	Mark the given range as handled by a subordinate map.
1799  *
1800  *	This range must have been created with vm_map_find,
1801  *	and no other operations may have been performed on this
1802  *	range prior to calling vm_map_submap.
1803  *
1804  *	Only a limited number of operations can be performed
1805  *	within this rage after calling vm_map_submap:
1806  *		vm_fault
1807  *	[Don't try vm_map_copy!]
1808  *
1809  *	To remove a submapping, one must first remove the
1810  *	range from the superior map, and then destroy the
1811  *	submap (if desired).  [Better yet, don't try it.]
1812  */
1813 int
1814 vm_map_submap(
1815 	vm_map_t map,
1816 	vm_offset_t start,
1817 	vm_offset_t end,
1818 	vm_map_t submap)
1819 {
1820 	vm_map_entry_t entry;
1821 	int result = KERN_INVALID_ARGUMENT;
1822 
1823 	vm_map_lock(map);
1824 
1825 	VM_MAP_RANGE_CHECK(map, start, end);
1826 
1827 	if (vm_map_lookup_entry(map, start, &entry)) {
1828 		vm_map_clip_start(map, entry, start);
1829 	} else
1830 		entry = entry->next;
1831 
1832 	vm_map_clip_end(map, entry, end);
1833 
1834 	if ((entry->start == start) && (entry->end == end) &&
1835 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1836 	    (entry->object.vm_object == NULL)) {
1837 		entry->object.sub_map = submap;
1838 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1839 		result = KERN_SUCCESS;
1840 	}
1841 	vm_map_unlock(map);
1842 
1843 	return (result);
1844 }
1845 
1846 /*
1847  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1848  */
1849 #define	MAX_INIT_PT	96
1850 
1851 /*
1852  *	vm_map_pmap_enter:
1853  *
1854  *	Preload the specified map's pmap with mappings to the specified
1855  *	object's memory-resident pages.  No further physical pages are
1856  *	allocated, and no further virtual pages are retrieved from secondary
1857  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1858  *	limited number of page mappings are created at the low-end of the
1859  *	specified address range.  (For this purpose, a superpage mapping
1860  *	counts as one page mapping.)  Otherwise, all resident pages within
1861  *	the specified address range are mapped.
1862  */
1863 static void
1864 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1865     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1866 {
1867 	vm_offset_t start;
1868 	vm_page_t p, p_start;
1869 	vm_pindex_t mask, psize, threshold, tmpidx;
1870 
1871 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1872 		return;
1873 	VM_OBJECT_RLOCK(object);
1874 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1875 		VM_OBJECT_RUNLOCK(object);
1876 		VM_OBJECT_WLOCK(object);
1877 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1878 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1879 			    size);
1880 			VM_OBJECT_WUNLOCK(object);
1881 			return;
1882 		}
1883 		VM_OBJECT_LOCK_DOWNGRADE(object);
1884 	}
1885 
1886 	psize = atop(size);
1887 	if (psize + pindex > object->size) {
1888 		if (object->size < pindex) {
1889 			VM_OBJECT_RUNLOCK(object);
1890 			return;
1891 		}
1892 		psize = object->size - pindex;
1893 	}
1894 
1895 	start = 0;
1896 	p_start = NULL;
1897 	threshold = MAX_INIT_PT;
1898 
1899 	p = vm_page_find_least(object, pindex);
1900 	/*
1901 	 * Assert: the variable p is either (1) the page with the
1902 	 * least pindex greater than or equal to the parameter pindex
1903 	 * or (2) NULL.
1904 	 */
1905 	for (;
1906 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1907 	     p = TAILQ_NEXT(p, listq)) {
1908 		/*
1909 		 * don't allow an madvise to blow away our really
1910 		 * free pages allocating pv entries.
1911 		 */
1912 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1913 		    vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1914 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1915 		    tmpidx >= threshold)) {
1916 			psize = tmpidx;
1917 			break;
1918 		}
1919 		if (p->valid == VM_PAGE_BITS_ALL) {
1920 			if (p_start == NULL) {
1921 				start = addr + ptoa(tmpidx);
1922 				p_start = p;
1923 			}
1924 			/* Jump ahead if a superpage mapping is possible. */
1925 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1926 			    (pagesizes[p->psind] - 1)) == 0) {
1927 				mask = atop(pagesizes[p->psind]) - 1;
1928 				if (tmpidx + mask < psize &&
1929 				    vm_page_ps_is_valid(p)) {
1930 					p += mask;
1931 					threshold += mask;
1932 				}
1933 			}
1934 		} else if (p_start != NULL) {
1935 			pmap_enter_object(map->pmap, start, addr +
1936 			    ptoa(tmpidx), p_start, prot);
1937 			p_start = NULL;
1938 		}
1939 	}
1940 	if (p_start != NULL)
1941 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1942 		    p_start, prot);
1943 	VM_OBJECT_RUNLOCK(object);
1944 }
1945 
1946 /*
1947  *	vm_map_protect:
1948  *
1949  *	Sets the protection of the specified address
1950  *	region in the target map.  If "set_max" is
1951  *	specified, the maximum protection is to be set;
1952  *	otherwise, only the current protection is affected.
1953  */
1954 int
1955 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1956 	       vm_prot_t new_prot, boolean_t set_max)
1957 {
1958 	vm_map_entry_t current, entry;
1959 	vm_object_t obj;
1960 	struct ucred *cred;
1961 	vm_prot_t old_prot;
1962 
1963 	if (start == end)
1964 		return (KERN_SUCCESS);
1965 
1966 	vm_map_lock(map);
1967 
1968 	/*
1969 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
1970 	 * need to fault pages into the map and will drop the map lock while
1971 	 * doing so, and the VM object may end up in an inconsistent state if we
1972 	 * update the protection on the map entry in between faults.
1973 	 */
1974 	vm_map_wait_busy(map);
1975 
1976 	VM_MAP_RANGE_CHECK(map, start, end);
1977 
1978 	if (vm_map_lookup_entry(map, start, &entry)) {
1979 		vm_map_clip_start(map, entry, start);
1980 	} else {
1981 		entry = entry->next;
1982 	}
1983 
1984 	/*
1985 	 * Make a first pass to check for protection violations.
1986 	 */
1987 	for (current = entry; current != &map->header && current->start < end;
1988 	    current = current->next) {
1989 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1990 			vm_map_unlock(map);
1991 			return (KERN_INVALID_ARGUMENT);
1992 		}
1993 		if ((new_prot & current->max_protection) != new_prot) {
1994 			vm_map_unlock(map);
1995 			return (KERN_PROTECTION_FAILURE);
1996 		}
1997 	}
1998 
1999 	/*
2000 	 * Do an accounting pass for private read-only mappings that
2001 	 * now will do cow due to allowed write (e.g. debugger sets
2002 	 * breakpoint on text segment)
2003 	 */
2004 	for (current = entry; current != &map->header && current->start < end;
2005 	    current = current->next) {
2006 
2007 		vm_map_clip_end(map, current, end);
2008 
2009 		if (set_max ||
2010 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2011 		    ENTRY_CHARGED(current)) {
2012 			continue;
2013 		}
2014 
2015 		cred = curthread->td_ucred;
2016 		obj = current->object.vm_object;
2017 
2018 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2019 			if (!swap_reserve(current->end - current->start)) {
2020 				vm_map_unlock(map);
2021 				return (KERN_RESOURCE_SHORTAGE);
2022 			}
2023 			crhold(cred);
2024 			current->cred = cred;
2025 			continue;
2026 		}
2027 
2028 		VM_OBJECT_WLOCK(obj);
2029 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2030 			VM_OBJECT_WUNLOCK(obj);
2031 			continue;
2032 		}
2033 
2034 		/*
2035 		 * Charge for the whole object allocation now, since
2036 		 * we cannot distinguish between non-charged and
2037 		 * charged clipped mapping of the same object later.
2038 		 */
2039 		KASSERT(obj->charge == 0,
2040 		    ("vm_map_protect: object %p overcharged (entry %p)",
2041 		    obj, current));
2042 		if (!swap_reserve(ptoa(obj->size))) {
2043 			VM_OBJECT_WUNLOCK(obj);
2044 			vm_map_unlock(map);
2045 			return (KERN_RESOURCE_SHORTAGE);
2046 		}
2047 
2048 		crhold(cred);
2049 		obj->cred = cred;
2050 		obj->charge = ptoa(obj->size);
2051 		VM_OBJECT_WUNLOCK(obj);
2052 	}
2053 
2054 	/*
2055 	 * Go back and fix up protections. [Note that clipping is not
2056 	 * necessary the second time.]
2057 	 */
2058 	for (current = entry; current != &map->header && current->start < end;
2059 	    current = current->next) {
2060 		old_prot = current->protection;
2061 
2062 		if (set_max)
2063 			current->protection =
2064 			    (current->max_protection = new_prot) &
2065 			    old_prot;
2066 		else
2067 			current->protection = new_prot;
2068 
2069 		/*
2070 		 * For user wired map entries, the normal lazy evaluation of
2071 		 * write access upgrades through soft page faults is
2072 		 * undesirable.  Instead, immediately copy any pages that are
2073 		 * copy-on-write and enable write access in the physical map.
2074 		 */
2075 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2076 		    (current->protection & VM_PROT_WRITE) != 0 &&
2077 		    (old_prot & VM_PROT_WRITE) == 0)
2078 			vm_fault_copy_entry(map, map, current, current, NULL);
2079 
2080 		/*
2081 		 * When restricting access, update the physical map.  Worry
2082 		 * about copy-on-write here.
2083 		 */
2084 		if ((old_prot & ~current->protection) != 0) {
2085 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2086 							VM_PROT_ALL)
2087 			pmap_protect(map->pmap, current->start,
2088 			    current->end,
2089 			    current->protection & MASK(current));
2090 #undef	MASK
2091 		}
2092 		vm_map_simplify_entry(map, current);
2093 	}
2094 	vm_map_unlock(map);
2095 	return (KERN_SUCCESS);
2096 }
2097 
2098 /*
2099  *	vm_map_madvise:
2100  *
2101  *	This routine traverses a processes map handling the madvise
2102  *	system call.  Advisories are classified as either those effecting
2103  *	the vm_map_entry structure, or those effecting the underlying
2104  *	objects.
2105  */
2106 int
2107 vm_map_madvise(
2108 	vm_map_t map,
2109 	vm_offset_t start,
2110 	vm_offset_t end,
2111 	int behav)
2112 {
2113 	vm_map_entry_t current, entry;
2114 	int modify_map = 0;
2115 
2116 	/*
2117 	 * Some madvise calls directly modify the vm_map_entry, in which case
2118 	 * we need to use an exclusive lock on the map and we need to perform
2119 	 * various clipping operations.  Otherwise we only need a read-lock
2120 	 * on the map.
2121 	 */
2122 	switch(behav) {
2123 	case MADV_NORMAL:
2124 	case MADV_SEQUENTIAL:
2125 	case MADV_RANDOM:
2126 	case MADV_NOSYNC:
2127 	case MADV_AUTOSYNC:
2128 	case MADV_NOCORE:
2129 	case MADV_CORE:
2130 		if (start == end)
2131 			return (KERN_SUCCESS);
2132 		modify_map = 1;
2133 		vm_map_lock(map);
2134 		break;
2135 	case MADV_WILLNEED:
2136 	case MADV_DONTNEED:
2137 	case MADV_FREE:
2138 		if (start == end)
2139 			return (KERN_SUCCESS);
2140 		vm_map_lock_read(map);
2141 		break;
2142 	default:
2143 		return (KERN_INVALID_ARGUMENT);
2144 	}
2145 
2146 	/*
2147 	 * Locate starting entry and clip if necessary.
2148 	 */
2149 	VM_MAP_RANGE_CHECK(map, start, end);
2150 
2151 	if (vm_map_lookup_entry(map, start, &entry)) {
2152 		if (modify_map)
2153 			vm_map_clip_start(map, entry, start);
2154 	} else {
2155 		entry = entry->next;
2156 	}
2157 
2158 	if (modify_map) {
2159 		/*
2160 		 * madvise behaviors that are implemented in the vm_map_entry.
2161 		 *
2162 		 * We clip the vm_map_entry so that behavioral changes are
2163 		 * limited to the specified address range.
2164 		 */
2165 		for (current = entry;
2166 		     (current != &map->header) && (current->start < end);
2167 		     current = current->next
2168 		) {
2169 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2170 				continue;
2171 
2172 			vm_map_clip_end(map, current, end);
2173 
2174 			switch (behav) {
2175 			case MADV_NORMAL:
2176 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2177 				break;
2178 			case MADV_SEQUENTIAL:
2179 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2180 				break;
2181 			case MADV_RANDOM:
2182 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2183 				break;
2184 			case MADV_NOSYNC:
2185 				current->eflags |= MAP_ENTRY_NOSYNC;
2186 				break;
2187 			case MADV_AUTOSYNC:
2188 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2189 				break;
2190 			case MADV_NOCORE:
2191 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2192 				break;
2193 			case MADV_CORE:
2194 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2195 				break;
2196 			default:
2197 				break;
2198 			}
2199 			vm_map_simplify_entry(map, current);
2200 		}
2201 		vm_map_unlock(map);
2202 	} else {
2203 		vm_pindex_t pstart, pend;
2204 
2205 		/*
2206 		 * madvise behaviors that are implemented in the underlying
2207 		 * vm_object.
2208 		 *
2209 		 * Since we don't clip the vm_map_entry, we have to clip
2210 		 * the vm_object pindex and count.
2211 		 */
2212 		for (current = entry;
2213 		     (current != &map->header) && (current->start < end);
2214 		     current = current->next
2215 		) {
2216 			vm_offset_t useEnd, useStart;
2217 
2218 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2219 				continue;
2220 
2221 			pstart = OFF_TO_IDX(current->offset);
2222 			pend = pstart + atop(current->end - current->start);
2223 			useStart = current->start;
2224 			useEnd = current->end;
2225 
2226 			if (current->start < start) {
2227 				pstart += atop(start - current->start);
2228 				useStart = start;
2229 			}
2230 			if (current->end > end) {
2231 				pend -= atop(current->end - end);
2232 				useEnd = end;
2233 			}
2234 
2235 			if (pstart >= pend)
2236 				continue;
2237 
2238 			/*
2239 			 * Perform the pmap_advise() before clearing
2240 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2241 			 * concurrent pmap operation, such as pmap_remove(),
2242 			 * could clear a reference in the pmap and set
2243 			 * PGA_REFERENCED on the page before the pmap_advise()
2244 			 * had completed.  Consequently, the page would appear
2245 			 * referenced based upon an old reference that
2246 			 * occurred before this pmap_advise() ran.
2247 			 */
2248 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2249 				pmap_advise(map->pmap, useStart, useEnd,
2250 				    behav);
2251 
2252 			vm_object_madvise(current->object.vm_object, pstart,
2253 			    pend, behav);
2254 
2255 			/*
2256 			 * Pre-populate paging structures in the
2257 			 * WILLNEED case.  For wired entries, the
2258 			 * paging structures are already populated.
2259 			 */
2260 			if (behav == MADV_WILLNEED &&
2261 			    current->wired_count == 0) {
2262 				vm_map_pmap_enter(map,
2263 				    useStart,
2264 				    current->protection,
2265 				    current->object.vm_object,
2266 				    pstart,
2267 				    ptoa(pend - pstart),
2268 				    MAP_PREFAULT_MADVISE
2269 				);
2270 			}
2271 		}
2272 		vm_map_unlock_read(map);
2273 	}
2274 	return (0);
2275 }
2276 
2277 
2278 /*
2279  *	vm_map_inherit:
2280  *
2281  *	Sets the inheritance of the specified address
2282  *	range in the target map.  Inheritance
2283  *	affects how the map will be shared with
2284  *	child maps at the time of vmspace_fork.
2285  */
2286 int
2287 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2288 	       vm_inherit_t new_inheritance)
2289 {
2290 	vm_map_entry_t entry;
2291 	vm_map_entry_t temp_entry;
2292 
2293 	switch (new_inheritance) {
2294 	case VM_INHERIT_NONE:
2295 	case VM_INHERIT_COPY:
2296 	case VM_INHERIT_SHARE:
2297 	case VM_INHERIT_ZERO:
2298 		break;
2299 	default:
2300 		return (KERN_INVALID_ARGUMENT);
2301 	}
2302 	if (start == end)
2303 		return (KERN_SUCCESS);
2304 	vm_map_lock(map);
2305 	VM_MAP_RANGE_CHECK(map, start, end);
2306 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2307 		entry = temp_entry;
2308 		vm_map_clip_start(map, entry, start);
2309 	} else
2310 		entry = temp_entry->next;
2311 	while ((entry != &map->header) && (entry->start < end)) {
2312 		vm_map_clip_end(map, entry, end);
2313 		entry->inheritance = new_inheritance;
2314 		vm_map_simplify_entry(map, entry);
2315 		entry = entry->next;
2316 	}
2317 	vm_map_unlock(map);
2318 	return (KERN_SUCCESS);
2319 }
2320 
2321 /*
2322  *	vm_map_unwire:
2323  *
2324  *	Implements both kernel and user unwiring.
2325  */
2326 int
2327 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2328     int flags)
2329 {
2330 	vm_map_entry_t entry, first_entry, tmp_entry;
2331 	vm_offset_t saved_start;
2332 	unsigned int last_timestamp;
2333 	int rv;
2334 	boolean_t need_wakeup, result, user_unwire;
2335 
2336 	if (start == end)
2337 		return (KERN_SUCCESS);
2338 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2339 	vm_map_lock(map);
2340 	VM_MAP_RANGE_CHECK(map, start, end);
2341 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2342 		if (flags & VM_MAP_WIRE_HOLESOK)
2343 			first_entry = first_entry->next;
2344 		else {
2345 			vm_map_unlock(map);
2346 			return (KERN_INVALID_ADDRESS);
2347 		}
2348 	}
2349 	last_timestamp = map->timestamp;
2350 	entry = first_entry;
2351 	while (entry != &map->header && entry->start < end) {
2352 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2353 			/*
2354 			 * We have not yet clipped the entry.
2355 			 */
2356 			saved_start = (start >= entry->start) ? start :
2357 			    entry->start;
2358 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2359 			if (vm_map_unlock_and_wait(map, 0)) {
2360 				/*
2361 				 * Allow interruption of user unwiring?
2362 				 */
2363 			}
2364 			vm_map_lock(map);
2365 			if (last_timestamp+1 != map->timestamp) {
2366 				/*
2367 				 * Look again for the entry because the map was
2368 				 * modified while it was unlocked.
2369 				 * Specifically, the entry may have been
2370 				 * clipped, merged, or deleted.
2371 				 */
2372 				if (!vm_map_lookup_entry(map, saved_start,
2373 				    &tmp_entry)) {
2374 					if (flags & VM_MAP_WIRE_HOLESOK)
2375 						tmp_entry = tmp_entry->next;
2376 					else {
2377 						if (saved_start == start) {
2378 							/*
2379 							 * First_entry has been deleted.
2380 							 */
2381 							vm_map_unlock(map);
2382 							return (KERN_INVALID_ADDRESS);
2383 						}
2384 						end = saved_start;
2385 						rv = KERN_INVALID_ADDRESS;
2386 						goto done;
2387 					}
2388 				}
2389 				if (entry == first_entry)
2390 					first_entry = tmp_entry;
2391 				else
2392 					first_entry = NULL;
2393 				entry = tmp_entry;
2394 			}
2395 			last_timestamp = map->timestamp;
2396 			continue;
2397 		}
2398 		vm_map_clip_start(map, entry, start);
2399 		vm_map_clip_end(map, entry, end);
2400 		/*
2401 		 * Mark the entry in case the map lock is released.  (See
2402 		 * above.)
2403 		 */
2404 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2405 		    entry->wiring_thread == NULL,
2406 		    ("owned map entry %p", entry));
2407 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2408 		entry->wiring_thread = curthread;
2409 		/*
2410 		 * Check the map for holes in the specified region.
2411 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2412 		 */
2413 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2414 		    (entry->end < end && (entry->next == &map->header ||
2415 		    entry->next->start > entry->end))) {
2416 			end = entry->end;
2417 			rv = KERN_INVALID_ADDRESS;
2418 			goto done;
2419 		}
2420 		/*
2421 		 * If system unwiring, require that the entry is system wired.
2422 		 */
2423 		if (!user_unwire &&
2424 		    vm_map_entry_system_wired_count(entry) == 0) {
2425 			end = entry->end;
2426 			rv = KERN_INVALID_ARGUMENT;
2427 			goto done;
2428 		}
2429 		entry = entry->next;
2430 	}
2431 	rv = KERN_SUCCESS;
2432 done:
2433 	need_wakeup = FALSE;
2434 	if (first_entry == NULL) {
2435 		result = vm_map_lookup_entry(map, start, &first_entry);
2436 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2437 			first_entry = first_entry->next;
2438 		else
2439 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2440 	}
2441 	for (entry = first_entry; entry != &map->header && entry->start < end;
2442 	    entry = entry->next) {
2443 		/*
2444 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2445 		 * space in the unwired region could have been mapped
2446 		 * while the map lock was dropped for draining
2447 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2448 		 * could be simultaneously wiring this new mapping
2449 		 * entry.  Detect these cases and skip any entries
2450 		 * marked as in transition by us.
2451 		 */
2452 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2453 		    entry->wiring_thread != curthread) {
2454 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2455 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2456 			continue;
2457 		}
2458 
2459 		if (rv == KERN_SUCCESS && (!user_unwire ||
2460 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2461 			if (user_unwire)
2462 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2463 			if (entry->wired_count == 1)
2464 				vm_map_entry_unwire(map, entry);
2465 			else
2466 				entry->wired_count--;
2467 		}
2468 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2469 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2470 		KASSERT(entry->wiring_thread == curthread,
2471 		    ("vm_map_unwire: alien wire %p", entry));
2472 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2473 		entry->wiring_thread = NULL;
2474 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2475 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2476 			need_wakeup = TRUE;
2477 		}
2478 		vm_map_simplify_entry(map, entry);
2479 	}
2480 	vm_map_unlock(map);
2481 	if (need_wakeup)
2482 		vm_map_wakeup(map);
2483 	return (rv);
2484 }
2485 
2486 /*
2487  *	vm_map_wire_entry_failure:
2488  *
2489  *	Handle a wiring failure on the given entry.
2490  *
2491  *	The map should be locked.
2492  */
2493 static void
2494 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2495     vm_offset_t failed_addr)
2496 {
2497 
2498 	VM_MAP_ASSERT_LOCKED(map);
2499 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2500 	    entry->wired_count == 1,
2501 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2502 	KASSERT(failed_addr < entry->end,
2503 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2504 
2505 	/*
2506 	 * If any pages at the start of this entry were successfully wired,
2507 	 * then unwire them.
2508 	 */
2509 	if (failed_addr > entry->start) {
2510 		pmap_unwire(map->pmap, entry->start, failed_addr);
2511 		vm_object_unwire(entry->object.vm_object, entry->offset,
2512 		    failed_addr - entry->start, PQ_ACTIVE);
2513 	}
2514 
2515 	/*
2516 	 * Assign an out-of-range value to represent the failure to wire this
2517 	 * entry.
2518 	 */
2519 	entry->wired_count = -1;
2520 }
2521 
2522 /*
2523  *	vm_map_wire:
2524  *
2525  *	Implements both kernel and user wiring.
2526  */
2527 int
2528 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2529     int flags)
2530 {
2531 	vm_map_entry_t entry, first_entry, tmp_entry;
2532 	vm_offset_t faddr, saved_end, saved_start;
2533 	unsigned int last_timestamp;
2534 	int rv;
2535 	boolean_t need_wakeup, result, user_wire;
2536 	vm_prot_t prot;
2537 
2538 	if (start == end)
2539 		return (KERN_SUCCESS);
2540 	prot = 0;
2541 	if (flags & VM_MAP_WIRE_WRITE)
2542 		prot |= VM_PROT_WRITE;
2543 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2544 	vm_map_lock(map);
2545 	VM_MAP_RANGE_CHECK(map, start, end);
2546 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2547 		if (flags & VM_MAP_WIRE_HOLESOK)
2548 			first_entry = first_entry->next;
2549 		else {
2550 			vm_map_unlock(map);
2551 			return (KERN_INVALID_ADDRESS);
2552 		}
2553 	}
2554 	last_timestamp = map->timestamp;
2555 	entry = first_entry;
2556 	while (entry != &map->header && entry->start < end) {
2557 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2558 			/*
2559 			 * We have not yet clipped the entry.
2560 			 */
2561 			saved_start = (start >= entry->start) ? start :
2562 			    entry->start;
2563 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2564 			if (vm_map_unlock_and_wait(map, 0)) {
2565 				/*
2566 				 * Allow interruption of user wiring?
2567 				 */
2568 			}
2569 			vm_map_lock(map);
2570 			if (last_timestamp + 1 != map->timestamp) {
2571 				/*
2572 				 * Look again for the entry because the map was
2573 				 * modified while it was unlocked.
2574 				 * Specifically, the entry may have been
2575 				 * clipped, merged, or deleted.
2576 				 */
2577 				if (!vm_map_lookup_entry(map, saved_start,
2578 				    &tmp_entry)) {
2579 					if (flags & VM_MAP_WIRE_HOLESOK)
2580 						tmp_entry = tmp_entry->next;
2581 					else {
2582 						if (saved_start == start) {
2583 							/*
2584 							 * first_entry has been deleted.
2585 							 */
2586 							vm_map_unlock(map);
2587 							return (KERN_INVALID_ADDRESS);
2588 						}
2589 						end = saved_start;
2590 						rv = KERN_INVALID_ADDRESS;
2591 						goto done;
2592 					}
2593 				}
2594 				if (entry == first_entry)
2595 					first_entry = tmp_entry;
2596 				else
2597 					first_entry = NULL;
2598 				entry = tmp_entry;
2599 			}
2600 			last_timestamp = map->timestamp;
2601 			continue;
2602 		}
2603 		vm_map_clip_start(map, entry, start);
2604 		vm_map_clip_end(map, entry, end);
2605 		/*
2606 		 * Mark the entry in case the map lock is released.  (See
2607 		 * above.)
2608 		 */
2609 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2610 		    entry->wiring_thread == NULL,
2611 		    ("owned map entry %p", entry));
2612 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2613 		entry->wiring_thread = curthread;
2614 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2615 		    || (entry->protection & prot) != prot) {
2616 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2617 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2618 				end = entry->end;
2619 				rv = KERN_INVALID_ADDRESS;
2620 				goto done;
2621 			}
2622 			goto next_entry;
2623 		}
2624 		if (entry->wired_count == 0) {
2625 			entry->wired_count++;
2626 			saved_start = entry->start;
2627 			saved_end = entry->end;
2628 
2629 			/*
2630 			 * Release the map lock, relying on the in-transition
2631 			 * mark.  Mark the map busy for fork.
2632 			 */
2633 			vm_map_busy(map);
2634 			vm_map_unlock(map);
2635 
2636 			faddr = saved_start;
2637 			do {
2638 				/*
2639 				 * Simulate a fault to get the page and enter
2640 				 * it into the physical map.
2641 				 */
2642 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2643 				    VM_FAULT_WIRE)) != KERN_SUCCESS)
2644 					break;
2645 			} while ((faddr += PAGE_SIZE) < saved_end);
2646 			vm_map_lock(map);
2647 			vm_map_unbusy(map);
2648 			if (last_timestamp + 1 != map->timestamp) {
2649 				/*
2650 				 * Look again for the entry because the map was
2651 				 * modified while it was unlocked.  The entry
2652 				 * may have been clipped, but NOT merged or
2653 				 * deleted.
2654 				 */
2655 				result = vm_map_lookup_entry(map, saved_start,
2656 				    &tmp_entry);
2657 				KASSERT(result, ("vm_map_wire: lookup failed"));
2658 				if (entry == first_entry)
2659 					first_entry = tmp_entry;
2660 				else
2661 					first_entry = NULL;
2662 				entry = tmp_entry;
2663 				while (entry->end < saved_end) {
2664 					/*
2665 					 * In case of failure, handle entries
2666 					 * that were not fully wired here;
2667 					 * fully wired entries are handled
2668 					 * later.
2669 					 */
2670 					if (rv != KERN_SUCCESS &&
2671 					    faddr < entry->end)
2672 						vm_map_wire_entry_failure(map,
2673 						    entry, faddr);
2674 					entry = entry->next;
2675 				}
2676 			}
2677 			last_timestamp = map->timestamp;
2678 			if (rv != KERN_SUCCESS) {
2679 				vm_map_wire_entry_failure(map, entry, faddr);
2680 				end = entry->end;
2681 				goto done;
2682 			}
2683 		} else if (!user_wire ||
2684 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2685 			entry->wired_count++;
2686 		}
2687 		/*
2688 		 * Check the map for holes in the specified region.
2689 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2690 		 */
2691 	next_entry:
2692 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2693 		    (entry->end < end && (entry->next == &map->header ||
2694 		    entry->next->start > entry->end))) {
2695 			end = entry->end;
2696 			rv = KERN_INVALID_ADDRESS;
2697 			goto done;
2698 		}
2699 		entry = entry->next;
2700 	}
2701 	rv = KERN_SUCCESS;
2702 done:
2703 	need_wakeup = FALSE;
2704 	if (first_entry == NULL) {
2705 		result = vm_map_lookup_entry(map, start, &first_entry);
2706 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2707 			first_entry = first_entry->next;
2708 		else
2709 			KASSERT(result, ("vm_map_wire: lookup failed"));
2710 	}
2711 	for (entry = first_entry; entry != &map->header && entry->start < end;
2712 	    entry = entry->next) {
2713 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2714 			goto next_entry_done;
2715 
2716 		/*
2717 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2718 		 * space in the unwired region could have been mapped
2719 		 * while the map lock was dropped for faulting in the
2720 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2721 		 * Moreover, another thread could be simultaneously
2722 		 * wiring this new mapping entry.  Detect these cases
2723 		 * and skip any entries marked as in transition by us.
2724 		 */
2725 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2726 		    entry->wiring_thread != curthread) {
2727 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2728 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2729 			continue;
2730 		}
2731 
2732 		if (rv == KERN_SUCCESS) {
2733 			if (user_wire)
2734 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2735 		} else if (entry->wired_count == -1) {
2736 			/*
2737 			 * Wiring failed on this entry.  Thus, unwiring is
2738 			 * unnecessary.
2739 			 */
2740 			entry->wired_count = 0;
2741 		} else if (!user_wire ||
2742 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2743 			/*
2744 			 * Undo the wiring.  Wiring succeeded on this entry
2745 			 * but failed on a later entry.
2746 			 */
2747 			if (entry->wired_count == 1)
2748 				vm_map_entry_unwire(map, entry);
2749 			else
2750 				entry->wired_count--;
2751 		}
2752 	next_entry_done:
2753 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2754 		    ("vm_map_wire: in-transition flag missing %p", entry));
2755 		KASSERT(entry->wiring_thread == curthread,
2756 		    ("vm_map_wire: alien wire %p", entry));
2757 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2758 		    MAP_ENTRY_WIRE_SKIPPED);
2759 		entry->wiring_thread = NULL;
2760 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2761 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2762 			need_wakeup = TRUE;
2763 		}
2764 		vm_map_simplify_entry(map, entry);
2765 	}
2766 	vm_map_unlock(map);
2767 	if (need_wakeup)
2768 		vm_map_wakeup(map);
2769 	return (rv);
2770 }
2771 
2772 /*
2773  * vm_map_sync
2774  *
2775  * Push any dirty cached pages in the address range to their pager.
2776  * If syncio is TRUE, dirty pages are written synchronously.
2777  * If invalidate is TRUE, any cached pages are freed as well.
2778  *
2779  * If the size of the region from start to end is zero, we are
2780  * supposed to flush all modified pages within the region containing
2781  * start.  Unfortunately, a region can be split or coalesced with
2782  * neighboring regions, making it difficult to determine what the
2783  * original region was.  Therefore, we approximate this requirement by
2784  * flushing the current region containing start.
2785  *
2786  * Returns an error if any part of the specified range is not mapped.
2787  */
2788 int
2789 vm_map_sync(
2790 	vm_map_t map,
2791 	vm_offset_t start,
2792 	vm_offset_t end,
2793 	boolean_t syncio,
2794 	boolean_t invalidate)
2795 {
2796 	vm_map_entry_t current;
2797 	vm_map_entry_t entry;
2798 	vm_size_t size;
2799 	vm_object_t object;
2800 	vm_ooffset_t offset;
2801 	unsigned int last_timestamp;
2802 	boolean_t failed;
2803 
2804 	vm_map_lock_read(map);
2805 	VM_MAP_RANGE_CHECK(map, start, end);
2806 	if (!vm_map_lookup_entry(map, start, &entry)) {
2807 		vm_map_unlock_read(map);
2808 		return (KERN_INVALID_ADDRESS);
2809 	} else if (start == end) {
2810 		start = entry->start;
2811 		end = entry->end;
2812 	}
2813 	/*
2814 	 * Make a first pass to check for user-wired memory and holes.
2815 	 */
2816 	for (current = entry; current != &map->header && current->start < end;
2817 	    current = current->next) {
2818 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2819 			vm_map_unlock_read(map);
2820 			return (KERN_INVALID_ARGUMENT);
2821 		}
2822 		if (end > current->end &&
2823 		    (current->next == &map->header ||
2824 			current->end != current->next->start)) {
2825 			vm_map_unlock_read(map);
2826 			return (KERN_INVALID_ADDRESS);
2827 		}
2828 	}
2829 
2830 	if (invalidate)
2831 		pmap_remove(map->pmap, start, end);
2832 	failed = FALSE;
2833 
2834 	/*
2835 	 * Make a second pass, cleaning/uncaching pages from the indicated
2836 	 * objects as we go.
2837 	 */
2838 	for (current = entry; current != &map->header && current->start < end;) {
2839 		offset = current->offset + (start - current->start);
2840 		size = (end <= current->end ? end : current->end) - start;
2841 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2842 			vm_map_t smap;
2843 			vm_map_entry_t tentry;
2844 			vm_size_t tsize;
2845 
2846 			smap = current->object.sub_map;
2847 			vm_map_lock_read(smap);
2848 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2849 			tsize = tentry->end - offset;
2850 			if (tsize < size)
2851 				size = tsize;
2852 			object = tentry->object.vm_object;
2853 			offset = tentry->offset + (offset - tentry->start);
2854 			vm_map_unlock_read(smap);
2855 		} else {
2856 			object = current->object.vm_object;
2857 		}
2858 		vm_object_reference(object);
2859 		last_timestamp = map->timestamp;
2860 		vm_map_unlock_read(map);
2861 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2862 			failed = TRUE;
2863 		start += size;
2864 		vm_object_deallocate(object);
2865 		vm_map_lock_read(map);
2866 		if (last_timestamp == map->timestamp ||
2867 		    !vm_map_lookup_entry(map, start, &current))
2868 			current = current->next;
2869 	}
2870 
2871 	vm_map_unlock_read(map);
2872 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2873 }
2874 
2875 /*
2876  *	vm_map_entry_unwire:	[ internal use only ]
2877  *
2878  *	Make the region specified by this entry pageable.
2879  *
2880  *	The map in question should be locked.
2881  *	[This is the reason for this routine's existence.]
2882  */
2883 static void
2884 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2885 {
2886 
2887 	VM_MAP_ASSERT_LOCKED(map);
2888 	KASSERT(entry->wired_count > 0,
2889 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
2890 	pmap_unwire(map->pmap, entry->start, entry->end);
2891 	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2892 	    entry->start, PQ_ACTIVE);
2893 	entry->wired_count = 0;
2894 }
2895 
2896 static void
2897 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2898 {
2899 
2900 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2901 		vm_object_deallocate(entry->object.vm_object);
2902 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2903 }
2904 
2905 /*
2906  *	vm_map_entry_delete:	[ internal use only ]
2907  *
2908  *	Deallocate the given entry from the target map.
2909  */
2910 static void
2911 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2912 {
2913 	vm_object_t object;
2914 	vm_pindex_t offidxstart, offidxend, count, size1;
2915 	vm_size_t size;
2916 
2917 	vm_map_entry_unlink(map, entry);
2918 	object = entry->object.vm_object;
2919 	size = entry->end - entry->start;
2920 	map->size -= size;
2921 
2922 	if (entry->cred != NULL) {
2923 		swap_release_by_cred(size, entry->cred);
2924 		crfree(entry->cred);
2925 	}
2926 
2927 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2928 	    (object != NULL)) {
2929 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2930 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2931 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2932 		count = atop(size);
2933 		offidxstart = OFF_TO_IDX(entry->offset);
2934 		offidxend = offidxstart + count;
2935 		VM_OBJECT_WLOCK(object);
2936 		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
2937 		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2938 		    object == kernel_object || object == kmem_object)) {
2939 			vm_object_collapse(object);
2940 
2941 			/*
2942 			 * The option OBJPR_NOTMAPPED can be passed here
2943 			 * because vm_map_delete() already performed
2944 			 * pmap_remove() on the only mapping to this range
2945 			 * of pages.
2946 			 */
2947 			vm_object_page_remove(object, offidxstart, offidxend,
2948 			    OBJPR_NOTMAPPED);
2949 			if (object->type == OBJT_SWAP)
2950 				swap_pager_freespace(object, offidxstart,
2951 				    count);
2952 			if (offidxend >= object->size &&
2953 			    offidxstart < object->size) {
2954 				size1 = object->size;
2955 				object->size = offidxstart;
2956 				if (object->cred != NULL) {
2957 					size1 -= object->size;
2958 					KASSERT(object->charge >= ptoa(size1),
2959 					    ("object %p charge < 0", object));
2960 					swap_release_by_cred(ptoa(size1),
2961 					    object->cred);
2962 					object->charge -= ptoa(size1);
2963 				}
2964 			}
2965 		}
2966 		VM_OBJECT_WUNLOCK(object);
2967 	} else
2968 		entry->object.vm_object = NULL;
2969 	if (map->system_map)
2970 		vm_map_entry_deallocate(entry, TRUE);
2971 	else {
2972 		entry->next = curthread->td_map_def_user;
2973 		curthread->td_map_def_user = entry;
2974 	}
2975 }
2976 
2977 /*
2978  *	vm_map_delete:	[ internal use only ]
2979  *
2980  *	Deallocates the given address range from the target
2981  *	map.
2982  */
2983 int
2984 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2985 {
2986 	vm_map_entry_t entry;
2987 	vm_map_entry_t first_entry;
2988 
2989 	VM_MAP_ASSERT_LOCKED(map);
2990 	if (start == end)
2991 		return (KERN_SUCCESS);
2992 
2993 	/*
2994 	 * Find the start of the region, and clip it
2995 	 */
2996 	if (!vm_map_lookup_entry(map, start, &first_entry))
2997 		entry = first_entry->next;
2998 	else {
2999 		entry = first_entry;
3000 		vm_map_clip_start(map, entry, start);
3001 	}
3002 
3003 	/*
3004 	 * Step through all entries in this region
3005 	 */
3006 	while ((entry != &map->header) && (entry->start < end)) {
3007 		vm_map_entry_t next;
3008 
3009 		/*
3010 		 * Wait for wiring or unwiring of an entry to complete.
3011 		 * Also wait for any system wirings to disappear on
3012 		 * user maps.
3013 		 */
3014 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3015 		    (vm_map_pmap(map) != kernel_pmap &&
3016 		    vm_map_entry_system_wired_count(entry) != 0)) {
3017 			unsigned int last_timestamp;
3018 			vm_offset_t saved_start;
3019 			vm_map_entry_t tmp_entry;
3020 
3021 			saved_start = entry->start;
3022 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3023 			last_timestamp = map->timestamp;
3024 			(void) vm_map_unlock_and_wait(map, 0);
3025 			vm_map_lock(map);
3026 			if (last_timestamp + 1 != map->timestamp) {
3027 				/*
3028 				 * Look again for the entry because the map was
3029 				 * modified while it was unlocked.
3030 				 * Specifically, the entry may have been
3031 				 * clipped, merged, or deleted.
3032 				 */
3033 				if (!vm_map_lookup_entry(map, saved_start,
3034 							 &tmp_entry))
3035 					entry = tmp_entry->next;
3036 				else {
3037 					entry = tmp_entry;
3038 					vm_map_clip_start(map, entry,
3039 							  saved_start);
3040 				}
3041 			}
3042 			continue;
3043 		}
3044 		vm_map_clip_end(map, entry, end);
3045 
3046 		next = entry->next;
3047 
3048 		/*
3049 		 * Unwire before removing addresses from the pmap; otherwise,
3050 		 * unwiring will put the entries back in the pmap.
3051 		 */
3052 		if (entry->wired_count != 0) {
3053 			vm_map_entry_unwire(map, entry);
3054 		}
3055 
3056 		pmap_remove(map->pmap, entry->start, entry->end);
3057 
3058 		/*
3059 		 * Delete the entry only after removing all pmap
3060 		 * entries pointing to its pages.  (Otherwise, its
3061 		 * page frames may be reallocated, and any modify bits
3062 		 * will be set in the wrong object!)
3063 		 */
3064 		vm_map_entry_delete(map, entry);
3065 		entry = next;
3066 	}
3067 	return (KERN_SUCCESS);
3068 }
3069 
3070 /*
3071  *	vm_map_remove:
3072  *
3073  *	Remove the given address range from the target map.
3074  *	This is the exported form of vm_map_delete.
3075  */
3076 int
3077 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3078 {
3079 	int result;
3080 
3081 	vm_map_lock(map);
3082 	VM_MAP_RANGE_CHECK(map, start, end);
3083 	result = vm_map_delete(map, start, end);
3084 	vm_map_unlock(map);
3085 	return (result);
3086 }
3087 
3088 /*
3089  *	vm_map_check_protection:
3090  *
3091  *	Assert that the target map allows the specified privilege on the
3092  *	entire address region given.  The entire region must be allocated.
3093  *
3094  *	WARNING!  This code does not and should not check whether the
3095  *	contents of the region is accessible.  For example a smaller file
3096  *	might be mapped into a larger address space.
3097  *
3098  *	NOTE!  This code is also called by munmap().
3099  *
3100  *	The map must be locked.  A read lock is sufficient.
3101  */
3102 boolean_t
3103 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3104 			vm_prot_t protection)
3105 {
3106 	vm_map_entry_t entry;
3107 	vm_map_entry_t tmp_entry;
3108 
3109 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3110 		return (FALSE);
3111 	entry = tmp_entry;
3112 
3113 	while (start < end) {
3114 		if (entry == &map->header)
3115 			return (FALSE);
3116 		/*
3117 		 * No holes allowed!
3118 		 */
3119 		if (start < entry->start)
3120 			return (FALSE);
3121 		/*
3122 		 * Check protection associated with entry.
3123 		 */
3124 		if ((entry->protection & protection) != protection)
3125 			return (FALSE);
3126 		/* go to next entry */
3127 		start = entry->end;
3128 		entry = entry->next;
3129 	}
3130 	return (TRUE);
3131 }
3132 
3133 /*
3134  *	vm_map_copy_entry:
3135  *
3136  *	Copies the contents of the source entry to the destination
3137  *	entry.  The entries *must* be aligned properly.
3138  */
3139 static void
3140 vm_map_copy_entry(
3141 	vm_map_t src_map,
3142 	vm_map_t dst_map,
3143 	vm_map_entry_t src_entry,
3144 	vm_map_entry_t dst_entry,
3145 	vm_ooffset_t *fork_charge)
3146 {
3147 	vm_object_t src_object;
3148 	vm_map_entry_t fake_entry;
3149 	vm_offset_t size;
3150 	struct ucred *cred;
3151 	int charged;
3152 
3153 	VM_MAP_ASSERT_LOCKED(dst_map);
3154 
3155 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3156 		return;
3157 
3158 	if (src_entry->wired_count == 0 ||
3159 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3160 		/*
3161 		 * If the source entry is marked needs_copy, it is already
3162 		 * write-protected.
3163 		 */
3164 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3165 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3166 			pmap_protect(src_map->pmap,
3167 			    src_entry->start,
3168 			    src_entry->end,
3169 			    src_entry->protection & ~VM_PROT_WRITE);
3170 		}
3171 
3172 		/*
3173 		 * Make a copy of the object.
3174 		 */
3175 		size = src_entry->end - src_entry->start;
3176 		if ((src_object = src_entry->object.vm_object) != NULL) {
3177 			VM_OBJECT_WLOCK(src_object);
3178 			charged = ENTRY_CHARGED(src_entry);
3179 			if (src_object->handle == NULL &&
3180 			    (src_object->type == OBJT_DEFAULT ||
3181 			    src_object->type == OBJT_SWAP)) {
3182 				vm_object_collapse(src_object);
3183 				if ((src_object->flags & (OBJ_NOSPLIT |
3184 				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3185 					vm_object_split(src_entry);
3186 					src_object =
3187 					    src_entry->object.vm_object;
3188 				}
3189 			}
3190 			vm_object_reference_locked(src_object);
3191 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3192 			if (src_entry->cred != NULL &&
3193 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3194 				KASSERT(src_object->cred == NULL,
3195 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3196 				     src_object));
3197 				src_object->cred = src_entry->cred;
3198 				src_object->charge = size;
3199 			}
3200 			VM_OBJECT_WUNLOCK(src_object);
3201 			dst_entry->object.vm_object = src_object;
3202 			if (charged) {
3203 				cred = curthread->td_ucred;
3204 				crhold(cred);
3205 				dst_entry->cred = cred;
3206 				*fork_charge += size;
3207 				if (!(src_entry->eflags &
3208 				      MAP_ENTRY_NEEDS_COPY)) {
3209 					crhold(cred);
3210 					src_entry->cred = cred;
3211 					*fork_charge += size;
3212 				}
3213 			}
3214 			src_entry->eflags |= MAP_ENTRY_COW |
3215 			    MAP_ENTRY_NEEDS_COPY;
3216 			dst_entry->eflags |= MAP_ENTRY_COW |
3217 			    MAP_ENTRY_NEEDS_COPY;
3218 			dst_entry->offset = src_entry->offset;
3219 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3220 				/*
3221 				 * MAP_ENTRY_VN_WRITECNT cannot
3222 				 * indicate write reference from
3223 				 * src_entry, since the entry is
3224 				 * marked as needs copy.  Allocate a
3225 				 * fake entry that is used to
3226 				 * decrement object->un_pager.vnp.writecount
3227 				 * at the appropriate time.  Attach
3228 				 * fake_entry to the deferred list.
3229 				 */
3230 				fake_entry = vm_map_entry_create(dst_map);
3231 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3232 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3233 				vm_object_reference(src_object);
3234 				fake_entry->object.vm_object = src_object;
3235 				fake_entry->start = src_entry->start;
3236 				fake_entry->end = src_entry->end;
3237 				fake_entry->next = curthread->td_map_def_user;
3238 				curthread->td_map_def_user = fake_entry;
3239 			}
3240 		} else {
3241 			dst_entry->object.vm_object = NULL;
3242 			dst_entry->offset = 0;
3243 			if (src_entry->cred != NULL) {
3244 				dst_entry->cred = curthread->td_ucred;
3245 				crhold(dst_entry->cred);
3246 				*fork_charge += size;
3247 			}
3248 		}
3249 
3250 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3251 		    dst_entry->end - dst_entry->start, src_entry->start);
3252 	} else {
3253 		/*
3254 		 * We don't want to make writeable wired pages copy-on-write.
3255 		 * Immediately copy these pages into the new map by simulating
3256 		 * page faults.  The new pages are pageable.
3257 		 */
3258 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3259 		    fork_charge);
3260 	}
3261 }
3262 
3263 /*
3264  * vmspace_map_entry_forked:
3265  * Update the newly-forked vmspace each time a map entry is inherited
3266  * or copied.  The values for vm_dsize and vm_tsize are approximate
3267  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3268  */
3269 static void
3270 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3271     vm_map_entry_t entry)
3272 {
3273 	vm_size_t entrysize;
3274 	vm_offset_t newend;
3275 
3276 	entrysize = entry->end - entry->start;
3277 	vm2->vm_map.size += entrysize;
3278 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3279 		vm2->vm_ssize += btoc(entrysize);
3280 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3281 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3282 		newend = MIN(entry->end,
3283 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3284 		vm2->vm_dsize += btoc(newend - entry->start);
3285 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3286 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3287 		newend = MIN(entry->end,
3288 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3289 		vm2->vm_tsize += btoc(newend - entry->start);
3290 	}
3291 }
3292 
3293 /*
3294  * vmspace_fork:
3295  * Create a new process vmspace structure and vm_map
3296  * based on those of an existing process.  The new map
3297  * is based on the old map, according to the inheritance
3298  * values on the regions in that map.
3299  *
3300  * XXX It might be worth coalescing the entries added to the new vmspace.
3301  *
3302  * The source map must not be locked.
3303  */
3304 struct vmspace *
3305 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3306 {
3307 	struct vmspace *vm2;
3308 	vm_map_t new_map, old_map;
3309 	vm_map_entry_t new_entry, old_entry;
3310 	vm_object_t object;
3311 	int locked;
3312 
3313 	old_map = &vm1->vm_map;
3314 	/* Copy immutable fields of vm1 to vm2. */
3315 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3316 	if (vm2 == NULL)
3317 		return (NULL);
3318 	vm2->vm_taddr = vm1->vm_taddr;
3319 	vm2->vm_daddr = vm1->vm_daddr;
3320 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3321 	vm_map_lock(old_map);
3322 	if (old_map->busy)
3323 		vm_map_wait_busy(old_map);
3324 	new_map = &vm2->vm_map;
3325 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3326 	KASSERT(locked, ("vmspace_fork: lock failed"));
3327 
3328 	old_entry = old_map->header.next;
3329 
3330 	while (old_entry != &old_map->header) {
3331 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3332 			panic("vm_map_fork: encountered a submap");
3333 
3334 		switch (old_entry->inheritance) {
3335 		case VM_INHERIT_NONE:
3336 			break;
3337 
3338 		case VM_INHERIT_SHARE:
3339 			/*
3340 			 * Clone the entry, creating the shared object if necessary.
3341 			 */
3342 			object = old_entry->object.vm_object;
3343 			if (object == NULL) {
3344 				object = vm_object_allocate(OBJT_DEFAULT,
3345 					atop(old_entry->end - old_entry->start));
3346 				old_entry->object.vm_object = object;
3347 				old_entry->offset = 0;
3348 				if (old_entry->cred != NULL) {
3349 					object->cred = old_entry->cred;
3350 					object->charge = old_entry->end -
3351 					    old_entry->start;
3352 					old_entry->cred = NULL;
3353 				}
3354 			}
3355 
3356 			/*
3357 			 * Add the reference before calling vm_object_shadow
3358 			 * to insure that a shadow object is created.
3359 			 */
3360 			vm_object_reference(object);
3361 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3362 				vm_object_shadow(&old_entry->object.vm_object,
3363 				    &old_entry->offset,
3364 				    old_entry->end - old_entry->start);
3365 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3366 				/* Transfer the second reference too. */
3367 				vm_object_reference(
3368 				    old_entry->object.vm_object);
3369 
3370 				/*
3371 				 * As in vm_map_simplify_entry(), the
3372 				 * vnode lock will not be acquired in
3373 				 * this call to vm_object_deallocate().
3374 				 */
3375 				vm_object_deallocate(object);
3376 				object = old_entry->object.vm_object;
3377 			}
3378 			VM_OBJECT_WLOCK(object);
3379 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3380 			if (old_entry->cred != NULL) {
3381 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3382 				object->cred = old_entry->cred;
3383 				object->charge = old_entry->end - old_entry->start;
3384 				old_entry->cred = NULL;
3385 			}
3386 
3387 			/*
3388 			 * Assert the correct state of the vnode
3389 			 * v_writecount while the object is locked, to
3390 			 * not relock it later for the assertion
3391 			 * correctness.
3392 			 */
3393 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3394 			    object->type == OBJT_VNODE) {
3395 				KASSERT(((struct vnode *)object->handle)->
3396 				    v_writecount > 0,
3397 				    ("vmspace_fork: v_writecount %p", object));
3398 				KASSERT(object->un_pager.vnp.writemappings > 0,
3399 				    ("vmspace_fork: vnp.writecount %p",
3400 				    object));
3401 			}
3402 			VM_OBJECT_WUNLOCK(object);
3403 
3404 			/*
3405 			 * Clone the entry, referencing the shared object.
3406 			 */
3407 			new_entry = vm_map_entry_create(new_map);
3408 			*new_entry = *old_entry;
3409 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3410 			    MAP_ENTRY_IN_TRANSITION);
3411 			new_entry->wiring_thread = NULL;
3412 			new_entry->wired_count = 0;
3413 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3414 				vnode_pager_update_writecount(object,
3415 				    new_entry->start, new_entry->end);
3416 			}
3417 
3418 			/*
3419 			 * Insert the entry into the new map -- we know we're
3420 			 * inserting at the end of the new map.
3421 			 */
3422 			vm_map_entry_link(new_map, new_map->header.prev,
3423 			    new_entry);
3424 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3425 
3426 			/*
3427 			 * Update the physical map
3428 			 */
3429 			pmap_copy(new_map->pmap, old_map->pmap,
3430 			    new_entry->start,
3431 			    (old_entry->end - old_entry->start),
3432 			    old_entry->start);
3433 			break;
3434 
3435 		case VM_INHERIT_COPY:
3436 			/*
3437 			 * Clone the entry and link into the map.
3438 			 */
3439 			new_entry = vm_map_entry_create(new_map);
3440 			*new_entry = *old_entry;
3441 			/*
3442 			 * Copied entry is COW over the old object.
3443 			 */
3444 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3445 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3446 			new_entry->wiring_thread = NULL;
3447 			new_entry->wired_count = 0;
3448 			new_entry->object.vm_object = NULL;
3449 			new_entry->cred = NULL;
3450 			vm_map_entry_link(new_map, new_map->header.prev,
3451 			    new_entry);
3452 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3453 			vm_map_copy_entry(old_map, new_map, old_entry,
3454 			    new_entry, fork_charge);
3455 			break;
3456 
3457 		case VM_INHERIT_ZERO:
3458 			/*
3459 			 * Create a new anonymous mapping entry modelled from
3460 			 * the old one.
3461 			 */
3462 			new_entry = vm_map_entry_create(new_map);
3463 			memset(new_entry, 0, sizeof(*new_entry));
3464 
3465 			new_entry->start = old_entry->start;
3466 			new_entry->end = old_entry->end;
3467 			new_entry->avail_ssize = old_entry->avail_ssize;
3468 			new_entry->eflags = old_entry->eflags &
3469 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3470 			    MAP_ENTRY_VN_WRITECNT);
3471 			new_entry->protection = old_entry->protection;
3472 			new_entry->max_protection = old_entry->max_protection;
3473 			new_entry->inheritance = VM_INHERIT_ZERO;
3474 
3475 			vm_map_entry_link(new_map, new_map->header.prev,
3476 			    new_entry);
3477 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3478 
3479 			new_entry->cred = curthread->td_ucred;
3480 			crhold(new_entry->cred);
3481 			*fork_charge += (new_entry->end - new_entry->start);
3482 
3483 			break;
3484 		}
3485 		old_entry = old_entry->next;
3486 	}
3487 	/*
3488 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3489 	 * map entries, which cannot be done until both old_map and
3490 	 * new_map locks are released.
3491 	 */
3492 	sx_xunlock(&old_map->lock);
3493 	sx_xunlock(&new_map->lock);
3494 	vm_map_process_deferred();
3495 
3496 	return (vm2);
3497 }
3498 
3499 int
3500 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3501     vm_prot_t prot, vm_prot_t max, int cow)
3502 {
3503 	vm_size_t growsize, init_ssize;
3504 	rlim_t lmemlim, vmemlim;
3505 	int rv;
3506 
3507 	growsize = sgrowsiz;
3508 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3509 	vm_map_lock(map);
3510 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3511 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3512 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3513 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3514 			rv = KERN_NO_SPACE;
3515 			goto out;
3516 		}
3517 	}
3518 	/* If we would blow our VMEM resource limit, no go */
3519 	if (map->size + init_ssize > vmemlim) {
3520 		rv = KERN_NO_SPACE;
3521 		goto out;
3522 	}
3523 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3524 	    max, cow);
3525 out:
3526 	vm_map_unlock(map);
3527 	return (rv);
3528 }
3529 
3530 static int
3531 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3532     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3533 {
3534 	vm_map_entry_t new_entry, prev_entry;
3535 	vm_offset_t bot, top;
3536 	vm_size_t init_ssize;
3537 	int orient, rv;
3538 
3539 	/*
3540 	 * The stack orientation is piggybacked with the cow argument.
3541 	 * Extract it into orient and mask the cow argument so that we
3542 	 * don't pass it around further.
3543 	 * NOTE: We explicitly allow bi-directional stacks.
3544 	 */
3545 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3546 	KASSERT(orient != 0, ("No stack grow direction"));
3547 
3548 	if (addrbos < vm_map_min(map) ||
3549 	    addrbos > vm_map_max(map) ||
3550 	    addrbos + max_ssize < addrbos)
3551 		return (KERN_NO_SPACE);
3552 
3553 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3554 
3555 	/* If addr is already mapped, no go */
3556 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3557 		return (KERN_NO_SPACE);
3558 
3559 	/*
3560 	 * If we can't accommodate max_ssize in the current mapping, no go.
3561 	 * However, we need to be aware that subsequent user mappings might
3562 	 * map into the space we have reserved for stack, and currently this
3563 	 * space is not protected.
3564 	 *
3565 	 * Hopefully we will at least detect this condition when we try to
3566 	 * grow the stack.
3567 	 */
3568 	if ((prev_entry->next != &map->header) &&
3569 	    (prev_entry->next->start < addrbos + max_ssize))
3570 		return (KERN_NO_SPACE);
3571 
3572 	/*
3573 	 * We initially map a stack of only init_ssize.  We will grow as
3574 	 * needed later.  Depending on the orientation of the stack (i.e.
3575 	 * the grow direction) we either map at the top of the range, the
3576 	 * bottom of the range or in the middle.
3577 	 *
3578 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3579 	 * and cow to be 0.  Possibly we should eliminate these as input
3580 	 * parameters, and just pass these values here in the insert call.
3581 	 */
3582 	if (orient == MAP_STACK_GROWS_DOWN)
3583 		bot = addrbos + max_ssize - init_ssize;
3584 	else if (orient == MAP_STACK_GROWS_UP)
3585 		bot = addrbos;
3586 	else
3587 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3588 	top = bot + init_ssize;
3589 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3590 
3591 	/* Now set the avail_ssize amount. */
3592 	if (rv == KERN_SUCCESS) {
3593 		new_entry = prev_entry->next;
3594 		if (new_entry->end != top || new_entry->start != bot)
3595 			panic("Bad entry start/end for new stack entry");
3596 
3597 		new_entry->avail_ssize = max_ssize - init_ssize;
3598 		KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3599 		    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3600 		    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3601 		KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3602 		    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3603 		    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3604 	}
3605 
3606 	return (rv);
3607 }
3608 
3609 static int stack_guard_page = 0;
3610 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3611     &stack_guard_page, 0,
3612     "Insert stack guard page ahead of the growable segments.");
3613 
3614 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3615  * desired address is already mapped, or if we successfully grow
3616  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3617  * stack range (this is strange, but preserves compatibility with
3618  * the grow function in vm_machdep.c).
3619  */
3620 int
3621 vm_map_growstack(struct proc *p, vm_offset_t addr)
3622 {
3623 	vm_map_entry_t next_entry, prev_entry;
3624 	vm_map_entry_t new_entry, stack_entry;
3625 	struct vmspace *vm = p->p_vmspace;
3626 	vm_map_t map = &vm->vm_map;
3627 	vm_offset_t end;
3628 	vm_size_t growsize;
3629 	size_t grow_amount, max_grow;
3630 	rlim_t lmemlim, stacklim, vmemlim;
3631 	int is_procstack, rv;
3632 	struct ucred *cred;
3633 #ifdef notyet
3634 	uint64_t limit;
3635 #endif
3636 #ifdef RACCT
3637 	int error;
3638 #endif
3639 
3640 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3641 	stacklim = lim_cur(curthread, RLIMIT_STACK);
3642 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3643 Retry:
3644 
3645 	vm_map_lock_read(map);
3646 
3647 	/* If addr is already in the entry range, no need to grow.*/
3648 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3649 		vm_map_unlock_read(map);
3650 		return (KERN_SUCCESS);
3651 	}
3652 
3653 	next_entry = prev_entry->next;
3654 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3655 		/*
3656 		 * This entry does not grow upwards. Since the address lies
3657 		 * beyond this entry, the next entry (if one exists) has to
3658 		 * be a downward growable entry. The entry list header is
3659 		 * never a growable entry, so it suffices to check the flags.
3660 		 */
3661 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3662 			vm_map_unlock_read(map);
3663 			return (KERN_SUCCESS);
3664 		}
3665 		stack_entry = next_entry;
3666 	} else {
3667 		/*
3668 		 * This entry grows upward. If the next entry does not at
3669 		 * least grow downwards, this is the entry we need to grow.
3670 		 * otherwise we have two possible choices and we have to
3671 		 * select one.
3672 		 */
3673 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3674 			/*
3675 			 * We have two choices; grow the entry closest to
3676 			 * the address to minimize the amount of growth.
3677 			 */
3678 			if (addr - prev_entry->end <= next_entry->start - addr)
3679 				stack_entry = prev_entry;
3680 			else
3681 				stack_entry = next_entry;
3682 		} else
3683 			stack_entry = prev_entry;
3684 	}
3685 
3686 	if (stack_entry == next_entry) {
3687 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3688 		KASSERT(addr < stack_entry->start, ("foo"));
3689 		end = (prev_entry != &map->header) ? prev_entry->end :
3690 		    stack_entry->start - stack_entry->avail_ssize;
3691 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3692 		max_grow = stack_entry->start - end;
3693 	} else {
3694 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3695 		KASSERT(addr >= stack_entry->end, ("foo"));
3696 		end = (next_entry != &map->header) ? next_entry->start :
3697 		    stack_entry->end + stack_entry->avail_ssize;
3698 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3699 		max_grow = end - stack_entry->end;
3700 	}
3701 
3702 	if (grow_amount > stack_entry->avail_ssize) {
3703 		vm_map_unlock_read(map);
3704 		return (KERN_NO_SPACE);
3705 	}
3706 
3707 	/*
3708 	 * If there is no longer enough space between the entries nogo, and
3709 	 * adjust the available space.  Note: this  should only happen if the
3710 	 * user has mapped into the stack area after the stack was created,
3711 	 * and is probably an error.
3712 	 *
3713 	 * This also effectively destroys any guard page the user might have
3714 	 * intended by limiting the stack size.
3715 	 */
3716 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3717 		if (vm_map_lock_upgrade(map))
3718 			goto Retry;
3719 
3720 		stack_entry->avail_ssize = max_grow;
3721 
3722 		vm_map_unlock(map);
3723 		return (KERN_NO_SPACE);
3724 	}
3725 
3726 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr &&
3727 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack) ? 1 : 0;
3728 
3729 	/*
3730 	 * If this is the main process stack, see if we're over the stack
3731 	 * limit.
3732 	 */
3733 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3734 		vm_map_unlock_read(map);
3735 		return (KERN_NO_SPACE);
3736 	}
3737 #ifdef RACCT
3738 	if (racct_enable) {
3739 		PROC_LOCK(p);
3740 		if (is_procstack && racct_set(p, RACCT_STACK,
3741 		    ctob(vm->vm_ssize) + grow_amount)) {
3742 			PROC_UNLOCK(p);
3743 			vm_map_unlock_read(map);
3744 			return (KERN_NO_SPACE);
3745 		}
3746 		PROC_UNLOCK(p);
3747 	}
3748 #endif
3749 
3750 	/* Round up the grow amount modulo sgrowsiz */
3751 	growsize = sgrowsiz;
3752 	grow_amount = roundup(grow_amount, growsize);
3753 	if (grow_amount > stack_entry->avail_ssize)
3754 		grow_amount = stack_entry->avail_ssize;
3755 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3756 		grow_amount = trunc_page((vm_size_t)stacklim) -
3757 		    ctob(vm->vm_ssize);
3758 	}
3759 #ifdef notyet
3760 	PROC_LOCK(p);
3761 	limit = racct_get_available(p, RACCT_STACK);
3762 	PROC_UNLOCK(p);
3763 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3764 		grow_amount = limit - ctob(vm->vm_ssize);
3765 #endif
3766 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3767 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3768 			vm_map_unlock_read(map);
3769 			rv = KERN_NO_SPACE;
3770 			goto out;
3771 		}
3772 #ifdef RACCT
3773 		if (racct_enable) {
3774 			PROC_LOCK(p);
3775 			if (racct_set(p, RACCT_MEMLOCK,
3776 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3777 				PROC_UNLOCK(p);
3778 				vm_map_unlock_read(map);
3779 				rv = KERN_NO_SPACE;
3780 				goto out;
3781 			}
3782 			PROC_UNLOCK(p);
3783 		}
3784 #endif
3785 	}
3786 	/* If we would blow our VMEM resource limit, no go */
3787 	if (map->size + grow_amount > vmemlim) {
3788 		vm_map_unlock_read(map);
3789 		rv = KERN_NO_SPACE;
3790 		goto out;
3791 	}
3792 #ifdef RACCT
3793 	if (racct_enable) {
3794 		PROC_LOCK(p);
3795 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3796 			PROC_UNLOCK(p);
3797 			vm_map_unlock_read(map);
3798 			rv = KERN_NO_SPACE;
3799 			goto out;
3800 		}
3801 		PROC_UNLOCK(p);
3802 	}
3803 #endif
3804 
3805 	if (vm_map_lock_upgrade(map))
3806 		goto Retry;
3807 
3808 	if (stack_entry == next_entry) {
3809 		/*
3810 		 * Growing downward.
3811 		 */
3812 		/* Get the preliminary new entry start value */
3813 		addr = stack_entry->start - grow_amount;
3814 
3815 		/*
3816 		 * If this puts us into the previous entry, cut back our
3817 		 * growth to the available space. Also, see the note above.
3818 		 */
3819 		if (addr < end) {
3820 			stack_entry->avail_ssize = max_grow;
3821 			addr = end;
3822 			if (stack_guard_page)
3823 				addr += PAGE_SIZE;
3824 		}
3825 
3826 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3827 		    next_entry->protection, next_entry->max_protection,
3828 		    MAP_STACK_GROWS_DOWN);
3829 
3830 		/* Adjust the available stack space by the amount we grew. */
3831 		if (rv == KERN_SUCCESS) {
3832 			new_entry = prev_entry->next;
3833 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3834 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3835 			KASSERT(new_entry->start == addr, ("foo"));
3836 			KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) !=
3837 			    0, ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3838 			grow_amount = new_entry->end - new_entry->start;
3839 			new_entry->avail_ssize = stack_entry->avail_ssize -
3840 			    grow_amount;
3841 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3842 		}
3843 	} else {
3844 		/*
3845 		 * Growing upward.
3846 		 */
3847 		addr = stack_entry->end + grow_amount;
3848 
3849 		/*
3850 		 * If this puts us into the next entry, cut back our growth
3851 		 * to the available space. Also, see the note above.
3852 		 */
3853 		if (addr > end) {
3854 			stack_entry->avail_ssize = end - stack_entry->end;
3855 			addr = end;
3856 			if (stack_guard_page)
3857 				addr -= PAGE_SIZE;
3858 		}
3859 
3860 		grow_amount = addr - stack_entry->end;
3861 		cred = stack_entry->cred;
3862 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3863 			cred = stack_entry->object.vm_object->cred;
3864 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3865 			rv = KERN_NO_SPACE;
3866 		/* Grow the underlying object if applicable. */
3867 		else if (stack_entry->object.vm_object == NULL ||
3868 		    vm_object_coalesce(stack_entry->object.vm_object,
3869 		    stack_entry->offset,
3870 		    (vm_size_t)(stack_entry->end - stack_entry->start),
3871 		    (vm_size_t)grow_amount, cred != NULL)) {
3872 			map->size += (addr - stack_entry->end);
3873 			/* Update the current entry. */
3874 			stack_entry->end = addr;
3875 			stack_entry->avail_ssize -= grow_amount;
3876 			vm_map_entry_resize_free(map, stack_entry);
3877 			rv = KERN_SUCCESS;
3878 		} else
3879 			rv = KERN_FAILURE;
3880 	}
3881 
3882 	if (rv == KERN_SUCCESS && is_procstack)
3883 		vm->vm_ssize += btoc(grow_amount);
3884 
3885 	vm_map_unlock(map);
3886 
3887 	/*
3888 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3889 	 */
3890 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3891 		vm_map_wire(map,
3892 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3893 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3894 		    (p->p_flag & P_SYSTEM)
3895 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3896 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3897 	}
3898 
3899 out:
3900 #ifdef RACCT
3901 	if (racct_enable && rv != KERN_SUCCESS) {
3902 		PROC_LOCK(p);
3903 		error = racct_set(p, RACCT_VMEM, map->size);
3904 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3905 		if (!old_mlock) {
3906 			error = racct_set(p, RACCT_MEMLOCK,
3907 			    ptoa(pmap_wired_count(map->pmap)));
3908 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3909 		}
3910 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3911 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3912 		PROC_UNLOCK(p);
3913 	}
3914 #endif
3915 
3916 	return (rv);
3917 }
3918 
3919 /*
3920  * Unshare the specified VM space for exec.  If other processes are
3921  * mapped to it, then create a new one.  The new vmspace is null.
3922  */
3923 int
3924 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3925 {
3926 	struct vmspace *oldvmspace = p->p_vmspace;
3927 	struct vmspace *newvmspace;
3928 
3929 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3930 	    ("vmspace_exec recursed"));
3931 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3932 	if (newvmspace == NULL)
3933 		return (ENOMEM);
3934 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3935 	/*
3936 	 * This code is written like this for prototype purposes.  The
3937 	 * goal is to avoid running down the vmspace here, but let the
3938 	 * other process's that are still using the vmspace to finally
3939 	 * run it down.  Even though there is little or no chance of blocking
3940 	 * here, it is a good idea to keep this form for future mods.
3941 	 */
3942 	PROC_VMSPACE_LOCK(p);
3943 	p->p_vmspace = newvmspace;
3944 	PROC_VMSPACE_UNLOCK(p);
3945 	if (p == curthread->td_proc)
3946 		pmap_activate(curthread);
3947 	curthread->td_pflags |= TDP_EXECVMSPC;
3948 	return (0);
3949 }
3950 
3951 /*
3952  * Unshare the specified VM space for forcing COW.  This
3953  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3954  */
3955 int
3956 vmspace_unshare(struct proc *p)
3957 {
3958 	struct vmspace *oldvmspace = p->p_vmspace;
3959 	struct vmspace *newvmspace;
3960 	vm_ooffset_t fork_charge;
3961 
3962 	if (oldvmspace->vm_refcnt == 1)
3963 		return (0);
3964 	fork_charge = 0;
3965 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3966 	if (newvmspace == NULL)
3967 		return (ENOMEM);
3968 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3969 		vmspace_free(newvmspace);
3970 		return (ENOMEM);
3971 	}
3972 	PROC_VMSPACE_LOCK(p);
3973 	p->p_vmspace = newvmspace;
3974 	PROC_VMSPACE_UNLOCK(p);
3975 	if (p == curthread->td_proc)
3976 		pmap_activate(curthread);
3977 	vmspace_free(oldvmspace);
3978 	return (0);
3979 }
3980 
3981 /*
3982  *	vm_map_lookup:
3983  *
3984  *	Finds the VM object, offset, and
3985  *	protection for a given virtual address in the
3986  *	specified map, assuming a page fault of the
3987  *	type specified.
3988  *
3989  *	Leaves the map in question locked for read; return
3990  *	values are guaranteed until a vm_map_lookup_done
3991  *	call is performed.  Note that the map argument
3992  *	is in/out; the returned map must be used in
3993  *	the call to vm_map_lookup_done.
3994  *
3995  *	A handle (out_entry) is returned for use in
3996  *	vm_map_lookup_done, to make that fast.
3997  *
3998  *	If a lookup is requested with "write protection"
3999  *	specified, the map may be changed to perform virtual
4000  *	copying operations, although the data referenced will
4001  *	remain the same.
4002  */
4003 int
4004 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4005 	      vm_offset_t vaddr,
4006 	      vm_prot_t fault_typea,
4007 	      vm_map_entry_t *out_entry,	/* OUT */
4008 	      vm_object_t *object,		/* OUT */
4009 	      vm_pindex_t *pindex,		/* OUT */
4010 	      vm_prot_t *out_prot,		/* OUT */
4011 	      boolean_t *wired)			/* OUT */
4012 {
4013 	vm_map_entry_t entry;
4014 	vm_map_t map = *var_map;
4015 	vm_prot_t prot;
4016 	vm_prot_t fault_type = fault_typea;
4017 	vm_object_t eobject;
4018 	vm_size_t size;
4019 	struct ucred *cred;
4020 
4021 RetryLookup:;
4022 
4023 	vm_map_lock_read(map);
4024 
4025 	/*
4026 	 * Lookup the faulting address.
4027 	 */
4028 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4029 		vm_map_unlock_read(map);
4030 		return (KERN_INVALID_ADDRESS);
4031 	}
4032 
4033 	entry = *out_entry;
4034 
4035 	/*
4036 	 * Handle submaps.
4037 	 */
4038 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4039 		vm_map_t old_map = map;
4040 
4041 		*var_map = map = entry->object.sub_map;
4042 		vm_map_unlock_read(old_map);
4043 		goto RetryLookup;
4044 	}
4045 
4046 	/*
4047 	 * Check whether this task is allowed to have this page.
4048 	 */
4049 	prot = entry->protection;
4050 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4051 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4052 		vm_map_unlock_read(map);
4053 		return (KERN_PROTECTION_FAILURE);
4054 	}
4055 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4056 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4057 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4058 	    ("entry %p flags %x", entry, entry->eflags));
4059 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4060 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4061 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4062 		vm_map_unlock_read(map);
4063 		return (KERN_PROTECTION_FAILURE);
4064 	}
4065 
4066 	/*
4067 	 * If this page is not pageable, we have to get it for all possible
4068 	 * accesses.
4069 	 */
4070 	*wired = (entry->wired_count != 0);
4071 	if (*wired)
4072 		fault_type = entry->protection;
4073 	size = entry->end - entry->start;
4074 	/*
4075 	 * If the entry was copy-on-write, we either ...
4076 	 */
4077 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4078 		/*
4079 		 * If we want to write the page, we may as well handle that
4080 		 * now since we've got the map locked.
4081 		 *
4082 		 * If we don't need to write the page, we just demote the
4083 		 * permissions allowed.
4084 		 */
4085 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4086 		    (fault_typea & VM_PROT_COPY) != 0) {
4087 			/*
4088 			 * Make a new object, and place it in the object
4089 			 * chain.  Note that no new references have appeared
4090 			 * -- one just moved from the map to the new
4091 			 * object.
4092 			 */
4093 			if (vm_map_lock_upgrade(map))
4094 				goto RetryLookup;
4095 
4096 			if (entry->cred == NULL) {
4097 				/*
4098 				 * The debugger owner is charged for
4099 				 * the memory.
4100 				 */
4101 				cred = curthread->td_ucred;
4102 				crhold(cred);
4103 				if (!swap_reserve_by_cred(size, cred)) {
4104 					crfree(cred);
4105 					vm_map_unlock(map);
4106 					return (KERN_RESOURCE_SHORTAGE);
4107 				}
4108 				entry->cred = cred;
4109 			}
4110 			vm_object_shadow(&entry->object.vm_object,
4111 			    &entry->offset, size);
4112 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4113 			eobject = entry->object.vm_object;
4114 			if (eobject->cred != NULL) {
4115 				/*
4116 				 * The object was not shadowed.
4117 				 */
4118 				swap_release_by_cred(size, entry->cred);
4119 				crfree(entry->cred);
4120 				entry->cred = NULL;
4121 			} else if (entry->cred != NULL) {
4122 				VM_OBJECT_WLOCK(eobject);
4123 				eobject->cred = entry->cred;
4124 				eobject->charge = size;
4125 				VM_OBJECT_WUNLOCK(eobject);
4126 				entry->cred = NULL;
4127 			}
4128 
4129 			vm_map_lock_downgrade(map);
4130 		} else {
4131 			/*
4132 			 * We're attempting to read a copy-on-write page --
4133 			 * don't allow writes.
4134 			 */
4135 			prot &= ~VM_PROT_WRITE;
4136 		}
4137 	}
4138 
4139 	/*
4140 	 * Create an object if necessary.
4141 	 */
4142 	if (entry->object.vm_object == NULL &&
4143 	    !map->system_map) {
4144 		if (vm_map_lock_upgrade(map))
4145 			goto RetryLookup;
4146 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4147 		    atop(size));
4148 		entry->offset = 0;
4149 		if (entry->cred != NULL) {
4150 			VM_OBJECT_WLOCK(entry->object.vm_object);
4151 			entry->object.vm_object->cred = entry->cred;
4152 			entry->object.vm_object->charge = size;
4153 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4154 			entry->cred = NULL;
4155 		}
4156 		vm_map_lock_downgrade(map);
4157 	}
4158 
4159 	/*
4160 	 * Return the object/offset from this entry.  If the entry was
4161 	 * copy-on-write or empty, it has been fixed up.
4162 	 */
4163 	*pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4164 	*object = entry->object.vm_object;
4165 
4166 	*out_prot = prot;
4167 	return (KERN_SUCCESS);
4168 }
4169 
4170 /*
4171  *	vm_map_lookup_locked:
4172  *
4173  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4174  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4175  */
4176 int
4177 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4178 		     vm_offset_t vaddr,
4179 		     vm_prot_t fault_typea,
4180 		     vm_map_entry_t *out_entry,	/* OUT */
4181 		     vm_object_t *object,	/* OUT */
4182 		     vm_pindex_t *pindex,	/* OUT */
4183 		     vm_prot_t *out_prot,	/* OUT */
4184 		     boolean_t *wired)		/* OUT */
4185 {
4186 	vm_map_entry_t entry;
4187 	vm_map_t map = *var_map;
4188 	vm_prot_t prot;
4189 	vm_prot_t fault_type = fault_typea;
4190 
4191 	/*
4192 	 * Lookup the faulting address.
4193 	 */
4194 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4195 		return (KERN_INVALID_ADDRESS);
4196 
4197 	entry = *out_entry;
4198 
4199 	/*
4200 	 * Fail if the entry refers to a submap.
4201 	 */
4202 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4203 		return (KERN_FAILURE);
4204 
4205 	/*
4206 	 * Check whether this task is allowed to have this page.
4207 	 */
4208 	prot = entry->protection;
4209 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4210 	if ((fault_type & prot) != fault_type)
4211 		return (KERN_PROTECTION_FAILURE);
4212 
4213 	/*
4214 	 * If this page is not pageable, we have to get it for all possible
4215 	 * accesses.
4216 	 */
4217 	*wired = (entry->wired_count != 0);
4218 	if (*wired)
4219 		fault_type = entry->protection;
4220 
4221 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4222 		/*
4223 		 * Fail if the entry was copy-on-write for a write fault.
4224 		 */
4225 		if (fault_type & VM_PROT_WRITE)
4226 			return (KERN_FAILURE);
4227 		/*
4228 		 * We're attempting to read a copy-on-write page --
4229 		 * don't allow writes.
4230 		 */
4231 		prot &= ~VM_PROT_WRITE;
4232 	}
4233 
4234 	/*
4235 	 * Fail if an object should be created.
4236 	 */
4237 	if (entry->object.vm_object == NULL && !map->system_map)
4238 		return (KERN_FAILURE);
4239 
4240 	/*
4241 	 * Return the object/offset from this entry.  If the entry was
4242 	 * copy-on-write or empty, it has been fixed up.
4243 	 */
4244 	*pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4245 	*object = entry->object.vm_object;
4246 
4247 	*out_prot = prot;
4248 	return (KERN_SUCCESS);
4249 }
4250 
4251 /*
4252  *	vm_map_lookup_done:
4253  *
4254  *	Releases locks acquired by a vm_map_lookup
4255  *	(according to the handle returned by that lookup).
4256  */
4257 void
4258 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4259 {
4260 	/*
4261 	 * Unlock the main-level map
4262 	 */
4263 	vm_map_unlock_read(map);
4264 }
4265 
4266 #include "opt_ddb.h"
4267 #ifdef DDB
4268 #include <sys/kernel.h>
4269 
4270 #include <ddb/ddb.h>
4271 
4272 static void
4273 vm_map_print(vm_map_t map)
4274 {
4275 	vm_map_entry_t entry;
4276 
4277 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4278 	    (void *)map,
4279 	    (void *)map->pmap, map->nentries, map->timestamp);
4280 
4281 	db_indent += 2;
4282 	for (entry = map->header.next; entry != &map->header;
4283 	    entry = entry->next) {
4284 		db_iprintf("map entry %p: start=%p, end=%p\n",
4285 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4286 		{
4287 			static char *inheritance_name[4] =
4288 			{"share", "copy", "none", "donate_copy"};
4289 
4290 			db_iprintf(" prot=%x/%x/%s",
4291 			    entry->protection,
4292 			    entry->max_protection,
4293 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4294 			if (entry->wired_count != 0)
4295 				db_printf(", wired");
4296 		}
4297 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4298 			db_printf(", share=%p, offset=0x%jx\n",
4299 			    (void *)entry->object.sub_map,
4300 			    (uintmax_t)entry->offset);
4301 			if ((entry->prev == &map->header) ||
4302 			    (entry->prev->object.sub_map !=
4303 				entry->object.sub_map)) {
4304 				db_indent += 2;
4305 				vm_map_print((vm_map_t)entry->object.sub_map);
4306 				db_indent -= 2;
4307 			}
4308 		} else {
4309 			if (entry->cred != NULL)
4310 				db_printf(", ruid %d", entry->cred->cr_ruid);
4311 			db_printf(", object=%p, offset=0x%jx",
4312 			    (void *)entry->object.vm_object,
4313 			    (uintmax_t)entry->offset);
4314 			if (entry->object.vm_object && entry->object.vm_object->cred)
4315 				db_printf(", obj ruid %d charge %jx",
4316 				    entry->object.vm_object->cred->cr_ruid,
4317 				    (uintmax_t)entry->object.vm_object->charge);
4318 			if (entry->eflags & MAP_ENTRY_COW)
4319 				db_printf(", copy (%s)",
4320 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4321 			db_printf("\n");
4322 
4323 			if ((entry->prev == &map->header) ||
4324 			    (entry->prev->object.vm_object !=
4325 				entry->object.vm_object)) {
4326 				db_indent += 2;
4327 				vm_object_print((db_expr_t)(intptr_t)
4328 						entry->object.vm_object,
4329 						0, 0, (char *)0);
4330 				db_indent -= 2;
4331 			}
4332 		}
4333 	}
4334 	db_indent -= 2;
4335 }
4336 
4337 DB_SHOW_COMMAND(map, map)
4338 {
4339 
4340 	if (!have_addr) {
4341 		db_printf("usage: show map <addr>\n");
4342 		return;
4343 	}
4344 	vm_map_print((vm_map_t)addr);
4345 }
4346 
4347 DB_SHOW_COMMAND(procvm, procvm)
4348 {
4349 	struct proc *p;
4350 
4351 	if (have_addr) {
4352 		p = db_lookup_proc(addr);
4353 	} else {
4354 		p = curproc;
4355 	}
4356 
4357 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4358 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4359 	    (void *)vmspace_pmap(p->p_vmspace));
4360 
4361 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4362 }
4363 
4364 #endif /* DDB */
4365