1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/rwlock.h> 81 #include <sys/file.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/shm.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_pager.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t mapzone; 128 static uma_zone_t vmspace_zone; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static int vm_map_zinit(void *mem, int ize, int flags); 131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 132 vm_offset_t max); 133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 137 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 138 #ifdef INVARIANTS 139 static void vm_map_zdtor(void *mem, int size, void *arg); 140 static void vmspace_zdtor(void *mem, int size, void *arg); 141 #endif 142 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 143 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 144 int cow); 145 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 146 vm_offset_t failed_addr); 147 148 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 149 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 150 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 151 152 /* 153 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 154 * stable. 155 */ 156 #define PROC_VMSPACE_LOCK(p) do { } while (0) 157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 158 159 /* 160 * VM_MAP_RANGE_CHECK: [ internal use only ] 161 * 162 * Asserts that the starting and ending region 163 * addresses fall within the valid range of the map. 164 */ 165 #define VM_MAP_RANGE_CHECK(map, start, end) \ 166 { \ 167 if (start < vm_map_min(map)) \ 168 start = vm_map_min(map); \ 169 if (end > vm_map_max(map)) \ 170 end = vm_map_max(map); \ 171 if (start > end) \ 172 start = end; \ 173 } 174 175 /* 176 * vm_map_startup: 177 * 178 * Initialize the vm_map module. Must be called before 179 * any other vm_map routines. 180 * 181 * Map and entry structures are allocated from the general 182 * purpose memory pool with some exceptions: 183 * 184 * - The kernel map and kmem submap are allocated statically. 185 * - Kernel map entries are allocated out of a static pool. 186 * 187 * These restrictions are necessary since malloc() uses the 188 * maps and requires map entries. 189 */ 190 191 void 192 vm_map_startup(void) 193 { 194 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 195 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 196 #ifdef INVARIANTS 197 vm_map_zdtor, 198 #else 199 NULL, 200 #endif 201 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 202 uma_prealloc(mapzone, MAX_KMAP); 203 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 204 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 205 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 206 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 207 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 208 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 209 #ifdef INVARIANTS 210 vmspace_zdtor, 211 #else 212 NULL, 213 #endif 214 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 215 } 216 217 static int 218 vmspace_zinit(void *mem, int size, int flags) 219 { 220 struct vmspace *vm; 221 222 vm = (struct vmspace *)mem; 223 224 vm->vm_map.pmap = NULL; 225 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 226 PMAP_LOCK_INIT(vmspace_pmap(vm)); 227 return (0); 228 } 229 230 static int 231 vm_map_zinit(void *mem, int size, int flags) 232 { 233 vm_map_t map; 234 235 map = (vm_map_t)mem; 236 memset(map, 0, sizeof(*map)); 237 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 238 sx_init(&map->lock, "vm map (user)"); 239 return (0); 240 } 241 242 #ifdef INVARIANTS 243 static void 244 vmspace_zdtor(void *mem, int size, void *arg) 245 { 246 struct vmspace *vm; 247 248 vm = (struct vmspace *)mem; 249 250 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 251 } 252 static void 253 vm_map_zdtor(void *mem, int size, void *arg) 254 { 255 vm_map_t map; 256 257 map = (vm_map_t)mem; 258 KASSERT(map->nentries == 0, 259 ("map %p nentries == %d on free.", 260 map, map->nentries)); 261 KASSERT(map->size == 0, 262 ("map %p size == %lu on free.", 263 map, (unsigned long)map->size)); 264 } 265 #endif /* INVARIANTS */ 266 267 /* 268 * Allocate a vmspace structure, including a vm_map and pmap, 269 * and initialize those structures. The refcnt is set to 1. 270 * 271 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 272 */ 273 struct vmspace * 274 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 275 { 276 struct vmspace *vm; 277 278 vm = uma_zalloc(vmspace_zone, M_WAITOK); 279 280 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 281 282 if (pinit == NULL) 283 pinit = &pmap_pinit; 284 285 if (!pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 #ifdef RACCT 304 static void 305 vmspace_container_reset(struct proc *p) 306 { 307 308 PROC_LOCK(p); 309 racct_set(p, RACCT_DATA, 0); 310 racct_set(p, RACCT_STACK, 0); 311 racct_set(p, RACCT_RSS, 0); 312 racct_set(p, RACCT_MEMLOCK, 0); 313 racct_set(p, RACCT_VMEM, 0); 314 PROC_UNLOCK(p); 315 } 316 #endif 317 318 static inline void 319 vmspace_dofree(struct vmspace *vm) 320 { 321 322 CTR1(KTR_VM, "vmspace_free: %p", vm); 323 324 /* 325 * Make sure any SysV shm is freed, it might not have been in 326 * exit1(). 327 */ 328 shmexit(vm); 329 330 /* 331 * Lock the map, to wait out all other references to it. 332 * Delete all of the mappings and pages they hold, then call 333 * the pmap module to reclaim anything left. 334 */ 335 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 336 vm->vm_map.max_offset); 337 338 pmap_release(vmspace_pmap(vm)); 339 vm->vm_map.pmap = NULL; 340 uma_zfree(vmspace_zone, vm); 341 } 342 343 void 344 vmspace_free(struct vmspace *vm) 345 { 346 347 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 348 "vmspace_free() called"); 349 350 if (vm->vm_refcnt == 0) 351 panic("vmspace_free: attempt to free already freed vmspace"); 352 353 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 354 vmspace_dofree(vm); 355 } 356 357 void 358 vmspace_exitfree(struct proc *p) 359 { 360 struct vmspace *vm; 361 362 PROC_VMSPACE_LOCK(p); 363 vm = p->p_vmspace; 364 p->p_vmspace = NULL; 365 PROC_VMSPACE_UNLOCK(p); 366 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 367 vmspace_free(vm); 368 } 369 370 void 371 vmspace_exit(struct thread *td) 372 { 373 int refcnt; 374 struct vmspace *vm; 375 struct proc *p; 376 377 /* 378 * Release user portion of address space. 379 * This releases references to vnodes, 380 * which could cause I/O if the file has been unlinked. 381 * Need to do this early enough that we can still sleep. 382 * 383 * The last exiting process to reach this point releases as 384 * much of the environment as it can. vmspace_dofree() is the 385 * slower fallback in case another process had a temporary 386 * reference to the vmspace. 387 */ 388 389 p = td->td_proc; 390 vm = p->p_vmspace; 391 atomic_add_int(&vmspace0.vm_refcnt, 1); 392 do { 393 refcnt = vm->vm_refcnt; 394 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 395 /* Switch now since other proc might free vmspace */ 396 PROC_VMSPACE_LOCK(p); 397 p->p_vmspace = &vmspace0; 398 PROC_VMSPACE_UNLOCK(p); 399 pmap_activate(td); 400 } 401 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 402 if (refcnt == 1) { 403 if (p->p_vmspace != vm) { 404 /* vmspace not yet freed, switch back */ 405 PROC_VMSPACE_LOCK(p); 406 p->p_vmspace = vm; 407 PROC_VMSPACE_UNLOCK(p); 408 pmap_activate(td); 409 } 410 pmap_remove_pages(vmspace_pmap(vm)); 411 /* Switch now since this proc will free vmspace */ 412 PROC_VMSPACE_LOCK(p); 413 p->p_vmspace = &vmspace0; 414 PROC_VMSPACE_UNLOCK(p); 415 pmap_activate(td); 416 vmspace_dofree(vm); 417 } 418 #ifdef RACCT 419 if (racct_enable) 420 vmspace_container_reset(p); 421 #endif 422 } 423 424 /* Acquire reference to vmspace owned by another process. */ 425 426 struct vmspace * 427 vmspace_acquire_ref(struct proc *p) 428 { 429 struct vmspace *vm; 430 int refcnt; 431 432 PROC_VMSPACE_LOCK(p); 433 vm = p->p_vmspace; 434 if (vm == NULL) { 435 PROC_VMSPACE_UNLOCK(p); 436 return (NULL); 437 } 438 do { 439 refcnt = vm->vm_refcnt; 440 if (refcnt <= 0) { /* Avoid 0->1 transition */ 441 PROC_VMSPACE_UNLOCK(p); 442 return (NULL); 443 } 444 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 445 if (vm != p->p_vmspace) { 446 PROC_VMSPACE_UNLOCK(p); 447 vmspace_free(vm); 448 return (NULL); 449 } 450 PROC_VMSPACE_UNLOCK(p); 451 return (vm); 452 } 453 454 /* 455 * Switch between vmspaces in an AIO kernel process. 456 * 457 * The AIO kernel processes switch to and from a user process's 458 * vmspace while performing an I/O operation on behalf of a user 459 * process. The new vmspace is either the vmspace of a user process 460 * obtained from an active AIO request or the initial vmspace of the 461 * AIO kernel process (when it is idling). Because user processes 462 * will block to drain any active AIO requests before proceeding in 463 * exit() or execve(), the vmspace reference count for these vmspaces 464 * can never be 0. This allows for a much simpler implementation than 465 * the loop in vmspace_acquire_ref() above. Similarly, AIO kernel 466 * processes hold an extra reference on their initial vmspace for the 467 * life of the process so that this guarantee is true for any vmspace 468 * passed as 'newvm'. 469 */ 470 void 471 vmspace_switch_aio(struct vmspace *newvm) 472 { 473 struct vmspace *oldvm; 474 475 /* XXX: Need some way to assert that this is an aio daemon. */ 476 477 KASSERT(newvm->vm_refcnt > 0, 478 ("vmspace_switch_aio: newvm unreferenced")); 479 480 oldvm = curproc->p_vmspace; 481 if (oldvm == newvm) 482 return; 483 484 /* 485 * Point to the new address space and refer to it. 486 */ 487 curproc->p_vmspace = newvm; 488 atomic_add_int(&newvm->vm_refcnt, 1); 489 490 /* Activate the new mapping. */ 491 pmap_activate(curthread); 492 493 /* Remove the daemon's reference to the old address space. */ 494 KASSERT(oldvm->vm_refcnt > 1, 495 ("vmspace_switch_aio: oldvm dropping last reference")); 496 vmspace_free(oldvm); 497 } 498 499 void 500 _vm_map_lock(vm_map_t map, const char *file, int line) 501 { 502 503 if (map->system_map) 504 mtx_lock_flags_(&map->system_mtx, 0, file, line); 505 else 506 sx_xlock_(&map->lock, file, line); 507 map->timestamp++; 508 } 509 510 static void 511 vm_map_process_deferred(void) 512 { 513 struct thread *td; 514 vm_map_entry_t entry, next; 515 vm_object_t object; 516 517 td = curthread; 518 entry = td->td_map_def_user; 519 td->td_map_def_user = NULL; 520 while (entry != NULL) { 521 next = entry->next; 522 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 523 /* 524 * Decrement the object's writemappings and 525 * possibly the vnode's v_writecount. 526 */ 527 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 528 ("Submap with writecount")); 529 object = entry->object.vm_object; 530 KASSERT(object != NULL, ("No object for writecount")); 531 vnode_pager_release_writecount(object, entry->start, 532 entry->end); 533 } 534 vm_map_entry_deallocate(entry, FALSE); 535 entry = next; 536 } 537 } 538 539 void 540 _vm_map_unlock(vm_map_t map, const char *file, int line) 541 { 542 543 if (map->system_map) 544 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 545 else { 546 sx_xunlock_(&map->lock, file, line); 547 vm_map_process_deferred(); 548 } 549 } 550 551 void 552 _vm_map_lock_read(vm_map_t map, const char *file, int line) 553 { 554 555 if (map->system_map) 556 mtx_lock_flags_(&map->system_mtx, 0, file, line); 557 else 558 sx_slock_(&map->lock, file, line); 559 } 560 561 void 562 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 563 { 564 565 if (map->system_map) 566 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 567 else { 568 sx_sunlock_(&map->lock, file, line); 569 vm_map_process_deferred(); 570 } 571 } 572 573 int 574 _vm_map_trylock(vm_map_t map, const char *file, int line) 575 { 576 int error; 577 578 error = map->system_map ? 579 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 580 !sx_try_xlock_(&map->lock, file, line); 581 if (error == 0) 582 map->timestamp++; 583 return (error == 0); 584 } 585 586 int 587 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 588 { 589 int error; 590 591 error = map->system_map ? 592 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 593 !sx_try_slock_(&map->lock, file, line); 594 return (error == 0); 595 } 596 597 /* 598 * _vm_map_lock_upgrade: [ internal use only ] 599 * 600 * Tries to upgrade a read (shared) lock on the specified map to a write 601 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 602 * non-zero value if the upgrade fails. If the upgrade fails, the map is 603 * returned without a read or write lock held. 604 * 605 * Requires that the map be read locked. 606 */ 607 int 608 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 609 { 610 unsigned int last_timestamp; 611 612 if (map->system_map) { 613 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 614 } else { 615 if (!sx_try_upgrade_(&map->lock, file, line)) { 616 last_timestamp = map->timestamp; 617 sx_sunlock_(&map->lock, file, line); 618 vm_map_process_deferred(); 619 /* 620 * If the map's timestamp does not change while the 621 * map is unlocked, then the upgrade succeeds. 622 */ 623 sx_xlock_(&map->lock, file, line); 624 if (last_timestamp != map->timestamp) { 625 sx_xunlock_(&map->lock, file, line); 626 return (1); 627 } 628 } 629 } 630 map->timestamp++; 631 return (0); 632 } 633 634 void 635 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 636 { 637 638 if (map->system_map) { 639 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 640 } else 641 sx_downgrade_(&map->lock, file, line); 642 } 643 644 /* 645 * vm_map_locked: 646 * 647 * Returns a non-zero value if the caller holds a write (exclusive) lock 648 * on the specified map and the value "0" otherwise. 649 */ 650 int 651 vm_map_locked(vm_map_t map) 652 { 653 654 if (map->system_map) 655 return (mtx_owned(&map->system_mtx)); 656 else 657 return (sx_xlocked(&map->lock)); 658 } 659 660 #ifdef INVARIANTS 661 static void 662 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 663 { 664 665 if (map->system_map) 666 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 667 else 668 sx_assert_(&map->lock, SA_XLOCKED, file, line); 669 } 670 671 #define VM_MAP_ASSERT_LOCKED(map) \ 672 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 673 #else 674 #define VM_MAP_ASSERT_LOCKED(map) 675 #endif 676 677 /* 678 * _vm_map_unlock_and_wait: 679 * 680 * Atomically releases the lock on the specified map and puts the calling 681 * thread to sleep. The calling thread will remain asleep until either 682 * vm_map_wakeup() is performed on the map or the specified timeout is 683 * exceeded. 684 * 685 * WARNING! This function does not perform deferred deallocations of 686 * objects and map entries. Therefore, the calling thread is expected to 687 * reacquire the map lock after reawakening and later perform an ordinary 688 * unlock operation, such as vm_map_unlock(), before completing its 689 * operation on the map. 690 */ 691 int 692 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 693 { 694 695 mtx_lock(&map_sleep_mtx); 696 if (map->system_map) 697 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 698 else 699 sx_xunlock_(&map->lock, file, line); 700 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 701 timo)); 702 } 703 704 /* 705 * vm_map_wakeup: 706 * 707 * Awaken any threads that have slept on the map using 708 * vm_map_unlock_and_wait(). 709 */ 710 void 711 vm_map_wakeup(vm_map_t map) 712 { 713 714 /* 715 * Acquire and release map_sleep_mtx to prevent a wakeup() 716 * from being performed (and lost) between the map unlock 717 * and the msleep() in _vm_map_unlock_and_wait(). 718 */ 719 mtx_lock(&map_sleep_mtx); 720 mtx_unlock(&map_sleep_mtx); 721 wakeup(&map->root); 722 } 723 724 void 725 vm_map_busy(vm_map_t map) 726 { 727 728 VM_MAP_ASSERT_LOCKED(map); 729 map->busy++; 730 } 731 732 void 733 vm_map_unbusy(vm_map_t map) 734 { 735 736 VM_MAP_ASSERT_LOCKED(map); 737 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 738 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 739 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 740 wakeup(&map->busy); 741 } 742 } 743 744 void 745 vm_map_wait_busy(vm_map_t map) 746 { 747 748 VM_MAP_ASSERT_LOCKED(map); 749 while (map->busy) { 750 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 751 if (map->system_map) 752 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 753 else 754 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 755 } 756 map->timestamp++; 757 } 758 759 long 760 vmspace_resident_count(struct vmspace *vmspace) 761 { 762 return pmap_resident_count(vmspace_pmap(vmspace)); 763 } 764 765 /* 766 * vm_map_create: 767 * 768 * Creates and returns a new empty VM map with 769 * the given physical map structure, and having 770 * the given lower and upper address bounds. 771 */ 772 vm_map_t 773 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 774 { 775 vm_map_t result; 776 777 result = uma_zalloc(mapzone, M_WAITOK); 778 CTR1(KTR_VM, "vm_map_create: %p", result); 779 _vm_map_init(result, pmap, min, max); 780 return (result); 781 } 782 783 /* 784 * Initialize an existing vm_map structure 785 * such as that in the vmspace structure. 786 */ 787 static void 788 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 789 { 790 791 map->header.next = map->header.prev = &map->header; 792 map->needs_wakeup = FALSE; 793 map->system_map = 0; 794 map->pmap = pmap; 795 map->min_offset = min; 796 map->max_offset = max; 797 map->flags = 0; 798 map->root = NULL; 799 map->timestamp = 0; 800 map->busy = 0; 801 } 802 803 void 804 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 805 { 806 807 _vm_map_init(map, pmap, min, max); 808 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 809 sx_init(&map->lock, "user map"); 810 } 811 812 /* 813 * vm_map_entry_dispose: [ internal use only ] 814 * 815 * Inverse of vm_map_entry_create. 816 */ 817 static void 818 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 819 { 820 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 821 } 822 823 /* 824 * vm_map_entry_create: [ internal use only ] 825 * 826 * Allocates a VM map entry for insertion. 827 * No entry fields are filled in. 828 */ 829 static vm_map_entry_t 830 vm_map_entry_create(vm_map_t map) 831 { 832 vm_map_entry_t new_entry; 833 834 if (map->system_map) 835 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 836 else 837 new_entry = uma_zalloc(mapentzone, M_WAITOK); 838 if (new_entry == NULL) 839 panic("vm_map_entry_create: kernel resources exhausted"); 840 return (new_entry); 841 } 842 843 /* 844 * vm_map_entry_set_behavior: 845 * 846 * Set the expected access behavior, either normal, random, or 847 * sequential. 848 */ 849 static inline void 850 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 851 { 852 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 853 (behavior & MAP_ENTRY_BEHAV_MASK); 854 } 855 856 /* 857 * vm_map_entry_set_max_free: 858 * 859 * Set the max_free field in a vm_map_entry. 860 */ 861 static inline void 862 vm_map_entry_set_max_free(vm_map_entry_t entry) 863 { 864 865 entry->max_free = entry->adj_free; 866 if (entry->left != NULL && entry->left->max_free > entry->max_free) 867 entry->max_free = entry->left->max_free; 868 if (entry->right != NULL && entry->right->max_free > entry->max_free) 869 entry->max_free = entry->right->max_free; 870 } 871 872 /* 873 * vm_map_entry_splay: 874 * 875 * The Sleator and Tarjan top-down splay algorithm with the 876 * following variation. Max_free must be computed bottom-up, so 877 * on the downward pass, maintain the left and right spines in 878 * reverse order. Then, make a second pass up each side to fix 879 * the pointers and compute max_free. The time bound is O(log n) 880 * amortized. 881 * 882 * The new root is the vm_map_entry containing "addr", or else an 883 * adjacent entry (lower or higher) if addr is not in the tree. 884 * 885 * The map must be locked, and leaves it so. 886 * 887 * Returns: the new root. 888 */ 889 static vm_map_entry_t 890 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 891 { 892 vm_map_entry_t llist, rlist; 893 vm_map_entry_t ltree, rtree; 894 vm_map_entry_t y; 895 896 /* Special case of empty tree. */ 897 if (root == NULL) 898 return (root); 899 900 /* 901 * Pass One: Splay down the tree until we find addr or a NULL 902 * pointer where addr would go. llist and rlist are the two 903 * sides in reverse order (bottom-up), with llist linked by 904 * the right pointer and rlist linked by the left pointer in 905 * the vm_map_entry. Wait until Pass Two to set max_free on 906 * the two spines. 907 */ 908 llist = NULL; 909 rlist = NULL; 910 for (;;) { 911 /* root is never NULL in here. */ 912 if (addr < root->start) { 913 y = root->left; 914 if (y == NULL) 915 break; 916 if (addr < y->start && y->left != NULL) { 917 /* Rotate right and put y on rlist. */ 918 root->left = y->right; 919 y->right = root; 920 vm_map_entry_set_max_free(root); 921 root = y->left; 922 y->left = rlist; 923 rlist = y; 924 } else { 925 /* Put root on rlist. */ 926 root->left = rlist; 927 rlist = root; 928 root = y; 929 } 930 } else if (addr >= root->end) { 931 y = root->right; 932 if (y == NULL) 933 break; 934 if (addr >= y->end && y->right != NULL) { 935 /* Rotate left and put y on llist. */ 936 root->right = y->left; 937 y->left = root; 938 vm_map_entry_set_max_free(root); 939 root = y->right; 940 y->right = llist; 941 llist = y; 942 } else { 943 /* Put root on llist. */ 944 root->right = llist; 945 llist = root; 946 root = y; 947 } 948 } else 949 break; 950 } 951 952 /* 953 * Pass Two: Walk back up the two spines, flip the pointers 954 * and set max_free. The subtrees of the root go at the 955 * bottom of llist and rlist. 956 */ 957 ltree = root->left; 958 while (llist != NULL) { 959 y = llist->right; 960 llist->right = ltree; 961 vm_map_entry_set_max_free(llist); 962 ltree = llist; 963 llist = y; 964 } 965 rtree = root->right; 966 while (rlist != NULL) { 967 y = rlist->left; 968 rlist->left = rtree; 969 vm_map_entry_set_max_free(rlist); 970 rtree = rlist; 971 rlist = y; 972 } 973 974 /* 975 * Final assembly: add ltree and rtree as subtrees of root. 976 */ 977 root->left = ltree; 978 root->right = rtree; 979 vm_map_entry_set_max_free(root); 980 981 return (root); 982 } 983 984 /* 985 * vm_map_entry_{un,}link: 986 * 987 * Insert/remove entries from maps. 988 */ 989 static void 990 vm_map_entry_link(vm_map_t map, 991 vm_map_entry_t after_where, 992 vm_map_entry_t entry) 993 { 994 995 CTR4(KTR_VM, 996 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 997 map->nentries, entry, after_where); 998 VM_MAP_ASSERT_LOCKED(map); 999 KASSERT(after_where == &map->header || 1000 after_where->end <= entry->start, 1001 ("vm_map_entry_link: prev end %jx new start %jx overlap", 1002 (uintmax_t)after_where->end, (uintmax_t)entry->start)); 1003 KASSERT(after_where->next == &map->header || 1004 entry->end <= after_where->next->start, 1005 ("vm_map_entry_link: new end %jx next start %jx overlap", 1006 (uintmax_t)entry->end, (uintmax_t)after_where->next->start)); 1007 1008 map->nentries++; 1009 entry->prev = after_where; 1010 entry->next = after_where->next; 1011 entry->next->prev = entry; 1012 after_where->next = entry; 1013 1014 if (after_where != &map->header) { 1015 if (after_where != map->root) 1016 vm_map_entry_splay(after_where->start, map->root); 1017 entry->right = after_where->right; 1018 entry->left = after_where; 1019 after_where->right = NULL; 1020 after_where->adj_free = entry->start - after_where->end; 1021 vm_map_entry_set_max_free(after_where); 1022 } else { 1023 entry->right = map->root; 1024 entry->left = NULL; 1025 } 1026 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1027 entry->next->start) - entry->end; 1028 vm_map_entry_set_max_free(entry); 1029 map->root = entry; 1030 } 1031 1032 static void 1033 vm_map_entry_unlink(vm_map_t map, 1034 vm_map_entry_t entry) 1035 { 1036 vm_map_entry_t next, prev, root; 1037 1038 VM_MAP_ASSERT_LOCKED(map); 1039 if (entry != map->root) 1040 vm_map_entry_splay(entry->start, map->root); 1041 if (entry->left == NULL) 1042 root = entry->right; 1043 else { 1044 root = vm_map_entry_splay(entry->start, entry->left); 1045 root->right = entry->right; 1046 root->adj_free = (entry->next == &map->header ? map->max_offset : 1047 entry->next->start) - root->end; 1048 vm_map_entry_set_max_free(root); 1049 } 1050 map->root = root; 1051 1052 prev = entry->prev; 1053 next = entry->next; 1054 next->prev = prev; 1055 prev->next = next; 1056 map->nentries--; 1057 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1058 map->nentries, entry); 1059 } 1060 1061 /* 1062 * vm_map_entry_resize_free: 1063 * 1064 * Recompute the amount of free space following a vm_map_entry 1065 * and propagate that value up the tree. Call this function after 1066 * resizing a map entry in-place, that is, without a call to 1067 * vm_map_entry_link() or _unlink(). 1068 * 1069 * The map must be locked, and leaves it so. 1070 */ 1071 static void 1072 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1073 { 1074 1075 /* 1076 * Using splay trees without parent pointers, propagating 1077 * max_free up the tree is done by moving the entry to the 1078 * root and making the change there. 1079 */ 1080 if (entry != map->root) 1081 map->root = vm_map_entry_splay(entry->start, map->root); 1082 1083 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1084 entry->next->start) - entry->end; 1085 vm_map_entry_set_max_free(entry); 1086 } 1087 1088 /* 1089 * vm_map_lookup_entry: [ internal use only ] 1090 * 1091 * Finds the map entry containing (or 1092 * immediately preceding) the specified address 1093 * in the given map; the entry is returned 1094 * in the "entry" parameter. The boolean 1095 * result indicates whether the address is 1096 * actually contained in the map. 1097 */ 1098 boolean_t 1099 vm_map_lookup_entry( 1100 vm_map_t map, 1101 vm_offset_t address, 1102 vm_map_entry_t *entry) /* OUT */ 1103 { 1104 vm_map_entry_t cur; 1105 boolean_t locked; 1106 1107 /* 1108 * If the map is empty, then the map entry immediately preceding 1109 * "address" is the map's header. 1110 */ 1111 cur = map->root; 1112 if (cur == NULL) 1113 *entry = &map->header; 1114 else if (address >= cur->start && cur->end > address) { 1115 *entry = cur; 1116 return (TRUE); 1117 } else if ((locked = vm_map_locked(map)) || 1118 sx_try_upgrade(&map->lock)) { 1119 /* 1120 * Splay requires a write lock on the map. However, it only 1121 * restructures the binary search tree; it does not otherwise 1122 * change the map. Thus, the map's timestamp need not change 1123 * on a temporary upgrade. 1124 */ 1125 map->root = cur = vm_map_entry_splay(address, cur); 1126 if (!locked) 1127 sx_downgrade(&map->lock); 1128 1129 /* 1130 * If "address" is contained within a map entry, the new root 1131 * is that map entry. Otherwise, the new root is a map entry 1132 * immediately before or after "address". 1133 */ 1134 if (address >= cur->start) { 1135 *entry = cur; 1136 if (cur->end > address) 1137 return (TRUE); 1138 } else 1139 *entry = cur->prev; 1140 } else 1141 /* 1142 * Since the map is only locked for read access, perform a 1143 * standard binary search tree lookup for "address". 1144 */ 1145 for (;;) { 1146 if (address < cur->start) { 1147 if (cur->left == NULL) { 1148 *entry = cur->prev; 1149 break; 1150 } 1151 cur = cur->left; 1152 } else if (cur->end > address) { 1153 *entry = cur; 1154 return (TRUE); 1155 } else { 1156 if (cur->right == NULL) { 1157 *entry = cur; 1158 break; 1159 } 1160 cur = cur->right; 1161 } 1162 } 1163 return (FALSE); 1164 } 1165 1166 /* 1167 * vm_map_insert: 1168 * 1169 * Inserts the given whole VM object into the target 1170 * map at the specified address range. The object's 1171 * size should match that of the address range. 1172 * 1173 * Requires that the map be locked, and leaves it so. 1174 * 1175 * If object is non-NULL, ref count must be bumped by caller 1176 * prior to making call to account for the new entry. 1177 */ 1178 int 1179 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1180 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1181 { 1182 vm_map_entry_t new_entry, prev_entry, temp_entry; 1183 struct ucred *cred; 1184 vm_eflags_t protoeflags; 1185 vm_inherit_t inheritance; 1186 1187 VM_MAP_ASSERT_LOCKED(map); 1188 KASSERT((object != kmem_object && object != kernel_object) || 1189 (cow & MAP_COPY_ON_WRITE) == 0, 1190 ("vm_map_insert: kmem or kernel object and COW")); 1191 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1192 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1193 1194 /* 1195 * Check that the start and end points are not bogus. 1196 */ 1197 if (start < map->min_offset || end > map->max_offset || start >= end) 1198 return (KERN_INVALID_ADDRESS); 1199 1200 /* 1201 * Find the entry prior to the proposed starting address; if it's part 1202 * of an existing entry, this range is bogus. 1203 */ 1204 if (vm_map_lookup_entry(map, start, &temp_entry)) 1205 return (KERN_NO_SPACE); 1206 1207 prev_entry = temp_entry; 1208 1209 /* 1210 * Assert that the next entry doesn't overlap the end point. 1211 */ 1212 if (prev_entry->next != &map->header && prev_entry->next->start < end) 1213 return (KERN_NO_SPACE); 1214 1215 protoeflags = 0; 1216 if (cow & MAP_COPY_ON_WRITE) 1217 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1218 if (cow & MAP_NOFAULT) 1219 protoeflags |= MAP_ENTRY_NOFAULT; 1220 if (cow & MAP_DISABLE_SYNCER) 1221 protoeflags |= MAP_ENTRY_NOSYNC; 1222 if (cow & MAP_DISABLE_COREDUMP) 1223 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1224 if (cow & MAP_STACK_GROWS_DOWN) 1225 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1226 if (cow & MAP_STACK_GROWS_UP) 1227 protoeflags |= MAP_ENTRY_GROWS_UP; 1228 if (cow & MAP_VN_WRITECOUNT) 1229 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1230 if (cow & MAP_INHERIT_SHARE) 1231 inheritance = VM_INHERIT_SHARE; 1232 else 1233 inheritance = VM_INHERIT_DEFAULT; 1234 1235 cred = NULL; 1236 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1237 goto charged; 1238 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1239 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1240 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1241 return (KERN_RESOURCE_SHORTAGE); 1242 KASSERT(object == NULL || 1243 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1244 object->cred == NULL, 1245 ("overcommit: vm_map_insert o %p", object)); 1246 cred = curthread->td_ucred; 1247 } 1248 1249 charged: 1250 /* Expand the kernel pmap, if necessary. */ 1251 if (map == kernel_map && end > kernel_vm_end) 1252 pmap_growkernel(end); 1253 if (object != NULL) { 1254 /* 1255 * OBJ_ONEMAPPING must be cleared unless this mapping 1256 * is trivially proven to be the only mapping for any 1257 * of the object's pages. (Object granularity 1258 * reference counting is insufficient to recognize 1259 * aliases with precision.) 1260 */ 1261 VM_OBJECT_WLOCK(object); 1262 if (object->ref_count > 1 || object->shadow_count != 0) 1263 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1264 VM_OBJECT_WUNLOCK(object); 1265 } else if (prev_entry != &map->header && 1266 prev_entry->eflags == protoeflags && 1267 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 && 1268 prev_entry->end == start && prev_entry->wired_count == 0 && 1269 (prev_entry->cred == cred || 1270 (prev_entry->object.vm_object != NULL && 1271 prev_entry->object.vm_object->cred == cred)) && 1272 vm_object_coalesce(prev_entry->object.vm_object, 1273 prev_entry->offset, 1274 (vm_size_t)(prev_entry->end - prev_entry->start), 1275 (vm_size_t)(end - prev_entry->end), cred != NULL && 1276 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1277 /* 1278 * We were able to extend the object. Determine if we 1279 * can extend the previous map entry to include the 1280 * new range as well. 1281 */ 1282 if (prev_entry->inheritance == inheritance && 1283 prev_entry->protection == prot && 1284 prev_entry->max_protection == max) { 1285 map->size += end - prev_entry->end; 1286 prev_entry->end = end; 1287 vm_map_entry_resize_free(map, prev_entry); 1288 vm_map_simplify_entry(map, prev_entry); 1289 return (KERN_SUCCESS); 1290 } 1291 1292 /* 1293 * If we can extend the object but cannot extend the 1294 * map entry, we have to create a new map entry. We 1295 * must bump the ref count on the extended object to 1296 * account for it. object may be NULL. 1297 */ 1298 object = prev_entry->object.vm_object; 1299 offset = prev_entry->offset + 1300 (prev_entry->end - prev_entry->start); 1301 vm_object_reference(object); 1302 if (cred != NULL && object != NULL && object->cred != NULL && 1303 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1304 /* Object already accounts for this uid. */ 1305 cred = NULL; 1306 } 1307 } 1308 if (cred != NULL) 1309 crhold(cred); 1310 1311 /* 1312 * Create a new entry 1313 */ 1314 new_entry = vm_map_entry_create(map); 1315 new_entry->start = start; 1316 new_entry->end = end; 1317 new_entry->cred = NULL; 1318 1319 new_entry->eflags = protoeflags; 1320 new_entry->object.vm_object = object; 1321 new_entry->offset = offset; 1322 new_entry->avail_ssize = 0; 1323 1324 new_entry->inheritance = inheritance; 1325 new_entry->protection = prot; 1326 new_entry->max_protection = max; 1327 new_entry->wired_count = 0; 1328 new_entry->wiring_thread = NULL; 1329 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1330 new_entry->next_read = start; 1331 1332 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1333 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1334 new_entry->cred = cred; 1335 1336 /* 1337 * Insert the new entry into the list 1338 */ 1339 vm_map_entry_link(map, prev_entry, new_entry); 1340 map->size += new_entry->end - new_entry->start; 1341 1342 /* 1343 * Try to coalesce the new entry with both the previous and next 1344 * entries in the list. Previously, we only attempted to coalesce 1345 * with the previous entry when object is NULL. Here, we handle the 1346 * other cases, which are less common. 1347 */ 1348 vm_map_simplify_entry(map, new_entry); 1349 1350 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1351 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1352 end - start, cow & MAP_PREFAULT_PARTIAL); 1353 } 1354 1355 return (KERN_SUCCESS); 1356 } 1357 1358 /* 1359 * vm_map_findspace: 1360 * 1361 * Find the first fit (lowest VM address) for "length" free bytes 1362 * beginning at address >= start in the given map. 1363 * 1364 * In a vm_map_entry, "adj_free" is the amount of free space 1365 * adjacent (higher address) to this entry, and "max_free" is the 1366 * maximum amount of contiguous free space in its subtree. This 1367 * allows finding a free region in one path down the tree, so 1368 * O(log n) amortized with splay trees. 1369 * 1370 * The map must be locked, and leaves it so. 1371 * 1372 * Returns: 0 on success, and starting address in *addr, 1373 * 1 if insufficient space. 1374 */ 1375 int 1376 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1377 vm_offset_t *addr) /* OUT */ 1378 { 1379 vm_map_entry_t entry; 1380 vm_offset_t st; 1381 1382 /* 1383 * Request must fit within min/max VM address and must avoid 1384 * address wrap. 1385 */ 1386 if (start < map->min_offset) 1387 start = map->min_offset; 1388 if (start + length > map->max_offset || start + length < start) 1389 return (1); 1390 1391 /* Empty tree means wide open address space. */ 1392 if (map->root == NULL) { 1393 *addr = start; 1394 return (0); 1395 } 1396 1397 /* 1398 * After splay, if start comes before root node, then there 1399 * must be a gap from start to the root. 1400 */ 1401 map->root = vm_map_entry_splay(start, map->root); 1402 if (start + length <= map->root->start) { 1403 *addr = start; 1404 return (0); 1405 } 1406 1407 /* 1408 * Root is the last node that might begin its gap before 1409 * start, and this is the last comparison where address 1410 * wrap might be a problem. 1411 */ 1412 st = (start > map->root->end) ? start : map->root->end; 1413 if (length <= map->root->end + map->root->adj_free - st) { 1414 *addr = st; 1415 return (0); 1416 } 1417 1418 /* With max_free, can immediately tell if no solution. */ 1419 entry = map->root->right; 1420 if (entry == NULL || length > entry->max_free) 1421 return (1); 1422 1423 /* 1424 * Search the right subtree in the order: left subtree, root, 1425 * right subtree (first fit). The previous splay implies that 1426 * all regions in the right subtree have addresses > start. 1427 */ 1428 while (entry != NULL) { 1429 if (entry->left != NULL && entry->left->max_free >= length) 1430 entry = entry->left; 1431 else if (entry->adj_free >= length) { 1432 *addr = entry->end; 1433 return (0); 1434 } else 1435 entry = entry->right; 1436 } 1437 1438 /* Can't get here, so panic if we do. */ 1439 panic("vm_map_findspace: max_free corrupt"); 1440 } 1441 1442 int 1443 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1444 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1445 vm_prot_t max, int cow) 1446 { 1447 vm_offset_t end; 1448 int result; 1449 1450 end = start + length; 1451 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1452 object == NULL, 1453 ("vm_map_fixed: non-NULL backing object for stack")); 1454 vm_map_lock(map); 1455 VM_MAP_RANGE_CHECK(map, start, end); 1456 if ((cow & MAP_CHECK_EXCL) == 0) 1457 vm_map_delete(map, start, end); 1458 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1459 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1460 prot, max, cow); 1461 } else { 1462 result = vm_map_insert(map, object, offset, start, end, 1463 prot, max, cow); 1464 } 1465 vm_map_unlock(map); 1466 return (result); 1467 } 1468 1469 /* 1470 * vm_map_find finds an unallocated region in the target address 1471 * map with the given length. The search is defined to be 1472 * first-fit from the specified address; the region found is 1473 * returned in the same parameter. 1474 * 1475 * If object is non-NULL, ref count must be bumped by caller 1476 * prior to making call to account for the new entry. 1477 */ 1478 int 1479 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1480 vm_offset_t *addr, /* IN/OUT */ 1481 vm_size_t length, vm_offset_t max_addr, int find_space, 1482 vm_prot_t prot, vm_prot_t max, int cow) 1483 { 1484 vm_offset_t alignment, initial_addr, start; 1485 int result; 1486 1487 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1488 object == NULL, 1489 ("vm_map_find: non-NULL backing object for stack")); 1490 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1491 (object->flags & OBJ_COLORED) == 0)) 1492 find_space = VMFS_ANY_SPACE; 1493 if (find_space >> 8 != 0) { 1494 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1495 alignment = (vm_offset_t)1 << (find_space >> 8); 1496 } else 1497 alignment = 0; 1498 initial_addr = *addr; 1499 again: 1500 start = initial_addr; 1501 vm_map_lock(map); 1502 do { 1503 if (find_space != VMFS_NO_SPACE) { 1504 if (vm_map_findspace(map, start, length, addr) || 1505 (max_addr != 0 && *addr + length > max_addr)) { 1506 vm_map_unlock(map); 1507 if (find_space == VMFS_OPTIMAL_SPACE) { 1508 find_space = VMFS_ANY_SPACE; 1509 goto again; 1510 } 1511 return (KERN_NO_SPACE); 1512 } 1513 switch (find_space) { 1514 case VMFS_SUPER_SPACE: 1515 case VMFS_OPTIMAL_SPACE: 1516 pmap_align_superpage(object, offset, addr, 1517 length); 1518 break; 1519 case VMFS_ANY_SPACE: 1520 break; 1521 default: 1522 if ((*addr & (alignment - 1)) != 0) { 1523 *addr &= ~(alignment - 1); 1524 *addr += alignment; 1525 } 1526 break; 1527 } 1528 1529 start = *addr; 1530 } 1531 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1532 result = vm_map_stack_locked(map, start, length, 1533 sgrowsiz, prot, max, cow); 1534 } else { 1535 result = vm_map_insert(map, object, offset, start, 1536 start + length, prot, max, cow); 1537 } 1538 } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE && 1539 find_space != VMFS_ANY_SPACE); 1540 vm_map_unlock(map); 1541 return (result); 1542 } 1543 1544 /* 1545 * vm_map_simplify_entry: 1546 * 1547 * Simplify the given map entry by merging with either neighbor. This 1548 * routine also has the ability to merge with both neighbors. 1549 * 1550 * The map must be locked. 1551 * 1552 * This routine guarantees that the passed entry remains valid (though 1553 * possibly extended). When merging, this routine may delete one or 1554 * both neighbors. 1555 */ 1556 void 1557 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1558 { 1559 vm_map_entry_t next, prev; 1560 vm_size_t prevsize, esize; 1561 1562 if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | 1563 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0) 1564 return; 1565 1566 prev = entry->prev; 1567 if (prev != &map->header) { 1568 prevsize = prev->end - prev->start; 1569 if ( (prev->end == entry->start) && 1570 (prev->object.vm_object == entry->object.vm_object) && 1571 (!prev->object.vm_object || 1572 (prev->offset + prevsize == entry->offset)) && 1573 (prev->eflags == entry->eflags) && 1574 (prev->protection == entry->protection) && 1575 (prev->max_protection == entry->max_protection) && 1576 (prev->inheritance == entry->inheritance) && 1577 (prev->wired_count == entry->wired_count) && 1578 (prev->cred == entry->cred)) { 1579 vm_map_entry_unlink(map, prev); 1580 entry->start = prev->start; 1581 entry->offset = prev->offset; 1582 if (entry->prev != &map->header) 1583 vm_map_entry_resize_free(map, entry->prev); 1584 1585 /* 1586 * If the backing object is a vnode object, 1587 * vm_object_deallocate() calls vrele(). 1588 * However, vrele() does not lock the vnode 1589 * because the vnode has additional 1590 * references. Thus, the map lock can be kept 1591 * without causing a lock-order reversal with 1592 * the vnode lock. 1593 * 1594 * Since we count the number of virtual page 1595 * mappings in object->un_pager.vnp.writemappings, 1596 * the writemappings value should not be adjusted 1597 * when the entry is disposed of. 1598 */ 1599 if (prev->object.vm_object) 1600 vm_object_deallocate(prev->object.vm_object); 1601 if (prev->cred != NULL) 1602 crfree(prev->cred); 1603 vm_map_entry_dispose(map, prev); 1604 } 1605 } 1606 1607 next = entry->next; 1608 if (next != &map->header) { 1609 esize = entry->end - entry->start; 1610 if ((entry->end == next->start) && 1611 (next->object.vm_object == entry->object.vm_object) && 1612 (!entry->object.vm_object || 1613 (entry->offset + esize == next->offset)) && 1614 (next->eflags == entry->eflags) && 1615 (next->protection == entry->protection) && 1616 (next->max_protection == entry->max_protection) && 1617 (next->inheritance == entry->inheritance) && 1618 (next->wired_count == entry->wired_count) && 1619 (next->cred == entry->cred)) { 1620 vm_map_entry_unlink(map, next); 1621 entry->end = next->end; 1622 vm_map_entry_resize_free(map, entry); 1623 1624 /* 1625 * See comment above. 1626 */ 1627 if (next->object.vm_object) 1628 vm_object_deallocate(next->object.vm_object); 1629 if (next->cred != NULL) 1630 crfree(next->cred); 1631 vm_map_entry_dispose(map, next); 1632 } 1633 } 1634 } 1635 /* 1636 * vm_map_clip_start: [ internal use only ] 1637 * 1638 * Asserts that the given entry begins at or after 1639 * the specified address; if necessary, 1640 * it splits the entry into two. 1641 */ 1642 #define vm_map_clip_start(map, entry, startaddr) \ 1643 { \ 1644 if (startaddr > entry->start) \ 1645 _vm_map_clip_start(map, entry, startaddr); \ 1646 } 1647 1648 /* 1649 * This routine is called only when it is known that 1650 * the entry must be split. 1651 */ 1652 static void 1653 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1654 { 1655 vm_map_entry_t new_entry; 1656 1657 VM_MAP_ASSERT_LOCKED(map); 1658 KASSERT(entry->end > start && entry->start < start, 1659 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 1660 1661 /* 1662 * Split off the front portion -- note that we must insert the new 1663 * entry BEFORE this one, so that this entry has the specified 1664 * starting address. 1665 */ 1666 vm_map_simplify_entry(map, entry); 1667 1668 /* 1669 * If there is no object backing this entry, we might as well create 1670 * one now. If we defer it, an object can get created after the map 1671 * is clipped, and individual objects will be created for the split-up 1672 * map. This is a bit of a hack, but is also about the best place to 1673 * put this improvement. 1674 */ 1675 if (entry->object.vm_object == NULL && !map->system_map) { 1676 vm_object_t object; 1677 object = vm_object_allocate(OBJT_DEFAULT, 1678 atop(entry->end - entry->start)); 1679 entry->object.vm_object = object; 1680 entry->offset = 0; 1681 if (entry->cred != NULL) { 1682 object->cred = entry->cred; 1683 object->charge = entry->end - entry->start; 1684 entry->cred = NULL; 1685 } 1686 } else if (entry->object.vm_object != NULL && 1687 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1688 entry->cred != NULL) { 1689 VM_OBJECT_WLOCK(entry->object.vm_object); 1690 KASSERT(entry->object.vm_object->cred == NULL, 1691 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1692 entry->object.vm_object->cred = entry->cred; 1693 entry->object.vm_object->charge = entry->end - entry->start; 1694 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1695 entry->cred = NULL; 1696 } 1697 1698 new_entry = vm_map_entry_create(map); 1699 *new_entry = *entry; 1700 1701 new_entry->end = start; 1702 entry->offset += (start - entry->start); 1703 entry->start = start; 1704 if (new_entry->cred != NULL) 1705 crhold(entry->cred); 1706 1707 vm_map_entry_link(map, entry->prev, new_entry); 1708 1709 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1710 vm_object_reference(new_entry->object.vm_object); 1711 /* 1712 * The object->un_pager.vnp.writemappings for the 1713 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1714 * kept as is here. The virtual pages are 1715 * re-distributed among the clipped entries, so the sum is 1716 * left the same. 1717 */ 1718 } 1719 } 1720 1721 /* 1722 * vm_map_clip_end: [ internal use only ] 1723 * 1724 * Asserts that the given entry ends at or before 1725 * the specified address; if necessary, 1726 * it splits the entry into two. 1727 */ 1728 #define vm_map_clip_end(map, entry, endaddr) \ 1729 { \ 1730 if ((endaddr) < (entry->end)) \ 1731 _vm_map_clip_end((map), (entry), (endaddr)); \ 1732 } 1733 1734 /* 1735 * This routine is called only when it is known that 1736 * the entry must be split. 1737 */ 1738 static void 1739 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1740 { 1741 vm_map_entry_t new_entry; 1742 1743 VM_MAP_ASSERT_LOCKED(map); 1744 KASSERT(entry->start < end && entry->end > end, 1745 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 1746 1747 /* 1748 * If there is no object backing this entry, we might as well create 1749 * one now. If we defer it, an object can get created after the map 1750 * is clipped, and individual objects will be created for the split-up 1751 * map. This is a bit of a hack, but is also about the best place to 1752 * put this improvement. 1753 */ 1754 if (entry->object.vm_object == NULL && !map->system_map) { 1755 vm_object_t object; 1756 object = vm_object_allocate(OBJT_DEFAULT, 1757 atop(entry->end - entry->start)); 1758 entry->object.vm_object = object; 1759 entry->offset = 0; 1760 if (entry->cred != NULL) { 1761 object->cred = entry->cred; 1762 object->charge = entry->end - entry->start; 1763 entry->cred = NULL; 1764 } 1765 } else if (entry->object.vm_object != NULL && 1766 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1767 entry->cred != NULL) { 1768 VM_OBJECT_WLOCK(entry->object.vm_object); 1769 KASSERT(entry->object.vm_object->cred == NULL, 1770 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1771 entry->object.vm_object->cred = entry->cred; 1772 entry->object.vm_object->charge = entry->end - entry->start; 1773 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1774 entry->cred = NULL; 1775 } 1776 1777 /* 1778 * Create a new entry and insert it AFTER the specified entry 1779 */ 1780 new_entry = vm_map_entry_create(map); 1781 *new_entry = *entry; 1782 1783 new_entry->start = entry->end = end; 1784 new_entry->offset += (end - entry->start); 1785 if (new_entry->cred != NULL) 1786 crhold(entry->cred); 1787 1788 vm_map_entry_link(map, entry, new_entry); 1789 1790 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1791 vm_object_reference(new_entry->object.vm_object); 1792 } 1793 } 1794 1795 /* 1796 * vm_map_submap: [ kernel use only ] 1797 * 1798 * Mark the given range as handled by a subordinate map. 1799 * 1800 * This range must have been created with vm_map_find, 1801 * and no other operations may have been performed on this 1802 * range prior to calling vm_map_submap. 1803 * 1804 * Only a limited number of operations can be performed 1805 * within this rage after calling vm_map_submap: 1806 * vm_fault 1807 * [Don't try vm_map_copy!] 1808 * 1809 * To remove a submapping, one must first remove the 1810 * range from the superior map, and then destroy the 1811 * submap (if desired). [Better yet, don't try it.] 1812 */ 1813 int 1814 vm_map_submap( 1815 vm_map_t map, 1816 vm_offset_t start, 1817 vm_offset_t end, 1818 vm_map_t submap) 1819 { 1820 vm_map_entry_t entry; 1821 int result = KERN_INVALID_ARGUMENT; 1822 1823 vm_map_lock(map); 1824 1825 VM_MAP_RANGE_CHECK(map, start, end); 1826 1827 if (vm_map_lookup_entry(map, start, &entry)) { 1828 vm_map_clip_start(map, entry, start); 1829 } else 1830 entry = entry->next; 1831 1832 vm_map_clip_end(map, entry, end); 1833 1834 if ((entry->start == start) && (entry->end == end) && 1835 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1836 (entry->object.vm_object == NULL)) { 1837 entry->object.sub_map = submap; 1838 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1839 result = KERN_SUCCESS; 1840 } 1841 vm_map_unlock(map); 1842 1843 return (result); 1844 } 1845 1846 /* 1847 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 1848 */ 1849 #define MAX_INIT_PT 96 1850 1851 /* 1852 * vm_map_pmap_enter: 1853 * 1854 * Preload the specified map's pmap with mappings to the specified 1855 * object's memory-resident pages. No further physical pages are 1856 * allocated, and no further virtual pages are retrieved from secondary 1857 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 1858 * limited number of page mappings are created at the low-end of the 1859 * specified address range. (For this purpose, a superpage mapping 1860 * counts as one page mapping.) Otherwise, all resident pages within 1861 * the specified address range are mapped. 1862 */ 1863 static void 1864 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1865 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1866 { 1867 vm_offset_t start; 1868 vm_page_t p, p_start; 1869 vm_pindex_t mask, psize, threshold, tmpidx; 1870 1871 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1872 return; 1873 VM_OBJECT_RLOCK(object); 1874 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1875 VM_OBJECT_RUNLOCK(object); 1876 VM_OBJECT_WLOCK(object); 1877 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1878 pmap_object_init_pt(map->pmap, addr, object, pindex, 1879 size); 1880 VM_OBJECT_WUNLOCK(object); 1881 return; 1882 } 1883 VM_OBJECT_LOCK_DOWNGRADE(object); 1884 } 1885 1886 psize = atop(size); 1887 if (psize + pindex > object->size) { 1888 if (object->size < pindex) { 1889 VM_OBJECT_RUNLOCK(object); 1890 return; 1891 } 1892 psize = object->size - pindex; 1893 } 1894 1895 start = 0; 1896 p_start = NULL; 1897 threshold = MAX_INIT_PT; 1898 1899 p = vm_page_find_least(object, pindex); 1900 /* 1901 * Assert: the variable p is either (1) the page with the 1902 * least pindex greater than or equal to the parameter pindex 1903 * or (2) NULL. 1904 */ 1905 for (; 1906 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1907 p = TAILQ_NEXT(p, listq)) { 1908 /* 1909 * don't allow an madvise to blow away our really 1910 * free pages allocating pv entries. 1911 */ 1912 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 1913 vm_cnt.v_free_count < vm_cnt.v_free_reserved) || 1914 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 1915 tmpidx >= threshold)) { 1916 psize = tmpidx; 1917 break; 1918 } 1919 if (p->valid == VM_PAGE_BITS_ALL) { 1920 if (p_start == NULL) { 1921 start = addr + ptoa(tmpidx); 1922 p_start = p; 1923 } 1924 /* Jump ahead if a superpage mapping is possible. */ 1925 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 1926 (pagesizes[p->psind] - 1)) == 0) { 1927 mask = atop(pagesizes[p->psind]) - 1; 1928 if (tmpidx + mask < psize && 1929 vm_page_ps_is_valid(p)) { 1930 p += mask; 1931 threshold += mask; 1932 } 1933 } 1934 } else if (p_start != NULL) { 1935 pmap_enter_object(map->pmap, start, addr + 1936 ptoa(tmpidx), p_start, prot); 1937 p_start = NULL; 1938 } 1939 } 1940 if (p_start != NULL) 1941 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1942 p_start, prot); 1943 VM_OBJECT_RUNLOCK(object); 1944 } 1945 1946 /* 1947 * vm_map_protect: 1948 * 1949 * Sets the protection of the specified address 1950 * region in the target map. If "set_max" is 1951 * specified, the maximum protection is to be set; 1952 * otherwise, only the current protection is affected. 1953 */ 1954 int 1955 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1956 vm_prot_t new_prot, boolean_t set_max) 1957 { 1958 vm_map_entry_t current, entry; 1959 vm_object_t obj; 1960 struct ucred *cred; 1961 vm_prot_t old_prot; 1962 1963 if (start == end) 1964 return (KERN_SUCCESS); 1965 1966 vm_map_lock(map); 1967 1968 /* 1969 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 1970 * need to fault pages into the map and will drop the map lock while 1971 * doing so, and the VM object may end up in an inconsistent state if we 1972 * update the protection on the map entry in between faults. 1973 */ 1974 vm_map_wait_busy(map); 1975 1976 VM_MAP_RANGE_CHECK(map, start, end); 1977 1978 if (vm_map_lookup_entry(map, start, &entry)) { 1979 vm_map_clip_start(map, entry, start); 1980 } else { 1981 entry = entry->next; 1982 } 1983 1984 /* 1985 * Make a first pass to check for protection violations. 1986 */ 1987 for (current = entry; current != &map->header && current->start < end; 1988 current = current->next) { 1989 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1990 vm_map_unlock(map); 1991 return (KERN_INVALID_ARGUMENT); 1992 } 1993 if ((new_prot & current->max_protection) != new_prot) { 1994 vm_map_unlock(map); 1995 return (KERN_PROTECTION_FAILURE); 1996 } 1997 } 1998 1999 /* 2000 * Do an accounting pass for private read-only mappings that 2001 * now will do cow due to allowed write (e.g. debugger sets 2002 * breakpoint on text segment) 2003 */ 2004 for (current = entry; current != &map->header && current->start < end; 2005 current = current->next) { 2006 2007 vm_map_clip_end(map, current, end); 2008 2009 if (set_max || 2010 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 2011 ENTRY_CHARGED(current)) { 2012 continue; 2013 } 2014 2015 cred = curthread->td_ucred; 2016 obj = current->object.vm_object; 2017 2018 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 2019 if (!swap_reserve(current->end - current->start)) { 2020 vm_map_unlock(map); 2021 return (KERN_RESOURCE_SHORTAGE); 2022 } 2023 crhold(cred); 2024 current->cred = cred; 2025 continue; 2026 } 2027 2028 VM_OBJECT_WLOCK(obj); 2029 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2030 VM_OBJECT_WUNLOCK(obj); 2031 continue; 2032 } 2033 2034 /* 2035 * Charge for the whole object allocation now, since 2036 * we cannot distinguish between non-charged and 2037 * charged clipped mapping of the same object later. 2038 */ 2039 KASSERT(obj->charge == 0, 2040 ("vm_map_protect: object %p overcharged (entry %p)", 2041 obj, current)); 2042 if (!swap_reserve(ptoa(obj->size))) { 2043 VM_OBJECT_WUNLOCK(obj); 2044 vm_map_unlock(map); 2045 return (KERN_RESOURCE_SHORTAGE); 2046 } 2047 2048 crhold(cred); 2049 obj->cred = cred; 2050 obj->charge = ptoa(obj->size); 2051 VM_OBJECT_WUNLOCK(obj); 2052 } 2053 2054 /* 2055 * Go back and fix up protections. [Note that clipping is not 2056 * necessary the second time.] 2057 */ 2058 for (current = entry; current != &map->header && current->start < end; 2059 current = current->next) { 2060 old_prot = current->protection; 2061 2062 if (set_max) 2063 current->protection = 2064 (current->max_protection = new_prot) & 2065 old_prot; 2066 else 2067 current->protection = new_prot; 2068 2069 /* 2070 * For user wired map entries, the normal lazy evaluation of 2071 * write access upgrades through soft page faults is 2072 * undesirable. Instead, immediately copy any pages that are 2073 * copy-on-write and enable write access in the physical map. 2074 */ 2075 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2076 (current->protection & VM_PROT_WRITE) != 0 && 2077 (old_prot & VM_PROT_WRITE) == 0) 2078 vm_fault_copy_entry(map, map, current, current, NULL); 2079 2080 /* 2081 * When restricting access, update the physical map. Worry 2082 * about copy-on-write here. 2083 */ 2084 if ((old_prot & ~current->protection) != 0) { 2085 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2086 VM_PROT_ALL) 2087 pmap_protect(map->pmap, current->start, 2088 current->end, 2089 current->protection & MASK(current)); 2090 #undef MASK 2091 } 2092 vm_map_simplify_entry(map, current); 2093 } 2094 vm_map_unlock(map); 2095 return (KERN_SUCCESS); 2096 } 2097 2098 /* 2099 * vm_map_madvise: 2100 * 2101 * This routine traverses a processes map handling the madvise 2102 * system call. Advisories are classified as either those effecting 2103 * the vm_map_entry structure, or those effecting the underlying 2104 * objects. 2105 */ 2106 int 2107 vm_map_madvise( 2108 vm_map_t map, 2109 vm_offset_t start, 2110 vm_offset_t end, 2111 int behav) 2112 { 2113 vm_map_entry_t current, entry; 2114 int modify_map = 0; 2115 2116 /* 2117 * Some madvise calls directly modify the vm_map_entry, in which case 2118 * we need to use an exclusive lock on the map and we need to perform 2119 * various clipping operations. Otherwise we only need a read-lock 2120 * on the map. 2121 */ 2122 switch(behav) { 2123 case MADV_NORMAL: 2124 case MADV_SEQUENTIAL: 2125 case MADV_RANDOM: 2126 case MADV_NOSYNC: 2127 case MADV_AUTOSYNC: 2128 case MADV_NOCORE: 2129 case MADV_CORE: 2130 if (start == end) 2131 return (KERN_SUCCESS); 2132 modify_map = 1; 2133 vm_map_lock(map); 2134 break; 2135 case MADV_WILLNEED: 2136 case MADV_DONTNEED: 2137 case MADV_FREE: 2138 if (start == end) 2139 return (KERN_SUCCESS); 2140 vm_map_lock_read(map); 2141 break; 2142 default: 2143 return (KERN_INVALID_ARGUMENT); 2144 } 2145 2146 /* 2147 * Locate starting entry and clip if necessary. 2148 */ 2149 VM_MAP_RANGE_CHECK(map, start, end); 2150 2151 if (vm_map_lookup_entry(map, start, &entry)) { 2152 if (modify_map) 2153 vm_map_clip_start(map, entry, start); 2154 } else { 2155 entry = entry->next; 2156 } 2157 2158 if (modify_map) { 2159 /* 2160 * madvise behaviors that are implemented in the vm_map_entry. 2161 * 2162 * We clip the vm_map_entry so that behavioral changes are 2163 * limited to the specified address range. 2164 */ 2165 for (current = entry; 2166 (current != &map->header) && (current->start < end); 2167 current = current->next 2168 ) { 2169 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2170 continue; 2171 2172 vm_map_clip_end(map, current, end); 2173 2174 switch (behav) { 2175 case MADV_NORMAL: 2176 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2177 break; 2178 case MADV_SEQUENTIAL: 2179 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2180 break; 2181 case MADV_RANDOM: 2182 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2183 break; 2184 case MADV_NOSYNC: 2185 current->eflags |= MAP_ENTRY_NOSYNC; 2186 break; 2187 case MADV_AUTOSYNC: 2188 current->eflags &= ~MAP_ENTRY_NOSYNC; 2189 break; 2190 case MADV_NOCORE: 2191 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2192 break; 2193 case MADV_CORE: 2194 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2195 break; 2196 default: 2197 break; 2198 } 2199 vm_map_simplify_entry(map, current); 2200 } 2201 vm_map_unlock(map); 2202 } else { 2203 vm_pindex_t pstart, pend; 2204 2205 /* 2206 * madvise behaviors that are implemented in the underlying 2207 * vm_object. 2208 * 2209 * Since we don't clip the vm_map_entry, we have to clip 2210 * the vm_object pindex and count. 2211 */ 2212 for (current = entry; 2213 (current != &map->header) && (current->start < end); 2214 current = current->next 2215 ) { 2216 vm_offset_t useEnd, useStart; 2217 2218 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2219 continue; 2220 2221 pstart = OFF_TO_IDX(current->offset); 2222 pend = pstart + atop(current->end - current->start); 2223 useStart = current->start; 2224 useEnd = current->end; 2225 2226 if (current->start < start) { 2227 pstart += atop(start - current->start); 2228 useStart = start; 2229 } 2230 if (current->end > end) { 2231 pend -= atop(current->end - end); 2232 useEnd = end; 2233 } 2234 2235 if (pstart >= pend) 2236 continue; 2237 2238 /* 2239 * Perform the pmap_advise() before clearing 2240 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2241 * concurrent pmap operation, such as pmap_remove(), 2242 * could clear a reference in the pmap and set 2243 * PGA_REFERENCED on the page before the pmap_advise() 2244 * had completed. Consequently, the page would appear 2245 * referenced based upon an old reference that 2246 * occurred before this pmap_advise() ran. 2247 */ 2248 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2249 pmap_advise(map->pmap, useStart, useEnd, 2250 behav); 2251 2252 vm_object_madvise(current->object.vm_object, pstart, 2253 pend, behav); 2254 2255 /* 2256 * Pre-populate paging structures in the 2257 * WILLNEED case. For wired entries, the 2258 * paging structures are already populated. 2259 */ 2260 if (behav == MADV_WILLNEED && 2261 current->wired_count == 0) { 2262 vm_map_pmap_enter(map, 2263 useStart, 2264 current->protection, 2265 current->object.vm_object, 2266 pstart, 2267 ptoa(pend - pstart), 2268 MAP_PREFAULT_MADVISE 2269 ); 2270 } 2271 } 2272 vm_map_unlock_read(map); 2273 } 2274 return (0); 2275 } 2276 2277 2278 /* 2279 * vm_map_inherit: 2280 * 2281 * Sets the inheritance of the specified address 2282 * range in the target map. Inheritance 2283 * affects how the map will be shared with 2284 * child maps at the time of vmspace_fork. 2285 */ 2286 int 2287 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2288 vm_inherit_t new_inheritance) 2289 { 2290 vm_map_entry_t entry; 2291 vm_map_entry_t temp_entry; 2292 2293 switch (new_inheritance) { 2294 case VM_INHERIT_NONE: 2295 case VM_INHERIT_COPY: 2296 case VM_INHERIT_SHARE: 2297 case VM_INHERIT_ZERO: 2298 break; 2299 default: 2300 return (KERN_INVALID_ARGUMENT); 2301 } 2302 if (start == end) 2303 return (KERN_SUCCESS); 2304 vm_map_lock(map); 2305 VM_MAP_RANGE_CHECK(map, start, end); 2306 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2307 entry = temp_entry; 2308 vm_map_clip_start(map, entry, start); 2309 } else 2310 entry = temp_entry->next; 2311 while ((entry != &map->header) && (entry->start < end)) { 2312 vm_map_clip_end(map, entry, end); 2313 entry->inheritance = new_inheritance; 2314 vm_map_simplify_entry(map, entry); 2315 entry = entry->next; 2316 } 2317 vm_map_unlock(map); 2318 return (KERN_SUCCESS); 2319 } 2320 2321 /* 2322 * vm_map_unwire: 2323 * 2324 * Implements both kernel and user unwiring. 2325 */ 2326 int 2327 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2328 int flags) 2329 { 2330 vm_map_entry_t entry, first_entry, tmp_entry; 2331 vm_offset_t saved_start; 2332 unsigned int last_timestamp; 2333 int rv; 2334 boolean_t need_wakeup, result, user_unwire; 2335 2336 if (start == end) 2337 return (KERN_SUCCESS); 2338 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2339 vm_map_lock(map); 2340 VM_MAP_RANGE_CHECK(map, start, end); 2341 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2342 if (flags & VM_MAP_WIRE_HOLESOK) 2343 first_entry = first_entry->next; 2344 else { 2345 vm_map_unlock(map); 2346 return (KERN_INVALID_ADDRESS); 2347 } 2348 } 2349 last_timestamp = map->timestamp; 2350 entry = first_entry; 2351 while (entry != &map->header && entry->start < end) { 2352 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2353 /* 2354 * We have not yet clipped the entry. 2355 */ 2356 saved_start = (start >= entry->start) ? start : 2357 entry->start; 2358 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2359 if (vm_map_unlock_and_wait(map, 0)) { 2360 /* 2361 * Allow interruption of user unwiring? 2362 */ 2363 } 2364 vm_map_lock(map); 2365 if (last_timestamp+1 != map->timestamp) { 2366 /* 2367 * Look again for the entry because the map was 2368 * modified while it was unlocked. 2369 * Specifically, the entry may have been 2370 * clipped, merged, or deleted. 2371 */ 2372 if (!vm_map_lookup_entry(map, saved_start, 2373 &tmp_entry)) { 2374 if (flags & VM_MAP_WIRE_HOLESOK) 2375 tmp_entry = tmp_entry->next; 2376 else { 2377 if (saved_start == start) { 2378 /* 2379 * First_entry has been deleted. 2380 */ 2381 vm_map_unlock(map); 2382 return (KERN_INVALID_ADDRESS); 2383 } 2384 end = saved_start; 2385 rv = KERN_INVALID_ADDRESS; 2386 goto done; 2387 } 2388 } 2389 if (entry == first_entry) 2390 first_entry = tmp_entry; 2391 else 2392 first_entry = NULL; 2393 entry = tmp_entry; 2394 } 2395 last_timestamp = map->timestamp; 2396 continue; 2397 } 2398 vm_map_clip_start(map, entry, start); 2399 vm_map_clip_end(map, entry, end); 2400 /* 2401 * Mark the entry in case the map lock is released. (See 2402 * above.) 2403 */ 2404 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2405 entry->wiring_thread == NULL, 2406 ("owned map entry %p", entry)); 2407 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2408 entry->wiring_thread = curthread; 2409 /* 2410 * Check the map for holes in the specified region. 2411 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2412 */ 2413 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2414 (entry->end < end && (entry->next == &map->header || 2415 entry->next->start > entry->end))) { 2416 end = entry->end; 2417 rv = KERN_INVALID_ADDRESS; 2418 goto done; 2419 } 2420 /* 2421 * If system unwiring, require that the entry is system wired. 2422 */ 2423 if (!user_unwire && 2424 vm_map_entry_system_wired_count(entry) == 0) { 2425 end = entry->end; 2426 rv = KERN_INVALID_ARGUMENT; 2427 goto done; 2428 } 2429 entry = entry->next; 2430 } 2431 rv = KERN_SUCCESS; 2432 done: 2433 need_wakeup = FALSE; 2434 if (first_entry == NULL) { 2435 result = vm_map_lookup_entry(map, start, &first_entry); 2436 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2437 first_entry = first_entry->next; 2438 else 2439 KASSERT(result, ("vm_map_unwire: lookup failed")); 2440 } 2441 for (entry = first_entry; entry != &map->header && entry->start < end; 2442 entry = entry->next) { 2443 /* 2444 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2445 * space in the unwired region could have been mapped 2446 * while the map lock was dropped for draining 2447 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2448 * could be simultaneously wiring this new mapping 2449 * entry. Detect these cases and skip any entries 2450 * marked as in transition by us. 2451 */ 2452 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2453 entry->wiring_thread != curthread) { 2454 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2455 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2456 continue; 2457 } 2458 2459 if (rv == KERN_SUCCESS && (!user_unwire || 2460 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2461 if (user_unwire) 2462 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2463 if (entry->wired_count == 1) 2464 vm_map_entry_unwire(map, entry); 2465 else 2466 entry->wired_count--; 2467 } 2468 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2469 ("vm_map_unwire: in-transition flag missing %p", entry)); 2470 KASSERT(entry->wiring_thread == curthread, 2471 ("vm_map_unwire: alien wire %p", entry)); 2472 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2473 entry->wiring_thread = NULL; 2474 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2475 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2476 need_wakeup = TRUE; 2477 } 2478 vm_map_simplify_entry(map, entry); 2479 } 2480 vm_map_unlock(map); 2481 if (need_wakeup) 2482 vm_map_wakeup(map); 2483 return (rv); 2484 } 2485 2486 /* 2487 * vm_map_wire_entry_failure: 2488 * 2489 * Handle a wiring failure on the given entry. 2490 * 2491 * The map should be locked. 2492 */ 2493 static void 2494 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 2495 vm_offset_t failed_addr) 2496 { 2497 2498 VM_MAP_ASSERT_LOCKED(map); 2499 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 2500 entry->wired_count == 1, 2501 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 2502 KASSERT(failed_addr < entry->end, 2503 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 2504 2505 /* 2506 * If any pages at the start of this entry were successfully wired, 2507 * then unwire them. 2508 */ 2509 if (failed_addr > entry->start) { 2510 pmap_unwire(map->pmap, entry->start, failed_addr); 2511 vm_object_unwire(entry->object.vm_object, entry->offset, 2512 failed_addr - entry->start, PQ_ACTIVE); 2513 } 2514 2515 /* 2516 * Assign an out-of-range value to represent the failure to wire this 2517 * entry. 2518 */ 2519 entry->wired_count = -1; 2520 } 2521 2522 /* 2523 * vm_map_wire: 2524 * 2525 * Implements both kernel and user wiring. 2526 */ 2527 int 2528 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2529 int flags) 2530 { 2531 vm_map_entry_t entry, first_entry, tmp_entry; 2532 vm_offset_t faddr, saved_end, saved_start; 2533 unsigned int last_timestamp; 2534 int rv; 2535 boolean_t need_wakeup, result, user_wire; 2536 vm_prot_t prot; 2537 2538 if (start == end) 2539 return (KERN_SUCCESS); 2540 prot = 0; 2541 if (flags & VM_MAP_WIRE_WRITE) 2542 prot |= VM_PROT_WRITE; 2543 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2544 vm_map_lock(map); 2545 VM_MAP_RANGE_CHECK(map, start, end); 2546 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2547 if (flags & VM_MAP_WIRE_HOLESOK) 2548 first_entry = first_entry->next; 2549 else { 2550 vm_map_unlock(map); 2551 return (KERN_INVALID_ADDRESS); 2552 } 2553 } 2554 last_timestamp = map->timestamp; 2555 entry = first_entry; 2556 while (entry != &map->header && entry->start < end) { 2557 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2558 /* 2559 * We have not yet clipped the entry. 2560 */ 2561 saved_start = (start >= entry->start) ? start : 2562 entry->start; 2563 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2564 if (vm_map_unlock_and_wait(map, 0)) { 2565 /* 2566 * Allow interruption of user wiring? 2567 */ 2568 } 2569 vm_map_lock(map); 2570 if (last_timestamp + 1 != map->timestamp) { 2571 /* 2572 * Look again for the entry because the map was 2573 * modified while it was unlocked. 2574 * Specifically, the entry may have been 2575 * clipped, merged, or deleted. 2576 */ 2577 if (!vm_map_lookup_entry(map, saved_start, 2578 &tmp_entry)) { 2579 if (flags & VM_MAP_WIRE_HOLESOK) 2580 tmp_entry = tmp_entry->next; 2581 else { 2582 if (saved_start == start) { 2583 /* 2584 * first_entry has been deleted. 2585 */ 2586 vm_map_unlock(map); 2587 return (KERN_INVALID_ADDRESS); 2588 } 2589 end = saved_start; 2590 rv = KERN_INVALID_ADDRESS; 2591 goto done; 2592 } 2593 } 2594 if (entry == first_entry) 2595 first_entry = tmp_entry; 2596 else 2597 first_entry = NULL; 2598 entry = tmp_entry; 2599 } 2600 last_timestamp = map->timestamp; 2601 continue; 2602 } 2603 vm_map_clip_start(map, entry, start); 2604 vm_map_clip_end(map, entry, end); 2605 /* 2606 * Mark the entry in case the map lock is released. (See 2607 * above.) 2608 */ 2609 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2610 entry->wiring_thread == NULL, 2611 ("owned map entry %p", entry)); 2612 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2613 entry->wiring_thread = curthread; 2614 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2615 || (entry->protection & prot) != prot) { 2616 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2617 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2618 end = entry->end; 2619 rv = KERN_INVALID_ADDRESS; 2620 goto done; 2621 } 2622 goto next_entry; 2623 } 2624 if (entry->wired_count == 0) { 2625 entry->wired_count++; 2626 saved_start = entry->start; 2627 saved_end = entry->end; 2628 2629 /* 2630 * Release the map lock, relying on the in-transition 2631 * mark. Mark the map busy for fork. 2632 */ 2633 vm_map_busy(map); 2634 vm_map_unlock(map); 2635 2636 faddr = saved_start; 2637 do { 2638 /* 2639 * Simulate a fault to get the page and enter 2640 * it into the physical map. 2641 */ 2642 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 2643 VM_FAULT_WIRE)) != KERN_SUCCESS) 2644 break; 2645 } while ((faddr += PAGE_SIZE) < saved_end); 2646 vm_map_lock(map); 2647 vm_map_unbusy(map); 2648 if (last_timestamp + 1 != map->timestamp) { 2649 /* 2650 * Look again for the entry because the map was 2651 * modified while it was unlocked. The entry 2652 * may have been clipped, but NOT merged or 2653 * deleted. 2654 */ 2655 result = vm_map_lookup_entry(map, saved_start, 2656 &tmp_entry); 2657 KASSERT(result, ("vm_map_wire: lookup failed")); 2658 if (entry == first_entry) 2659 first_entry = tmp_entry; 2660 else 2661 first_entry = NULL; 2662 entry = tmp_entry; 2663 while (entry->end < saved_end) { 2664 /* 2665 * In case of failure, handle entries 2666 * that were not fully wired here; 2667 * fully wired entries are handled 2668 * later. 2669 */ 2670 if (rv != KERN_SUCCESS && 2671 faddr < entry->end) 2672 vm_map_wire_entry_failure(map, 2673 entry, faddr); 2674 entry = entry->next; 2675 } 2676 } 2677 last_timestamp = map->timestamp; 2678 if (rv != KERN_SUCCESS) { 2679 vm_map_wire_entry_failure(map, entry, faddr); 2680 end = entry->end; 2681 goto done; 2682 } 2683 } else if (!user_wire || 2684 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2685 entry->wired_count++; 2686 } 2687 /* 2688 * Check the map for holes in the specified region. 2689 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2690 */ 2691 next_entry: 2692 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2693 (entry->end < end && (entry->next == &map->header || 2694 entry->next->start > entry->end))) { 2695 end = entry->end; 2696 rv = KERN_INVALID_ADDRESS; 2697 goto done; 2698 } 2699 entry = entry->next; 2700 } 2701 rv = KERN_SUCCESS; 2702 done: 2703 need_wakeup = FALSE; 2704 if (first_entry == NULL) { 2705 result = vm_map_lookup_entry(map, start, &first_entry); 2706 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2707 first_entry = first_entry->next; 2708 else 2709 KASSERT(result, ("vm_map_wire: lookup failed")); 2710 } 2711 for (entry = first_entry; entry != &map->header && entry->start < end; 2712 entry = entry->next) { 2713 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2714 goto next_entry_done; 2715 2716 /* 2717 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2718 * space in the unwired region could have been mapped 2719 * while the map lock was dropped for faulting in the 2720 * pages or draining MAP_ENTRY_IN_TRANSITION. 2721 * Moreover, another thread could be simultaneously 2722 * wiring this new mapping entry. Detect these cases 2723 * and skip any entries marked as in transition by us. 2724 */ 2725 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2726 entry->wiring_thread != curthread) { 2727 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2728 ("vm_map_wire: !HOLESOK and new/changed entry")); 2729 continue; 2730 } 2731 2732 if (rv == KERN_SUCCESS) { 2733 if (user_wire) 2734 entry->eflags |= MAP_ENTRY_USER_WIRED; 2735 } else if (entry->wired_count == -1) { 2736 /* 2737 * Wiring failed on this entry. Thus, unwiring is 2738 * unnecessary. 2739 */ 2740 entry->wired_count = 0; 2741 } else if (!user_wire || 2742 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2743 /* 2744 * Undo the wiring. Wiring succeeded on this entry 2745 * but failed on a later entry. 2746 */ 2747 if (entry->wired_count == 1) 2748 vm_map_entry_unwire(map, entry); 2749 else 2750 entry->wired_count--; 2751 } 2752 next_entry_done: 2753 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2754 ("vm_map_wire: in-transition flag missing %p", entry)); 2755 KASSERT(entry->wiring_thread == curthread, 2756 ("vm_map_wire: alien wire %p", entry)); 2757 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2758 MAP_ENTRY_WIRE_SKIPPED); 2759 entry->wiring_thread = NULL; 2760 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2761 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2762 need_wakeup = TRUE; 2763 } 2764 vm_map_simplify_entry(map, entry); 2765 } 2766 vm_map_unlock(map); 2767 if (need_wakeup) 2768 vm_map_wakeup(map); 2769 return (rv); 2770 } 2771 2772 /* 2773 * vm_map_sync 2774 * 2775 * Push any dirty cached pages in the address range to their pager. 2776 * If syncio is TRUE, dirty pages are written synchronously. 2777 * If invalidate is TRUE, any cached pages are freed as well. 2778 * 2779 * If the size of the region from start to end is zero, we are 2780 * supposed to flush all modified pages within the region containing 2781 * start. Unfortunately, a region can be split or coalesced with 2782 * neighboring regions, making it difficult to determine what the 2783 * original region was. Therefore, we approximate this requirement by 2784 * flushing the current region containing start. 2785 * 2786 * Returns an error if any part of the specified range is not mapped. 2787 */ 2788 int 2789 vm_map_sync( 2790 vm_map_t map, 2791 vm_offset_t start, 2792 vm_offset_t end, 2793 boolean_t syncio, 2794 boolean_t invalidate) 2795 { 2796 vm_map_entry_t current; 2797 vm_map_entry_t entry; 2798 vm_size_t size; 2799 vm_object_t object; 2800 vm_ooffset_t offset; 2801 unsigned int last_timestamp; 2802 boolean_t failed; 2803 2804 vm_map_lock_read(map); 2805 VM_MAP_RANGE_CHECK(map, start, end); 2806 if (!vm_map_lookup_entry(map, start, &entry)) { 2807 vm_map_unlock_read(map); 2808 return (KERN_INVALID_ADDRESS); 2809 } else if (start == end) { 2810 start = entry->start; 2811 end = entry->end; 2812 } 2813 /* 2814 * Make a first pass to check for user-wired memory and holes. 2815 */ 2816 for (current = entry; current != &map->header && current->start < end; 2817 current = current->next) { 2818 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2819 vm_map_unlock_read(map); 2820 return (KERN_INVALID_ARGUMENT); 2821 } 2822 if (end > current->end && 2823 (current->next == &map->header || 2824 current->end != current->next->start)) { 2825 vm_map_unlock_read(map); 2826 return (KERN_INVALID_ADDRESS); 2827 } 2828 } 2829 2830 if (invalidate) 2831 pmap_remove(map->pmap, start, end); 2832 failed = FALSE; 2833 2834 /* 2835 * Make a second pass, cleaning/uncaching pages from the indicated 2836 * objects as we go. 2837 */ 2838 for (current = entry; current != &map->header && current->start < end;) { 2839 offset = current->offset + (start - current->start); 2840 size = (end <= current->end ? end : current->end) - start; 2841 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2842 vm_map_t smap; 2843 vm_map_entry_t tentry; 2844 vm_size_t tsize; 2845 2846 smap = current->object.sub_map; 2847 vm_map_lock_read(smap); 2848 (void) vm_map_lookup_entry(smap, offset, &tentry); 2849 tsize = tentry->end - offset; 2850 if (tsize < size) 2851 size = tsize; 2852 object = tentry->object.vm_object; 2853 offset = tentry->offset + (offset - tentry->start); 2854 vm_map_unlock_read(smap); 2855 } else { 2856 object = current->object.vm_object; 2857 } 2858 vm_object_reference(object); 2859 last_timestamp = map->timestamp; 2860 vm_map_unlock_read(map); 2861 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2862 failed = TRUE; 2863 start += size; 2864 vm_object_deallocate(object); 2865 vm_map_lock_read(map); 2866 if (last_timestamp == map->timestamp || 2867 !vm_map_lookup_entry(map, start, ¤t)) 2868 current = current->next; 2869 } 2870 2871 vm_map_unlock_read(map); 2872 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2873 } 2874 2875 /* 2876 * vm_map_entry_unwire: [ internal use only ] 2877 * 2878 * Make the region specified by this entry pageable. 2879 * 2880 * The map in question should be locked. 2881 * [This is the reason for this routine's existence.] 2882 */ 2883 static void 2884 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2885 { 2886 2887 VM_MAP_ASSERT_LOCKED(map); 2888 KASSERT(entry->wired_count > 0, 2889 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 2890 pmap_unwire(map->pmap, entry->start, entry->end); 2891 vm_object_unwire(entry->object.vm_object, entry->offset, entry->end - 2892 entry->start, PQ_ACTIVE); 2893 entry->wired_count = 0; 2894 } 2895 2896 static void 2897 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2898 { 2899 2900 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2901 vm_object_deallocate(entry->object.vm_object); 2902 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2903 } 2904 2905 /* 2906 * vm_map_entry_delete: [ internal use only ] 2907 * 2908 * Deallocate the given entry from the target map. 2909 */ 2910 static void 2911 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2912 { 2913 vm_object_t object; 2914 vm_pindex_t offidxstart, offidxend, count, size1; 2915 vm_size_t size; 2916 2917 vm_map_entry_unlink(map, entry); 2918 object = entry->object.vm_object; 2919 size = entry->end - entry->start; 2920 map->size -= size; 2921 2922 if (entry->cred != NULL) { 2923 swap_release_by_cred(size, entry->cred); 2924 crfree(entry->cred); 2925 } 2926 2927 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2928 (object != NULL)) { 2929 KASSERT(entry->cred == NULL || object->cred == NULL || 2930 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2931 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2932 count = atop(size); 2933 offidxstart = OFF_TO_IDX(entry->offset); 2934 offidxend = offidxstart + count; 2935 VM_OBJECT_WLOCK(object); 2936 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT | 2937 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2938 object == kernel_object || object == kmem_object)) { 2939 vm_object_collapse(object); 2940 2941 /* 2942 * The option OBJPR_NOTMAPPED can be passed here 2943 * because vm_map_delete() already performed 2944 * pmap_remove() on the only mapping to this range 2945 * of pages. 2946 */ 2947 vm_object_page_remove(object, offidxstart, offidxend, 2948 OBJPR_NOTMAPPED); 2949 if (object->type == OBJT_SWAP) 2950 swap_pager_freespace(object, offidxstart, 2951 count); 2952 if (offidxend >= object->size && 2953 offidxstart < object->size) { 2954 size1 = object->size; 2955 object->size = offidxstart; 2956 if (object->cred != NULL) { 2957 size1 -= object->size; 2958 KASSERT(object->charge >= ptoa(size1), 2959 ("object %p charge < 0", object)); 2960 swap_release_by_cred(ptoa(size1), 2961 object->cred); 2962 object->charge -= ptoa(size1); 2963 } 2964 } 2965 } 2966 VM_OBJECT_WUNLOCK(object); 2967 } else 2968 entry->object.vm_object = NULL; 2969 if (map->system_map) 2970 vm_map_entry_deallocate(entry, TRUE); 2971 else { 2972 entry->next = curthread->td_map_def_user; 2973 curthread->td_map_def_user = entry; 2974 } 2975 } 2976 2977 /* 2978 * vm_map_delete: [ internal use only ] 2979 * 2980 * Deallocates the given address range from the target 2981 * map. 2982 */ 2983 int 2984 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2985 { 2986 vm_map_entry_t entry; 2987 vm_map_entry_t first_entry; 2988 2989 VM_MAP_ASSERT_LOCKED(map); 2990 if (start == end) 2991 return (KERN_SUCCESS); 2992 2993 /* 2994 * Find the start of the region, and clip it 2995 */ 2996 if (!vm_map_lookup_entry(map, start, &first_entry)) 2997 entry = first_entry->next; 2998 else { 2999 entry = first_entry; 3000 vm_map_clip_start(map, entry, start); 3001 } 3002 3003 /* 3004 * Step through all entries in this region 3005 */ 3006 while ((entry != &map->header) && (entry->start < end)) { 3007 vm_map_entry_t next; 3008 3009 /* 3010 * Wait for wiring or unwiring of an entry to complete. 3011 * Also wait for any system wirings to disappear on 3012 * user maps. 3013 */ 3014 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3015 (vm_map_pmap(map) != kernel_pmap && 3016 vm_map_entry_system_wired_count(entry) != 0)) { 3017 unsigned int last_timestamp; 3018 vm_offset_t saved_start; 3019 vm_map_entry_t tmp_entry; 3020 3021 saved_start = entry->start; 3022 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3023 last_timestamp = map->timestamp; 3024 (void) vm_map_unlock_and_wait(map, 0); 3025 vm_map_lock(map); 3026 if (last_timestamp + 1 != map->timestamp) { 3027 /* 3028 * Look again for the entry because the map was 3029 * modified while it was unlocked. 3030 * Specifically, the entry may have been 3031 * clipped, merged, or deleted. 3032 */ 3033 if (!vm_map_lookup_entry(map, saved_start, 3034 &tmp_entry)) 3035 entry = tmp_entry->next; 3036 else { 3037 entry = tmp_entry; 3038 vm_map_clip_start(map, entry, 3039 saved_start); 3040 } 3041 } 3042 continue; 3043 } 3044 vm_map_clip_end(map, entry, end); 3045 3046 next = entry->next; 3047 3048 /* 3049 * Unwire before removing addresses from the pmap; otherwise, 3050 * unwiring will put the entries back in the pmap. 3051 */ 3052 if (entry->wired_count != 0) { 3053 vm_map_entry_unwire(map, entry); 3054 } 3055 3056 pmap_remove(map->pmap, entry->start, entry->end); 3057 3058 /* 3059 * Delete the entry only after removing all pmap 3060 * entries pointing to its pages. (Otherwise, its 3061 * page frames may be reallocated, and any modify bits 3062 * will be set in the wrong object!) 3063 */ 3064 vm_map_entry_delete(map, entry); 3065 entry = next; 3066 } 3067 return (KERN_SUCCESS); 3068 } 3069 3070 /* 3071 * vm_map_remove: 3072 * 3073 * Remove the given address range from the target map. 3074 * This is the exported form of vm_map_delete. 3075 */ 3076 int 3077 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3078 { 3079 int result; 3080 3081 vm_map_lock(map); 3082 VM_MAP_RANGE_CHECK(map, start, end); 3083 result = vm_map_delete(map, start, end); 3084 vm_map_unlock(map); 3085 return (result); 3086 } 3087 3088 /* 3089 * vm_map_check_protection: 3090 * 3091 * Assert that the target map allows the specified privilege on the 3092 * entire address region given. The entire region must be allocated. 3093 * 3094 * WARNING! This code does not and should not check whether the 3095 * contents of the region is accessible. For example a smaller file 3096 * might be mapped into a larger address space. 3097 * 3098 * NOTE! This code is also called by munmap(). 3099 * 3100 * The map must be locked. A read lock is sufficient. 3101 */ 3102 boolean_t 3103 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3104 vm_prot_t protection) 3105 { 3106 vm_map_entry_t entry; 3107 vm_map_entry_t tmp_entry; 3108 3109 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3110 return (FALSE); 3111 entry = tmp_entry; 3112 3113 while (start < end) { 3114 if (entry == &map->header) 3115 return (FALSE); 3116 /* 3117 * No holes allowed! 3118 */ 3119 if (start < entry->start) 3120 return (FALSE); 3121 /* 3122 * Check protection associated with entry. 3123 */ 3124 if ((entry->protection & protection) != protection) 3125 return (FALSE); 3126 /* go to next entry */ 3127 start = entry->end; 3128 entry = entry->next; 3129 } 3130 return (TRUE); 3131 } 3132 3133 /* 3134 * vm_map_copy_entry: 3135 * 3136 * Copies the contents of the source entry to the destination 3137 * entry. The entries *must* be aligned properly. 3138 */ 3139 static void 3140 vm_map_copy_entry( 3141 vm_map_t src_map, 3142 vm_map_t dst_map, 3143 vm_map_entry_t src_entry, 3144 vm_map_entry_t dst_entry, 3145 vm_ooffset_t *fork_charge) 3146 { 3147 vm_object_t src_object; 3148 vm_map_entry_t fake_entry; 3149 vm_offset_t size; 3150 struct ucred *cred; 3151 int charged; 3152 3153 VM_MAP_ASSERT_LOCKED(dst_map); 3154 3155 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3156 return; 3157 3158 if (src_entry->wired_count == 0 || 3159 (src_entry->protection & VM_PROT_WRITE) == 0) { 3160 /* 3161 * If the source entry is marked needs_copy, it is already 3162 * write-protected. 3163 */ 3164 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3165 (src_entry->protection & VM_PROT_WRITE) != 0) { 3166 pmap_protect(src_map->pmap, 3167 src_entry->start, 3168 src_entry->end, 3169 src_entry->protection & ~VM_PROT_WRITE); 3170 } 3171 3172 /* 3173 * Make a copy of the object. 3174 */ 3175 size = src_entry->end - src_entry->start; 3176 if ((src_object = src_entry->object.vm_object) != NULL) { 3177 VM_OBJECT_WLOCK(src_object); 3178 charged = ENTRY_CHARGED(src_entry); 3179 if (src_object->handle == NULL && 3180 (src_object->type == OBJT_DEFAULT || 3181 src_object->type == OBJT_SWAP)) { 3182 vm_object_collapse(src_object); 3183 if ((src_object->flags & (OBJ_NOSPLIT | 3184 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3185 vm_object_split(src_entry); 3186 src_object = 3187 src_entry->object.vm_object; 3188 } 3189 } 3190 vm_object_reference_locked(src_object); 3191 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3192 if (src_entry->cred != NULL && 3193 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3194 KASSERT(src_object->cred == NULL, 3195 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3196 src_object)); 3197 src_object->cred = src_entry->cred; 3198 src_object->charge = size; 3199 } 3200 VM_OBJECT_WUNLOCK(src_object); 3201 dst_entry->object.vm_object = src_object; 3202 if (charged) { 3203 cred = curthread->td_ucred; 3204 crhold(cred); 3205 dst_entry->cred = cred; 3206 *fork_charge += size; 3207 if (!(src_entry->eflags & 3208 MAP_ENTRY_NEEDS_COPY)) { 3209 crhold(cred); 3210 src_entry->cred = cred; 3211 *fork_charge += size; 3212 } 3213 } 3214 src_entry->eflags |= MAP_ENTRY_COW | 3215 MAP_ENTRY_NEEDS_COPY; 3216 dst_entry->eflags |= MAP_ENTRY_COW | 3217 MAP_ENTRY_NEEDS_COPY; 3218 dst_entry->offset = src_entry->offset; 3219 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3220 /* 3221 * MAP_ENTRY_VN_WRITECNT cannot 3222 * indicate write reference from 3223 * src_entry, since the entry is 3224 * marked as needs copy. Allocate a 3225 * fake entry that is used to 3226 * decrement object->un_pager.vnp.writecount 3227 * at the appropriate time. Attach 3228 * fake_entry to the deferred list. 3229 */ 3230 fake_entry = vm_map_entry_create(dst_map); 3231 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3232 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3233 vm_object_reference(src_object); 3234 fake_entry->object.vm_object = src_object; 3235 fake_entry->start = src_entry->start; 3236 fake_entry->end = src_entry->end; 3237 fake_entry->next = curthread->td_map_def_user; 3238 curthread->td_map_def_user = fake_entry; 3239 } 3240 } else { 3241 dst_entry->object.vm_object = NULL; 3242 dst_entry->offset = 0; 3243 if (src_entry->cred != NULL) { 3244 dst_entry->cred = curthread->td_ucred; 3245 crhold(dst_entry->cred); 3246 *fork_charge += size; 3247 } 3248 } 3249 3250 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3251 dst_entry->end - dst_entry->start, src_entry->start); 3252 } else { 3253 /* 3254 * We don't want to make writeable wired pages copy-on-write. 3255 * Immediately copy these pages into the new map by simulating 3256 * page faults. The new pages are pageable. 3257 */ 3258 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3259 fork_charge); 3260 } 3261 } 3262 3263 /* 3264 * vmspace_map_entry_forked: 3265 * Update the newly-forked vmspace each time a map entry is inherited 3266 * or copied. The values for vm_dsize and vm_tsize are approximate 3267 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3268 */ 3269 static void 3270 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3271 vm_map_entry_t entry) 3272 { 3273 vm_size_t entrysize; 3274 vm_offset_t newend; 3275 3276 entrysize = entry->end - entry->start; 3277 vm2->vm_map.size += entrysize; 3278 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3279 vm2->vm_ssize += btoc(entrysize); 3280 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3281 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3282 newend = MIN(entry->end, 3283 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3284 vm2->vm_dsize += btoc(newend - entry->start); 3285 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3286 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3287 newend = MIN(entry->end, 3288 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3289 vm2->vm_tsize += btoc(newend - entry->start); 3290 } 3291 } 3292 3293 /* 3294 * vmspace_fork: 3295 * Create a new process vmspace structure and vm_map 3296 * based on those of an existing process. The new map 3297 * is based on the old map, according to the inheritance 3298 * values on the regions in that map. 3299 * 3300 * XXX It might be worth coalescing the entries added to the new vmspace. 3301 * 3302 * The source map must not be locked. 3303 */ 3304 struct vmspace * 3305 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3306 { 3307 struct vmspace *vm2; 3308 vm_map_t new_map, old_map; 3309 vm_map_entry_t new_entry, old_entry; 3310 vm_object_t object; 3311 int locked; 3312 3313 old_map = &vm1->vm_map; 3314 /* Copy immutable fields of vm1 to vm2. */ 3315 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL); 3316 if (vm2 == NULL) 3317 return (NULL); 3318 vm2->vm_taddr = vm1->vm_taddr; 3319 vm2->vm_daddr = vm1->vm_daddr; 3320 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3321 vm_map_lock(old_map); 3322 if (old_map->busy) 3323 vm_map_wait_busy(old_map); 3324 new_map = &vm2->vm_map; 3325 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3326 KASSERT(locked, ("vmspace_fork: lock failed")); 3327 3328 old_entry = old_map->header.next; 3329 3330 while (old_entry != &old_map->header) { 3331 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3332 panic("vm_map_fork: encountered a submap"); 3333 3334 switch (old_entry->inheritance) { 3335 case VM_INHERIT_NONE: 3336 break; 3337 3338 case VM_INHERIT_SHARE: 3339 /* 3340 * Clone the entry, creating the shared object if necessary. 3341 */ 3342 object = old_entry->object.vm_object; 3343 if (object == NULL) { 3344 object = vm_object_allocate(OBJT_DEFAULT, 3345 atop(old_entry->end - old_entry->start)); 3346 old_entry->object.vm_object = object; 3347 old_entry->offset = 0; 3348 if (old_entry->cred != NULL) { 3349 object->cred = old_entry->cred; 3350 object->charge = old_entry->end - 3351 old_entry->start; 3352 old_entry->cred = NULL; 3353 } 3354 } 3355 3356 /* 3357 * Add the reference before calling vm_object_shadow 3358 * to insure that a shadow object is created. 3359 */ 3360 vm_object_reference(object); 3361 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3362 vm_object_shadow(&old_entry->object.vm_object, 3363 &old_entry->offset, 3364 old_entry->end - old_entry->start); 3365 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3366 /* Transfer the second reference too. */ 3367 vm_object_reference( 3368 old_entry->object.vm_object); 3369 3370 /* 3371 * As in vm_map_simplify_entry(), the 3372 * vnode lock will not be acquired in 3373 * this call to vm_object_deallocate(). 3374 */ 3375 vm_object_deallocate(object); 3376 object = old_entry->object.vm_object; 3377 } 3378 VM_OBJECT_WLOCK(object); 3379 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3380 if (old_entry->cred != NULL) { 3381 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3382 object->cred = old_entry->cred; 3383 object->charge = old_entry->end - old_entry->start; 3384 old_entry->cred = NULL; 3385 } 3386 3387 /* 3388 * Assert the correct state of the vnode 3389 * v_writecount while the object is locked, to 3390 * not relock it later for the assertion 3391 * correctness. 3392 */ 3393 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3394 object->type == OBJT_VNODE) { 3395 KASSERT(((struct vnode *)object->handle)-> 3396 v_writecount > 0, 3397 ("vmspace_fork: v_writecount %p", object)); 3398 KASSERT(object->un_pager.vnp.writemappings > 0, 3399 ("vmspace_fork: vnp.writecount %p", 3400 object)); 3401 } 3402 VM_OBJECT_WUNLOCK(object); 3403 3404 /* 3405 * Clone the entry, referencing the shared object. 3406 */ 3407 new_entry = vm_map_entry_create(new_map); 3408 *new_entry = *old_entry; 3409 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3410 MAP_ENTRY_IN_TRANSITION); 3411 new_entry->wiring_thread = NULL; 3412 new_entry->wired_count = 0; 3413 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3414 vnode_pager_update_writecount(object, 3415 new_entry->start, new_entry->end); 3416 } 3417 3418 /* 3419 * Insert the entry into the new map -- we know we're 3420 * inserting at the end of the new map. 3421 */ 3422 vm_map_entry_link(new_map, new_map->header.prev, 3423 new_entry); 3424 vmspace_map_entry_forked(vm1, vm2, new_entry); 3425 3426 /* 3427 * Update the physical map 3428 */ 3429 pmap_copy(new_map->pmap, old_map->pmap, 3430 new_entry->start, 3431 (old_entry->end - old_entry->start), 3432 old_entry->start); 3433 break; 3434 3435 case VM_INHERIT_COPY: 3436 /* 3437 * Clone the entry and link into the map. 3438 */ 3439 new_entry = vm_map_entry_create(new_map); 3440 *new_entry = *old_entry; 3441 /* 3442 * Copied entry is COW over the old object. 3443 */ 3444 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3445 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3446 new_entry->wiring_thread = NULL; 3447 new_entry->wired_count = 0; 3448 new_entry->object.vm_object = NULL; 3449 new_entry->cred = NULL; 3450 vm_map_entry_link(new_map, new_map->header.prev, 3451 new_entry); 3452 vmspace_map_entry_forked(vm1, vm2, new_entry); 3453 vm_map_copy_entry(old_map, new_map, old_entry, 3454 new_entry, fork_charge); 3455 break; 3456 3457 case VM_INHERIT_ZERO: 3458 /* 3459 * Create a new anonymous mapping entry modelled from 3460 * the old one. 3461 */ 3462 new_entry = vm_map_entry_create(new_map); 3463 memset(new_entry, 0, sizeof(*new_entry)); 3464 3465 new_entry->start = old_entry->start; 3466 new_entry->end = old_entry->end; 3467 new_entry->avail_ssize = old_entry->avail_ssize; 3468 new_entry->eflags = old_entry->eflags & 3469 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 3470 MAP_ENTRY_VN_WRITECNT); 3471 new_entry->protection = old_entry->protection; 3472 new_entry->max_protection = old_entry->max_protection; 3473 new_entry->inheritance = VM_INHERIT_ZERO; 3474 3475 vm_map_entry_link(new_map, new_map->header.prev, 3476 new_entry); 3477 vmspace_map_entry_forked(vm1, vm2, new_entry); 3478 3479 new_entry->cred = curthread->td_ucred; 3480 crhold(new_entry->cred); 3481 *fork_charge += (new_entry->end - new_entry->start); 3482 3483 break; 3484 } 3485 old_entry = old_entry->next; 3486 } 3487 /* 3488 * Use inlined vm_map_unlock() to postpone handling the deferred 3489 * map entries, which cannot be done until both old_map and 3490 * new_map locks are released. 3491 */ 3492 sx_xunlock(&old_map->lock); 3493 sx_xunlock(&new_map->lock); 3494 vm_map_process_deferred(); 3495 3496 return (vm2); 3497 } 3498 3499 int 3500 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3501 vm_prot_t prot, vm_prot_t max, int cow) 3502 { 3503 vm_size_t growsize, init_ssize; 3504 rlim_t lmemlim, vmemlim; 3505 int rv; 3506 3507 growsize = sgrowsiz; 3508 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3509 vm_map_lock(map); 3510 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 3511 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 3512 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3513 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) { 3514 rv = KERN_NO_SPACE; 3515 goto out; 3516 } 3517 } 3518 /* If we would blow our VMEM resource limit, no go */ 3519 if (map->size + init_ssize > vmemlim) { 3520 rv = KERN_NO_SPACE; 3521 goto out; 3522 } 3523 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 3524 max, cow); 3525 out: 3526 vm_map_unlock(map); 3527 return (rv); 3528 } 3529 3530 static int 3531 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3532 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 3533 { 3534 vm_map_entry_t new_entry, prev_entry; 3535 vm_offset_t bot, top; 3536 vm_size_t init_ssize; 3537 int orient, rv; 3538 3539 /* 3540 * The stack orientation is piggybacked with the cow argument. 3541 * Extract it into orient and mask the cow argument so that we 3542 * don't pass it around further. 3543 * NOTE: We explicitly allow bi-directional stacks. 3544 */ 3545 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3546 KASSERT(orient != 0, ("No stack grow direction")); 3547 3548 if (addrbos < vm_map_min(map) || 3549 addrbos > vm_map_max(map) || 3550 addrbos + max_ssize < addrbos) 3551 return (KERN_NO_SPACE); 3552 3553 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3554 3555 /* If addr is already mapped, no go */ 3556 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 3557 return (KERN_NO_SPACE); 3558 3559 /* 3560 * If we can't accommodate max_ssize in the current mapping, no go. 3561 * However, we need to be aware that subsequent user mappings might 3562 * map into the space we have reserved for stack, and currently this 3563 * space is not protected. 3564 * 3565 * Hopefully we will at least detect this condition when we try to 3566 * grow the stack. 3567 */ 3568 if ((prev_entry->next != &map->header) && 3569 (prev_entry->next->start < addrbos + max_ssize)) 3570 return (KERN_NO_SPACE); 3571 3572 /* 3573 * We initially map a stack of only init_ssize. We will grow as 3574 * needed later. Depending on the orientation of the stack (i.e. 3575 * the grow direction) we either map at the top of the range, the 3576 * bottom of the range or in the middle. 3577 * 3578 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3579 * and cow to be 0. Possibly we should eliminate these as input 3580 * parameters, and just pass these values here in the insert call. 3581 */ 3582 if (orient == MAP_STACK_GROWS_DOWN) 3583 bot = addrbos + max_ssize - init_ssize; 3584 else if (orient == MAP_STACK_GROWS_UP) 3585 bot = addrbos; 3586 else 3587 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3588 top = bot + init_ssize; 3589 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3590 3591 /* Now set the avail_ssize amount. */ 3592 if (rv == KERN_SUCCESS) { 3593 new_entry = prev_entry->next; 3594 if (new_entry->end != top || new_entry->start != bot) 3595 panic("Bad entry start/end for new stack entry"); 3596 3597 new_entry->avail_ssize = max_ssize - init_ssize; 3598 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 3599 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 3600 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 3601 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 3602 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 3603 ("new entry lacks MAP_ENTRY_GROWS_UP")); 3604 } 3605 3606 return (rv); 3607 } 3608 3609 static int stack_guard_page = 0; 3610 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 3611 &stack_guard_page, 0, 3612 "Insert stack guard page ahead of the growable segments."); 3613 3614 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3615 * desired address is already mapped, or if we successfully grow 3616 * the stack. Also returns KERN_SUCCESS if addr is outside the 3617 * stack range (this is strange, but preserves compatibility with 3618 * the grow function in vm_machdep.c). 3619 */ 3620 int 3621 vm_map_growstack(struct proc *p, vm_offset_t addr) 3622 { 3623 vm_map_entry_t next_entry, prev_entry; 3624 vm_map_entry_t new_entry, stack_entry; 3625 struct vmspace *vm = p->p_vmspace; 3626 vm_map_t map = &vm->vm_map; 3627 vm_offset_t end; 3628 vm_size_t growsize; 3629 size_t grow_amount, max_grow; 3630 rlim_t lmemlim, stacklim, vmemlim; 3631 int is_procstack, rv; 3632 struct ucred *cred; 3633 #ifdef notyet 3634 uint64_t limit; 3635 #endif 3636 #ifdef RACCT 3637 int error; 3638 #endif 3639 3640 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 3641 stacklim = lim_cur(curthread, RLIMIT_STACK); 3642 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 3643 Retry: 3644 3645 vm_map_lock_read(map); 3646 3647 /* If addr is already in the entry range, no need to grow.*/ 3648 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3649 vm_map_unlock_read(map); 3650 return (KERN_SUCCESS); 3651 } 3652 3653 next_entry = prev_entry->next; 3654 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3655 /* 3656 * This entry does not grow upwards. Since the address lies 3657 * beyond this entry, the next entry (if one exists) has to 3658 * be a downward growable entry. The entry list header is 3659 * never a growable entry, so it suffices to check the flags. 3660 */ 3661 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3662 vm_map_unlock_read(map); 3663 return (KERN_SUCCESS); 3664 } 3665 stack_entry = next_entry; 3666 } else { 3667 /* 3668 * This entry grows upward. If the next entry does not at 3669 * least grow downwards, this is the entry we need to grow. 3670 * otherwise we have two possible choices and we have to 3671 * select one. 3672 */ 3673 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3674 /* 3675 * We have two choices; grow the entry closest to 3676 * the address to minimize the amount of growth. 3677 */ 3678 if (addr - prev_entry->end <= next_entry->start - addr) 3679 stack_entry = prev_entry; 3680 else 3681 stack_entry = next_entry; 3682 } else 3683 stack_entry = prev_entry; 3684 } 3685 3686 if (stack_entry == next_entry) { 3687 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3688 KASSERT(addr < stack_entry->start, ("foo")); 3689 end = (prev_entry != &map->header) ? prev_entry->end : 3690 stack_entry->start - stack_entry->avail_ssize; 3691 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3692 max_grow = stack_entry->start - end; 3693 } else { 3694 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3695 KASSERT(addr >= stack_entry->end, ("foo")); 3696 end = (next_entry != &map->header) ? next_entry->start : 3697 stack_entry->end + stack_entry->avail_ssize; 3698 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3699 max_grow = end - stack_entry->end; 3700 } 3701 3702 if (grow_amount > stack_entry->avail_ssize) { 3703 vm_map_unlock_read(map); 3704 return (KERN_NO_SPACE); 3705 } 3706 3707 /* 3708 * If there is no longer enough space between the entries nogo, and 3709 * adjust the available space. Note: this should only happen if the 3710 * user has mapped into the stack area after the stack was created, 3711 * and is probably an error. 3712 * 3713 * This also effectively destroys any guard page the user might have 3714 * intended by limiting the stack size. 3715 */ 3716 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3717 if (vm_map_lock_upgrade(map)) 3718 goto Retry; 3719 3720 stack_entry->avail_ssize = max_grow; 3721 3722 vm_map_unlock(map); 3723 return (KERN_NO_SPACE); 3724 } 3725 3726 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr && 3727 addr < (vm_offset_t)p->p_sysent->sv_usrstack) ? 1 : 0; 3728 3729 /* 3730 * If this is the main process stack, see if we're over the stack 3731 * limit. 3732 */ 3733 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3734 vm_map_unlock_read(map); 3735 return (KERN_NO_SPACE); 3736 } 3737 #ifdef RACCT 3738 if (racct_enable) { 3739 PROC_LOCK(p); 3740 if (is_procstack && racct_set(p, RACCT_STACK, 3741 ctob(vm->vm_ssize) + grow_amount)) { 3742 PROC_UNLOCK(p); 3743 vm_map_unlock_read(map); 3744 return (KERN_NO_SPACE); 3745 } 3746 PROC_UNLOCK(p); 3747 } 3748 #endif 3749 3750 /* Round up the grow amount modulo sgrowsiz */ 3751 growsize = sgrowsiz; 3752 grow_amount = roundup(grow_amount, growsize); 3753 if (grow_amount > stack_entry->avail_ssize) 3754 grow_amount = stack_entry->avail_ssize; 3755 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3756 grow_amount = trunc_page((vm_size_t)stacklim) - 3757 ctob(vm->vm_ssize); 3758 } 3759 #ifdef notyet 3760 PROC_LOCK(p); 3761 limit = racct_get_available(p, RACCT_STACK); 3762 PROC_UNLOCK(p); 3763 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3764 grow_amount = limit - ctob(vm->vm_ssize); 3765 #endif 3766 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3767 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3768 vm_map_unlock_read(map); 3769 rv = KERN_NO_SPACE; 3770 goto out; 3771 } 3772 #ifdef RACCT 3773 if (racct_enable) { 3774 PROC_LOCK(p); 3775 if (racct_set(p, RACCT_MEMLOCK, 3776 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3777 PROC_UNLOCK(p); 3778 vm_map_unlock_read(map); 3779 rv = KERN_NO_SPACE; 3780 goto out; 3781 } 3782 PROC_UNLOCK(p); 3783 } 3784 #endif 3785 } 3786 /* If we would blow our VMEM resource limit, no go */ 3787 if (map->size + grow_amount > vmemlim) { 3788 vm_map_unlock_read(map); 3789 rv = KERN_NO_SPACE; 3790 goto out; 3791 } 3792 #ifdef RACCT 3793 if (racct_enable) { 3794 PROC_LOCK(p); 3795 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3796 PROC_UNLOCK(p); 3797 vm_map_unlock_read(map); 3798 rv = KERN_NO_SPACE; 3799 goto out; 3800 } 3801 PROC_UNLOCK(p); 3802 } 3803 #endif 3804 3805 if (vm_map_lock_upgrade(map)) 3806 goto Retry; 3807 3808 if (stack_entry == next_entry) { 3809 /* 3810 * Growing downward. 3811 */ 3812 /* Get the preliminary new entry start value */ 3813 addr = stack_entry->start - grow_amount; 3814 3815 /* 3816 * If this puts us into the previous entry, cut back our 3817 * growth to the available space. Also, see the note above. 3818 */ 3819 if (addr < end) { 3820 stack_entry->avail_ssize = max_grow; 3821 addr = end; 3822 if (stack_guard_page) 3823 addr += PAGE_SIZE; 3824 } 3825 3826 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3827 next_entry->protection, next_entry->max_protection, 3828 MAP_STACK_GROWS_DOWN); 3829 3830 /* Adjust the available stack space by the amount we grew. */ 3831 if (rv == KERN_SUCCESS) { 3832 new_entry = prev_entry->next; 3833 KASSERT(new_entry == stack_entry->prev, ("foo")); 3834 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3835 KASSERT(new_entry->start == addr, ("foo")); 3836 KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 3837 0, ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 3838 grow_amount = new_entry->end - new_entry->start; 3839 new_entry->avail_ssize = stack_entry->avail_ssize - 3840 grow_amount; 3841 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3842 } 3843 } else { 3844 /* 3845 * Growing upward. 3846 */ 3847 addr = stack_entry->end + grow_amount; 3848 3849 /* 3850 * If this puts us into the next entry, cut back our growth 3851 * to the available space. Also, see the note above. 3852 */ 3853 if (addr > end) { 3854 stack_entry->avail_ssize = end - stack_entry->end; 3855 addr = end; 3856 if (stack_guard_page) 3857 addr -= PAGE_SIZE; 3858 } 3859 3860 grow_amount = addr - stack_entry->end; 3861 cred = stack_entry->cred; 3862 if (cred == NULL && stack_entry->object.vm_object != NULL) 3863 cred = stack_entry->object.vm_object->cred; 3864 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3865 rv = KERN_NO_SPACE; 3866 /* Grow the underlying object if applicable. */ 3867 else if (stack_entry->object.vm_object == NULL || 3868 vm_object_coalesce(stack_entry->object.vm_object, 3869 stack_entry->offset, 3870 (vm_size_t)(stack_entry->end - stack_entry->start), 3871 (vm_size_t)grow_amount, cred != NULL)) { 3872 map->size += (addr - stack_entry->end); 3873 /* Update the current entry. */ 3874 stack_entry->end = addr; 3875 stack_entry->avail_ssize -= grow_amount; 3876 vm_map_entry_resize_free(map, stack_entry); 3877 rv = KERN_SUCCESS; 3878 } else 3879 rv = KERN_FAILURE; 3880 } 3881 3882 if (rv == KERN_SUCCESS && is_procstack) 3883 vm->vm_ssize += btoc(grow_amount); 3884 3885 vm_map_unlock(map); 3886 3887 /* 3888 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3889 */ 3890 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3891 vm_map_wire(map, 3892 (stack_entry == next_entry) ? addr : addr - grow_amount, 3893 (stack_entry == next_entry) ? stack_entry->start : addr, 3894 (p->p_flag & P_SYSTEM) 3895 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3896 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3897 } 3898 3899 out: 3900 #ifdef RACCT 3901 if (racct_enable && rv != KERN_SUCCESS) { 3902 PROC_LOCK(p); 3903 error = racct_set(p, RACCT_VMEM, map->size); 3904 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3905 if (!old_mlock) { 3906 error = racct_set(p, RACCT_MEMLOCK, 3907 ptoa(pmap_wired_count(map->pmap))); 3908 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3909 } 3910 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3911 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3912 PROC_UNLOCK(p); 3913 } 3914 #endif 3915 3916 return (rv); 3917 } 3918 3919 /* 3920 * Unshare the specified VM space for exec. If other processes are 3921 * mapped to it, then create a new one. The new vmspace is null. 3922 */ 3923 int 3924 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3925 { 3926 struct vmspace *oldvmspace = p->p_vmspace; 3927 struct vmspace *newvmspace; 3928 3929 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 3930 ("vmspace_exec recursed")); 3931 newvmspace = vmspace_alloc(minuser, maxuser, NULL); 3932 if (newvmspace == NULL) 3933 return (ENOMEM); 3934 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3935 /* 3936 * This code is written like this for prototype purposes. The 3937 * goal is to avoid running down the vmspace here, but let the 3938 * other process's that are still using the vmspace to finally 3939 * run it down. Even though there is little or no chance of blocking 3940 * here, it is a good idea to keep this form for future mods. 3941 */ 3942 PROC_VMSPACE_LOCK(p); 3943 p->p_vmspace = newvmspace; 3944 PROC_VMSPACE_UNLOCK(p); 3945 if (p == curthread->td_proc) 3946 pmap_activate(curthread); 3947 curthread->td_pflags |= TDP_EXECVMSPC; 3948 return (0); 3949 } 3950 3951 /* 3952 * Unshare the specified VM space for forcing COW. This 3953 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3954 */ 3955 int 3956 vmspace_unshare(struct proc *p) 3957 { 3958 struct vmspace *oldvmspace = p->p_vmspace; 3959 struct vmspace *newvmspace; 3960 vm_ooffset_t fork_charge; 3961 3962 if (oldvmspace->vm_refcnt == 1) 3963 return (0); 3964 fork_charge = 0; 3965 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3966 if (newvmspace == NULL) 3967 return (ENOMEM); 3968 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3969 vmspace_free(newvmspace); 3970 return (ENOMEM); 3971 } 3972 PROC_VMSPACE_LOCK(p); 3973 p->p_vmspace = newvmspace; 3974 PROC_VMSPACE_UNLOCK(p); 3975 if (p == curthread->td_proc) 3976 pmap_activate(curthread); 3977 vmspace_free(oldvmspace); 3978 return (0); 3979 } 3980 3981 /* 3982 * vm_map_lookup: 3983 * 3984 * Finds the VM object, offset, and 3985 * protection for a given virtual address in the 3986 * specified map, assuming a page fault of the 3987 * type specified. 3988 * 3989 * Leaves the map in question locked for read; return 3990 * values are guaranteed until a vm_map_lookup_done 3991 * call is performed. Note that the map argument 3992 * is in/out; the returned map must be used in 3993 * the call to vm_map_lookup_done. 3994 * 3995 * A handle (out_entry) is returned for use in 3996 * vm_map_lookup_done, to make that fast. 3997 * 3998 * If a lookup is requested with "write protection" 3999 * specified, the map may be changed to perform virtual 4000 * copying operations, although the data referenced will 4001 * remain the same. 4002 */ 4003 int 4004 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4005 vm_offset_t vaddr, 4006 vm_prot_t fault_typea, 4007 vm_map_entry_t *out_entry, /* OUT */ 4008 vm_object_t *object, /* OUT */ 4009 vm_pindex_t *pindex, /* OUT */ 4010 vm_prot_t *out_prot, /* OUT */ 4011 boolean_t *wired) /* OUT */ 4012 { 4013 vm_map_entry_t entry; 4014 vm_map_t map = *var_map; 4015 vm_prot_t prot; 4016 vm_prot_t fault_type = fault_typea; 4017 vm_object_t eobject; 4018 vm_size_t size; 4019 struct ucred *cred; 4020 4021 RetryLookup:; 4022 4023 vm_map_lock_read(map); 4024 4025 /* 4026 * Lookup the faulting address. 4027 */ 4028 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4029 vm_map_unlock_read(map); 4030 return (KERN_INVALID_ADDRESS); 4031 } 4032 4033 entry = *out_entry; 4034 4035 /* 4036 * Handle submaps. 4037 */ 4038 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4039 vm_map_t old_map = map; 4040 4041 *var_map = map = entry->object.sub_map; 4042 vm_map_unlock_read(old_map); 4043 goto RetryLookup; 4044 } 4045 4046 /* 4047 * Check whether this task is allowed to have this page. 4048 */ 4049 prot = entry->protection; 4050 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 4051 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4052 vm_map_unlock_read(map); 4053 return (KERN_PROTECTION_FAILURE); 4054 } 4055 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4056 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4057 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4058 ("entry %p flags %x", entry, entry->eflags)); 4059 if ((fault_typea & VM_PROT_COPY) != 0 && 4060 (entry->max_protection & VM_PROT_WRITE) == 0 && 4061 (entry->eflags & MAP_ENTRY_COW) == 0) { 4062 vm_map_unlock_read(map); 4063 return (KERN_PROTECTION_FAILURE); 4064 } 4065 4066 /* 4067 * If this page is not pageable, we have to get it for all possible 4068 * accesses. 4069 */ 4070 *wired = (entry->wired_count != 0); 4071 if (*wired) 4072 fault_type = entry->protection; 4073 size = entry->end - entry->start; 4074 /* 4075 * If the entry was copy-on-write, we either ... 4076 */ 4077 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4078 /* 4079 * If we want to write the page, we may as well handle that 4080 * now since we've got the map locked. 4081 * 4082 * If we don't need to write the page, we just demote the 4083 * permissions allowed. 4084 */ 4085 if ((fault_type & VM_PROT_WRITE) != 0 || 4086 (fault_typea & VM_PROT_COPY) != 0) { 4087 /* 4088 * Make a new object, and place it in the object 4089 * chain. Note that no new references have appeared 4090 * -- one just moved from the map to the new 4091 * object. 4092 */ 4093 if (vm_map_lock_upgrade(map)) 4094 goto RetryLookup; 4095 4096 if (entry->cred == NULL) { 4097 /* 4098 * The debugger owner is charged for 4099 * the memory. 4100 */ 4101 cred = curthread->td_ucred; 4102 crhold(cred); 4103 if (!swap_reserve_by_cred(size, cred)) { 4104 crfree(cred); 4105 vm_map_unlock(map); 4106 return (KERN_RESOURCE_SHORTAGE); 4107 } 4108 entry->cred = cred; 4109 } 4110 vm_object_shadow(&entry->object.vm_object, 4111 &entry->offset, size); 4112 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4113 eobject = entry->object.vm_object; 4114 if (eobject->cred != NULL) { 4115 /* 4116 * The object was not shadowed. 4117 */ 4118 swap_release_by_cred(size, entry->cred); 4119 crfree(entry->cred); 4120 entry->cred = NULL; 4121 } else if (entry->cred != NULL) { 4122 VM_OBJECT_WLOCK(eobject); 4123 eobject->cred = entry->cred; 4124 eobject->charge = size; 4125 VM_OBJECT_WUNLOCK(eobject); 4126 entry->cred = NULL; 4127 } 4128 4129 vm_map_lock_downgrade(map); 4130 } else { 4131 /* 4132 * We're attempting to read a copy-on-write page -- 4133 * don't allow writes. 4134 */ 4135 prot &= ~VM_PROT_WRITE; 4136 } 4137 } 4138 4139 /* 4140 * Create an object if necessary. 4141 */ 4142 if (entry->object.vm_object == NULL && 4143 !map->system_map) { 4144 if (vm_map_lock_upgrade(map)) 4145 goto RetryLookup; 4146 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4147 atop(size)); 4148 entry->offset = 0; 4149 if (entry->cred != NULL) { 4150 VM_OBJECT_WLOCK(entry->object.vm_object); 4151 entry->object.vm_object->cred = entry->cred; 4152 entry->object.vm_object->charge = size; 4153 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4154 entry->cred = NULL; 4155 } 4156 vm_map_lock_downgrade(map); 4157 } 4158 4159 /* 4160 * Return the object/offset from this entry. If the entry was 4161 * copy-on-write or empty, it has been fixed up. 4162 */ 4163 *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset); 4164 *object = entry->object.vm_object; 4165 4166 *out_prot = prot; 4167 return (KERN_SUCCESS); 4168 } 4169 4170 /* 4171 * vm_map_lookup_locked: 4172 * 4173 * Lookup the faulting address. A version of vm_map_lookup that returns 4174 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4175 */ 4176 int 4177 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4178 vm_offset_t vaddr, 4179 vm_prot_t fault_typea, 4180 vm_map_entry_t *out_entry, /* OUT */ 4181 vm_object_t *object, /* OUT */ 4182 vm_pindex_t *pindex, /* OUT */ 4183 vm_prot_t *out_prot, /* OUT */ 4184 boolean_t *wired) /* OUT */ 4185 { 4186 vm_map_entry_t entry; 4187 vm_map_t map = *var_map; 4188 vm_prot_t prot; 4189 vm_prot_t fault_type = fault_typea; 4190 4191 /* 4192 * Lookup the faulting address. 4193 */ 4194 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4195 return (KERN_INVALID_ADDRESS); 4196 4197 entry = *out_entry; 4198 4199 /* 4200 * Fail if the entry refers to a submap. 4201 */ 4202 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4203 return (KERN_FAILURE); 4204 4205 /* 4206 * Check whether this task is allowed to have this page. 4207 */ 4208 prot = entry->protection; 4209 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4210 if ((fault_type & prot) != fault_type) 4211 return (KERN_PROTECTION_FAILURE); 4212 4213 /* 4214 * If this page is not pageable, we have to get it for all possible 4215 * accesses. 4216 */ 4217 *wired = (entry->wired_count != 0); 4218 if (*wired) 4219 fault_type = entry->protection; 4220 4221 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4222 /* 4223 * Fail if the entry was copy-on-write for a write fault. 4224 */ 4225 if (fault_type & VM_PROT_WRITE) 4226 return (KERN_FAILURE); 4227 /* 4228 * We're attempting to read a copy-on-write page -- 4229 * don't allow writes. 4230 */ 4231 prot &= ~VM_PROT_WRITE; 4232 } 4233 4234 /* 4235 * Fail if an object should be created. 4236 */ 4237 if (entry->object.vm_object == NULL && !map->system_map) 4238 return (KERN_FAILURE); 4239 4240 /* 4241 * Return the object/offset from this entry. If the entry was 4242 * copy-on-write or empty, it has been fixed up. 4243 */ 4244 *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset); 4245 *object = entry->object.vm_object; 4246 4247 *out_prot = prot; 4248 return (KERN_SUCCESS); 4249 } 4250 4251 /* 4252 * vm_map_lookup_done: 4253 * 4254 * Releases locks acquired by a vm_map_lookup 4255 * (according to the handle returned by that lookup). 4256 */ 4257 void 4258 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4259 { 4260 /* 4261 * Unlock the main-level map 4262 */ 4263 vm_map_unlock_read(map); 4264 } 4265 4266 #include "opt_ddb.h" 4267 #ifdef DDB 4268 #include <sys/kernel.h> 4269 4270 #include <ddb/ddb.h> 4271 4272 static void 4273 vm_map_print(vm_map_t map) 4274 { 4275 vm_map_entry_t entry; 4276 4277 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4278 (void *)map, 4279 (void *)map->pmap, map->nentries, map->timestamp); 4280 4281 db_indent += 2; 4282 for (entry = map->header.next; entry != &map->header; 4283 entry = entry->next) { 4284 db_iprintf("map entry %p: start=%p, end=%p\n", 4285 (void *)entry, (void *)entry->start, (void *)entry->end); 4286 { 4287 static char *inheritance_name[4] = 4288 {"share", "copy", "none", "donate_copy"}; 4289 4290 db_iprintf(" prot=%x/%x/%s", 4291 entry->protection, 4292 entry->max_protection, 4293 inheritance_name[(int)(unsigned char)entry->inheritance]); 4294 if (entry->wired_count != 0) 4295 db_printf(", wired"); 4296 } 4297 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4298 db_printf(", share=%p, offset=0x%jx\n", 4299 (void *)entry->object.sub_map, 4300 (uintmax_t)entry->offset); 4301 if ((entry->prev == &map->header) || 4302 (entry->prev->object.sub_map != 4303 entry->object.sub_map)) { 4304 db_indent += 2; 4305 vm_map_print((vm_map_t)entry->object.sub_map); 4306 db_indent -= 2; 4307 } 4308 } else { 4309 if (entry->cred != NULL) 4310 db_printf(", ruid %d", entry->cred->cr_ruid); 4311 db_printf(", object=%p, offset=0x%jx", 4312 (void *)entry->object.vm_object, 4313 (uintmax_t)entry->offset); 4314 if (entry->object.vm_object && entry->object.vm_object->cred) 4315 db_printf(", obj ruid %d charge %jx", 4316 entry->object.vm_object->cred->cr_ruid, 4317 (uintmax_t)entry->object.vm_object->charge); 4318 if (entry->eflags & MAP_ENTRY_COW) 4319 db_printf(", copy (%s)", 4320 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4321 db_printf("\n"); 4322 4323 if ((entry->prev == &map->header) || 4324 (entry->prev->object.vm_object != 4325 entry->object.vm_object)) { 4326 db_indent += 2; 4327 vm_object_print((db_expr_t)(intptr_t) 4328 entry->object.vm_object, 4329 0, 0, (char *)0); 4330 db_indent -= 2; 4331 } 4332 } 4333 } 4334 db_indent -= 2; 4335 } 4336 4337 DB_SHOW_COMMAND(map, map) 4338 { 4339 4340 if (!have_addr) { 4341 db_printf("usage: show map <addr>\n"); 4342 return; 4343 } 4344 vm_map_print((vm_map_t)addr); 4345 } 4346 4347 DB_SHOW_COMMAND(procvm, procvm) 4348 { 4349 struct proc *p; 4350 4351 if (have_addr) { 4352 p = db_lookup_proc(addr); 4353 } else { 4354 p = curproc; 4355 } 4356 4357 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4358 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4359 (void *)vmspace_pmap(p->p_vmspace)); 4360 4361 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4362 } 4363 4364 #endif /* DDB */ 4365