1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 65 /* 66 * Virtual memory mapping module. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/ktr.h> 75 #include <sys/lock.h> 76 #include <sys/mutex.h> 77 #include <sys/proc.h> 78 #include <sys/vmmeter.h> 79 #include <sys/mman.h> 80 #include <sys/vnode.h> 81 #include <sys/resourcevar.h> 82 #include <sys/sysent.h> 83 #include <sys/shm.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_kern.h> 93 #include <vm/vm_extern.h> 94 #include <vm/swap_pager.h> 95 #include <vm/uma.h> 96 97 /* 98 * Virtual memory maps provide for the mapping, protection, 99 * and sharing of virtual memory objects. In addition, 100 * this module provides for an efficient virtual copy of 101 * memory from one map to another. 102 * 103 * Synchronization is required prior to most operations. 104 * 105 * Maps consist of an ordered doubly-linked list of simple 106 * entries; a single hint is used to speed up lookups. 107 * 108 * Since portions of maps are specified by start/end addresses, 109 * which may not align with existing map entries, all 110 * routines merely "clip" entries to these start/end values. 111 * [That is, an entry is split into two, bordering at a 112 * start or end value.] Note that these clippings may not 113 * always be necessary (as the two resulting entries are then 114 * not changed); however, the clipping is done for convenience. 115 * 116 * As mentioned above, virtual copy operations are performed 117 * by copying VM object references from one map to 118 * another, and then marking both regions as copy-on-write. 119 */ 120 121 /* 122 * vm_map_startup: 123 * 124 * Initialize the vm_map module. Must be called before 125 * any other vm_map routines. 126 * 127 * Map and entry structures are allocated from the general 128 * purpose memory pool with some exceptions: 129 * 130 * - The kernel map and kmem submap are allocated statically. 131 * - Kernel map entries are allocated out of a static pool. 132 * 133 * These restrictions are necessary since malloc() uses the 134 * maps and requires map entries. 135 */ 136 137 static struct mtx map_sleep_mtx; 138 static uma_zone_t mapentzone; 139 static uma_zone_t kmapentzone; 140 static uma_zone_t mapzone; 141 static uma_zone_t vmspace_zone; 142 static struct vm_object kmapentobj; 143 static void vmspace_zinit(void *mem, int size); 144 static void vmspace_zfini(void *mem, int size); 145 static void vm_map_zinit(void *mem, int size); 146 static void vm_map_zfini(void *mem, int size); 147 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max); 148 149 #ifdef INVARIANTS 150 static void vm_map_zdtor(void *mem, int size, void *arg); 151 static void vmspace_zdtor(void *mem, int size, void *arg); 152 #endif 153 154 void 155 vm_map_startup(void) 156 { 157 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 158 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 159 #ifdef INVARIANTS 160 vm_map_zdtor, 161 #else 162 NULL, 163 #endif 164 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 165 uma_prealloc(mapzone, MAX_KMAP); 166 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 167 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 168 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 169 uma_prealloc(kmapentzone, MAX_KMAPENT); 170 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 171 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 172 uma_prealloc(mapentzone, MAX_MAPENT); 173 } 174 175 static void 176 vmspace_zfini(void *mem, int size) 177 { 178 struct vmspace *vm; 179 180 vm = (struct vmspace *)mem; 181 182 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 183 } 184 185 static void 186 vmspace_zinit(void *mem, int size) 187 { 188 struct vmspace *vm; 189 190 vm = (struct vmspace *)mem; 191 192 vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map)); 193 } 194 195 static void 196 vm_map_zfini(void *mem, int size) 197 { 198 vm_map_t map; 199 200 map = (vm_map_t)mem; 201 mtx_destroy(&map->system_mtx); 202 lockdestroy(&map->lock); 203 } 204 205 static void 206 vm_map_zinit(void *mem, int size) 207 { 208 vm_map_t map; 209 210 map = (vm_map_t)mem; 211 map->nentries = 0; 212 map->size = 0; 213 map->infork = 0; 214 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 215 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); 216 } 217 218 #ifdef INVARIANTS 219 static void 220 vmspace_zdtor(void *mem, int size, void *arg) 221 { 222 struct vmspace *vm; 223 224 vm = (struct vmspace *)mem; 225 226 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 227 } 228 static void 229 vm_map_zdtor(void *mem, int size, void *arg) 230 { 231 vm_map_t map; 232 233 map = (vm_map_t)mem; 234 KASSERT(map->nentries == 0, 235 ("map %p nentries == %d on free.", 236 map, map->nentries)); 237 KASSERT(map->size == 0, 238 ("map %p size == %lu on free.", 239 map, (unsigned long)map->size)); 240 KASSERT(map->infork == 0, 241 ("map %p infork == %d on free.", 242 map, map->infork)); 243 } 244 #endif /* INVARIANTS */ 245 246 /* 247 * Allocate a vmspace structure, including a vm_map and pmap, 248 * and initialize those structures. The refcnt is set to 1. 249 * The remaining fields must be initialized by the caller. 250 */ 251 struct vmspace * 252 vmspace_alloc(min, max) 253 vm_offset_t min, max; 254 { 255 struct vmspace *vm; 256 257 GIANT_REQUIRED; 258 vm = uma_zalloc(vmspace_zone, M_WAITOK); 259 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 260 _vm_map_init(&vm->vm_map, min, max); 261 pmap_pinit(vmspace_pmap(vm)); 262 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 263 vm->vm_refcnt = 1; 264 vm->vm_shm = NULL; 265 vm->vm_exitingcnt = 0; 266 return (vm); 267 } 268 269 void 270 vm_init2(void) 271 { 272 uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count, 273 (VM_MAX_KERNEL_ADDRESS - KERNBASE) / PAGE_SIZE) / 8); 274 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 275 #ifdef INVARIANTS 276 vmspace_zdtor, 277 #else 278 NULL, 279 #endif 280 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 281 pmap_init2(); 282 } 283 284 static __inline void 285 vmspace_dofree(struct vmspace *vm) 286 { 287 CTR1(KTR_VM, "vmspace_free: %p", vm); 288 289 /* 290 * Make sure any SysV shm is freed, it might not have been in 291 * exit1(). 292 */ 293 shmexit(vm); 294 295 /* 296 * Lock the map, to wait out all other references to it. 297 * Delete all of the mappings and pages they hold, then call 298 * the pmap module to reclaim anything left. 299 */ 300 vm_map_lock(&vm->vm_map); 301 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 302 vm->vm_map.max_offset); 303 vm_map_unlock(&vm->vm_map); 304 305 pmap_release(vmspace_pmap(vm)); 306 uma_zfree(vmspace_zone, vm); 307 } 308 309 void 310 vmspace_free(struct vmspace *vm) 311 { 312 GIANT_REQUIRED; 313 314 if (vm->vm_refcnt == 0) 315 panic("vmspace_free: attempt to free already freed vmspace"); 316 317 if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0) 318 vmspace_dofree(vm); 319 } 320 321 void 322 vmspace_exitfree(struct proc *p) 323 { 324 struct vmspace *vm; 325 326 GIANT_REQUIRED; 327 vm = p->p_vmspace; 328 p->p_vmspace = NULL; 329 330 /* 331 * cleanup by parent process wait()ing on exiting child. vm_refcnt 332 * may not be 0 (e.g. fork() and child exits without exec()ing). 333 * exitingcnt may increment above 0 and drop back down to zero 334 * several times while vm_refcnt is held non-zero. vm_refcnt 335 * may also increment above 0 and drop back down to zero several 336 * times while vm_exitingcnt is held non-zero. 337 * 338 * The last wait on the exiting child's vmspace will clean up 339 * the remainder of the vmspace. 340 */ 341 if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0) 342 vmspace_dofree(vm); 343 } 344 345 void 346 _vm_map_lock(vm_map_t map, const char *file, int line) 347 { 348 int error; 349 350 if (map->system_map) 351 _mtx_lock_flags(&map->system_mtx, 0, file, line); 352 else { 353 error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread); 354 KASSERT(error == 0, ("%s: failed to get lock", __func__)); 355 } 356 map->timestamp++; 357 } 358 359 void 360 _vm_map_unlock(vm_map_t map, const char *file, int line) 361 { 362 363 if (map->system_map) 364 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 365 else 366 lockmgr(&map->lock, LK_RELEASE, NULL, curthread); 367 } 368 369 void 370 _vm_map_lock_read(vm_map_t map, const char *file, int line) 371 { 372 int error; 373 374 if (map->system_map) 375 _mtx_lock_flags(&map->system_mtx, 0, file, line); 376 else { 377 error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread); 378 KASSERT(error == 0, ("%s: failed to get lock", __func__)); 379 } 380 } 381 382 void 383 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 384 { 385 386 if (map->system_map) 387 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 388 else 389 lockmgr(&map->lock, LK_RELEASE, NULL, curthread); 390 } 391 392 int 393 _vm_map_trylock(vm_map_t map, const char *file, int line) 394 { 395 int error; 396 397 error = map->system_map ? 398 !_mtx_trylock(&map->system_mtx, 0, file, line) : 399 lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread); 400 if (error == 0) 401 map->timestamp++; 402 return (error == 0); 403 } 404 405 int 406 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 407 { 408 int error; 409 410 error = map->system_map ? 411 !_mtx_trylock(&map->system_mtx, 0, file, line) : 412 lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread); 413 return (error == 0); 414 } 415 416 int 417 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 418 { 419 420 if (map->system_map) { 421 #ifdef INVARIANTS 422 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 423 #endif 424 } else 425 KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE, 426 ("%s: lock not held", __func__)); 427 map->timestamp++; 428 return (0); 429 } 430 431 void 432 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 433 { 434 435 if (map->system_map) { 436 #ifdef INVARIANTS 437 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 438 #endif 439 } else 440 KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE, 441 ("%s: lock not held", __func__)); 442 } 443 444 /* 445 * vm_map_unlock_and_wait: 446 */ 447 int 448 vm_map_unlock_and_wait(vm_map_t map, boolean_t user_wait) 449 { 450 451 mtx_lock(&map_sleep_mtx); 452 vm_map_unlock(map); 453 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 0)); 454 } 455 456 /* 457 * vm_map_wakeup: 458 */ 459 void 460 vm_map_wakeup(vm_map_t map) 461 { 462 463 /* 464 * Acquire and release map_sleep_mtx to prevent a wakeup() 465 * from being performed (and lost) between the vm_map_unlock() 466 * and the msleep() in vm_map_unlock_and_wait(). 467 */ 468 mtx_lock(&map_sleep_mtx); 469 mtx_unlock(&map_sleep_mtx); 470 wakeup(&map->root); 471 } 472 473 long 474 vmspace_resident_count(struct vmspace *vmspace) 475 { 476 return pmap_resident_count(vmspace_pmap(vmspace)); 477 } 478 479 /* 480 * vm_map_create: 481 * 482 * Creates and returns a new empty VM map with 483 * the given physical map structure, and having 484 * the given lower and upper address bounds. 485 */ 486 vm_map_t 487 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 488 { 489 vm_map_t result; 490 491 result = uma_zalloc(mapzone, M_WAITOK); 492 CTR1(KTR_VM, "vm_map_create: %p", result); 493 _vm_map_init(result, min, max); 494 result->pmap = pmap; 495 return (result); 496 } 497 498 /* 499 * Initialize an existing vm_map structure 500 * such as that in the vmspace structure. 501 * The pmap is set elsewhere. 502 */ 503 static void 504 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max) 505 { 506 507 map->header.next = map->header.prev = &map->header; 508 map->needs_wakeup = FALSE; 509 map->system_map = 0; 510 map->min_offset = min; 511 map->max_offset = max; 512 map->first_free = &map->header; 513 map->root = NULL; 514 map->timestamp = 0; 515 } 516 517 void 518 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max) 519 { 520 _vm_map_init(map, min, max); 521 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 522 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); 523 } 524 525 /* 526 * vm_map_entry_dispose: [ internal use only ] 527 * 528 * Inverse of vm_map_entry_create. 529 */ 530 static void 531 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 532 { 533 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 534 } 535 536 /* 537 * vm_map_entry_create: [ internal use only ] 538 * 539 * Allocates a VM map entry for insertion. 540 * No entry fields are filled in. 541 */ 542 static vm_map_entry_t 543 vm_map_entry_create(vm_map_t map) 544 { 545 vm_map_entry_t new_entry; 546 547 if (map->system_map) 548 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 549 else 550 new_entry = uma_zalloc(mapentzone, M_WAITOK); 551 if (new_entry == NULL) 552 panic("vm_map_entry_create: kernel resources exhausted"); 553 return (new_entry); 554 } 555 556 /* 557 * vm_map_entry_set_behavior: 558 * 559 * Set the expected access behavior, either normal, random, or 560 * sequential. 561 */ 562 static __inline void 563 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 564 { 565 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 566 (behavior & MAP_ENTRY_BEHAV_MASK); 567 } 568 569 /* 570 * vm_map_entry_splay: 571 * 572 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 573 * the vm_map_entry containing the given address. If, however, that 574 * address is not found in the vm_map, returns a vm_map_entry that is 575 * adjacent to the address, coming before or after it. 576 */ 577 static vm_map_entry_t 578 vm_map_entry_splay(vm_offset_t address, vm_map_entry_t root) 579 { 580 struct vm_map_entry dummy; 581 vm_map_entry_t lefttreemax, righttreemin, y; 582 583 if (root == NULL) 584 return (root); 585 lefttreemax = righttreemin = &dummy; 586 for (;; root = y) { 587 if (address < root->start) { 588 if ((y = root->left) == NULL) 589 break; 590 if (address < y->start) { 591 /* Rotate right. */ 592 root->left = y->right; 593 y->right = root; 594 root = y; 595 if ((y = root->left) == NULL) 596 break; 597 } 598 /* Link into the new root's right tree. */ 599 righttreemin->left = root; 600 righttreemin = root; 601 } else if (address >= root->end) { 602 if ((y = root->right) == NULL) 603 break; 604 if (address >= y->end) { 605 /* Rotate left. */ 606 root->right = y->left; 607 y->left = root; 608 root = y; 609 if ((y = root->right) == NULL) 610 break; 611 } 612 /* Link into the new root's left tree. */ 613 lefttreemax->right = root; 614 lefttreemax = root; 615 } else 616 break; 617 } 618 /* Assemble the new root. */ 619 lefttreemax->right = root->left; 620 righttreemin->left = root->right; 621 root->left = dummy.right; 622 root->right = dummy.left; 623 return (root); 624 } 625 626 /* 627 * vm_map_entry_{un,}link: 628 * 629 * Insert/remove entries from maps. 630 */ 631 static void 632 vm_map_entry_link(vm_map_t map, 633 vm_map_entry_t after_where, 634 vm_map_entry_t entry) 635 { 636 637 CTR4(KTR_VM, 638 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 639 map->nentries, entry, after_where); 640 map->nentries++; 641 entry->prev = after_where; 642 entry->next = after_where->next; 643 entry->next->prev = entry; 644 after_where->next = entry; 645 646 if (after_where != &map->header) { 647 if (after_where != map->root) 648 vm_map_entry_splay(after_where->start, map->root); 649 entry->right = after_where->right; 650 entry->left = after_where; 651 after_where->right = NULL; 652 } else { 653 entry->right = map->root; 654 entry->left = NULL; 655 } 656 map->root = entry; 657 } 658 659 static void 660 vm_map_entry_unlink(vm_map_t map, 661 vm_map_entry_t entry) 662 { 663 vm_map_entry_t next, prev, root; 664 665 if (entry != map->root) 666 vm_map_entry_splay(entry->start, map->root); 667 if (entry->left == NULL) 668 root = entry->right; 669 else { 670 root = vm_map_entry_splay(entry->start, entry->left); 671 root->right = entry->right; 672 } 673 map->root = root; 674 675 prev = entry->prev; 676 next = entry->next; 677 next->prev = prev; 678 prev->next = next; 679 map->nentries--; 680 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 681 map->nentries, entry); 682 } 683 684 /* 685 * vm_map_lookup_entry: [ internal use only ] 686 * 687 * Finds the map entry containing (or 688 * immediately preceding) the specified address 689 * in the given map; the entry is returned 690 * in the "entry" parameter. The boolean 691 * result indicates whether the address is 692 * actually contained in the map. 693 */ 694 boolean_t 695 vm_map_lookup_entry( 696 vm_map_t map, 697 vm_offset_t address, 698 vm_map_entry_t *entry) /* OUT */ 699 { 700 vm_map_entry_t cur; 701 702 cur = vm_map_entry_splay(address, map->root); 703 if (cur == NULL) 704 *entry = &map->header; 705 else { 706 map->root = cur; 707 708 if (address >= cur->start) { 709 *entry = cur; 710 if (cur->end > address) 711 return (TRUE); 712 } else 713 *entry = cur->prev; 714 } 715 return (FALSE); 716 } 717 718 /* 719 * vm_map_insert: 720 * 721 * Inserts the given whole VM object into the target 722 * map at the specified address range. The object's 723 * size should match that of the address range. 724 * 725 * Requires that the map be locked, and leaves it so. 726 * 727 * If object is non-NULL, ref count must be bumped by caller 728 * prior to making call to account for the new entry. 729 */ 730 int 731 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 732 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 733 int cow) 734 { 735 vm_map_entry_t new_entry; 736 vm_map_entry_t prev_entry; 737 vm_map_entry_t temp_entry; 738 vm_eflags_t protoeflags; 739 740 /* 741 * Check that the start and end points are not bogus. 742 */ 743 if ((start < map->min_offset) || (end > map->max_offset) || 744 (start >= end)) 745 return (KERN_INVALID_ADDRESS); 746 747 /* 748 * Find the entry prior to the proposed starting address; if it's part 749 * of an existing entry, this range is bogus. 750 */ 751 if (vm_map_lookup_entry(map, start, &temp_entry)) 752 return (KERN_NO_SPACE); 753 754 prev_entry = temp_entry; 755 756 /* 757 * Assert that the next entry doesn't overlap the end point. 758 */ 759 if ((prev_entry->next != &map->header) && 760 (prev_entry->next->start < end)) 761 return (KERN_NO_SPACE); 762 763 protoeflags = 0; 764 765 if (cow & MAP_COPY_ON_WRITE) 766 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 767 768 if (cow & MAP_NOFAULT) { 769 protoeflags |= MAP_ENTRY_NOFAULT; 770 771 KASSERT(object == NULL, 772 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 773 } 774 if (cow & MAP_DISABLE_SYNCER) 775 protoeflags |= MAP_ENTRY_NOSYNC; 776 if (cow & MAP_DISABLE_COREDUMP) 777 protoeflags |= MAP_ENTRY_NOCOREDUMP; 778 779 if (object != NULL) { 780 /* 781 * OBJ_ONEMAPPING must be cleared unless this mapping 782 * is trivially proven to be the only mapping for any 783 * of the object's pages. (Object granularity 784 * reference counting is insufficient to recognize 785 * aliases with precision.) 786 */ 787 VM_OBJECT_LOCK(object); 788 if (object->ref_count > 1 || object->shadow_count != 0) 789 vm_object_clear_flag(object, OBJ_ONEMAPPING); 790 VM_OBJECT_UNLOCK(object); 791 } 792 else if ((prev_entry != &map->header) && 793 (prev_entry->eflags == protoeflags) && 794 (prev_entry->end == start) && 795 (prev_entry->wired_count == 0) && 796 ((prev_entry->object.vm_object == NULL) || 797 vm_object_coalesce(prev_entry->object.vm_object, 798 OFF_TO_IDX(prev_entry->offset), 799 (vm_size_t)(prev_entry->end - prev_entry->start), 800 (vm_size_t)(end - prev_entry->end)))) { 801 /* 802 * We were able to extend the object. Determine if we 803 * can extend the previous map entry to include the 804 * new range as well. 805 */ 806 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 807 (prev_entry->protection == prot) && 808 (prev_entry->max_protection == max)) { 809 map->size += (end - prev_entry->end); 810 prev_entry->end = end; 811 vm_map_simplify_entry(map, prev_entry); 812 return (KERN_SUCCESS); 813 } 814 815 /* 816 * If we can extend the object but cannot extend the 817 * map entry, we have to create a new map entry. We 818 * must bump the ref count on the extended object to 819 * account for it. object may be NULL. 820 */ 821 object = prev_entry->object.vm_object; 822 offset = prev_entry->offset + 823 (prev_entry->end - prev_entry->start); 824 vm_object_reference(object); 825 } 826 827 /* 828 * NOTE: if conditionals fail, object can be NULL here. This occurs 829 * in things like the buffer map where we manage kva but do not manage 830 * backing objects. 831 */ 832 833 /* 834 * Create a new entry 835 */ 836 new_entry = vm_map_entry_create(map); 837 new_entry->start = start; 838 new_entry->end = end; 839 840 new_entry->eflags = protoeflags; 841 new_entry->object.vm_object = object; 842 new_entry->offset = offset; 843 new_entry->avail_ssize = 0; 844 845 new_entry->inheritance = VM_INHERIT_DEFAULT; 846 new_entry->protection = prot; 847 new_entry->max_protection = max; 848 new_entry->wired_count = 0; 849 850 /* 851 * Insert the new entry into the list 852 */ 853 vm_map_entry_link(map, prev_entry, new_entry); 854 map->size += new_entry->end - new_entry->start; 855 856 /* 857 * Update the free space hint 858 */ 859 if ((map->first_free == prev_entry) && 860 (prev_entry->end >= new_entry->start)) { 861 map->first_free = new_entry; 862 } 863 864 #if 0 865 /* 866 * Temporarily removed to avoid MAP_STACK panic, due to 867 * MAP_STACK being a huge hack. Will be added back in 868 * when MAP_STACK (and the user stack mapping) is fixed. 869 */ 870 /* 871 * It may be possible to simplify the entry 872 */ 873 vm_map_simplify_entry(map, new_entry); 874 #endif 875 876 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 877 vm_map_pmap_enter(map, start, 878 object, OFF_TO_IDX(offset), end - start, 879 cow & MAP_PREFAULT_PARTIAL); 880 } 881 882 return (KERN_SUCCESS); 883 } 884 885 /* 886 * Find sufficient space for `length' bytes in the given map, starting at 887 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 888 */ 889 int 890 vm_map_findspace( 891 vm_map_t map, 892 vm_offset_t start, 893 vm_size_t length, 894 vm_offset_t *addr) 895 { 896 vm_map_entry_t entry, next; 897 vm_offset_t end; 898 899 if (start < map->min_offset) 900 start = map->min_offset; 901 if (start > map->max_offset) 902 return (1); 903 904 /* 905 * Look for the first possible address; if there's already something 906 * at this address, we have to start after it. 907 */ 908 if (start == map->min_offset) { 909 if ((entry = map->first_free) != &map->header) 910 start = entry->end; 911 } else { 912 vm_map_entry_t tmp; 913 914 if (vm_map_lookup_entry(map, start, &tmp)) 915 start = tmp->end; 916 entry = tmp; 917 } 918 919 /* 920 * Look through the rest of the map, trying to fit a new region in the 921 * gap between existing regions, or after the very last region. 922 */ 923 for (;; start = (entry = next)->end) { 924 /* 925 * Find the end of the proposed new region. Be sure we didn't 926 * go beyond the end of the map, or wrap around the address; 927 * if so, we lose. Otherwise, if this is the last entry, or 928 * if the proposed new region fits before the next entry, we 929 * win. 930 */ 931 end = start + length; 932 if (end > map->max_offset || end < start) 933 return (1); 934 next = entry->next; 935 if (next == &map->header || next->start >= end) 936 break; 937 } 938 *addr = start; 939 if (map == kernel_map) { 940 vm_offset_t ksize; 941 if ((ksize = round_page(start + length)) > kernel_vm_end) { 942 pmap_growkernel(ksize); 943 } 944 } 945 return (0); 946 } 947 948 /* 949 * vm_map_find finds an unallocated region in the target address 950 * map with the given length. The search is defined to be 951 * first-fit from the specified address; the region found is 952 * returned in the same parameter. 953 * 954 * If object is non-NULL, ref count must be bumped by caller 955 * prior to making call to account for the new entry. 956 */ 957 int 958 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 959 vm_offset_t *addr, /* IN/OUT */ 960 vm_size_t length, boolean_t find_space, vm_prot_t prot, 961 vm_prot_t max, int cow) 962 { 963 vm_offset_t start; 964 int result, s = 0; 965 966 start = *addr; 967 968 if (map == kmem_map) 969 s = splvm(); 970 971 vm_map_lock(map); 972 if (find_space) { 973 if (vm_map_findspace(map, start, length, addr)) { 974 vm_map_unlock(map); 975 if (map == kmem_map) 976 splx(s); 977 return (KERN_NO_SPACE); 978 } 979 start = *addr; 980 } 981 result = vm_map_insert(map, object, offset, 982 start, start + length, prot, max, cow); 983 vm_map_unlock(map); 984 985 if (map == kmem_map) 986 splx(s); 987 988 return (result); 989 } 990 991 /* 992 * vm_map_simplify_entry: 993 * 994 * Simplify the given map entry by merging with either neighbor. This 995 * routine also has the ability to merge with both neighbors. 996 * 997 * The map must be locked. 998 * 999 * This routine guarentees that the passed entry remains valid (though 1000 * possibly extended). When merging, this routine may delete one or 1001 * both neighbors. 1002 */ 1003 void 1004 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1005 { 1006 vm_map_entry_t next, prev; 1007 vm_size_t prevsize, esize; 1008 1009 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1010 return; 1011 1012 prev = entry->prev; 1013 if (prev != &map->header) { 1014 prevsize = prev->end - prev->start; 1015 if ( (prev->end == entry->start) && 1016 (prev->object.vm_object == entry->object.vm_object) && 1017 (!prev->object.vm_object || 1018 (prev->offset + prevsize == entry->offset)) && 1019 (prev->eflags == entry->eflags) && 1020 (prev->protection == entry->protection) && 1021 (prev->max_protection == entry->max_protection) && 1022 (prev->inheritance == entry->inheritance) && 1023 (prev->wired_count == entry->wired_count)) { 1024 if (map->first_free == prev) 1025 map->first_free = entry; 1026 vm_map_entry_unlink(map, prev); 1027 entry->start = prev->start; 1028 entry->offset = prev->offset; 1029 if (prev->object.vm_object) 1030 vm_object_deallocate(prev->object.vm_object); 1031 vm_map_entry_dispose(map, prev); 1032 } 1033 } 1034 1035 next = entry->next; 1036 if (next != &map->header) { 1037 esize = entry->end - entry->start; 1038 if ((entry->end == next->start) && 1039 (next->object.vm_object == entry->object.vm_object) && 1040 (!entry->object.vm_object || 1041 (entry->offset + esize == next->offset)) && 1042 (next->eflags == entry->eflags) && 1043 (next->protection == entry->protection) && 1044 (next->max_protection == entry->max_protection) && 1045 (next->inheritance == entry->inheritance) && 1046 (next->wired_count == entry->wired_count)) { 1047 if (map->first_free == next) 1048 map->first_free = entry; 1049 vm_map_entry_unlink(map, next); 1050 entry->end = next->end; 1051 if (next->object.vm_object) 1052 vm_object_deallocate(next->object.vm_object); 1053 vm_map_entry_dispose(map, next); 1054 } 1055 } 1056 } 1057 /* 1058 * vm_map_clip_start: [ internal use only ] 1059 * 1060 * Asserts that the given entry begins at or after 1061 * the specified address; if necessary, 1062 * it splits the entry into two. 1063 */ 1064 #define vm_map_clip_start(map, entry, startaddr) \ 1065 { \ 1066 if (startaddr > entry->start) \ 1067 _vm_map_clip_start(map, entry, startaddr); \ 1068 } 1069 1070 /* 1071 * This routine is called only when it is known that 1072 * the entry must be split. 1073 */ 1074 static void 1075 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1076 { 1077 vm_map_entry_t new_entry; 1078 1079 /* 1080 * Split off the front portion -- note that we must insert the new 1081 * entry BEFORE this one, so that this entry has the specified 1082 * starting address. 1083 */ 1084 vm_map_simplify_entry(map, entry); 1085 1086 /* 1087 * If there is no object backing this entry, we might as well create 1088 * one now. If we defer it, an object can get created after the map 1089 * is clipped, and individual objects will be created for the split-up 1090 * map. This is a bit of a hack, but is also about the best place to 1091 * put this improvement. 1092 */ 1093 if (entry->object.vm_object == NULL && !map->system_map) { 1094 vm_object_t object; 1095 object = vm_object_allocate(OBJT_DEFAULT, 1096 atop(entry->end - entry->start)); 1097 entry->object.vm_object = object; 1098 entry->offset = 0; 1099 } 1100 1101 new_entry = vm_map_entry_create(map); 1102 *new_entry = *entry; 1103 1104 new_entry->end = start; 1105 entry->offset += (start - entry->start); 1106 entry->start = start; 1107 1108 vm_map_entry_link(map, entry->prev, new_entry); 1109 1110 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1111 vm_object_reference(new_entry->object.vm_object); 1112 } 1113 } 1114 1115 /* 1116 * vm_map_clip_end: [ internal use only ] 1117 * 1118 * Asserts that the given entry ends at or before 1119 * the specified address; if necessary, 1120 * it splits the entry into two. 1121 */ 1122 #define vm_map_clip_end(map, entry, endaddr) \ 1123 { \ 1124 if ((endaddr) < (entry->end)) \ 1125 _vm_map_clip_end((map), (entry), (endaddr)); \ 1126 } 1127 1128 /* 1129 * This routine is called only when it is known that 1130 * the entry must be split. 1131 */ 1132 static void 1133 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1134 { 1135 vm_map_entry_t new_entry; 1136 1137 /* 1138 * If there is no object backing this entry, we might as well create 1139 * one now. If we defer it, an object can get created after the map 1140 * is clipped, and individual objects will be created for the split-up 1141 * map. This is a bit of a hack, but is also about the best place to 1142 * put this improvement. 1143 */ 1144 if (entry->object.vm_object == NULL && !map->system_map) { 1145 vm_object_t object; 1146 object = vm_object_allocate(OBJT_DEFAULT, 1147 atop(entry->end - entry->start)); 1148 entry->object.vm_object = object; 1149 entry->offset = 0; 1150 } 1151 1152 /* 1153 * Create a new entry and insert it AFTER the specified entry 1154 */ 1155 new_entry = vm_map_entry_create(map); 1156 *new_entry = *entry; 1157 1158 new_entry->start = entry->end = end; 1159 new_entry->offset += (end - entry->start); 1160 1161 vm_map_entry_link(map, entry, new_entry); 1162 1163 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1164 vm_object_reference(new_entry->object.vm_object); 1165 } 1166 } 1167 1168 /* 1169 * VM_MAP_RANGE_CHECK: [ internal use only ] 1170 * 1171 * Asserts that the starting and ending region 1172 * addresses fall within the valid range of the map. 1173 */ 1174 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1175 { \ 1176 if (start < vm_map_min(map)) \ 1177 start = vm_map_min(map); \ 1178 if (end > vm_map_max(map)) \ 1179 end = vm_map_max(map); \ 1180 if (start > end) \ 1181 start = end; \ 1182 } 1183 1184 /* 1185 * vm_map_submap: [ kernel use only ] 1186 * 1187 * Mark the given range as handled by a subordinate map. 1188 * 1189 * This range must have been created with vm_map_find, 1190 * and no other operations may have been performed on this 1191 * range prior to calling vm_map_submap. 1192 * 1193 * Only a limited number of operations can be performed 1194 * within this rage after calling vm_map_submap: 1195 * vm_fault 1196 * [Don't try vm_map_copy!] 1197 * 1198 * To remove a submapping, one must first remove the 1199 * range from the superior map, and then destroy the 1200 * submap (if desired). [Better yet, don't try it.] 1201 */ 1202 int 1203 vm_map_submap( 1204 vm_map_t map, 1205 vm_offset_t start, 1206 vm_offset_t end, 1207 vm_map_t submap) 1208 { 1209 vm_map_entry_t entry; 1210 int result = KERN_INVALID_ARGUMENT; 1211 1212 vm_map_lock(map); 1213 1214 VM_MAP_RANGE_CHECK(map, start, end); 1215 1216 if (vm_map_lookup_entry(map, start, &entry)) { 1217 vm_map_clip_start(map, entry, start); 1218 } else 1219 entry = entry->next; 1220 1221 vm_map_clip_end(map, entry, end); 1222 1223 if ((entry->start == start) && (entry->end == end) && 1224 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1225 (entry->object.vm_object == NULL)) { 1226 entry->object.sub_map = submap; 1227 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1228 result = KERN_SUCCESS; 1229 } 1230 vm_map_unlock(map); 1231 1232 return (result); 1233 } 1234 1235 /* 1236 * The maximum number of pages to map 1237 */ 1238 #define MAX_INIT_PT 96 1239 1240 /* 1241 * vm_map_pmap_enter: 1242 * 1243 * Preload the mappings for the given object into the specified 1244 * map. This eliminates the soft faults on process startup and 1245 * immediately after an mmap(2). 1246 */ 1247 void 1248 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, 1249 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1250 { 1251 vm_offset_t tmpidx; 1252 int psize; 1253 vm_page_t p, mpte; 1254 1255 if (object == NULL) 1256 return; 1257 mtx_lock(&Giant); 1258 VM_OBJECT_LOCK(object); 1259 if (object->type == OBJT_DEVICE) { 1260 pmap_object_init_pt(map->pmap, addr, object, pindex, size); 1261 goto unlock_return; 1262 } 1263 1264 psize = atop(size); 1265 1266 if (object->type != OBJT_VNODE || 1267 ((flags & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) && 1268 (object->resident_page_count > MAX_INIT_PT))) { 1269 goto unlock_return; 1270 } 1271 1272 if (psize + pindex > object->size) { 1273 if (object->size < pindex) 1274 goto unlock_return; 1275 psize = object->size - pindex; 1276 } 1277 1278 mpte = NULL; 1279 1280 if ((p = TAILQ_FIRST(&object->memq)) != NULL) { 1281 if (p->pindex < pindex) { 1282 p = vm_page_splay(pindex, object->root); 1283 if ((object->root = p)->pindex < pindex) 1284 p = TAILQ_NEXT(p, listq); 1285 } 1286 } 1287 /* 1288 * Assert: the variable p is either (1) the page with the 1289 * least pindex greater than or equal to the parameter pindex 1290 * or (2) NULL. 1291 */ 1292 for (; 1293 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1294 p = TAILQ_NEXT(p, listq)) { 1295 /* 1296 * don't allow an madvise to blow away our really 1297 * free pages allocating pv entries. 1298 */ 1299 if ((flags & MAP_PREFAULT_MADVISE) && 1300 cnt.v_free_count < cnt.v_free_reserved) { 1301 break; 1302 } 1303 vm_page_lock_queues(); 1304 if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL && 1305 (p->busy == 0) && 1306 (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) { 1307 if ((p->queue - p->pc) == PQ_CACHE) 1308 vm_page_deactivate(p); 1309 vm_page_busy(p); 1310 vm_page_unlock_queues(); 1311 VM_OBJECT_UNLOCK(object); 1312 mpte = pmap_enter_quick(map->pmap, 1313 addr + ptoa(tmpidx), p, mpte); 1314 VM_OBJECT_LOCK(object); 1315 vm_page_lock_queues(); 1316 vm_page_wakeup(p); 1317 } 1318 vm_page_unlock_queues(); 1319 } 1320 unlock_return: 1321 VM_OBJECT_UNLOCK(object); 1322 mtx_unlock(&Giant); 1323 } 1324 1325 /* 1326 * vm_map_protect: 1327 * 1328 * Sets the protection of the specified address 1329 * region in the target map. If "set_max" is 1330 * specified, the maximum protection is to be set; 1331 * otherwise, only the current protection is affected. 1332 */ 1333 int 1334 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1335 vm_prot_t new_prot, boolean_t set_max) 1336 { 1337 vm_map_entry_t current; 1338 vm_map_entry_t entry; 1339 1340 vm_map_lock(map); 1341 1342 VM_MAP_RANGE_CHECK(map, start, end); 1343 1344 if (vm_map_lookup_entry(map, start, &entry)) { 1345 vm_map_clip_start(map, entry, start); 1346 } else { 1347 entry = entry->next; 1348 } 1349 1350 /* 1351 * Make a first pass to check for protection violations. 1352 */ 1353 current = entry; 1354 while ((current != &map->header) && (current->start < end)) { 1355 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1356 vm_map_unlock(map); 1357 return (KERN_INVALID_ARGUMENT); 1358 } 1359 if ((new_prot & current->max_protection) != new_prot) { 1360 vm_map_unlock(map); 1361 return (KERN_PROTECTION_FAILURE); 1362 } 1363 current = current->next; 1364 } 1365 1366 /* 1367 * Go back and fix up protections. [Note that clipping is not 1368 * necessary the second time.] 1369 */ 1370 current = entry; 1371 while ((current != &map->header) && (current->start < end)) { 1372 vm_prot_t old_prot; 1373 1374 vm_map_clip_end(map, current, end); 1375 1376 old_prot = current->protection; 1377 if (set_max) 1378 current->protection = 1379 (current->max_protection = new_prot) & 1380 old_prot; 1381 else 1382 current->protection = new_prot; 1383 1384 /* 1385 * Update physical map if necessary. Worry about copy-on-write 1386 * here -- CHECK THIS XXX 1387 */ 1388 if (current->protection != old_prot) { 1389 mtx_lock(&Giant); 1390 vm_page_lock_queues(); 1391 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1392 VM_PROT_ALL) 1393 pmap_protect(map->pmap, current->start, 1394 current->end, 1395 current->protection & MASK(current)); 1396 #undef MASK 1397 vm_page_unlock_queues(); 1398 mtx_unlock(&Giant); 1399 } 1400 vm_map_simplify_entry(map, current); 1401 current = current->next; 1402 } 1403 vm_map_unlock(map); 1404 return (KERN_SUCCESS); 1405 } 1406 1407 /* 1408 * vm_map_madvise: 1409 * 1410 * This routine traverses a processes map handling the madvise 1411 * system call. Advisories are classified as either those effecting 1412 * the vm_map_entry structure, or those effecting the underlying 1413 * objects. 1414 */ 1415 int 1416 vm_map_madvise( 1417 vm_map_t map, 1418 vm_offset_t start, 1419 vm_offset_t end, 1420 int behav) 1421 { 1422 vm_map_entry_t current, entry; 1423 int modify_map = 0; 1424 1425 /* 1426 * Some madvise calls directly modify the vm_map_entry, in which case 1427 * we need to use an exclusive lock on the map and we need to perform 1428 * various clipping operations. Otherwise we only need a read-lock 1429 * on the map. 1430 */ 1431 switch(behav) { 1432 case MADV_NORMAL: 1433 case MADV_SEQUENTIAL: 1434 case MADV_RANDOM: 1435 case MADV_NOSYNC: 1436 case MADV_AUTOSYNC: 1437 case MADV_NOCORE: 1438 case MADV_CORE: 1439 modify_map = 1; 1440 vm_map_lock(map); 1441 break; 1442 case MADV_WILLNEED: 1443 case MADV_DONTNEED: 1444 case MADV_FREE: 1445 vm_map_lock_read(map); 1446 break; 1447 default: 1448 return (KERN_INVALID_ARGUMENT); 1449 } 1450 1451 /* 1452 * Locate starting entry and clip if necessary. 1453 */ 1454 VM_MAP_RANGE_CHECK(map, start, end); 1455 1456 if (vm_map_lookup_entry(map, start, &entry)) { 1457 if (modify_map) 1458 vm_map_clip_start(map, entry, start); 1459 } else { 1460 entry = entry->next; 1461 } 1462 1463 if (modify_map) { 1464 /* 1465 * madvise behaviors that are implemented in the vm_map_entry. 1466 * 1467 * We clip the vm_map_entry so that behavioral changes are 1468 * limited to the specified address range. 1469 */ 1470 for (current = entry; 1471 (current != &map->header) && (current->start < end); 1472 current = current->next 1473 ) { 1474 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1475 continue; 1476 1477 vm_map_clip_end(map, current, end); 1478 1479 switch (behav) { 1480 case MADV_NORMAL: 1481 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1482 break; 1483 case MADV_SEQUENTIAL: 1484 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1485 break; 1486 case MADV_RANDOM: 1487 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1488 break; 1489 case MADV_NOSYNC: 1490 current->eflags |= MAP_ENTRY_NOSYNC; 1491 break; 1492 case MADV_AUTOSYNC: 1493 current->eflags &= ~MAP_ENTRY_NOSYNC; 1494 break; 1495 case MADV_NOCORE: 1496 current->eflags |= MAP_ENTRY_NOCOREDUMP; 1497 break; 1498 case MADV_CORE: 1499 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 1500 break; 1501 default: 1502 break; 1503 } 1504 vm_map_simplify_entry(map, current); 1505 } 1506 vm_map_unlock(map); 1507 } else { 1508 vm_pindex_t pindex; 1509 int count; 1510 1511 /* 1512 * madvise behaviors that are implemented in the underlying 1513 * vm_object. 1514 * 1515 * Since we don't clip the vm_map_entry, we have to clip 1516 * the vm_object pindex and count. 1517 */ 1518 for (current = entry; 1519 (current != &map->header) && (current->start < end); 1520 current = current->next 1521 ) { 1522 vm_offset_t useStart; 1523 1524 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1525 continue; 1526 1527 pindex = OFF_TO_IDX(current->offset); 1528 count = atop(current->end - current->start); 1529 useStart = current->start; 1530 1531 if (current->start < start) { 1532 pindex += atop(start - current->start); 1533 count -= atop(start - current->start); 1534 useStart = start; 1535 } 1536 if (current->end > end) 1537 count -= atop(current->end - end); 1538 1539 if (count <= 0) 1540 continue; 1541 1542 vm_object_madvise(current->object.vm_object, 1543 pindex, count, behav); 1544 if (behav == MADV_WILLNEED) { 1545 vm_map_pmap_enter(map, 1546 useStart, 1547 current->object.vm_object, 1548 pindex, 1549 (count << PAGE_SHIFT), 1550 MAP_PREFAULT_MADVISE 1551 ); 1552 } 1553 } 1554 vm_map_unlock_read(map); 1555 } 1556 return (0); 1557 } 1558 1559 1560 /* 1561 * vm_map_inherit: 1562 * 1563 * Sets the inheritance of the specified address 1564 * range in the target map. Inheritance 1565 * affects how the map will be shared with 1566 * child maps at the time of vm_map_fork. 1567 */ 1568 int 1569 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1570 vm_inherit_t new_inheritance) 1571 { 1572 vm_map_entry_t entry; 1573 vm_map_entry_t temp_entry; 1574 1575 switch (new_inheritance) { 1576 case VM_INHERIT_NONE: 1577 case VM_INHERIT_COPY: 1578 case VM_INHERIT_SHARE: 1579 break; 1580 default: 1581 return (KERN_INVALID_ARGUMENT); 1582 } 1583 vm_map_lock(map); 1584 VM_MAP_RANGE_CHECK(map, start, end); 1585 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1586 entry = temp_entry; 1587 vm_map_clip_start(map, entry, start); 1588 } else 1589 entry = temp_entry->next; 1590 while ((entry != &map->header) && (entry->start < end)) { 1591 vm_map_clip_end(map, entry, end); 1592 entry->inheritance = new_inheritance; 1593 vm_map_simplify_entry(map, entry); 1594 entry = entry->next; 1595 } 1596 vm_map_unlock(map); 1597 return (KERN_SUCCESS); 1598 } 1599 1600 /* 1601 * vm_map_unwire: 1602 * 1603 * Implements both kernel and user unwiring. 1604 */ 1605 int 1606 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1607 boolean_t user_unwire) 1608 { 1609 vm_map_entry_t entry, first_entry, tmp_entry; 1610 vm_offset_t saved_start; 1611 unsigned int last_timestamp; 1612 int rv; 1613 boolean_t need_wakeup, result; 1614 1615 vm_map_lock(map); 1616 VM_MAP_RANGE_CHECK(map, start, end); 1617 if (!vm_map_lookup_entry(map, start, &first_entry)) { 1618 vm_map_unlock(map); 1619 return (KERN_INVALID_ADDRESS); 1620 } 1621 last_timestamp = map->timestamp; 1622 entry = first_entry; 1623 while (entry != &map->header && entry->start < end) { 1624 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1625 /* 1626 * We have not yet clipped the entry. 1627 */ 1628 saved_start = (start >= entry->start) ? start : 1629 entry->start; 1630 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1631 if (vm_map_unlock_and_wait(map, user_unwire)) { 1632 /* 1633 * Allow interruption of user unwiring? 1634 */ 1635 } 1636 vm_map_lock(map); 1637 if (last_timestamp+1 != map->timestamp) { 1638 /* 1639 * Look again for the entry because the map was 1640 * modified while it was unlocked. 1641 * Specifically, the entry may have been 1642 * clipped, merged, or deleted. 1643 */ 1644 if (!vm_map_lookup_entry(map, saved_start, 1645 &tmp_entry)) { 1646 if (saved_start == start) { 1647 /* 1648 * First_entry has been deleted. 1649 */ 1650 vm_map_unlock(map); 1651 return (KERN_INVALID_ADDRESS); 1652 } 1653 end = saved_start; 1654 rv = KERN_INVALID_ADDRESS; 1655 goto done; 1656 } 1657 if (entry == first_entry) 1658 first_entry = tmp_entry; 1659 else 1660 first_entry = NULL; 1661 entry = tmp_entry; 1662 } 1663 last_timestamp = map->timestamp; 1664 continue; 1665 } 1666 vm_map_clip_start(map, entry, start); 1667 vm_map_clip_end(map, entry, end); 1668 /* 1669 * Mark the entry in case the map lock is released. (See 1670 * above.) 1671 */ 1672 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1673 /* 1674 * Check the map for holes in the specified region. 1675 */ 1676 if (entry->end < end && (entry->next == &map->header || 1677 entry->next->start > entry->end)) { 1678 end = entry->end; 1679 rv = KERN_INVALID_ADDRESS; 1680 goto done; 1681 } 1682 /* 1683 * Require that the entry is wired. 1684 */ 1685 if (entry->wired_count == 0 || (user_unwire && 1686 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)) { 1687 end = entry->end; 1688 rv = KERN_INVALID_ARGUMENT; 1689 goto done; 1690 } 1691 entry = entry->next; 1692 } 1693 rv = KERN_SUCCESS; 1694 done: 1695 need_wakeup = FALSE; 1696 if (first_entry == NULL) { 1697 result = vm_map_lookup_entry(map, start, &first_entry); 1698 KASSERT(result, ("vm_map_unwire: lookup failed")); 1699 } 1700 entry = first_entry; 1701 while (entry != &map->header && entry->start < end) { 1702 if (rv == KERN_SUCCESS) { 1703 if (user_unwire) 1704 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1705 entry->wired_count--; 1706 if (entry->wired_count == 0) { 1707 /* 1708 * Retain the map lock. 1709 */ 1710 vm_fault_unwire(map, entry->start, entry->end); 1711 } 1712 } 1713 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1714 ("vm_map_unwire: in-transition flag missing")); 1715 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1716 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1717 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1718 need_wakeup = TRUE; 1719 } 1720 vm_map_simplify_entry(map, entry); 1721 entry = entry->next; 1722 } 1723 vm_map_unlock(map); 1724 if (need_wakeup) 1725 vm_map_wakeup(map); 1726 return (rv); 1727 } 1728 1729 /* 1730 * vm_map_wire: 1731 * 1732 * Implements both kernel and user wiring. 1733 */ 1734 int 1735 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1736 boolean_t user_wire) 1737 { 1738 vm_map_entry_t entry, first_entry, tmp_entry; 1739 vm_offset_t saved_end, saved_start; 1740 unsigned int last_timestamp; 1741 int rv; 1742 boolean_t need_wakeup, result; 1743 1744 vm_map_lock(map); 1745 VM_MAP_RANGE_CHECK(map, start, end); 1746 if (!vm_map_lookup_entry(map, start, &first_entry)) { 1747 vm_map_unlock(map); 1748 return (KERN_INVALID_ADDRESS); 1749 } 1750 last_timestamp = map->timestamp; 1751 entry = first_entry; 1752 while (entry != &map->header && entry->start < end) { 1753 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1754 /* 1755 * We have not yet clipped the entry. 1756 */ 1757 saved_start = (start >= entry->start) ? start : 1758 entry->start; 1759 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1760 if (vm_map_unlock_and_wait(map, user_wire)) { 1761 /* 1762 * Allow interruption of user wiring? 1763 */ 1764 } 1765 vm_map_lock(map); 1766 if (last_timestamp + 1 != map->timestamp) { 1767 /* 1768 * Look again for the entry because the map was 1769 * modified while it was unlocked. 1770 * Specifically, the entry may have been 1771 * clipped, merged, or deleted. 1772 */ 1773 if (!vm_map_lookup_entry(map, saved_start, 1774 &tmp_entry)) { 1775 if (saved_start == start) { 1776 /* 1777 * first_entry has been deleted. 1778 */ 1779 vm_map_unlock(map); 1780 return (KERN_INVALID_ADDRESS); 1781 } 1782 end = saved_start; 1783 rv = KERN_INVALID_ADDRESS; 1784 goto done; 1785 } 1786 if (entry == first_entry) 1787 first_entry = tmp_entry; 1788 else 1789 first_entry = NULL; 1790 entry = tmp_entry; 1791 } 1792 last_timestamp = map->timestamp; 1793 continue; 1794 } 1795 vm_map_clip_start(map, entry, start); 1796 vm_map_clip_end(map, entry, end); 1797 /* 1798 * Mark the entry in case the map lock is released. (See 1799 * above.) 1800 */ 1801 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1802 /* 1803 * 1804 */ 1805 if (entry->wired_count == 0) { 1806 entry->wired_count++; 1807 saved_start = entry->start; 1808 saved_end = entry->end; 1809 /* 1810 * Release the map lock, relying on the in-transition 1811 * mark. 1812 */ 1813 vm_map_unlock(map); 1814 rv = vm_fault_wire(map, saved_start, saved_end, 1815 user_wire); 1816 vm_map_lock(map); 1817 if (last_timestamp + 1 != map->timestamp) { 1818 /* 1819 * Look again for the entry because the map was 1820 * modified while it was unlocked. The entry 1821 * may have been clipped, but NOT merged or 1822 * deleted. 1823 */ 1824 result = vm_map_lookup_entry(map, saved_start, 1825 &tmp_entry); 1826 KASSERT(result, ("vm_map_wire: lookup failed")); 1827 if (entry == first_entry) 1828 first_entry = tmp_entry; 1829 else 1830 first_entry = NULL; 1831 entry = tmp_entry; 1832 while (entry->end < saved_end) { 1833 if (rv != KERN_SUCCESS) { 1834 KASSERT(entry->wired_count == 1, 1835 ("vm_map_wire: bad count")); 1836 entry->wired_count = -1; 1837 } 1838 entry = entry->next; 1839 } 1840 } 1841 last_timestamp = map->timestamp; 1842 if (rv != KERN_SUCCESS) { 1843 KASSERT(entry->wired_count == 1, 1844 ("vm_map_wire: bad count")); 1845 /* 1846 * Assign an out-of-range value to represent 1847 * the failure to wire this entry. 1848 */ 1849 entry->wired_count = -1; 1850 end = entry->end; 1851 goto done; 1852 } 1853 } else if (!user_wire || 1854 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 1855 entry->wired_count++; 1856 } 1857 /* 1858 * Check the map for holes in the specified region. 1859 */ 1860 if (entry->end < end && (entry->next == &map->header || 1861 entry->next->start > entry->end)) { 1862 end = entry->end; 1863 rv = KERN_INVALID_ADDRESS; 1864 goto done; 1865 } 1866 entry = entry->next; 1867 } 1868 rv = KERN_SUCCESS; 1869 done: 1870 need_wakeup = FALSE; 1871 if (first_entry == NULL) { 1872 result = vm_map_lookup_entry(map, start, &first_entry); 1873 KASSERT(result, ("vm_map_wire: lookup failed")); 1874 } 1875 entry = first_entry; 1876 while (entry != &map->header && entry->start < end) { 1877 if (rv == KERN_SUCCESS) { 1878 if (user_wire) 1879 entry->eflags |= MAP_ENTRY_USER_WIRED; 1880 } else if (entry->wired_count == -1) { 1881 /* 1882 * Wiring failed on this entry. Thus, unwiring is 1883 * unnecessary. 1884 */ 1885 entry->wired_count = 0; 1886 } else { 1887 if (!user_wire || 1888 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 1889 entry->wired_count--; 1890 if (entry->wired_count == 0) { 1891 /* 1892 * Retain the map lock. 1893 */ 1894 vm_fault_unwire(map, entry->start, entry->end); 1895 } 1896 } 1897 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1898 ("vm_map_wire: in-transition flag missing")); 1899 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1900 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1901 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1902 need_wakeup = TRUE; 1903 } 1904 vm_map_simplify_entry(map, entry); 1905 entry = entry->next; 1906 } 1907 vm_map_unlock(map); 1908 if (need_wakeup) 1909 vm_map_wakeup(map); 1910 return (rv); 1911 } 1912 1913 /* 1914 * vm_map_clean 1915 * 1916 * Push any dirty cached pages in the address range to their pager. 1917 * If syncio is TRUE, dirty pages are written synchronously. 1918 * If invalidate is TRUE, any cached pages are freed as well. 1919 * 1920 * Returns an error if any part of the specified range is not mapped. 1921 */ 1922 int 1923 vm_map_clean( 1924 vm_map_t map, 1925 vm_offset_t start, 1926 vm_offset_t end, 1927 boolean_t syncio, 1928 boolean_t invalidate) 1929 { 1930 vm_map_entry_t current; 1931 vm_map_entry_t entry; 1932 vm_size_t size; 1933 vm_object_t object; 1934 vm_ooffset_t offset; 1935 1936 GIANT_REQUIRED; 1937 1938 vm_map_lock_read(map); 1939 VM_MAP_RANGE_CHECK(map, start, end); 1940 if (!vm_map_lookup_entry(map, start, &entry)) { 1941 vm_map_unlock_read(map); 1942 return (KERN_INVALID_ADDRESS); 1943 } 1944 /* 1945 * Make a first pass to check for holes. 1946 */ 1947 for (current = entry; current->start < end; current = current->next) { 1948 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1949 vm_map_unlock_read(map); 1950 return (KERN_INVALID_ARGUMENT); 1951 } 1952 if (end > current->end && 1953 (current->next == &map->header || 1954 current->end != current->next->start)) { 1955 vm_map_unlock_read(map); 1956 return (KERN_INVALID_ADDRESS); 1957 } 1958 } 1959 1960 if (invalidate) { 1961 vm_page_lock_queues(); 1962 pmap_remove(map->pmap, start, end); 1963 vm_page_unlock_queues(); 1964 } 1965 /* 1966 * Make a second pass, cleaning/uncaching pages from the indicated 1967 * objects as we go. 1968 */ 1969 for (current = entry; current->start < end; current = current->next) { 1970 offset = current->offset + (start - current->start); 1971 size = (end <= current->end ? end : current->end) - start; 1972 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1973 vm_map_t smap; 1974 vm_map_entry_t tentry; 1975 vm_size_t tsize; 1976 1977 smap = current->object.sub_map; 1978 vm_map_lock_read(smap); 1979 (void) vm_map_lookup_entry(smap, offset, &tentry); 1980 tsize = tentry->end - offset; 1981 if (tsize < size) 1982 size = tsize; 1983 object = tentry->object.vm_object; 1984 offset = tentry->offset + (offset - tentry->start); 1985 vm_map_unlock_read(smap); 1986 } else { 1987 object = current->object.vm_object; 1988 } 1989 /* 1990 * Note that there is absolutely no sense in writing out 1991 * anonymous objects, so we track down the vnode object 1992 * to write out. 1993 * We invalidate (remove) all pages from the address space 1994 * anyway, for semantic correctness. 1995 * 1996 * note: certain anonymous maps, such as MAP_NOSYNC maps, 1997 * may start out with a NULL object. 1998 */ 1999 while (object && object->backing_object) { 2000 object = object->backing_object; 2001 offset += object->backing_object_offset; 2002 if (object->size < OFF_TO_IDX(offset + size)) 2003 size = IDX_TO_OFF(object->size) - offset; 2004 } 2005 if (object && (object->type == OBJT_VNODE) && 2006 (current->protection & VM_PROT_WRITE)) { 2007 /* 2008 * Flush pages if writing is allowed, invalidate them 2009 * if invalidation requested. Pages undergoing I/O 2010 * will be ignored by vm_object_page_remove(). 2011 * 2012 * We cannot lock the vnode and then wait for paging 2013 * to complete without deadlocking against vm_fault. 2014 * Instead we simply call vm_object_page_remove() and 2015 * allow it to block internally on a page-by-page 2016 * basis when it encounters pages undergoing async 2017 * I/O. 2018 */ 2019 int flags; 2020 2021 vm_object_reference(object); 2022 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread); 2023 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 2024 flags |= invalidate ? OBJPC_INVAL : 0; 2025 VM_OBJECT_LOCK(object); 2026 vm_object_page_clean(object, 2027 OFF_TO_IDX(offset), 2028 OFF_TO_IDX(offset + size + PAGE_MASK), 2029 flags); 2030 VM_OBJECT_UNLOCK(object); 2031 VOP_UNLOCK(object->handle, 0, curthread); 2032 vm_object_deallocate(object); 2033 } 2034 if (object && invalidate && 2035 ((object->type == OBJT_VNODE) || 2036 (object->type == OBJT_DEVICE))) { 2037 VM_OBJECT_LOCK(object); 2038 vm_object_page_remove(object, 2039 OFF_TO_IDX(offset), 2040 OFF_TO_IDX(offset + size + PAGE_MASK), 2041 FALSE); 2042 VM_OBJECT_UNLOCK(object); 2043 } 2044 start += size; 2045 } 2046 2047 vm_map_unlock_read(map); 2048 return (KERN_SUCCESS); 2049 } 2050 2051 /* 2052 * vm_map_entry_unwire: [ internal use only ] 2053 * 2054 * Make the region specified by this entry pageable. 2055 * 2056 * The map in question should be locked. 2057 * [This is the reason for this routine's existence.] 2058 */ 2059 static void 2060 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2061 { 2062 vm_fault_unwire(map, entry->start, entry->end); 2063 entry->wired_count = 0; 2064 } 2065 2066 /* 2067 * vm_map_entry_delete: [ internal use only ] 2068 * 2069 * Deallocate the given entry from the target map. 2070 */ 2071 static void 2072 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2073 { 2074 vm_map_entry_unlink(map, entry); 2075 map->size -= entry->end - entry->start; 2076 2077 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2078 vm_object_deallocate(entry->object.vm_object); 2079 } 2080 2081 vm_map_entry_dispose(map, entry); 2082 } 2083 2084 /* 2085 * vm_map_delete: [ internal use only ] 2086 * 2087 * Deallocates the given address range from the target 2088 * map. 2089 */ 2090 int 2091 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2092 { 2093 vm_object_t object; 2094 vm_map_entry_t entry; 2095 vm_map_entry_t first_entry; 2096 2097 /* 2098 * Find the start of the region, and clip it 2099 */ 2100 if (!vm_map_lookup_entry(map, start, &first_entry)) 2101 entry = first_entry->next; 2102 else { 2103 entry = first_entry; 2104 vm_map_clip_start(map, entry, start); 2105 } 2106 2107 /* 2108 * Save the free space hint 2109 */ 2110 if (entry == &map->header) { 2111 map->first_free = &map->header; 2112 } else if (map->first_free->start >= start) { 2113 map->first_free = entry->prev; 2114 } 2115 2116 /* 2117 * Step through all entries in this region 2118 */ 2119 while ((entry != &map->header) && (entry->start < end)) { 2120 vm_map_entry_t next; 2121 vm_offset_t s, e; 2122 vm_pindex_t offidxstart, offidxend, count; 2123 2124 /* 2125 * Wait for wiring or unwiring of an entry to complete. 2126 */ 2127 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) { 2128 unsigned int last_timestamp; 2129 vm_offset_t saved_start; 2130 vm_map_entry_t tmp_entry; 2131 2132 saved_start = entry->start; 2133 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2134 last_timestamp = map->timestamp; 2135 (void) vm_map_unlock_and_wait(map, FALSE); 2136 vm_map_lock(map); 2137 if (last_timestamp + 1 != map->timestamp) { 2138 /* 2139 * Look again for the entry because the map was 2140 * modified while it was unlocked. 2141 * Specifically, the entry may have been 2142 * clipped, merged, or deleted. 2143 */ 2144 if (!vm_map_lookup_entry(map, saved_start, 2145 &tmp_entry)) 2146 entry = tmp_entry->next; 2147 else { 2148 entry = tmp_entry; 2149 vm_map_clip_start(map, entry, 2150 saved_start); 2151 } 2152 } 2153 continue; 2154 } 2155 vm_map_clip_end(map, entry, end); 2156 2157 s = entry->start; 2158 e = entry->end; 2159 next = entry->next; 2160 2161 offidxstart = OFF_TO_IDX(entry->offset); 2162 count = OFF_TO_IDX(e - s); 2163 object = entry->object.vm_object; 2164 2165 /* 2166 * Unwire before removing addresses from the pmap; otherwise, 2167 * unwiring will put the entries back in the pmap. 2168 */ 2169 if (entry->wired_count != 0) { 2170 vm_map_entry_unwire(map, entry); 2171 } 2172 2173 offidxend = offidxstart + count; 2174 2175 if (object == kernel_object || object == kmem_object) { 2176 VM_OBJECT_LOCK(object); 2177 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2178 VM_OBJECT_UNLOCK(object); 2179 } else { 2180 mtx_lock(&Giant); 2181 vm_page_lock_queues(); 2182 pmap_remove(map->pmap, s, e); 2183 vm_page_unlock_queues(); 2184 if (object != NULL) { 2185 VM_OBJECT_LOCK(object); 2186 if (object->ref_count != 1 && 2187 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && 2188 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2189 vm_object_collapse(object); 2190 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2191 if (object->type == OBJT_SWAP) 2192 swap_pager_freespace(object, offidxstart, count); 2193 if (offidxend >= object->size && 2194 offidxstart < object->size) 2195 object->size = offidxstart; 2196 } 2197 VM_OBJECT_UNLOCK(object); 2198 } 2199 mtx_unlock(&Giant); 2200 } 2201 2202 /* 2203 * Delete the entry (which may delete the object) only after 2204 * removing all pmap entries pointing to its pages. 2205 * (Otherwise, its page frames may be reallocated, and any 2206 * modify bits will be set in the wrong object!) 2207 */ 2208 vm_map_entry_delete(map, entry); 2209 entry = next; 2210 } 2211 return (KERN_SUCCESS); 2212 } 2213 2214 /* 2215 * vm_map_remove: 2216 * 2217 * Remove the given address range from the target map. 2218 * This is the exported form of vm_map_delete. 2219 */ 2220 int 2221 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2222 { 2223 int result, s = 0; 2224 2225 if (map == kmem_map) 2226 s = splvm(); 2227 2228 vm_map_lock(map); 2229 VM_MAP_RANGE_CHECK(map, start, end); 2230 result = vm_map_delete(map, start, end); 2231 vm_map_unlock(map); 2232 2233 if (map == kmem_map) 2234 splx(s); 2235 2236 return (result); 2237 } 2238 2239 /* 2240 * vm_map_check_protection: 2241 * 2242 * Assert that the target map allows the specified privilege on the 2243 * entire address region given. The entire region must be allocated. 2244 * 2245 * WARNING! This code does not and should not check whether the 2246 * contents of the region is accessible. For example a smaller file 2247 * might be mapped into a larger address space. 2248 * 2249 * NOTE! This code is also called by munmap(). 2250 */ 2251 boolean_t 2252 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2253 vm_prot_t protection) 2254 { 2255 vm_map_entry_t entry; 2256 vm_map_entry_t tmp_entry; 2257 2258 vm_map_lock_read(map); 2259 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 2260 vm_map_unlock_read(map); 2261 return (FALSE); 2262 } 2263 entry = tmp_entry; 2264 2265 while (start < end) { 2266 if (entry == &map->header) { 2267 vm_map_unlock_read(map); 2268 return (FALSE); 2269 } 2270 /* 2271 * No holes allowed! 2272 */ 2273 if (start < entry->start) { 2274 vm_map_unlock_read(map); 2275 return (FALSE); 2276 } 2277 /* 2278 * Check protection associated with entry. 2279 */ 2280 if ((entry->protection & protection) != protection) { 2281 vm_map_unlock_read(map); 2282 return (FALSE); 2283 } 2284 /* go to next entry */ 2285 start = entry->end; 2286 entry = entry->next; 2287 } 2288 vm_map_unlock_read(map); 2289 return (TRUE); 2290 } 2291 2292 /* 2293 * vm_map_copy_entry: 2294 * 2295 * Copies the contents of the source entry to the destination 2296 * entry. The entries *must* be aligned properly. 2297 */ 2298 static void 2299 vm_map_copy_entry( 2300 vm_map_t src_map, 2301 vm_map_t dst_map, 2302 vm_map_entry_t src_entry, 2303 vm_map_entry_t dst_entry) 2304 { 2305 vm_object_t src_object; 2306 2307 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2308 return; 2309 2310 if (src_entry->wired_count == 0) { 2311 2312 /* 2313 * If the source entry is marked needs_copy, it is already 2314 * write-protected. 2315 */ 2316 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2317 vm_page_lock_queues(); 2318 pmap_protect(src_map->pmap, 2319 src_entry->start, 2320 src_entry->end, 2321 src_entry->protection & ~VM_PROT_WRITE); 2322 vm_page_unlock_queues(); 2323 } 2324 2325 /* 2326 * Make a copy of the object. 2327 */ 2328 if ((src_object = src_entry->object.vm_object) != NULL) { 2329 2330 if ((src_object->handle == NULL) && 2331 (src_object->type == OBJT_DEFAULT || 2332 src_object->type == OBJT_SWAP)) { 2333 VM_OBJECT_LOCK(src_object); 2334 vm_object_collapse(src_object); 2335 VM_OBJECT_UNLOCK(src_object); 2336 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2337 vm_object_split(src_entry); 2338 src_object = src_entry->object.vm_object; 2339 } 2340 } 2341 2342 vm_object_reference(src_object); 2343 VM_OBJECT_LOCK(src_object); 2344 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2345 VM_OBJECT_UNLOCK(src_object); 2346 dst_entry->object.vm_object = src_object; 2347 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2348 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2349 dst_entry->offset = src_entry->offset; 2350 } else { 2351 dst_entry->object.vm_object = NULL; 2352 dst_entry->offset = 0; 2353 } 2354 2355 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2356 dst_entry->end - dst_entry->start, src_entry->start); 2357 } else { 2358 /* 2359 * Of course, wired down pages can't be set copy-on-write. 2360 * Cause wired pages to be copied into the new map by 2361 * simulating faults (the new pages are pageable) 2362 */ 2363 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2364 } 2365 } 2366 2367 /* 2368 * vmspace_fork: 2369 * Create a new process vmspace structure and vm_map 2370 * based on those of an existing process. The new map 2371 * is based on the old map, according to the inheritance 2372 * values on the regions in that map. 2373 * 2374 * The source map must not be locked. 2375 */ 2376 struct vmspace * 2377 vmspace_fork(struct vmspace *vm1) 2378 { 2379 struct vmspace *vm2; 2380 vm_map_t old_map = &vm1->vm_map; 2381 vm_map_t new_map; 2382 vm_map_entry_t old_entry; 2383 vm_map_entry_t new_entry; 2384 vm_object_t object; 2385 2386 GIANT_REQUIRED; 2387 2388 vm_map_lock(old_map); 2389 old_map->infork = 1; 2390 2391 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2392 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2393 (caddr_t) &vm1->vm_endcopy - (caddr_t) &vm1->vm_startcopy); 2394 new_map = &vm2->vm_map; /* XXX */ 2395 new_map->timestamp = 1; 2396 2397 old_entry = old_map->header.next; 2398 2399 while (old_entry != &old_map->header) { 2400 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2401 panic("vm_map_fork: encountered a submap"); 2402 2403 switch (old_entry->inheritance) { 2404 case VM_INHERIT_NONE: 2405 break; 2406 2407 case VM_INHERIT_SHARE: 2408 /* 2409 * Clone the entry, creating the shared object if necessary. 2410 */ 2411 object = old_entry->object.vm_object; 2412 if (object == NULL) { 2413 object = vm_object_allocate(OBJT_DEFAULT, 2414 atop(old_entry->end - old_entry->start)); 2415 old_entry->object.vm_object = object; 2416 old_entry->offset = (vm_offset_t) 0; 2417 } 2418 2419 /* 2420 * Add the reference before calling vm_object_shadow 2421 * to insure that a shadow object is created. 2422 */ 2423 vm_object_reference(object); 2424 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2425 vm_object_shadow(&old_entry->object.vm_object, 2426 &old_entry->offset, 2427 atop(old_entry->end - old_entry->start)); 2428 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2429 /* Transfer the second reference too. */ 2430 vm_object_reference( 2431 old_entry->object.vm_object); 2432 vm_object_deallocate(object); 2433 object = old_entry->object.vm_object; 2434 } 2435 VM_OBJECT_LOCK(object); 2436 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2437 VM_OBJECT_UNLOCK(object); 2438 2439 /* 2440 * Clone the entry, referencing the shared object. 2441 */ 2442 new_entry = vm_map_entry_create(new_map); 2443 *new_entry = *old_entry; 2444 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2445 new_entry->wired_count = 0; 2446 2447 /* 2448 * Insert the entry into the new map -- we know we're 2449 * inserting at the end of the new map. 2450 */ 2451 vm_map_entry_link(new_map, new_map->header.prev, 2452 new_entry); 2453 2454 /* 2455 * Update the physical map 2456 */ 2457 pmap_copy(new_map->pmap, old_map->pmap, 2458 new_entry->start, 2459 (old_entry->end - old_entry->start), 2460 old_entry->start); 2461 break; 2462 2463 case VM_INHERIT_COPY: 2464 /* 2465 * Clone the entry and link into the map. 2466 */ 2467 new_entry = vm_map_entry_create(new_map); 2468 *new_entry = *old_entry; 2469 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2470 new_entry->wired_count = 0; 2471 new_entry->object.vm_object = NULL; 2472 vm_map_entry_link(new_map, new_map->header.prev, 2473 new_entry); 2474 vm_map_copy_entry(old_map, new_map, old_entry, 2475 new_entry); 2476 break; 2477 } 2478 old_entry = old_entry->next; 2479 } 2480 2481 new_map->size = old_map->size; 2482 old_map->infork = 0; 2483 vm_map_unlock(old_map); 2484 2485 return (vm2); 2486 } 2487 2488 int 2489 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 2490 vm_prot_t prot, vm_prot_t max, int cow) 2491 { 2492 vm_map_entry_t prev_entry; 2493 vm_map_entry_t new_stack_entry; 2494 vm_size_t init_ssize; 2495 int rv; 2496 2497 if (addrbos < vm_map_min(map)) 2498 return (KERN_NO_SPACE); 2499 if (addrbos > map->max_offset) 2500 return (KERN_NO_SPACE); 2501 if (max_ssize < sgrowsiz) 2502 init_ssize = max_ssize; 2503 else 2504 init_ssize = sgrowsiz; 2505 2506 vm_map_lock(map); 2507 2508 /* If addr is already mapped, no go */ 2509 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 2510 vm_map_unlock(map); 2511 return (KERN_NO_SPACE); 2512 } 2513 2514 /* If we would blow our VMEM resource limit, no go */ 2515 if (map->size + init_ssize > 2516 curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 2517 vm_map_unlock(map); 2518 return (KERN_NO_SPACE); 2519 } 2520 2521 /* If we can't accomodate max_ssize in the current mapping, 2522 * no go. However, we need to be aware that subsequent user 2523 * mappings might map into the space we have reserved for 2524 * stack, and currently this space is not protected. 2525 * 2526 * Hopefully we will at least detect this condition 2527 * when we try to grow the stack. 2528 */ 2529 if ((prev_entry->next != &map->header) && 2530 (prev_entry->next->start < addrbos + max_ssize)) { 2531 vm_map_unlock(map); 2532 return (KERN_NO_SPACE); 2533 } 2534 2535 /* We initially map a stack of only init_ssize. We will 2536 * grow as needed later. Since this is to be a grow 2537 * down stack, we map at the top of the range. 2538 * 2539 * Note: we would normally expect prot and max to be 2540 * VM_PROT_ALL, and cow to be 0. Possibly we should 2541 * eliminate these as input parameters, and just 2542 * pass these values here in the insert call. 2543 */ 2544 rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize, 2545 addrbos + max_ssize, prot, max, cow); 2546 2547 /* Now set the avail_ssize amount */ 2548 if (rv == KERN_SUCCESS){ 2549 if (prev_entry != &map->header) 2550 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize); 2551 new_stack_entry = prev_entry->next; 2552 if (new_stack_entry->end != addrbos + max_ssize || 2553 new_stack_entry->start != addrbos + max_ssize - init_ssize) 2554 panic ("Bad entry start/end for new stack entry"); 2555 else 2556 new_stack_entry->avail_ssize = max_ssize - init_ssize; 2557 } 2558 2559 vm_map_unlock(map); 2560 return (rv); 2561 } 2562 2563 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 2564 * desired address is already mapped, or if we successfully grow 2565 * the stack. Also returns KERN_SUCCESS if addr is outside the 2566 * stack range (this is strange, but preserves compatibility with 2567 * the grow function in vm_machdep.c). 2568 */ 2569 int 2570 vm_map_growstack (struct proc *p, vm_offset_t addr) 2571 { 2572 vm_map_entry_t prev_entry; 2573 vm_map_entry_t stack_entry; 2574 vm_map_entry_t new_stack_entry; 2575 struct vmspace *vm = p->p_vmspace; 2576 vm_map_t map = &vm->vm_map; 2577 vm_offset_t end; 2578 int grow_amount; 2579 int rv; 2580 int is_procstack; 2581 2582 GIANT_REQUIRED; 2583 2584 Retry: 2585 vm_map_lock_read(map); 2586 2587 /* If addr is already in the entry range, no need to grow.*/ 2588 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 2589 vm_map_unlock_read(map); 2590 return (KERN_SUCCESS); 2591 } 2592 2593 if ((stack_entry = prev_entry->next) == &map->header) { 2594 vm_map_unlock_read(map); 2595 return (KERN_SUCCESS); 2596 } 2597 if (prev_entry == &map->header) 2598 end = stack_entry->start - stack_entry->avail_ssize; 2599 else 2600 end = prev_entry->end; 2601 2602 /* This next test mimics the old grow function in vm_machdep.c. 2603 * It really doesn't quite make sense, but we do it anyway 2604 * for compatibility. 2605 * 2606 * If not growable stack, return success. This signals the 2607 * caller to proceed as he would normally with normal vm. 2608 */ 2609 if (stack_entry->avail_ssize < 1 || 2610 addr >= stack_entry->start || 2611 addr < stack_entry->start - stack_entry->avail_ssize) { 2612 vm_map_unlock_read(map); 2613 return (KERN_SUCCESS); 2614 } 2615 2616 /* Find the minimum grow amount */ 2617 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 2618 if (grow_amount > stack_entry->avail_ssize) { 2619 vm_map_unlock_read(map); 2620 return (KERN_NO_SPACE); 2621 } 2622 2623 /* If there is no longer enough space between the entries 2624 * nogo, and adjust the available space. Note: this 2625 * should only happen if the user has mapped into the 2626 * stack area after the stack was created, and is 2627 * probably an error. 2628 * 2629 * This also effectively destroys any guard page the user 2630 * might have intended by limiting the stack size. 2631 */ 2632 if (grow_amount > stack_entry->start - end) { 2633 if (vm_map_lock_upgrade(map)) 2634 goto Retry; 2635 2636 stack_entry->avail_ssize = stack_entry->start - end; 2637 2638 vm_map_unlock(map); 2639 return (KERN_NO_SPACE); 2640 } 2641 2642 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 2643 2644 /* If this is the main process stack, see if we're over the 2645 * stack limit. 2646 */ 2647 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2648 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2649 vm_map_unlock_read(map); 2650 return (KERN_NO_SPACE); 2651 } 2652 2653 /* Round up the grow amount modulo SGROWSIZ */ 2654 grow_amount = roundup (grow_amount, sgrowsiz); 2655 if (grow_amount > stack_entry->avail_ssize) { 2656 grow_amount = stack_entry->avail_ssize; 2657 } 2658 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2659 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2660 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 2661 ctob(vm->vm_ssize); 2662 } 2663 2664 /* If we would blow our VMEM resource limit, no go */ 2665 if (map->size + grow_amount > 2666 curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 2667 vm_map_unlock_read(map); 2668 return (KERN_NO_SPACE); 2669 } 2670 2671 if (vm_map_lock_upgrade(map)) 2672 goto Retry; 2673 2674 /* Get the preliminary new entry start value */ 2675 addr = stack_entry->start - grow_amount; 2676 2677 /* If this puts us into the previous entry, cut back our growth 2678 * to the available space. Also, see the note above. 2679 */ 2680 if (addr < end) { 2681 stack_entry->avail_ssize = stack_entry->start - end; 2682 addr = end; 2683 } 2684 2685 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 2686 p->p_sysent->sv_stackprot, VM_PROT_ALL, 0); 2687 2688 /* Adjust the available stack space by the amount we grew. */ 2689 if (rv == KERN_SUCCESS) { 2690 if (prev_entry != &map->header) 2691 vm_map_clip_end(map, prev_entry, addr); 2692 new_stack_entry = prev_entry->next; 2693 if (new_stack_entry->end != stack_entry->start || 2694 new_stack_entry->start != addr) 2695 panic ("Bad stack grow start/end in new stack entry"); 2696 else { 2697 new_stack_entry->avail_ssize = stack_entry->avail_ssize - 2698 (new_stack_entry->end - 2699 new_stack_entry->start); 2700 if (is_procstack) 2701 vm->vm_ssize += btoc(new_stack_entry->end - 2702 new_stack_entry->start); 2703 } 2704 } 2705 2706 vm_map_unlock(map); 2707 return (rv); 2708 } 2709 2710 /* 2711 * Unshare the specified VM space for exec. If other processes are 2712 * mapped to it, then create a new one. The new vmspace is null. 2713 */ 2714 void 2715 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 2716 { 2717 struct vmspace *oldvmspace = p->p_vmspace; 2718 struct vmspace *newvmspace; 2719 2720 GIANT_REQUIRED; 2721 newvmspace = vmspace_alloc(minuser, maxuser); 2722 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 2723 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy); 2724 /* 2725 * This code is written like this for prototype purposes. The 2726 * goal is to avoid running down the vmspace here, but let the 2727 * other process's that are still using the vmspace to finally 2728 * run it down. Even though there is little or no chance of blocking 2729 * here, it is a good idea to keep this form for future mods. 2730 */ 2731 p->p_vmspace = newvmspace; 2732 pmap_pinit2(vmspace_pmap(newvmspace)); 2733 vmspace_free(oldvmspace); 2734 if (p == curthread->td_proc) /* XXXKSE ? */ 2735 pmap_activate(curthread); 2736 } 2737 2738 /* 2739 * Unshare the specified VM space for forcing COW. This 2740 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 2741 */ 2742 void 2743 vmspace_unshare(struct proc *p) 2744 { 2745 struct vmspace *oldvmspace = p->p_vmspace; 2746 struct vmspace *newvmspace; 2747 2748 GIANT_REQUIRED; 2749 if (oldvmspace->vm_refcnt == 1) 2750 return; 2751 newvmspace = vmspace_fork(oldvmspace); 2752 p->p_vmspace = newvmspace; 2753 pmap_pinit2(vmspace_pmap(newvmspace)); 2754 vmspace_free(oldvmspace); 2755 if (p == curthread->td_proc) /* XXXKSE ? */ 2756 pmap_activate(curthread); 2757 } 2758 2759 /* 2760 * vm_map_lookup: 2761 * 2762 * Finds the VM object, offset, and 2763 * protection for a given virtual address in the 2764 * specified map, assuming a page fault of the 2765 * type specified. 2766 * 2767 * Leaves the map in question locked for read; return 2768 * values are guaranteed until a vm_map_lookup_done 2769 * call is performed. Note that the map argument 2770 * is in/out; the returned map must be used in 2771 * the call to vm_map_lookup_done. 2772 * 2773 * A handle (out_entry) is returned for use in 2774 * vm_map_lookup_done, to make that fast. 2775 * 2776 * If a lookup is requested with "write protection" 2777 * specified, the map may be changed to perform virtual 2778 * copying operations, although the data referenced will 2779 * remain the same. 2780 */ 2781 int 2782 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 2783 vm_offset_t vaddr, 2784 vm_prot_t fault_typea, 2785 vm_map_entry_t *out_entry, /* OUT */ 2786 vm_object_t *object, /* OUT */ 2787 vm_pindex_t *pindex, /* OUT */ 2788 vm_prot_t *out_prot, /* OUT */ 2789 boolean_t *wired) /* OUT */ 2790 { 2791 vm_map_entry_t entry; 2792 vm_map_t map = *var_map; 2793 vm_prot_t prot; 2794 vm_prot_t fault_type = fault_typea; 2795 2796 RetryLookup:; 2797 /* 2798 * Lookup the faulting address. 2799 */ 2800 2801 vm_map_lock_read(map); 2802 #define RETURN(why) \ 2803 { \ 2804 vm_map_unlock_read(map); \ 2805 return (why); \ 2806 } 2807 2808 /* 2809 * If the map has an interesting hint, try it before calling full 2810 * blown lookup routine. 2811 */ 2812 entry = map->root; 2813 *out_entry = entry; 2814 if (entry == NULL || 2815 (vaddr < entry->start) || (vaddr >= entry->end)) { 2816 /* 2817 * Entry was either not a valid hint, or the vaddr was not 2818 * contained in the entry, so do a full lookup. 2819 */ 2820 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 2821 RETURN(KERN_INVALID_ADDRESS); 2822 2823 entry = *out_entry; 2824 } 2825 2826 /* 2827 * Handle submaps. 2828 */ 2829 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2830 vm_map_t old_map = map; 2831 2832 *var_map = map = entry->object.sub_map; 2833 vm_map_unlock_read(old_map); 2834 goto RetryLookup; 2835 } 2836 2837 /* 2838 * Check whether this task is allowed to have this page. 2839 * Note the special case for MAP_ENTRY_COW 2840 * pages with an override. This is to implement a forced 2841 * COW for debuggers. 2842 */ 2843 if (fault_type & VM_PROT_OVERRIDE_WRITE) 2844 prot = entry->max_protection; 2845 else 2846 prot = entry->protection; 2847 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 2848 if ((fault_type & prot) != fault_type) { 2849 RETURN(KERN_PROTECTION_FAILURE); 2850 } 2851 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 2852 (entry->eflags & MAP_ENTRY_COW) && 2853 (fault_type & VM_PROT_WRITE) && 2854 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 2855 RETURN(KERN_PROTECTION_FAILURE); 2856 } 2857 2858 /* 2859 * If this page is not pageable, we have to get it for all possible 2860 * accesses. 2861 */ 2862 *wired = (entry->wired_count != 0); 2863 if (*wired) 2864 prot = fault_type = entry->protection; 2865 2866 /* 2867 * If the entry was copy-on-write, we either ... 2868 */ 2869 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2870 /* 2871 * If we want to write the page, we may as well handle that 2872 * now since we've got the map locked. 2873 * 2874 * If we don't need to write the page, we just demote the 2875 * permissions allowed. 2876 */ 2877 if (fault_type & VM_PROT_WRITE) { 2878 /* 2879 * Make a new object, and place it in the object 2880 * chain. Note that no new references have appeared 2881 * -- one just moved from the map to the new 2882 * object. 2883 */ 2884 if (vm_map_lock_upgrade(map)) 2885 goto RetryLookup; 2886 2887 vm_object_shadow( 2888 &entry->object.vm_object, 2889 &entry->offset, 2890 atop(entry->end - entry->start)); 2891 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2892 2893 vm_map_lock_downgrade(map); 2894 } else { 2895 /* 2896 * We're attempting to read a copy-on-write page -- 2897 * don't allow writes. 2898 */ 2899 prot &= ~VM_PROT_WRITE; 2900 } 2901 } 2902 2903 /* 2904 * Create an object if necessary. 2905 */ 2906 if (entry->object.vm_object == NULL && 2907 !map->system_map) { 2908 if (vm_map_lock_upgrade(map)) 2909 goto RetryLookup; 2910 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 2911 atop(entry->end - entry->start)); 2912 entry->offset = 0; 2913 vm_map_lock_downgrade(map); 2914 } 2915 2916 /* 2917 * Return the object/offset from this entry. If the entry was 2918 * copy-on-write or empty, it has been fixed up. 2919 */ 2920 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 2921 *object = entry->object.vm_object; 2922 2923 /* 2924 * Return whether this is the only map sharing this data. 2925 */ 2926 *out_prot = prot; 2927 return (KERN_SUCCESS); 2928 2929 #undef RETURN 2930 } 2931 2932 /* 2933 * vm_map_lookup_done: 2934 * 2935 * Releases locks acquired by a vm_map_lookup 2936 * (according to the handle returned by that lookup). 2937 */ 2938 void 2939 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 2940 { 2941 /* 2942 * Unlock the main-level map 2943 */ 2944 vm_map_unlock_read(map); 2945 } 2946 2947 #include "opt_ddb.h" 2948 #ifdef DDB 2949 #include <sys/kernel.h> 2950 2951 #include <ddb/ddb.h> 2952 2953 /* 2954 * vm_map_print: [ debug ] 2955 */ 2956 DB_SHOW_COMMAND(map, vm_map_print) 2957 { 2958 static int nlines; 2959 /* XXX convert args. */ 2960 vm_map_t map = (vm_map_t)addr; 2961 boolean_t full = have_addr; 2962 2963 vm_map_entry_t entry; 2964 2965 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 2966 (void *)map, 2967 (void *)map->pmap, map->nentries, map->timestamp); 2968 nlines++; 2969 2970 if (!full && db_indent) 2971 return; 2972 2973 db_indent += 2; 2974 for (entry = map->header.next; entry != &map->header; 2975 entry = entry->next) { 2976 db_iprintf("map entry %p: start=%p, end=%p\n", 2977 (void *)entry, (void *)entry->start, (void *)entry->end); 2978 nlines++; 2979 { 2980 static char *inheritance_name[4] = 2981 {"share", "copy", "none", "donate_copy"}; 2982 2983 db_iprintf(" prot=%x/%x/%s", 2984 entry->protection, 2985 entry->max_protection, 2986 inheritance_name[(int)(unsigned char)entry->inheritance]); 2987 if (entry->wired_count != 0) 2988 db_printf(", wired"); 2989 } 2990 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2991 db_printf(", share=%p, offset=0x%jx\n", 2992 (void *)entry->object.sub_map, 2993 (uintmax_t)entry->offset); 2994 nlines++; 2995 if ((entry->prev == &map->header) || 2996 (entry->prev->object.sub_map != 2997 entry->object.sub_map)) { 2998 db_indent += 2; 2999 vm_map_print((db_expr_t)(intptr_t) 3000 entry->object.sub_map, 3001 full, 0, (char *)0); 3002 db_indent -= 2; 3003 } 3004 } else { 3005 db_printf(", object=%p, offset=0x%jx", 3006 (void *)entry->object.vm_object, 3007 (uintmax_t)entry->offset); 3008 if (entry->eflags & MAP_ENTRY_COW) 3009 db_printf(", copy (%s)", 3010 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3011 db_printf("\n"); 3012 nlines++; 3013 3014 if ((entry->prev == &map->header) || 3015 (entry->prev->object.vm_object != 3016 entry->object.vm_object)) { 3017 db_indent += 2; 3018 vm_object_print((db_expr_t)(intptr_t) 3019 entry->object.vm_object, 3020 full, 0, (char *)0); 3021 nlines += 4; 3022 db_indent -= 2; 3023 } 3024 } 3025 } 3026 db_indent -= 2; 3027 if (db_indent == 0) 3028 nlines = 0; 3029 } 3030 3031 3032 DB_SHOW_COMMAND(procvm, procvm) 3033 { 3034 struct proc *p; 3035 3036 if (have_addr) { 3037 p = (struct proc *) addr; 3038 } else { 3039 p = curproc; 3040 } 3041 3042 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3043 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3044 (void *)vmspace_pmap(p->p_vmspace)); 3045 3046 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3047 } 3048 3049 #endif /* DDB */ 3050