1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Virtual memory mapping module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/resourcevar.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vm_kern.h> 90 #include <vm/vm_extern.h> 91 #include <vm/swap_pager.h> 92 #include <vm/uma.h> 93 94 /* 95 * Virtual memory maps provide for the mapping, protection, 96 * and sharing of virtual memory objects. In addition, 97 * this module provides for an efficient virtual copy of 98 * memory from one map to another. 99 * 100 * Synchronization is required prior to most operations. 101 * 102 * Maps consist of an ordered doubly-linked list of simple 103 * entries; a single hint is used to speed up lookups. 104 * 105 * Since portions of maps are specified by start/end addresses, 106 * which may not align with existing map entries, all 107 * routines merely "clip" entries to these start/end values. 108 * [That is, an entry is split into two, bordering at a 109 * start or end value.] Note that these clippings may not 110 * always be necessary (as the two resulting entries are then 111 * not changed); however, the clipping is done for convenience. 112 * 113 * As mentioned above, virtual copy operations are performed 114 * by copying VM object references from one map to 115 * another, and then marking both regions as copy-on-write. 116 */ 117 118 /* 119 * vm_map_startup: 120 * 121 * Initialize the vm_map module. Must be called before 122 * any other vm_map routines. 123 * 124 * Map and entry structures are allocated from the general 125 * purpose memory pool with some exceptions: 126 * 127 * - The kernel map and kmem submap are allocated statically. 128 * - Kernel map entries are allocated out of a static pool. 129 * 130 * These restrictions are necessary since malloc() uses the 131 * maps and requires map entries. 132 */ 133 134 static uma_zone_t mapentzone; 135 static uma_zone_t kmapentzone; 136 static uma_zone_t mapzone; 137 static uma_zone_t vmspace_zone; 138 static struct vm_object kmapentobj; 139 static void vmspace_zinit(void *mem, int size); 140 static void vmspace_zfini(void *mem, int size); 141 static void vm_map_zinit(void *mem, int size); 142 static void vm_map_zfini(void *mem, int size); 143 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max); 144 145 #ifdef INVARIANTS 146 static void vm_map_zdtor(void *mem, int size, void *arg); 147 static void vmspace_zdtor(void *mem, int size, void *arg); 148 #endif 149 150 void 151 vm_map_startup(void) 152 { 153 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 154 #ifdef INVARIANTS 155 vm_map_zdtor, 156 #else 157 NULL, 158 #endif 159 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 160 uma_prealloc(mapzone, MAX_KMAP); 161 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 162 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 163 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 164 uma_prealloc(kmapentzone, MAX_KMAPENT); 165 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 166 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 167 uma_prealloc(mapentzone, MAX_MAPENT); 168 } 169 170 static void 171 vmspace_zfini(void *mem, int size) 172 { 173 struct vmspace *vm; 174 175 vm = (struct vmspace *)mem; 176 177 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 178 } 179 180 static void 181 vmspace_zinit(void *mem, int size) 182 { 183 struct vmspace *vm; 184 185 vm = (struct vmspace *)mem; 186 187 vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map)); 188 } 189 190 static void 191 vm_map_zfini(void *mem, int size) 192 { 193 vm_map_t map; 194 195 map = (vm_map_t)mem; 196 197 lockdestroy(&map->lock); 198 } 199 200 static void 201 vm_map_zinit(void *mem, int size) 202 { 203 vm_map_t map; 204 205 map = (vm_map_t)mem; 206 map->nentries = 0; 207 map->size = 0; 208 map->infork = 0; 209 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); 210 } 211 212 #ifdef INVARIANTS 213 static void 214 vmspace_zdtor(void *mem, int size, void *arg) 215 { 216 struct vmspace *vm; 217 218 vm = (struct vmspace *)mem; 219 220 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 221 } 222 static void 223 vm_map_zdtor(void *mem, int size, void *arg) 224 { 225 vm_map_t map; 226 227 map = (vm_map_t)mem; 228 KASSERT(map->nentries == 0, 229 ("map %p nentries == %d on free.", 230 map, map->nentries)); 231 KASSERT(map->size == 0, 232 ("map %p size == %lu on free.", 233 map, (unsigned long)map->size)); 234 KASSERT(map->infork == 0, 235 ("map %p infork == %d on free.", 236 map, map->infork)); 237 } 238 #endif /* INVARIANTS */ 239 240 /* 241 * Allocate a vmspace structure, including a vm_map and pmap, 242 * and initialize those structures. The refcnt is set to 1. 243 * The remaining fields must be initialized by the caller. 244 */ 245 struct vmspace * 246 vmspace_alloc(min, max) 247 vm_offset_t min, max; 248 { 249 struct vmspace *vm; 250 251 GIANT_REQUIRED; 252 vm = uma_zalloc(vmspace_zone, M_WAITOK); 253 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 254 _vm_map_init(&vm->vm_map, min, max); 255 pmap_pinit(vmspace_pmap(vm)); 256 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 257 vm->vm_refcnt = 1; 258 vm->vm_shm = NULL; 259 vm->vm_freer = NULL; 260 return (vm); 261 } 262 263 void 264 vm_init2(void) 265 { 266 uma_zone_set_obj(kmapentzone, &kmapentobj, cnt.v_page_count / 4); 267 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 268 #ifdef INVARIANTS 269 vmspace_zdtor, 270 #else 271 NULL, 272 #endif 273 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 274 pmap_init2(); 275 vm_object_init2(); 276 } 277 278 static __inline void 279 vmspace_dofree(struct vmspace *vm) 280 { 281 CTR1(KTR_VM, "vmspace_free: %p", vm); 282 /* 283 * Lock the map, to wait out all other references to it. 284 * Delete all of the mappings and pages they hold, then call 285 * the pmap module to reclaim anything left. 286 */ 287 vm_map_lock(&vm->vm_map); 288 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 289 vm->vm_map.max_offset); 290 vm_map_unlock(&vm->vm_map); 291 292 pmap_release(vmspace_pmap(vm)); 293 uma_zfree(vmspace_zone, vm); 294 } 295 296 void 297 vmspace_free(struct vmspace *vm) 298 { 299 GIANT_REQUIRED; 300 301 if (vm->vm_refcnt == 0) 302 panic("vmspace_free: attempt to free already freed vmspace"); 303 304 if (--vm->vm_refcnt == 0) 305 vmspace_dofree(vm); 306 } 307 308 void 309 vmspace_exitfree(struct proc *p) 310 { 311 struct vmspace *vm; 312 313 GIANT_REQUIRED; 314 if (p == p->p_vmspace->vm_freer) { 315 vm = p->p_vmspace; 316 p->p_vmspace = NULL; 317 vmspace_dofree(vm); 318 } 319 } 320 321 /* 322 * vmspace_swap_count() - count the approximate swap useage in pages for a 323 * vmspace. 324 * 325 * Swap useage is determined by taking the proportional swap used by 326 * VM objects backing the VM map. To make up for fractional losses, 327 * if the VM object has any swap use at all the associated map entries 328 * count for at least 1 swap page. 329 */ 330 int 331 vmspace_swap_count(struct vmspace *vmspace) 332 { 333 vm_map_t map = &vmspace->vm_map; 334 vm_map_entry_t cur; 335 int count = 0; 336 337 vm_map_lock_read(map); 338 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 339 vm_object_t object; 340 341 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 342 (object = cur->object.vm_object) != NULL && 343 object->type == OBJT_SWAP 344 ) { 345 int n = (cur->end - cur->start) / PAGE_SIZE; 346 347 if (object->un_pager.swp.swp_bcount) { 348 count += object->un_pager.swp.swp_bcount * 349 SWAP_META_PAGES * n / object->size + 1; 350 } 351 } 352 } 353 vm_map_unlock_read(map); 354 return (count); 355 } 356 357 void 358 _vm_map_lock(vm_map_t map, const char *file, int line) 359 { 360 int error; 361 362 error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread); 363 KASSERT(error == 0, ("%s: failed to get lock", __func__)); 364 map->timestamp++; 365 } 366 367 void 368 _vm_map_unlock(vm_map_t map, const char *file, int line) 369 { 370 371 lockmgr(&map->lock, LK_RELEASE, NULL, curthread); 372 } 373 374 void 375 _vm_map_lock_read(vm_map_t map, const char *file, int line) 376 { 377 int error; 378 379 error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread); 380 KASSERT(error == 0, ("%s: failed to get lock", __func__)); 381 } 382 383 void 384 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 385 { 386 387 lockmgr(&map->lock, LK_RELEASE, NULL, curthread); 388 } 389 390 int 391 _vm_map_trylock(vm_map_t map, const char *file, int line) 392 { 393 int error; 394 395 error = lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread); 396 return (error == 0); 397 } 398 399 int 400 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 401 { 402 403 KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE, 404 ("%s: lock not held", __func__)); 405 map->timestamp++; 406 return (0); 407 } 408 409 void 410 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 411 { 412 413 KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE, 414 ("%s: lock not held", __func__)); 415 } 416 417 /* 418 * vm_map_unlock_and_wait: 419 */ 420 static __inline int 421 vm_map_unlock_and_wait(vm_map_t map, boolean_t user_wait) 422 { 423 int retval; 424 425 mtx_lock(&Giant); 426 vm_map_unlock(map); 427 retval = tsleep(&map->root, PVM, "vmmapw", 0); 428 mtx_unlock(&Giant); 429 return (retval); 430 } 431 432 /* 433 * vm_map_wakeup: 434 */ 435 static __inline void 436 vm_map_wakeup(vm_map_t map) 437 { 438 439 /* 440 * Acquire and release Giant to prevent a wakeup() from being 441 * performed (and lost) between the vm_map_unlock() and the 442 * tsleep() in vm_map_unlock_and_wait(). 443 */ 444 mtx_lock(&Giant); 445 mtx_unlock(&Giant); 446 wakeup(&map->root); 447 } 448 449 long 450 vmspace_resident_count(struct vmspace *vmspace) 451 { 452 return pmap_resident_count(vmspace_pmap(vmspace)); 453 } 454 455 /* 456 * vm_map_create: 457 * 458 * Creates and returns a new empty VM map with 459 * the given physical map structure, and having 460 * the given lower and upper address bounds. 461 */ 462 vm_map_t 463 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 464 { 465 vm_map_t result; 466 467 result = uma_zalloc(mapzone, M_WAITOK); 468 CTR1(KTR_VM, "vm_map_create: %p", result); 469 _vm_map_init(result, min, max); 470 result->pmap = pmap; 471 return (result); 472 } 473 474 /* 475 * Initialize an existing vm_map structure 476 * such as that in the vmspace structure. 477 * The pmap is set elsewhere. 478 */ 479 static void 480 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max) 481 { 482 483 map->header.next = map->header.prev = &map->header; 484 map->system_map = 0; 485 map->min_offset = min; 486 map->max_offset = max; 487 map->first_free = &map->header; 488 map->root = NULL; 489 map->timestamp = 0; 490 } 491 492 void 493 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max) 494 { 495 _vm_map_init(map, min, max); 496 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); 497 } 498 499 /* 500 * vm_map_entry_dispose: [ internal use only ] 501 * 502 * Inverse of vm_map_entry_create. 503 */ 504 static void 505 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 506 { 507 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 508 } 509 510 /* 511 * vm_map_entry_create: [ internal use only ] 512 * 513 * Allocates a VM map entry for insertion. 514 * No entry fields are filled in. 515 */ 516 static vm_map_entry_t 517 vm_map_entry_create(vm_map_t map) 518 { 519 vm_map_entry_t new_entry; 520 521 if (map->system_map) 522 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 523 else 524 new_entry = uma_zalloc(mapentzone, M_WAITOK); 525 if (new_entry == NULL) 526 panic("vm_map_entry_create: kernel resources exhausted"); 527 return (new_entry); 528 } 529 530 /* 531 * vm_map_entry_set_behavior: 532 * 533 * Set the expected access behavior, either normal, random, or 534 * sequential. 535 */ 536 static __inline void 537 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 538 { 539 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 540 (behavior & MAP_ENTRY_BEHAV_MASK); 541 } 542 543 /* 544 * vm_map_entry_splay: 545 * 546 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 547 * the vm_map_entry containing the given address. If, however, that 548 * address is not found in the vm_map, returns a vm_map_entry that is 549 * adjacent to the address, coming before or after it. 550 */ 551 static vm_map_entry_t 552 vm_map_entry_splay(vm_offset_t address, vm_map_entry_t root) 553 { 554 struct vm_map_entry dummy; 555 vm_map_entry_t lefttreemax, righttreemin, y; 556 557 if (root == NULL) 558 return (root); 559 lefttreemax = righttreemin = &dummy; 560 for (;; root = y) { 561 if (address < root->start) { 562 if ((y = root->left) == NULL) 563 break; 564 if (address < y->start) { 565 /* Rotate right. */ 566 root->left = y->right; 567 y->right = root; 568 root = y; 569 if ((y = root->left) == NULL) 570 break; 571 } 572 /* Link into the new root's right tree. */ 573 righttreemin->left = root; 574 righttreemin = root; 575 } else if (address >= root->end) { 576 if ((y = root->right) == NULL) 577 break; 578 if (address >= y->end) { 579 /* Rotate left. */ 580 root->right = y->left; 581 y->left = root; 582 root = y; 583 if ((y = root->right) == NULL) 584 break; 585 } 586 /* Link into the new root's left tree. */ 587 lefttreemax->right = root; 588 lefttreemax = root; 589 } else 590 break; 591 } 592 /* Assemble the new root. */ 593 lefttreemax->right = root->left; 594 righttreemin->left = root->right; 595 root->left = dummy.right; 596 root->right = dummy.left; 597 return (root); 598 } 599 600 /* 601 * vm_map_entry_{un,}link: 602 * 603 * Insert/remove entries from maps. 604 */ 605 static void 606 vm_map_entry_link(vm_map_t map, 607 vm_map_entry_t after_where, 608 vm_map_entry_t entry) 609 { 610 611 CTR4(KTR_VM, 612 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 613 map->nentries, entry, after_where); 614 map->nentries++; 615 entry->prev = after_where; 616 entry->next = after_where->next; 617 entry->next->prev = entry; 618 after_where->next = entry; 619 620 if (after_where != &map->header) { 621 if (after_where != map->root) 622 vm_map_entry_splay(after_where->start, map->root); 623 entry->right = after_where->right; 624 entry->left = after_where; 625 after_where->right = NULL; 626 } else { 627 entry->right = map->root; 628 entry->left = NULL; 629 } 630 map->root = entry; 631 } 632 633 static void 634 vm_map_entry_unlink(vm_map_t map, 635 vm_map_entry_t entry) 636 { 637 vm_map_entry_t next, prev, root; 638 639 if (entry != map->root) 640 vm_map_entry_splay(entry->start, map->root); 641 if (entry->left == NULL) 642 root = entry->right; 643 else { 644 root = vm_map_entry_splay(entry->start, entry->left); 645 root->right = entry->right; 646 } 647 map->root = root; 648 649 prev = entry->prev; 650 next = entry->next; 651 next->prev = prev; 652 prev->next = next; 653 map->nentries--; 654 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 655 map->nentries, entry); 656 } 657 658 /* 659 * vm_map_lookup_entry: [ internal use only ] 660 * 661 * Finds the map entry containing (or 662 * immediately preceding) the specified address 663 * in the given map; the entry is returned 664 * in the "entry" parameter. The boolean 665 * result indicates whether the address is 666 * actually contained in the map. 667 */ 668 boolean_t 669 vm_map_lookup_entry( 670 vm_map_t map, 671 vm_offset_t address, 672 vm_map_entry_t *entry) /* OUT */ 673 { 674 vm_map_entry_t cur; 675 676 cur = vm_map_entry_splay(address, map->root); 677 if (cur == NULL) 678 *entry = &map->header; 679 else { 680 map->root = cur; 681 682 if (address >= cur->start) { 683 *entry = cur; 684 if (cur->end > address) 685 return (TRUE); 686 } else 687 *entry = cur->prev; 688 } 689 return (FALSE); 690 } 691 692 /* 693 * vm_map_insert: 694 * 695 * Inserts the given whole VM object into the target 696 * map at the specified address range. The object's 697 * size should match that of the address range. 698 * 699 * Requires that the map be locked, and leaves it so. 700 * 701 * If object is non-NULL, ref count must be bumped by caller 702 * prior to making call to account for the new entry. 703 */ 704 int 705 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 706 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 707 int cow) 708 { 709 vm_map_entry_t new_entry; 710 vm_map_entry_t prev_entry; 711 vm_map_entry_t temp_entry; 712 vm_eflags_t protoeflags; 713 714 /* 715 * Check that the start and end points are not bogus. 716 */ 717 if ((start < map->min_offset) || (end > map->max_offset) || 718 (start >= end)) 719 return (KERN_INVALID_ADDRESS); 720 721 /* 722 * Find the entry prior to the proposed starting address; if it's part 723 * of an existing entry, this range is bogus. 724 */ 725 if (vm_map_lookup_entry(map, start, &temp_entry)) 726 return (KERN_NO_SPACE); 727 728 prev_entry = temp_entry; 729 730 /* 731 * Assert that the next entry doesn't overlap the end point. 732 */ 733 if ((prev_entry->next != &map->header) && 734 (prev_entry->next->start < end)) 735 return (KERN_NO_SPACE); 736 737 protoeflags = 0; 738 739 if (cow & MAP_COPY_ON_WRITE) 740 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 741 742 if (cow & MAP_NOFAULT) { 743 protoeflags |= MAP_ENTRY_NOFAULT; 744 745 KASSERT(object == NULL, 746 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 747 } 748 if (cow & MAP_DISABLE_SYNCER) 749 protoeflags |= MAP_ENTRY_NOSYNC; 750 if (cow & MAP_DISABLE_COREDUMP) 751 protoeflags |= MAP_ENTRY_NOCOREDUMP; 752 753 if (object) { 754 /* 755 * When object is non-NULL, it could be shared with another 756 * process. We have to set or clear OBJ_ONEMAPPING 757 * appropriately. 758 */ 759 mtx_lock(&Giant); 760 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 761 vm_object_clear_flag(object, OBJ_ONEMAPPING); 762 } 763 mtx_unlock(&Giant); 764 } 765 else if ((prev_entry != &map->header) && 766 (prev_entry->eflags == protoeflags) && 767 (prev_entry->end == start) && 768 (prev_entry->wired_count == 0) && 769 ((prev_entry->object.vm_object == NULL) || 770 vm_object_coalesce(prev_entry->object.vm_object, 771 OFF_TO_IDX(prev_entry->offset), 772 (vm_size_t)(prev_entry->end - prev_entry->start), 773 (vm_size_t)(end - prev_entry->end)))) { 774 /* 775 * We were able to extend the object. Determine if we 776 * can extend the previous map entry to include the 777 * new range as well. 778 */ 779 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 780 (prev_entry->protection == prot) && 781 (prev_entry->max_protection == max)) { 782 map->size += (end - prev_entry->end); 783 prev_entry->end = end; 784 vm_map_simplify_entry(map, prev_entry); 785 return (KERN_SUCCESS); 786 } 787 788 /* 789 * If we can extend the object but cannot extend the 790 * map entry, we have to create a new map entry. We 791 * must bump the ref count on the extended object to 792 * account for it. object may be NULL. 793 */ 794 object = prev_entry->object.vm_object; 795 offset = prev_entry->offset + 796 (prev_entry->end - prev_entry->start); 797 vm_object_reference(object); 798 } 799 800 /* 801 * NOTE: if conditionals fail, object can be NULL here. This occurs 802 * in things like the buffer map where we manage kva but do not manage 803 * backing objects. 804 */ 805 806 /* 807 * Create a new entry 808 */ 809 new_entry = vm_map_entry_create(map); 810 new_entry->start = start; 811 new_entry->end = end; 812 813 new_entry->eflags = protoeflags; 814 new_entry->object.vm_object = object; 815 new_entry->offset = offset; 816 new_entry->avail_ssize = 0; 817 818 new_entry->inheritance = VM_INHERIT_DEFAULT; 819 new_entry->protection = prot; 820 new_entry->max_protection = max; 821 new_entry->wired_count = 0; 822 823 /* 824 * Insert the new entry into the list 825 */ 826 vm_map_entry_link(map, prev_entry, new_entry); 827 map->size += new_entry->end - new_entry->start; 828 829 /* 830 * Update the free space hint 831 */ 832 if ((map->first_free == prev_entry) && 833 (prev_entry->end >= new_entry->start)) { 834 map->first_free = new_entry; 835 } 836 837 #if 0 838 /* 839 * Temporarily removed to avoid MAP_STACK panic, due to 840 * MAP_STACK being a huge hack. Will be added back in 841 * when MAP_STACK (and the user stack mapping) is fixed. 842 */ 843 /* 844 * It may be possible to simplify the entry 845 */ 846 vm_map_simplify_entry(map, new_entry); 847 #endif 848 849 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 850 mtx_lock(&Giant); 851 pmap_object_init_pt(map->pmap, start, 852 object, OFF_TO_IDX(offset), end - start, 853 cow & MAP_PREFAULT_PARTIAL); 854 mtx_unlock(&Giant); 855 } 856 857 return (KERN_SUCCESS); 858 } 859 860 /* 861 * Find sufficient space for `length' bytes in the given map, starting at 862 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 863 */ 864 int 865 vm_map_findspace( 866 vm_map_t map, 867 vm_offset_t start, 868 vm_size_t length, 869 vm_offset_t *addr) 870 { 871 vm_map_entry_t entry, next; 872 vm_offset_t end; 873 874 if (start < map->min_offset) 875 start = map->min_offset; 876 if (start > map->max_offset) 877 return (1); 878 879 /* 880 * Look for the first possible address; if there's already something 881 * at this address, we have to start after it. 882 */ 883 if (start == map->min_offset) { 884 if ((entry = map->first_free) != &map->header) 885 start = entry->end; 886 } else { 887 vm_map_entry_t tmp; 888 889 if (vm_map_lookup_entry(map, start, &tmp)) 890 start = tmp->end; 891 entry = tmp; 892 } 893 894 /* 895 * Look through the rest of the map, trying to fit a new region in the 896 * gap between existing regions, or after the very last region. 897 */ 898 for (;; start = (entry = next)->end) { 899 /* 900 * Find the end of the proposed new region. Be sure we didn't 901 * go beyond the end of the map, or wrap around the address; 902 * if so, we lose. Otherwise, if this is the last entry, or 903 * if the proposed new region fits before the next entry, we 904 * win. 905 */ 906 end = start + length; 907 if (end > map->max_offset || end < start) 908 return (1); 909 next = entry->next; 910 if (next == &map->header || next->start >= end) 911 break; 912 } 913 *addr = start; 914 if (map == kernel_map) { 915 vm_offset_t ksize; 916 if ((ksize = round_page(start + length)) > kernel_vm_end) { 917 mtx_lock(&Giant); 918 pmap_growkernel(ksize); 919 mtx_unlock(&Giant); 920 } 921 } 922 return (0); 923 } 924 925 /* 926 * vm_map_find finds an unallocated region in the target address 927 * map with the given length. The search is defined to be 928 * first-fit from the specified address; the region found is 929 * returned in the same parameter. 930 * 931 * If object is non-NULL, ref count must be bumped by caller 932 * prior to making call to account for the new entry. 933 */ 934 int 935 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 936 vm_offset_t *addr, /* IN/OUT */ 937 vm_size_t length, boolean_t find_space, vm_prot_t prot, 938 vm_prot_t max, int cow) 939 { 940 vm_offset_t start; 941 int result, s = 0; 942 943 start = *addr; 944 945 if (map == kmem_map) 946 s = splvm(); 947 948 vm_map_lock(map); 949 if (find_space) { 950 if (vm_map_findspace(map, start, length, addr)) { 951 vm_map_unlock(map); 952 if (map == kmem_map) 953 splx(s); 954 return (KERN_NO_SPACE); 955 } 956 start = *addr; 957 } 958 result = vm_map_insert(map, object, offset, 959 start, start + length, prot, max, cow); 960 vm_map_unlock(map); 961 962 if (map == kmem_map) 963 splx(s); 964 965 return (result); 966 } 967 968 /* 969 * vm_map_simplify_entry: 970 * 971 * Simplify the given map entry by merging with either neighbor. This 972 * routine also has the ability to merge with both neighbors. 973 * 974 * The map must be locked. 975 * 976 * This routine guarentees that the passed entry remains valid (though 977 * possibly extended). When merging, this routine may delete one or 978 * both neighbors. 979 */ 980 void 981 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 982 { 983 vm_map_entry_t next, prev; 984 vm_size_t prevsize, esize; 985 986 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 987 return; 988 989 prev = entry->prev; 990 if (prev != &map->header) { 991 prevsize = prev->end - prev->start; 992 if ( (prev->end == entry->start) && 993 (prev->object.vm_object == entry->object.vm_object) && 994 (!prev->object.vm_object || 995 (prev->offset + prevsize == entry->offset)) && 996 (prev->eflags == entry->eflags) && 997 (prev->protection == entry->protection) && 998 (prev->max_protection == entry->max_protection) && 999 (prev->inheritance == entry->inheritance) && 1000 (prev->wired_count == entry->wired_count)) { 1001 if (map->first_free == prev) 1002 map->first_free = entry; 1003 vm_map_entry_unlink(map, prev); 1004 entry->start = prev->start; 1005 entry->offset = prev->offset; 1006 if (prev->object.vm_object) 1007 vm_object_deallocate(prev->object.vm_object); 1008 vm_map_entry_dispose(map, prev); 1009 } 1010 } 1011 1012 next = entry->next; 1013 if (next != &map->header) { 1014 esize = entry->end - entry->start; 1015 if ((entry->end == next->start) && 1016 (next->object.vm_object == entry->object.vm_object) && 1017 (!entry->object.vm_object || 1018 (entry->offset + esize == next->offset)) && 1019 (next->eflags == entry->eflags) && 1020 (next->protection == entry->protection) && 1021 (next->max_protection == entry->max_protection) && 1022 (next->inheritance == entry->inheritance) && 1023 (next->wired_count == entry->wired_count)) { 1024 if (map->first_free == next) 1025 map->first_free = entry; 1026 vm_map_entry_unlink(map, next); 1027 entry->end = next->end; 1028 if (next->object.vm_object) 1029 vm_object_deallocate(next->object.vm_object); 1030 vm_map_entry_dispose(map, next); 1031 } 1032 } 1033 } 1034 /* 1035 * vm_map_clip_start: [ internal use only ] 1036 * 1037 * Asserts that the given entry begins at or after 1038 * the specified address; if necessary, 1039 * it splits the entry into two. 1040 */ 1041 #define vm_map_clip_start(map, entry, startaddr) \ 1042 { \ 1043 if (startaddr > entry->start) \ 1044 _vm_map_clip_start(map, entry, startaddr); \ 1045 } 1046 1047 /* 1048 * This routine is called only when it is known that 1049 * the entry must be split. 1050 */ 1051 static void 1052 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1053 { 1054 vm_map_entry_t new_entry; 1055 1056 /* 1057 * Split off the front portion -- note that we must insert the new 1058 * entry BEFORE this one, so that this entry has the specified 1059 * starting address. 1060 */ 1061 vm_map_simplify_entry(map, entry); 1062 1063 /* 1064 * If there is no object backing this entry, we might as well create 1065 * one now. If we defer it, an object can get created after the map 1066 * is clipped, and individual objects will be created for the split-up 1067 * map. This is a bit of a hack, but is also about the best place to 1068 * put this improvement. 1069 */ 1070 if (entry->object.vm_object == NULL && !map->system_map) { 1071 vm_object_t object; 1072 object = vm_object_allocate(OBJT_DEFAULT, 1073 atop(entry->end - entry->start)); 1074 entry->object.vm_object = object; 1075 entry->offset = 0; 1076 } 1077 1078 new_entry = vm_map_entry_create(map); 1079 *new_entry = *entry; 1080 1081 new_entry->end = start; 1082 entry->offset += (start - entry->start); 1083 entry->start = start; 1084 1085 vm_map_entry_link(map, entry->prev, new_entry); 1086 1087 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1088 vm_object_reference(new_entry->object.vm_object); 1089 } 1090 } 1091 1092 /* 1093 * vm_map_clip_end: [ internal use only ] 1094 * 1095 * Asserts that the given entry ends at or before 1096 * the specified address; if necessary, 1097 * it splits the entry into two. 1098 */ 1099 #define vm_map_clip_end(map, entry, endaddr) \ 1100 { \ 1101 if (endaddr < entry->end) \ 1102 _vm_map_clip_end(map, entry, endaddr); \ 1103 } 1104 1105 /* 1106 * This routine is called only when it is known that 1107 * the entry must be split. 1108 */ 1109 static void 1110 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1111 { 1112 vm_map_entry_t new_entry; 1113 1114 /* 1115 * If there is no object backing this entry, we might as well create 1116 * one now. If we defer it, an object can get created after the map 1117 * is clipped, and individual objects will be created for the split-up 1118 * map. This is a bit of a hack, but is also about the best place to 1119 * put this improvement. 1120 */ 1121 if (entry->object.vm_object == NULL && !map->system_map) { 1122 vm_object_t object; 1123 object = vm_object_allocate(OBJT_DEFAULT, 1124 atop(entry->end - entry->start)); 1125 entry->object.vm_object = object; 1126 entry->offset = 0; 1127 } 1128 1129 /* 1130 * Create a new entry and insert it AFTER the specified entry 1131 */ 1132 new_entry = vm_map_entry_create(map); 1133 *new_entry = *entry; 1134 1135 new_entry->start = entry->end = end; 1136 new_entry->offset += (end - entry->start); 1137 1138 vm_map_entry_link(map, entry, new_entry); 1139 1140 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1141 vm_object_reference(new_entry->object.vm_object); 1142 } 1143 } 1144 1145 /* 1146 * VM_MAP_RANGE_CHECK: [ internal use only ] 1147 * 1148 * Asserts that the starting and ending region 1149 * addresses fall within the valid range of the map. 1150 */ 1151 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1152 { \ 1153 if (start < vm_map_min(map)) \ 1154 start = vm_map_min(map); \ 1155 if (end > vm_map_max(map)) \ 1156 end = vm_map_max(map); \ 1157 if (start > end) \ 1158 start = end; \ 1159 } 1160 1161 /* 1162 * vm_map_submap: [ kernel use only ] 1163 * 1164 * Mark the given range as handled by a subordinate map. 1165 * 1166 * This range must have been created with vm_map_find, 1167 * and no other operations may have been performed on this 1168 * range prior to calling vm_map_submap. 1169 * 1170 * Only a limited number of operations can be performed 1171 * within this rage after calling vm_map_submap: 1172 * vm_fault 1173 * [Don't try vm_map_copy!] 1174 * 1175 * To remove a submapping, one must first remove the 1176 * range from the superior map, and then destroy the 1177 * submap (if desired). [Better yet, don't try it.] 1178 */ 1179 int 1180 vm_map_submap( 1181 vm_map_t map, 1182 vm_offset_t start, 1183 vm_offset_t end, 1184 vm_map_t submap) 1185 { 1186 vm_map_entry_t entry; 1187 int result = KERN_INVALID_ARGUMENT; 1188 1189 vm_map_lock(map); 1190 1191 VM_MAP_RANGE_CHECK(map, start, end); 1192 1193 if (vm_map_lookup_entry(map, start, &entry)) { 1194 vm_map_clip_start(map, entry, start); 1195 } else 1196 entry = entry->next; 1197 1198 vm_map_clip_end(map, entry, end); 1199 1200 if ((entry->start == start) && (entry->end == end) && 1201 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1202 (entry->object.vm_object == NULL)) { 1203 entry->object.sub_map = submap; 1204 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1205 result = KERN_SUCCESS; 1206 } 1207 vm_map_unlock(map); 1208 1209 return (result); 1210 } 1211 1212 /* 1213 * vm_map_protect: 1214 * 1215 * Sets the protection of the specified address 1216 * region in the target map. If "set_max" is 1217 * specified, the maximum protection is to be set; 1218 * otherwise, only the current protection is affected. 1219 */ 1220 int 1221 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1222 vm_prot_t new_prot, boolean_t set_max) 1223 { 1224 vm_map_entry_t current; 1225 vm_map_entry_t entry; 1226 1227 vm_map_lock(map); 1228 1229 VM_MAP_RANGE_CHECK(map, start, end); 1230 1231 if (vm_map_lookup_entry(map, start, &entry)) { 1232 vm_map_clip_start(map, entry, start); 1233 } else { 1234 entry = entry->next; 1235 } 1236 1237 /* 1238 * Make a first pass to check for protection violations. 1239 */ 1240 current = entry; 1241 while ((current != &map->header) && (current->start < end)) { 1242 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1243 vm_map_unlock(map); 1244 return (KERN_INVALID_ARGUMENT); 1245 } 1246 if ((new_prot & current->max_protection) != new_prot) { 1247 vm_map_unlock(map); 1248 return (KERN_PROTECTION_FAILURE); 1249 } 1250 current = current->next; 1251 } 1252 1253 /* 1254 * Go back and fix up protections. [Note that clipping is not 1255 * necessary the second time.] 1256 */ 1257 current = entry; 1258 while ((current != &map->header) && (current->start < end)) { 1259 vm_prot_t old_prot; 1260 1261 vm_map_clip_end(map, current, end); 1262 1263 old_prot = current->protection; 1264 if (set_max) 1265 current->protection = 1266 (current->max_protection = new_prot) & 1267 old_prot; 1268 else 1269 current->protection = new_prot; 1270 1271 /* 1272 * Update physical map if necessary. Worry about copy-on-write 1273 * here -- CHECK THIS XXX 1274 */ 1275 if (current->protection != old_prot) { 1276 mtx_lock(&Giant); 1277 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1278 VM_PROT_ALL) 1279 pmap_protect(map->pmap, current->start, 1280 current->end, 1281 current->protection & MASK(current)); 1282 #undef MASK 1283 mtx_unlock(&Giant); 1284 } 1285 vm_map_simplify_entry(map, current); 1286 current = current->next; 1287 } 1288 vm_map_unlock(map); 1289 return (KERN_SUCCESS); 1290 } 1291 1292 /* 1293 * vm_map_madvise: 1294 * 1295 * This routine traverses a processes map handling the madvise 1296 * system call. Advisories are classified as either those effecting 1297 * the vm_map_entry structure, or those effecting the underlying 1298 * objects. 1299 */ 1300 int 1301 vm_map_madvise( 1302 vm_map_t map, 1303 vm_offset_t start, 1304 vm_offset_t end, 1305 int behav) 1306 { 1307 vm_map_entry_t current, entry; 1308 int modify_map = 0; 1309 1310 /* 1311 * Some madvise calls directly modify the vm_map_entry, in which case 1312 * we need to use an exclusive lock on the map and we need to perform 1313 * various clipping operations. Otherwise we only need a read-lock 1314 * on the map. 1315 */ 1316 switch(behav) { 1317 case MADV_NORMAL: 1318 case MADV_SEQUENTIAL: 1319 case MADV_RANDOM: 1320 case MADV_NOSYNC: 1321 case MADV_AUTOSYNC: 1322 case MADV_NOCORE: 1323 case MADV_CORE: 1324 modify_map = 1; 1325 vm_map_lock(map); 1326 break; 1327 case MADV_WILLNEED: 1328 case MADV_DONTNEED: 1329 case MADV_FREE: 1330 vm_map_lock_read(map); 1331 break; 1332 default: 1333 return (KERN_INVALID_ARGUMENT); 1334 } 1335 1336 /* 1337 * Locate starting entry and clip if necessary. 1338 */ 1339 VM_MAP_RANGE_CHECK(map, start, end); 1340 1341 if (vm_map_lookup_entry(map, start, &entry)) { 1342 if (modify_map) 1343 vm_map_clip_start(map, entry, start); 1344 } else { 1345 entry = entry->next; 1346 } 1347 1348 if (modify_map) { 1349 /* 1350 * madvise behaviors that are implemented in the vm_map_entry. 1351 * 1352 * We clip the vm_map_entry so that behavioral changes are 1353 * limited to the specified address range. 1354 */ 1355 for (current = entry; 1356 (current != &map->header) && (current->start < end); 1357 current = current->next 1358 ) { 1359 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1360 continue; 1361 1362 vm_map_clip_end(map, current, end); 1363 1364 switch (behav) { 1365 case MADV_NORMAL: 1366 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1367 break; 1368 case MADV_SEQUENTIAL: 1369 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1370 break; 1371 case MADV_RANDOM: 1372 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1373 break; 1374 case MADV_NOSYNC: 1375 current->eflags |= MAP_ENTRY_NOSYNC; 1376 break; 1377 case MADV_AUTOSYNC: 1378 current->eflags &= ~MAP_ENTRY_NOSYNC; 1379 break; 1380 case MADV_NOCORE: 1381 current->eflags |= MAP_ENTRY_NOCOREDUMP; 1382 break; 1383 case MADV_CORE: 1384 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 1385 break; 1386 default: 1387 break; 1388 } 1389 vm_map_simplify_entry(map, current); 1390 } 1391 vm_map_unlock(map); 1392 } else { 1393 vm_pindex_t pindex; 1394 int count; 1395 1396 /* 1397 * madvise behaviors that are implemented in the underlying 1398 * vm_object. 1399 * 1400 * Since we don't clip the vm_map_entry, we have to clip 1401 * the vm_object pindex and count. 1402 */ 1403 for (current = entry; 1404 (current != &map->header) && (current->start < end); 1405 current = current->next 1406 ) { 1407 vm_offset_t useStart; 1408 1409 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1410 continue; 1411 1412 pindex = OFF_TO_IDX(current->offset); 1413 count = atop(current->end - current->start); 1414 useStart = current->start; 1415 1416 if (current->start < start) { 1417 pindex += atop(start - current->start); 1418 count -= atop(start - current->start); 1419 useStart = start; 1420 } 1421 if (current->end > end) 1422 count -= atop(current->end - end); 1423 1424 if (count <= 0) 1425 continue; 1426 1427 vm_object_madvise(current->object.vm_object, 1428 pindex, count, behav); 1429 if (behav == MADV_WILLNEED) { 1430 mtx_lock(&Giant); 1431 pmap_object_init_pt( 1432 map->pmap, 1433 useStart, 1434 current->object.vm_object, 1435 pindex, 1436 (count << PAGE_SHIFT), 1437 MAP_PREFAULT_MADVISE 1438 ); 1439 mtx_unlock(&Giant); 1440 } 1441 } 1442 vm_map_unlock_read(map); 1443 } 1444 return (0); 1445 } 1446 1447 1448 /* 1449 * vm_map_inherit: 1450 * 1451 * Sets the inheritance of the specified address 1452 * range in the target map. Inheritance 1453 * affects how the map will be shared with 1454 * child maps at the time of vm_map_fork. 1455 */ 1456 int 1457 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1458 vm_inherit_t new_inheritance) 1459 { 1460 vm_map_entry_t entry; 1461 vm_map_entry_t temp_entry; 1462 1463 switch (new_inheritance) { 1464 case VM_INHERIT_NONE: 1465 case VM_INHERIT_COPY: 1466 case VM_INHERIT_SHARE: 1467 break; 1468 default: 1469 return (KERN_INVALID_ARGUMENT); 1470 } 1471 vm_map_lock(map); 1472 VM_MAP_RANGE_CHECK(map, start, end); 1473 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1474 entry = temp_entry; 1475 vm_map_clip_start(map, entry, start); 1476 } else 1477 entry = temp_entry->next; 1478 while ((entry != &map->header) && (entry->start < end)) { 1479 vm_map_clip_end(map, entry, end); 1480 entry->inheritance = new_inheritance; 1481 vm_map_simplify_entry(map, entry); 1482 entry = entry->next; 1483 } 1484 vm_map_unlock(map); 1485 return (KERN_SUCCESS); 1486 } 1487 1488 /* 1489 * vm_map_unwire: 1490 * 1491 * Implements both kernel and user unwiring. 1492 */ 1493 int 1494 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1495 boolean_t user_unwire) 1496 { 1497 vm_map_entry_t entry, first_entry, tmp_entry; 1498 vm_offset_t saved_start; 1499 unsigned int last_timestamp; 1500 int rv; 1501 boolean_t need_wakeup, result; 1502 1503 vm_map_lock(map); 1504 VM_MAP_RANGE_CHECK(map, start, end); 1505 if (!vm_map_lookup_entry(map, start, &first_entry)) { 1506 vm_map_unlock(map); 1507 return (KERN_INVALID_ADDRESS); 1508 } 1509 last_timestamp = map->timestamp; 1510 entry = first_entry; 1511 while (entry != &map->header && entry->start < end) { 1512 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1513 /* 1514 * We have not yet clipped the entry. 1515 */ 1516 saved_start = (start >= entry->start) ? start : 1517 entry->start; 1518 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1519 if (vm_map_unlock_and_wait(map, user_unwire)) { 1520 /* 1521 * Allow interruption of user unwiring? 1522 */ 1523 } 1524 vm_map_lock(map); 1525 if (last_timestamp+1 != map->timestamp) { 1526 /* 1527 * Look again for the entry because the map was 1528 * modified while it was unlocked. 1529 * Specifically, the entry may have been 1530 * clipped, merged, or deleted. 1531 */ 1532 if (!vm_map_lookup_entry(map, saved_start, 1533 &tmp_entry)) { 1534 if (saved_start == start) { 1535 /* 1536 * First_entry has been deleted. 1537 */ 1538 vm_map_unlock(map); 1539 return (KERN_INVALID_ADDRESS); 1540 } 1541 end = saved_start; 1542 rv = KERN_INVALID_ADDRESS; 1543 goto done; 1544 } 1545 if (entry == first_entry) 1546 first_entry = tmp_entry; 1547 else 1548 first_entry = NULL; 1549 entry = tmp_entry; 1550 } 1551 last_timestamp = map->timestamp; 1552 continue; 1553 } 1554 vm_map_clip_start(map, entry, start); 1555 vm_map_clip_end(map, entry, end); 1556 /* 1557 * Mark the entry in case the map lock is released. (See 1558 * above.) 1559 */ 1560 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1561 /* 1562 * Check the map for holes in the specified region. 1563 */ 1564 if (entry->end < end && (entry->next == &map->header || 1565 entry->next->start > entry->end)) { 1566 end = entry->end; 1567 rv = KERN_INVALID_ADDRESS; 1568 goto done; 1569 } 1570 /* 1571 * Require that the entry is wired. 1572 */ 1573 if (entry->wired_count == 0 || (user_unwire && 1574 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)) { 1575 end = entry->end; 1576 rv = KERN_INVALID_ARGUMENT; 1577 goto done; 1578 } 1579 entry = entry->next; 1580 } 1581 rv = KERN_SUCCESS; 1582 done: 1583 need_wakeup = FALSE; 1584 if (first_entry == NULL) { 1585 result = vm_map_lookup_entry(map, start, &first_entry); 1586 KASSERT(result, ("vm_map_unwire: lookup failed")); 1587 } 1588 entry = first_entry; 1589 while (entry != &map->header && entry->start < end) { 1590 if (rv == KERN_SUCCESS) { 1591 if (user_unwire) 1592 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1593 entry->wired_count--; 1594 if (entry->wired_count == 0) { 1595 /* 1596 * Retain the map lock. 1597 */ 1598 vm_fault_unwire(map, entry->start, entry->end); 1599 } 1600 } 1601 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1602 ("vm_map_unwire: in-transition flag missing")); 1603 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1604 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1605 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1606 need_wakeup = TRUE; 1607 } 1608 vm_map_simplify_entry(map, entry); 1609 entry = entry->next; 1610 } 1611 vm_map_unlock(map); 1612 if (need_wakeup) 1613 vm_map_wakeup(map); 1614 return (rv); 1615 } 1616 1617 /* 1618 * vm_map_wire: 1619 * 1620 * Implements both kernel and user wiring. 1621 */ 1622 int 1623 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1624 boolean_t user_wire) 1625 { 1626 vm_map_entry_t entry, first_entry, tmp_entry; 1627 vm_offset_t saved_end, saved_start; 1628 unsigned int last_timestamp; 1629 int rv; 1630 boolean_t need_wakeup, result; 1631 1632 vm_map_lock(map); 1633 VM_MAP_RANGE_CHECK(map, start, end); 1634 if (!vm_map_lookup_entry(map, start, &first_entry)) { 1635 vm_map_unlock(map); 1636 return (KERN_INVALID_ADDRESS); 1637 } 1638 last_timestamp = map->timestamp; 1639 entry = first_entry; 1640 while (entry != &map->header && entry->start < end) { 1641 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1642 /* 1643 * We have not yet clipped the entry. 1644 */ 1645 saved_start = (start >= entry->start) ? start : 1646 entry->start; 1647 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1648 if (vm_map_unlock_and_wait(map, user_wire)) { 1649 /* 1650 * Allow interruption of user wiring? 1651 */ 1652 } 1653 vm_map_lock(map); 1654 if (last_timestamp + 1 != map->timestamp) { 1655 /* 1656 * Look again for the entry because the map was 1657 * modified while it was unlocked. 1658 * Specifically, the entry may have been 1659 * clipped, merged, or deleted. 1660 */ 1661 if (!vm_map_lookup_entry(map, saved_start, 1662 &tmp_entry)) { 1663 if (saved_start == start) { 1664 /* 1665 * first_entry has been deleted. 1666 */ 1667 vm_map_unlock(map); 1668 return (KERN_INVALID_ADDRESS); 1669 } 1670 end = saved_start; 1671 rv = KERN_INVALID_ADDRESS; 1672 goto done; 1673 } 1674 if (entry == first_entry) 1675 first_entry = tmp_entry; 1676 else 1677 first_entry = NULL; 1678 entry = tmp_entry; 1679 } 1680 last_timestamp = map->timestamp; 1681 continue; 1682 } 1683 vm_map_clip_start(map, entry, start); 1684 vm_map_clip_end(map, entry, end); 1685 /* 1686 * Mark the entry in case the map lock is released. (See 1687 * above.) 1688 */ 1689 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1690 /* 1691 * 1692 */ 1693 if (entry->wired_count == 0) { 1694 entry->wired_count++; 1695 saved_start = entry->start; 1696 saved_end = entry->end; 1697 /* 1698 * Release the map lock, relying on the in-transition 1699 * mark. 1700 */ 1701 vm_map_unlock(map); 1702 if (user_wire) 1703 rv = vm_fault_user_wire(map, saved_start, 1704 saved_end); 1705 else 1706 rv = vm_fault_wire(map, saved_start, saved_end); 1707 vm_map_lock(map); 1708 if (last_timestamp + 1 != map->timestamp) { 1709 /* 1710 * Look again for the entry because the map was 1711 * modified while it was unlocked. The entry 1712 * may have been clipped, but NOT merged or 1713 * deleted. 1714 */ 1715 result = vm_map_lookup_entry(map, saved_start, 1716 &tmp_entry); 1717 KASSERT(result, ("vm_map_wire: lookup failed")); 1718 if (entry == first_entry) 1719 first_entry = tmp_entry; 1720 else 1721 first_entry = NULL; 1722 entry = tmp_entry; 1723 while (entry->end < saved_end) { 1724 if (rv != KERN_SUCCESS) { 1725 KASSERT(entry->wired_count == 1, 1726 ("vm_map_wire: bad count")); 1727 entry->wired_count = -1; 1728 } 1729 entry = entry->next; 1730 } 1731 } 1732 last_timestamp = map->timestamp; 1733 if (rv != KERN_SUCCESS) { 1734 KASSERT(entry->wired_count == 1, 1735 ("vm_map_wire: bad count")); 1736 /* 1737 * Assign an out-of-range value to represent 1738 * the failure to wire this entry. 1739 */ 1740 entry->wired_count = -1; 1741 end = entry->end; 1742 goto done; 1743 } 1744 } else if (!user_wire || 1745 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 1746 entry->wired_count++; 1747 } 1748 /* 1749 * Check the map for holes in the specified region. 1750 */ 1751 if (entry->end < end && (entry->next == &map->header || 1752 entry->next->start > entry->end)) { 1753 end = entry->end; 1754 rv = KERN_INVALID_ADDRESS; 1755 goto done; 1756 } 1757 entry = entry->next; 1758 } 1759 rv = KERN_SUCCESS; 1760 done: 1761 need_wakeup = FALSE; 1762 if (first_entry == NULL) { 1763 result = vm_map_lookup_entry(map, start, &first_entry); 1764 KASSERT(result, ("vm_map_wire: lookup failed")); 1765 } 1766 entry = first_entry; 1767 while (entry != &map->header && entry->start < end) { 1768 if (rv == KERN_SUCCESS) { 1769 if (user_wire) 1770 entry->eflags |= MAP_ENTRY_USER_WIRED; 1771 } else if (entry->wired_count == -1) { 1772 /* 1773 * Wiring failed on this entry. Thus, unwiring is 1774 * unnecessary. 1775 */ 1776 entry->wired_count = 0; 1777 } else { 1778 if (!user_wire || (entry->wired_count == 1 && 1779 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)) 1780 entry->wired_count--; 1781 if (entry->wired_count == 0) { 1782 /* 1783 * Retain the map lock. 1784 */ 1785 vm_fault_unwire(map, entry->start, entry->end); 1786 } 1787 } 1788 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1789 ("vm_map_wire: in-transition flag missing")); 1790 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1791 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1792 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1793 need_wakeup = TRUE; 1794 } 1795 vm_map_simplify_entry(map, entry); 1796 entry = entry->next; 1797 } 1798 vm_map_unlock(map); 1799 if (need_wakeup) 1800 vm_map_wakeup(map); 1801 return (rv); 1802 } 1803 1804 /* 1805 * vm_map_clean 1806 * 1807 * Push any dirty cached pages in the address range to their pager. 1808 * If syncio is TRUE, dirty pages are written synchronously. 1809 * If invalidate is TRUE, any cached pages are freed as well. 1810 * 1811 * Returns an error if any part of the specified range is not mapped. 1812 */ 1813 int 1814 vm_map_clean( 1815 vm_map_t map, 1816 vm_offset_t start, 1817 vm_offset_t end, 1818 boolean_t syncio, 1819 boolean_t invalidate) 1820 { 1821 vm_map_entry_t current; 1822 vm_map_entry_t entry; 1823 vm_size_t size; 1824 vm_object_t object; 1825 vm_ooffset_t offset; 1826 1827 GIANT_REQUIRED; 1828 1829 vm_map_lock_read(map); 1830 VM_MAP_RANGE_CHECK(map, start, end); 1831 if (!vm_map_lookup_entry(map, start, &entry)) { 1832 vm_map_unlock_read(map); 1833 return (KERN_INVALID_ADDRESS); 1834 } 1835 /* 1836 * Make a first pass to check for holes. 1837 */ 1838 for (current = entry; current->start < end; current = current->next) { 1839 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1840 vm_map_unlock_read(map); 1841 return (KERN_INVALID_ARGUMENT); 1842 } 1843 if (end > current->end && 1844 (current->next == &map->header || 1845 current->end != current->next->start)) { 1846 vm_map_unlock_read(map); 1847 return (KERN_INVALID_ADDRESS); 1848 } 1849 } 1850 1851 if (invalidate) 1852 pmap_remove(vm_map_pmap(map), start, end); 1853 /* 1854 * Make a second pass, cleaning/uncaching pages from the indicated 1855 * objects as we go. 1856 */ 1857 for (current = entry; current->start < end; current = current->next) { 1858 offset = current->offset + (start - current->start); 1859 size = (end <= current->end ? end : current->end) - start; 1860 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1861 vm_map_t smap; 1862 vm_map_entry_t tentry; 1863 vm_size_t tsize; 1864 1865 smap = current->object.sub_map; 1866 vm_map_lock_read(smap); 1867 (void) vm_map_lookup_entry(smap, offset, &tentry); 1868 tsize = tentry->end - offset; 1869 if (tsize < size) 1870 size = tsize; 1871 object = tentry->object.vm_object; 1872 offset = tentry->offset + (offset - tentry->start); 1873 vm_map_unlock_read(smap); 1874 } else { 1875 object = current->object.vm_object; 1876 } 1877 /* 1878 * Note that there is absolutely no sense in writing out 1879 * anonymous objects, so we track down the vnode object 1880 * to write out. 1881 * We invalidate (remove) all pages from the address space 1882 * anyway, for semantic correctness. 1883 * 1884 * note: certain anonymous maps, such as MAP_NOSYNC maps, 1885 * may start out with a NULL object. 1886 */ 1887 while (object && object->backing_object) { 1888 object = object->backing_object; 1889 offset += object->backing_object_offset; 1890 if (object->size < OFF_TO_IDX(offset + size)) 1891 size = IDX_TO_OFF(object->size) - offset; 1892 } 1893 if (object && (object->type == OBJT_VNODE) && 1894 (current->protection & VM_PROT_WRITE)) { 1895 /* 1896 * Flush pages if writing is allowed, invalidate them 1897 * if invalidation requested. Pages undergoing I/O 1898 * will be ignored by vm_object_page_remove(). 1899 * 1900 * We cannot lock the vnode and then wait for paging 1901 * to complete without deadlocking against vm_fault. 1902 * Instead we simply call vm_object_page_remove() and 1903 * allow it to block internally on a page-by-page 1904 * basis when it encounters pages undergoing async 1905 * I/O. 1906 */ 1907 int flags; 1908 1909 vm_object_reference(object); 1910 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread); 1911 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1912 flags |= invalidate ? OBJPC_INVAL : 0; 1913 vm_object_page_clean(object, 1914 OFF_TO_IDX(offset), 1915 OFF_TO_IDX(offset + size + PAGE_MASK), 1916 flags); 1917 if (invalidate) { 1918 /*vm_object_pip_wait(object, "objmcl");*/ 1919 vm_object_page_remove(object, 1920 OFF_TO_IDX(offset), 1921 OFF_TO_IDX(offset + size + PAGE_MASK), 1922 FALSE); 1923 } 1924 VOP_UNLOCK(object->handle, 0, curthread); 1925 vm_object_deallocate(object); 1926 } 1927 start += size; 1928 } 1929 1930 vm_map_unlock_read(map); 1931 return (KERN_SUCCESS); 1932 } 1933 1934 /* 1935 * vm_map_entry_unwire: [ internal use only ] 1936 * 1937 * Make the region specified by this entry pageable. 1938 * 1939 * The map in question should be locked. 1940 * [This is the reason for this routine's existence.] 1941 */ 1942 static void 1943 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 1944 { 1945 vm_fault_unwire(map, entry->start, entry->end); 1946 entry->wired_count = 0; 1947 } 1948 1949 /* 1950 * vm_map_entry_delete: [ internal use only ] 1951 * 1952 * Deallocate the given entry from the target map. 1953 */ 1954 static void 1955 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 1956 { 1957 vm_map_entry_unlink(map, entry); 1958 map->size -= entry->end - entry->start; 1959 1960 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1961 vm_object_deallocate(entry->object.vm_object); 1962 } 1963 1964 vm_map_entry_dispose(map, entry); 1965 } 1966 1967 /* 1968 * vm_map_delete: [ internal use only ] 1969 * 1970 * Deallocates the given address range from the target 1971 * map. 1972 */ 1973 int 1974 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 1975 { 1976 vm_object_t object; 1977 vm_map_entry_t entry; 1978 vm_map_entry_t first_entry; 1979 1980 /* 1981 * Find the start of the region, and clip it 1982 */ 1983 if (!vm_map_lookup_entry(map, start, &first_entry)) 1984 entry = first_entry->next; 1985 else { 1986 entry = first_entry; 1987 vm_map_clip_start(map, entry, start); 1988 } 1989 1990 /* 1991 * Save the free space hint 1992 */ 1993 if (entry == &map->header) { 1994 map->first_free = &map->header; 1995 } else if (map->first_free->start >= start) { 1996 map->first_free = entry->prev; 1997 } 1998 1999 /* 2000 * Step through all entries in this region 2001 */ 2002 while ((entry != &map->header) && (entry->start < end)) { 2003 vm_map_entry_t next; 2004 vm_offset_t s, e; 2005 vm_pindex_t offidxstart, offidxend, count; 2006 2007 /* 2008 * Wait for wiring or unwiring of an entry to complete. 2009 */ 2010 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) { 2011 unsigned int last_timestamp; 2012 vm_offset_t saved_start; 2013 vm_map_entry_t tmp_entry; 2014 2015 saved_start = entry->start; 2016 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2017 last_timestamp = map->timestamp; 2018 (void) vm_map_unlock_and_wait(map, FALSE); 2019 vm_map_lock(map); 2020 if (last_timestamp + 1 != map->timestamp) { 2021 /* 2022 * Look again for the entry because the map was 2023 * modified while it was unlocked. 2024 * Specifically, the entry may have been 2025 * clipped, merged, or deleted. 2026 */ 2027 if (!vm_map_lookup_entry(map, saved_start, 2028 &tmp_entry)) 2029 entry = tmp_entry->next; 2030 else { 2031 entry = tmp_entry; 2032 vm_map_clip_start(map, entry, 2033 saved_start); 2034 } 2035 } 2036 continue; 2037 } 2038 vm_map_clip_end(map, entry, end); 2039 2040 s = entry->start; 2041 e = entry->end; 2042 next = entry->next; 2043 2044 offidxstart = OFF_TO_IDX(entry->offset); 2045 count = OFF_TO_IDX(e - s); 2046 object = entry->object.vm_object; 2047 2048 /* 2049 * Unwire before removing addresses from the pmap; otherwise, 2050 * unwiring will put the entries back in the pmap. 2051 */ 2052 if (entry->wired_count != 0) { 2053 vm_map_entry_unwire(map, entry); 2054 } 2055 2056 offidxend = offidxstart + count; 2057 2058 if ((object == kernel_object) || (object == kmem_object)) { 2059 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2060 } else { 2061 mtx_lock(&Giant); 2062 pmap_remove(map->pmap, s, e); 2063 if (object != NULL && 2064 object->ref_count != 1 && 2065 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && 2066 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2067 vm_object_collapse(object); 2068 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2069 if (object->type == OBJT_SWAP) { 2070 swap_pager_freespace(object, offidxstart, count); 2071 } 2072 if (offidxend >= object->size && 2073 offidxstart < object->size) { 2074 object->size = offidxstart; 2075 } 2076 } 2077 mtx_unlock(&Giant); 2078 } 2079 2080 /* 2081 * Delete the entry (which may delete the object) only after 2082 * removing all pmap entries pointing to its pages. 2083 * (Otherwise, its page frames may be reallocated, and any 2084 * modify bits will be set in the wrong object!) 2085 */ 2086 vm_map_entry_delete(map, entry); 2087 entry = next; 2088 } 2089 return (KERN_SUCCESS); 2090 } 2091 2092 /* 2093 * vm_map_remove: 2094 * 2095 * Remove the given address range from the target map. 2096 * This is the exported form of vm_map_delete. 2097 */ 2098 int 2099 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2100 { 2101 int result, s = 0; 2102 2103 if (map == kmem_map) 2104 s = splvm(); 2105 2106 vm_map_lock(map); 2107 VM_MAP_RANGE_CHECK(map, start, end); 2108 result = vm_map_delete(map, start, end); 2109 vm_map_unlock(map); 2110 2111 if (map == kmem_map) 2112 splx(s); 2113 2114 return (result); 2115 } 2116 2117 /* 2118 * vm_map_check_protection: 2119 * 2120 * Assert that the target map allows the specified 2121 * privilege on the entire address region given. 2122 * The entire region must be allocated. 2123 */ 2124 boolean_t 2125 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2126 vm_prot_t protection) 2127 { 2128 vm_map_entry_t entry; 2129 vm_map_entry_t tmp_entry; 2130 2131 vm_map_lock_read(map); 2132 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 2133 vm_map_unlock_read(map); 2134 return (FALSE); 2135 } 2136 entry = tmp_entry; 2137 2138 while (start < end) { 2139 if (entry == &map->header) { 2140 vm_map_unlock_read(map); 2141 return (FALSE); 2142 } 2143 /* 2144 * No holes allowed! 2145 */ 2146 if (start < entry->start) { 2147 vm_map_unlock_read(map); 2148 return (FALSE); 2149 } 2150 /* 2151 * Check protection associated with entry. 2152 */ 2153 if ((entry->protection & protection) != protection) { 2154 vm_map_unlock_read(map); 2155 return (FALSE); 2156 } 2157 /* go to next entry */ 2158 start = entry->end; 2159 entry = entry->next; 2160 } 2161 vm_map_unlock_read(map); 2162 return (TRUE); 2163 } 2164 2165 /* 2166 * vm_map_copy_entry: 2167 * 2168 * Copies the contents of the source entry to the destination 2169 * entry. The entries *must* be aligned properly. 2170 */ 2171 static void 2172 vm_map_copy_entry( 2173 vm_map_t src_map, 2174 vm_map_t dst_map, 2175 vm_map_entry_t src_entry, 2176 vm_map_entry_t dst_entry) 2177 { 2178 vm_object_t src_object; 2179 2180 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2181 return; 2182 2183 if (src_entry->wired_count == 0) { 2184 2185 /* 2186 * If the source entry is marked needs_copy, it is already 2187 * write-protected. 2188 */ 2189 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2190 pmap_protect(src_map->pmap, 2191 src_entry->start, 2192 src_entry->end, 2193 src_entry->protection & ~VM_PROT_WRITE); 2194 } 2195 2196 /* 2197 * Make a copy of the object. 2198 */ 2199 if ((src_object = src_entry->object.vm_object) != NULL) { 2200 2201 if ((src_object->handle == NULL) && 2202 (src_object->type == OBJT_DEFAULT || 2203 src_object->type == OBJT_SWAP)) { 2204 vm_object_collapse(src_object); 2205 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2206 vm_object_split(src_entry); 2207 src_object = src_entry->object.vm_object; 2208 } 2209 } 2210 2211 vm_object_reference(src_object); 2212 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2213 dst_entry->object.vm_object = src_object; 2214 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2215 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2216 dst_entry->offset = src_entry->offset; 2217 } else { 2218 dst_entry->object.vm_object = NULL; 2219 dst_entry->offset = 0; 2220 } 2221 2222 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2223 dst_entry->end - dst_entry->start, src_entry->start); 2224 } else { 2225 /* 2226 * Of course, wired down pages can't be set copy-on-write. 2227 * Cause wired pages to be copied into the new map by 2228 * simulating faults (the new pages are pageable) 2229 */ 2230 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2231 } 2232 } 2233 2234 /* 2235 * vmspace_fork: 2236 * Create a new process vmspace structure and vm_map 2237 * based on those of an existing process. The new map 2238 * is based on the old map, according to the inheritance 2239 * values on the regions in that map. 2240 * 2241 * The source map must not be locked. 2242 */ 2243 struct vmspace * 2244 vmspace_fork(struct vmspace *vm1) 2245 { 2246 struct vmspace *vm2; 2247 vm_map_t old_map = &vm1->vm_map; 2248 vm_map_t new_map; 2249 vm_map_entry_t old_entry; 2250 vm_map_entry_t new_entry; 2251 vm_object_t object; 2252 2253 GIANT_REQUIRED; 2254 2255 vm_map_lock(old_map); 2256 old_map->infork = 1; 2257 2258 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2259 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2260 (caddr_t) &vm1->vm_endcopy - (caddr_t) &vm1->vm_startcopy); 2261 new_map = &vm2->vm_map; /* XXX */ 2262 new_map->timestamp = 1; 2263 2264 old_entry = old_map->header.next; 2265 2266 while (old_entry != &old_map->header) { 2267 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2268 panic("vm_map_fork: encountered a submap"); 2269 2270 switch (old_entry->inheritance) { 2271 case VM_INHERIT_NONE: 2272 break; 2273 2274 case VM_INHERIT_SHARE: 2275 /* 2276 * Clone the entry, creating the shared object if necessary. 2277 */ 2278 object = old_entry->object.vm_object; 2279 if (object == NULL) { 2280 object = vm_object_allocate(OBJT_DEFAULT, 2281 atop(old_entry->end - old_entry->start)); 2282 old_entry->object.vm_object = object; 2283 old_entry->offset = (vm_offset_t) 0; 2284 } 2285 2286 /* 2287 * Add the reference before calling vm_object_shadow 2288 * to insure that a shadow object is created. 2289 */ 2290 vm_object_reference(object); 2291 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2292 vm_object_shadow(&old_entry->object.vm_object, 2293 &old_entry->offset, 2294 atop(old_entry->end - old_entry->start)); 2295 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2296 /* Transfer the second reference too. */ 2297 vm_object_reference( 2298 old_entry->object.vm_object); 2299 vm_object_deallocate(object); 2300 object = old_entry->object.vm_object; 2301 } 2302 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2303 2304 /* 2305 * Clone the entry, referencing the shared object. 2306 */ 2307 new_entry = vm_map_entry_create(new_map); 2308 *new_entry = *old_entry; 2309 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2310 new_entry->wired_count = 0; 2311 2312 /* 2313 * Insert the entry into the new map -- we know we're 2314 * inserting at the end of the new map. 2315 */ 2316 vm_map_entry_link(new_map, new_map->header.prev, 2317 new_entry); 2318 2319 /* 2320 * Update the physical map 2321 */ 2322 pmap_copy(new_map->pmap, old_map->pmap, 2323 new_entry->start, 2324 (old_entry->end - old_entry->start), 2325 old_entry->start); 2326 break; 2327 2328 case VM_INHERIT_COPY: 2329 /* 2330 * Clone the entry and link into the map. 2331 */ 2332 new_entry = vm_map_entry_create(new_map); 2333 *new_entry = *old_entry; 2334 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2335 new_entry->wired_count = 0; 2336 new_entry->object.vm_object = NULL; 2337 vm_map_entry_link(new_map, new_map->header.prev, 2338 new_entry); 2339 vm_map_copy_entry(old_map, new_map, old_entry, 2340 new_entry); 2341 break; 2342 } 2343 old_entry = old_entry->next; 2344 } 2345 2346 new_map->size = old_map->size; 2347 old_map->infork = 0; 2348 vm_map_unlock(old_map); 2349 2350 return (vm2); 2351 } 2352 2353 int 2354 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 2355 vm_prot_t prot, vm_prot_t max, int cow) 2356 { 2357 vm_map_entry_t prev_entry; 2358 vm_map_entry_t new_stack_entry; 2359 vm_size_t init_ssize; 2360 int rv; 2361 2362 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS) 2363 return (KERN_NO_SPACE); 2364 2365 if (max_ssize < sgrowsiz) 2366 init_ssize = max_ssize; 2367 else 2368 init_ssize = sgrowsiz; 2369 2370 vm_map_lock(map); 2371 2372 /* If addr is already mapped, no go */ 2373 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 2374 vm_map_unlock(map); 2375 return (KERN_NO_SPACE); 2376 } 2377 2378 /* If we would blow our VMEM resource limit, no go */ 2379 if (map->size + init_ssize > 2380 curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 2381 vm_map_unlock(map); 2382 return (KERN_NO_SPACE); 2383 } 2384 2385 /* If we can't accomodate max_ssize in the current mapping, 2386 * no go. However, we need to be aware that subsequent user 2387 * mappings might map into the space we have reserved for 2388 * stack, and currently this space is not protected. 2389 * 2390 * Hopefully we will at least detect this condition 2391 * when we try to grow the stack. 2392 */ 2393 if ((prev_entry->next != &map->header) && 2394 (prev_entry->next->start < addrbos + max_ssize)) { 2395 vm_map_unlock(map); 2396 return (KERN_NO_SPACE); 2397 } 2398 2399 /* We initially map a stack of only init_ssize. We will 2400 * grow as needed later. Since this is to be a grow 2401 * down stack, we map at the top of the range. 2402 * 2403 * Note: we would normally expect prot and max to be 2404 * VM_PROT_ALL, and cow to be 0. Possibly we should 2405 * eliminate these as input parameters, and just 2406 * pass these values here in the insert call. 2407 */ 2408 rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize, 2409 addrbos + max_ssize, prot, max, cow); 2410 2411 /* Now set the avail_ssize amount */ 2412 if (rv == KERN_SUCCESS){ 2413 if (prev_entry != &map->header) 2414 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize); 2415 new_stack_entry = prev_entry->next; 2416 if (new_stack_entry->end != addrbos + max_ssize || 2417 new_stack_entry->start != addrbos + max_ssize - init_ssize) 2418 panic ("Bad entry start/end for new stack entry"); 2419 else 2420 new_stack_entry->avail_ssize = max_ssize - init_ssize; 2421 } 2422 2423 vm_map_unlock(map); 2424 return (rv); 2425 } 2426 2427 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 2428 * desired address is already mapped, or if we successfully grow 2429 * the stack. Also returns KERN_SUCCESS if addr is outside the 2430 * stack range (this is strange, but preserves compatibility with 2431 * the grow function in vm_machdep.c). 2432 */ 2433 int 2434 vm_map_growstack (struct proc *p, vm_offset_t addr) 2435 { 2436 vm_map_entry_t prev_entry; 2437 vm_map_entry_t stack_entry; 2438 vm_map_entry_t new_stack_entry; 2439 struct vmspace *vm = p->p_vmspace; 2440 vm_map_t map = &vm->vm_map; 2441 vm_offset_t end; 2442 int grow_amount; 2443 int rv; 2444 int is_procstack; 2445 2446 GIANT_REQUIRED; 2447 2448 Retry: 2449 vm_map_lock_read(map); 2450 2451 /* If addr is already in the entry range, no need to grow.*/ 2452 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 2453 vm_map_unlock_read(map); 2454 return (KERN_SUCCESS); 2455 } 2456 2457 if ((stack_entry = prev_entry->next) == &map->header) { 2458 vm_map_unlock_read(map); 2459 return (KERN_SUCCESS); 2460 } 2461 if (prev_entry == &map->header) 2462 end = stack_entry->start - stack_entry->avail_ssize; 2463 else 2464 end = prev_entry->end; 2465 2466 /* This next test mimics the old grow function in vm_machdep.c. 2467 * It really doesn't quite make sense, but we do it anyway 2468 * for compatibility. 2469 * 2470 * If not growable stack, return success. This signals the 2471 * caller to proceed as he would normally with normal vm. 2472 */ 2473 if (stack_entry->avail_ssize < 1 || 2474 addr >= stack_entry->start || 2475 addr < stack_entry->start - stack_entry->avail_ssize) { 2476 vm_map_unlock_read(map); 2477 return (KERN_SUCCESS); 2478 } 2479 2480 /* Find the minimum grow amount */ 2481 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 2482 if (grow_amount > stack_entry->avail_ssize) { 2483 vm_map_unlock_read(map); 2484 return (KERN_NO_SPACE); 2485 } 2486 2487 /* If there is no longer enough space between the entries 2488 * nogo, and adjust the available space. Note: this 2489 * should only happen if the user has mapped into the 2490 * stack area after the stack was created, and is 2491 * probably an error. 2492 * 2493 * This also effectively destroys any guard page the user 2494 * might have intended by limiting the stack size. 2495 */ 2496 if (grow_amount > stack_entry->start - end) { 2497 if (vm_map_lock_upgrade(map)) 2498 goto Retry; 2499 2500 stack_entry->avail_ssize = stack_entry->start - end; 2501 2502 vm_map_unlock(map); 2503 return (KERN_NO_SPACE); 2504 } 2505 2506 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 2507 2508 /* If this is the main process stack, see if we're over the 2509 * stack limit. 2510 */ 2511 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2512 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2513 vm_map_unlock_read(map); 2514 return (KERN_NO_SPACE); 2515 } 2516 2517 /* Round up the grow amount modulo SGROWSIZ */ 2518 grow_amount = roundup (grow_amount, sgrowsiz); 2519 if (grow_amount > stack_entry->avail_ssize) { 2520 grow_amount = stack_entry->avail_ssize; 2521 } 2522 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2523 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2524 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 2525 ctob(vm->vm_ssize); 2526 } 2527 2528 /* If we would blow our VMEM resource limit, no go */ 2529 if (map->size + grow_amount > 2530 curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 2531 vm_map_unlock_read(map); 2532 return (KERN_NO_SPACE); 2533 } 2534 2535 if (vm_map_lock_upgrade(map)) 2536 goto Retry; 2537 2538 /* Get the preliminary new entry start value */ 2539 addr = stack_entry->start - grow_amount; 2540 2541 /* If this puts us into the previous entry, cut back our growth 2542 * to the available space. Also, see the note above. 2543 */ 2544 if (addr < end) { 2545 stack_entry->avail_ssize = stack_entry->start - end; 2546 addr = end; 2547 } 2548 2549 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 2550 VM_PROT_ALL, 2551 VM_PROT_ALL, 2552 0); 2553 2554 /* Adjust the available stack space by the amount we grew. */ 2555 if (rv == KERN_SUCCESS) { 2556 if (prev_entry != &map->header) 2557 vm_map_clip_end(map, prev_entry, addr); 2558 new_stack_entry = prev_entry->next; 2559 if (new_stack_entry->end != stack_entry->start || 2560 new_stack_entry->start != addr) 2561 panic ("Bad stack grow start/end in new stack entry"); 2562 else { 2563 new_stack_entry->avail_ssize = stack_entry->avail_ssize - 2564 (new_stack_entry->end - 2565 new_stack_entry->start); 2566 if (is_procstack) 2567 vm->vm_ssize += btoc(new_stack_entry->end - 2568 new_stack_entry->start); 2569 } 2570 } 2571 2572 vm_map_unlock(map); 2573 return (rv); 2574 } 2575 2576 /* 2577 * Unshare the specified VM space for exec. If other processes are 2578 * mapped to it, then create a new one. The new vmspace is null. 2579 */ 2580 void 2581 vmspace_exec(struct proc *p) 2582 { 2583 struct vmspace *oldvmspace = p->p_vmspace; 2584 struct vmspace *newvmspace; 2585 vm_map_t map = &p->p_vmspace->vm_map; 2586 2587 GIANT_REQUIRED; 2588 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 2589 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 2590 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy); 2591 /* 2592 * This code is written like this for prototype purposes. The 2593 * goal is to avoid running down the vmspace here, but let the 2594 * other process's that are still using the vmspace to finally 2595 * run it down. Even though there is little or no chance of blocking 2596 * here, it is a good idea to keep this form for future mods. 2597 */ 2598 p->p_vmspace = newvmspace; 2599 pmap_pinit2(vmspace_pmap(newvmspace)); 2600 vmspace_free(oldvmspace); 2601 if (p == curthread->td_proc) /* XXXKSE ? */ 2602 pmap_activate(curthread); 2603 } 2604 2605 /* 2606 * Unshare the specified VM space for forcing COW. This 2607 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 2608 */ 2609 void 2610 vmspace_unshare(struct proc *p) 2611 { 2612 struct vmspace *oldvmspace = p->p_vmspace; 2613 struct vmspace *newvmspace; 2614 2615 GIANT_REQUIRED; 2616 if (oldvmspace->vm_refcnt == 1) 2617 return; 2618 newvmspace = vmspace_fork(oldvmspace); 2619 p->p_vmspace = newvmspace; 2620 pmap_pinit2(vmspace_pmap(newvmspace)); 2621 vmspace_free(oldvmspace); 2622 if (p == curthread->td_proc) /* XXXKSE ? */ 2623 pmap_activate(curthread); 2624 } 2625 2626 /* 2627 * vm_map_lookup: 2628 * 2629 * Finds the VM object, offset, and 2630 * protection for a given virtual address in the 2631 * specified map, assuming a page fault of the 2632 * type specified. 2633 * 2634 * Leaves the map in question locked for read; return 2635 * values are guaranteed until a vm_map_lookup_done 2636 * call is performed. Note that the map argument 2637 * is in/out; the returned map must be used in 2638 * the call to vm_map_lookup_done. 2639 * 2640 * A handle (out_entry) is returned for use in 2641 * vm_map_lookup_done, to make that fast. 2642 * 2643 * If a lookup is requested with "write protection" 2644 * specified, the map may be changed to perform virtual 2645 * copying operations, although the data referenced will 2646 * remain the same. 2647 */ 2648 int 2649 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 2650 vm_offset_t vaddr, 2651 vm_prot_t fault_typea, 2652 vm_map_entry_t *out_entry, /* OUT */ 2653 vm_object_t *object, /* OUT */ 2654 vm_pindex_t *pindex, /* OUT */ 2655 vm_prot_t *out_prot, /* OUT */ 2656 boolean_t *wired) /* OUT */ 2657 { 2658 vm_map_entry_t entry; 2659 vm_map_t map = *var_map; 2660 vm_prot_t prot; 2661 vm_prot_t fault_type = fault_typea; 2662 2663 RetryLookup:; 2664 /* 2665 * Lookup the faulting address. 2666 */ 2667 2668 vm_map_lock_read(map); 2669 #define RETURN(why) \ 2670 { \ 2671 vm_map_unlock_read(map); \ 2672 return (why); \ 2673 } 2674 2675 /* 2676 * If the map has an interesting hint, try it before calling full 2677 * blown lookup routine. 2678 */ 2679 entry = map->root; 2680 *out_entry = entry; 2681 if (entry == NULL || 2682 (vaddr < entry->start) || (vaddr >= entry->end)) { 2683 /* 2684 * Entry was either not a valid hint, or the vaddr was not 2685 * contained in the entry, so do a full lookup. 2686 */ 2687 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 2688 RETURN(KERN_INVALID_ADDRESS); 2689 2690 entry = *out_entry; 2691 } 2692 2693 /* 2694 * Handle submaps. 2695 */ 2696 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2697 vm_map_t old_map = map; 2698 2699 *var_map = map = entry->object.sub_map; 2700 vm_map_unlock_read(old_map); 2701 goto RetryLookup; 2702 } 2703 2704 /* 2705 * Check whether this task is allowed to have this page. 2706 * Note the special case for MAP_ENTRY_COW 2707 * pages with an override. This is to implement a forced 2708 * COW for debuggers. 2709 */ 2710 if (fault_type & VM_PROT_OVERRIDE_WRITE) 2711 prot = entry->max_protection; 2712 else 2713 prot = entry->protection; 2714 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 2715 if ((fault_type & prot) != fault_type) { 2716 RETURN(KERN_PROTECTION_FAILURE); 2717 } 2718 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 2719 (entry->eflags & MAP_ENTRY_COW) && 2720 (fault_type & VM_PROT_WRITE) && 2721 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 2722 RETURN(KERN_PROTECTION_FAILURE); 2723 } 2724 2725 /* 2726 * If this page is not pageable, we have to get it for all possible 2727 * accesses. 2728 */ 2729 *wired = (entry->wired_count != 0); 2730 if (*wired) 2731 prot = fault_type = entry->protection; 2732 2733 /* 2734 * If the entry was copy-on-write, we either ... 2735 */ 2736 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2737 /* 2738 * If we want to write the page, we may as well handle that 2739 * now since we've got the map locked. 2740 * 2741 * If we don't need to write the page, we just demote the 2742 * permissions allowed. 2743 */ 2744 if (fault_type & VM_PROT_WRITE) { 2745 /* 2746 * Make a new object, and place it in the object 2747 * chain. Note that no new references have appeared 2748 * -- one just moved from the map to the new 2749 * object. 2750 */ 2751 if (vm_map_lock_upgrade(map)) 2752 goto RetryLookup; 2753 2754 vm_object_shadow( 2755 &entry->object.vm_object, 2756 &entry->offset, 2757 atop(entry->end - entry->start)); 2758 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2759 2760 vm_map_lock_downgrade(map); 2761 } else { 2762 /* 2763 * We're attempting to read a copy-on-write page -- 2764 * don't allow writes. 2765 */ 2766 prot &= ~VM_PROT_WRITE; 2767 } 2768 } 2769 2770 /* 2771 * Create an object if necessary. 2772 */ 2773 if (entry->object.vm_object == NULL && 2774 !map->system_map) { 2775 if (vm_map_lock_upgrade(map)) 2776 goto RetryLookup; 2777 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 2778 atop(entry->end - entry->start)); 2779 entry->offset = 0; 2780 vm_map_lock_downgrade(map); 2781 } 2782 2783 /* 2784 * Return the object/offset from this entry. If the entry was 2785 * copy-on-write or empty, it has been fixed up. 2786 */ 2787 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 2788 *object = entry->object.vm_object; 2789 2790 /* 2791 * Return whether this is the only map sharing this data. 2792 */ 2793 *out_prot = prot; 2794 return (KERN_SUCCESS); 2795 2796 #undef RETURN 2797 } 2798 2799 /* 2800 * vm_map_lookup_done: 2801 * 2802 * Releases locks acquired by a vm_map_lookup 2803 * (according to the handle returned by that lookup). 2804 */ 2805 void 2806 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 2807 { 2808 /* 2809 * Unlock the main-level map 2810 */ 2811 vm_map_unlock_read(map); 2812 } 2813 2814 #ifdef ENABLE_VFS_IOOPT 2815 /* 2816 * Experimental support for zero-copy I/O 2817 * 2818 * Implement uiomove with VM operations. This handles (and collateral changes) 2819 * support every combination of source object modification, and COW type 2820 * operations. 2821 */ 2822 int 2823 vm_uiomove( 2824 vm_map_t mapa, 2825 vm_object_t srcobject, 2826 off_t cp, 2827 int cnta, 2828 vm_offset_t uaddra, 2829 int *npages) 2830 { 2831 vm_map_t map; 2832 vm_object_t first_object, oldobject, object; 2833 vm_map_entry_t entry; 2834 vm_prot_t prot; 2835 boolean_t wired; 2836 int tcnt, rv; 2837 vm_offset_t uaddr, start, end, tend; 2838 vm_pindex_t first_pindex, oindex; 2839 vm_size_t osize; 2840 off_t ooffset; 2841 int cnt; 2842 2843 GIANT_REQUIRED; 2844 2845 if (npages) 2846 *npages = 0; 2847 2848 cnt = cnta; 2849 uaddr = uaddra; 2850 2851 while (cnt > 0) { 2852 map = mapa; 2853 2854 if ((vm_map_lookup(&map, uaddr, 2855 VM_PROT_READ, &entry, &first_object, 2856 &first_pindex, &prot, &wired)) != KERN_SUCCESS) { 2857 return EFAULT; 2858 } 2859 2860 vm_map_clip_start(map, entry, uaddr); 2861 2862 tcnt = cnt; 2863 tend = uaddr + tcnt; 2864 if (tend > entry->end) { 2865 tcnt = entry->end - uaddr; 2866 tend = entry->end; 2867 } 2868 2869 vm_map_clip_end(map, entry, tend); 2870 2871 start = entry->start; 2872 end = entry->end; 2873 2874 osize = atop(tcnt); 2875 2876 oindex = OFF_TO_IDX(cp); 2877 if (npages) { 2878 vm_size_t idx; 2879 for (idx = 0; idx < osize; idx++) { 2880 vm_page_t m; 2881 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) { 2882 vm_map_lookup_done(map, entry); 2883 return 0; 2884 } 2885 /* 2886 * disallow busy or invalid pages, but allow 2887 * m->busy pages if they are entirely valid. 2888 */ 2889 if ((m->flags & PG_BUSY) || 2890 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) { 2891 vm_map_lookup_done(map, entry); 2892 return 0; 2893 } 2894 } 2895 } 2896 2897 /* 2898 * If we are changing an existing map entry, just redirect 2899 * the object, and change mappings. 2900 */ 2901 if ((first_object->type == OBJT_VNODE) && 2902 ((oldobject = entry->object.vm_object) == first_object)) { 2903 2904 if ((entry->offset != cp) || (oldobject != srcobject)) { 2905 /* 2906 * Remove old window into the file 2907 */ 2908 pmap_remove (map->pmap, uaddr, tend); 2909 2910 /* 2911 * Force copy on write for mmaped regions 2912 */ 2913 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2914 2915 /* 2916 * Point the object appropriately 2917 */ 2918 if (oldobject != srcobject) { 2919 2920 /* 2921 * Set the object optimization hint flag 2922 */ 2923 vm_object_set_flag(srcobject, OBJ_OPT); 2924 vm_object_reference(srcobject); 2925 entry->object.vm_object = srcobject; 2926 2927 if (oldobject) { 2928 vm_object_deallocate(oldobject); 2929 } 2930 } 2931 2932 entry->offset = cp; 2933 map->timestamp++; 2934 } else { 2935 pmap_remove (map->pmap, uaddr, tend); 2936 } 2937 2938 } else if ((first_object->ref_count == 1) && 2939 (first_object->size == osize) && 2940 ((first_object->type == OBJT_DEFAULT) || 2941 (first_object->type == OBJT_SWAP)) ) { 2942 2943 oldobject = first_object->backing_object; 2944 2945 if ((first_object->backing_object_offset != cp) || 2946 (oldobject != srcobject)) { 2947 /* 2948 * Remove old window into the file 2949 */ 2950 pmap_remove (map->pmap, uaddr, tend); 2951 2952 /* 2953 * Remove unneeded old pages 2954 */ 2955 vm_object_page_remove(first_object, 0, 0, 0); 2956 2957 /* 2958 * Invalidate swap space 2959 */ 2960 if (first_object->type == OBJT_SWAP) { 2961 swap_pager_freespace(first_object, 2962 0, 2963 first_object->size); 2964 } 2965 2966 /* 2967 * Force copy on write for mmaped regions 2968 */ 2969 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2970 2971 /* 2972 * Point the object appropriately 2973 */ 2974 if (oldobject != srcobject) { 2975 /* 2976 * Set the object optimization hint flag 2977 */ 2978 vm_object_set_flag(srcobject, OBJ_OPT); 2979 vm_object_reference(srcobject); 2980 2981 if (oldobject) { 2982 TAILQ_REMOVE(&oldobject->shadow_head, 2983 first_object, shadow_list); 2984 oldobject->shadow_count--; 2985 /* XXX bump generation? */ 2986 vm_object_deallocate(oldobject); 2987 } 2988 2989 TAILQ_INSERT_TAIL(&srcobject->shadow_head, 2990 first_object, shadow_list); 2991 srcobject->shadow_count++; 2992 /* XXX bump generation? */ 2993 2994 first_object->backing_object = srcobject; 2995 } 2996 first_object->backing_object_offset = cp; 2997 map->timestamp++; 2998 } else { 2999 pmap_remove (map->pmap, uaddr, tend); 3000 } 3001 /* 3002 * Otherwise, we have to do a logical mmap. 3003 */ 3004 } else { 3005 3006 vm_object_set_flag(srcobject, OBJ_OPT); 3007 vm_object_reference(srcobject); 3008 3009 pmap_remove (map->pmap, uaddr, tend); 3010 3011 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 3012 vm_map_lock_upgrade(map); 3013 3014 if (entry == &map->header) { 3015 map->first_free = &map->header; 3016 } else if (map->first_free->start >= start) { 3017 map->first_free = entry->prev; 3018 } 3019 3020 vm_map_entry_delete(map, entry); 3021 3022 object = srcobject; 3023 ooffset = cp; 3024 3025 rv = vm_map_insert(map, object, ooffset, start, tend, 3026 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE); 3027 3028 if (rv != KERN_SUCCESS) 3029 panic("vm_uiomove: could not insert new entry: %d", rv); 3030 } 3031 3032 /* 3033 * Map the window directly, if it is already in memory 3034 */ 3035 pmap_object_init_pt(map->pmap, uaddr, 3036 srcobject, oindex, tcnt, 0); 3037 3038 map->timestamp++; 3039 vm_map_unlock(map); 3040 3041 cnt -= tcnt; 3042 uaddr += tcnt; 3043 cp += tcnt; 3044 if (npages) 3045 *npages += osize; 3046 } 3047 return 0; 3048 } 3049 #endif 3050 3051 #include "opt_ddb.h" 3052 #ifdef DDB 3053 #include <sys/kernel.h> 3054 3055 #include <ddb/ddb.h> 3056 3057 /* 3058 * vm_map_print: [ debug ] 3059 */ 3060 DB_SHOW_COMMAND(map, vm_map_print) 3061 { 3062 static int nlines; 3063 /* XXX convert args. */ 3064 vm_map_t map = (vm_map_t)addr; 3065 boolean_t full = have_addr; 3066 3067 vm_map_entry_t entry; 3068 3069 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3070 (void *)map, 3071 (void *)map->pmap, map->nentries, map->timestamp); 3072 nlines++; 3073 3074 if (!full && db_indent) 3075 return; 3076 3077 db_indent += 2; 3078 for (entry = map->header.next; entry != &map->header; 3079 entry = entry->next) { 3080 db_iprintf("map entry %p: start=%p, end=%p\n", 3081 (void *)entry, (void *)entry->start, (void *)entry->end); 3082 nlines++; 3083 { 3084 static char *inheritance_name[4] = 3085 {"share", "copy", "none", "donate_copy"}; 3086 3087 db_iprintf(" prot=%x/%x/%s", 3088 entry->protection, 3089 entry->max_protection, 3090 inheritance_name[(int)(unsigned char)entry->inheritance]); 3091 if (entry->wired_count != 0) 3092 db_printf(", wired"); 3093 } 3094 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3095 /* XXX no %qd in kernel. Truncate entry->offset. */ 3096 db_printf(", share=%p, offset=0x%lx\n", 3097 (void *)entry->object.sub_map, 3098 (long)entry->offset); 3099 nlines++; 3100 if ((entry->prev == &map->header) || 3101 (entry->prev->object.sub_map != 3102 entry->object.sub_map)) { 3103 db_indent += 2; 3104 vm_map_print((db_expr_t)(intptr_t) 3105 entry->object.sub_map, 3106 full, 0, (char *)0); 3107 db_indent -= 2; 3108 } 3109 } else { 3110 /* XXX no %qd in kernel. Truncate entry->offset. */ 3111 db_printf(", object=%p, offset=0x%lx", 3112 (void *)entry->object.vm_object, 3113 (long)entry->offset); 3114 if (entry->eflags & MAP_ENTRY_COW) 3115 db_printf(", copy (%s)", 3116 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3117 db_printf("\n"); 3118 nlines++; 3119 3120 if ((entry->prev == &map->header) || 3121 (entry->prev->object.vm_object != 3122 entry->object.vm_object)) { 3123 db_indent += 2; 3124 vm_object_print((db_expr_t)(intptr_t) 3125 entry->object.vm_object, 3126 full, 0, (char *)0); 3127 nlines += 4; 3128 db_indent -= 2; 3129 } 3130 } 3131 } 3132 db_indent -= 2; 3133 if (db_indent == 0) 3134 nlines = 0; 3135 } 3136 3137 3138 DB_SHOW_COMMAND(procvm, procvm) 3139 { 3140 struct proc *p; 3141 3142 if (have_addr) { 3143 p = (struct proc *) addr; 3144 } else { 3145 p = curproc; 3146 } 3147 3148 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3149 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3150 (void *)vmspace_pmap(p->p_vmspace)); 3151 3152 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3153 } 3154 3155 #endif /* DDB */ 3156