1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/racct.h> 81 #include <sys/resourcevar.h> 82 #include <sys/rwlock.h> 83 #include <sys/file.h> 84 #include <sys/sysctl.h> 85 #include <sys/sysent.h> 86 #include <sys/shm.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_pageout.h> 94 #include <vm/vm_object.h> 95 #include <vm/vm_pager.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_extern.h> 98 #include <vm/vnode_pager.h> 99 #include <vm/swap_pager.h> 100 #include <vm/uma.h> 101 102 /* 103 * Virtual memory maps provide for the mapping, protection, 104 * and sharing of virtual memory objects. In addition, 105 * this module provides for an efficient virtual copy of 106 * memory from one map to another. 107 * 108 * Synchronization is required prior to most operations. 109 * 110 * Maps consist of an ordered doubly-linked list of simple 111 * entries; a self-adjusting binary search tree of these 112 * entries is used to speed up lookups. 113 * 114 * Since portions of maps are specified by start/end addresses, 115 * which may not align with existing map entries, all 116 * routines merely "clip" entries to these start/end values. 117 * [That is, an entry is split into two, bordering at a 118 * start or end value.] Note that these clippings may not 119 * always be necessary (as the two resulting entries are then 120 * not changed); however, the clipping is done for convenience. 121 * 122 * As mentioned above, virtual copy operations are performed 123 * by copying VM object references from one map to 124 * another, and then marking both regions as copy-on-write. 125 */ 126 127 static struct mtx map_sleep_mtx; 128 static uma_zone_t mapentzone; 129 static uma_zone_t kmapentzone; 130 static uma_zone_t mapzone; 131 static uma_zone_t vmspace_zone; 132 static int vmspace_zinit(void *mem, int size, int flags); 133 static int vm_map_zinit(void *mem, int ize, int flags); 134 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 135 vm_offset_t max); 136 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 137 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 138 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 139 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 140 vm_map_entry_t gap_entry); 141 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 142 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 143 #ifdef INVARIANTS 144 static void vm_map_zdtor(void *mem, int size, void *arg); 145 static void vmspace_zdtor(void *mem, int size, void *arg); 146 #endif 147 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 148 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 149 int cow); 150 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 151 vm_offset_t failed_addr); 152 153 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 154 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 155 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 156 157 /* 158 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 159 * stable. 160 */ 161 #define PROC_VMSPACE_LOCK(p) do { } while (0) 162 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 163 164 /* 165 * VM_MAP_RANGE_CHECK: [ internal use only ] 166 * 167 * Asserts that the starting and ending region 168 * addresses fall within the valid range of the map. 169 */ 170 #define VM_MAP_RANGE_CHECK(map, start, end) \ 171 { \ 172 if (start < vm_map_min(map)) \ 173 start = vm_map_min(map); \ 174 if (end > vm_map_max(map)) \ 175 end = vm_map_max(map); \ 176 if (start > end) \ 177 start = end; \ 178 } 179 180 /* 181 * vm_map_startup: 182 * 183 * Initialize the vm_map module. Must be called before 184 * any other vm_map routines. 185 * 186 * Map and entry structures are allocated from the general 187 * purpose memory pool with some exceptions: 188 * 189 * - The kernel map and kmem submap are allocated statically. 190 * - Kernel map entries are allocated out of a static pool. 191 * 192 * These restrictions are necessary since malloc() uses the 193 * maps and requires map entries. 194 */ 195 196 void 197 vm_map_startup(void) 198 { 199 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 200 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 201 #ifdef INVARIANTS 202 vm_map_zdtor, 203 #else 204 NULL, 205 #endif 206 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 207 uma_prealloc(mapzone, MAX_KMAP); 208 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 209 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 210 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 211 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 212 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 213 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 214 #ifdef INVARIANTS 215 vmspace_zdtor, 216 #else 217 NULL, 218 #endif 219 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 220 } 221 222 static int 223 vmspace_zinit(void *mem, int size, int flags) 224 { 225 struct vmspace *vm; 226 227 vm = (struct vmspace *)mem; 228 229 vm->vm_map.pmap = NULL; 230 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 231 PMAP_LOCK_INIT(vmspace_pmap(vm)); 232 return (0); 233 } 234 235 static int 236 vm_map_zinit(void *mem, int size, int flags) 237 { 238 vm_map_t map; 239 240 map = (vm_map_t)mem; 241 memset(map, 0, sizeof(*map)); 242 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 243 sx_init(&map->lock, "vm map (user)"); 244 return (0); 245 } 246 247 #ifdef INVARIANTS 248 static void 249 vmspace_zdtor(void *mem, int size, void *arg) 250 { 251 struct vmspace *vm; 252 253 vm = (struct vmspace *)mem; 254 255 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 256 } 257 static void 258 vm_map_zdtor(void *mem, int size, void *arg) 259 { 260 vm_map_t map; 261 262 map = (vm_map_t)mem; 263 KASSERT(map->nentries == 0, 264 ("map %p nentries == %d on free.", 265 map, map->nentries)); 266 KASSERT(map->size == 0, 267 ("map %p size == %lu on free.", 268 map, (unsigned long)map->size)); 269 } 270 #endif /* INVARIANTS */ 271 272 /* 273 * Allocate a vmspace structure, including a vm_map and pmap, 274 * and initialize those structures. The refcnt is set to 1. 275 * 276 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 277 */ 278 struct vmspace * 279 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 280 { 281 struct vmspace *vm; 282 283 vm = uma_zalloc(vmspace_zone, M_WAITOK); 284 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 285 if (!pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 #ifdef RACCT 304 static void 305 vmspace_container_reset(struct proc *p) 306 { 307 308 PROC_LOCK(p); 309 racct_set(p, RACCT_DATA, 0); 310 racct_set(p, RACCT_STACK, 0); 311 racct_set(p, RACCT_RSS, 0); 312 racct_set(p, RACCT_MEMLOCK, 0); 313 racct_set(p, RACCT_VMEM, 0); 314 PROC_UNLOCK(p); 315 } 316 #endif 317 318 static inline void 319 vmspace_dofree(struct vmspace *vm) 320 { 321 322 CTR1(KTR_VM, "vmspace_free: %p", vm); 323 324 /* 325 * Make sure any SysV shm is freed, it might not have been in 326 * exit1(). 327 */ 328 shmexit(vm); 329 330 /* 331 * Lock the map, to wait out all other references to it. 332 * Delete all of the mappings and pages they hold, then call 333 * the pmap module to reclaim anything left. 334 */ 335 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 336 vm_map_max(&vm->vm_map)); 337 338 pmap_release(vmspace_pmap(vm)); 339 vm->vm_map.pmap = NULL; 340 uma_zfree(vmspace_zone, vm); 341 } 342 343 void 344 vmspace_free(struct vmspace *vm) 345 { 346 347 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 348 "vmspace_free() called"); 349 350 if (vm->vm_refcnt == 0) 351 panic("vmspace_free: attempt to free already freed vmspace"); 352 353 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 354 vmspace_dofree(vm); 355 } 356 357 void 358 vmspace_exitfree(struct proc *p) 359 { 360 struct vmspace *vm; 361 362 PROC_VMSPACE_LOCK(p); 363 vm = p->p_vmspace; 364 p->p_vmspace = NULL; 365 PROC_VMSPACE_UNLOCK(p); 366 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 367 vmspace_free(vm); 368 } 369 370 void 371 vmspace_exit(struct thread *td) 372 { 373 int refcnt; 374 struct vmspace *vm; 375 struct proc *p; 376 377 /* 378 * Release user portion of address space. 379 * This releases references to vnodes, 380 * which could cause I/O if the file has been unlinked. 381 * Need to do this early enough that we can still sleep. 382 * 383 * The last exiting process to reach this point releases as 384 * much of the environment as it can. vmspace_dofree() is the 385 * slower fallback in case another process had a temporary 386 * reference to the vmspace. 387 */ 388 389 p = td->td_proc; 390 vm = p->p_vmspace; 391 atomic_add_int(&vmspace0.vm_refcnt, 1); 392 refcnt = vm->vm_refcnt; 393 do { 394 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 395 /* Switch now since other proc might free vmspace */ 396 PROC_VMSPACE_LOCK(p); 397 p->p_vmspace = &vmspace0; 398 PROC_VMSPACE_UNLOCK(p); 399 pmap_activate(td); 400 } 401 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1)); 402 if (refcnt == 1) { 403 if (p->p_vmspace != vm) { 404 /* vmspace not yet freed, switch back */ 405 PROC_VMSPACE_LOCK(p); 406 p->p_vmspace = vm; 407 PROC_VMSPACE_UNLOCK(p); 408 pmap_activate(td); 409 } 410 pmap_remove_pages(vmspace_pmap(vm)); 411 /* Switch now since this proc will free vmspace */ 412 PROC_VMSPACE_LOCK(p); 413 p->p_vmspace = &vmspace0; 414 PROC_VMSPACE_UNLOCK(p); 415 pmap_activate(td); 416 vmspace_dofree(vm); 417 } 418 #ifdef RACCT 419 if (racct_enable) 420 vmspace_container_reset(p); 421 #endif 422 } 423 424 /* Acquire reference to vmspace owned by another process. */ 425 426 struct vmspace * 427 vmspace_acquire_ref(struct proc *p) 428 { 429 struct vmspace *vm; 430 int refcnt; 431 432 PROC_VMSPACE_LOCK(p); 433 vm = p->p_vmspace; 434 if (vm == NULL) { 435 PROC_VMSPACE_UNLOCK(p); 436 return (NULL); 437 } 438 refcnt = vm->vm_refcnt; 439 do { 440 if (refcnt <= 0) { /* Avoid 0->1 transition */ 441 PROC_VMSPACE_UNLOCK(p); 442 return (NULL); 443 } 444 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1)); 445 if (vm != p->p_vmspace) { 446 PROC_VMSPACE_UNLOCK(p); 447 vmspace_free(vm); 448 return (NULL); 449 } 450 PROC_VMSPACE_UNLOCK(p); 451 return (vm); 452 } 453 454 /* 455 * Switch between vmspaces in an AIO kernel process. 456 * 457 * The new vmspace is either the vmspace of a user process obtained 458 * from an active AIO request or the initial vmspace of the AIO kernel 459 * process (when it is idling). Because user processes will block to 460 * drain any active AIO requests before proceeding in exit() or 461 * execve(), the reference count for vmspaces from AIO requests can 462 * never be 0. Similarly, AIO kernel processes hold an extra 463 * reference on their initial vmspace for the life of the process. As 464 * a result, the 'newvm' vmspace always has a non-zero reference 465 * count. This permits an additional reference on 'newvm' to be 466 * acquired via a simple atomic increment rather than the loop in 467 * vmspace_acquire_ref() above. 468 */ 469 void 470 vmspace_switch_aio(struct vmspace *newvm) 471 { 472 struct vmspace *oldvm; 473 474 /* XXX: Need some way to assert that this is an aio daemon. */ 475 476 KASSERT(newvm->vm_refcnt > 0, 477 ("vmspace_switch_aio: newvm unreferenced")); 478 479 oldvm = curproc->p_vmspace; 480 if (oldvm == newvm) 481 return; 482 483 /* 484 * Point to the new address space and refer to it. 485 */ 486 curproc->p_vmspace = newvm; 487 atomic_add_int(&newvm->vm_refcnt, 1); 488 489 /* Activate the new mapping. */ 490 pmap_activate(curthread); 491 492 vmspace_free(oldvm); 493 } 494 495 void 496 _vm_map_lock(vm_map_t map, const char *file, int line) 497 { 498 499 if (map->system_map) 500 mtx_lock_flags_(&map->system_mtx, 0, file, line); 501 else 502 sx_xlock_(&map->lock, file, line); 503 map->timestamp++; 504 } 505 506 void 507 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 508 { 509 vm_object_t object, object1; 510 struct vnode *vp; 511 512 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 513 return; 514 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 515 ("Submap with execs")); 516 object = entry->object.vm_object; 517 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 518 VM_OBJECT_RLOCK(object); 519 while ((object1 = object->backing_object) != NULL) { 520 VM_OBJECT_RLOCK(object1); 521 VM_OBJECT_RUNLOCK(object); 522 object = object1; 523 } 524 525 vp = NULL; 526 if (object->type == OBJT_DEAD) { 527 /* 528 * For OBJT_DEAD objects, v_writecount was handled in 529 * vnode_pager_dealloc(). 530 */ 531 } else if (object->type == OBJT_VNODE) { 532 vp = object->handle; 533 } else if (object->type == OBJT_SWAP) { 534 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0, 535 ("vm_map_entry_set_vnode_text: swap and !TMPFS " 536 "entry %p, object %p, add %d", entry, object, add)); 537 /* 538 * Tmpfs VREG node, which was reclaimed, has 539 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS. In 540 * this case there is no v_writecount to adjust. 541 */ 542 if ((object->flags & OBJ_TMPFS) != 0) 543 vp = object->un_pager.swp.swp_tmpfs; 544 } else { 545 KASSERT(0, 546 ("vm_map_entry_set_vnode_text: wrong object type, " 547 "entry %p, object %p, add %d", entry, object, add)); 548 } 549 if (vp != NULL) { 550 if (add) { 551 VOP_SET_TEXT_CHECKED(vp); 552 VM_OBJECT_RUNLOCK(object); 553 } else { 554 vhold(vp); 555 VM_OBJECT_RUNLOCK(object); 556 vn_lock(vp, LK_SHARED | LK_RETRY); 557 VOP_UNSET_TEXT_CHECKED(vp); 558 VOP_UNLOCK(vp, 0); 559 vdrop(vp); 560 } 561 } else { 562 VM_OBJECT_RUNLOCK(object); 563 } 564 } 565 566 static void 567 vm_map_process_deferred(void) 568 { 569 struct thread *td; 570 vm_map_entry_t entry, next; 571 vm_object_t object; 572 573 td = curthread; 574 entry = td->td_map_def_user; 575 td->td_map_def_user = NULL; 576 while (entry != NULL) { 577 next = entry->next; 578 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT | 579 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT | 580 MAP_ENTRY_VN_EXEC)); 581 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) { 582 /* 583 * Decrement the object's writemappings and 584 * possibly the vnode's v_writecount. 585 */ 586 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 587 ("Submap with writecount")); 588 object = entry->object.vm_object; 589 KASSERT(object != NULL, ("No object for writecount")); 590 vm_pager_release_writecount(object, entry->start, 591 entry->end); 592 } 593 vm_map_entry_set_vnode_text(entry, false); 594 vm_map_entry_deallocate(entry, FALSE); 595 entry = next; 596 } 597 } 598 599 void 600 _vm_map_unlock(vm_map_t map, const char *file, int line) 601 { 602 603 if (map->system_map) 604 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 605 else { 606 sx_xunlock_(&map->lock, file, line); 607 vm_map_process_deferred(); 608 } 609 } 610 611 void 612 _vm_map_lock_read(vm_map_t map, const char *file, int line) 613 { 614 615 if (map->system_map) 616 mtx_lock_flags_(&map->system_mtx, 0, file, line); 617 else 618 sx_slock_(&map->lock, file, line); 619 } 620 621 void 622 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 623 { 624 625 if (map->system_map) 626 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 627 else { 628 sx_sunlock_(&map->lock, file, line); 629 vm_map_process_deferred(); 630 } 631 } 632 633 int 634 _vm_map_trylock(vm_map_t map, const char *file, int line) 635 { 636 int error; 637 638 error = map->system_map ? 639 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 640 !sx_try_xlock_(&map->lock, file, line); 641 if (error == 0) 642 map->timestamp++; 643 return (error == 0); 644 } 645 646 int 647 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 648 { 649 int error; 650 651 error = map->system_map ? 652 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 653 !sx_try_slock_(&map->lock, file, line); 654 return (error == 0); 655 } 656 657 /* 658 * _vm_map_lock_upgrade: [ internal use only ] 659 * 660 * Tries to upgrade a read (shared) lock on the specified map to a write 661 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 662 * non-zero value if the upgrade fails. If the upgrade fails, the map is 663 * returned without a read or write lock held. 664 * 665 * Requires that the map be read locked. 666 */ 667 int 668 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 669 { 670 unsigned int last_timestamp; 671 672 if (map->system_map) { 673 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 674 } else { 675 if (!sx_try_upgrade_(&map->lock, file, line)) { 676 last_timestamp = map->timestamp; 677 sx_sunlock_(&map->lock, file, line); 678 vm_map_process_deferred(); 679 /* 680 * If the map's timestamp does not change while the 681 * map is unlocked, then the upgrade succeeds. 682 */ 683 sx_xlock_(&map->lock, file, line); 684 if (last_timestamp != map->timestamp) { 685 sx_xunlock_(&map->lock, file, line); 686 return (1); 687 } 688 } 689 } 690 map->timestamp++; 691 return (0); 692 } 693 694 void 695 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 696 { 697 698 if (map->system_map) { 699 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 700 } else 701 sx_downgrade_(&map->lock, file, line); 702 } 703 704 /* 705 * vm_map_locked: 706 * 707 * Returns a non-zero value if the caller holds a write (exclusive) lock 708 * on the specified map and the value "0" otherwise. 709 */ 710 int 711 vm_map_locked(vm_map_t map) 712 { 713 714 if (map->system_map) 715 return (mtx_owned(&map->system_mtx)); 716 else 717 return (sx_xlocked(&map->lock)); 718 } 719 720 #ifdef INVARIANTS 721 static void 722 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 723 { 724 725 if (map->system_map) 726 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 727 else 728 sx_assert_(&map->lock, SA_XLOCKED, file, line); 729 } 730 731 #define VM_MAP_ASSERT_LOCKED(map) \ 732 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 733 734 #ifdef DIAGNOSTIC 735 static int enable_vmmap_check = 1; 736 #else 737 static int enable_vmmap_check = 0; 738 #endif 739 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 740 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 741 742 static void 743 _vm_map_assert_consistent(vm_map_t map) 744 { 745 vm_map_entry_t child, entry, prev; 746 vm_size_t max_left, max_right; 747 748 if (!enable_vmmap_check) 749 return; 750 751 for (prev = &map->header; (entry = prev->next) != &map->header; 752 prev = entry) { 753 KASSERT(prev->end <= entry->start, 754 ("map %p prev->end = %jx, start = %jx", map, 755 (uintmax_t)prev->end, (uintmax_t)entry->start)); 756 KASSERT(entry->start < entry->end, 757 ("map %p start = %jx, end = %jx", map, 758 (uintmax_t)entry->start, (uintmax_t)entry->end)); 759 KASSERT(entry->end <= entry->next->start, 760 ("map %p end = %jx, next->start = %jx", map, 761 (uintmax_t)entry->end, (uintmax_t)entry->next->start)); 762 KASSERT(entry->left == NULL || 763 entry->left->start < entry->start, 764 ("map %p left->start = %jx, start = %jx", map, 765 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 766 KASSERT(entry->right == NULL || 767 entry->start < entry->right->start, 768 ("map %p start = %jx, right->start = %jx", map, 769 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 770 child = entry->left; 771 max_left = (child != NULL) ? child->max_free : 772 entry->start - prev->end; 773 child = entry->right; 774 max_right = (child != NULL) ? child->max_free : 775 entry->next->start - entry->end; 776 KASSERT(entry->max_free == MAX(max_left, max_right), 777 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 778 (uintmax_t)entry->max_free, 779 (uintmax_t)max_left, (uintmax_t)max_right)); 780 } 781 } 782 783 #define VM_MAP_ASSERT_CONSISTENT(map) \ 784 _vm_map_assert_consistent(map) 785 #else 786 #define VM_MAP_ASSERT_LOCKED(map) 787 #define VM_MAP_ASSERT_CONSISTENT(map) 788 #endif /* INVARIANTS */ 789 790 /* 791 * _vm_map_unlock_and_wait: 792 * 793 * Atomically releases the lock on the specified map and puts the calling 794 * thread to sleep. The calling thread will remain asleep until either 795 * vm_map_wakeup() is performed on the map or the specified timeout is 796 * exceeded. 797 * 798 * WARNING! This function does not perform deferred deallocations of 799 * objects and map entries. Therefore, the calling thread is expected to 800 * reacquire the map lock after reawakening and later perform an ordinary 801 * unlock operation, such as vm_map_unlock(), before completing its 802 * operation on the map. 803 */ 804 int 805 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 806 { 807 808 mtx_lock(&map_sleep_mtx); 809 if (map->system_map) 810 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 811 else 812 sx_xunlock_(&map->lock, file, line); 813 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 814 timo)); 815 } 816 817 /* 818 * vm_map_wakeup: 819 * 820 * Awaken any threads that have slept on the map using 821 * vm_map_unlock_and_wait(). 822 */ 823 void 824 vm_map_wakeup(vm_map_t map) 825 { 826 827 /* 828 * Acquire and release map_sleep_mtx to prevent a wakeup() 829 * from being performed (and lost) between the map unlock 830 * and the msleep() in _vm_map_unlock_and_wait(). 831 */ 832 mtx_lock(&map_sleep_mtx); 833 mtx_unlock(&map_sleep_mtx); 834 wakeup(&map->root); 835 } 836 837 void 838 vm_map_busy(vm_map_t map) 839 { 840 841 VM_MAP_ASSERT_LOCKED(map); 842 map->busy++; 843 } 844 845 void 846 vm_map_unbusy(vm_map_t map) 847 { 848 849 VM_MAP_ASSERT_LOCKED(map); 850 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 851 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 852 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 853 wakeup(&map->busy); 854 } 855 } 856 857 void 858 vm_map_wait_busy(vm_map_t map) 859 { 860 861 VM_MAP_ASSERT_LOCKED(map); 862 while (map->busy) { 863 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 864 if (map->system_map) 865 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 866 else 867 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 868 } 869 map->timestamp++; 870 } 871 872 long 873 vmspace_resident_count(struct vmspace *vmspace) 874 { 875 return pmap_resident_count(vmspace_pmap(vmspace)); 876 } 877 878 /* 879 * vm_map_create: 880 * 881 * Creates and returns a new empty VM map with 882 * the given physical map structure, and having 883 * the given lower and upper address bounds. 884 */ 885 vm_map_t 886 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 887 { 888 vm_map_t result; 889 890 result = uma_zalloc(mapzone, M_WAITOK); 891 CTR1(KTR_VM, "vm_map_create: %p", result); 892 _vm_map_init(result, pmap, min, max); 893 return (result); 894 } 895 896 /* 897 * Initialize an existing vm_map structure 898 * such as that in the vmspace structure. 899 */ 900 static void 901 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 902 { 903 904 map->header.next = map->header.prev = &map->header; 905 map->header.eflags = MAP_ENTRY_HEADER; 906 map->needs_wakeup = FALSE; 907 map->system_map = 0; 908 map->pmap = pmap; 909 map->header.end = min; 910 map->header.start = max; 911 map->flags = 0; 912 map->root = NULL; 913 map->timestamp = 0; 914 map->busy = 0; 915 map->anon_loc = 0; 916 } 917 918 void 919 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 920 { 921 922 _vm_map_init(map, pmap, min, max); 923 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 924 sx_init(&map->lock, "user map"); 925 } 926 927 /* 928 * vm_map_entry_dispose: [ internal use only ] 929 * 930 * Inverse of vm_map_entry_create. 931 */ 932 static void 933 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 934 { 935 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 936 } 937 938 /* 939 * vm_map_entry_create: [ internal use only ] 940 * 941 * Allocates a VM map entry for insertion. 942 * No entry fields are filled in. 943 */ 944 static vm_map_entry_t 945 vm_map_entry_create(vm_map_t map) 946 { 947 vm_map_entry_t new_entry; 948 949 if (map->system_map) 950 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 951 else 952 new_entry = uma_zalloc(mapentzone, M_WAITOK); 953 if (new_entry == NULL) 954 panic("vm_map_entry_create: kernel resources exhausted"); 955 return (new_entry); 956 } 957 958 /* 959 * vm_map_entry_set_behavior: 960 * 961 * Set the expected access behavior, either normal, random, or 962 * sequential. 963 */ 964 static inline void 965 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 966 { 967 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 968 (behavior & MAP_ENTRY_BEHAV_MASK); 969 } 970 971 /* 972 * vm_map_entry_max_free_{left,right}: 973 * 974 * Compute the size of the largest free gap between two entries, 975 * one the root of a tree and the other the ancestor of that root 976 * that is the least or greatest ancestor found on the search path. 977 */ 978 static inline vm_size_t 979 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 980 { 981 982 return (root->left != NULL ? 983 root->left->max_free : root->start - left_ancestor->end); 984 } 985 986 static inline vm_size_t 987 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 988 { 989 990 return (root->right != NULL ? 991 root->right->max_free : right_ancestor->start - root->end); 992 } 993 994 #define SPLAY_LEFT_STEP(root, y, rlist, test) do { \ 995 vm_size_t max_free; \ 996 \ 997 /* \ 998 * Infer root->right->max_free == root->max_free when \ 999 * y->max_free < root->max_free || root->max_free == 0. \ 1000 * Otherwise, look right to find it. \ 1001 */ \ 1002 y = root->left; \ 1003 max_free = root->max_free; \ 1004 KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist), \ 1005 ("%s: max_free invariant fails", __func__)); \ 1006 if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free) \ 1007 max_free = vm_map_entry_max_free_right(root, rlist); \ 1008 if (y != NULL && (test)) { \ 1009 /* Rotate right and make y root. */ \ 1010 root->left = y->right; \ 1011 y->right = root; \ 1012 if (max_free < y->max_free) \ 1013 root->max_free = max_free = MAX(max_free, \ 1014 vm_map_entry_max_free_left(root, y)); \ 1015 root = y; \ 1016 y = root->left; \ 1017 } \ 1018 /* Copy right->max_free. Put root on rlist. */ \ 1019 root->max_free = max_free; \ 1020 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1021 ("%s: max_free not copied from right", __func__)); \ 1022 root->left = rlist; \ 1023 rlist = root; \ 1024 root = y; \ 1025 } while (0) 1026 1027 #define SPLAY_RIGHT_STEP(root, y, llist, test) do { \ 1028 vm_size_t max_free; \ 1029 \ 1030 /* \ 1031 * Infer root->left->max_free == root->max_free when \ 1032 * y->max_free < root->max_free || root->max_free == 0. \ 1033 * Otherwise, look left to find it. \ 1034 */ \ 1035 y = root->right; \ 1036 max_free = root->max_free; \ 1037 KASSERT(max_free >= vm_map_entry_max_free_left(root, llist), \ 1038 ("%s: max_free invariant fails", __func__)); \ 1039 if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free) \ 1040 max_free = vm_map_entry_max_free_left(root, llist); \ 1041 if (y != NULL && (test)) { \ 1042 /* Rotate left and make y root. */ \ 1043 root->right = y->left; \ 1044 y->left = root; \ 1045 if (max_free < y->max_free) \ 1046 root->max_free = max_free = MAX(max_free, \ 1047 vm_map_entry_max_free_right(root, y)); \ 1048 root = y; \ 1049 y = root->right; \ 1050 } \ 1051 /* Copy left->max_free. Put root on llist. */ \ 1052 root->max_free = max_free; \ 1053 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1054 ("%s: max_free not copied from left", __func__)); \ 1055 root->right = llist; \ 1056 llist = root; \ 1057 root = y; \ 1058 } while (0) 1059 1060 /* 1061 * Walk down the tree until we find addr or a NULL pointer where addr would go, 1062 * breaking off left and right subtrees of nodes less than, or greater than 1063 * addr. Treat pointers to nodes with max_free < length as NULL pointers. 1064 * llist and rlist are the two sides in reverse order (bottom-up), with llist 1065 * linked by the right pointer and rlist linked by the left pointer in the 1066 * vm_map_entry, and both lists terminated by &map->header. This function, and 1067 * the subsequent call to vm_map_splay_merge, rely on the start and end address 1068 * values in &map->header. 1069 */ 1070 static vm_map_entry_t 1071 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1072 vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist) 1073 { 1074 vm_map_entry_t llist, rlist, root, y; 1075 1076 llist = rlist = &map->header; 1077 root = map->root; 1078 while (root != NULL && root->max_free >= length) { 1079 KASSERT(llist->end <= root->start && root->end <= rlist->start, 1080 ("%s: root not within tree bounds", __func__)); 1081 if (addr < root->start) { 1082 SPLAY_LEFT_STEP(root, y, rlist, 1083 y->max_free >= length && addr < y->start); 1084 } else if (addr >= root->end) { 1085 SPLAY_RIGHT_STEP(root, y, llist, 1086 y->max_free >= length && addr >= y->end); 1087 } else 1088 break; 1089 } 1090 *out_llist = llist; 1091 *out_rlist = rlist; 1092 return (root); 1093 } 1094 1095 static void 1096 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist) 1097 { 1098 vm_map_entry_t rlist, y; 1099 1100 root = root->right; 1101 rlist = *iolist; 1102 while (root != NULL) 1103 SPLAY_LEFT_STEP(root, y, rlist, true); 1104 *iolist = rlist; 1105 } 1106 1107 static void 1108 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist) 1109 { 1110 vm_map_entry_t llist, y; 1111 1112 root = root->left; 1113 llist = *iolist; 1114 while (root != NULL) 1115 SPLAY_RIGHT_STEP(root, y, llist, true); 1116 *iolist = llist; 1117 } 1118 1119 static inline void 1120 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1121 { 1122 vm_map_entry_t tmp; 1123 1124 tmp = *b; 1125 *b = *a; 1126 *a = tmp; 1127 } 1128 1129 /* 1130 * Walk back up the two spines, flip the pointers and set max_free. The 1131 * subtrees of the root go at the bottom of llist and rlist. 1132 */ 1133 static void 1134 vm_map_splay_merge(vm_map_t map, vm_map_entry_t root, 1135 vm_map_entry_t llist, vm_map_entry_t rlist) 1136 { 1137 vm_map_entry_t prev; 1138 vm_size_t max_free_left, max_free_right; 1139 1140 max_free_left = vm_map_entry_max_free_left(root, llist); 1141 if (llist != &map->header) { 1142 prev = root->left; 1143 do { 1144 /* 1145 * The max_free values of the children of llist are in 1146 * llist->max_free and max_free_left. Update with the 1147 * max value. 1148 */ 1149 llist->max_free = max_free_left = 1150 MAX(llist->max_free, max_free_left); 1151 vm_map_entry_swap(&llist->right, &prev); 1152 vm_map_entry_swap(&prev, &llist); 1153 } while (llist != &map->header); 1154 root->left = prev; 1155 } 1156 max_free_right = vm_map_entry_max_free_right(root, rlist); 1157 if (rlist != &map->header) { 1158 prev = root->right; 1159 do { 1160 /* 1161 * The max_free values of the children of rlist are in 1162 * rlist->max_free and max_free_right. Update with the 1163 * max value. 1164 */ 1165 rlist->max_free = max_free_right = 1166 MAX(rlist->max_free, max_free_right); 1167 vm_map_entry_swap(&rlist->left, &prev); 1168 vm_map_entry_swap(&prev, &rlist); 1169 } while (rlist != &map->header); 1170 root->right = prev; 1171 } 1172 root->max_free = MAX(max_free_left, max_free_right); 1173 map->root = root; 1174 } 1175 1176 /* 1177 * vm_map_splay: 1178 * 1179 * The Sleator and Tarjan top-down splay algorithm with the 1180 * following variation. Max_free must be computed bottom-up, so 1181 * on the downward pass, maintain the left and right spines in 1182 * reverse order. Then, make a second pass up each side to fix 1183 * the pointers and compute max_free. The time bound is O(log n) 1184 * amortized. 1185 * 1186 * The new root is the vm_map_entry containing "addr", or else an 1187 * adjacent entry (lower if possible) if addr is not in the tree. 1188 * 1189 * The map must be locked, and leaves it so. 1190 * 1191 * Returns: the new root. 1192 */ 1193 static vm_map_entry_t 1194 vm_map_splay(vm_map_t map, vm_offset_t addr) 1195 { 1196 vm_map_entry_t llist, rlist, root; 1197 1198 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1199 if (root != NULL) { 1200 /* do nothing */ 1201 } else if (llist != &map->header) { 1202 /* 1203 * Recover the greatest node in the left 1204 * subtree and make it the root. 1205 */ 1206 root = llist; 1207 llist = root->right; 1208 root->right = NULL; 1209 } else if (rlist != &map->header) { 1210 /* 1211 * Recover the least node in the right 1212 * subtree and make it the root. 1213 */ 1214 root = rlist; 1215 rlist = root->left; 1216 root->left = NULL; 1217 } else { 1218 /* There is no root. */ 1219 return (NULL); 1220 } 1221 vm_map_splay_merge(map, root, llist, rlist); 1222 VM_MAP_ASSERT_CONSISTENT(map); 1223 return (root); 1224 } 1225 1226 /* 1227 * vm_map_entry_{un,}link: 1228 * 1229 * Insert/remove entries from maps. 1230 */ 1231 static void 1232 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1233 { 1234 vm_map_entry_t llist, rlist, root; 1235 1236 CTR3(KTR_VM, 1237 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1238 map->nentries, entry); 1239 VM_MAP_ASSERT_LOCKED(map); 1240 map->nentries++; 1241 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1242 KASSERT(root == NULL, 1243 ("vm_map_entry_link: link object already mapped")); 1244 entry->prev = llist; 1245 entry->next = rlist; 1246 llist->next = rlist->prev = entry; 1247 entry->left = entry->right = NULL; 1248 vm_map_splay_merge(map, entry, llist, rlist); 1249 VM_MAP_ASSERT_CONSISTENT(map); 1250 } 1251 1252 enum unlink_merge_type { 1253 UNLINK_MERGE_PREV, 1254 UNLINK_MERGE_NONE, 1255 UNLINK_MERGE_NEXT 1256 }; 1257 1258 static void 1259 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1260 enum unlink_merge_type op) 1261 { 1262 vm_map_entry_t llist, rlist, root, y; 1263 1264 VM_MAP_ASSERT_LOCKED(map); 1265 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1266 KASSERT(root != NULL, 1267 ("vm_map_entry_unlink: unlink object not mapped")); 1268 1269 switch (op) { 1270 case UNLINK_MERGE_PREV: 1271 vm_map_splay_findprev(root, &llist); 1272 llist->end = root->end; 1273 y = root->right; 1274 root = llist; 1275 llist = root->right; 1276 root->right = y; 1277 break; 1278 case UNLINK_MERGE_NEXT: 1279 vm_map_splay_findnext(root, &rlist); 1280 rlist->start = root->start; 1281 rlist->offset = root->offset; 1282 y = root->left; 1283 root = rlist; 1284 rlist = root->left; 1285 root->left = y; 1286 break; 1287 case UNLINK_MERGE_NONE: 1288 vm_map_splay_findprev(root, &llist); 1289 vm_map_splay_findnext(root, &rlist); 1290 if (llist != &map->header) { 1291 root = llist; 1292 llist = root->right; 1293 root->right = NULL; 1294 } else if (rlist != &map->header) { 1295 root = rlist; 1296 rlist = root->left; 1297 root->left = NULL; 1298 } else 1299 root = NULL; 1300 break; 1301 } 1302 y = entry->next; 1303 y->prev = entry->prev; 1304 y->prev->next = y; 1305 if (root != NULL) 1306 vm_map_splay_merge(map, root, llist, rlist); 1307 else 1308 map->root = NULL; 1309 VM_MAP_ASSERT_CONSISTENT(map); 1310 map->nentries--; 1311 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1312 map->nentries, entry); 1313 } 1314 1315 /* 1316 * vm_map_entry_resize: 1317 * 1318 * Resize a vm_map_entry, recompute the amount of free space that 1319 * follows it and propagate that value up the tree. 1320 * 1321 * The map must be locked, and leaves it so. 1322 */ 1323 static void 1324 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1325 { 1326 vm_map_entry_t llist, rlist, root; 1327 1328 VM_MAP_ASSERT_LOCKED(map); 1329 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1330 KASSERT(root != NULL, 1331 ("%s: resize object not mapped", __func__)); 1332 vm_map_splay_findnext(root, &rlist); 1333 root->right = NULL; 1334 entry->end += grow_amount; 1335 vm_map_splay_merge(map, root, llist, rlist); 1336 VM_MAP_ASSERT_CONSISTENT(map); 1337 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1338 __func__, map, map->nentries, entry); 1339 } 1340 1341 /* 1342 * vm_map_lookup_entry: [ internal use only ] 1343 * 1344 * Finds the map entry containing (or 1345 * immediately preceding) the specified address 1346 * in the given map; the entry is returned 1347 * in the "entry" parameter. The boolean 1348 * result indicates whether the address is 1349 * actually contained in the map. 1350 */ 1351 boolean_t 1352 vm_map_lookup_entry( 1353 vm_map_t map, 1354 vm_offset_t address, 1355 vm_map_entry_t *entry) /* OUT */ 1356 { 1357 vm_map_entry_t cur, lbound; 1358 boolean_t locked; 1359 1360 /* 1361 * If the map is empty, then the map entry immediately preceding 1362 * "address" is the map's header. 1363 */ 1364 cur = map->root; 1365 if (cur == NULL) { 1366 *entry = &map->header; 1367 return (FALSE); 1368 } 1369 if (address >= cur->start && cur->end > address) { 1370 *entry = cur; 1371 return (TRUE); 1372 } 1373 if ((locked = vm_map_locked(map)) || 1374 sx_try_upgrade(&map->lock)) { 1375 /* 1376 * Splay requires a write lock on the map. However, it only 1377 * restructures the binary search tree; it does not otherwise 1378 * change the map. Thus, the map's timestamp need not change 1379 * on a temporary upgrade. 1380 */ 1381 cur = vm_map_splay(map, address); 1382 if (!locked) 1383 sx_downgrade(&map->lock); 1384 1385 /* 1386 * If "address" is contained within a map entry, the new root 1387 * is that map entry. Otherwise, the new root is a map entry 1388 * immediately before or after "address". 1389 */ 1390 if (address < cur->start) { 1391 *entry = &map->header; 1392 return (FALSE); 1393 } 1394 *entry = cur; 1395 return (address < cur->end); 1396 } 1397 /* 1398 * Since the map is only locked for read access, perform a 1399 * standard binary search tree lookup for "address". 1400 */ 1401 lbound = &map->header; 1402 do { 1403 if (address < cur->start) { 1404 cur = cur->left; 1405 } else if (cur->end <= address) { 1406 lbound = cur; 1407 cur = cur->right; 1408 } else { 1409 *entry = cur; 1410 return (TRUE); 1411 } 1412 } while (cur != NULL); 1413 *entry = lbound; 1414 return (FALSE); 1415 } 1416 1417 /* 1418 * vm_map_insert: 1419 * 1420 * Inserts the given whole VM object into the target 1421 * map at the specified address range. The object's 1422 * size should match that of the address range. 1423 * 1424 * Requires that the map be locked, and leaves it so. 1425 * 1426 * If object is non-NULL, ref count must be bumped by caller 1427 * prior to making call to account for the new entry. 1428 */ 1429 int 1430 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1431 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1432 { 1433 vm_map_entry_t new_entry, prev_entry; 1434 struct ucred *cred; 1435 vm_eflags_t protoeflags; 1436 vm_inherit_t inheritance; 1437 1438 VM_MAP_ASSERT_LOCKED(map); 1439 KASSERT(object != kernel_object || 1440 (cow & MAP_COPY_ON_WRITE) == 0, 1441 ("vm_map_insert: kernel object and COW")); 1442 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1443 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1444 KASSERT((prot & ~max) == 0, 1445 ("prot %#x is not subset of max_prot %#x", prot, max)); 1446 1447 /* 1448 * Check that the start and end points are not bogus. 1449 */ 1450 if (start < vm_map_min(map) || end > vm_map_max(map) || 1451 start >= end) 1452 return (KERN_INVALID_ADDRESS); 1453 1454 /* 1455 * Find the entry prior to the proposed starting address; if it's part 1456 * of an existing entry, this range is bogus. 1457 */ 1458 if (vm_map_lookup_entry(map, start, &prev_entry)) 1459 return (KERN_NO_SPACE); 1460 1461 /* 1462 * Assert that the next entry doesn't overlap the end point. 1463 */ 1464 if (prev_entry->next->start < end) 1465 return (KERN_NO_SPACE); 1466 1467 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1468 max != VM_PROT_NONE)) 1469 return (KERN_INVALID_ARGUMENT); 1470 1471 protoeflags = 0; 1472 if (cow & MAP_COPY_ON_WRITE) 1473 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1474 if (cow & MAP_NOFAULT) 1475 protoeflags |= MAP_ENTRY_NOFAULT; 1476 if (cow & MAP_DISABLE_SYNCER) 1477 protoeflags |= MAP_ENTRY_NOSYNC; 1478 if (cow & MAP_DISABLE_COREDUMP) 1479 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1480 if (cow & MAP_STACK_GROWS_DOWN) 1481 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1482 if (cow & MAP_STACK_GROWS_UP) 1483 protoeflags |= MAP_ENTRY_GROWS_UP; 1484 if (cow & MAP_WRITECOUNT) 1485 protoeflags |= MAP_ENTRY_WRITECNT; 1486 if (cow & MAP_VN_EXEC) 1487 protoeflags |= MAP_ENTRY_VN_EXEC; 1488 if ((cow & MAP_CREATE_GUARD) != 0) 1489 protoeflags |= MAP_ENTRY_GUARD; 1490 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1491 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1492 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1493 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1494 if (cow & MAP_INHERIT_SHARE) 1495 inheritance = VM_INHERIT_SHARE; 1496 else 1497 inheritance = VM_INHERIT_DEFAULT; 1498 1499 cred = NULL; 1500 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1501 goto charged; 1502 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1503 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1504 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1505 return (KERN_RESOURCE_SHORTAGE); 1506 KASSERT(object == NULL || 1507 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1508 object->cred == NULL, 1509 ("overcommit: vm_map_insert o %p", object)); 1510 cred = curthread->td_ucred; 1511 } 1512 1513 charged: 1514 /* Expand the kernel pmap, if necessary. */ 1515 if (map == kernel_map && end > kernel_vm_end) 1516 pmap_growkernel(end); 1517 if (object != NULL) { 1518 /* 1519 * OBJ_ONEMAPPING must be cleared unless this mapping 1520 * is trivially proven to be the only mapping for any 1521 * of the object's pages. (Object granularity 1522 * reference counting is insufficient to recognize 1523 * aliases with precision.) 1524 */ 1525 VM_OBJECT_WLOCK(object); 1526 if (object->ref_count > 1 || object->shadow_count != 0) 1527 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1528 VM_OBJECT_WUNLOCK(object); 1529 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1530 protoeflags && 1531 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1532 MAP_VN_EXEC)) == 0 && 1533 prev_entry->end == start && (prev_entry->cred == cred || 1534 (prev_entry->object.vm_object != NULL && 1535 prev_entry->object.vm_object->cred == cred)) && 1536 vm_object_coalesce(prev_entry->object.vm_object, 1537 prev_entry->offset, 1538 (vm_size_t)(prev_entry->end - prev_entry->start), 1539 (vm_size_t)(end - prev_entry->end), cred != NULL && 1540 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1541 /* 1542 * We were able to extend the object. Determine if we 1543 * can extend the previous map entry to include the 1544 * new range as well. 1545 */ 1546 if (prev_entry->inheritance == inheritance && 1547 prev_entry->protection == prot && 1548 prev_entry->max_protection == max && 1549 prev_entry->wired_count == 0) { 1550 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1551 0, ("prev_entry %p has incoherent wiring", 1552 prev_entry)); 1553 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1554 map->size += end - prev_entry->end; 1555 vm_map_entry_resize(map, prev_entry, 1556 end - prev_entry->end); 1557 vm_map_try_merge_entries(map, prev_entry, prev_entry->next); 1558 return (KERN_SUCCESS); 1559 } 1560 1561 /* 1562 * If we can extend the object but cannot extend the 1563 * map entry, we have to create a new map entry. We 1564 * must bump the ref count on the extended object to 1565 * account for it. object may be NULL. 1566 */ 1567 object = prev_entry->object.vm_object; 1568 offset = prev_entry->offset + 1569 (prev_entry->end - prev_entry->start); 1570 vm_object_reference(object); 1571 if (cred != NULL && object != NULL && object->cred != NULL && 1572 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1573 /* Object already accounts for this uid. */ 1574 cred = NULL; 1575 } 1576 } 1577 if (cred != NULL) 1578 crhold(cred); 1579 1580 /* 1581 * Create a new entry 1582 */ 1583 new_entry = vm_map_entry_create(map); 1584 new_entry->start = start; 1585 new_entry->end = end; 1586 new_entry->cred = NULL; 1587 1588 new_entry->eflags = protoeflags; 1589 new_entry->object.vm_object = object; 1590 new_entry->offset = offset; 1591 1592 new_entry->inheritance = inheritance; 1593 new_entry->protection = prot; 1594 new_entry->max_protection = max; 1595 new_entry->wired_count = 0; 1596 new_entry->wiring_thread = NULL; 1597 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1598 new_entry->next_read = start; 1599 1600 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1601 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1602 new_entry->cred = cred; 1603 1604 /* 1605 * Insert the new entry into the list 1606 */ 1607 vm_map_entry_link(map, new_entry); 1608 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1609 map->size += new_entry->end - new_entry->start; 1610 1611 /* 1612 * Try to coalesce the new entry with both the previous and next 1613 * entries in the list. Previously, we only attempted to coalesce 1614 * with the previous entry when object is NULL. Here, we handle the 1615 * other cases, which are less common. 1616 */ 1617 vm_map_try_merge_entries(map, prev_entry, new_entry); 1618 vm_map_try_merge_entries(map, new_entry, new_entry->next); 1619 1620 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1621 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1622 end - start, cow & MAP_PREFAULT_PARTIAL); 1623 } 1624 1625 return (KERN_SUCCESS); 1626 } 1627 1628 /* 1629 * vm_map_findspace: 1630 * 1631 * Find the first fit (lowest VM address) for "length" free bytes 1632 * beginning at address >= start in the given map. 1633 * 1634 * In a vm_map_entry, "max_free" is the maximum amount of 1635 * contiguous free space between an entry in its subtree and a 1636 * neighbor of that entry. This allows finding a free region in 1637 * one path down the tree, so O(log n) amortized with splay 1638 * trees. 1639 * 1640 * The map must be locked, and leaves it so. 1641 * 1642 * Returns: starting address if sufficient space, 1643 * vm_map_max(map)-length+1 if insufficient space. 1644 */ 1645 vm_offset_t 1646 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1647 { 1648 vm_map_entry_t llist, rlist, root, y; 1649 vm_size_t left_length; 1650 vm_offset_t gap_end; 1651 1652 /* 1653 * Request must fit within min/max VM address and must avoid 1654 * address wrap. 1655 */ 1656 start = MAX(start, vm_map_min(map)); 1657 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1658 return (vm_map_max(map) - length + 1); 1659 1660 /* Empty tree means wide open address space. */ 1661 if (map->root == NULL) 1662 return (start); 1663 1664 /* 1665 * After splay_split, if start is within an entry, push it to the start 1666 * of the following gap. If rlist is at the end of the gap containing 1667 * start, save the end of that gap in gap_end to see if the gap is big 1668 * enough; otherwise set gap_end to start skip gap-checking and move 1669 * directly to a search of the right subtree. 1670 */ 1671 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1672 gap_end = rlist->start; 1673 if (root != NULL) { 1674 start = root->end; 1675 if (root->right != NULL) 1676 gap_end = start; 1677 } else if (rlist != &map->header) { 1678 root = rlist; 1679 rlist = root->left; 1680 root->left = NULL; 1681 } else { 1682 root = llist; 1683 llist = root->right; 1684 root->right = NULL; 1685 } 1686 vm_map_splay_merge(map, root, llist, rlist); 1687 VM_MAP_ASSERT_CONSISTENT(map); 1688 if (length <= gap_end - start) 1689 return (start); 1690 1691 /* With max_free, can immediately tell if no solution. */ 1692 if (root->right == NULL || length > root->right->max_free) 1693 return (vm_map_max(map) - length + 1); 1694 1695 /* 1696 * Splay for the least large-enough gap in the right subtree. 1697 */ 1698 llist = rlist = &map->header; 1699 for (left_length = 0;; 1700 left_length = vm_map_entry_max_free_left(root, llist)) { 1701 if (length <= left_length) 1702 SPLAY_LEFT_STEP(root, y, rlist, 1703 length <= vm_map_entry_max_free_left(y, llist)); 1704 else 1705 SPLAY_RIGHT_STEP(root, y, llist, 1706 length > vm_map_entry_max_free_left(y, root)); 1707 if (root == NULL) 1708 break; 1709 } 1710 root = llist; 1711 llist = root->right; 1712 root->right = NULL; 1713 if (rlist != &map->header) { 1714 y = rlist; 1715 rlist = y->left; 1716 y->left = NULL; 1717 vm_map_splay_merge(map, y, &map->header, rlist); 1718 y->max_free = MAX( 1719 vm_map_entry_max_free_left(y, root), 1720 vm_map_entry_max_free_right(y, &map->header)); 1721 root->right = y; 1722 } 1723 vm_map_splay_merge(map, root, llist, &map->header); 1724 VM_MAP_ASSERT_CONSISTENT(map); 1725 return (root->end); 1726 } 1727 1728 int 1729 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1730 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1731 vm_prot_t max, int cow) 1732 { 1733 vm_offset_t end; 1734 int result; 1735 1736 end = start + length; 1737 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1738 object == NULL, 1739 ("vm_map_fixed: non-NULL backing object for stack")); 1740 vm_map_lock(map); 1741 VM_MAP_RANGE_CHECK(map, start, end); 1742 if ((cow & MAP_CHECK_EXCL) == 0) 1743 vm_map_delete(map, start, end); 1744 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1745 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1746 prot, max, cow); 1747 } else { 1748 result = vm_map_insert(map, object, offset, start, end, 1749 prot, max, cow); 1750 } 1751 vm_map_unlock(map); 1752 return (result); 1753 } 1754 1755 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1756 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1757 1758 static int cluster_anon = 1; 1759 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1760 &cluster_anon, 0, 1761 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 1762 1763 static bool 1764 clustering_anon_allowed(vm_offset_t addr) 1765 { 1766 1767 switch (cluster_anon) { 1768 case 0: 1769 return (false); 1770 case 1: 1771 return (addr == 0); 1772 case 2: 1773 default: 1774 return (true); 1775 } 1776 } 1777 1778 static long aslr_restarts; 1779 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 1780 &aslr_restarts, 0, 1781 "Number of aslr failures"); 1782 1783 #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) 1784 1785 /* 1786 * Searches for the specified amount of free space in the given map with the 1787 * specified alignment. Performs an address-ordered, first-fit search from 1788 * the given address "*addr", with an optional upper bound "max_addr". If the 1789 * parameter "alignment" is zero, then the alignment is computed from the 1790 * given (object, offset) pair so as to enable the greatest possible use of 1791 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1792 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1793 * 1794 * The map must be locked. Initially, there must be at least "length" bytes 1795 * of free space at the given address. 1796 */ 1797 static int 1798 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1799 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1800 vm_offset_t alignment) 1801 { 1802 vm_offset_t aligned_addr, free_addr; 1803 1804 VM_MAP_ASSERT_LOCKED(map); 1805 free_addr = *addr; 1806 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 1807 ("caller failed to provide space %#jx at address %p", 1808 (uintmax_t)length, (void *)free_addr)); 1809 for (;;) { 1810 /* 1811 * At the start of every iteration, the free space at address 1812 * "*addr" is at least "length" bytes. 1813 */ 1814 if (alignment == 0) 1815 pmap_align_superpage(object, offset, addr, length); 1816 else if ((*addr & (alignment - 1)) != 0) { 1817 *addr &= ~(alignment - 1); 1818 *addr += alignment; 1819 } 1820 aligned_addr = *addr; 1821 if (aligned_addr == free_addr) { 1822 /* 1823 * Alignment did not change "*addr", so "*addr" must 1824 * still provide sufficient free space. 1825 */ 1826 return (KERN_SUCCESS); 1827 } 1828 1829 /* 1830 * Test for address wrap on "*addr". A wrapped "*addr" could 1831 * be a valid address, in which case vm_map_findspace() cannot 1832 * be relied upon to fail. 1833 */ 1834 if (aligned_addr < free_addr) 1835 return (KERN_NO_SPACE); 1836 *addr = vm_map_findspace(map, aligned_addr, length); 1837 if (*addr + length > vm_map_max(map) || 1838 (max_addr != 0 && *addr + length > max_addr)) 1839 return (KERN_NO_SPACE); 1840 free_addr = *addr; 1841 if (free_addr == aligned_addr) { 1842 /* 1843 * If a successful call to vm_map_findspace() did not 1844 * change "*addr", then "*addr" must still be aligned 1845 * and provide sufficient free space. 1846 */ 1847 return (KERN_SUCCESS); 1848 } 1849 } 1850 } 1851 1852 /* 1853 * vm_map_find finds an unallocated region in the target address 1854 * map with the given length. The search is defined to be 1855 * first-fit from the specified address; the region found is 1856 * returned in the same parameter. 1857 * 1858 * If object is non-NULL, ref count must be bumped by caller 1859 * prior to making call to account for the new entry. 1860 */ 1861 int 1862 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1863 vm_offset_t *addr, /* IN/OUT */ 1864 vm_size_t length, vm_offset_t max_addr, int find_space, 1865 vm_prot_t prot, vm_prot_t max, int cow) 1866 { 1867 vm_offset_t alignment, curr_min_addr, min_addr; 1868 int gap, pidx, rv, try; 1869 bool cluster, en_aslr, update_anon; 1870 1871 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1872 object == NULL, 1873 ("vm_map_find: non-NULL backing object for stack")); 1874 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 1875 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 1876 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1877 (object->flags & OBJ_COLORED) == 0)) 1878 find_space = VMFS_ANY_SPACE; 1879 if (find_space >> 8 != 0) { 1880 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1881 alignment = (vm_offset_t)1 << (find_space >> 8); 1882 } else 1883 alignment = 0; 1884 en_aslr = (map->flags & MAP_ASLR) != 0; 1885 update_anon = cluster = clustering_anon_allowed(*addr) && 1886 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 1887 find_space != VMFS_NO_SPACE && object == NULL && 1888 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 1889 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 1890 curr_min_addr = min_addr = *addr; 1891 if (en_aslr && min_addr == 0 && !cluster && 1892 find_space != VMFS_NO_SPACE && 1893 (map->flags & MAP_ASLR_IGNSTART) != 0) 1894 curr_min_addr = min_addr = vm_map_min(map); 1895 try = 0; 1896 vm_map_lock(map); 1897 if (cluster) { 1898 curr_min_addr = map->anon_loc; 1899 if (curr_min_addr == 0) 1900 cluster = false; 1901 } 1902 if (find_space != VMFS_NO_SPACE) { 1903 KASSERT(find_space == VMFS_ANY_SPACE || 1904 find_space == VMFS_OPTIMAL_SPACE || 1905 find_space == VMFS_SUPER_SPACE || 1906 alignment != 0, ("unexpected VMFS flag")); 1907 again: 1908 /* 1909 * When creating an anonymous mapping, try clustering 1910 * with an existing anonymous mapping first. 1911 * 1912 * We make up to two attempts to find address space 1913 * for a given find_space value. The first attempt may 1914 * apply randomization or may cluster with an existing 1915 * anonymous mapping. If this first attempt fails, 1916 * perform a first-fit search of the available address 1917 * space. 1918 * 1919 * If all tries failed, and find_space is 1920 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 1921 * Again enable clustering and randomization. 1922 */ 1923 try++; 1924 MPASS(try <= 2); 1925 1926 if (try == 2) { 1927 /* 1928 * Second try: we failed either to find a 1929 * suitable region for randomizing the 1930 * allocation, or to cluster with an existing 1931 * mapping. Retry with free run. 1932 */ 1933 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 1934 vm_map_min(map) : min_addr; 1935 atomic_add_long(&aslr_restarts, 1); 1936 } 1937 1938 if (try == 1 && en_aslr && !cluster) { 1939 /* 1940 * Find space for allocation, including 1941 * gap needed for later randomization. 1942 */ 1943 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 1944 (find_space == VMFS_SUPER_SPACE || find_space == 1945 VMFS_OPTIMAL_SPACE) ? 1 : 0; 1946 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 1947 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 1948 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 1949 *addr = vm_map_findspace(map, curr_min_addr, 1950 length + gap * pagesizes[pidx]); 1951 if (*addr + length + gap * pagesizes[pidx] > 1952 vm_map_max(map)) 1953 goto again; 1954 /* And randomize the start address. */ 1955 *addr += (arc4random() % gap) * pagesizes[pidx]; 1956 if (max_addr != 0 && *addr + length > max_addr) 1957 goto again; 1958 } else { 1959 *addr = vm_map_findspace(map, curr_min_addr, length); 1960 if (*addr + length > vm_map_max(map) || 1961 (max_addr != 0 && *addr + length > max_addr)) { 1962 if (cluster) { 1963 cluster = false; 1964 MPASS(try == 1); 1965 goto again; 1966 } 1967 rv = KERN_NO_SPACE; 1968 goto done; 1969 } 1970 } 1971 1972 if (find_space != VMFS_ANY_SPACE && 1973 (rv = vm_map_alignspace(map, object, offset, addr, length, 1974 max_addr, alignment)) != KERN_SUCCESS) { 1975 if (find_space == VMFS_OPTIMAL_SPACE) { 1976 find_space = VMFS_ANY_SPACE; 1977 curr_min_addr = min_addr; 1978 cluster = update_anon; 1979 try = 0; 1980 goto again; 1981 } 1982 goto done; 1983 } 1984 } else if ((cow & MAP_REMAP) != 0) { 1985 if (*addr < vm_map_min(map) || 1986 *addr + length > vm_map_max(map) || 1987 *addr + length <= length) { 1988 rv = KERN_INVALID_ADDRESS; 1989 goto done; 1990 } 1991 vm_map_delete(map, *addr, *addr + length); 1992 } 1993 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1994 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 1995 max, cow); 1996 } else { 1997 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 1998 prot, max, cow); 1999 } 2000 if (rv == KERN_SUCCESS && update_anon) 2001 map->anon_loc = *addr + length; 2002 done: 2003 vm_map_unlock(map); 2004 return (rv); 2005 } 2006 2007 /* 2008 * vm_map_find_min() is a variant of vm_map_find() that takes an 2009 * additional parameter (min_addr) and treats the given address 2010 * (*addr) differently. Specifically, it treats *addr as a hint 2011 * and not as the minimum address where the mapping is created. 2012 * 2013 * This function works in two phases. First, it tries to 2014 * allocate above the hint. If that fails and the hint is 2015 * greater than min_addr, it performs a second pass, replacing 2016 * the hint with min_addr as the minimum address for the 2017 * allocation. 2018 */ 2019 int 2020 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2021 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 2022 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2023 int cow) 2024 { 2025 vm_offset_t hint; 2026 int rv; 2027 2028 hint = *addr; 2029 for (;;) { 2030 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2031 find_space, prot, max, cow); 2032 if (rv == KERN_SUCCESS || min_addr >= hint) 2033 return (rv); 2034 *addr = hint = min_addr; 2035 } 2036 } 2037 2038 /* 2039 * A map entry with any of the following flags set must not be merged with 2040 * another entry. 2041 */ 2042 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 2043 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC) 2044 2045 static bool 2046 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2047 { 2048 2049 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2050 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2051 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2052 prev, entry)); 2053 return (prev->end == entry->start && 2054 prev->object.vm_object == entry->object.vm_object && 2055 (prev->object.vm_object == NULL || 2056 prev->offset + (prev->end - prev->start) == entry->offset) && 2057 prev->eflags == entry->eflags && 2058 prev->protection == entry->protection && 2059 prev->max_protection == entry->max_protection && 2060 prev->inheritance == entry->inheritance && 2061 prev->wired_count == entry->wired_count && 2062 prev->cred == entry->cred); 2063 } 2064 2065 static void 2066 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2067 { 2068 2069 /* 2070 * If the backing object is a vnode object, vm_object_deallocate() 2071 * calls vrele(). However, vrele() does not lock the vnode because 2072 * the vnode has additional references. Thus, the map lock can be 2073 * kept without causing a lock-order reversal with the vnode lock. 2074 * 2075 * Since we count the number of virtual page mappings in 2076 * object->un_pager.vnp.writemappings, the writemappings value 2077 * should not be adjusted when the entry is disposed of. 2078 */ 2079 if (entry->object.vm_object != NULL) 2080 vm_object_deallocate(entry->object.vm_object); 2081 if (entry->cred != NULL) 2082 crfree(entry->cred); 2083 vm_map_entry_dispose(map, entry); 2084 } 2085 2086 /* 2087 * vm_map_try_merge_entries: 2088 * 2089 * Compare the given map entry to its predecessor, and merge its precessor 2090 * into it if possible. The entry remains valid, and may be extended. 2091 * The predecessor may be deleted. 2092 * 2093 * The map must be locked. 2094 */ 2095 void 2096 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev, vm_map_entry_t entry) 2097 { 2098 2099 VM_MAP_ASSERT_LOCKED(map); 2100 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 && 2101 vm_map_mergeable_neighbors(prev, entry)) { 2102 vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT); 2103 vm_map_merged_neighbor_dispose(map, prev); 2104 } 2105 } 2106 2107 /* 2108 * vm_map_entry_back: 2109 * 2110 * Allocate an object to back a map entry. 2111 */ 2112 static inline void 2113 vm_map_entry_back(vm_map_entry_t entry) 2114 { 2115 vm_object_t object; 2116 2117 KASSERT(entry->object.vm_object == NULL, 2118 ("map entry %p has backing object", entry)); 2119 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2120 ("map entry %p is a submap", entry)); 2121 object = vm_object_allocate(OBJT_DEFAULT, 2122 atop(entry->end - entry->start)); 2123 entry->object.vm_object = object; 2124 entry->offset = 0; 2125 if (entry->cred != NULL) { 2126 object->cred = entry->cred; 2127 object->charge = entry->end - entry->start; 2128 entry->cred = NULL; 2129 } 2130 } 2131 2132 /* 2133 * vm_map_entry_charge_object 2134 * 2135 * If there is no object backing this entry, create one. Otherwise, if 2136 * the entry has cred, give it to the backing object. 2137 */ 2138 static inline void 2139 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2140 { 2141 2142 VM_MAP_ASSERT_LOCKED(map); 2143 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2144 ("map entry %p is a submap", entry)); 2145 if (entry->object.vm_object == NULL && !map->system_map && 2146 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2147 vm_map_entry_back(entry); 2148 else if (entry->object.vm_object != NULL && 2149 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2150 entry->cred != NULL) { 2151 VM_OBJECT_WLOCK(entry->object.vm_object); 2152 KASSERT(entry->object.vm_object->cred == NULL, 2153 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2154 entry->object.vm_object->cred = entry->cred; 2155 entry->object.vm_object->charge = entry->end - entry->start; 2156 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2157 entry->cred = NULL; 2158 } 2159 } 2160 2161 /* 2162 * vm_map_clip_start: [ internal use only ] 2163 * 2164 * Asserts that the given entry begins at or after 2165 * the specified address; if necessary, 2166 * it splits the entry into two. 2167 */ 2168 #define vm_map_clip_start(map, entry, startaddr) \ 2169 { \ 2170 if (startaddr > entry->start) \ 2171 _vm_map_clip_start(map, entry, startaddr); \ 2172 } 2173 2174 /* 2175 * This routine is called only when it is known that 2176 * the entry must be split. 2177 */ 2178 static void 2179 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 2180 { 2181 vm_map_entry_t new_entry; 2182 2183 VM_MAP_ASSERT_LOCKED(map); 2184 KASSERT(entry->end > start && entry->start < start, 2185 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 2186 2187 /* 2188 * Create a backing object now, if none exists, so that more individual 2189 * objects won't be created after the map entry is split. 2190 */ 2191 vm_map_entry_charge_object(map, entry); 2192 2193 /* Clone the entry. */ 2194 new_entry = vm_map_entry_create(map); 2195 *new_entry = *entry; 2196 2197 /* 2198 * Split off the front portion. Insert the new entry BEFORE this one, 2199 * so that this entry has the specified starting address. 2200 */ 2201 new_entry->end = start; 2202 entry->offset += (start - entry->start); 2203 entry->start = start; 2204 if (new_entry->cred != NULL) 2205 crhold(entry->cred); 2206 2207 vm_map_entry_link(map, new_entry); 2208 2209 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2210 vm_object_reference(new_entry->object.vm_object); 2211 vm_map_entry_set_vnode_text(new_entry, true); 2212 /* 2213 * The object->un_pager.vnp.writemappings for the 2214 * object of MAP_ENTRY_WRITECNT type entry shall be 2215 * kept as is here. The virtual pages are 2216 * re-distributed among the clipped entries, so the sum is 2217 * left the same. 2218 */ 2219 } 2220 } 2221 2222 /* 2223 * vm_map_clip_end: [ internal use only ] 2224 * 2225 * Asserts that the given entry ends at or before 2226 * the specified address; if necessary, 2227 * it splits the entry into two. 2228 */ 2229 #define vm_map_clip_end(map, entry, endaddr) \ 2230 { \ 2231 if ((endaddr) < (entry->end)) \ 2232 _vm_map_clip_end((map), (entry), (endaddr)); \ 2233 } 2234 2235 /* 2236 * This routine is called only when it is known that 2237 * the entry must be split. 2238 */ 2239 static void 2240 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 2241 { 2242 vm_map_entry_t new_entry; 2243 2244 VM_MAP_ASSERT_LOCKED(map); 2245 KASSERT(entry->start < end && entry->end > end, 2246 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 2247 2248 /* 2249 * Create a backing object now, if none exists, so that more individual 2250 * objects won't be created after the map entry is split. 2251 */ 2252 vm_map_entry_charge_object(map, entry); 2253 2254 /* Clone the entry. */ 2255 new_entry = vm_map_entry_create(map); 2256 *new_entry = *entry; 2257 2258 /* 2259 * Split off the back portion. Insert the new entry AFTER this one, 2260 * so that this entry has the specified ending address. 2261 */ 2262 new_entry->start = entry->end = end; 2263 new_entry->offset += (end - entry->start); 2264 if (new_entry->cred != NULL) 2265 crhold(entry->cred); 2266 2267 vm_map_entry_link(map, new_entry); 2268 2269 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2270 vm_object_reference(new_entry->object.vm_object); 2271 vm_map_entry_set_vnode_text(new_entry, true); 2272 } 2273 } 2274 2275 /* 2276 * vm_map_submap: [ kernel use only ] 2277 * 2278 * Mark the given range as handled by a subordinate map. 2279 * 2280 * This range must have been created with vm_map_find, 2281 * and no other operations may have been performed on this 2282 * range prior to calling vm_map_submap. 2283 * 2284 * Only a limited number of operations can be performed 2285 * within this rage after calling vm_map_submap: 2286 * vm_fault 2287 * [Don't try vm_map_copy!] 2288 * 2289 * To remove a submapping, one must first remove the 2290 * range from the superior map, and then destroy the 2291 * submap (if desired). [Better yet, don't try it.] 2292 */ 2293 int 2294 vm_map_submap( 2295 vm_map_t map, 2296 vm_offset_t start, 2297 vm_offset_t end, 2298 vm_map_t submap) 2299 { 2300 vm_map_entry_t entry; 2301 int result; 2302 2303 result = KERN_INVALID_ARGUMENT; 2304 2305 vm_map_lock(submap); 2306 submap->flags |= MAP_IS_SUB_MAP; 2307 vm_map_unlock(submap); 2308 2309 vm_map_lock(map); 2310 2311 VM_MAP_RANGE_CHECK(map, start, end); 2312 2313 if (vm_map_lookup_entry(map, start, &entry)) { 2314 vm_map_clip_start(map, entry, start); 2315 } else 2316 entry = entry->next; 2317 2318 vm_map_clip_end(map, entry, end); 2319 2320 if ((entry->start == start) && (entry->end == end) && 2321 ((entry->eflags & MAP_ENTRY_COW) == 0) && 2322 (entry->object.vm_object == NULL)) { 2323 entry->object.sub_map = submap; 2324 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2325 result = KERN_SUCCESS; 2326 } 2327 vm_map_unlock(map); 2328 2329 if (result != KERN_SUCCESS) { 2330 vm_map_lock(submap); 2331 submap->flags &= ~MAP_IS_SUB_MAP; 2332 vm_map_unlock(submap); 2333 } 2334 return (result); 2335 } 2336 2337 /* 2338 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2339 */ 2340 #define MAX_INIT_PT 96 2341 2342 /* 2343 * vm_map_pmap_enter: 2344 * 2345 * Preload the specified map's pmap with mappings to the specified 2346 * object's memory-resident pages. No further physical pages are 2347 * allocated, and no further virtual pages are retrieved from secondary 2348 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2349 * limited number of page mappings are created at the low-end of the 2350 * specified address range. (For this purpose, a superpage mapping 2351 * counts as one page mapping.) Otherwise, all resident pages within 2352 * the specified address range are mapped. 2353 */ 2354 static void 2355 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2356 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2357 { 2358 vm_offset_t start; 2359 vm_page_t p, p_start; 2360 vm_pindex_t mask, psize, threshold, tmpidx; 2361 2362 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2363 return; 2364 VM_OBJECT_RLOCK(object); 2365 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2366 VM_OBJECT_RUNLOCK(object); 2367 VM_OBJECT_WLOCK(object); 2368 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2369 pmap_object_init_pt(map->pmap, addr, object, pindex, 2370 size); 2371 VM_OBJECT_WUNLOCK(object); 2372 return; 2373 } 2374 VM_OBJECT_LOCK_DOWNGRADE(object); 2375 } 2376 2377 psize = atop(size); 2378 if (psize + pindex > object->size) { 2379 if (object->size < pindex) { 2380 VM_OBJECT_RUNLOCK(object); 2381 return; 2382 } 2383 psize = object->size - pindex; 2384 } 2385 2386 start = 0; 2387 p_start = NULL; 2388 threshold = MAX_INIT_PT; 2389 2390 p = vm_page_find_least(object, pindex); 2391 /* 2392 * Assert: the variable p is either (1) the page with the 2393 * least pindex greater than or equal to the parameter pindex 2394 * or (2) NULL. 2395 */ 2396 for (; 2397 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2398 p = TAILQ_NEXT(p, listq)) { 2399 /* 2400 * don't allow an madvise to blow away our really 2401 * free pages allocating pv entries. 2402 */ 2403 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2404 vm_page_count_severe()) || 2405 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2406 tmpidx >= threshold)) { 2407 psize = tmpidx; 2408 break; 2409 } 2410 if (p->valid == VM_PAGE_BITS_ALL) { 2411 if (p_start == NULL) { 2412 start = addr + ptoa(tmpidx); 2413 p_start = p; 2414 } 2415 /* Jump ahead if a superpage mapping is possible. */ 2416 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2417 (pagesizes[p->psind] - 1)) == 0) { 2418 mask = atop(pagesizes[p->psind]) - 1; 2419 if (tmpidx + mask < psize && 2420 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2421 p += mask; 2422 threshold += mask; 2423 } 2424 } 2425 } else if (p_start != NULL) { 2426 pmap_enter_object(map->pmap, start, addr + 2427 ptoa(tmpidx), p_start, prot); 2428 p_start = NULL; 2429 } 2430 } 2431 if (p_start != NULL) 2432 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2433 p_start, prot); 2434 VM_OBJECT_RUNLOCK(object); 2435 } 2436 2437 /* 2438 * vm_map_protect: 2439 * 2440 * Sets the protection of the specified address 2441 * region in the target map. If "set_max" is 2442 * specified, the maximum protection is to be set; 2443 * otherwise, only the current protection is affected. 2444 */ 2445 int 2446 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2447 vm_prot_t new_prot, boolean_t set_max) 2448 { 2449 vm_map_entry_t current, entry, in_tran; 2450 vm_object_t obj; 2451 struct ucred *cred; 2452 vm_prot_t old_prot; 2453 int rv; 2454 2455 if (start == end) 2456 return (KERN_SUCCESS); 2457 2458 again: 2459 in_tran = NULL; 2460 vm_map_lock(map); 2461 2462 /* 2463 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2464 * need to fault pages into the map and will drop the map lock while 2465 * doing so, and the VM object may end up in an inconsistent state if we 2466 * update the protection on the map entry in between faults. 2467 */ 2468 vm_map_wait_busy(map); 2469 2470 VM_MAP_RANGE_CHECK(map, start, end); 2471 2472 if (!vm_map_lookup_entry(map, start, &entry)) 2473 entry = entry->next; 2474 2475 /* 2476 * Make a first pass to check for protection violations. 2477 */ 2478 for (current = entry; current->start < end; current = current->next) { 2479 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2480 continue; 2481 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2482 vm_map_unlock(map); 2483 return (KERN_INVALID_ARGUMENT); 2484 } 2485 if ((new_prot & current->max_protection) != new_prot) { 2486 vm_map_unlock(map); 2487 return (KERN_PROTECTION_FAILURE); 2488 } 2489 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2490 in_tran = entry; 2491 } 2492 2493 /* 2494 * Postpone the operation until all in transition map entries 2495 * are stabilized. In-transition entry might already have its 2496 * pages wired and wired_count incremented, but 2497 * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other 2498 * threads because the map lock is dropped. In this case we 2499 * would miss our call to vm_fault_copy_entry(). 2500 */ 2501 if (in_tran != NULL) { 2502 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2503 vm_map_unlock_and_wait(map, 0); 2504 goto again; 2505 } 2506 2507 /* 2508 * Before changing the protections, try to reserve swap space for any 2509 * private (i.e., copy-on-write) mappings that are transitioning from 2510 * read-only to read/write access. If a reservation fails, break out 2511 * of this loop early and let the next loop simplify the entries, since 2512 * some may now be mergeable. 2513 */ 2514 rv = KERN_SUCCESS; 2515 vm_map_clip_start(map, entry, start); 2516 for (current = entry; current->start < end; current = current->next) { 2517 2518 vm_map_clip_end(map, current, end); 2519 2520 if (set_max || 2521 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 2522 ENTRY_CHARGED(current) || 2523 (current->eflags & MAP_ENTRY_GUARD) != 0) { 2524 continue; 2525 } 2526 2527 cred = curthread->td_ucred; 2528 obj = current->object.vm_object; 2529 2530 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 2531 if (!swap_reserve(current->end - current->start)) { 2532 rv = KERN_RESOURCE_SHORTAGE; 2533 end = current->end; 2534 break; 2535 } 2536 crhold(cred); 2537 current->cred = cred; 2538 continue; 2539 } 2540 2541 VM_OBJECT_WLOCK(obj); 2542 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2543 VM_OBJECT_WUNLOCK(obj); 2544 continue; 2545 } 2546 2547 /* 2548 * Charge for the whole object allocation now, since 2549 * we cannot distinguish between non-charged and 2550 * charged clipped mapping of the same object later. 2551 */ 2552 KASSERT(obj->charge == 0, 2553 ("vm_map_protect: object %p overcharged (entry %p)", 2554 obj, current)); 2555 if (!swap_reserve(ptoa(obj->size))) { 2556 VM_OBJECT_WUNLOCK(obj); 2557 rv = KERN_RESOURCE_SHORTAGE; 2558 end = current->end; 2559 break; 2560 } 2561 2562 crhold(cred); 2563 obj->cred = cred; 2564 obj->charge = ptoa(obj->size); 2565 VM_OBJECT_WUNLOCK(obj); 2566 } 2567 2568 /* 2569 * If enough swap space was available, go back and fix up protections. 2570 * Otherwise, just simplify entries, since some may have been modified. 2571 * [Note that clipping is not necessary the second time.] 2572 */ 2573 for (current = entry; current->start < end; 2574 vm_map_try_merge_entries(map, current->prev, current), 2575 current = current->next) { 2576 if (rv != KERN_SUCCESS || 2577 (current->eflags & MAP_ENTRY_GUARD) != 0) 2578 continue; 2579 2580 old_prot = current->protection; 2581 2582 if (set_max) 2583 current->protection = 2584 (current->max_protection = new_prot) & 2585 old_prot; 2586 else 2587 current->protection = new_prot; 2588 2589 /* 2590 * For user wired map entries, the normal lazy evaluation of 2591 * write access upgrades through soft page faults is 2592 * undesirable. Instead, immediately copy any pages that are 2593 * copy-on-write and enable write access in the physical map. 2594 */ 2595 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2596 (current->protection & VM_PROT_WRITE) != 0 && 2597 (old_prot & VM_PROT_WRITE) == 0) 2598 vm_fault_copy_entry(map, map, current, current, NULL); 2599 2600 /* 2601 * When restricting access, update the physical map. Worry 2602 * about copy-on-write here. 2603 */ 2604 if ((old_prot & ~current->protection) != 0) { 2605 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2606 VM_PROT_ALL) 2607 pmap_protect(map->pmap, current->start, 2608 current->end, 2609 current->protection & MASK(current)); 2610 #undef MASK 2611 } 2612 } 2613 vm_map_try_merge_entries(map, current->prev, current); 2614 vm_map_unlock(map); 2615 return (rv); 2616 } 2617 2618 /* 2619 * vm_map_madvise: 2620 * 2621 * This routine traverses a processes map handling the madvise 2622 * system call. Advisories are classified as either those effecting 2623 * the vm_map_entry structure, or those effecting the underlying 2624 * objects. 2625 */ 2626 int 2627 vm_map_madvise( 2628 vm_map_t map, 2629 vm_offset_t start, 2630 vm_offset_t end, 2631 int behav) 2632 { 2633 vm_map_entry_t current, entry; 2634 bool modify_map; 2635 2636 /* 2637 * Some madvise calls directly modify the vm_map_entry, in which case 2638 * we need to use an exclusive lock on the map and we need to perform 2639 * various clipping operations. Otherwise we only need a read-lock 2640 * on the map. 2641 */ 2642 switch(behav) { 2643 case MADV_NORMAL: 2644 case MADV_SEQUENTIAL: 2645 case MADV_RANDOM: 2646 case MADV_NOSYNC: 2647 case MADV_AUTOSYNC: 2648 case MADV_NOCORE: 2649 case MADV_CORE: 2650 if (start == end) 2651 return (0); 2652 modify_map = true; 2653 vm_map_lock(map); 2654 break; 2655 case MADV_WILLNEED: 2656 case MADV_DONTNEED: 2657 case MADV_FREE: 2658 if (start == end) 2659 return (0); 2660 modify_map = false; 2661 vm_map_lock_read(map); 2662 break; 2663 default: 2664 return (EINVAL); 2665 } 2666 2667 /* 2668 * Locate starting entry and clip if necessary. 2669 */ 2670 VM_MAP_RANGE_CHECK(map, start, end); 2671 2672 if (vm_map_lookup_entry(map, start, &entry)) { 2673 if (modify_map) 2674 vm_map_clip_start(map, entry, start); 2675 } else { 2676 entry = entry->next; 2677 } 2678 2679 if (modify_map) { 2680 /* 2681 * madvise behaviors that are implemented in the vm_map_entry. 2682 * 2683 * We clip the vm_map_entry so that behavioral changes are 2684 * limited to the specified address range. 2685 */ 2686 for (current = entry; current->start < end; 2687 current = current->next) { 2688 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2689 continue; 2690 2691 vm_map_clip_end(map, current, end); 2692 2693 switch (behav) { 2694 case MADV_NORMAL: 2695 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2696 break; 2697 case MADV_SEQUENTIAL: 2698 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2699 break; 2700 case MADV_RANDOM: 2701 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2702 break; 2703 case MADV_NOSYNC: 2704 current->eflags |= MAP_ENTRY_NOSYNC; 2705 break; 2706 case MADV_AUTOSYNC: 2707 current->eflags &= ~MAP_ENTRY_NOSYNC; 2708 break; 2709 case MADV_NOCORE: 2710 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2711 break; 2712 case MADV_CORE: 2713 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2714 break; 2715 default: 2716 break; 2717 } 2718 vm_map_try_merge_entries(map, current->prev, current); 2719 } 2720 vm_map_try_merge_entries(map, current->prev, current); 2721 vm_map_unlock(map); 2722 } else { 2723 vm_pindex_t pstart, pend; 2724 2725 /* 2726 * madvise behaviors that are implemented in the underlying 2727 * vm_object. 2728 * 2729 * Since we don't clip the vm_map_entry, we have to clip 2730 * the vm_object pindex and count. 2731 */ 2732 for (current = entry; current->start < end; 2733 current = current->next) { 2734 vm_offset_t useEnd, useStart; 2735 2736 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2737 continue; 2738 2739 pstart = OFF_TO_IDX(current->offset); 2740 pend = pstart + atop(current->end - current->start); 2741 useStart = current->start; 2742 useEnd = current->end; 2743 2744 if (current->start < start) { 2745 pstart += atop(start - current->start); 2746 useStart = start; 2747 } 2748 if (current->end > end) { 2749 pend -= atop(current->end - end); 2750 useEnd = end; 2751 } 2752 2753 if (pstart >= pend) 2754 continue; 2755 2756 /* 2757 * Perform the pmap_advise() before clearing 2758 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2759 * concurrent pmap operation, such as pmap_remove(), 2760 * could clear a reference in the pmap and set 2761 * PGA_REFERENCED on the page before the pmap_advise() 2762 * had completed. Consequently, the page would appear 2763 * referenced based upon an old reference that 2764 * occurred before this pmap_advise() ran. 2765 */ 2766 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2767 pmap_advise(map->pmap, useStart, useEnd, 2768 behav); 2769 2770 vm_object_madvise(current->object.vm_object, pstart, 2771 pend, behav); 2772 2773 /* 2774 * Pre-populate paging structures in the 2775 * WILLNEED case. For wired entries, the 2776 * paging structures are already populated. 2777 */ 2778 if (behav == MADV_WILLNEED && 2779 current->wired_count == 0) { 2780 vm_map_pmap_enter(map, 2781 useStart, 2782 current->protection, 2783 current->object.vm_object, 2784 pstart, 2785 ptoa(pend - pstart), 2786 MAP_PREFAULT_MADVISE 2787 ); 2788 } 2789 } 2790 vm_map_unlock_read(map); 2791 } 2792 return (0); 2793 } 2794 2795 2796 /* 2797 * vm_map_inherit: 2798 * 2799 * Sets the inheritance of the specified address 2800 * range in the target map. Inheritance 2801 * affects how the map will be shared with 2802 * child maps at the time of vmspace_fork. 2803 */ 2804 int 2805 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2806 vm_inherit_t new_inheritance) 2807 { 2808 vm_map_entry_t entry; 2809 vm_map_entry_t temp_entry; 2810 2811 switch (new_inheritance) { 2812 case VM_INHERIT_NONE: 2813 case VM_INHERIT_COPY: 2814 case VM_INHERIT_SHARE: 2815 case VM_INHERIT_ZERO: 2816 break; 2817 default: 2818 return (KERN_INVALID_ARGUMENT); 2819 } 2820 if (start == end) 2821 return (KERN_SUCCESS); 2822 vm_map_lock(map); 2823 VM_MAP_RANGE_CHECK(map, start, end); 2824 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2825 entry = temp_entry; 2826 vm_map_clip_start(map, entry, start); 2827 } else 2828 entry = temp_entry->next; 2829 while (entry->start < end) { 2830 vm_map_clip_end(map, entry, end); 2831 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 2832 new_inheritance != VM_INHERIT_ZERO) 2833 entry->inheritance = new_inheritance; 2834 vm_map_try_merge_entries(map, entry->prev, entry); 2835 entry = entry->next; 2836 } 2837 vm_map_try_merge_entries(map, entry->prev, entry); 2838 vm_map_unlock(map); 2839 return (KERN_SUCCESS); 2840 } 2841 2842 /* 2843 * vm_map_entry_in_transition: 2844 * 2845 * Release the map lock, and sleep until the entry is no longer in 2846 * transition. Awake and acquire the map lock. If the map changed while 2847 * another held the lock, lookup a possibly-changed entry at or after the 2848 * 'start' position of the old entry. 2849 */ 2850 static vm_map_entry_t 2851 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, 2852 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) 2853 { 2854 vm_map_entry_t entry; 2855 vm_offset_t start; 2856 u_int last_timestamp; 2857 2858 VM_MAP_ASSERT_LOCKED(map); 2859 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2860 ("not in-tranition map entry %p", in_entry)); 2861 /* 2862 * We have not yet clipped the entry. 2863 */ 2864 start = MAX(in_start, in_entry->start); 2865 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2866 last_timestamp = map->timestamp; 2867 if (vm_map_unlock_and_wait(map, 0)) { 2868 /* 2869 * Allow interruption of user wiring/unwiring? 2870 */ 2871 } 2872 vm_map_lock(map); 2873 if (last_timestamp + 1 == map->timestamp) 2874 return (in_entry); 2875 2876 /* 2877 * Look again for the entry because the map was modified while it was 2878 * unlocked. Specifically, the entry may have been clipped, merged, or 2879 * deleted. 2880 */ 2881 if (!vm_map_lookup_entry(map, start, &entry)) { 2882 if (!holes_ok) { 2883 *io_end = start; 2884 return (NULL); 2885 } 2886 entry = entry->next; 2887 } 2888 return (entry); 2889 } 2890 2891 /* 2892 * vm_map_unwire: 2893 * 2894 * Implements both kernel and user unwiring. 2895 */ 2896 int 2897 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2898 int flags) 2899 { 2900 vm_map_entry_t entry, first_entry; 2901 int rv; 2902 bool first_iteration, holes_ok, need_wakeup, user_unwire; 2903 2904 if (start == end) 2905 return (KERN_SUCCESS); 2906 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 2907 user_unwire = (flags & VM_MAP_WIRE_USER) != 0; 2908 vm_map_lock(map); 2909 VM_MAP_RANGE_CHECK(map, start, end); 2910 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2911 if (holes_ok) 2912 first_entry = first_entry->next; 2913 else { 2914 vm_map_unlock(map); 2915 return (KERN_INVALID_ADDRESS); 2916 } 2917 } 2918 first_iteration = true; 2919 entry = first_entry; 2920 rv = KERN_SUCCESS; 2921 while (entry->start < end) { 2922 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2923 /* 2924 * We have not yet clipped the entry. 2925 */ 2926 entry = vm_map_entry_in_transition(map, start, &end, 2927 holes_ok, entry); 2928 if (entry == NULL) { 2929 if (first_iteration) { 2930 vm_map_unlock(map); 2931 return (KERN_INVALID_ADDRESS); 2932 } 2933 rv = KERN_INVALID_ADDRESS; 2934 break; 2935 } 2936 first_entry = first_iteration ? entry : NULL; 2937 continue; 2938 } 2939 first_iteration = false; 2940 vm_map_clip_start(map, entry, start); 2941 vm_map_clip_end(map, entry, end); 2942 /* 2943 * Mark the entry in case the map lock is released. (See 2944 * above.) 2945 */ 2946 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2947 entry->wiring_thread == NULL, 2948 ("owned map entry %p", entry)); 2949 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2950 entry->wiring_thread = curthread; 2951 /* 2952 * Check the map for holes in the specified region. 2953 * If holes_ok, skip this check. 2954 */ 2955 if (!holes_ok && 2956 (entry->end < end && entry->next->start > entry->end)) { 2957 end = entry->end; 2958 rv = KERN_INVALID_ADDRESS; 2959 break; 2960 } 2961 /* 2962 * If system unwiring, require that the entry is system wired. 2963 */ 2964 if (!user_unwire && 2965 vm_map_entry_system_wired_count(entry) == 0) { 2966 end = entry->end; 2967 rv = KERN_INVALID_ARGUMENT; 2968 break; 2969 } 2970 entry = entry->next; 2971 } 2972 need_wakeup = false; 2973 if (first_entry == NULL && 2974 !vm_map_lookup_entry(map, start, &first_entry)) { 2975 KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); 2976 first_entry = first_entry->next; 2977 } 2978 for (entry = first_entry; entry->start < end; entry = entry->next) { 2979 /* 2980 * If holes_ok was specified, an empty 2981 * space in the unwired region could have been mapped 2982 * while the map lock was dropped for draining 2983 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2984 * could be simultaneously wiring this new mapping 2985 * entry. Detect these cases and skip any entries 2986 * marked as in transition by us. 2987 */ 2988 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2989 entry->wiring_thread != curthread) { 2990 KASSERT(holes_ok, 2991 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2992 continue; 2993 } 2994 2995 if (rv == KERN_SUCCESS && (!user_unwire || 2996 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2997 if (entry->wired_count == 1) 2998 vm_map_entry_unwire(map, entry); 2999 else 3000 entry->wired_count--; 3001 if (user_unwire) 3002 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3003 } 3004 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3005 ("vm_map_unwire: in-transition flag missing %p", entry)); 3006 KASSERT(entry->wiring_thread == curthread, 3007 ("vm_map_unwire: alien wire %p", entry)); 3008 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 3009 entry->wiring_thread = NULL; 3010 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3011 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3012 need_wakeup = true; 3013 } 3014 vm_map_try_merge_entries(map, entry->prev, entry); 3015 } 3016 vm_map_try_merge_entries(map, entry->prev, entry); 3017 vm_map_unlock(map); 3018 if (need_wakeup) 3019 vm_map_wakeup(map); 3020 return (rv); 3021 } 3022 3023 static void 3024 vm_map_wire_user_count_sub(u_long npages) 3025 { 3026 3027 atomic_subtract_long(&vm_user_wire_count, npages); 3028 } 3029 3030 static bool 3031 vm_map_wire_user_count_add(u_long npages) 3032 { 3033 u_long wired; 3034 3035 wired = vm_user_wire_count; 3036 do { 3037 if (npages + wired > vm_page_max_user_wired) 3038 return (false); 3039 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3040 npages + wired)); 3041 3042 return (true); 3043 } 3044 3045 /* 3046 * vm_map_wire_entry_failure: 3047 * 3048 * Handle a wiring failure on the given entry. 3049 * 3050 * The map should be locked. 3051 */ 3052 static void 3053 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3054 vm_offset_t failed_addr) 3055 { 3056 3057 VM_MAP_ASSERT_LOCKED(map); 3058 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3059 entry->wired_count == 1, 3060 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3061 KASSERT(failed_addr < entry->end, 3062 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3063 3064 /* 3065 * If any pages at the start of this entry were successfully wired, 3066 * then unwire them. 3067 */ 3068 if (failed_addr > entry->start) { 3069 pmap_unwire(map->pmap, entry->start, failed_addr); 3070 vm_object_unwire(entry->object.vm_object, entry->offset, 3071 failed_addr - entry->start, PQ_ACTIVE); 3072 } 3073 3074 /* 3075 * Assign an out-of-range value to represent the failure to wire this 3076 * entry. 3077 */ 3078 entry->wired_count = -1; 3079 } 3080 3081 int 3082 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3083 { 3084 int rv; 3085 3086 vm_map_lock(map); 3087 rv = vm_map_wire_locked(map, start, end, flags); 3088 vm_map_unlock(map); 3089 return (rv); 3090 } 3091 3092 3093 /* 3094 * vm_map_wire_locked: 3095 * 3096 * Implements both kernel and user wiring. Returns with the map locked, 3097 * the map lock may be dropped. 3098 */ 3099 int 3100 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3101 { 3102 vm_map_entry_t entry, first_entry, tmp_entry; 3103 vm_offset_t faddr, saved_end, saved_start; 3104 u_long npages; 3105 u_int last_timestamp; 3106 int rv; 3107 bool first_iteration, holes_ok, need_wakeup, user_wire; 3108 vm_prot_t prot; 3109 3110 VM_MAP_ASSERT_LOCKED(map); 3111 3112 if (start == end) 3113 return (KERN_SUCCESS); 3114 prot = 0; 3115 if (flags & VM_MAP_WIRE_WRITE) 3116 prot |= VM_PROT_WRITE; 3117 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3118 user_wire = (flags & VM_MAP_WIRE_USER) != 0; 3119 VM_MAP_RANGE_CHECK(map, start, end); 3120 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3121 if (holes_ok) 3122 first_entry = first_entry->next; 3123 else 3124 return (KERN_INVALID_ADDRESS); 3125 } 3126 first_iteration = true; 3127 entry = first_entry; 3128 while (entry->start < end) { 3129 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3130 /* 3131 * We have not yet clipped the entry. 3132 */ 3133 entry = vm_map_entry_in_transition(map, start, &end, 3134 holes_ok, entry); 3135 if (entry == NULL) { 3136 if (first_iteration) 3137 return (KERN_INVALID_ADDRESS); 3138 rv = KERN_INVALID_ADDRESS; 3139 goto done; 3140 } 3141 first_entry = first_iteration ? entry : NULL; 3142 continue; 3143 } 3144 first_iteration = false; 3145 vm_map_clip_start(map, entry, start); 3146 vm_map_clip_end(map, entry, end); 3147 /* 3148 * Mark the entry in case the map lock is released. (See 3149 * above.) 3150 */ 3151 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3152 entry->wiring_thread == NULL, 3153 ("owned map entry %p", entry)); 3154 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3155 entry->wiring_thread = curthread; 3156 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3157 || (entry->protection & prot) != prot) { 3158 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3159 if (!holes_ok) { 3160 end = entry->end; 3161 rv = KERN_INVALID_ADDRESS; 3162 goto done; 3163 } 3164 } else if (entry->wired_count == 0) { 3165 entry->wired_count++; 3166 3167 npages = atop(entry->end - entry->start); 3168 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3169 vm_map_wire_entry_failure(map, entry, 3170 entry->start); 3171 end = entry->end; 3172 rv = KERN_RESOURCE_SHORTAGE; 3173 goto done; 3174 } 3175 3176 /* 3177 * Release the map lock, relying on the in-transition 3178 * mark. Mark the map busy for fork. 3179 */ 3180 saved_start = entry->start; 3181 saved_end = entry->end; 3182 last_timestamp = map->timestamp; 3183 vm_map_busy(map); 3184 vm_map_unlock(map); 3185 3186 faddr = saved_start; 3187 do { 3188 /* 3189 * Simulate a fault to get the page and enter 3190 * it into the physical map. 3191 */ 3192 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 3193 VM_FAULT_WIRE)) != KERN_SUCCESS) 3194 break; 3195 } while ((faddr += PAGE_SIZE) < saved_end); 3196 vm_map_lock(map); 3197 vm_map_unbusy(map); 3198 if (last_timestamp + 1 != map->timestamp) { 3199 /* 3200 * Look again for the entry because the map was 3201 * modified while it was unlocked. The entry 3202 * may have been clipped, but NOT merged or 3203 * deleted. 3204 */ 3205 if (!vm_map_lookup_entry(map, saved_start, 3206 &tmp_entry)) 3207 KASSERT(false, 3208 ("vm_map_wire: lookup failed")); 3209 if (entry == first_entry) 3210 first_entry = tmp_entry; 3211 else 3212 first_entry = NULL; 3213 entry = tmp_entry; 3214 while (entry->end < saved_end) { 3215 /* 3216 * In case of failure, handle entries 3217 * that were not fully wired here; 3218 * fully wired entries are handled 3219 * later. 3220 */ 3221 if (rv != KERN_SUCCESS && 3222 faddr < entry->end) 3223 vm_map_wire_entry_failure(map, 3224 entry, faddr); 3225 entry = entry->next; 3226 } 3227 } 3228 if (rv != KERN_SUCCESS) { 3229 vm_map_wire_entry_failure(map, entry, faddr); 3230 if (user_wire) 3231 vm_map_wire_user_count_sub(npages); 3232 end = entry->end; 3233 goto done; 3234 } 3235 } else if (!user_wire || 3236 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3237 entry->wired_count++; 3238 } 3239 /* 3240 * Check the map for holes in the specified region. 3241 * If holes_ok was specified, skip this check. 3242 */ 3243 if (!holes_ok && 3244 entry->end < end && entry->next->start > entry->end) { 3245 end = entry->end; 3246 rv = KERN_INVALID_ADDRESS; 3247 goto done; 3248 } 3249 entry = entry->next; 3250 } 3251 rv = KERN_SUCCESS; 3252 done: 3253 need_wakeup = false; 3254 if (first_entry == NULL && 3255 !vm_map_lookup_entry(map, start, &first_entry)) { 3256 KASSERT(holes_ok, ("vm_map_wire: lookup failed")); 3257 first_entry = first_entry->next; 3258 } 3259 for (entry = first_entry; entry->start < end; entry = entry->next) { 3260 /* 3261 * If holes_ok was specified, an empty 3262 * space in the unwired region could have been mapped 3263 * while the map lock was dropped for faulting in the 3264 * pages or draining MAP_ENTRY_IN_TRANSITION. 3265 * Moreover, another thread could be simultaneously 3266 * wiring this new mapping entry. Detect these cases 3267 * and skip any entries marked as in transition not by us. 3268 */ 3269 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3270 entry->wiring_thread != curthread) { 3271 KASSERT(holes_ok, 3272 ("vm_map_wire: !HOLESOK and new/changed entry")); 3273 continue; 3274 } 3275 3276 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { 3277 /* do nothing */ 3278 } else if (rv == KERN_SUCCESS) { 3279 if (user_wire) 3280 entry->eflags |= MAP_ENTRY_USER_WIRED; 3281 } else if (entry->wired_count == -1) { 3282 /* 3283 * Wiring failed on this entry. Thus, unwiring is 3284 * unnecessary. 3285 */ 3286 entry->wired_count = 0; 3287 } else if (!user_wire || 3288 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3289 /* 3290 * Undo the wiring. Wiring succeeded on this entry 3291 * but failed on a later entry. 3292 */ 3293 if (entry->wired_count == 1) { 3294 vm_map_entry_unwire(map, entry); 3295 if (user_wire) 3296 vm_map_wire_user_count_sub( 3297 atop(entry->end - entry->start)); 3298 } else 3299 entry->wired_count--; 3300 } 3301 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3302 ("vm_map_wire: in-transition flag missing %p", entry)); 3303 KASSERT(entry->wiring_thread == curthread, 3304 ("vm_map_wire: alien wire %p", entry)); 3305 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3306 MAP_ENTRY_WIRE_SKIPPED); 3307 entry->wiring_thread = NULL; 3308 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3309 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3310 need_wakeup = true; 3311 } 3312 vm_map_try_merge_entries(map, entry->prev, entry); 3313 } 3314 vm_map_try_merge_entries(map, entry->prev, entry); 3315 if (need_wakeup) 3316 vm_map_wakeup(map); 3317 return (rv); 3318 } 3319 3320 /* 3321 * vm_map_sync 3322 * 3323 * Push any dirty cached pages in the address range to their pager. 3324 * If syncio is TRUE, dirty pages are written synchronously. 3325 * If invalidate is TRUE, any cached pages are freed as well. 3326 * 3327 * If the size of the region from start to end is zero, we are 3328 * supposed to flush all modified pages within the region containing 3329 * start. Unfortunately, a region can be split or coalesced with 3330 * neighboring regions, making it difficult to determine what the 3331 * original region was. Therefore, we approximate this requirement by 3332 * flushing the current region containing start. 3333 * 3334 * Returns an error if any part of the specified range is not mapped. 3335 */ 3336 int 3337 vm_map_sync( 3338 vm_map_t map, 3339 vm_offset_t start, 3340 vm_offset_t end, 3341 boolean_t syncio, 3342 boolean_t invalidate) 3343 { 3344 vm_map_entry_t current; 3345 vm_map_entry_t entry; 3346 vm_size_t size; 3347 vm_object_t object; 3348 vm_ooffset_t offset; 3349 unsigned int last_timestamp; 3350 boolean_t failed; 3351 3352 vm_map_lock_read(map); 3353 VM_MAP_RANGE_CHECK(map, start, end); 3354 if (!vm_map_lookup_entry(map, start, &entry)) { 3355 vm_map_unlock_read(map); 3356 return (KERN_INVALID_ADDRESS); 3357 } else if (start == end) { 3358 start = entry->start; 3359 end = entry->end; 3360 } 3361 /* 3362 * Make a first pass to check for user-wired memory and holes. 3363 */ 3364 for (current = entry; current->start < end; current = current->next) { 3365 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 3366 vm_map_unlock_read(map); 3367 return (KERN_INVALID_ARGUMENT); 3368 } 3369 if (end > current->end && 3370 current->end != current->next->start) { 3371 vm_map_unlock_read(map); 3372 return (KERN_INVALID_ADDRESS); 3373 } 3374 } 3375 3376 if (invalidate) 3377 pmap_remove(map->pmap, start, end); 3378 failed = FALSE; 3379 3380 /* 3381 * Make a second pass, cleaning/uncaching pages from the indicated 3382 * objects as we go. 3383 */ 3384 for (current = entry; current->start < end;) { 3385 offset = current->offset + (start - current->start); 3386 size = (end <= current->end ? end : current->end) - start; 3387 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 3388 vm_map_t smap; 3389 vm_map_entry_t tentry; 3390 vm_size_t tsize; 3391 3392 smap = current->object.sub_map; 3393 vm_map_lock_read(smap); 3394 (void) vm_map_lookup_entry(smap, offset, &tentry); 3395 tsize = tentry->end - offset; 3396 if (tsize < size) 3397 size = tsize; 3398 object = tentry->object.vm_object; 3399 offset = tentry->offset + (offset - tentry->start); 3400 vm_map_unlock_read(smap); 3401 } else { 3402 object = current->object.vm_object; 3403 } 3404 vm_object_reference(object); 3405 last_timestamp = map->timestamp; 3406 vm_map_unlock_read(map); 3407 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3408 failed = TRUE; 3409 start += size; 3410 vm_object_deallocate(object); 3411 vm_map_lock_read(map); 3412 if (last_timestamp == map->timestamp || 3413 !vm_map_lookup_entry(map, start, ¤t)) 3414 current = current->next; 3415 } 3416 3417 vm_map_unlock_read(map); 3418 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3419 } 3420 3421 /* 3422 * vm_map_entry_unwire: [ internal use only ] 3423 * 3424 * Make the region specified by this entry pageable. 3425 * 3426 * The map in question should be locked. 3427 * [This is the reason for this routine's existence.] 3428 */ 3429 static void 3430 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3431 { 3432 vm_size_t size; 3433 3434 VM_MAP_ASSERT_LOCKED(map); 3435 KASSERT(entry->wired_count > 0, 3436 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3437 3438 size = entry->end - entry->start; 3439 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3440 vm_map_wire_user_count_sub(atop(size)); 3441 pmap_unwire(map->pmap, entry->start, entry->end); 3442 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3443 PQ_ACTIVE); 3444 entry->wired_count = 0; 3445 } 3446 3447 static void 3448 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3449 { 3450 3451 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3452 vm_object_deallocate(entry->object.vm_object); 3453 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3454 } 3455 3456 /* 3457 * vm_map_entry_delete: [ internal use only ] 3458 * 3459 * Deallocate the given entry from the target map. 3460 */ 3461 static void 3462 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3463 { 3464 vm_object_t object; 3465 vm_pindex_t offidxstart, offidxend, count, size1; 3466 vm_size_t size; 3467 3468 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3469 object = entry->object.vm_object; 3470 3471 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3472 MPASS(entry->cred == NULL); 3473 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3474 MPASS(object == NULL); 3475 vm_map_entry_deallocate(entry, map->system_map); 3476 return; 3477 } 3478 3479 size = entry->end - entry->start; 3480 map->size -= size; 3481 3482 if (entry->cred != NULL) { 3483 swap_release_by_cred(size, entry->cred); 3484 crfree(entry->cred); 3485 } 3486 3487 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 3488 (object != NULL)) { 3489 KASSERT(entry->cred == NULL || object->cred == NULL || 3490 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3491 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3492 count = atop(size); 3493 offidxstart = OFF_TO_IDX(entry->offset); 3494 offidxend = offidxstart + count; 3495 VM_OBJECT_WLOCK(object); 3496 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT | 3497 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 3498 object == kernel_object)) { 3499 vm_object_collapse(object); 3500 3501 /* 3502 * The option OBJPR_NOTMAPPED can be passed here 3503 * because vm_map_delete() already performed 3504 * pmap_remove() on the only mapping to this range 3505 * of pages. 3506 */ 3507 vm_object_page_remove(object, offidxstart, offidxend, 3508 OBJPR_NOTMAPPED); 3509 if (object->type == OBJT_SWAP) 3510 swap_pager_freespace(object, offidxstart, 3511 count); 3512 if (offidxend >= object->size && 3513 offidxstart < object->size) { 3514 size1 = object->size; 3515 object->size = offidxstart; 3516 if (object->cred != NULL) { 3517 size1 -= object->size; 3518 KASSERT(object->charge >= ptoa(size1), 3519 ("object %p charge < 0", object)); 3520 swap_release_by_cred(ptoa(size1), 3521 object->cred); 3522 object->charge -= ptoa(size1); 3523 } 3524 } 3525 } 3526 VM_OBJECT_WUNLOCK(object); 3527 } else 3528 entry->object.vm_object = NULL; 3529 if (map->system_map) 3530 vm_map_entry_deallocate(entry, TRUE); 3531 else { 3532 entry->next = curthread->td_map_def_user; 3533 curthread->td_map_def_user = entry; 3534 } 3535 } 3536 3537 /* 3538 * vm_map_delete: [ internal use only ] 3539 * 3540 * Deallocates the given address range from the target 3541 * map. 3542 */ 3543 int 3544 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3545 { 3546 vm_map_entry_t entry; 3547 vm_map_entry_t first_entry; 3548 3549 VM_MAP_ASSERT_LOCKED(map); 3550 if (start == end) 3551 return (KERN_SUCCESS); 3552 3553 /* 3554 * Find the start of the region, and clip it 3555 */ 3556 if (!vm_map_lookup_entry(map, start, &first_entry)) 3557 entry = first_entry->next; 3558 else { 3559 entry = first_entry; 3560 vm_map_clip_start(map, entry, start); 3561 } 3562 3563 /* 3564 * Step through all entries in this region 3565 */ 3566 while (entry->start < end) { 3567 vm_map_entry_t next; 3568 3569 /* 3570 * Wait for wiring or unwiring of an entry to complete. 3571 * Also wait for any system wirings to disappear on 3572 * user maps. 3573 */ 3574 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3575 (vm_map_pmap(map) != kernel_pmap && 3576 vm_map_entry_system_wired_count(entry) != 0)) { 3577 unsigned int last_timestamp; 3578 vm_offset_t saved_start; 3579 vm_map_entry_t tmp_entry; 3580 3581 saved_start = entry->start; 3582 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3583 last_timestamp = map->timestamp; 3584 (void) vm_map_unlock_and_wait(map, 0); 3585 vm_map_lock(map); 3586 if (last_timestamp + 1 != map->timestamp) { 3587 /* 3588 * Look again for the entry because the map was 3589 * modified while it was unlocked. 3590 * Specifically, the entry may have been 3591 * clipped, merged, or deleted. 3592 */ 3593 if (!vm_map_lookup_entry(map, saved_start, 3594 &tmp_entry)) 3595 entry = tmp_entry->next; 3596 else { 3597 entry = tmp_entry; 3598 vm_map_clip_start(map, entry, 3599 saved_start); 3600 } 3601 } 3602 continue; 3603 } 3604 vm_map_clip_end(map, entry, end); 3605 3606 next = entry->next; 3607 3608 /* 3609 * Unwire before removing addresses from the pmap; otherwise, 3610 * unwiring will put the entries back in the pmap. 3611 */ 3612 if (entry->wired_count != 0) 3613 vm_map_entry_unwire(map, entry); 3614 3615 /* 3616 * Remove mappings for the pages, but only if the 3617 * mappings could exist. For instance, it does not 3618 * make sense to call pmap_remove() for guard entries. 3619 */ 3620 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3621 entry->object.vm_object != NULL) 3622 pmap_remove(map->pmap, entry->start, entry->end); 3623 3624 if (entry->end == map->anon_loc) 3625 map->anon_loc = entry->start; 3626 3627 /* 3628 * Delete the entry only after removing all pmap 3629 * entries pointing to its pages. (Otherwise, its 3630 * page frames may be reallocated, and any modify bits 3631 * will be set in the wrong object!) 3632 */ 3633 vm_map_entry_delete(map, entry); 3634 entry = next; 3635 } 3636 return (KERN_SUCCESS); 3637 } 3638 3639 /* 3640 * vm_map_remove: 3641 * 3642 * Remove the given address range from the target map. 3643 * This is the exported form of vm_map_delete. 3644 */ 3645 int 3646 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3647 { 3648 int result; 3649 3650 vm_map_lock(map); 3651 VM_MAP_RANGE_CHECK(map, start, end); 3652 result = vm_map_delete(map, start, end); 3653 vm_map_unlock(map); 3654 return (result); 3655 } 3656 3657 /* 3658 * vm_map_check_protection: 3659 * 3660 * Assert that the target map allows the specified privilege on the 3661 * entire address region given. The entire region must be allocated. 3662 * 3663 * WARNING! This code does not and should not check whether the 3664 * contents of the region is accessible. For example a smaller file 3665 * might be mapped into a larger address space. 3666 * 3667 * NOTE! This code is also called by munmap(). 3668 * 3669 * The map must be locked. A read lock is sufficient. 3670 */ 3671 boolean_t 3672 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3673 vm_prot_t protection) 3674 { 3675 vm_map_entry_t entry; 3676 vm_map_entry_t tmp_entry; 3677 3678 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3679 return (FALSE); 3680 entry = tmp_entry; 3681 3682 while (start < end) { 3683 /* 3684 * No holes allowed! 3685 */ 3686 if (start < entry->start) 3687 return (FALSE); 3688 /* 3689 * Check protection associated with entry. 3690 */ 3691 if ((entry->protection & protection) != protection) 3692 return (FALSE); 3693 /* go to next entry */ 3694 start = entry->end; 3695 entry = entry->next; 3696 } 3697 return (TRUE); 3698 } 3699 3700 /* 3701 * vm_map_copy_entry: 3702 * 3703 * Copies the contents of the source entry to the destination 3704 * entry. The entries *must* be aligned properly. 3705 */ 3706 static void 3707 vm_map_copy_entry( 3708 vm_map_t src_map, 3709 vm_map_t dst_map, 3710 vm_map_entry_t src_entry, 3711 vm_map_entry_t dst_entry, 3712 vm_ooffset_t *fork_charge) 3713 { 3714 vm_object_t src_object; 3715 vm_map_entry_t fake_entry; 3716 vm_offset_t size; 3717 struct ucred *cred; 3718 int charged; 3719 3720 VM_MAP_ASSERT_LOCKED(dst_map); 3721 3722 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3723 return; 3724 3725 if (src_entry->wired_count == 0 || 3726 (src_entry->protection & VM_PROT_WRITE) == 0) { 3727 /* 3728 * If the source entry is marked needs_copy, it is already 3729 * write-protected. 3730 */ 3731 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3732 (src_entry->protection & VM_PROT_WRITE) != 0) { 3733 pmap_protect(src_map->pmap, 3734 src_entry->start, 3735 src_entry->end, 3736 src_entry->protection & ~VM_PROT_WRITE); 3737 } 3738 3739 /* 3740 * Make a copy of the object. 3741 */ 3742 size = src_entry->end - src_entry->start; 3743 if ((src_object = src_entry->object.vm_object) != NULL) { 3744 VM_OBJECT_WLOCK(src_object); 3745 charged = ENTRY_CHARGED(src_entry); 3746 if (src_object->handle == NULL && 3747 (src_object->type == OBJT_DEFAULT || 3748 src_object->type == OBJT_SWAP)) { 3749 vm_object_collapse(src_object); 3750 if ((src_object->flags & (OBJ_NOSPLIT | 3751 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3752 vm_object_split(src_entry); 3753 src_object = 3754 src_entry->object.vm_object; 3755 } 3756 } 3757 vm_object_reference_locked(src_object); 3758 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3759 if (src_entry->cred != NULL && 3760 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3761 KASSERT(src_object->cred == NULL, 3762 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3763 src_object)); 3764 src_object->cred = src_entry->cred; 3765 src_object->charge = size; 3766 } 3767 VM_OBJECT_WUNLOCK(src_object); 3768 dst_entry->object.vm_object = src_object; 3769 if (charged) { 3770 cred = curthread->td_ucred; 3771 crhold(cred); 3772 dst_entry->cred = cred; 3773 *fork_charge += size; 3774 if (!(src_entry->eflags & 3775 MAP_ENTRY_NEEDS_COPY)) { 3776 crhold(cred); 3777 src_entry->cred = cred; 3778 *fork_charge += size; 3779 } 3780 } 3781 src_entry->eflags |= MAP_ENTRY_COW | 3782 MAP_ENTRY_NEEDS_COPY; 3783 dst_entry->eflags |= MAP_ENTRY_COW | 3784 MAP_ENTRY_NEEDS_COPY; 3785 dst_entry->offset = src_entry->offset; 3786 if (src_entry->eflags & MAP_ENTRY_WRITECNT) { 3787 /* 3788 * MAP_ENTRY_WRITECNT cannot 3789 * indicate write reference from 3790 * src_entry, since the entry is 3791 * marked as needs copy. Allocate a 3792 * fake entry that is used to 3793 * decrement object->un_pager writecount 3794 * at the appropriate time. Attach 3795 * fake_entry to the deferred list. 3796 */ 3797 fake_entry = vm_map_entry_create(dst_map); 3798 fake_entry->eflags = MAP_ENTRY_WRITECNT; 3799 src_entry->eflags &= ~MAP_ENTRY_WRITECNT; 3800 vm_object_reference(src_object); 3801 fake_entry->object.vm_object = src_object; 3802 fake_entry->start = src_entry->start; 3803 fake_entry->end = src_entry->end; 3804 fake_entry->next = curthread->td_map_def_user; 3805 curthread->td_map_def_user = fake_entry; 3806 } 3807 3808 pmap_copy(dst_map->pmap, src_map->pmap, 3809 dst_entry->start, dst_entry->end - dst_entry->start, 3810 src_entry->start); 3811 } else { 3812 dst_entry->object.vm_object = NULL; 3813 dst_entry->offset = 0; 3814 if (src_entry->cred != NULL) { 3815 dst_entry->cred = curthread->td_ucred; 3816 crhold(dst_entry->cred); 3817 *fork_charge += size; 3818 } 3819 } 3820 } else { 3821 /* 3822 * We don't want to make writeable wired pages copy-on-write. 3823 * Immediately copy these pages into the new map by simulating 3824 * page faults. The new pages are pageable. 3825 */ 3826 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3827 fork_charge); 3828 } 3829 } 3830 3831 /* 3832 * vmspace_map_entry_forked: 3833 * Update the newly-forked vmspace each time a map entry is inherited 3834 * or copied. The values for vm_dsize and vm_tsize are approximate 3835 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3836 */ 3837 static void 3838 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3839 vm_map_entry_t entry) 3840 { 3841 vm_size_t entrysize; 3842 vm_offset_t newend; 3843 3844 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 3845 return; 3846 entrysize = entry->end - entry->start; 3847 vm2->vm_map.size += entrysize; 3848 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3849 vm2->vm_ssize += btoc(entrysize); 3850 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3851 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3852 newend = MIN(entry->end, 3853 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3854 vm2->vm_dsize += btoc(newend - entry->start); 3855 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3856 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3857 newend = MIN(entry->end, 3858 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3859 vm2->vm_tsize += btoc(newend - entry->start); 3860 } 3861 } 3862 3863 /* 3864 * vmspace_fork: 3865 * Create a new process vmspace structure and vm_map 3866 * based on those of an existing process. The new map 3867 * is based on the old map, according to the inheritance 3868 * values on the regions in that map. 3869 * 3870 * XXX It might be worth coalescing the entries added to the new vmspace. 3871 * 3872 * The source map must not be locked. 3873 */ 3874 struct vmspace * 3875 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3876 { 3877 struct vmspace *vm2; 3878 vm_map_t new_map, old_map; 3879 vm_map_entry_t new_entry, old_entry; 3880 vm_object_t object; 3881 int error, locked; 3882 vm_inherit_t inh; 3883 3884 old_map = &vm1->vm_map; 3885 /* Copy immutable fields of vm1 to vm2. */ 3886 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 3887 pmap_pinit); 3888 if (vm2 == NULL) 3889 return (NULL); 3890 3891 vm2->vm_taddr = vm1->vm_taddr; 3892 vm2->vm_daddr = vm1->vm_daddr; 3893 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3894 vm_map_lock(old_map); 3895 if (old_map->busy) 3896 vm_map_wait_busy(old_map); 3897 new_map = &vm2->vm_map; 3898 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3899 KASSERT(locked, ("vmspace_fork: lock failed")); 3900 3901 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 3902 if (error != 0) { 3903 sx_xunlock(&old_map->lock); 3904 sx_xunlock(&new_map->lock); 3905 vm_map_process_deferred(); 3906 vmspace_free(vm2); 3907 return (NULL); 3908 } 3909 3910 new_map->anon_loc = old_map->anon_loc; 3911 3912 old_entry = old_map->header.next; 3913 3914 while (old_entry != &old_map->header) { 3915 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3916 panic("vm_map_fork: encountered a submap"); 3917 3918 inh = old_entry->inheritance; 3919 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 3920 inh != VM_INHERIT_NONE) 3921 inh = VM_INHERIT_COPY; 3922 3923 switch (inh) { 3924 case VM_INHERIT_NONE: 3925 break; 3926 3927 case VM_INHERIT_SHARE: 3928 /* 3929 * Clone the entry, creating the shared object if necessary. 3930 */ 3931 object = old_entry->object.vm_object; 3932 if (object == NULL) { 3933 vm_map_entry_back(old_entry); 3934 object = old_entry->object.vm_object; 3935 } 3936 3937 /* 3938 * Add the reference before calling vm_object_shadow 3939 * to insure that a shadow object is created. 3940 */ 3941 vm_object_reference(object); 3942 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3943 vm_object_shadow(&old_entry->object.vm_object, 3944 &old_entry->offset, 3945 old_entry->end - old_entry->start); 3946 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3947 /* Transfer the second reference too. */ 3948 vm_object_reference( 3949 old_entry->object.vm_object); 3950 3951 /* 3952 * As in vm_map_merged_neighbor_dispose(), 3953 * the vnode lock will not be acquired in 3954 * this call to vm_object_deallocate(). 3955 */ 3956 vm_object_deallocate(object); 3957 object = old_entry->object.vm_object; 3958 } 3959 VM_OBJECT_WLOCK(object); 3960 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3961 if (old_entry->cred != NULL) { 3962 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3963 object->cred = old_entry->cred; 3964 object->charge = old_entry->end - old_entry->start; 3965 old_entry->cred = NULL; 3966 } 3967 3968 /* 3969 * Assert the correct state of the vnode 3970 * v_writecount while the object is locked, to 3971 * not relock it later for the assertion 3972 * correctness. 3973 */ 3974 if (old_entry->eflags & MAP_ENTRY_WRITECNT && 3975 object->type == OBJT_VNODE) { 3976 KASSERT(((struct vnode *)object->handle)-> 3977 v_writecount > 0, 3978 ("vmspace_fork: v_writecount %p", object)); 3979 KASSERT(object->un_pager.vnp.writemappings > 0, 3980 ("vmspace_fork: vnp.writecount %p", 3981 object)); 3982 } 3983 VM_OBJECT_WUNLOCK(object); 3984 3985 /* 3986 * Clone the entry, referencing the shared object. 3987 */ 3988 new_entry = vm_map_entry_create(new_map); 3989 *new_entry = *old_entry; 3990 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3991 MAP_ENTRY_IN_TRANSITION); 3992 new_entry->wiring_thread = NULL; 3993 new_entry->wired_count = 0; 3994 if (new_entry->eflags & MAP_ENTRY_WRITECNT) { 3995 vm_pager_update_writecount(object, 3996 new_entry->start, new_entry->end); 3997 } 3998 vm_map_entry_set_vnode_text(new_entry, true); 3999 4000 /* 4001 * Insert the entry into the new map -- we know we're 4002 * inserting at the end of the new map. 4003 */ 4004 vm_map_entry_link(new_map, new_entry); 4005 vmspace_map_entry_forked(vm1, vm2, new_entry); 4006 4007 /* 4008 * Update the physical map 4009 */ 4010 pmap_copy(new_map->pmap, old_map->pmap, 4011 new_entry->start, 4012 (old_entry->end - old_entry->start), 4013 old_entry->start); 4014 break; 4015 4016 case VM_INHERIT_COPY: 4017 /* 4018 * Clone the entry and link into the map. 4019 */ 4020 new_entry = vm_map_entry_create(new_map); 4021 *new_entry = *old_entry; 4022 /* 4023 * Copied entry is COW over the old object. 4024 */ 4025 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4026 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT); 4027 new_entry->wiring_thread = NULL; 4028 new_entry->wired_count = 0; 4029 new_entry->object.vm_object = NULL; 4030 new_entry->cred = NULL; 4031 vm_map_entry_link(new_map, new_entry); 4032 vmspace_map_entry_forked(vm1, vm2, new_entry); 4033 vm_map_copy_entry(old_map, new_map, old_entry, 4034 new_entry, fork_charge); 4035 vm_map_entry_set_vnode_text(new_entry, true); 4036 break; 4037 4038 case VM_INHERIT_ZERO: 4039 /* 4040 * Create a new anonymous mapping entry modelled from 4041 * the old one. 4042 */ 4043 new_entry = vm_map_entry_create(new_map); 4044 memset(new_entry, 0, sizeof(*new_entry)); 4045 4046 new_entry->start = old_entry->start; 4047 new_entry->end = old_entry->end; 4048 new_entry->eflags = old_entry->eflags & 4049 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4050 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC); 4051 new_entry->protection = old_entry->protection; 4052 new_entry->max_protection = old_entry->max_protection; 4053 new_entry->inheritance = VM_INHERIT_ZERO; 4054 4055 vm_map_entry_link(new_map, new_entry); 4056 vmspace_map_entry_forked(vm1, vm2, new_entry); 4057 4058 new_entry->cred = curthread->td_ucred; 4059 crhold(new_entry->cred); 4060 *fork_charge += (new_entry->end - new_entry->start); 4061 4062 break; 4063 } 4064 old_entry = old_entry->next; 4065 } 4066 /* 4067 * Use inlined vm_map_unlock() to postpone handling the deferred 4068 * map entries, which cannot be done until both old_map and 4069 * new_map locks are released. 4070 */ 4071 sx_xunlock(&old_map->lock); 4072 sx_xunlock(&new_map->lock); 4073 vm_map_process_deferred(); 4074 4075 return (vm2); 4076 } 4077 4078 /* 4079 * Create a process's stack for exec_new_vmspace(). This function is never 4080 * asked to wire the newly created stack. 4081 */ 4082 int 4083 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4084 vm_prot_t prot, vm_prot_t max, int cow) 4085 { 4086 vm_size_t growsize, init_ssize; 4087 rlim_t vmemlim; 4088 int rv; 4089 4090 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4091 growsize = sgrowsiz; 4092 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4093 vm_map_lock(map); 4094 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4095 /* If we would blow our VMEM resource limit, no go */ 4096 if (map->size + init_ssize > vmemlim) { 4097 rv = KERN_NO_SPACE; 4098 goto out; 4099 } 4100 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4101 max, cow); 4102 out: 4103 vm_map_unlock(map); 4104 return (rv); 4105 } 4106 4107 static int stack_guard_page = 1; 4108 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4109 &stack_guard_page, 0, 4110 "Specifies the number of guard pages for a stack that grows"); 4111 4112 static int 4113 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4114 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4115 { 4116 vm_map_entry_t new_entry, prev_entry; 4117 vm_offset_t bot, gap_bot, gap_top, top; 4118 vm_size_t init_ssize, sgp; 4119 int orient, rv; 4120 4121 /* 4122 * The stack orientation is piggybacked with the cow argument. 4123 * Extract it into orient and mask the cow argument so that we 4124 * don't pass it around further. 4125 */ 4126 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4127 KASSERT(orient != 0, ("No stack grow direction")); 4128 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4129 ("bi-dir stack")); 4130 4131 if (addrbos < vm_map_min(map) || 4132 addrbos + max_ssize > vm_map_max(map) || 4133 addrbos + max_ssize <= addrbos) 4134 return (KERN_INVALID_ADDRESS); 4135 sgp = (curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ? 0 : 4136 (vm_size_t)stack_guard_page * PAGE_SIZE; 4137 if (sgp >= max_ssize) 4138 return (KERN_INVALID_ARGUMENT); 4139 4140 init_ssize = growsize; 4141 if (max_ssize < init_ssize + sgp) 4142 init_ssize = max_ssize - sgp; 4143 4144 /* If addr is already mapped, no go */ 4145 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4146 return (KERN_NO_SPACE); 4147 4148 /* 4149 * If we can't accommodate max_ssize in the current mapping, no go. 4150 */ 4151 if (prev_entry->next->start < addrbos + max_ssize) 4152 return (KERN_NO_SPACE); 4153 4154 /* 4155 * We initially map a stack of only init_ssize. We will grow as 4156 * needed later. Depending on the orientation of the stack (i.e. 4157 * the grow direction) we either map at the top of the range, the 4158 * bottom of the range or in the middle. 4159 * 4160 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4161 * and cow to be 0. Possibly we should eliminate these as input 4162 * parameters, and just pass these values here in the insert call. 4163 */ 4164 if (orient == MAP_STACK_GROWS_DOWN) { 4165 bot = addrbos + max_ssize - init_ssize; 4166 top = bot + init_ssize; 4167 gap_bot = addrbos; 4168 gap_top = bot; 4169 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4170 bot = addrbos; 4171 top = bot + init_ssize; 4172 gap_bot = top; 4173 gap_top = addrbos + max_ssize; 4174 } 4175 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 4176 if (rv != KERN_SUCCESS) 4177 return (rv); 4178 new_entry = prev_entry->next; 4179 KASSERT(new_entry->end == top || new_entry->start == bot, 4180 ("Bad entry start/end for new stack entry")); 4181 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4182 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4183 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4184 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4185 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4186 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4187 if (gap_bot == gap_top) 4188 return (KERN_SUCCESS); 4189 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4190 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4191 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 4192 if (rv == KERN_SUCCESS) { 4193 /* 4194 * Gap can never successfully handle a fault, so 4195 * read-ahead logic is never used for it. Re-use 4196 * next_read of the gap entry to store 4197 * stack_guard_page for vm_map_growstack(). 4198 */ 4199 if (orient == MAP_STACK_GROWS_DOWN) 4200 new_entry->prev->next_read = sgp; 4201 else 4202 new_entry->next->next_read = sgp; 4203 } else { 4204 (void)vm_map_delete(map, bot, top); 4205 } 4206 return (rv); 4207 } 4208 4209 /* 4210 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4211 * successfully grow the stack. 4212 */ 4213 static int 4214 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4215 { 4216 vm_map_entry_t stack_entry; 4217 struct proc *p; 4218 struct vmspace *vm; 4219 struct ucred *cred; 4220 vm_offset_t gap_end, gap_start, grow_start; 4221 vm_size_t grow_amount, guard, max_grow; 4222 rlim_t lmemlim, stacklim, vmemlim; 4223 int rv, rv1; 4224 bool gap_deleted, grow_down, is_procstack; 4225 #ifdef notyet 4226 uint64_t limit; 4227 #endif 4228 #ifdef RACCT 4229 int error; 4230 #endif 4231 4232 p = curproc; 4233 vm = p->p_vmspace; 4234 4235 /* 4236 * Disallow stack growth when the access is performed by a 4237 * debugger or AIO daemon. The reason is that the wrong 4238 * resource limits are applied. 4239 */ 4240 if (p != initproc && (map != &p->p_vmspace->vm_map || 4241 p->p_textvp == NULL)) 4242 return (KERN_FAILURE); 4243 4244 MPASS(!map->system_map); 4245 4246 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4247 stacklim = lim_cur(curthread, RLIMIT_STACK); 4248 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4249 retry: 4250 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4251 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4252 return (KERN_FAILURE); 4253 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4254 return (KERN_SUCCESS); 4255 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4256 stack_entry = gap_entry->next; 4257 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4258 stack_entry->start != gap_entry->end) 4259 return (KERN_FAILURE); 4260 grow_amount = round_page(stack_entry->start - addr); 4261 grow_down = true; 4262 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4263 stack_entry = gap_entry->prev; 4264 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4265 stack_entry->end != gap_entry->start) 4266 return (KERN_FAILURE); 4267 grow_amount = round_page(addr + 1 - stack_entry->end); 4268 grow_down = false; 4269 } else { 4270 return (KERN_FAILURE); 4271 } 4272 guard = (curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ? 0 : 4273 gap_entry->next_read; 4274 max_grow = gap_entry->end - gap_entry->start; 4275 if (guard > max_grow) 4276 return (KERN_NO_SPACE); 4277 max_grow -= guard; 4278 if (grow_amount > max_grow) 4279 return (KERN_NO_SPACE); 4280 4281 /* 4282 * If this is the main process stack, see if we're over the stack 4283 * limit. 4284 */ 4285 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4286 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 4287 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4288 return (KERN_NO_SPACE); 4289 4290 #ifdef RACCT 4291 if (racct_enable) { 4292 PROC_LOCK(p); 4293 if (is_procstack && racct_set(p, RACCT_STACK, 4294 ctob(vm->vm_ssize) + grow_amount)) { 4295 PROC_UNLOCK(p); 4296 return (KERN_NO_SPACE); 4297 } 4298 PROC_UNLOCK(p); 4299 } 4300 #endif 4301 4302 grow_amount = roundup(grow_amount, sgrowsiz); 4303 if (grow_amount > max_grow) 4304 grow_amount = max_grow; 4305 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4306 grow_amount = trunc_page((vm_size_t)stacklim) - 4307 ctob(vm->vm_ssize); 4308 } 4309 4310 #ifdef notyet 4311 PROC_LOCK(p); 4312 limit = racct_get_available(p, RACCT_STACK); 4313 PROC_UNLOCK(p); 4314 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4315 grow_amount = limit - ctob(vm->vm_ssize); 4316 #endif 4317 4318 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4319 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4320 rv = KERN_NO_SPACE; 4321 goto out; 4322 } 4323 #ifdef RACCT 4324 if (racct_enable) { 4325 PROC_LOCK(p); 4326 if (racct_set(p, RACCT_MEMLOCK, 4327 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4328 PROC_UNLOCK(p); 4329 rv = KERN_NO_SPACE; 4330 goto out; 4331 } 4332 PROC_UNLOCK(p); 4333 } 4334 #endif 4335 } 4336 4337 /* If we would blow our VMEM resource limit, no go */ 4338 if (map->size + grow_amount > vmemlim) { 4339 rv = KERN_NO_SPACE; 4340 goto out; 4341 } 4342 #ifdef RACCT 4343 if (racct_enable) { 4344 PROC_LOCK(p); 4345 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4346 PROC_UNLOCK(p); 4347 rv = KERN_NO_SPACE; 4348 goto out; 4349 } 4350 PROC_UNLOCK(p); 4351 } 4352 #endif 4353 4354 if (vm_map_lock_upgrade(map)) { 4355 gap_entry = NULL; 4356 vm_map_lock_read(map); 4357 goto retry; 4358 } 4359 4360 if (grow_down) { 4361 grow_start = gap_entry->end - grow_amount; 4362 if (gap_entry->start + grow_amount == gap_entry->end) { 4363 gap_start = gap_entry->start; 4364 gap_end = gap_entry->end; 4365 vm_map_entry_delete(map, gap_entry); 4366 gap_deleted = true; 4367 } else { 4368 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4369 vm_map_entry_resize(map, gap_entry, -grow_amount); 4370 gap_deleted = false; 4371 } 4372 rv = vm_map_insert(map, NULL, 0, grow_start, 4373 grow_start + grow_amount, 4374 stack_entry->protection, stack_entry->max_protection, 4375 MAP_STACK_GROWS_DOWN); 4376 if (rv != KERN_SUCCESS) { 4377 if (gap_deleted) { 4378 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4379 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4380 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4381 MPASS(rv1 == KERN_SUCCESS); 4382 } else 4383 vm_map_entry_resize(map, gap_entry, 4384 grow_amount); 4385 } 4386 } else { 4387 grow_start = stack_entry->end; 4388 cred = stack_entry->cred; 4389 if (cred == NULL && stack_entry->object.vm_object != NULL) 4390 cred = stack_entry->object.vm_object->cred; 4391 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4392 rv = KERN_NO_SPACE; 4393 /* Grow the underlying object if applicable. */ 4394 else if (stack_entry->object.vm_object == NULL || 4395 vm_object_coalesce(stack_entry->object.vm_object, 4396 stack_entry->offset, 4397 (vm_size_t)(stack_entry->end - stack_entry->start), 4398 grow_amount, cred != NULL)) { 4399 if (gap_entry->start + grow_amount == gap_entry->end) { 4400 vm_map_entry_delete(map, gap_entry); 4401 vm_map_entry_resize(map, stack_entry, 4402 grow_amount); 4403 } else { 4404 gap_entry->start += grow_amount; 4405 stack_entry->end += grow_amount; 4406 } 4407 map->size += grow_amount; 4408 rv = KERN_SUCCESS; 4409 } else 4410 rv = KERN_FAILURE; 4411 } 4412 if (rv == KERN_SUCCESS && is_procstack) 4413 vm->vm_ssize += btoc(grow_amount); 4414 4415 /* 4416 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4417 */ 4418 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4419 rv = vm_map_wire_locked(map, grow_start, 4420 grow_start + grow_amount, 4421 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4422 } 4423 vm_map_lock_downgrade(map); 4424 4425 out: 4426 #ifdef RACCT 4427 if (racct_enable && rv != KERN_SUCCESS) { 4428 PROC_LOCK(p); 4429 error = racct_set(p, RACCT_VMEM, map->size); 4430 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4431 if (!old_mlock) { 4432 error = racct_set(p, RACCT_MEMLOCK, 4433 ptoa(pmap_wired_count(map->pmap))); 4434 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4435 } 4436 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4437 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4438 PROC_UNLOCK(p); 4439 } 4440 #endif 4441 4442 return (rv); 4443 } 4444 4445 /* 4446 * Unshare the specified VM space for exec. If other processes are 4447 * mapped to it, then create a new one. The new vmspace is null. 4448 */ 4449 int 4450 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4451 { 4452 struct vmspace *oldvmspace = p->p_vmspace; 4453 struct vmspace *newvmspace; 4454 4455 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4456 ("vmspace_exec recursed")); 4457 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4458 if (newvmspace == NULL) 4459 return (ENOMEM); 4460 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4461 /* 4462 * This code is written like this for prototype purposes. The 4463 * goal is to avoid running down the vmspace here, but let the 4464 * other process's that are still using the vmspace to finally 4465 * run it down. Even though there is little or no chance of blocking 4466 * here, it is a good idea to keep this form for future mods. 4467 */ 4468 PROC_VMSPACE_LOCK(p); 4469 p->p_vmspace = newvmspace; 4470 PROC_VMSPACE_UNLOCK(p); 4471 if (p == curthread->td_proc) 4472 pmap_activate(curthread); 4473 curthread->td_pflags |= TDP_EXECVMSPC; 4474 return (0); 4475 } 4476 4477 /* 4478 * Unshare the specified VM space for forcing COW. This 4479 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4480 */ 4481 int 4482 vmspace_unshare(struct proc *p) 4483 { 4484 struct vmspace *oldvmspace = p->p_vmspace; 4485 struct vmspace *newvmspace; 4486 vm_ooffset_t fork_charge; 4487 4488 if (oldvmspace->vm_refcnt == 1) 4489 return (0); 4490 fork_charge = 0; 4491 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4492 if (newvmspace == NULL) 4493 return (ENOMEM); 4494 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4495 vmspace_free(newvmspace); 4496 return (ENOMEM); 4497 } 4498 PROC_VMSPACE_LOCK(p); 4499 p->p_vmspace = newvmspace; 4500 PROC_VMSPACE_UNLOCK(p); 4501 if (p == curthread->td_proc) 4502 pmap_activate(curthread); 4503 vmspace_free(oldvmspace); 4504 return (0); 4505 } 4506 4507 /* 4508 * vm_map_lookup: 4509 * 4510 * Finds the VM object, offset, and 4511 * protection for a given virtual address in the 4512 * specified map, assuming a page fault of the 4513 * type specified. 4514 * 4515 * Leaves the map in question locked for read; return 4516 * values are guaranteed until a vm_map_lookup_done 4517 * call is performed. Note that the map argument 4518 * is in/out; the returned map must be used in 4519 * the call to vm_map_lookup_done. 4520 * 4521 * A handle (out_entry) is returned for use in 4522 * vm_map_lookup_done, to make that fast. 4523 * 4524 * If a lookup is requested with "write protection" 4525 * specified, the map may be changed to perform virtual 4526 * copying operations, although the data referenced will 4527 * remain the same. 4528 */ 4529 int 4530 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4531 vm_offset_t vaddr, 4532 vm_prot_t fault_typea, 4533 vm_map_entry_t *out_entry, /* OUT */ 4534 vm_object_t *object, /* OUT */ 4535 vm_pindex_t *pindex, /* OUT */ 4536 vm_prot_t *out_prot, /* OUT */ 4537 boolean_t *wired) /* OUT */ 4538 { 4539 vm_map_entry_t entry; 4540 vm_map_t map = *var_map; 4541 vm_prot_t prot; 4542 vm_prot_t fault_type = fault_typea; 4543 vm_object_t eobject; 4544 vm_size_t size; 4545 struct ucred *cred; 4546 4547 RetryLookup: 4548 4549 vm_map_lock_read(map); 4550 4551 RetryLookupLocked: 4552 /* 4553 * Lookup the faulting address. 4554 */ 4555 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4556 vm_map_unlock_read(map); 4557 return (KERN_INVALID_ADDRESS); 4558 } 4559 4560 entry = *out_entry; 4561 4562 /* 4563 * Handle submaps. 4564 */ 4565 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4566 vm_map_t old_map = map; 4567 4568 *var_map = map = entry->object.sub_map; 4569 vm_map_unlock_read(old_map); 4570 goto RetryLookup; 4571 } 4572 4573 /* 4574 * Check whether this task is allowed to have this page. 4575 */ 4576 prot = entry->protection; 4577 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4578 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4579 if (prot == VM_PROT_NONE && map != kernel_map && 4580 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4581 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4582 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4583 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4584 goto RetryLookupLocked; 4585 } 4586 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4587 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4588 vm_map_unlock_read(map); 4589 return (KERN_PROTECTION_FAILURE); 4590 } 4591 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4592 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4593 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4594 ("entry %p flags %x", entry, entry->eflags)); 4595 if ((fault_typea & VM_PROT_COPY) != 0 && 4596 (entry->max_protection & VM_PROT_WRITE) == 0 && 4597 (entry->eflags & MAP_ENTRY_COW) == 0) { 4598 vm_map_unlock_read(map); 4599 return (KERN_PROTECTION_FAILURE); 4600 } 4601 4602 /* 4603 * If this page is not pageable, we have to get it for all possible 4604 * accesses. 4605 */ 4606 *wired = (entry->wired_count != 0); 4607 if (*wired) 4608 fault_type = entry->protection; 4609 size = entry->end - entry->start; 4610 /* 4611 * If the entry was copy-on-write, we either ... 4612 */ 4613 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4614 /* 4615 * If we want to write the page, we may as well handle that 4616 * now since we've got the map locked. 4617 * 4618 * If we don't need to write the page, we just demote the 4619 * permissions allowed. 4620 */ 4621 if ((fault_type & VM_PROT_WRITE) != 0 || 4622 (fault_typea & VM_PROT_COPY) != 0) { 4623 /* 4624 * Make a new object, and place it in the object 4625 * chain. Note that no new references have appeared 4626 * -- one just moved from the map to the new 4627 * object. 4628 */ 4629 if (vm_map_lock_upgrade(map)) 4630 goto RetryLookup; 4631 4632 if (entry->cred == NULL) { 4633 /* 4634 * The debugger owner is charged for 4635 * the memory. 4636 */ 4637 cred = curthread->td_ucred; 4638 crhold(cred); 4639 if (!swap_reserve_by_cred(size, cred)) { 4640 crfree(cred); 4641 vm_map_unlock(map); 4642 return (KERN_RESOURCE_SHORTAGE); 4643 } 4644 entry->cred = cred; 4645 } 4646 vm_object_shadow(&entry->object.vm_object, 4647 &entry->offset, size); 4648 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4649 eobject = entry->object.vm_object; 4650 if (eobject->cred != NULL) { 4651 /* 4652 * The object was not shadowed. 4653 */ 4654 swap_release_by_cred(size, entry->cred); 4655 crfree(entry->cred); 4656 entry->cred = NULL; 4657 } else if (entry->cred != NULL) { 4658 VM_OBJECT_WLOCK(eobject); 4659 eobject->cred = entry->cred; 4660 eobject->charge = size; 4661 VM_OBJECT_WUNLOCK(eobject); 4662 entry->cred = NULL; 4663 } 4664 4665 vm_map_lock_downgrade(map); 4666 } else { 4667 /* 4668 * We're attempting to read a copy-on-write page -- 4669 * don't allow writes. 4670 */ 4671 prot &= ~VM_PROT_WRITE; 4672 } 4673 } 4674 4675 /* 4676 * Create an object if necessary. 4677 */ 4678 if (entry->object.vm_object == NULL && 4679 !map->system_map) { 4680 if (vm_map_lock_upgrade(map)) 4681 goto RetryLookup; 4682 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4683 atop(size)); 4684 entry->offset = 0; 4685 if (entry->cred != NULL) { 4686 VM_OBJECT_WLOCK(entry->object.vm_object); 4687 entry->object.vm_object->cred = entry->cred; 4688 entry->object.vm_object->charge = size; 4689 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4690 entry->cred = NULL; 4691 } 4692 vm_map_lock_downgrade(map); 4693 } 4694 4695 /* 4696 * Return the object/offset from this entry. If the entry was 4697 * copy-on-write or empty, it has been fixed up. 4698 */ 4699 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4700 *object = entry->object.vm_object; 4701 4702 *out_prot = prot; 4703 return (KERN_SUCCESS); 4704 } 4705 4706 /* 4707 * vm_map_lookup_locked: 4708 * 4709 * Lookup the faulting address. A version of vm_map_lookup that returns 4710 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4711 */ 4712 int 4713 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4714 vm_offset_t vaddr, 4715 vm_prot_t fault_typea, 4716 vm_map_entry_t *out_entry, /* OUT */ 4717 vm_object_t *object, /* OUT */ 4718 vm_pindex_t *pindex, /* OUT */ 4719 vm_prot_t *out_prot, /* OUT */ 4720 boolean_t *wired) /* OUT */ 4721 { 4722 vm_map_entry_t entry; 4723 vm_map_t map = *var_map; 4724 vm_prot_t prot; 4725 vm_prot_t fault_type = fault_typea; 4726 4727 /* 4728 * Lookup the faulting address. 4729 */ 4730 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4731 return (KERN_INVALID_ADDRESS); 4732 4733 entry = *out_entry; 4734 4735 /* 4736 * Fail if the entry refers to a submap. 4737 */ 4738 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4739 return (KERN_FAILURE); 4740 4741 /* 4742 * Check whether this task is allowed to have this page. 4743 */ 4744 prot = entry->protection; 4745 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4746 if ((fault_type & prot) != fault_type) 4747 return (KERN_PROTECTION_FAILURE); 4748 4749 /* 4750 * If this page is not pageable, we have to get it for all possible 4751 * accesses. 4752 */ 4753 *wired = (entry->wired_count != 0); 4754 if (*wired) 4755 fault_type = entry->protection; 4756 4757 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4758 /* 4759 * Fail if the entry was copy-on-write for a write fault. 4760 */ 4761 if (fault_type & VM_PROT_WRITE) 4762 return (KERN_FAILURE); 4763 /* 4764 * We're attempting to read a copy-on-write page -- 4765 * don't allow writes. 4766 */ 4767 prot &= ~VM_PROT_WRITE; 4768 } 4769 4770 /* 4771 * Fail if an object should be created. 4772 */ 4773 if (entry->object.vm_object == NULL && !map->system_map) 4774 return (KERN_FAILURE); 4775 4776 /* 4777 * Return the object/offset from this entry. If the entry was 4778 * copy-on-write or empty, it has been fixed up. 4779 */ 4780 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4781 *object = entry->object.vm_object; 4782 4783 *out_prot = prot; 4784 return (KERN_SUCCESS); 4785 } 4786 4787 /* 4788 * vm_map_lookup_done: 4789 * 4790 * Releases locks acquired by a vm_map_lookup 4791 * (according to the handle returned by that lookup). 4792 */ 4793 void 4794 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4795 { 4796 /* 4797 * Unlock the main-level map 4798 */ 4799 vm_map_unlock_read(map); 4800 } 4801 4802 vm_offset_t 4803 vm_map_max_KBI(const struct vm_map *map) 4804 { 4805 4806 return (vm_map_max(map)); 4807 } 4808 4809 vm_offset_t 4810 vm_map_min_KBI(const struct vm_map *map) 4811 { 4812 4813 return (vm_map_min(map)); 4814 } 4815 4816 pmap_t 4817 vm_map_pmap_KBI(vm_map_t map) 4818 { 4819 4820 return (map->pmap); 4821 } 4822 4823 #include "opt_ddb.h" 4824 #ifdef DDB 4825 #include <sys/kernel.h> 4826 4827 #include <ddb/ddb.h> 4828 4829 static void 4830 vm_map_print(vm_map_t map) 4831 { 4832 vm_map_entry_t entry, prev; 4833 4834 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4835 (void *)map, 4836 (void *)map->pmap, map->nentries, map->timestamp); 4837 4838 db_indent += 2; 4839 for (prev = &map->header; (entry = prev->next) != &map->header; 4840 prev = entry) { 4841 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 4842 (void *)entry, (void *)entry->start, (void *)entry->end, 4843 entry->eflags); 4844 { 4845 static char *inheritance_name[4] = 4846 {"share", "copy", "none", "donate_copy"}; 4847 4848 db_iprintf(" prot=%x/%x/%s", 4849 entry->protection, 4850 entry->max_protection, 4851 inheritance_name[(int)(unsigned char) 4852 entry->inheritance]); 4853 if (entry->wired_count != 0) 4854 db_printf(", wired"); 4855 } 4856 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4857 db_printf(", share=%p, offset=0x%jx\n", 4858 (void *)entry->object.sub_map, 4859 (uintmax_t)entry->offset); 4860 if (prev == &map->header || 4861 prev->object.sub_map != 4862 entry->object.sub_map) { 4863 db_indent += 2; 4864 vm_map_print((vm_map_t)entry->object.sub_map); 4865 db_indent -= 2; 4866 } 4867 } else { 4868 if (entry->cred != NULL) 4869 db_printf(", ruid %d", entry->cred->cr_ruid); 4870 db_printf(", object=%p, offset=0x%jx", 4871 (void *)entry->object.vm_object, 4872 (uintmax_t)entry->offset); 4873 if (entry->object.vm_object && entry->object.vm_object->cred) 4874 db_printf(", obj ruid %d charge %jx", 4875 entry->object.vm_object->cred->cr_ruid, 4876 (uintmax_t)entry->object.vm_object->charge); 4877 if (entry->eflags & MAP_ENTRY_COW) 4878 db_printf(", copy (%s)", 4879 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4880 db_printf("\n"); 4881 4882 if (prev == &map->header || 4883 prev->object.vm_object != 4884 entry->object.vm_object) { 4885 db_indent += 2; 4886 vm_object_print((db_expr_t)(intptr_t) 4887 entry->object.vm_object, 4888 0, 0, (char *)0); 4889 db_indent -= 2; 4890 } 4891 } 4892 } 4893 db_indent -= 2; 4894 } 4895 4896 DB_SHOW_COMMAND(map, map) 4897 { 4898 4899 if (!have_addr) { 4900 db_printf("usage: show map <addr>\n"); 4901 return; 4902 } 4903 vm_map_print((vm_map_t)addr); 4904 } 4905 4906 DB_SHOW_COMMAND(procvm, procvm) 4907 { 4908 struct proc *p; 4909 4910 if (have_addr) { 4911 p = db_lookup_proc(addr); 4912 } else { 4913 p = curproc; 4914 } 4915 4916 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4917 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4918 (void *)vmspace_pmap(p->p_vmspace)); 4919 4920 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4921 } 4922 4923 #endif /* DDB */ 4924