xref: /freebsd/sys/vm/vm_map.c (revision dc36d6f9bb1753f3808552f3afd30eda9a7b206a)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/elf.h>
71 #include <sys/kernel.h>
72 #include <sys/ktr.h>
73 #include <sys/lock.h>
74 #include <sys/mutex.h>
75 #include <sys/proc.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/racct.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/file.h>
83 #include <sys/sysctl.h>
84 #include <sys/sysent.h>
85 #include <sys/shm.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100 
101 /*
102  *	Virtual memory maps provide for the mapping, protection,
103  *	and sharing of virtual memory objects.  In addition,
104  *	this module provides for an efficient virtual copy of
105  *	memory from one map to another.
106  *
107  *	Synchronization is required prior to most operations.
108  *
109  *	Maps consist of an ordered doubly-linked list of simple
110  *	entries; a self-adjusting binary search tree of these
111  *	entries is used to speed up lookups.
112  *
113  *	Since portions of maps are specified by start/end addresses,
114  *	which may not align with existing map entries, all
115  *	routines merely "clip" entries to these start/end values.
116  *	[That is, an entry is split into two, bordering at a
117  *	start or end value.]  Note that these clippings may not
118  *	always be necessary (as the two resulting entries are then
119  *	not changed); however, the clipping is done for convenience.
120  *
121  *	As mentioned above, virtual copy operations are performed
122  *	by copying VM object references from one map to
123  *	another, and then marking both regions as copy-on-write.
124  */
125 
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t vmspace_zone;
130 static int vmspace_zinit(void *mem, int size, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
137     vm_map_entry_t gap_entry);
138 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
139     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
140 #ifdef INVARIANTS
141 static void vmspace_zdtor(void *mem, int size, void *arg);
142 #endif
143 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
144     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
145     int cow);
146 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
147     vm_offset_t failed_addr);
148 
149 #define	CONTAINS_BITS(set, bits)	((~(set) & (bits)) == 0)
150 
151 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
152     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
153      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
154 
155 /*
156  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
157  * stable.
158  */
159 #define PROC_VMSPACE_LOCK(p) do { } while (0)
160 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
161 
162 /*
163  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
164  *
165  *	Asserts that the starting and ending region
166  *	addresses fall within the valid range of the map.
167  */
168 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
169 		{					\
170 		if (start < vm_map_min(map))		\
171 			start = vm_map_min(map);	\
172 		if (end > vm_map_max(map))		\
173 			end = vm_map_max(map);		\
174 		if (start > end)			\
175 			start = end;			\
176 		}
177 
178 #ifndef UMA_MD_SMALL_ALLOC
179 
180 /*
181  * Allocate a new slab for kernel map entries.  The kernel map may be locked or
182  * unlocked, depending on whether the request is coming from the kernel map or a
183  * submap.  This function allocates a virtual address range directly from the
184  * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
185  * lock and also to avoid triggering allocator recursion in the vmem boundary
186  * tag allocator.
187  */
188 static void *
189 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
190     int wait)
191 {
192 	vm_offset_t addr;
193 	int error, locked;
194 
195 	*pflag = UMA_SLAB_PRIV;
196 
197 	if (!(locked = vm_map_locked(kernel_map)))
198 		vm_map_lock(kernel_map);
199 	addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
200 	if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
201 		panic("%s: kernel map is exhausted", __func__);
202 	error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
203 	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
204 	if (error != KERN_SUCCESS)
205 		panic("%s: vm_map_insert() failed: %d", __func__, error);
206 	if (!locked)
207 		vm_map_unlock(kernel_map);
208 	error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
209 	    M_USE_RESERVE | (wait & M_ZERO));
210 	if (error == KERN_SUCCESS) {
211 		return ((void *)addr);
212 	} else {
213 		if (!locked)
214 			vm_map_lock(kernel_map);
215 		vm_map_delete(kernel_map, addr, bytes);
216 		if (!locked)
217 			vm_map_unlock(kernel_map);
218 		return (NULL);
219 	}
220 }
221 
222 static void
223 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
224 {
225 	vm_offset_t addr;
226 	int error __diagused;
227 
228 	if ((pflag & UMA_SLAB_PRIV) == 0)
229 		/* XXX leaked */
230 		return;
231 
232 	addr = (vm_offset_t)item;
233 	kmem_unback(kernel_object, addr, size);
234 	error = vm_map_remove(kernel_map, addr, addr + size);
235 	KASSERT(error == KERN_SUCCESS,
236 	    ("%s: vm_map_remove failed: %d", __func__, error));
237 }
238 
239 /*
240  * The worst-case upper bound on the number of kernel map entries that may be
241  * created before the zone must be replenished in _vm_map_unlock().
242  */
243 #define	KMAPENT_RESERVE		1
244 
245 #endif /* !UMD_MD_SMALL_ALLOC */
246 
247 /*
248  *	vm_map_startup:
249  *
250  *	Initialize the vm_map module.  Must be called before any other vm_map
251  *	routines.
252  *
253  *	User map and entry structures are allocated from the general purpose
254  *	memory pool.  Kernel maps are statically defined.  Kernel map entries
255  *	require special handling to avoid recursion; see the comments above
256  *	kmapent_alloc() and in vm_map_entry_create().
257  */
258 void
259 vm_map_startup(void)
260 {
261 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
262 
263 	/*
264 	 * Disable the use of per-CPU buckets: map entry allocation is
265 	 * serialized by the kernel map lock.
266 	 */
267 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
268 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
269 	    UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
270 #ifndef UMA_MD_SMALL_ALLOC
271 	/* Reserve an extra map entry for use when replenishing the reserve. */
272 	uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
273 	uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
274 	uma_zone_set_allocf(kmapentzone, kmapent_alloc);
275 	uma_zone_set_freef(kmapentzone, kmapent_free);
276 #endif
277 
278 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
279 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
280 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
281 #ifdef INVARIANTS
282 	    vmspace_zdtor,
283 #else
284 	    NULL,
285 #endif
286 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
287 }
288 
289 static int
290 vmspace_zinit(void *mem, int size, int flags)
291 {
292 	struct vmspace *vm;
293 	vm_map_t map;
294 
295 	vm = (struct vmspace *)mem;
296 	map = &vm->vm_map;
297 
298 	memset(map, 0, sizeof(*map));
299 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
300 	    MTX_DEF | MTX_DUPOK);
301 	sx_init(&map->lock, "vm map (user)");
302 	PMAP_LOCK_INIT(vmspace_pmap(vm));
303 	return (0);
304 }
305 
306 #ifdef INVARIANTS
307 static void
308 vmspace_zdtor(void *mem, int size, void *arg)
309 {
310 	struct vmspace *vm;
311 
312 	vm = (struct vmspace *)mem;
313 	KASSERT(vm->vm_map.nentries == 0,
314 	    ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
315 	KASSERT(vm->vm_map.size == 0,
316 	    ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
317 }
318 #endif	/* INVARIANTS */
319 
320 /*
321  * Allocate a vmspace structure, including a vm_map and pmap,
322  * and initialize those structures.  The refcnt is set to 1.
323  */
324 struct vmspace *
325 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
326 {
327 	struct vmspace *vm;
328 
329 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
330 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
331 	if (!pinit(vmspace_pmap(vm))) {
332 		uma_zfree(vmspace_zone, vm);
333 		return (NULL);
334 	}
335 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
336 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
337 	refcount_init(&vm->vm_refcnt, 1);
338 	vm->vm_shm = NULL;
339 	vm->vm_swrss = 0;
340 	vm->vm_tsize = 0;
341 	vm->vm_dsize = 0;
342 	vm->vm_ssize = 0;
343 	vm->vm_taddr = 0;
344 	vm->vm_daddr = 0;
345 	vm->vm_maxsaddr = 0;
346 	return (vm);
347 }
348 
349 #ifdef RACCT
350 static void
351 vmspace_container_reset(struct proc *p)
352 {
353 
354 	PROC_LOCK(p);
355 	racct_set(p, RACCT_DATA, 0);
356 	racct_set(p, RACCT_STACK, 0);
357 	racct_set(p, RACCT_RSS, 0);
358 	racct_set(p, RACCT_MEMLOCK, 0);
359 	racct_set(p, RACCT_VMEM, 0);
360 	PROC_UNLOCK(p);
361 }
362 #endif
363 
364 static inline void
365 vmspace_dofree(struct vmspace *vm)
366 {
367 
368 	CTR1(KTR_VM, "vmspace_free: %p", vm);
369 
370 	/*
371 	 * Make sure any SysV shm is freed, it might not have been in
372 	 * exit1().
373 	 */
374 	shmexit(vm);
375 
376 	/*
377 	 * Lock the map, to wait out all other references to it.
378 	 * Delete all of the mappings and pages they hold, then call
379 	 * the pmap module to reclaim anything left.
380 	 */
381 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
382 	    vm_map_max(&vm->vm_map));
383 
384 	pmap_release(vmspace_pmap(vm));
385 	vm->vm_map.pmap = NULL;
386 	uma_zfree(vmspace_zone, vm);
387 }
388 
389 void
390 vmspace_free(struct vmspace *vm)
391 {
392 
393 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
394 	    "vmspace_free() called");
395 
396 	if (refcount_release(&vm->vm_refcnt))
397 		vmspace_dofree(vm);
398 }
399 
400 void
401 vmspace_exitfree(struct proc *p)
402 {
403 	struct vmspace *vm;
404 
405 	PROC_VMSPACE_LOCK(p);
406 	vm = p->p_vmspace;
407 	p->p_vmspace = NULL;
408 	PROC_VMSPACE_UNLOCK(p);
409 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
410 	vmspace_free(vm);
411 }
412 
413 void
414 vmspace_exit(struct thread *td)
415 {
416 	struct vmspace *vm;
417 	struct proc *p;
418 	bool released;
419 
420 	p = td->td_proc;
421 	vm = p->p_vmspace;
422 
423 	/*
424 	 * Prepare to release the vmspace reference.  The thread that releases
425 	 * the last reference is responsible for tearing down the vmspace.
426 	 * However, threads not releasing the final reference must switch to the
427 	 * kernel's vmspace0 before the decrement so that the subsequent pmap
428 	 * deactivation does not modify a freed vmspace.
429 	 */
430 	refcount_acquire(&vmspace0.vm_refcnt);
431 	if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
432 		if (p->p_vmspace != &vmspace0) {
433 			PROC_VMSPACE_LOCK(p);
434 			p->p_vmspace = &vmspace0;
435 			PROC_VMSPACE_UNLOCK(p);
436 			pmap_activate(td);
437 		}
438 		released = refcount_release(&vm->vm_refcnt);
439 	}
440 	if (released) {
441 		/*
442 		 * pmap_remove_pages() expects the pmap to be active, so switch
443 		 * back first if necessary.
444 		 */
445 		if (p->p_vmspace != vm) {
446 			PROC_VMSPACE_LOCK(p);
447 			p->p_vmspace = vm;
448 			PROC_VMSPACE_UNLOCK(p);
449 			pmap_activate(td);
450 		}
451 		pmap_remove_pages(vmspace_pmap(vm));
452 		PROC_VMSPACE_LOCK(p);
453 		p->p_vmspace = &vmspace0;
454 		PROC_VMSPACE_UNLOCK(p);
455 		pmap_activate(td);
456 		vmspace_dofree(vm);
457 	}
458 #ifdef RACCT
459 	if (racct_enable)
460 		vmspace_container_reset(p);
461 #endif
462 }
463 
464 /* Acquire reference to vmspace owned by another process. */
465 
466 struct vmspace *
467 vmspace_acquire_ref(struct proc *p)
468 {
469 	struct vmspace *vm;
470 
471 	PROC_VMSPACE_LOCK(p);
472 	vm = p->p_vmspace;
473 	if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
474 		PROC_VMSPACE_UNLOCK(p);
475 		return (NULL);
476 	}
477 	if (vm != p->p_vmspace) {
478 		PROC_VMSPACE_UNLOCK(p);
479 		vmspace_free(vm);
480 		return (NULL);
481 	}
482 	PROC_VMSPACE_UNLOCK(p);
483 	return (vm);
484 }
485 
486 /*
487  * Switch between vmspaces in an AIO kernel process.
488  *
489  * The new vmspace is either the vmspace of a user process obtained
490  * from an active AIO request or the initial vmspace of the AIO kernel
491  * process (when it is idling).  Because user processes will block to
492  * drain any active AIO requests before proceeding in exit() or
493  * execve(), the reference count for vmspaces from AIO requests can
494  * never be 0.  Similarly, AIO kernel processes hold an extra
495  * reference on their initial vmspace for the life of the process.  As
496  * a result, the 'newvm' vmspace always has a non-zero reference
497  * count.  This permits an additional reference on 'newvm' to be
498  * acquired via a simple atomic increment rather than the loop in
499  * vmspace_acquire_ref() above.
500  */
501 void
502 vmspace_switch_aio(struct vmspace *newvm)
503 {
504 	struct vmspace *oldvm;
505 
506 	/* XXX: Need some way to assert that this is an aio daemon. */
507 
508 	KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
509 	    ("vmspace_switch_aio: newvm unreferenced"));
510 
511 	oldvm = curproc->p_vmspace;
512 	if (oldvm == newvm)
513 		return;
514 
515 	/*
516 	 * Point to the new address space and refer to it.
517 	 */
518 	curproc->p_vmspace = newvm;
519 	refcount_acquire(&newvm->vm_refcnt);
520 
521 	/* Activate the new mapping. */
522 	pmap_activate(curthread);
523 
524 	vmspace_free(oldvm);
525 }
526 
527 void
528 _vm_map_lock(vm_map_t map, const char *file, int line)
529 {
530 
531 	if (map->system_map)
532 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
533 	else
534 		sx_xlock_(&map->lock, file, line);
535 	map->timestamp++;
536 }
537 
538 void
539 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
540 {
541 	vm_object_t object;
542 	struct vnode *vp;
543 	bool vp_held;
544 
545 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
546 		return;
547 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
548 	    ("Submap with execs"));
549 	object = entry->object.vm_object;
550 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
551 	if ((object->flags & OBJ_ANON) != 0)
552 		object = object->handle;
553 	else
554 		KASSERT(object->backing_object == NULL,
555 		    ("non-anon object %p shadows", object));
556 	KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
557 	    entry, entry->object.vm_object));
558 
559 	/*
560 	 * Mostly, we do not lock the backing object.  It is
561 	 * referenced by the entry we are processing, so it cannot go
562 	 * away.
563 	 */
564 	vm_pager_getvp(object, &vp, &vp_held);
565 	if (vp != NULL) {
566 		if (add) {
567 			VOP_SET_TEXT_CHECKED(vp);
568 		} else {
569 			vn_lock(vp, LK_SHARED | LK_RETRY);
570 			VOP_UNSET_TEXT_CHECKED(vp);
571 			VOP_UNLOCK(vp);
572 		}
573 		if (vp_held)
574 			vdrop(vp);
575 	}
576 }
577 
578 /*
579  * Use a different name for this vm_map_entry field when it's use
580  * is not consistent with its use as part of an ordered search tree.
581  */
582 #define defer_next right
583 
584 static void
585 vm_map_process_deferred(void)
586 {
587 	struct thread *td;
588 	vm_map_entry_t entry, next;
589 	vm_object_t object;
590 
591 	td = curthread;
592 	entry = td->td_map_def_user;
593 	td->td_map_def_user = NULL;
594 	while (entry != NULL) {
595 		next = entry->defer_next;
596 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
597 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
598 		    MAP_ENTRY_VN_EXEC));
599 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
600 			/*
601 			 * Decrement the object's writemappings and
602 			 * possibly the vnode's v_writecount.
603 			 */
604 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
605 			    ("Submap with writecount"));
606 			object = entry->object.vm_object;
607 			KASSERT(object != NULL, ("No object for writecount"));
608 			vm_pager_release_writecount(object, entry->start,
609 			    entry->end);
610 		}
611 		vm_map_entry_set_vnode_text(entry, false);
612 		vm_map_entry_deallocate(entry, FALSE);
613 		entry = next;
614 	}
615 }
616 
617 #ifdef INVARIANTS
618 static void
619 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
620 {
621 
622 	if (map->system_map)
623 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
624 	else
625 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
626 }
627 
628 #define	VM_MAP_ASSERT_LOCKED(map) \
629     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
630 
631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
632 #ifdef DIAGNOSTIC
633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
634 #else
635 static int enable_vmmap_check = VMMAP_CHECK_NONE;
636 #endif
637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
638     &enable_vmmap_check, 0, "Enable vm map consistency checking");
639 
640 static void _vm_map_assert_consistent(vm_map_t map, int check);
641 
642 #define VM_MAP_ASSERT_CONSISTENT(map) \
643     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
644 #ifdef DIAGNOSTIC
645 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
646 	if (map->nupdates > map->nentries) {				\
647 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
648 		map->nupdates = 0;					\
649 	}								\
650 } while (0)
651 #else
652 #define VM_MAP_UNLOCK_CONSISTENT(map)
653 #endif
654 #else
655 #define	VM_MAP_ASSERT_LOCKED(map)
656 #define VM_MAP_ASSERT_CONSISTENT(map)
657 #define VM_MAP_UNLOCK_CONSISTENT(map)
658 #endif /* INVARIANTS */
659 
660 void
661 _vm_map_unlock(vm_map_t map, const char *file, int line)
662 {
663 
664 	VM_MAP_UNLOCK_CONSISTENT(map);
665 	if (map->system_map) {
666 #ifndef UMA_MD_SMALL_ALLOC
667 		if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
668 			uma_prealloc(kmapentzone, 1);
669 			map->flags &= ~MAP_REPLENISH;
670 		}
671 #endif
672 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
673 	} else {
674 		sx_xunlock_(&map->lock, file, line);
675 		vm_map_process_deferred();
676 	}
677 }
678 
679 void
680 _vm_map_lock_read(vm_map_t map, const char *file, int line)
681 {
682 
683 	if (map->system_map)
684 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
685 	else
686 		sx_slock_(&map->lock, file, line);
687 }
688 
689 void
690 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
691 {
692 
693 	if (map->system_map) {
694 		KASSERT((map->flags & MAP_REPLENISH) == 0,
695 		    ("%s: MAP_REPLENISH leaked", __func__));
696 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
697 	} else {
698 		sx_sunlock_(&map->lock, file, line);
699 		vm_map_process_deferred();
700 	}
701 }
702 
703 int
704 _vm_map_trylock(vm_map_t map, const char *file, int line)
705 {
706 	int error;
707 
708 	error = map->system_map ?
709 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
710 	    !sx_try_xlock_(&map->lock, file, line);
711 	if (error == 0)
712 		map->timestamp++;
713 	return (error == 0);
714 }
715 
716 int
717 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
718 {
719 	int error;
720 
721 	error = map->system_map ?
722 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
723 	    !sx_try_slock_(&map->lock, file, line);
724 	return (error == 0);
725 }
726 
727 /*
728  *	_vm_map_lock_upgrade:	[ internal use only ]
729  *
730  *	Tries to upgrade a read (shared) lock on the specified map to a write
731  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
732  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
733  *	returned without a read or write lock held.
734  *
735  *	Requires that the map be read locked.
736  */
737 int
738 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
739 {
740 	unsigned int last_timestamp;
741 
742 	if (map->system_map) {
743 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
744 	} else {
745 		if (!sx_try_upgrade_(&map->lock, file, line)) {
746 			last_timestamp = map->timestamp;
747 			sx_sunlock_(&map->lock, file, line);
748 			vm_map_process_deferred();
749 			/*
750 			 * If the map's timestamp does not change while the
751 			 * map is unlocked, then the upgrade succeeds.
752 			 */
753 			sx_xlock_(&map->lock, file, line);
754 			if (last_timestamp != map->timestamp) {
755 				sx_xunlock_(&map->lock, file, line);
756 				return (1);
757 			}
758 		}
759 	}
760 	map->timestamp++;
761 	return (0);
762 }
763 
764 void
765 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
766 {
767 
768 	if (map->system_map) {
769 		KASSERT((map->flags & MAP_REPLENISH) == 0,
770 		    ("%s: MAP_REPLENISH leaked", __func__));
771 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
772 	} else {
773 		VM_MAP_UNLOCK_CONSISTENT(map);
774 		sx_downgrade_(&map->lock, file, line);
775 	}
776 }
777 
778 /*
779  *	vm_map_locked:
780  *
781  *	Returns a non-zero value if the caller holds a write (exclusive) lock
782  *	on the specified map and the value "0" otherwise.
783  */
784 int
785 vm_map_locked(vm_map_t map)
786 {
787 
788 	if (map->system_map)
789 		return (mtx_owned(&map->system_mtx));
790 	else
791 		return (sx_xlocked(&map->lock));
792 }
793 
794 /*
795  *	_vm_map_unlock_and_wait:
796  *
797  *	Atomically releases the lock on the specified map and puts the calling
798  *	thread to sleep.  The calling thread will remain asleep until either
799  *	vm_map_wakeup() is performed on the map or the specified timeout is
800  *	exceeded.
801  *
802  *	WARNING!  This function does not perform deferred deallocations of
803  *	objects and map	entries.  Therefore, the calling thread is expected to
804  *	reacquire the map lock after reawakening and later perform an ordinary
805  *	unlock operation, such as vm_map_unlock(), before completing its
806  *	operation on the map.
807  */
808 int
809 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
810 {
811 
812 	VM_MAP_UNLOCK_CONSISTENT(map);
813 	mtx_lock(&map_sleep_mtx);
814 	if (map->system_map) {
815 		KASSERT((map->flags & MAP_REPLENISH) == 0,
816 		    ("%s: MAP_REPLENISH leaked", __func__));
817 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
818 	} else {
819 		sx_xunlock_(&map->lock, file, line);
820 	}
821 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
822 	    timo));
823 }
824 
825 /*
826  *	vm_map_wakeup:
827  *
828  *	Awaken any threads that have slept on the map using
829  *	vm_map_unlock_and_wait().
830  */
831 void
832 vm_map_wakeup(vm_map_t map)
833 {
834 
835 	/*
836 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
837 	 * from being performed (and lost) between the map unlock
838 	 * and the msleep() in _vm_map_unlock_and_wait().
839 	 */
840 	mtx_lock(&map_sleep_mtx);
841 	mtx_unlock(&map_sleep_mtx);
842 	wakeup(&map->root);
843 }
844 
845 void
846 vm_map_busy(vm_map_t map)
847 {
848 
849 	VM_MAP_ASSERT_LOCKED(map);
850 	map->busy++;
851 }
852 
853 void
854 vm_map_unbusy(vm_map_t map)
855 {
856 
857 	VM_MAP_ASSERT_LOCKED(map);
858 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
859 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
860 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
861 		wakeup(&map->busy);
862 	}
863 }
864 
865 void
866 vm_map_wait_busy(vm_map_t map)
867 {
868 
869 	VM_MAP_ASSERT_LOCKED(map);
870 	while (map->busy) {
871 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
872 		if (map->system_map)
873 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
874 		else
875 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
876 	}
877 	map->timestamp++;
878 }
879 
880 long
881 vmspace_resident_count(struct vmspace *vmspace)
882 {
883 	return pmap_resident_count(vmspace_pmap(vmspace));
884 }
885 
886 /*
887  * Initialize an existing vm_map structure
888  * such as that in the vmspace structure.
889  */
890 static void
891 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
892 {
893 
894 	map->header.eflags = MAP_ENTRY_HEADER;
895 	map->needs_wakeup = FALSE;
896 	map->system_map = 0;
897 	map->pmap = pmap;
898 	map->header.end = min;
899 	map->header.start = max;
900 	map->flags = 0;
901 	map->header.left = map->header.right = &map->header;
902 	map->root = NULL;
903 	map->timestamp = 0;
904 	map->busy = 0;
905 	map->anon_loc = 0;
906 #ifdef DIAGNOSTIC
907 	map->nupdates = 0;
908 #endif
909 }
910 
911 void
912 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
913 {
914 
915 	_vm_map_init(map, pmap, min, max);
916 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
917 	    MTX_DEF | MTX_DUPOK);
918 	sx_init(&map->lock, "vm map (user)");
919 }
920 
921 /*
922  *	vm_map_entry_dispose:	[ internal use only ]
923  *
924  *	Inverse of vm_map_entry_create.
925  */
926 static void
927 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
928 {
929 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
930 }
931 
932 /*
933  *	vm_map_entry_create:	[ internal use only ]
934  *
935  *	Allocates a VM map entry for insertion.
936  *	No entry fields are filled in.
937  */
938 static vm_map_entry_t
939 vm_map_entry_create(vm_map_t map)
940 {
941 	vm_map_entry_t new_entry;
942 
943 #ifndef UMA_MD_SMALL_ALLOC
944 	if (map == kernel_map) {
945 		VM_MAP_ASSERT_LOCKED(map);
946 
947 		/*
948 		 * A new slab of kernel map entries cannot be allocated at this
949 		 * point because the kernel map has not yet been updated to
950 		 * reflect the caller's request.  Therefore, we allocate a new
951 		 * map entry, dipping into the reserve if necessary, and set a
952 		 * flag indicating that the reserve must be replenished before
953 		 * the map is unlocked.
954 		 */
955 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
956 		if (new_entry == NULL) {
957 			new_entry = uma_zalloc(kmapentzone,
958 			    M_NOWAIT | M_NOVM | M_USE_RESERVE);
959 			kernel_map->flags |= MAP_REPLENISH;
960 		}
961 	} else
962 #endif
963 	if (map->system_map) {
964 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
965 	} else {
966 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
967 	}
968 	KASSERT(new_entry != NULL,
969 	    ("vm_map_entry_create: kernel resources exhausted"));
970 	return (new_entry);
971 }
972 
973 /*
974  *	vm_map_entry_set_behavior:
975  *
976  *	Set the expected access behavior, either normal, random, or
977  *	sequential.
978  */
979 static inline void
980 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
981 {
982 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
983 	    (behavior & MAP_ENTRY_BEHAV_MASK);
984 }
985 
986 /*
987  *	vm_map_entry_max_free_{left,right}:
988  *
989  *	Compute the size of the largest free gap between two entries,
990  *	one the root of a tree and the other the ancestor of that root
991  *	that is the least or greatest ancestor found on the search path.
992  */
993 static inline vm_size_t
994 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
995 {
996 
997 	return (root->left != left_ancestor ?
998 	    root->left->max_free : root->start - left_ancestor->end);
999 }
1000 
1001 static inline vm_size_t
1002 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1003 {
1004 
1005 	return (root->right != right_ancestor ?
1006 	    root->right->max_free : right_ancestor->start - root->end);
1007 }
1008 
1009 /*
1010  *	vm_map_entry_{pred,succ}:
1011  *
1012  *	Find the {predecessor, successor} of the entry by taking one step
1013  *	in the appropriate direction and backtracking as much as necessary.
1014  *	vm_map_entry_succ is defined in vm_map.h.
1015  */
1016 static inline vm_map_entry_t
1017 vm_map_entry_pred(vm_map_entry_t entry)
1018 {
1019 	vm_map_entry_t prior;
1020 
1021 	prior = entry->left;
1022 	if (prior->right->start < entry->start) {
1023 		do
1024 			prior = prior->right;
1025 		while (prior->right != entry);
1026 	}
1027 	return (prior);
1028 }
1029 
1030 static inline vm_size_t
1031 vm_size_max(vm_size_t a, vm_size_t b)
1032 {
1033 
1034 	return (a > b ? a : b);
1035 }
1036 
1037 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {		\
1038 	vm_map_entry_t z;						\
1039 	vm_size_t max_free;						\
1040 									\
1041 	/*								\
1042 	 * Infer root->right->max_free == root->max_free when		\
1043 	 * y->max_free < root->max_free || root->max_free == 0.		\
1044 	 * Otherwise, look right to find it.				\
1045 	 */								\
1046 	y = root->left;							\
1047 	max_free = root->max_free;					\
1048 	KASSERT(max_free == vm_size_max(				\
1049 	    vm_map_entry_max_free_left(root, llist),			\
1050 	    vm_map_entry_max_free_right(root, rlist)),			\
1051 	    ("%s: max_free invariant fails", __func__));		\
1052 	if (max_free - 1 < vm_map_entry_max_free_left(root, llist))	\
1053 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1054 	if (y != llist && (test)) {					\
1055 		/* Rotate right and make y root. */			\
1056 		z = y->right;						\
1057 		if (z != root) {					\
1058 			root->left = z;					\
1059 			y->right = root;				\
1060 			if (max_free < y->max_free)			\
1061 			    root->max_free = max_free =			\
1062 			    vm_size_max(max_free, z->max_free);		\
1063 		} else if (max_free < y->max_free)			\
1064 			root->max_free = max_free =			\
1065 			    vm_size_max(max_free, root->start - y->end);\
1066 		root = y;						\
1067 		y = root->left;						\
1068 	}								\
1069 	/* Copy right->max_free.  Put root on rlist. */			\
1070 	root->max_free = max_free;					\
1071 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1072 	    ("%s: max_free not copied from right", __func__));		\
1073 	root->left = rlist;						\
1074 	rlist = root;							\
1075 	root = y != llist ? y : NULL;					\
1076 } while (0)
1077 
1078 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {		\
1079 	vm_map_entry_t z;						\
1080 	vm_size_t max_free;						\
1081 									\
1082 	/*								\
1083 	 * Infer root->left->max_free == root->max_free when		\
1084 	 * y->max_free < root->max_free || root->max_free == 0.		\
1085 	 * Otherwise, look left to find it.				\
1086 	 */								\
1087 	y = root->right;						\
1088 	max_free = root->max_free;					\
1089 	KASSERT(max_free == vm_size_max(				\
1090 	    vm_map_entry_max_free_left(root, llist),			\
1091 	    vm_map_entry_max_free_right(root, rlist)),			\
1092 	    ("%s: max_free invariant fails", __func__));		\
1093 	if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))	\
1094 		max_free = vm_map_entry_max_free_left(root, llist);	\
1095 	if (y != rlist && (test)) {					\
1096 		/* Rotate left and make y root. */			\
1097 		z = y->left;						\
1098 		if (z != root) {					\
1099 			root->right = z;				\
1100 			y->left = root;					\
1101 			if (max_free < y->max_free)			\
1102 			    root->max_free = max_free =			\
1103 			    vm_size_max(max_free, z->max_free);		\
1104 		} else if (max_free < y->max_free)			\
1105 			root->max_free = max_free =			\
1106 			    vm_size_max(max_free, y->start - root->end);\
1107 		root = y;						\
1108 		y = root->right;					\
1109 	}								\
1110 	/* Copy left->max_free.  Put root on llist. */			\
1111 	root->max_free = max_free;					\
1112 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1113 	    ("%s: max_free not copied from left", __func__));		\
1114 	root->right = llist;						\
1115 	llist = root;							\
1116 	root = y != rlist ? y : NULL;					\
1117 } while (0)
1118 
1119 /*
1120  * Walk down the tree until we find addr or a gap where addr would go, breaking
1121  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1122  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1123  * the two sides in reverse order (bottom-up), with llist linked by the right
1124  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1125  * lists terminated by &map->header.  This function, and the subsequent call to
1126  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1127  * values in &map->header.
1128  */
1129 static __always_inline vm_map_entry_t
1130 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1131     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1132 {
1133 	vm_map_entry_t left, right, root, y;
1134 
1135 	left = right = &map->header;
1136 	root = map->root;
1137 	while (root != NULL && root->max_free >= length) {
1138 		KASSERT(left->end <= root->start &&
1139 		    root->end <= right->start,
1140 		    ("%s: root not within tree bounds", __func__));
1141 		if (addr < root->start) {
1142 			SPLAY_LEFT_STEP(root, y, left, right,
1143 			    y->max_free >= length && addr < y->start);
1144 		} else if (addr >= root->end) {
1145 			SPLAY_RIGHT_STEP(root, y, left, right,
1146 			    y->max_free >= length && addr >= y->end);
1147 		} else
1148 			break;
1149 	}
1150 	*llist = left;
1151 	*rlist = right;
1152 	return (root);
1153 }
1154 
1155 static __always_inline void
1156 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1157 {
1158 	vm_map_entry_t hi, right, y;
1159 
1160 	right = *rlist;
1161 	hi = root->right == right ? NULL : root->right;
1162 	if (hi == NULL)
1163 		return;
1164 	do
1165 		SPLAY_LEFT_STEP(hi, y, root, right, true);
1166 	while (hi != NULL);
1167 	*rlist = right;
1168 }
1169 
1170 static __always_inline void
1171 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1172 {
1173 	vm_map_entry_t left, lo, y;
1174 
1175 	left = *llist;
1176 	lo = root->left == left ? NULL : root->left;
1177 	if (lo == NULL)
1178 		return;
1179 	do
1180 		SPLAY_RIGHT_STEP(lo, y, left, root, true);
1181 	while (lo != NULL);
1182 	*llist = left;
1183 }
1184 
1185 static inline void
1186 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1187 {
1188 	vm_map_entry_t tmp;
1189 
1190 	tmp = *b;
1191 	*b = *a;
1192 	*a = tmp;
1193 }
1194 
1195 /*
1196  * Walk back up the two spines, flip the pointers and set max_free.  The
1197  * subtrees of the root go at the bottom of llist and rlist.
1198  */
1199 static vm_size_t
1200 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1201     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1202 {
1203 	do {
1204 		/*
1205 		 * The max_free values of the children of llist are in
1206 		 * llist->max_free and max_free.  Update with the
1207 		 * max value.
1208 		 */
1209 		llist->max_free = max_free =
1210 		    vm_size_max(llist->max_free, max_free);
1211 		vm_map_entry_swap(&llist->right, &tail);
1212 		vm_map_entry_swap(&tail, &llist);
1213 	} while (llist != header);
1214 	root->left = tail;
1215 	return (max_free);
1216 }
1217 
1218 /*
1219  * When llist is known to be the predecessor of root.
1220  */
1221 static inline vm_size_t
1222 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1223     vm_map_entry_t llist)
1224 {
1225 	vm_size_t max_free;
1226 
1227 	max_free = root->start - llist->end;
1228 	if (llist != header) {
1229 		max_free = vm_map_splay_merge_left_walk(header, root,
1230 		    root, max_free, llist);
1231 	} else {
1232 		root->left = header;
1233 		header->right = root;
1234 	}
1235 	return (max_free);
1236 }
1237 
1238 /*
1239  * When llist may or may not be the predecessor of root.
1240  */
1241 static inline vm_size_t
1242 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1243     vm_map_entry_t llist)
1244 {
1245 	vm_size_t max_free;
1246 
1247 	max_free = vm_map_entry_max_free_left(root, llist);
1248 	if (llist != header) {
1249 		max_free = vm_map_splay_merge_left_walk(header, root,
1250 		    root->left == llist ? root : root->left,
1251 		    max_free, llist);
1252 	}
1253 	return (max_free);
1254 }
1255 
1256 static vm_size_t
1257 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1258     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1259 {
1260 	do {
1261 		/*
1262 		 * The max_free values of the children of rlist are in
1263 		 * rlist->max_free and max_free.  Update with the
1264 		 * max value.
1265 		 */
1266 		rlist->max_free = max_free =
1267 		    vm_size_max(rlist->max_free, max_free);
1268 		vm_map_entry_swap(&rlist->left, &tail);
1269 		vm_map_entry_swap(&tail, &rlist);
1270 	} while (rlist != header);
1271 	root->right = tail;
1272 	return (max_free);
1273 }
1274 
1275 /*
1276  * When rlist is known to be the succecessor of root.
1277  */
1278 static inline vm_size_t
1279 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1280     vm_map_entry_t rlist)
1281 {
1282 	vm_size_t max_free;
1283 
1284 	max_free = rlist->start - root->end;
1285 	if (rlist != header) {
1286 		max_free = vm_map_splay_merge_right_walk(header, root,
1287 		    root, max_free, rlist);
1288 	} else {
1289 		root->right = header;
1290 		header->left = root;
1291 	}
1292 	return (max_free);
1293 }
1294 
1295 /*
1296  * When rlist may or may not be the succecessor of root.
1297  */
1298 static inline vm_size_t
1299 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1300     vm_map_entry_t rlist)
1301 {
1302 	vm_size_t max_free;
1303 
1304 	max_free = vm_map_entry_max_free_right(root, rlist);
1305 	if (rlist != header) {
1306 		max_free = vm_map_splay_merge_right_walk(header, root,
1307 		    root->right == rlist ? root : root->right,
1308 		    max_free, rlist);
1309 	}
1310 	return (max_free);
1311 }
1312 
1313 /*
1314  *	vm_map_splay:
1315  *
1316  *	The Sleator and Tarjan top-down splay algorithm with the
1317  *	following variation.  Max_free must be computed bottom-up, so
1318  *	on the downward pass, maintain the left and right spines in
1319  *	reverse order.  Then, make a second pass up each side to fix
1320  *	the pointers and compute max_free.  The time bound is O(log n)
1321  *	amortized.
1322  *
1323  *	The tree is threaded, which means that there are no null pointers.
1324  *	When a node has no left child, its left pointer points to its
1325  *	predecessor, which the last ancestor on the search path from the root
1326  *	where the search branched right.  Likewise, when a node has no right
1327  *	child, its right pointer points to its successor.  The map header node
1328  *	is the predecessor of the first map entry, and the successor of the
1329  *	last.
1330  *
1331  *	The new root is the vm_map_entry containing "addr", or else an
1332  *	adjacent entry (lower if possible) if addr is not in the tree.
1333  *
1334  *	The map must be locked, and leaves it so.
1335  *
1336  *	Returns: the new root.
1337  */
1338 static vm_map_entry_t
1339 vm_map_splay(vm_map_t map, vm_offset_t addr)
1340 {
1341 	vm_map_entry_t header, llist, rlist, root;
1342 	vm_size_t max_free_left, max_free_right;
1343 
1344 	header = &map->header;
1345 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1346 	if (root != NULL) {
1347 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1348 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1349 	} else if (llist != header) {
1350 		/*
1351 		 * Recover the greatest node in the left
1352 		 * subtree and make it the root.
1353 		 */
1354 		root = llist;
1355 		llist = root->right;
1356 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1357 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1358 	} else if (rlist != header) {
1359 		/*
1360 		 * Recover the least node in the right
1361 		 * subtree and make it the root.
1362 		 */
1363 		root = rlist;
1364 		rlist = root->left;
1365 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1366 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1367 	} else {
1368 		/* There is no root. */
1369 		return (NULL);
1370 	}
1371 	root->max_free = vm_size_max(max_free_left, max_free_right);
1372 	map->root = root;
1373 	VM_MAP_ASSERT_CONSISTENT(map);
1374 	return (root);
1375 }
1376 
1377 /*
1378  *	vm_map_entry_{un,}link:
1379  *
1380  *	Insert/remove entries from maps.  On linking, if new entry clips
1381  *	existing entry, trim existing entry to avoid overlap, and manage
1382  *	offsets.  On unlinking, merge disappearing entry with neighbor, if
1383  *	called for, and manage offsets.  Callers should not modify fields in
1384  *	entries already mapped.
1385  */
1386 static void
1387 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1388 {
1389 	vm_map_entry_t header, llist, rlist, root;
1390 	vm_size_t max_free_left, max_free_right;
1391 
1392 	CTR3(KTR_VM,
1393 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1394 	    map->nentries, entry);
1395 	VM_MAP_ASSERT_LOCKED(map);
1396 	map->nentries++;
1397 	header = &map->header;
1398 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1399 	if (root == NULL) {
1400 		/*
1401 		 * The new entry does not overlap any existing entry in the
1402 		 * map, so it becomes the new root of the map tree.
1403 		 */
1404 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1405 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1406 	} else if (entry->start == root->start) {
1407 		/*
1408 		 * The new entry is a clone of root, with only the end field
1409 		 * changed.  The root entry will be shrunk to abut the new
1410 		 * entry, and will be the right child of the new root entry in
1411 		 * the modified map.
1412 		 */
1413 		KASSERT(entry->end < root->end,
1414 		    ("%s: clip_start not within entry", __func__));
1415 		vm_map_splay_findprev(root, &llist);
1416 		if ((root->eflags & (MAP_ENTRY_STACK_GAP_DN |
1417 		    MAP_ENTRY_STACK_GAP_UP)) == 0)
1418 			root->offset += entry->end - root->start;
1419 		root->start = entry->end;
1420 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1421 		max_free_right = root->max_free = vm_size_max(
1422 		    vm_map_splay_merge_pred(entry, root, entry),
1423 		    vm_map_splay_merge_right(header, root, rlist));
1424 	} else {
1425 		/*
1426 		 * The new entry is a clone of root, with only the start field
1427 		 * changed.  The root entry will be shrunk to abut the new
1428 		 * entry, and will be the left child of the new root entry in
1429 		 * the modified map.
1430 		 */
1431 		KASSERT(entry->end == root->end,
1432 		    ("%s: clip_start not within entry", __func__));
1433 		vm_map_splay_findnext(root, &rlist);
1434 		if ((entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
1435 		    MAP_ENTRY_STACK_GAP_UP)) == 0)
1436 			entry->offset += entry->start - root->start;
1437 		root->end = entry->start;
1438 		max_free_left = root->max_free = vm_size_max(
1439 		    vm_map_splay_merge_left(header, root, llist),
1440 		    vm_map_splay_merge_succ(entry, root, entry));
1441 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1442 	}
1443 	entry->max_free = vm_size_max(max_free_left, max_free_right);
1444 	map->root = entry;
1445 	VM_MAP_ASSERT_CONSISTENT(map);
1446 }
1447 
1448 enum unlink_merge_type {
1449 	UNLINK_MERGE_NONE,
1450 	UNLINK_MERGE_NEXT
1451 };
1452 
1453 static void
1454 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1455     enum unlink_merge_type op)
1456 {
1457 	vm_map_entry_t header, llist, rlist, root;
1458 	vm_size_t max_free_left, max_free_right;
1459 
1460 	VM_MAP_ASSERT_LOCKED(map);
1461 	header = &map->header;
1462 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1463 	KASSERT(root != NULL,
1464 	    ("vm_map_entry_unlink: unlink object not mapped"));
1465 
1466 	vm_map_splay_findprev(root, &llist);
1467 	vm_map_splay_findnext(root, &rlist);
1468 	if (op == UNLINK_MERGE_NEXT) {
1469 		rlist->start = root->start;
1470 		MPASS((rlist->eflags & (MAP_ENTRY_STACK_GAP_DN |
1471 		    MAP_ENTRY_STACK_GAP_UP)) == 0);
1472 		rlist->offset = root->offset;
1473 	}
1474 	if (llist != header) {
1475 		root = llist;
1476 		llist = root->right;
1477 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1478 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1479 	} else if (rlist != header) {
1480 		root = rlist;
1481 		rlist = root->left;
1482 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1483 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1484 	} else {
1485 		header->left = header->right = header;
1486 		root = NULL;
1487 	}
1488 	if (root != NULL)
1489 		root->max_free = vm_size_max(max_free_left, max_free_right);
1490 	map->root = root;
1491 	VM_MAP_ASSERT_CONSISTENT(map);
1492 	map->nentries--;
1493 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1494 	    map->nentries, entry);
1495 }
1496 
1497 /*
1498  *	vm_map_entry_resize:
1499  *
1500  *	Resize a vm_map_entry, recompute the amount of free space that
1501  *	follows it and propagate that value up the tree.
1502  *
1503  *	The map must be locked, and leaves it so.
1504  */
1505 static void
1506 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1507 {
1508 	vm_map_entry_t header, llist, rlist, root;
1509 
1510 	VM_MAP_ASSERT_LOCKED(map);
1511 	header = &map->header;
1512 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1513 	KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1514 	vm_map_splay_findnext(root, &rlist);
1515 	entry->end += grow_amount;
1516 	root->max_free = vm_size_max(
1517 	    vm_map_splay_merge_left(header, root, llist),
1518 	    vm_map_splay_merge_succ(header, root, rlist));
1519 	map->root = root;
1520 	VM_MAP_ASSERT_CONSISTENT(map);
1521 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1522 	    __func__, map, map->nentries, entry);
1523 }
1524 
1525 /*
1526  *	vm_map_lookup_entry:	[ internal use only ]
1527  *
1528  *	Finds the map entry containing (or
1529  *	immediately preceding) the specified address
1530  *	in the given map; the entry is returned
1531  *	in the "entry" parameter.  The boolean
1532  *	result indicates whether the address is
1533  *	actually contained in the map.
1534  */
1535 boolean_t
1536 vm_map_lookup_entry(
1537 	vm_map_t map,
1538 	vm_offset_t address,
1539 	vm_map_entry_t *entry)	/* OUT */
1540 {
1541 	vm_map_entry_t cur, header, lbound, ubound;
1542 	boolean_t locked;
1543 
1544 	/*
1545 	 * If the map is empty, then the map entry immediately preceding
1546 	 * "address" is the map's header.
1547 	 */
1548 	header = &map->header;
1549 	cur = map->root;
1550 	if (cur == NULL) {
1551 		*entry = header;
1552 		return (FALSE);
1553 	}
1554 	if (address >= cur->start && cur->end > address) {
1555 		*entry = cur;
1556 		return (TRUE);
1557 	}
1558 	if ((locked = vm_map_locked(map)) ||
1559 	    sx_try_upgrade(&map->lock)) {
1560 		/*
1561 		 * Splay requires a write lock on the map.  However, it only
1562 		 * restructures the binary search tree; it does not otherwise
1563 		 * change the map.  Thus, the map's timestamp need not change
1564 		 * on a temporary upgrade.
1565 		 */
1566 		cur = vm_map_splay(map, address);
1567 		if (!locked) {
1568 			VM_MAP_UNLOCK_CONSISTENT(map);
1569 			sx_downgrade(&map->lock);
1570 		}
1571 
1572 		/*
1573 		 * If "address" is contained within a map entry, the new root
1574 		 * is that map entry.  Otherwise, the new root is a map entry
1575 		 * immediately before or after "address".
1576 		 */
1577 		if (address < cur->start) {
1578 			*entry = header;
1579 			return (FALSE);
1580 		}
1581 		*entry = cur;
1582 		return (address < cur->end);
1583 	}
1584 	/*
1585 	 * Since the map is only locked for read access, perform a
1586 	 * standard binary search tree lookup for "address".
1587 	 */
1588 	lbound = ubound = header;
1589 	for (;;) {
1590 		if (address < cur->start) {
1591 			ubound = cur;
1592 			cur = cur->left;
1593 			if (cur == lbound)
1594 				break;
1595 		} else if (cur->end <= address) {
1596 			lbound = cur;
1597 			cur = cur->right;
1598 			if (cur == ubound)
1599 				break;
1600 		} else {
1601 			*entry = cur;
1602 			return (TRUE);
1603 		}
1604 	}
1605 	*entry = lbound;
1606 	return (FALSE);
1607 }
1608 
1609 /*
1610  * vm_map_insert1() is identical to vm_map_insert() except that it
1611  * returns the newly inserted map entry in '*res'.  In case the new
1612  * entry is coalesced with a neighbor or an existing entry was
1613  * resized, that entry is returned.  In any case, the returned entry
1614  * covers the specified address range.
1615  */
1616 static int
1617 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1618     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow,
1619     vm_map_entry_t *res)
1620 {
1621 	vm_map_entry_t new_entry, next_entry, prev_entry;
1622 	struct ucred *cred;
1623 	vm_eflags_t protoeflags;
1624 	vm_inherit_t inheritance;
1625 	u_long bdry;
1626 	u_int bidx;
1627 
1628 	VM_MAP_ASSERT_LOCKED(map);
1629 	KASSERT(object != kernel_object ||
1630 	    (cow & MAP_COPY_ON_WRITE) == 0,
1631 	    ("vm_map_insert: kernel object and COW"));
1632 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1633 	    (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1634 	    ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1635 	    object, cow));
1636 	KASSERT((prot & ~max) == 0,
1637 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1638 
1639 	/*
1640 	 * Check that the start and end points are not bogus.
1641 	 */
1642 	if (start == end || !vm_map_range_valid(map, start, end))
1643 		return (KERN_INVALID_ADDRESS);
1644 
1645 	if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1646 	    VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1647 		return (KERN_PROTECTION_FAILURE);
1648 
1649 	/*
1650 	 * Find the entry prior to the proposed starting address; if it's part
1651 	 * of an existing entry, this range is bogus.
1652 	 */
1653 	if (vm_map_lookup_entry(map, start, &prev_entry))
1654 		return (KERN_NO_SPACE);
1655 
1656 	/*
1657 	 * Assert that the next entry doesn't overlap the end point.
1658 	 */
1659 	next_entry = vm_map_entry_succ(prev_entry);
1660 	if (next_entry->start < end)
1661 		return (KERN_NO_SPACE);
1662 
1663 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1664 	    max != VM_PROT_NONE))
1665 		return (KERN_INVALID_ARGUMENT);
1666 
1667 	protoeflags = 0;
1668 	if (cow & MAP_COPY_ON_WRITE)
1669 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1670 	if (cow & MAP_NOFAULT)
1671 		protoeflags |= MAP_ENTRY_NOFAULT;
1672 	if (cow & MAP_DISABLE_SYNCER)
1673 		protoeflags |= MAP_ENTRY_NOSYNC;
1674 	if (cow & MAP_DISABLE_COREDUMP)
1675 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1676 	if (cow & MAP_STACK_GROWS_DOWN)
1677 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1678 	if (cow & MAP_STACK_GROWS_UP)
1679 		protoeflags |= MAP_ENTRY_GROWS_UP;
1680 	if (cow & MAP_WRITECOUNT)
1681 		protoeflags |= MAP_ENTRY_WRITECNT;
1682 	if (cow & MAP_VN_EXEC)
1683 		protoeflags |= MAP_ENTRY_VN_EXEC;
1684 	if ((cow & MAP_CREATE_GUARD) != 0)
1685 		protoeflags |= MAP_ENTRY_GUARD;
1686 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1687 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1688 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1689 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1690 	if (cow & MAP_INHERIT_SHARE)
1691 		inheritance = VM_INHERIT_SHARE;
1692 	else
1693 		inheritance = VM_INHERIT_DEFAULT;
1694 	if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1695 		/* This magically ignores index 0, for usual page size. */
1696 		bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1697 		    MAP_SPLIT_BOUNDARY_SHIFT;
1698 		if (bidx >= MAXPAGESIZES)
1699 			return (KERN_INVALID_ARGUMENT);
1700 		bdry = pagesizes[bidx] - 1;
1701 		if ((start & bdry) != 0 || (end & bdry) != 0)
1702 			return (KERN_INVALID_ARGUMENT);
1703 		protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1704 	}
1705 
1706 	cred = NULL;
1707 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1708 		goto charged;
1709 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1710 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1711 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1712 			return (KERN_RESOURCE_SHORTAGE);
1713 		KASSERT(object == NULL ||
1714 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1715 		    object->cred == NULL,
1716 		    ("overcommit: vm_map_insert o %p", object));
1717 		cred = curthread->td_ucred;
1718 	}
1719 
1720 charged:
1721 	/* Expand the kernel pmap, if necessary. */
1722 	if (map == kernel_map && end > kernel_vm_end)
1723 		pmap_growkernel(end);
1724 	if (object != NULL) {
1725 		/*
1726 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1727 		 * is trivially proven to be the only mapping for any
1728 		 * of the object's pages.  (Object granularity
1729 		 * reference counting is insufficient to recognize
1730 		 * aliases with precision.)
1731 		 */
1732 		if ((object->flags & OBJ_ANON) != 0) {
1733 			VM_OBJECT_WLOCK(object);
1734 			if (object->ref_count > 1 || object->shadow_count != 0)
1735 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1736 			VM_OBJECT_WUNLOCK(object);
1737 		}
1738 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1739 	    protoeflags &&
1740 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1741 	    MAP_VN_EXEC)) == 0 &&
1742 	    prev_entry->end == start && (prev_entry->cred == cred ||
1743 	    (prev_entry->object.vm_object != NULL &&
1744 	    prev_entry->object.vm_object->cred == cred)) &&
1745 	    vm_object_coalesce(prev_entry->object.vm_object,
1746 	    prev_entry->offset,
1747 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1748 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1749 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1750 		/*
1751 		 * We were able to extend the object.  Determine if we
1752 		 * can extend the previous map entry to include the
1753 		 * new range as well.
1754 		 */
1755 		if (prev_entry->inheritance == inheritance &&
1756 		    prev_entry->protection == prot &&
1757 		    prev_entry->max_protection == max &&
1758 		    prev_entry->wired_count == 0) {
1759 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1760 			    0, ("prev_entry %p has incoherent wiring",
1761 			    prev_entry));
1762 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1763 				map->size += end - prev_entry->end;
1764 			vm_map_entry_resize(map, prev_entry,
1765 			    end - prev_entry->end);
1766 			*res = vm_map_try_merge_entries(map, prev_entry,
1767 			    next_entry);
1768 			return (KERN_SUCCESS);
1769 		}
1770 
1771 		/*
1772 		 * If we can extend the object but cannot extend the
1773 		 * map entry, we have to create a new map entry.  We
1774 		 * must bump the ref count on the extended object to
1775 		 * account for it.  object may be NULL.
1776 		 */
1777 		object = prev_entry->object.vm_object;
1778 		offset = prev_entry->offset +
1779 		    (prev_entry->end - prev_entry->start);
1780 		vm_object_reference(object);
1781 		if (cred != NULL && object != NULL && object->cred != NULL &&
1782 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1783 			/* Object already accounts for this uid. */
1784 			cred = NULL;
1785 		}
1786 	}
1787 	if (cred != NULL)
1788 		crhold(cred);
1789 
1790 	/*
1791 	 * Create a new entry
1792 	 */
1793 	new_entry = vm_map_entry_create(map);
1794 	new_entry->start = start;
1795 	new_entry->end = end;
1796 	new_entry->cred = NULL;
1797 
1798 	new_entry->eflags = protoeflags;
1799 	new_entry->object.vm_object = object;
1800 	new_entry->offset = offset;
1801 
1802 	new_entry->inheritance = inheritance;
1803 	new_entry->protection = prot;
1804 	new_entry->max_protection = max;
1805 	new_entry->wired_count = 0;
1806 	new_entry->wiring_thread = NULL;
1807 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1808 	new_entry->next_read = start;
1809 
1810 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1811 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1812 	new_entry->cred = cred;
1813 
1814 	/*
1815 	 * Insert the new entry into the list
1816 	 */
1817 	vm_map_entry_link(map, new_entry);
1818 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1819 		map->size += new_entry->end - new_entry->start;
1820 
1821 	/*
1822 	 * Try to coalesce the new entry with both the previous and next
1823 	 * entries in the list.  Previously, we only attempted to coalesce
1824 	 * with the previous entry when object is NULL.  Here, we handle the
1825 	 * other cases, which are less common.
1826 	 */
1827 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1828 	*res = vm_map_try_merge_entries(map, new_entry, next_entry);
1829 
1830 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1831 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1832 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1833 	}
1834 
1835 	return (KERN_SUCCESS);
1836 }
1837 
1838 /*
1839  *	vm_map_insert:
1840  *
1841  *	Inserts the given VM object into the target map at the
1842  *	specified address range.
1843  *
1844  *	Requires that the map be locked, and leaves it so.
1845  *
1846  *	If object is non-NULL, ref count must be bumped by caller
1847  *	prior to making call to account for the new entry.
1848  */
1849 int
1850 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1851     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1852 {
1853 	vm_map_entry_t res;
1854 
1855 	return (vm_map_insert1(map, object, offset, start, end, prot, max,
1856 	    cow, &res));
1857 }
1858 
1859 /*
1860  *	vm_map_findspace:
1861  *
1862  *	Find the first fit (lowest VM address) for "length" free bytes
1863  *	beginning at address >= start in the given map.
1864  *
1865  *	In a vm_map_entry, "max_free" is the maximum amount of
1866  *	contiguous free space between an entry in its subtree and a
1867  *	neighbor of that entry.  This allows finding a free region in
1868  *	one path down the tree, so O(log n) amortized with splay
1869  *	trees.
1870  *
1871  *	The map must be locked, and leaves it so.
1872  *
1873  *	Returns: starting address if sufficient space,
1874  *		 vm_map_max(map)-length+1 if insufficient space.
1875  */
1876 vm_offset_t
1877 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1878 {
1879 	vm_map_entry_t header, llist, rlist, root, y;
1880 	vm_size_t left_length, max_free_left, max_free_right;
1881 	vm_offset_t gap_end;
1882 
1883 	VM_MAP_ASSERT_LOCKED(map);
1884 
1885 	/*
1886 	 * Request must fit within min/max VM address and must avoid
1887 	 * address wrap.
1888 	 */
1889 	start = MAX(start, vm_map_min(map));
1890 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1891 		return (vm_map_max(map) - length + 1);
1892 
1893 	/* Empty tree means wide open address space. */
1894 	if (map->root == NULL)
1895 		return (start);
1896 
1897 	/*
1898 	 * After splay_split, if start is within an entry, push it to the start
1899 	 * of the following gap.  If rlist is at the end of the gap containing
1900 	 * start, save the end of that gap in gap_end to see if the gap is big
1901 	 * enough; otherwise set gap_end to start skip gap-checking and move
1902 	 * directly to a search of the right subtree.
1903 	 */
1904 	header = &map->header;
1905 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1906 	gap_end = rlist->start;
1907 	if (root != NULL) {
1908 		start = root->end;
1909 		if (root->right != rlist)
1910 			gap_end = start;
1911 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1912 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1913 	} else if (rlist != header) {
1914 		root = rlist;
1915 		rlist = root->left;
1916 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1917 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1918 	} else {
1919 		root = llist;
1920 		llist = root->right;
1921 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1922 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1923 	}
1924 	root->max_free = vm_size_max(max_free_left, max_free_right);
1925 	map->root = root;
1926 	VM_MAP_ASSERT_CONSISTENT(map);
1927 	if (length <= gap_end - start)
1928 		return (start);
1929 
1930 	/* With max_free, can immediately tell if no solution. */
1931 	if (root->right == header || length > root->right->max_free)
1932 		return (vm_map_max(map) - length + 1);
1933 
1934 	/*
1935 	 * Splay for the least large-enough gap in the right subtree.
1936 	 */
1937 	llist = rlist = header;
1938 	for (left_length = 0;;
1939 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1940 		if (length <= left_length)
1941 			SPLAY_LEFT_STEP(root, y, llist, rlist,
1942 			    length <= vm_map_entry_max_free_left(y, llist));
1943 		else
1944 			SPLAY_RIGHT_STEP(root, y, llist, rlist,
1945 			    length > vm_map_entry_max_free_left(y, root));
1946 		if (root == NULL)
1947 			break;
1948 	}
1949 	root = llist;
1950 	llist = root->right;
1951 	max_free_left = vm_map_splay_merge_left(header, root, llist);
1952 	if (rlist == header) {
1953 		root->max_free = vm_size_max(max_free_left,
1954 		    vm_map_splay_merge_succ(header, root, rlist));
1955 	} else {
1956 		y = rlist;
1957 		rlist = y->left;
1958 		y->max_free = vm_size_max(
1959 		    vm_map_splay_merge_pred(root, y, root),
1960 		    vm_map_splay_merge_right(header, y, rlist));
1961 		root->max_free = vm_size_max(max_free_left, y->max_free);
1962 	}
1963 	map->root = root;
1964 	VM_MAP_ASSERT_CONSISTENT(map);
1965 	return (root->end);
1966 }
1967 
1968 int
1969 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1970     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1971     vm_prot_t max, int cow)
1972 {
1973 	vm_offset_t end;
1974 	int result;
1975 
1976 	end = start + length;
1977 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1978 	    object == NULL,
1979 	    ("vm_map_fixed: non-NULL backing object for stack"));
1980 	vm_map_lock(map);
1981 	VM_MAP_RANGE_CHECK(map, start, end);
1982 	if ((cow & MAP_CHECK_EXCL) == 0) {
1983 		result = vm_map_delete(map, start, end);
1984 		if (result != KERN_SUCCESS)
1985 			goto out;
1986 	}
1987 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1988 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1989 		    prot, max, cow);
1990 	} else {
1991 		result = vm_map_insert(map, object, offset, start, end,
1992 		    prot, max, cow);
1993 	}
1994 out:
1995 	vm_map_unlock(map);
1996 	return (result);
1997 }
1998 
1999 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
2000 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
2001 
2002 static int cluster_anon = 1;
2003 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
2004     &cluster_anon, 0,
2005     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
2006 
2007 static bool
2008 clustering_anon_allowed(vm_offset_t addr, int cow)
2009 {
2010 
2011 	switch (cluster_anon) {
2012 	case 0:
2013 		return (false);
2014 	case 1:
2015 		return (addr == 0 || (cow & MAP_NO_HINT) != 0);
2016 	case 2:
2017 	default:
2018 		return (true);
2019 	}
2020 }
2021 
2022 static long aslr_restarts;
2023 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2024     &aslr_restarts, 0,
2025     "Number of aslr failures");
2026 
2027 /*
2028  * Searches for the specified amount of free space in the given map with the
2029  * specified alignment.  Performs an address-ordered, first-fit search from
2030  * the given address "*addr", with an optional upper bound "max_addr".  If the
2031  * parameter "alignment" is zero, then the alignment is computed from the
2032  * given (object, offset) pair so as to enable the greatest possible use of
2033  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
2034  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
2035  *
2036  * The map must be locked.  Initially, there must be at least "length" bytes
2037  * of free space at the given address.
2038  */
2039 static int
2040 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2041     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2042     vm_offset_t alignment)
2043 {
2044 	vm_offset_t aligned_addr, free_addr;
2045 
2046 	VM_MAP_ASSERT_LOCKED(map);
2047 	free_addr = *addr;
2048 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2049 	    ("caller failed to provide space %#jx at address %p",
2050 	     (uintmax_t)length, (void *)free_addr));
2051 	for (;;) {
2052 		/*
2053 		 * At the start of every iteration, the free space at address
2054 		 * "*addr" is at least "length" bytes.
2055 		 */
2056 		if (alignment == 0)
2057 			pmap_align_superpage(object, offset, addr, length);
2058 		else
2059 			*addr = roundup2(*addr, alignment);
2060 		aligned_addr = *addr;
2061 		if (aligned_addr == free_addr) {
2062 			/*
2063 			 * Alignment did not change "*addr", so "*addr" must
2064 			 * still provide sufficient free space.
2065 			 */
2066 			return (KERN_SUCCESS);
2067 		}
2068 
2069 		/*
2070 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
2071 		 * be a valid address, in which case vm_map_findspace() cannot
2072 		 * be relied upon to fail.
2073 		 */
2074 		if (aligned_addr < free_addr)
2075 			return (KERN_NO_SPACE);
2076 		*addr = vm_map_findspace(map, aligned_addr, length);
2077 		if (*addr + length > vm_map_max(map) ||
2078 		    (max_addr != 0 && *addr + length > max_addr))
2079 			return (KERN_NO_SPACE);
2080 		free_addr = *addr;
2081 		if (free_addr == aligned_addr) {
2082 			/*
2083 			 * If a successful call to vm_map_findspace() did not
2084 			 * change "*addr", then "*addr" must still be aligned
2085 			 * and provide sufficient free space.
2086 			 */
2087 			return (KERN_SUCCESS);
2088 		}
2089 	}
2090 }
2091 
2092 int
2093 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2094     vm_offset_t max_addr, vm_offset_t alignment)
2095 {
2096 	/* XXXKIB ASLR eh ? */
2097 	*addr = vm_map_findspace(map, *addr, length);
2098 	if (*addr + length > vm_map_max(map) ||
2099 	    (max_addr != 0 && *addr + length > max_addr))
2100 		return (KERN_NO_SPACE);
2101 	return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2102 	    alignment));
2103 }
2104 
2105 /*
2106  *	vm_map_find finds an unallocated region in the target address
2107  *	map with the given length.  The search is defined to be
2108  *	first-fit from the specified address; the region found is
2109  *	returned in the same parameter.
2110  *
2111  *	If object is non-NULL, ref count must be bumped by caller
2112  *	prior to making call to account for the new entry.
2113  */
2114 int
2115 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2116 	    vm_offset_t *addr,	/* IN/OUT */
2117 	    vm_size_t length, vm_offset_t max_addr, int find_space,
2118 	    vm_prot_t prot, vm_prot_t max, int cow)
2119 {
2120 	vm_offset_t alignment, curr_min_addr, min_addr;
2121 	int gap, pidx, rv, try;
2122 	bool cluster, en_aslr, update_anon;
2123 
2124 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2125 	    object == NULL,
2126 	    ("vm_map_find: non-NULL backing object for stack"));
2127 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2128 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2129 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2130 	    (object->flags & OBJ_COLORED) == 0))
2131 		find_space = VMFS_ANY_SPACE;
2132 	if (find_space >> 8 != 0) {
2133 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2134 		alignment = (vm_offset_t)1 << (find_space >> 8);
2135 	} else
2136 		alignment = 0;
2137 	en_aslr = (map->flags & MAP_ASLR) != 0;
2138 	update_anon = cluster = clustering_anon_allowed(*addr, cow) &&
2139 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2140 	    find_space != VMFS_NO_SPACE && object == NULL &&
2141 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2142 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2143 	curr_min_addr = min_addr = *addr;
2144 	if (en_aslr && min_addr == 0 && !cluster &&
2145 	    find_space != VMFS_NO_SPACE &&
2146 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
2147 		curr_min_addr = min_addr = vm_map_min(map);
2148 	try = 0;
2149 	vm_map_lock(map);
2150 	if (cluster) {
2151 		curr_min_addr = map->anon_loc;
2152 		if (curr_min_addr == 0)
2153 			cluster = false;
2154 	}
2155 	if (find_space != VMFS_NO_SPACE) {
2156 		KASSERT(find_space == VMFS_ANY_SPACE ||
2157 		    find_space == VMFS_OPTIMAL_SPACE ||
2158 		    find_space == VMFS_SUPER_SPACE ||
2159 		    alignment != 0, ("unexpected VMFS flag"));
2160 again:
2161 		/*
2162 		 * When creating an anonymous mapping, try clustering
2163 		 * with an existing anonymous mapping first.
2164 		 *
2165 		 * We make up to two attempts to find address space
2166 		 * for a given find_space value. The first attempt may
2167 		 * apply randomization or may cluster with an existing
2168 		 * anonymous mapping. If this first attempt fails,
2169 		 * perform a first-fit search of the available address
2170 		 * space.
2171 		 *
2172 		 * If all tries failed, and find_space is
2173 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2174 		 * Again enable clustering and randomization.
2175 		 */
2176 		try++;
2177 		MPASS(try <= 2);
2178 
2179 		if (try == 2) {
2180 			/*
2181 			 * Second try: we failed either to find a
2182 			 * suitable region for randomizing the
2183 			 * allocation, or to cluster with an existing
2184 			 * mapping.  Retry with free run.
2185 			 */
2186 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2187 			    vm_map_min(map) : min_addr;
2188 			atomic_add_long(&aslr_restarts, 1);
2189 		}
2190 
2191 		if (try == 1 && en_aslr && !cluster) {
2192 			/*
2193 			 * Find space for allocation, including
2194 			 * gap needed for later randomization.
2195 			 */
2196 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2197 			    (find_space == VMFS_SUPER_SPACE || find_space ==
2198 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
2199 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2200 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2201 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2202 			*addr = vm_map_findspace(map, curr_min_addr,
2203 			    length + gap * pagesizes[pidx]);
2204 			if (*addr + length + gap * pagesizes[pidx] >
2205 			    vm_map_max(map))
2206 				goto again;
2207 			/* And randomize the start address. */
2208 			*addr += (arc4random() % gap) * pagesizes[pidx];
2209 			if (max_addr != 0 && *addr + length > max_addr)
2210 				goto again;
2211 		} else {
2212 			*addr = vm_map_findspace(map, curr_min_addr, length);
2213 			if (*addr + length > vm_map_max(map) ||
2214 			    (max_addr != 0 && *addr + length > max_addr)) {
2215 				if (cluster) {
2216 					cluster = false;
2217 					MPASS(try == 1);
2218 					goto again;
2219 				}
2220 				rv = KERN_NO_SPACE;
2221 				goto done;
2222 			}
2223 		}
2224 
2225 		if (find_space != VMFS_ANY_SPACE &&
2226 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
2227 		    max_addr, alignment)) != KERN_SUCCESS) {
2228 			if (find_space == VMFS_OPTIMAL_SPACE) {
2229 				find_space = VMFS_ANY_SPACE;
2230 				curr_min_addr = min_addr;
2231 				cluster = update_anon;
2232 				try = 0;
2233 				goto again;
2234 			}
2235 			goto done;
2236 		}
2237 	} else if ((cow & MAP_REMAP) != 0) {
2238 		if (!vm_map_range_valid(map, *addr, *addr + length)) {
2239 			rv = KERN_INVALID_ADDRESS;
2240 			goto done;
2241 		}
2242 		rv = vm_map_delete(map, *addr, *addr + length);
2243 		if (rv != KERN_SUCCESS)
2244 			goto done;
2245 	}
2246 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2247 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2248 		    max, cow);
2249 	} else {
2250 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2251 		    prot, max, cow);
2252 	}
2253 	if (rv == KERN_SUCCESS && update_anon)
2254 		map->anon_loc = *addr + length;
2255 done:
2256 	vm_map_unlock(map);
2257 	return (rv);
2258 }
2259 
2260 /*
2261  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2262  *	additional parameter ("default_addr") and treats the given address
2263  *	("*addr") differently.  Specifically, it treats "*addr" as a hint
2264  *	and not as the minimum address where the mapping is created.
2265  *
2266  *	This function works in two phases.  First, it tries to
2267  *	allocate above the hint.  If that fails and the hint is
2268  *	greater than "default_addr", it performs a second pass, replacing
2269  *	the hint with "default_addr" as the minimum address for the
2270  *	allocation.
2271  */
2272 int
2273 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2274     vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr,
2275     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2276     int cow)
2277 {
2278 	vm_offset_t hint;
2279 	int rv;
2280 
2281 	hint = *addr;
2282 	if (hint == 0) {
2283 		cow |= MAP_NO_HINT;
2284 		*addr = hint = default_addr;
2285 	}
2286 	for (;;) {
2287 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2288 		    find_space, prot, max, cow);
2289 		if (rv == KERN_SUCCESS || default_addr >= hint)
2290 			return (rv);
2291 		*addr = hint = default_addr;
2292 	}
2293 }
2294 
2295 /*
2296  * A map entry with any of the following flags set must not be merged with
2297  * another entry.
2298  */
2299 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2300     MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \
2301     MAP_ENTRY_STACK_GAP_UP | MAP_ENTRY_STACK_GAP_DN)
2302 
2303 static bool
2304 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2305 {
2306 
2307 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2308 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2309 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2310 	    prev, entry));
2311 	return (prev->end == entry->start &&
2312 	    prev->object.vm_object == entry->object.vm_object &&
2313 	    (prev->object.vm_object == NULL ||
2314 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2315 	    prev->eflags == entry->eflags &&
2316 	    prev->protection == entry->protection &&
2317 	    prev->max_protection == entry->max_protection &&
2318 	    prev->inheritance == entry->inheritance &&
2319 	    prev->wired_count == entry->wired_count &&
2320 	    prev->cred == entry->cred);
2321 }
2322 
2323 static void
2324 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2325 {
2326 
2327 	/*
2328 	 * If the backing object is a vnode object, vm_object_deallocate()
2329 	 * calls vrele().  However, vrele() does not lock the vnode because
2330 	 * the vnode has additional references.  Thus, the map lock can be
2331 	 * kept without causing a lock-order reversal with the vnode lock.
2332 	 *
2333 	 * Since we count the number of virtual page mappings in
2334 	 * object->un_pager.vnp.writemappings, the writemappings value
2335 	 * should not be adjusted when the entry is disposed of.
2336 	 */
2337 	if (entry->object.vm_object != NULL)
2338 		vm_object_deallocate(entry->object.vm_object);
2339 	if (entry->cred != NULL)
2340 		crfree(entry->cred);
2341 	vm_map_entry_dispose(map, entry);
2342 }
2343 
2344 /*
2345  *	vm_map_try_merge_entries:
2346  *
2347  *	Compare two map entries that represent consecutive ranges. If
2348  *	the entries can be merged, expand the range of the second to
2349  *	cover the range of the first and delete the first. Then return
2350  *	the map entry that includes the first range.
2351  *
2352  *	The map must be locked.
2353  */
2354 vm_map_entry_t
2355 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2356     vm_map_entry_t entry)
2357 {
2358 
2359 	VM_MAP_ASSERT_LOCKED(map);
2360 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2361 	    vm_map_mergeable_neighbors(prev_entry, entry)) {
2362 		vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2363 		vm_map_merged_neighbor_dispose(map, prev_entry);
2364 		return (entry);
2365 	}
2366 	return (prev_entry);
2367 }
2368 
2369 /*
2370  *	vm_map_entry_back:
2371  *
2372  *	Allocate an object to back a map entry.
2373  */
2374 static inline void
2375 vm_map_entry_back(vm_map_entry_t entry)
2376 {
2377 	vm_object_t object;
2378 
2379 	KASSERT(entry->object.vm_object == NULL,
2380 	    ("map entry %p has backing object", entry));
2381 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2382 	    ("map entry %p is a submap", entry));
2383 	object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2384 	    entry->cred, entry->end - entry->start);
2385 	entry->object.vm_object = object;
2386 	entry->offset = 0;
2387 	entry->cred = NULL;
2388 }
2389 
2390 /*
2391  *	vm_map_entry_charge_object
2392  *
2393  *	If there is no object backing this entry, create one.  Otherwise, if
2394  *	the entry has cred, give it to the backing object.
2395  */
2396 static inline void
2397 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2398 {
2399 
2400 	VM_MAP_ASSERT_LOCKED(map);
2401 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2402 	    ("map entry %p is a submap", entry));
2403 	if (entry->object.vm_object == NULL && !map->system_map &&
2404 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2405 		vm_map_entry_back(entry);
2406 	else if (entry->object.vm_object != NULL &&
2407 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2408 	    entry->cred != NULL) {
2409 		VM_OBJECT_WLOCK(entry->object.vm_object);
2410 		KASSERT(entry->object.vm_object->cred == NULL,
2411 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2412 		entry->object.vm_object->cred = entry->cred;
2413 		entry->object.vm_object->charge = entry->end - entry->start;
2414 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2415 		entry->cred = NULL;
2416 	}
2417 }
2418 
2419 /*
2420  *	vm_map_entry_clone
2421  *
2422  *	Create a duplicate map entry for clipping.
2423  */
2424 static vm_map_entry_t
2425 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2426 {
2427 	vm_map_entry_t new_entry;
2428 
2429 	VM_MAP_ASSERT_LOCKED(map);
2430 
2431 	/*
2432 	 * Create a backing object now, if none exists, so that more individual
2433 	 * objects won't be created after the map entry is split.
2434 	 */
2435 	vm_map_entry_charge_object(map, entry);
2436 
2437 	/* Clone the entry. */
2438 	new_entry = vm_map_entry_create(map);
2439 	*new_entry = *entry;
2440 	if (new_entry->cred != NULL)
2441 		crhold(entry->cred);
2442 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2443 		vm_object_reference(new_entry->object.vm_object);
2444 		vm_map_entry_set_vnode_text(new_entry, true);
2445 		/*
2446 		 * The object->un_pager.vnp.writemappings for the object of
2447 		 * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2448 		 * virtual pages are re-distributed among the clipped entries,
2449 		 * so the sum is left the same.
2450 		 */
2451 	}
2452 	return (new_entry);
2453 }
2454 
2455 /*
2456  *	vm_map_clip_start:	[ internal use only ]
2457  *
2458  *	Asserts that the given entry begins at or after
2459  *	the specified address; if necessary,
2460  *	it splits the entry into two.
2461  */
2462 static int
2463 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2464 {
2465 	vm_map_entry_t new_entry;
2466 	int bdry_idx;
2467 
2468 	if (!map->system_map)
2469 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2470 		    "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2471 		    (uintmax_t)startaddr);
2472 
2473 	if (startaddr <= entry->start)
2474 		return (KERN_SUCCESS);
2475 
2476 	VM_MAP_ASSERT_LOCKED(map);
2477 	KASSERT(entry->end > startaddr && entry->start < startaddr,
2478 	    ("%s: invalid clip of entry %p", __func__, entry));
2479 
2480 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2481 	if (bdry_idx != 0) {
2482 		if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2483 			return (KERN_INVALID_ARGUMENT);
2484 	}
2485 
2486 	new_entry = vm_map_entry_clone(map, entry);
2487 
2488 	/*
2489 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2490 	 * so that this entry has the specified starting address.
2491 	 */
2492 	new_entry->end = startaddr;
2493 	vm_map_entry_link(map, new_entry);
2494 	return (KERN_SUCCESS);
2495 }
2496 
2497 /*
2498  *	vm_map_lookup_clip_start:
2499  *
2500  *	Find the entry at or just after 'start', and clip it if 'start' is in
2501  *	the interior of the entry.  Return entry after 'start', and in
2502  *	prev_entry set the entry before 'start'.
2503  */
2504 static int
2505 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2506     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2507 {
2508 	vm_map_entry_t entry;
2509 	int rv;
2510 
2511 	if (!map->system_map)
2512 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2513 		    "%s: map %p start 0x%jx prev %p", __func__, map,
2514 		    (uintmax_t)start, prev_entry);
2515 
2516 	if (vm_map_lookup_entry(map, start, prev_entry)) {
2517 		entry = *prev_entry;
2518 		rv = vm_map_clip_start(map, entry, start);
2519 		if (rv != KERN_SUCCESS)
2520 			return (rv);
2521 		*prev_entry = vm_map_entry_pred(entry);
2522 	} else
2523 		entry = vm_map_entry_succ(*prev_entry);
2524 	*res_entry = entry;
2525 	return (KERN_SUCCESS);
2526 }
2527 
2528 /*
2529  *	vm_map_clip_end:	[ internal use only ]
2530  *
2531  *	Asserts that the given entry ends at or before
2532  *	the specified address; if necessary,
2533  *	it splits the entry into two.
2534  */
2535 static int
2536 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2537 {
2538 	vm_map_entry_t new_entry;
2539 	int bdry_idx;
2540 
2541 	if (!map->system_map)
2542 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2543 		    "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2544 		    (uintmax_t)endaddr);
2545 
2546 	if (endaddr >= entry->end)
2547 		return (KERN_SUCCESS);
2548 
2549 	VM_MAP_ASSERT_LOCKED(map);
2550 	KASSERT(entry->start < endaddr && entry->end > endaddr,
2551 	    ("%s: invalid clip of entry %p", __func__, entry));
2552 
2553 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2554 	if (bdry_idx != 0) {
2555 		if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2556 			return (KERN_INVALID_ARGUMENT);
2557 	}
2558 
2559 	new_entry = vm_map_entry_clone(map, entry);
2560 
2561 	/*
2562 	 * Split off the back portion.  Insert the new entry AFTER this one,
2563 	 * so that this entry has the specified ending address.
2564 	 */
2565 	new_entry->start = endaddr;
2566 	vm_map_entry_link(map, new_entry);
2567 
2568 	return (KERN_SUCCESS);
2569 }
2570 
2571 /*
2572  *	vm_map_submap:		[ kernel use only ]
2573  *
2574  *	Mark the given range as handled by a subordinate map.
2575  *
2576  *	This range must have been created with vm_map_find,
2577  *	and no other operations may have been performed on this
2578  *	range prior to calling vm_map_submap.
2579  *
2580  *	Only a limited number of operations can be performed
2581  *	within this rage after calling vm_map_submap:
2582  *		vm_fault
2583  *	[Don't try vm_map_copy!]
2584  *
2585  *	To remove a submapping, one must first remove the
2586  *	range from the superior map, and then destroy the
2587  *	submap (if desired).  [Better yet, don't try it.]
2588  */
2589 int
2590 vm_map_submap(
2591 	vm_map_t map,
2592 	vm_offset_t start,
2593 	vm_offset_t end,
2594 	vm_map_t submap)
2595 {
2596 	vm_map_entry_t entry;
2597 	int result;
2598 
2599 	result = KERN_INVALID_ARGUMENT;
2600 
2601 	vm_map_lock(submap);
2602 	submap->flags |= MAP_IS_SUB_MAP;
2603 	vm_map_unlock(submap);
2604 
2605 	vm_map_lock(map);
2606 	VM_MAP_RANGE_CHECK(map, start, end);
2607 	if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2608 	    (entry->eflags & MAP_ENTRY_COW) == 0 &&
2609 	    entry->object.vm_object == NULL) {
2610 		result = vm_map_clip_start(map, entry, start);
2611 		if (result != KERN_SUCCESS)
2612 			goto unlock;
2613 		result = vm_map_clip_end(map, entry, end);
2614 		if (result != KERN_SUCCESS)
2615 			goto unlock;
2616 		entry->object.sub_map = submap;
2617 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2618 		result = KERN_SUCCESS;
2619 	}
2620 unlock:
2621 	vm_map_unlock(map);
2622 
2623 	if (result != KERN_SUCCESS) {
2624 		vm_map_lock(submap);
2625 		submap->flags &= ~MAP_IS_SUB_MAP;
2626 		vm_map_unlock(submap);
2627 	}
2628 	return (result);
2629 }
2630 
2631 /*
2632  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2633  */
2634 #define	MAX_INIT_PT	96
2635 
2636 /*
2637  *	vm_map_pmap_enter:
2638  *
2639  *	Preload the specified map's pmap with mappings to the specified
2640  *	object's memory-resident pages.  No further physical pages are
2641  *	allocated, and no further virtual pages are retrieved from secondary
2642  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2643  *	limited number of page mappings are created at the low-end of the
2644  *	specified address range.  (For this purpose, a superpage mapping
2645  *	counts as one page mapping.)  Otherwise, all resident pages within
2646  *	the specified address range are mapped.
2647  */
2648 static void
2649 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2650     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2651 {
2652 	vm_offset_t start;
2653 	vm_page_t p, p_start;
2654 	vm_pindex_t mask, psize, threshold, tmpidx;
2655 
2656 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2657 		return;
2658 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2659 		VM_OBJECT_WLOCK(object);
2660 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2661 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2662 			    size);
2663 			VM_OBJECT_WUNLOCK(object);
2664 			return;
2665 		}
2666 		VM_OBJECT_LOCK_DOWNGRADE(object);
2667 	} else
2668 		VM_OBJECT_RLOCK(object);
2669 
2670 	psize = atop(size);
2671 	if (psize + pindex > object->size) {
2672 		if (pindex >= object->size) {
2673 			VM_OBJECT_RUNLOCK(object);
2674 			return;
2675 		}
2676 		psize = object->size - pindex;
2677 	}
2678 
2679 	start = 0;
2680 	p_start = NULL;
2681 	threshold = MAX_INIT_PT;
2682 
2683 	p = vm_page_find_least(object, pindex);
2684 	/*
2685 	 * Assert: the variable p is either (1) the page with the
2686 	 * least pindex greater than or equal to the parameter pindex
2687 	 * or (2) NULL.
2688 	 */
2689 	for (;
2690 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2691 	     p = TAILQ_NEXT(p, listq)) {
2692 		/*
2693 		 * don't allow an madvise to blow away our really
2694 		 * free pages allocating pv entries.
2695 		 */
2696 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2697 		    vm_page_count_severe()) ||
2698 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2699 		    tmpidx >= threshold)) {
2700 			psize = tmpidx;
2701 			break;
2702 		}
2703 		if (vm_page_all_valid(p)) {
2704 			if (p_start == NULL) {
2705 				start = addr + ptoa(tmpidx);
2706 				p_start = p;
2707 			}
2708 			/* Jump ahead if a superpage mapping is possible. */
2709 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2710 			    (pagesizes[p->psind] - 1)) == 0) {
2711 				mask = atop(pagesizes[p->psind]) - 1;
2712 				if (tmpidx + mask < psize &&
2713 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2714 					p += mask;
2715 					threshold += mask;
2716 				}
2717 			}
2718 		} else if (p_start != NULL) {
2719 			pmap_enter_object(map->pmap, start, addr +
2720 			    ptoa(tmpidx), p_start, prot);
2721 			p_start = NULL;
2722 		}
2723 	}
2724 	if (p_start != NULL)
2725 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2726 		    p_start, prot);
2727 	VM_OBJECT_RUNLOCK(object);
2728 }
2729 
2730 static void
2731 vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot,
2732     vm_prot_t new_maxprot, int flags)
2733 {
2734 	vm_prot_t old_prot;
2735 
2736 	MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0);
2737 	if ((entry->eflags & (MAP_ENTRY_STACK_GAP_UP |
2738 	    MAP_ENTRY_STACK_GAP_DN)) == 0)
2739 		return;
2740 
2741 	old_prot = PROT_EXTRACT(entry->offset);
2742 	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2743 		entry->offset = PROT_MAX(new_maxprot) |
2744 		    (new_maxprot & old_prot);
2745 	}
2746 	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) {
2747 		entry->offset = new_prot | PROT_MAX(
2748 		    PROT_MAX_EXTRACT(entry->offset));
2749 	}
2750 }
2751 
2752 /*
2753  *	vm_map_protect:
2754  *
2755  *	Sets the protection and/or the maximum protection of the
2756  *	specified address region in the target map.
2757  */
2758 int
2759 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2760     vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2761 {
2762 	vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2763 	vm_object_t obj;
2764 	struct ucred *cred;
2765 	vm_offset_t orig_start;
2766 	vm_prot_t check_prot, max_prot, old_prot;
2767 	int rv;
2768 
2769 	if (start == end)
2770 		return (KERN_SUCCESS);
2771 
2772 	if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT |
2773 	    VM_MAP_PROTECT_SET_MAXPROT) &&
2774 	    !CONTAINS_BITS(new_maxprot, new_prot))
2775 		return (KERN_OUT_OF_BOUNDS);
2776 
2777 	orig_start = start;
2778 again:
2779 	in_tran = NULL;
2780 	start = orig_start;
2781 	vm_map_lock(map);
2782 
2783 	if ((map->flags & MAP_WXORX) != 0 &&
2784 	    (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2785 	    CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) {
2786 		vm_map_unlock(map);
2787 		return (KERN_PROTECTION_FAILURE);
2788 	}
2789 
2790 	/*
2791 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2792 	 * need to fault pages into the map and will drop the map lock while
2793 	 * doing so, and the VM object may end up in an inconsistent state if we
2794 	 * update the protection on the map entry in between faults.
2795 	 */
2796 	vm_map_wait_busy(map);
2797 
2798 	VM_MAP_RANGE_CHECK(map, start, end);
2799 
2800 	if (!vm_map_lookup_entry(map, start, &first_entry))
2801 		first_entry = vm_map_entry_succ(first_entry);
2802 
2803 	if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 &&
2804 	    (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) {
2805 		/*
2806 		 * Handle Linux's PROT_GROWSDOWN flag.
2807 		 * It means that protection is applied down to the
2808 		 * whole stack, including the specified range of the
2809 		 * mapped region, and the grow down region (AKA
2810 		 * guard).
2811 		 */
2812 		while (!CONTAINS_BITS(first_entry->eflags,
2813 		    MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP_DN) &&
2814 		    first_entry != vm_map_entry_first(map))
2815 			first_entry = vm_map_entry_pred(first_entry);
2816 		start = first_entry->start;
2817 	}
2818 
2819 	/*
2820 	 * Make a first pass to check for protection violations.
2821 	 */
2822 	check_prot = 0;
2823 	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2824 		check_prot |= new_prot;
2825 	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0)
2826 		check_prot |= new_maxprot;
2827 	for (entry = first_entry; entry->start < end;
2828 	    entry = vm_map_entry_succ(entry)) {
2829 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2830 			vm_map_unlock(map);
2831 			return (KERN_INVALID_ARGUMENT);
2832 		}
2833 		if ((entry->eflags & (MAP_ENTRY_GUARD |
2834 		    MAP_ENTRY_STACK_GAP_DN | MAP_ENTRY_STACK_GAP_UP)) ==
2835 		    MAP_ENTRY_GUARD)
2836 			continue;
2837 		max_prot = (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
2838 		    MAP_ENTRY_STACK_GAP_UP)) != 0 ?
2839 		    PROT_MAX_EXTRACT(entry->offset) : entry->max_protection;
2840 		if (!CONTAINS_BITS(max_prot, check_prot)) {
2841 			vm_map_unlock(map);
2842 			return (KERN_PROTECTION_FAILURE);
2843 		}
2844 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2845 			in_tran = entry;
2846 	}
2847 
2848 	/*
2849 	 * Postpone the operation until all in-transition map entries have
2850 	 * stabilized.  An in-transition entry might already have its pages
2851 	 * wired and wired_count incremented, but not yet have its
2852 	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2853 	 * vm_fault_copy_entry() in the final loop below.
2854 	 */
2855 	if (in_tran != NULL) {
2856 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2857 		vm_map_unlock_and_wait(map, 0);
2858 		goto again;
2859 	}
2860 
2861 	/*
2862 	 * Before changing the protections, try to reserve swap space for any
2863 	 * private (i.e., copy-on-write) mappings that are transitioning from
2864 	 * read-only to read/write access.  If a reservation fails, break out
2865 	 * of this loop early and let the next loop simplify the entries, since
2866 	 * some may now be mergeable.
2867 	 */
2868 	rv = vm_map_clip_start(map, first_entry, start);
2869 	if (rv != KERN_SUCCESS) {
2870 		vm_map_unlock(map);
2871 		return (rv);
2872 	}
2873 	for (entry = first_entry; entry->start < end;
2874 	    entry = vm_map_entry_succ(entry)) {
2875 		rv = vm_map_clip_end(map, entry, end);
2876 		if (rv != KERN_SUCCESS) {
2877 			vm_map_unlock(map);
2878 			return (rv);
2879 		}
2880 
2881 		if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2882 		    ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2883 		    ENTRY_CHARGED(entry) ||
2884 		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2885 			continue;
2886 
2887 		cred = curthread->td_ucred;
2888 		obj = entry->object.vm_object;
2889 
2890 		if (obj == NULL ||
2891 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2892 			if (!swap_reserve(entry->end - entry->start)) {
2893 				rv = KERN_RESOURCE_SHORTAGE;
2894 				end = entry->end;
2895 				break;
2896 			}
2897 			crhold(cred);
2898 			entry->cred = cred;
2899 			continue;
2900 		}
2901 
2902 		VM_OBJECT_WLOCK(obj);
2903 		if ((obj->flags & OBJ_SWAP) == 0) {
2904 			VM_OBJECT_WUNLOCK(obj);
2905 			continue;
2906 		}
2907 
2908 		/*
2909 		 * Charge for the whole object allocation now, since
2910 		 * we cannot distinguish between non-charged and
2911 		 * charged clipped mapping of the same object later.
2912 		 */
2913 		KASSERT(obj->charge == 0,
2914 		    ("vm_map_protect: object %p overcharged (entry %p)",
2915 		    obj, entry));
2916 		if (!swap_reserve(ptoa(obj->size))) {
2917 			VM_OBJECT_WUNLOCK(obj);
2918 			rv = KERN_RESOURCE_SHORTAGE;
2919 			end = entry->end;
2920 			break;
2921 		}
2922 
2923 		crhold(cred);
2924 		obj->cred = cred;
2925 		obj->charge = ptoa(obj->size);
2926 		VM_OBJECT_WUNLOCK(obj);
2927 	}
2928 
2929 	/*
2930 	 * If enough swap space was available, go back and fix up protections.
2931 	 * Otherwise, just simplify entries, since some may have been modified.
2932 	 * [Note that clipping is not necessary the second time.]
2933 	 */
2934 	for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2935 	    entry->start < end;
2936 	    vm_map_try_merge_entries(map, prev_entry, entry),
2937 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2938 		if (rv != KERN_SUCCESS)
2939 			continue;
2940 
2941 		if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2942 			vm_map_protect_guard(entry, new_prot, new_maxprot,
2943 			    flags);
2944 			continue;
2945 		}
2946 
2947 		old_prot = entry->protection;
2948 
2949 		if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2950 			entry->max_protection = new_maxprot;
2951 			entry->protection = new_maxprot & old_prot;
2952 		}
2953 		if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2954 			entry->protection = new_prot;
2955 
2956 		/*
2957 		 * For user wired map entries, the normal lazy evaluation of
2958 		 * write access upgrades through soft page faults is
2959 		 * undesirable.  Instead, immediately copy any pages that are
2960 		 * copy-on-write and enable write access in the physical map.
2961 		 */
2962 		if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2963 		    (entry->protection & VM_PROT_WRITE) != 0 &&
2964 		    (old_prot & VM_PROT_WRITE) == 0)
2965 			vm_fault_copy_entry(map, map, entry, entry, NULL);
2966 
2967 		/*
2968 		 * When restricting access, update the physical map.  Worry
2969 		 * about copy-on-write here.
2970 		 */
2971 		if ((old_prot & ~entry->protection) != 0) {
2972 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2973 							VM_PROT_ALL)
2974 			pmap_protect(map->pmap, entry->start,
2975 			    entry->end,
2976 			    entry->protection & MASK(entry));
2977 #undef	MASK
2978 		}
2979 	}
2980 	vm_map_try_merge_entries(map, prev_entry, entry);
2981 	vm_map_unlock(map);
2982 	return (rv);
2983 }
2984 
2985 /*
2986  *	vm_map_madvise:
2987  *
2988  *	This routine traverses a processes map handling the madvise
2989  *	system call.  Advisories are classified as either those effecting
2990  *	the vm_map_entry structure, or those effecting the underlying
2991  *	objects.
2992  */
2993 int
2994 vm_map_madvise(
2995 	vm_map_t map,
2996 	vm_offset_t start,
2997 	vm_offset_t end,
2998 	int behav)
2999 {
3000 	vm_map_entry_t entry, prev_entry;
3001 	int rv;
3002 	bool modify_map;
3003 
3004 	/*
3005 	 * Some madvise calls directly modify the vm_map_entry, in which case
3006 	 * we need to use an exclusive lock on the map and we need to perform
3007 	 * various clipping operations.  Otherwise we only need a read-lock
3008 	 * on the map.
3009 	 */
3010 	switch(behav) {
3011 	case MADV_NORMAL:
3012 	case MADV_SEQUENTIAL:
3013 	case MADV_RANDOM:
3014 	case MADV_NOSYNC:
3015 	case MADV_AUTOSYNC:
3016 	case MADV_NOCORE:
3017 	case MADV_CORE:
3018 		if (start == end)
3019 			return (0);
3020 		modify_map = true;
3021 		vm_map_lock(map);
3022 		break;
3023 	case MADV_WILLNEED:
3024 	case MADV_DONTNEED:
3025 	case MADV_FREE:
3026 		if (start == end)
3027 			return (0);
3028 		modify_map = false;
3029 		vm_map_lock_read(map);
3030 		break;
3031 	default:
3032 		return (EINVAL);
3033 	}
3034 
3035 	/*
3036 	 * Locate starting entry and clip if necessary.
3037 	 */
3038 	VM_MAP_RANGE_CHECK(map, start, end);
3039 
3040 	if (modify_map) {
3041 		/*
3042 		 * madvise behaviors that are implemented in the vm_map_entry.
3043 		 *
3044 		 * We clip the vm_map_entry so that behavioral changes are
3045 		 * limited to the specified address range.
3046 		 */
3047 		rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
3048 		if (rv != KERN_SUCCESS) {
3049 			vm_map_unlock(map);
3050 			return (vm_mmap_to_errno(rv));
3051 		}
3052 
3053 		for (; entry->start < end; prev_entry = entry,
3054 		    entry = vm_map_entry_succ(entry)) {
3055 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3056 				continue;
3057 
3058 			rv = vm_map_clip_end(map, entry, end);
3059 			if (rv != KERN_SUCCESS) {
3060 				vm_map_unlock(map);
3061 				return (vm_mmap_to_errno(rv));
3062 			}
3063 
3064 			switch (behav) {
3065 			case MADV_NORMAL:
3066 				vm_map_entry_set_behavior(entry,
3067 				    MAP_ENTRY_BEHAV_NORMAL);
3068 				break;
3069 			case MADV_SEQUENTIAL:
3070 				vm_map_entry_set_behavior(entry,
3071 				    MAP_ENTRY_BEHAV_SEQUENTIAL);
3072 				break;
3073 			case MADV_RANDOM:
3074 				vm_map_entry_set_behavior(entry,
3075 				    MAP_ENTRY_BEHAV_RANDOM);
3076 				break;
3077 			case MADV_NOSYNC:
3078 				entry->eflags |= MAP_ENTRY_NOSYNC;
3079 				break;
3080 			case MADV_AUTOSYNC:
3081 				entry->eflags &= ~MAP_ENTRY_NOSYNC;
3082 				break;
3083 			case MADV_NOCORE:
3084 				entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3085 				break;
3086 			case MADV_CORE:
3087 				entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3088 				break;
3089 			default:
3090 				break;
3091 			}
3092 			vm_map_try_merge_entries(map, prev_entry, entry);
3093 		}
3094 		vm_map_try_merge_entries(map, prev_entry, entry);
3095 		vm_map_unlock(map);
3096 	} else {
3097 		vm_pindex_t pstart, pend;
3098 
3099 		/*
3100 		 * madvise behaviors that are implemented in the underlying
3101 		 * vm_object.
3102 		 *
3103 		 * Since we don't clip the vm_map_entry, we have to clip
3104 		 * the vm_object pindex and count.
3105 		 */
3106 		if (!vm_map_lookup_entry(map, start, &entry))
3107 			entry = vm_map_entry_succ(entry);
3108 		for (; entry->start < end;
3109 		    entry = vm_map_entry_succ(entry)) {
3110 			vm_offset_t useEnd, useStart;
3111 
3112 			if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP |
3113 			    MAP_ENTRY_GUARD)) != 0)
3114 				continue;
3115 
3116 			/*
3117 			 * MADV_FREE would otherwise rewind time to
3118 			 * the creation of the shadow object.  Because
3119 			 * we hold the VM map read-locked, neither the
3120 			 * entry's object nor the presence of a
3121 			 * backing object can change.
3122 			 */
3123 			if (behav == MADV_FREE &&
3124 			    entry->object.vm_object != NULL &&
3125 			    entry->object.vm_object->backing_object != NULL)
3126 				continue;
3127 
3128 			pstart = OFF_TO_IDX(entry->offset);
3129 			pend = pstart + atop(entry->end - entry->start);
3130 			useStart = entry->start;
3131 			useEnd = entry->end;
3132 
3133 			if (entry->start < start) {
3134 				pstart += atop(start - entry->start);
3135 				useStart = start;
3136 			}
3137 			if (entry->end > end) {
3138 				pend -= atop(entry->end - end);
3139 				useEnd = end;
3140 			}
3141 
3142 			if (pstart >= pend)
3143 				continue;
3144 
3145 			/*
3146 			 * Perform the pmap_advise() before clearing
3147 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
3148 			 * concurrent pmap operation, such as pmap_remove(),
3149 			 * could clear a reference in the pmap and set
3150 			 * PGA_REFERENCED on the page before the pmap_advise()
3151 			 * had completed.  Consequently, the page would appear
3152 			 * referenced based upon an old reference that
3153 			 * occurred before this pmap_advise() ran.
3154 			 */
3155 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
3156 				pmap_advise(map->pmap, useStart, useEnd,
3157 				    behav);
3158 
3159 			vm_object_madvise(entry->object.vm_object, pstart,
3160 			    pend, behav);
3161 
3162 			/*
3163 			 * Pre-populate paging structures in the
3164 			 * WILLNEED case.  For wired entries, the
3165 			 * paging structures are already populated.
3166 			 */
3167 			if (behav == MADV_WILLNEED &&
3168 			    entry->wired_count == 0) {
3169 				vm_map_pmap_enter(map,
3170 				    useStart,
3171 				    entry->protection,
3172 				    entry->object.vm_object,
3173 				    pstart,
3174 				    ptoa(pend - pstart),
3175 				    MAP_PREFAULT_MADVISE
3176 				);
3177 			}
3178 		}
3179 		vm_map_unlock_read(map);
3180 	}
3181 	return (0);
3182 }
3183 
3184 /*
3185  *	vm_map_inherit:
3186  *
3187  *	Sets the inheritance of the specified address
3188  *	range in the target map.  Inheritance
3189  *	affects how the map will be shared with
3190  *	child maps at the time of vmspace_fork.
3191  */
3192 int
3193 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3194 	       vm_inherit_t new_inheritance)
3195 {
3196 	vm_map_entry_t entry, lentry, prev_entry, start_entry;
3197 	int rv;
3198 
3199 	switch (new_inheritance) {
3200 	case VM_INHERIT_NONE:
3201 	case VM_INHERIT_COPY:
3202 	case VM_INHERIT_SHARE:
3203 	case VM_INHERIT_ZERO:
3204 		break;
3205 	default:
3206 		return (KERN_INVALID_ARGUMENT);
3207 	}
3208 	if (start == end)
3209 		return (KERN_SUCCESS);
3210 	vm_map_lock(map);
3211 	VM_MAP_RANGE_CHECK(map, start, end);
3212 	rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3213 	if (rv != KERN_SUCCESS)
3214 		goto unlock;
3215 	if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3216 		rv = vm_map_clip_end(map, lentry, end);
3217 		if (rv != KERN_SUCCESS)
3218 			goto unlock;
3219 	}
3220 	if (new_inheritance == VM_INHERIT_COPY) {
3221 		for (entry = start_entry; entry->start < end;
3222 		    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3223 			if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3224 			    != 0) {
3225 				rv = KERN_INVALID_ARGUMENT;
3226 				goto unlock;
3227 			}
3228 		}
3229 	}
3230 	for (entry = start_entry; entry->start < end; prev_entry = entry,
3231 	    entry = vm_map_entry_succ(entry)) {
3232 		KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3233 		    entry, (uintmax_t)entry->end, (uintmax_t)end));
3234 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3235 		    new_inheritance != VM_INHERIT_ZERO)
3236 			entry->inheritance = new_inheritance;
3237 		vm_map_try_merge_entries(map, prev_entry, entry);
3238 	}
3239 	vm_map_try_merge_entries(map, prev_entry, entry);
3240 unlock:
3241 	vm_map_unlock(map);
3242 	return (rv);
3243 }
3244 
3245 /*
3246  *	vm_map_entry_in_transition:
3247  *
3248  *	Release the map lock, and sleep until the entry is no longer in
3249  *	transition.  Awake and acquire the map lock.  If the map changed while
3250  *	another held the lock, lookup a possibly-changed entry at or after the
3251  *	'start' position of the old entry.
3252  */
3253 static vm_map_entry_t
3254 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3255     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3256 {
3257 	vm_map_entry_t entry;
3258 	vm_offset_t start;
3259 	u_int last_timestamp;
3260 
3261 	VM_MAP_ASSERT_LOCKED(map);
3262 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3263 	    ("not in-tranition map entry %p", in_entry));
3264 	/*
3265 	 * We have not yet clipped the entry.
3266 	 */
3267 	start = MAX(in_start, in_entry->start);
3268 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3269 	last_timestamp = map->timestamp;
3270 	if (vm_map_unlock_and_wait(map, 0)) {
3271 		/*
3272 		 * Allow interruption of user wiring/unwiring?
3273 		 */
3274 	}
3275 	vm_map_lock(map);
3276 	if (last_timestamp + 1 == map->timestamp)
3277 		return (in_entry);
3278 
3279 	/*
3280 	 * Look again for the entry because the map was modified while it was
3281 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
3282 	 * deleted.
3283 	 */
3284 	if (!vm_map_lookup_entry(map, start, &entry)) {
3285 		if (!holes_ok) {
3286 			*io_end = start;
3287 			return (NULL);
3288 		}
3289 		entry = vm_map_entry_succ(entry);
3290 	}
3291 	return (entry);
3292 }
3293 
3294 /*
3295  *	vm_map_unwire:
3296  *
3297  *	Implements both kernel and user unwiring.
3298  */
3299 int
3300 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3301     int flags)
3302 {
3303 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3304 	int rv;
3305 	bool holes_ok, need_wakeup, user_unwire;
3306 
3307 	if (start == end)
3308 		return (KERN_SUCCESS);
3309 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3310 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3311 	vm_map_lock(map);
3312 	VM_MAP_RANGE_CHECK(map, start, end);
3313 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3314 		if (holes_ok)
3315 			first_entry = vm_map_entry_succ(first_entry);
3316 		else {
3317 			vm_map_unlock(map);
3318 			return (KERN_INVALID_ADDRESS);
3319 		}
3320 	}
3321 	rv = KERN_SUCCESS;
3322 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3323 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3324 			/*
3325 			 * We have not yet clipped the entry.
3326 			 */
3327 			next_entry = vm_map_entry_in_transition(map, start,
3328 			    &end, holes_ok, entry);
3329 			if (next_entry == NULL) {
3330 				if (entry == first_entry) {
3331 					vm_map_unlock(map);
3332 					return (KERN_INVALID_ADDRESS);
3333 				}
3334 				rv = KERN_INVALID_ADDRESS;
3335 				break;
3336 			}
3337 			first_entry = (entry == first_entry) ?
3338 			    next_entry : NULL;
3339 			continue;
3340 		}
3341 		rv = vm_map_clip_start(map, entry, start);
3342 		if (rv != KERN_SUCCESS)
3343 			break;
3344 		rv = vm_map_clip_end(map, entry, end);
3345 		if (rv != KERN_SUCCESS)
3346 			break;
3347 
3348 		/*
3349 		 * Mark the entry in case the map lock is released.  (See
3350 		 * above.)
3351 		 */
3352 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3353 		    entry->wiring_thread == NULL,
3354 		    ("owned map entry %p", entry));
3355 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3356 		entry->wiring_thread = curthread;
3357 		next_entry = vm_map_entry_succ(entry);
3358 		/*
3359 		 * Check the map for holes in the specified region.
3360 		 * If holes_ok, skip this check.
3361 		 */
3362 		if (!holes_ok &&
3363 		    entry->end < end && next_entry->start > entry->end) {
3364 			end = entry->end;
3365 			rv = KERN_INVALID_ADDRESS;
3366 			break;
3367 		}
3368 		/*
3369 		 * If system unwiring, require that the entry is system wired.
3370 		 */
3371 		if (!user_unwire &&
3372 		    vm_map_entry_system_wired_count(entry) == 0) {
3373 			end = entry->end;
3374 			rv = KERN_INVALID_ARGUMENT;
3375 			break;
3376 		}
3377 	}
3378 	need_wakeup = false;
3379 	if (first_entry == NULL &&
3380 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3381 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3382 		prev_entry = first_entry;
3383 		entry = vm_map_entry_succ(first_entry);
3384 	} else {
3385 		prev_entry = vm_map_entry_pred(first_entry);
3386 		entry = first_entry;
3387 	}
3388 	for (; entry->start < end;
3389 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3390 		/*
3391 		 * If holes_ok was specified, an empty
3392 		 * space in the unwired region could have been mapped
3393 		 * while the map lock was dropped for draining
3394 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3395 		 * could be simultaneously wiring this new mapping
3396 		 * entry.  Detect these cases and skip any entries
3397 		 * marked as in transition by us.
3398 		 */
3399 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3400 		    entry->wiring_thread != curthread) {
3401 			KASSERT(holes_ok,
3402 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
3403 			continue;
3404 		}
3405 
3406 		if (rv == KERN_SUCCESS && (!user_unwire ||
3407 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3408 			if (entry->wired_count == 1)
3409 				vm_map_entry_unwire(map, entry);
3410 			else
3411 				entry->wired_count--;
3412 			if (user_unwire)
3413 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3414 		}
3415 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3416 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3417 		KASSERT(entry->wiring_thread == curthread,
3418 		    ("vm_map_unwire: alien wire %p", entry));
3419 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3420 		entry->wiring_thread = NULL;
3421 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3422 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3423 			need_wakeup = true;
3424 		}
3425 		vm_map_try_merge_entries(map, prev_entry, entry);
3426 	}
3427 	vm_map_try_merge_entries(map, prev_entry, entry);
3428 	vm_map_unlock(map);
3429 	if (need_wakeup)
3430 		vm_map_wakeup(map);
3431 	return (rv);
3432 }
3433 
3434 static void
3435 vm_map_wire_user_count_sub(u_long npages)
3436 {
3437 
3438 	atomic_subtract_long(&vm_user_wire_count, npages);
3439 }
3440 
3441 static bool
3442 vm_map_wire_user_count_add(u_long npages)
3443 {
3444 	u_long wired;
3445 
3446 	wired = vm_user_wire_count;
3447 	do {
3448 		if (npages + wired > vm_page_max_user_wired)
3449 			return (false);
3450 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3451 	    npages + wired));
3452 
3453 	return (true);
3454 }
3455 
3456 /*
3457  *	vm_map_wire_entry_failure:
3458  *
3459  *	Handle a wiring failure on the given entry.
3460  *
3461  *	The map should be locked.
3462  */
3463 static void
3464 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3465     vm_offset_t failed_addr)
3466 {
3467 
3468 	VM_MAP_ASSERT_LOCKED(map);
3469 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3470 	    entry->wired_count == 1,
3471 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3472 	KASSERT(failed_addr < entry->end,
3473 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3474 
3475 	/*
3476 	 * If any pages at the start of this entry were successfully wired,
3477 	 * then unwire them.
3478 	 */
3479 	if (failed_addr > entry->start) {
3480 		pmap_unwire(map->pmap, entry->start, failed_addr);
3481 		vm_object_unwire(entry->object.vm_object, entry->offset,
3482 		    failed_addr - entry->start, PQ_ACTIVE);
3483 	}
3484 
3485 	/*
3486 	 * Assign an out-of-range value to represent the failure to wire this
3487 	 * entry.
3488 	 */
3489 	entry->wired_count = -1;
3490 }
3491 
3492 int
3493 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3494 {
3495 	int rv;
3496 
3497 	vm_map_lock(map);
3498 	rv = vm_map_wire_locked(map, start, end, flags);
3499 	vm_map_unlock(map);
3500 	return (rv);
3501 }
3502 
3503 /*
3504  *	vm_map_wire_locked:
3505  *
3506  *	Implements both kernel and user wiring.  Returns with the map locked,
3507  *	the map lock may be dropped.
3508  */
3509 int
3510 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3511 {
3512 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3513 	vm_offset_t faddr, saved_end, saved_start;
3514 	u_long incr, npages;
3515 	u_int bidx, last_timestamp;
3516 	int rv;
3517 	bool holes_ok, need_wakeup, user_wire;
3518 	vm_prot_t prot;
3519 
3520 	VM_MAP_ASSERT_LOCKED(map);
3521 
3522 	if (start == end)
3523 		return (KERN_SUCCESS);
3524 	prot = 0;
3525 	if (flags & VM_MAP_WIRE_WRITE)
3526 		prot |= VM_PROT_WRITE;
3527 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3528 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3529 	VM_MAP_RANGE_CHECK(map, start, end);
3530 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3531 		if (holes_ok)
3532 			first_entry = vm_map_entry_succ(first_entry);
3533 		else
3534 			return (KERN_INVALID_ADDRESS);
3535 	}
3536 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3537 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3538 			/*
3539 			 * We have not yet clipped the entry.
3540 			 */
3541 			next_entry = vm_map_entry_in_transition(map, start,
3542 			    &end, holes_ok, entry);
3543 			if (next_entry == NULL) {
3544 				if (entry == first_entry)
3545 					return (KERN_INVALID_ADDRESS);
3546 				rv = KERN_INVALID_ADDRESS;
3547 				goto done;
3548 			}
3549 			first_entry = (entry == first_entry) ?
3550 			    next_entry : NULL;
3551 			continue;
3552 		}
3553 		rv = vm_map_clip_start(map, entry, start);
3554 		if (rv != KERN_SUCCESS)
3555 			goto done;
3556 		rv = vm_map_clip_end(map, entry, end);
3557 		if (rv != KERN_SUCCESS)
3558 			goto done;
3559 
3560 		/*
3561 		 * Mark the entry in case the map lock is released.  (See
3562 		 * above.)
3563 		 */
3564 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3565 		    entry->wiring_thread == NULL,
3566 		    ("owned map entry %p", entry));
3567 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3568 		entry->wiring_thread = curthread;
3569 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3570 		    || (entry->protection & prot) != prot) {
3571 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3572 			if (!holes_ok) {
3573 				end = entry->end;
3574 				rv = KERN_INVALID_ADDRESS;
3575 				goto done;
3576 			}
3577 		} else if (entry->wired_count == 0) {
3578 			entry->wired_count++;
3579 
3580 			npages = atop(entry->end - entry->start);
3581 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3582 				vm_map_wire_entry_failure(map, entry,
3583 				    entry->start);
3584 				end = entry->end;
3585 				rv = KERN_RESOURCE_SHORTAGE;
3586 				goto done;
3587 			}
3588 
3589 			/*
3590 			 * Release the map lock, relying on the in-transition
3591 			 * mark.  Mark the map busy for fork.
3592 			 */
3593 			saved_start = entry->start;
3594 			saved_end = entry->end;
3595 			last_timestamp = map->timestamp;
3596 			bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3597 			incr =  pagesizes[bidx];
3598 			vm_map_busy(map);
3599 			vm_map_unlock(map);
3600 
3601 			for (faddr = saved_start; faddr < saved_end;
3602 			    faddr += incr) {
3603 				/*
3604 				 * Simulate a fault to get the page and enter
3605 				 * it into the physical map.
3606 				 */
3607 				rv = vm_fault(map, faddr, VM_PROT_NONE,
3608 				    VM_FAULT_WIRE, NULL);
3609 				if (rv != KERN_SUCCESS)
3610 					break;
3611 			}
3612 			vm_map_lock(map);
3613 			vm_map_unbusy(map);
3614 			if (last_timestamp + 1 != map->timestamp) {
3615 				/*
3616 				 * Look again for the entry because the map was
3617 				 * modified while it was unlocked.  The entry
3618 				 * may have been clipped, but NOT merged or
3619 				 * deleted.
3620 				 */
3621 				if (!vm_map_lookup_entry(map, saved_start,
3622 				    &next_entry))
3623 					KASSERT(false,
3624 					    ("vm_map_wire: lookup failed"));
3625 				first_entry = (entry == first_entry) ?
3626 				    next_entry : NULL;
3627 				for (entry = next_entry; entry->end < saved_end;
3628 				    entry = vm_map_entry_succ(entry)) {
3629 					/*
3630 					 * In case of failure, handle entries
3631 					 * that were not fully wired here;
3632 					 * fully wired entries are handled
3633 					 * later.
3634 					 */
3635 					if (rv != KERN_SUCCESS &&
3636 					    faddr < entry->end)
3637 						vm_map_wire_entry_failure(map,
3638 						    entry, faddr);
3639 				}
3640 			}
3641 			if (rv != KERN_SUCCESS) {
3642 				vm_map_wire_entry_failure(map, entry, faddr);
3643 				if (user_wire)
3644 					vm_map_wire_user_count_sub(npages);
3645 				end = entry->end;
3646 				goto done;
3647 			}
3648 		} else if (!user_wire ||
3649 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3650 			entry->wired_count++;
3651 		}
3652 		/*
3653 		 * Check the map for holes in the specified region.
3654 		 * If holes_ok was specified, skip this check.
3655 		 */
3656 		next_entry = vm_map_entry_succ(entry);
3657 		if (!holes_ok &&
3658 		    entry->end < end && next_entry->start > entry->end) {
3659 			end = entry->end;
3660 			rv = KERN_INVALID_ADDRESS;
3661 			goto done;
3662 		}
3663 	}
3664 	rv = KERN_SUCCESS;
3665 done:
3666 	need_wakeup = false;
3667 	if (first_entry == NULL &&
3668 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3669 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3670 		prev_entry = first_entry;
3671 		entry = vm_map_entry_succ(first_entry);
3672 	} else {
3673 		prev_entry = vm_map_entry_pred(first_entry);
3674 		entry = first_entry;
3675 	}
3676 	for (; entry->start < end;
3677 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3678 		/*
3679 		 * If holes_ok was specified, an empty
3680 		 * space in the unwired region could have been mapped
3681 		 * while the map lock was dropped for faulting in the
3682 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3683 		 * Moreover, another thread could be simultaneously
3684 		 * wiring this new mapping entry.  Detect these cases
3685 		 * and skip any entries marked as in transition not by us.
3686 		 *
3687 		 * Another way to get an entry not marked with
3688 		 * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3689 		 * which set rv to KERN_INVALID_ARGUMENT.
3690 		 */
3691 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3692 		    entry->wiring_thread != curthread) {
3693 			KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3694 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3695 			continue;
3696 		}
3697 
3698 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3699 			/* do nothing */
3700 		} else if (rv == KERN_SUCCESS) {
3701 			if (user_wire)
3702 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3703 		} else if (entry->wired_count == -1) {
3704 			/*
3705 			 * Wiring failed on this entry.  Thus, unwiring is
3706 			 * unnecessary.
3707 			 */
3708 			entry->wired_count = 0;
3709 		} else if (!user_wire ||
3710 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3711 			/*
3712 			 * Undo the wiring.  Wiring succeeded on this entry
3713 			 * but failed on a later entry.
3714 			 */
3715 			if (entry->wired_count == 1) {
3716 				vm_map_entry_unwire(map, entry);
3717 				if (user_wire)
3718 					vm_map_wire_user_count_sub(
3719 					    atop(entry->end - entry->start));
3720 			} else
3721 				entry->wired_count--;
3722 		}
3723 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3724 		    ("vm_map_wire: in-transition flag missing %p", entry));
3725 		KASSERT(entry->wiring_thread == curthread,
3726 		    ("vm_map_wire: alien wire %p", entry));
3727 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3728 		    MAP_ENTRY_WIRE_SKIPPED);
3729 		entry->wiring_thread = NULL;
3730 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3731 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3732 			need_wakeup = true;
3733 		}
3734 		vm_map_try_merge_entries(map, prev_entry, entry);
3735 	}
3736 	vm_map_try_merge_entries(map, prev_entry, entry);
3737 	if (need_wakeup)
3738 		vm_map_wakeup(map);
3739 	return (rv);
3740 }
3741 
3742 /*
3743  * vm_map_sync
3744  *
3745  * Push any dirty cached pages in the address range to their pager.
3746  * If syncio is TRUE, dirty pages are written synchronously.
3747  * If invalidate is TRUE, any cached pages are freed as well.
3748  *
3749  * If the size of the region from start to end is zero, we are
3750  * supposed to flush all modified pages within the region containing
3751  * start.  Unfortunately, a region can be split or coalesced with
3752  * neighboring regions, making it difficult to determine what the
3753  * original region was.  Therefore, we approximate this requirement by
3754  * flushing the current region containing start.
3755  *
3756  * Returns an error if any part of the specified range is not mapped.
3757  */
3758 int
3759 vm_map_sync(
3760 	vm_map_t map,
3761 	vm_offset_t start,
3762 	vm_offset_t end,
3763 	boolean_t syncio,
3764 	boolean_t invalidate)
3765 {
3766 	vm_map_entry_t entry, first_entry, next_entry;
3767 	vm_size_t size;
3768 	vm_object_t object;
3769 	vm_ooffset_t offset;
3770 	unsigned int last_timestamp;
3771 	int bdry_idx;
3772 	boolean_t failed;
3773 
3774 	vm_map_lock_read(map);
3775 	VM_MAP_RANGE_CHECK(map, start, end);
3776 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3777 		vm_map_unlock_read(map);
3778 		return (KERN_INVALID_ADDRESS);
3779 	} else if (start == end) {
3780 		start = first_entry->start;
3781 		end = first_entry->end;
3782 	}
3783 
3784 	/*
3785 	 * Make a first pass to check for user-wired memory, holes,
3786 	 * and partial invalidation of largepage mappings.
3787 	 */
3788 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3789 		if (invalidate) {
3790 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3791 				vm_map_unlock_read(map);
3792 				return (KERN_INVALID_ARGUMENT);
3793 			}
3794 			bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3795 			if (bdry_idx != 0 &&
3796 			    ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3797 			    (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3798 				vm_map_unlock_read(map);
3799 				return (KERN_INVALID_ARGUMENT);
3800 			}
3801 		}
3802 		next_entry = vm_map_entry_succ(entry);
3803 		if (end > entry->end &&
3804 		    entry->end != next_entry->start) {
3805 			vm_map_unlock_read(map);
3806 			return (KERN_INVALID_ADDRESS);
3807 		}
3808 	}
3809 
3810 	if (invalidate)
3811 		pmap_remove(map->pmap, start, end);
3812 	failed = FALSE;
3813 
3814 	/*
3815 	 * Make a second pass, cleaning/uncaching pages from the indicated
3816 	 * objects as we go.
3817 	 */
3818 	for (entry = first_entry; entry->start < end;) {
3819 		offset = entry->offset + (start - entry->start);
3820 		size = (end <= entry->end ? end : entry->end) - start;
3821 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3822 			vm_map_t smap;
3823 			vm_map_entry_t tentry;
3824 			vm_size_t tsize;
3825 
3826 			smap = entry->object.sub_map;
3827 			vm_map_lock_read(smap);
3828 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3829 			tsize = tentry->end - offset;
3830 			if (tsize < size)
3831 				size = tsize;
3832 			object = tentry->object.vm_object;
3833 			offset = tentry->offset + (offset - tentry->start);
3834 			vm_map_unlock_read(smap);
3835 		} else {
3836 			object = entry->object.vm_object;
3837 		}
3838 		vm_object_reference(object);
3839 		last_timestamp = map->timestamp;
3840 		vm_map_unlock_read(map);
3841 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3842 			failed = TRUE;
3843 		start += size;
3844 		vm_object_deallocate(object);
3845 		vm_map_lock_read(map);
3846 		if (last_timestamp == map->timestamp ||
3847 		    !vm_map_lookup_entry(map, start, &entry))
3848 			entry = vm_map_entry_succ(entry);
3849 	}
3850 
3851 	vm_map_unlock_read(map);
3852 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3853 }
3854 
3855 /*
3856  *	vm_map_entry_unwire:	[ internal use only ]
3857  *
3858  *	Make the region specified by this entry pageable.
3859  *
3860  *	The map in question should be locked.
3861  *	[This is the reason for this routine's existence.]
3862  */
3863 static void
3864 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3865 {
3866 	vm_size_t size;
3867 
3868 	VM_MAP_ASSERT_LOCKED(map);
3869 	KASSERT(entry->wired_count > 0,
3870 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3871 
3872 	size = entry->end - entry->start;
3873 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3874 		vm_map_wire_user_count_sub(atop(size));
3875 	pmap_unwire(map->pmap, entry->start, entry->end);
3876 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3877 	    PQ_ACTIVE);
3878 	entry->wired_count = 0;
3879 }
3880 
3881 static void
3882 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3883 {
3884 
3885 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3886 		vm_object_deallocate(entry->object.vm_object);
3887 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3888 }
3889 
3890 /*
3891  *	vm_map_entry_delete:	[ internal use only ]
3892  *
3893  *	Deallocate the given entry from the target map.
3894  */
3895 static void
3896 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3897 {
3898 	vm_object_t object;
3899 	vm_pindex_t offidxstart, offidxend, size1;
3900 	vm_size_t size;
3901 
3902 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3903 	object = entry->object.vm_object;
3904 
3905 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3906 		MPASS(entry->cred == NULL);
3907 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3908 		MPASS(object == NULL);
3909 		vm_map_entry_deallocate(entry, map->system_map);
3910 		return;
3911 	}
3912 
3913 	size = entry->end - entry->start;
3914 	map->size -= size;
3915 
3916 	if (entry->cred != NULL) {
3917 		swap_release_by_cred(size, entry->cred);
3918 		crfree(entry->cred);
3919 	}
3920 
3921 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3922 		entry->object.vm_object = NULL;
3923 	} else if ((object->flags & OBJ_ANON) != 0 ||
3924 	    object == kernel_object) {
3925 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3926 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3927 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3928 		offidxstart = OFF_TO_IDX(entry->offset);
3929 		offidxend = offidxstart + atop(size);
3930 		VM_OBJECT_WLOCK(object);
3931 		if (object->ref_count != 1 &&
3932 		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3933 		    object == kernel_object)) {
3934 			vm_object_collapse(object);
3935 
3936 			/*
3937 			 * The option OBJPR_NOTMAPPED can be passed here
3938 			 * because vm_map_delete() already performed
3939 			 * pmap_remove() on the only mapping to this range
3940 			 * of pages.
3941 			 */
3942 			vm_object_page_remove(object, offidxstart, offidxend,
3943 			    OBJPR_NOTMAPPED);
3944 			if (offidxend >= object->size &&
3945 			    offidxstart < object->size) {
3946 				size1 = object->size;
3947 				object->size = offidxstart;
3948 				if (object->cred != NULL) {
3949 					size1 -= object->size;
3950 					KASSERT(object->charge >= ptoa(size1),
3951 					    ("object %p charge < 0", object));
3952 					swap_release_by_cred(ptoa(size1),
3953 					    object->cred);
3954 					object->charge -= ptoa(size1);
3955 				}
3956 			}
3957 		}
3958 		VM_OBJECT_WUNLOCK(object);
3959 	}
3960 	if (map->system_map)
3961 		vm_map_entry_deallocate(entry, TRUE);
3962 	else {
3963 		entry->defer_next = curthread->td_map_def_user;
3964 		curthread->td_map_def_user = entry;
3965 	}
3966 }
3967 
3968 /*
3969  *	vm_map_delete:	[ internal use only ]
3970  *
3971  *	Deallocates the given address range from the target
3972  *	map.
3973  */
3974 int
3975 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3976 {
3977 	vm_map_entry_t entry, next_entry, scratch_entry;
3978 	int rv;
3979 
3980 	VM_MAP_ASSERT_LOCKED(map);
3981 
3982 	if (start == end)
3983 		return (KERN_SUCCESS);
3984 
3985 	/*
3986 	 * Find the start of the region, and clip it.
3987 	 * Step through all entries in this region.
3988 	 */
3989 	rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
3990 	if (rv != KERN_SUCCESS)
3991 		return (rv);
3992 	for (; entry->start < end; entry = next_entry) {
3993 		/*
3994 		 * Wait for wiring or unwiring of an entry to complete.
3995 		 * Also wait for any system wirings to disappear on
3996 		 * user maps.
3997 		 */
3998 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3999 		    (vm_map_pmap(map) != kernel_pmap &&
4000 		    vm_map_entry_system_wired_count(entry) != 0)) {
4001 			unsigned int last_timestamp;
4002 			vm_offset_t saved_start;
4003 
4004 			saved_start = entry->start;
4005 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4006 			last_timestamp = map->timestamp;
4007 			(void) vm_map_unlock_and_wait(map, 0);
4008 			vm_map_lock(map);
4009 			if (last_timestamp + 1 != map->timestamp) {
4010 				/*
4011 				 * Look again for the entry because the map was
4012 				 * modified while it was unlocked.
4013 				 * Specifically, the entry may have been
4014 				 * clipped, merged, or deleted.
4015 				 */
4016 				rv = vm_map_lookup_clip_start(map, saved_start,
4017 				    &next_entry, &scratch_entry);
4018 				if (rv != KERN_SUCCESS)
4019 					break;
4020 			} else
4021 				next_entry = entry;
4022 			continue;
4023 		}
4024 
4025 		/* XXXKIB or delete to the upper superpage boundary ? */
4026 		rv = vm_map_clip_end(map, entry, end);
4027 		if (rv != KERN_SUCCESS)
4028 			break;
4029 		next_entry = vm_map_entry_succ(entry);
4030 
4031 		/*
4032 		 * Unwire before removing addresses from the pmap; otherwise,
4033 		 * unwiring will put the entries back in the pmap.
4034 		 */
4035 		if (entry->wired_count != 0)
4036 			vm_map_entry_unwire(map, entry);
4037 
4038 		/*
4039 		 * Remove mappings for the pages, but only if the
4040 		 * mappings could exist.  For instance, it does not
4041 		 * make sense to call pmap_remove() for guard entries.
4042 		 */
4043 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
4044 		    entry->object.vm_object != NULL)
4045 			pmap_map_delete(map->pmap, entry->start, entry->end);
4046 
4047 		if (entry->end == map->anon_loc)
4048 			map->anon_loc = entry->start;
4049 
4050 		/*
4051 		 * Delete the entry only after removing all pmap
4052 		 * entries pointing to its pages.  (Otherwise, its
4053 		 * page frames may be reallocated, and any modify bits
4054 		 * will be set in the wrong object!)
4055 		 */
4056 		vm_map_entry_delete(map, entry);
4057 	}
4058 	return (rv);
4059 }
4060 
4061 /*
4062  *	vm_map_remove:
4063  *
4064  *	Remove the given address range from the target map.
4065  *	This is the exported form of vm_map_delete.
4066  */
4067 int
4068 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
4069 {
4070 	int result;
4071 
4072 	vm_map_lock(map);
4073 	VM_MAP_RANGE_CHECK(map, start, end);
4074 	result = vm_map_delete(map, start, end);
4075 	vm_map_unlock(map);
4076 	return (result);
4077 }
4078 
4079 /*
4080  *	vm_map_check_protection:
4081  *
4082  *	Assert that the target map allows the specified privilege on the
4083  *	entire address region given.  The entire region must be allocated.
4084  *
4085  *	WARNING!  This code does not and should not check whether the
4086  *	contents of the region is accessible.  For example a smaller file
4087  *	might be mapped into a larger address space.
4088  *
4089  *	NOTE!  This code is also called by munmap().
4090  *
4091  *	The map must be locked.  A read lock is sufficient.
4092  */
4093 boolean_t
4094 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4095 			vm_prot_t protection)
4096 {
4097 	vm_map_entry_t entry;
4098 	vm_map_entry_t tmp_entry;
4099 
4100 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
4101 		return (FALSE);
4102 	entry = tmp_entry;
4103 
4104 	while (start < end) {
4105 		/*
4106 		 * No holes allowed!
4107 		 */
4108 		if (start < entry->start)
4109 			return (FALSE);
4110 		/*
4111 		 * Check protection associated with entry.
4112 		 */
4113 		if ((entry->protection & protection) != protection)
4114 			return (FALSE);
4115 		/* go to next entry */
4116 		start = entry->end;
4117 		entry = vm_map_entry_succ(entry);
4118 	}
4119 	return (TRUE);
4120 }
4121 
4122 /*
4123  *
4124  *	vm_map_copy_swap_object:
4125  *
4126  *	Copies a swap-backed object from an existing map entry to a
4127  *	new one.  Carries forward the swap charge.  May change the
4128  *	src object on return.
4129  */
4130 static void
4131 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4132     vm_offset_t size, vm_ooffset_t *fork_charge)
4133 {
4134 	vm_object_t src_object;
4135 	struct ucred *cred;
4136 	int charged;
4137 
4138 	src_object = src_entry->object.vm_object;
4139 	charged = ENTRY_CHARGED(src_entry);
4140 	if ((src_object->flags & OBJ_ANON) != 0) {
4141 		VM_OBJECT_WLOCK(src_object);
4142 		vm_object_collapse(src_object);
4143 		if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4144 			vm_object_split(src_entry);
4145 			src_object = src_entry->object.vm_object;
4146 		}
4147 		vm_object_reference_locked(src_object);
4148 		vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4149 		VM_OBJECT_WUNLOCK(src_object);
4150 	} else
4151 		vm_object_reference(src_object);
4152 	if (src_entry->cred != NULL &&
4153 	    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4154 		KASSERT(src_object->cred == NULL,
4155 		    ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4156 		     src_object));
4157 		src_object->cred = src_entry->cred;
4158 		src_object->charge = size;
4159 	}
4160 	dst_entry->object.vm_object = src_object;
4161 	if (charged) {
4162 		cred = curthread->td_ucred;
4163 		crhold(cred);
4164 		dst_entry->cred = cred;
4165 		*fork_charge += size;
4166 		if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4167 			crhold(cred);
4168 			src_entry->cred = cred;
4169 			*fork_charge += size;
4170 		}
4171 	}
4172 }
4173 
4174 /*
4175  *	vm_map_copy_entry:
4176  *
4177  *	Copies the contents of the source entry to the destination
4178  *	entry.  The entries *must* be aligned properly.
4179  */
4180 static void
4181 vm_map_copy_entry(
4182 	vm_map_t src_map,
4183 	vm_map_t dst_map,
4184 	vm_map_entry_t src_entry,
4185 	vm_map_entry_t dst_entry,
4186 	vm_ooffset_t *fork_charge)
4187 {
4188 	vm_object_t src_object;
4189 	vm_map_entry_t fake_entry;
4190 	vm_offset_t size;
4191 
4192 	VM_MAP_ASSERT_LOCKED(dst_map);
4193 
4194 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4195 		return;
4196 
4197 	if (src_entry->wired_count == 0 ||
4198 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
4199 		/*
4200 		 * If the source entry is marked needs_copy, it is already
4201 		 * write-protected.
4202 		 */
4203 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4204 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
4205 			pmap_protect(src_map->pmap,
4206 			    src_entry->start,
4207 			    src_entry->end,
4208 			    src_entry->protection & ~VM_PROT_WRITE);
4209 		}
4210 
4211 		/*
4212 		 * Make a copy of the object.
4213 		 */
4214 		size = src_entry->end - src_entry->start;
4215 		if ((src_object = src_entry->object.vm_object) != NULL) {
4216 			if ((src_object->flags & OBJ_SWAP) != 0) {
4217 				vm_map_copy_swap_object(src_entry, dst_entry,
4218 				    size, fork_charge);
4219 				/* May have split/collapsed, reload obj. */
4220 				src_object = src_entry->object.vm_object;
4221 			} else {
4222 				vm_object_reference(src_object);
4223 				dst_entry->object.vm_object = src_object;
4224 			}
4225 			src_entry->eflags |= MAP_ENTRY_COW |
4226 			    MAP_ENTRY_NEEDS_COPY;
4227 			dst_entry->eflags |= MAP_ENTRY_COW |
4228 			    MAP_ENTRY_NEEDS_COPY;
4229 			dst_entry->offset = src_entry->offset;
4230 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4231 				/*
4232 				 * MAP_ENTRY_WRITECNT cannot
4233 				 * indicate write reference from
4234 				 * src_entry, since the entry is
4235 				 * marked as needs copy.  Allocate a
4236 				 * fake entry that is used to
4237 				 * decrement object->un_pager writecount
4238 				 * at the appropriate time.  Attach
4239 				 * fake_entry to the deferred list.
4240 				 */
4241 				fake_entry = vm_map_entry_create(dst_map);
4242 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
4243 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4244 				vm_object_reference(src_object);
4245 				fake_entry->object.vm_object = src_object;
4246 				fake_entry->start = src_entry->start;
4247 				fake_entry->end = src_entry->end;
4248 				fake_entry->defer_next =
4249 				    curthread->td_map_def_user;
4250 				curthread->td_map_def_user = fake_entry;
4251 			}
4252 
4253 			pmap_copy(dst_map->pmap, src_map->pmap,
4254 			    dst_entry->start, dst_entry->end - dst_entry->start,
4255 			    src_entry->start);
4256 		} else {
4257 			dst_entry->object.vm_object = NULL;
4258 			if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0)
4259 				dst_entry->offset = 0;
4260 			if (src_entry->cred != NULL) {
4261 				dst_entry->cred = curthread->td_ucred;
4262 				crhold(dst_entry->cred);
4263 				*fork_charge += size;
4264 			}
4265 		}
4266 	} else {
4267 		/*
4268 		 * We don't want to make writeable wired pages copy-on-write.
4269 		 * Immediately copy these pages into the new map by simulating
4270 		 * page faults.  The new pages are pageable.
4271 		 */
4272 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4273 		    fork_charge);
4274 	}
4275 }
4276 
4277 /*
4278  * vmspace_map_entry_forked:
4279  * Update the newly-forked vmspace each time a map entry is inherited
4280  * or copied.  The values for vm_dsize and vm_tsize are approximate
4281  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4282  */
4283 static void
4284 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4285     vm_map_entry_t entry)
4286 {
4287 	vm_size_t entrysize;
4288 	vm_offset_t newend;
4289 
4290 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4291 		return;
4292 	entrysize = entry->end - entry->start;
4293 	vm2->vm_map.size += entrysize;
4294 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4295 		vm2->vm_ssize += btoc(entrysize);
4296 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4297 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4298 		newend = MIN(entry->end,
4299 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4300 		vm2->vm_dsize += btoc(newend - entry->start);
4301 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4302 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4303 		newend = MIN(entry->end,
4304 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4305 		vm2->vm_tsize += btoc(newend - entry->start);
4306 	}
4307 }
4308 
4309 /*
4310  * vmspace_fork:
4311  * Create a new process vmspace structure and vm_map
4312  * based on those of an existing process.  The new map
4313  * is based on the old map, according to the inheritance
4314  * values on the regions in that map.
4315  *
4316  * XXX It might be worth coalescing the entries added to the new vmspace.
4317  *
4318  * The source map must not be locked.
4319  */
4320 struct vmspace *
4321 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4322 {
4323 	struct vmspace *vm2;
4324 	vm_map_t new_map, old_map;
4325 	vm_map_entry_t new_entry, old_entry;
4326 	vm_object_t object;
4327 	int error, locked __diagused;
4328 	vm_inherit_t inh;
4329 
4330 	old_map = &vm1->vm_map;
4331 	/* Copy immutable fields of vm1 to vm2. */
4332 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4333 	    pmap_pinit);
4334 	if (vm2 == NULL)
4335 		return (NULL);
4336 
4337 	vm2->vm_taddr = vm1->vm_taddr;
4338 	vm2->vm_daddr = vm1->vm_daddr;
4339 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4340 	vm2->vm_stacktop = vm1->vm_stacktop;
4341 	vm2->vm_shp_base = vm1->vm_shp_base;
4342 	vm_map_lock(old_map);
4343 	if (old_map->busy)
4344 		vm_map_wait_busy(old_map);
4345 	new_map = &vm2->vm_map;
4346 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4347 	KASSERT(locked, ("vmspace_fork: lock failed"));
4348 
4349 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4350 	if (error != 0) {
4351 		sx_xunlock(&old_map->lock);
4352 		sx_xunlock(&new_map->lock);
4353 		vm_map_process_deferred();
4354 		vmspace_free(vm2);
4355 		return (NULL);
4356 	}
4357 
4358 	new_map->anon_loc = old_map->anon_loc;
4359 	new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4360 	    MAP_ASLR_STACK | MAP_WXORX);
4361 
4362 	VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4363 		if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4364 			panic("vm_map_fork: encountered a submap");
4365 
4366 		inh = old_entry->inheritance;
4367 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4368 		    inh != VM_INHERIT_NONE)
4369 			inh = VM_INHERIT_COPY;
4370 
4371 		switch (inh) {
4372 		case VM_INHERIT_NONE:
4373 			break;
4374 
4375 		case VM_INHERIT_SHARE:
4376 			/*
4377 			 * Clone the entry, creating the shared object if
4378 			 * necessary.
4379 			 */
4380 			object = old_entry->object.vm_object;
4381 			if (object == NULL) {
4382 				vm_map_entry_back(old_entry);
4383 				object = old_entry->object.vm_object;
4384 			}
4385 
4386 			/*
4387 			 * Add the reference before calling vm_object_shadow
4388 			 * to insure that a shadow object is created.
4389 			 */
4390 			vm_object_reference(object);
4391 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4392 				vm_object_shadow(&old_entry->object.vm_object,
4393 				    &old_entry->offset,
4394 				    old_entry->end - old_entry->start,
4395 				    old_entry->cred,
4396 				    /* Transfer the second reference too. */
4397 				    true);
4398 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4399 				old_entry->cred = NULL;
4400 
4401 				/*
4402 				 * As in vm_map_merged_neighbor_dispose(),
4403 				 * the vnode lock will not be acquired in
4404 				 * this call to vm_object_deallocate().
4405 				 */
4406 				vm_object_deallocate(object);
4407 				object = old_entry->object.vm_object;
4408 			} else {
4409 				VM_OBJECT_WLOCK(object);
4410 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
4411 				if (old_entry->cred != NULL) {
4412 					KASSERT(object->cred == NULL,
4413 					    ("vmspace_fork both cred"));
4414 					object->cred = old_entry->cred;
4415 					object->charge = old_entry->end -
4416 					    old_entry->start;
4417 					old_entry->cred = NULL;
4418 				}
4419 
4420 				/*
4421 				 * Assert the correct state of the vnode
4422 				 * v_writecount while the object is locked, to
4423 				 * not relock it later for the assertion
4424 				 * correctness.
4425 				 */
4426 				if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4427 				    object->type == OBJT_VNODE) {
4428 					KASSERT(((struct vnode *)object->
4429 					    handle)->v_writecount > 0,
4430 					    ("vmspace_fork: v_writecount %p",
4431 					    object));
4432 					KASSERT(object->un_pager.vnp.
4433 					    writemappings > 0,
4434 					    ("vmspace_fork: vnp.writecount %p",
4435 					    object));
4436 				}
4437 				VM_OBJECT_WUNLOCK(object);
4438 			}
4439 
4440 			/*
4441 			 * Clone the entry, referencing the shared object.
4442 			 */
4443 			new_entry = vm_map_entry_create(new_map);
4444 			*new_entry = *old_entry;
4445 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4446 			    MAP_ENTRY_IN_TRANSITION);
4447 			new_entry->wiring_thread = NULL;
4448 			new_entry->wired_count = 0;
4449 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4450 				vm_pager_update_writecount(object,
4451 				    new_entry->start, new_entry->end);
4452 			}
4453 			vm_map_entry_set_vnode_text(new_entry, true);
4454 
4455 			/*
4456 			 * Insert the entry into the new map -- we know we're
4457 			 * inserting at the end of the new map.
4458 			 */
4459 			vm_map_entry_link(new_map, new_entry);
4460 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4461 
4462 			/*
4463 			 * Update the physical map
4464 			 */
4465 			pmap_copy(new_map->pmap, old_map->pmap,
4466 			    new_entry->start,
4467 			    (old_entry->end - old_entry->start),
4468 			    old_entry->start);
4469 			break;
4470 
4471 		case VM_INHERIT_COPY:
4472 			/*
4473 			 * Clone the entry and link into the map.
4474 			 */
4475 			new_entry = vm_map_entry_create(new_map);
4476 			*new_entry = *old_entry;
4477 			/*
4478 			 * Copied entry is COW over the old object.
4479 			 */
4480 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4481 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4482 			new_entry->wiring_thread = NULL;
4483 			new_entry->wired_count = 0;
4484 			new_entry->object.vm_object = NULL;
4485 			new_entry->cred = NULL;
4486 			vm_map_entry_link(new_map, new_entry);
4487 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4488 			vm_map_copy_entry(old_map, new_map, old_entry,
4489 			    new_entry, fork_charge);
4490 			vm_map_entry_set_vnode_text(new_entry, true);
4491 			break;
4492 
4493 		case VM_INHERIT_ZERO:
4494 			/*
4495 			 * Create a new anonymous mapping entry modelled from
4496 			 * the old one.
4497 			 */
4498 			new_entry = vm_map_entry_create(new_map);
4499 			memset(new_entry, 0, sizeof(*new_entry));
4500 
4501 			new_entry->start = old_entry->start;
4502 			new_entry->end = old_entry->end;
4503 			new_entry->eflags = old_entry->eflags &
4504 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4505 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4506 			    MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4507 			new_entry->protection = old_entry->protection;
4508 			new_entry->max_protection = old_entry->max_protection;
4509 			new_entry->inheritance = VM_INHERIT_ZERO;
4510 
4511 			vm_map_entry_link(new_map, new_entry);
4512 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4513 
4514 			new_entry->cred = curthread->td_ucred;
4515 			crhold(new_entry->cred);
4516 			*fork_charge += (new_entry->end - new_entry->start);
4517 
4518 			break;
4519 		}
4520 	}
4521 	/*
4522 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4523 	 * map entries, which cannot be done until both old_map and
4524 	 * new_map locks are released.
4525 	 */
4526 	sx_xunlock(&old_map->lock);
4527 	sx_xunlock(&new_map->lock);
4528 	vm_map_process_deferred();
4529 
4530 	return (vm2);
4531 }
4532 
4533 /*
4534  * Create a process's stack for exec_new_vmspace().  This function is never
4535  * asked to wire the newly created stack.
4536  */
4537 int
4538 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4539     vm_prot_t prot, vm_prot_t max, int cow)
4540 {
4541 	vm_size_t growsize, init_ssize;
4542 	rlim_t vmemlim;
4543 	int rv;
4544 
4545 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4546 	growsize = sgrowsiz;
4547 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4548 	vm_map_lock(map);
4549 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4550 	/* If we would blow our VMEM resource limit, no go */
4551 	if (map->size + init_ssize > vmemlim) {
4552 		rv = KERN_NO_SPACE;
4553 		goto out;
4554 	}
4555 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4556 	    max, cow);
4557 out:
4558 	vm_map_unlock(map);
4559 	return (rv);
4560 }
4561 
4562 static int stack_guard_page = 1;
4563 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4564     &stack_guard_page, 0,
4565     "Specifies the number of guard pages for a stack that grows");
4566 
4567 static int
4568 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4569     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4570 {
4571 	vm_map_entry_t gap_entry, new_entry, prev_entry;
4572 	vm_offset_t bot, gap_bot, gap_top, top;
4573 	vm_size_t init_ssize, sgp;
4574 	int orient, rv;
4575 
4576 	/*
4577 	 * The stack orientation is piggybacked with the cow argument.
4578 	 * Extract it into orient and mask the cow argument so that we
4579 	 * don't pass it around further.
4580 	 */
4581 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4582 	KASSERT(orient != 0, ("No stack grow direction"));
4583 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4584 	    ("bi-dir stack"));
4585 
4586 	if (max_ssize == 0 ||
4587 	    !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4588 		return (KERN_INVALID_ADDRESS);
4589 	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4590 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4591 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4592 	if (sgp >= max_ssize)
4593 		return (KERN_INVALID_ARGUMENT);
4594 
4595 	init_ssize = growsize;
4596 	if (max_ssize < init_ssize + sgp)
4597 		init_ssize = max_ssize - sgp;
4598 
4599 	/* If addr is already mapped, no go */
4600 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4601 		return (KERN_NO_SPACE);
4602 
4603 	/*
4604 	 * If we can't accommodate max_ssize in the current mapping, no go.
4605 	 */
4606 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4607 		return (KERN_NO_SPACE);
4608 
4609 	/*
4610 	 * We initially map a stack of only init_ssize.  We will grow as
4611 	 * needed later.  Depending on the orientation of the stack (i.e.
4612 	 * the grow direction) we either map at the top of the range, the
4613 	 * bottom of the range or in the middle.
4614 	 *
4615 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4616 	 * and cow to be 0.  Possibly we should eliminate these as input
4617 	 * parameters, and just pass these values here in the insert call.
4618 	 */
4619 	if (orient == MAP_STACK_GROWS_DOWN) {
4620 		bot = addrbos + max_ssize - init_ssize;
4621 		top = bot + init_ssize;
4622 		gap_bot = addrbos;
4623 		gap_top = bot;
4624 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4625 		bot = addrbos;
4626 		top = bot + init_ssize;
4627 		gap_bot = top;
4628 		gap_top = addrbos + max_ssize;
4629 	}
4630 	rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow,
4631 	    &new_entry);
4632 	if (rv != KERN_SUCCESS)
4633 		return (rv);
4634 	KASSERT(new_entry->end == top || new_entry->start == bot,
4635 	    ("Bad entry start/end for new stack entry"));
4636 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4637 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4638 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4639 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4640 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4641 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4642 	if (gap_bot == gap_top)
4643 		return (KERN_SUCCESS);
4644 	rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4645 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4646 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP), &gap_entry);
4647 	if (rv == KERN_SUCCESS) {
4648 		KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0,
4649 		    ("entry %p not gap %#x", gap_entry, gap_entry->eflags));
4650 		KASSERT((gap_entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4651 		    MAP_ENTRY_STACK_GAP_UP)) != 0,
4652 		    ("entry %p not stack gap %#x", gap_entry,
4653 		    gap_entry->eflags));
4654 
4655 		/*
4656 		 * Gap can never successfully handle a fault, so
4657 		 * read-ahead logic is never used for it.  Re-use
4658 		 * next_read of the gap entry to store
4659 		 * stack_guard_page for vm_map_growstack().
4660 		 * Similarly, since a gap cannot have a backing object,
4661 		 * store the original stack protections in the
4662 		 * object offset.
4663 		 */
4664 		gap_entry->next_read = sgp;
4665 		gap_entry->offset = prot | PROT_MAX(max);
4666 	} else {
4667 		(void)vm_map_delete(map, bot, top);
4668 	}
4669 	return (rv);
4670 }
4671 
4672 /*
4673  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4674  * successfully grow the stack.
4675  */
4676 static int
4677 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4678 {
4679 	vm_map_entry_t stack_entry;
4680 	struct proc *p;
4681 	struct vmspace *vm;
4682 	struct ucred *cred;
4683 	vm_offset_t gap_end, gap_start, grow_start;
4684 	vm_size_t grow_amount, guard, max_grow, sgp;
4685 	vm_prot_t prot, max;
4686 	rlim_t lmemlim, stacklim, vmemlim;
4687 	int rv, rv1 __diagused;
4688 	bool gap_deleted, grow_down, is_procstack;
4689 #ifdef notyet
4690 	uint64_t limit;
4691 #endif
4692 #ifdef RACCT
4693 	int error __diagused;
4694 #endif
4695 
4696 	p = curproc;
4697 	vm = p->p_vmspace;
4698 
4699 	/*
4700 	 * Disallow stack growth when the access is performed by a
4701 	 * debugger or AIO daemon.  The reason is that the wrong
4702 	 * resource limits are applied.
4703 	 */
4704 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4705 	    p->p_textvp == NULL))
4706 		return (KERN_FAILURE);
4707 
4708 	MPASS(!map->system_map);
4709 
4710 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4711 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4712 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4713 retry:
4714 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4715 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4716 		return (KERN_FAILURE);
4717 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4718 		return (KERN_SUCCESS);
4719 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4720 		stack_entry = vm_map_entry_succ(gap_entry);
4721 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4722 		    stack_entry->start != gap_entry->end)
4723 			return (KERN_FAILURE);
4724 		grow_amount = round_page(stack_entry->start - addr);
4725 		grow_down = true;
4726 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4727 		stack_entry = vm_map_entry_pred(gap_entry);
4728 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4729 		    stack_entry->end != gap_entry->start)
4730 			return (KERN_FAILURE);
4731 		grow_amount = round_page(addr + 1 - stack_entry->end);
4732 		grow_down = false;
4733 	} else {
4734 		return (KERN_FAILURE);
4735 	}
4736 	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4737 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4738 	    gap_entry->next_read;
4739 	max_grow = gap_entry->end - gap_entry->start;
4740 	if (guard > max_grow)
4741 		return (KERN_NO_SPACE);
4742 	max_grow -= guard;
4743 	if (grow_amount > max_grow)
4744 		return (KERN_NO_SPACE);
4745 
4746 	/*
4747 	 * If this is the main process stack, see if we're over the stack
4748 	 * limit.
4749 	 */
4750 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4751 	    addr < (vm_offset_t)vm->vm_stacktop;
4752 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4753 		return (KERN_NO_SPACE);
4754 
4755 #ifdef RACCT
4756 	if (racct_enable) {
4757 		PROC_LOCK(p);
4758 		if (is_procstack && racct_set(p, RACCT_STACK,
4759 		    ctob(vm->vm_ssize) + grow_amount)) {
4760 			PROC_UNLOCK(p);
4761 			return (KERN_NO_SPACE);
4762 		}
4763 		PROC_UNLOCK(p);
4764 	}
4765 #endif
4766 
4767 	grow_amount = roundup(grow_amount, sgrowsiz);
4768 	if (grow_amount > max_grow)
4769 		grow_amount = max_grow;
4770 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4771 		grow_amount = trunc_page((vm_size_t)stacklim) -
4772 		    ctob(vm->vm_ssize);
4773 	}
4774 
4775 #ifdef notyet
4776 	PROC_LOCK(p);
4777 	limit = racct_get_available(p, RACCT_STACK);
4778 	PROC_UNLOCK(p);
4779 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4780 		grow_amount = limit - ctob(vm->vm_ssize);
4781 #endif
4782 
4783 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4784 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4785 			rv = KERN_NO_SPACE;
4786 			goto out;
4787 		}
4788 #ifdef RACCT
4789 		if (racct_enable) {
4790 			PROC_LOCK(p);
4791 			if (racct_set(p, RACCT_MEMLOCK,
4792 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4793 				PROC_UNLOCK(p);
4794 				rv = KERN_NO_SPACE;
4795 				goto out;
4796 			}
4797 			PROC_UNLOCK(p);
4798 		}
4799 #endif
4800 	}
4801 
4802 	/* If we would blow our VMEM resource limit, no go */
4803 	if (map->size + grow_amount > vmemlim) {
4804 		rv = KERN_NO_SPACE;
4805 		goto out;
4806 	}
4807 #ifdef RACCT
4808 	if (racct_enable) {
4809 		PROC_LOCK(p);
4810 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4811 			PROC_UNLOCK(p);
4812 			rv = KERN_NO_SPACE;
4813 			goto out;
4814 		}
4815 		PROC_UNLOCK(p);
4816 	}
4817 #endif
4818 
4819 	if (vm_map_lock_upgrade(map)) {
4820 		gap_entry = NULL;
4821 		vm_map_lock_read(map);
4822 		goto retry;
4823 	}
4824 
4825 	if (grow_down) {
4826 		/*
4827 		 * The gap_entry "offset" field is overloaded.  See
4828 		 * vm_map_stack_locked().
4829 		 */
4830 		prot = PROT_EXTRACT(gap_entry->offset);
4831 		max = PROT_MAX_EXTRACT(gap_entry->offset);
4832 		sgp = gap_entry->next_read;
4833 
4834 		grow_start = gap_entry->end - grow_amount;
4835 		if (gap_entry->start + grow_amount == gap_entry->end) {
4836 			gap_start = gap_entry->start;
4837 			gap_end = gap_entry->end;
4838 			vm_map_entry_delete(map, gap_entry);
4839 			gap_deleted = true;
4840 		} else {
4841 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4842 			vm_map_entry_resize(map, gap_entry, -grow_amount);
4843 			gap_deleted = false;
4844 		}
4845 		rv = vm_map_insert(map, NULL, 0, grow_start,
4846 		    grow_start + grow_amount, prot, max, MAP_STACK_GROWS_DOWN);
4847 		if (rv != KERN_SUCCESS) {
4848 			if (gap_deleted) {
4849 				rv1 = vm_map_insert1(map, NULL, 0, gap_start,
4850 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4851 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN,
4852 				    &gap_entry);
4853 				MPASS(rv1 == KERN_SUCCESS);
4854 				gap_entry->next_read = sgp;
4855 				gap_entry->offset = prot | PROT_MAX(max);
4856 			} else
4857 				vm_map_entry_resize(map, gap_entry,
4858 				    grow_amount);
4859 		}
4860 	} else {
4861 		grow_start = stack_entry->end;
4862 		cred = stack_entry->cred;
4863 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4864 			cred = stack_entry->object.vm_object->cred;
4865 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4866 			rv = KERN_NO_SPACE;
4867 		/* Grow the underlying object if applicable. */
4868 		else if (stack_entry->object.vm_object == NULL ||
4869 		    vm_object_coalesce(stack_entry->object.vm_object,
4870 		    stack_entry->offset,
4871 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4872 		    grow_amount, cred != NULL)) {
4873 			if (gap_entry->start + grow_amount == gap_entry->end) {
4874 				vm_map_entry_delete(map, gap_entry);
4875 				vm_map_entry_resize(map, stack_entry,
4876 				    grow_amount);
4877 			} else {
4878 				gap_entry->start += grow_amount;
4879 				stack_entry->end += grow_amount;
4880 			}
4881 			map->size += grow_amount;
4882 			rv = KERN_SUCCESS;
4883 		} else
4884 			rv = KERN_FAILURE;
4885 	}
4886 	if (rv == KERN_SUCCESS && is_procstack)
4887 		vm->vm_ssize += btoc(grow_amount);
4888 
4889 	/*
4890 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4891 	 */
4892 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4893 		rv = vm_map_wire_locked(map, grow_start,
4894 		    grow_start + grow_amount,
4895 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4896 	}
4897 	vm_map_lock_downgrade(map);
4898 
4899 out:
4900 #ifdef RACCT
4901 	if (racct_enable && rv != KERN_SUCCESS) {
4902 		PROC_LOCK(p);
4903 		error = racct_set(p, RACCT_VMEM, map->size);
4904 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4905 		if (!old_mlock) {
4906 			error = racct_set(p, RACCT_MEMLOCK,
4907 			    ptoa(pmap_wired_count(map->pmap)));
4908 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4909 		}
4910 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4911 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4912 		PROC_UNLOCK(p);
4913 	}
4914 #endif
4915 
4916 	return (rv);
4917 }
4918 
4919 /*
4920  * Unshare the specified VM space for exec.  If other processes are
4921  * mapped to it, then create a new one.  The new vmspace is null.
4922  */
4923 int
4924 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4925 {
4926 	struct vmspace *oldvmspace = p->p_vmspace;
4927 	struct vmspace *newvmspace;
4928 
4929 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4930 	    ("vmspace_exec recursed"));
4931 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4932 	if (newvmspace == NULL)
4933 		return (ENOMEM);
4934 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4935 	/*
4936 	 * This code is written like this for prototype purposes.  The
4937 	 * goal is to avoid running down the vmspace here, but let the
4938 	 * other process's that are still using the vmspace to finally
4939 	 * run it down.  Even though there is little or no chance of blocking
4940 	 * here, it is a good idea to keep this form for future mods.
4941 	 */
4942 	PROC_VMSPACE_LOCK(p);
4943 	p->p_vmspace = newvmspace;
4944 	PROC_VMSPACE_UNLOCK(p);
4945 	if (p == curthread->td_proc)
4946 		pmap_activate(curthread);
4947 	curthread->td_pflags |= TDP_EXECVMSPC;
4948 	return (0);
4949 }
4950 
4951 /*
4952  * Unshare the specified VM space for forcing COW.  This
4953  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4954  */
4955 int
4956 vmspace_unshare(struct proc *p)
4957 {
4958 	struct vmspace *oldvmspace = p->p_vmspace;
4959 	struct vmspace *newvmspace;
4960 	vm_ooffset_t fork_charge;
4961 
4962 	/*
4963 	 * The caller is responsible for ensuring that the reference count
4964 	 * cannot concurrently transition 1 -> 2.
4965 	 */
4966 	if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4967 		return (0);
4968 	fork_charge = 0;
4969 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4970 	if (newvmspace == NULL)
4971 		return (ENOMEM);
4972 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4973 		vmspace_free(newvmspace);
4974 		return (ENOMEM);
4975 	}
4976 	PROC_VMSPACE_LOCK(p);
4977 	p->p_vmspace = newvmspace;
4978 	PROC_VMSPACE_UNLOCK(p);
4979 	if (p == curthread->td_proc)
4980 		pmap_activate(curthread);
4981 	vmspace_free(oldvmspace);
4982 	return (0);
4983 }
4984 
4985 /*
4986  *	vm_map_lookup:
4987  *
4988  *	Finds the VM object, offset, and
4989  *	protection for a given virtual address in the
4990  *	specified map, assuming a page fault of the
4991  *	type specified.
4992  *
4993  *	Leaves the map in question locked for read; return
4994  *	values are guaranteed until a vm_map_lookup_done
4995  *	call is performed.  Note that the map argument
4996  *	is in/out; the returned map must be used in
4997  *	the call to vm_map_lookup_done.
4998  *
4999  *	A handle (out_entry) is returned for use in
5000  *	vm_map_lookup_done, to make that fast.
5001  *
5002  *	If a lookup is requested with "write protection"
5003  *	specified, the map may be changed to perform virtual
5004  *	copying operations, although the data referenced will
5005  *	remain the same.
5006  */
5007 int
5008 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
5009 	      vm_offset_t vaddr,
5010 	      vm_prot_t fault_typea,
5011 	      vm_map_entry_t *out_entry,	/* OUT */
5012 	      vm_object_t *object,		/* OUT */
5013 	      vm_pindex_t *pindex,		/* OUT */
5014 	      vm_prot_t *out_prot,		/* OUT */
5015 	      boolean_t *wired)			/* OUT */
5016 {
5017 	vm_map_entry_t entry;
5018 	vm_map_t map = *var_map;
5019 	vm_prot_t prot;
5020 	vm_prot_t fault_type;
5021 	vm_object_t eobject;
5022 	vm_size_t size;
5023 	struct ucred *cred;
5024 
5025 RetryLookup:
5026 
5027 	vm_map_lock_read(map);
5028 
5029 RetryLookupLocked:
5030 	/*
5031 	 * Lookup the faulting address.
5032 	 */
5033 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
5034 		vm_map_unlock_read(map);
5035 		return (KERN_INVALID_ADDRESS);
5036 	}
5037 
5038 	entry = *out_entry;
5039 
5040 	/*
5041 	 * Handle submaps.
5042 	 */
5043 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5044 		vm_map_t old_map = map;
5045 
5046 		*var_map = map = entry->object.sub_map;
5047 		vm_map_unlock_read(old_map);
5048 		goto RetryLookup;
5049 	}
5050 
5051 	/*
5052 	 * Check whether this task is allowed to have this page.
5053 	 */
5054 	prot = entry->protection;
5055 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
5056 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
5057 		if (prot == VM_PROT_NONE && map != kernel_map &&
5058 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
5059 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
5060 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
5061 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
5062 			goto RetryLookupLocked;
5063 	}
5064 	fault_type = fault_typea & VM_PROT_ALL;
5065 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
5066 		vm_map_unlock_read(map);
5067 		return (KERN_PROTECTION_FAILURE);
5068 	}
5069 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
5070 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
5071 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
5072 	    ("entry %p flags %x", entry, entry->eflags));
5073 	if ((fault_typea & VM_PROT_COPY) != 0 &&
5074 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
5075 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
5076 		vm_map_unlock_read(map);
5077 		return (KERN_PROTECTION_FAILURE);
5078 	}
5079 
5080 	/*
5081 	 * If this page is not pageable, we have to get it for all possible
5082 	 * accesses.
5083 	 */
5084 	*wired = (entry->wired_count != 0);
5085 	if (*wired)
5086 		fault_type = entry->protection;
5087 	size = entry->end - entry->start;
5088 
5089 	/*
5090 	 * If the entry was copy-on-write, we either ...
5091 	 */
5092 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5093 		/*
5094 		 * If we want to write the page, we may as well handle that
5095 		 * now since we've got the map locked.
5096 		 *
5097 		 * If we don't need to write the page, we just demote the
5098 		 * permissions allowed.
5099 		 */
5100 		if ((fault_type & VM_PROT_WRITE) != 0 ||
5101 		    (fault_typea & VM_PROT_COPY) != 0) {
5102 			/*
5103 			 * Make a new object, and place it in the object
5104 			 * chain.  Note that no new references have appeared
5105 			 * -- one just moved from the map to the new
5106 			 * object.
5107 			 */
5108 			if (vm_map_lock_upgrade(map))
5109 				goto RetryLookup;
5110 
5111 			if (entry->cred == NULL) {
5112 				/*
5113 				 * The debugger owner is charged for
5114 				 * the memory.
5115 				 */
5116 				cred = curthread->td_ucred;
5117 				crhold(cred);
5118 				if (!swap_reserve_by_cred(size, cred)) {
5119 					crfree(cred);
5120 					vm_map_unlock(map);
5121 					return (KERN_RESOURCE_SHORTAGE);
5122 				}
5123 				entry->cred = cred;
5124 			}
5125 			eobject = entry->object.vm_object;
5126 			vm_object_shadow(&entry->object.vm_object,
5127 			    &entry->offset, size, entry->cred, false);
5128 			if (eobject == entry->object.vm_object) {
5129 				/*
5130 				 * The object was not shadowed.
5131 				 */
5132 				swap_release_by_cred(size, entry->cred);
5133 				crfree(entry->cred);
5134 			}
5135 			entry->cred = NULL;
5136 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5137 
5138 			vm_map_lock_downgrade(map);
5139 		} else {
5140 			/*
5141 			 * We're attempting to read a copy-on-write page --
5142 			 * don't allow writes.
5143 			 */
5144 			prot &= ~VM_PROT_WRITE;
5145 		}
5146 	}
5147 
5148 	/*
5149 	 * Create an object if necessary.
5150 	 */
5151 	if (entry->object.vm_object == NULL && !map->system_map) {
5152 		if (vm_map_lock_upgrade(map))
5153 			goto RetryLookup;
5154 		entry->object.vm_object = vm_object_allocate_anon(atop(size),
5155 		    NULL, entry->cred, size);
5156 		entry->offset = 0;
5157 		entry->cred = NULL;
5158 		vm_map_lock_downgrade(map);
5159 	}
5160 
5161 	/*
5162 	 * Return the object/offset from this entry.  If the entry was
5163 	 * copy-on-write or empty, it has been fixed up.
5164 	 */
5165 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5166 	*object = entry->object.vm_object;
5167 
5168 	*out_prot = prot;
5169 	return (KERN_SUCCESS);
5170 }
5171 
5172 /*
5173  *	vm_map_lookup_locked:
5174  *
5175  *	Lookup the faulting address.  A version of vm_map_lookup that returns
5176  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
5177  */
5178 int
5179 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
5180 		     vm_offset_t vaddr,
5181 		     vm_prot_t fault_typea,
5182 		     vm_map_entry_t *out_entry,	/* OUT */
5183 		     vm_object_t *object,	/* OUT */
5184 		     vm_pindex_t *pindex,	/* OUT */
5185 		     vm_prot_t *out_prot,	/* OUT */
5186 		     boolean_t *wired)		/* OUT */
5187 {
5188 	vm_map_entry_t entry;
5189 	vm_map_t map = *var_map;
5190 	vm_prot_t prot;
5191 	vm_prot_t fault_type = fault_typea;
5192 
5193 	/*
5194 	 * Lookup the faulting address.
5195 	 */
5196 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
5197 		return (KERN_INVALID_ADDRESS);
5198 
5199 	entry = *out_entry;
5200 
5201 	/*
5202 	 * Fail if the entry refers to a submap.
5203 	 */
5204 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5205 		return (KERN_FAILURE);
5206 
5207 	/*
5208 	 * Check whether this task is allowed to have this page.
5209 	 */
5210 	prot = entry->protection;
5211 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5212 	if ((fault_type & prot) != fault_type)
5213 		return (KERN_PROTECTION_FAILURE);
5214 
5215 	/*
5216 	 * If this page is not pageable, we have to get it for all possible
5217 	 * accesses.
5218 	 */
5219 	*wired = (entry->wired_count != 0);
5220 	if (*wired)
5221 		fault_type = entry->protection;
5222 
5223 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5224 		/*
5225 		 * Fail if the entry was copy-on-write for a write fault.
5226 		 */
5227 		if (fault_type & VM_PROT_WRITE)
5228 			return (KERN_FAILURE);
5229 		/*
5230 		 * We're attempting to read a copy-on-write page --
5231 		 * don't allow writes.
5232 		 */
5233 		prot &= ~VM_PROT_WRITE;
5234 	}
5235 
5236 	/*
5237 	 * Fail if an object should be created.
5238 	 */
5239 	if (entry->object.vm_object == NULL && !map->system_map)
5240 		return (KERN_FAILURE);
5241 
5242 	/*
5243 	 * Return the object/offset from this entry.  If the entry was
5244 	 * copy-on-write or empty, it has been fixed up.
5245 	 */
5246 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5247 	*object = entry->object.vm_object;
5248 
5249 	*out_prot = prot;
5250 	return (KERN_SUCCESS);
5251 }
5252 
5253 /*
5254  *	vm_map_lookup_done:
5255  *
5256  *	Releases locks acquired by a vm_map_lookup
5257  *	(according to the handle returned by that lookup).
5258  */
5259 void
5260 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5261 {
5262 	/*
5263 	 * Unlock the main-level map
5264 	 */
5265 	vm_map_unlock_read(map);
5266 }
5267 
5268 vm_offset_t
5269 vm_map_max_KBI(const struct vm_map *map)
5270 {
5271 
5272 	return (vm_map_max(map));
5273 }
5274 
5275 vm_offset_t
5276 vm_map_min_KBI(const struct vm_map *map)
5277 {
5278 
5279 	return (vm_map_min(map));
5280 }
5281 
5282 pmap_t
5283 vm_map_pmap_KBI(vm_map_t map)
5284 {
5285 
5286 	return (map->pmap);
5287 }
5288 
5289 bool
5290 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5291 {
5292 
5293 	return (vm_map_range_valid(map, start, end));
5294 }
5295 
5296 #ifdef INVARIANTS
5297 static void
5298 _vm_map_assert_consistent(vm_map_t map, int check)
5299 {
5300 	vm_map_entry_t entry, prev;
5301 	vm_map_entry_t cur, header, lbound, ubound;
5302 	vm_size_t max_left, max_right;
5303 
5304 #ifdef DIAGNOSTIC
5305 	++map->nupdates;
5306 #endif
5307 	if (enable_vmmap_check != check)
5308 		return;
5309 
5310 	header = prev = &map->header;
5311 	VM_MAP_ENTRY_FOREACH(entry, map) {
5312 		KASSERT(prev->end <= entry->start,
5313 		    ("map %p prev->end = %jx, start = %jx", map,
5314 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
5315 		KASSERT(entry->start < entry->end,
5316 		    ("map %p start = %jx, end = %jx", map,
5317 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
5318 		KASSERT(entry->left == header ||
5319 		    entry->left->start < entry->start,
5320 		    ("map %p left->start = %jx, start = %jx", map,
5321 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5322 		KASSERT(entry->right == header ||
5323 		    entry->start < entry->right->start,
5324 		    ("map %p start = %jx, right->start = %jx", map,
5325 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5326 		cur = map->root;
5327 		lbound = ubound = header;
5328 		for (;;) {
5329 			if (entry->start < cur->start) {
5330 				ubound = cur;
5331 				cur = cur->left;
5332 				KASSERT(cur != lbound,
5333 				    ("map %p cannot find %jx",
5334 				    map, (uintmax_t)entry->start));
5335 			} else if (cur->end <= entry->start) {
5336 				lbound = cur;
5337 				cur = cur->right;
5338 				KASSERT(cur != ubound,
5339 				    ("map %p cannot find %jx",
5340 				    map, (uintmax_t)entry->start));
5341 			} else {
5342 				KASSERT(cur == entry,
5343 				    ("map %p cannot find %jx",
5344 				    map, (uintmax_t)entry->start));
5345 				break;
5346 			}
5347 		}
5348 		max_left = vm_map_entry_max_free_left(entry, lbound);
5349 		max_right = vm_map_entry_max_free_right(entry, ubound);
5350 		KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5351 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5352 		    (uintmax_t)entry->max_free,
5353 		    (uintmax_t)max_left, (uintmax_t)max_right));
5354 		prev = entry;
5355 	}
5356 	KASSERT(prev->end <= entry->start,
5357 	    ("map %p prev->end = %jx, start = %jx", map,
5358 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
5359 }
5360 #endif
5361 
5362 #include "opt_ddb.h"
5363 #ifdef DDB
5364 #include <sys/kernel.h>
5365 
5366 #include <ddb/ddb.h>
5367 
5368 static void
5369 vm_map_print(vm_map_t map)
5370 {
5371 	vm_map_entry_t entry, prev;
5372 
5373 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5374 	    (void *)map,
5375 	    (void *)map->pmap, map->nentries, map->timestamp);
5376 
5377 	db_indent += 2;
5378 	prev = &map->header;
5379 	VM_MAP_ENTRY_FOREACH(entry, map) {
5380 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5381 		    (void *)entry, (void *)entry->start, (void *)entry->end,
5382 		    entry->eflags);
5383 		{
5384 			static const char * const inheritance_name[4] =
5385 			{"share", "copy", "none", "donate_copy"};
5386 
5387 			db_iprintf(" prot=%x/%x/%s",
5388 			    entry->protection,
5389 			    entry->max_protection,
5390 			    inheritance_name[(int)(unsigned char)
5391 			    entry->inheritance]);
5392 			if (entry->wired_count != 0)
5393 				db_printf(", wired");
5394 		}
5395 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5396 			db_printf(", share=%p, offset=0x%jx\n",
5397 			    (void *)entry->object.sub_map,
5398 			    (uintmax_t)entry->offset);
5399 			if (prev == &map->header ||
5400 			    prev->object.sub_map !=
5401 				entry->object.sub_map) {
5402 				db_indent += 2;
5403 				vm_map_print((vm_map_t)entry->object.sub_map);
5404 				db_indent -= 2;
5405 			}
5406 		} else {
5407 			if (entry->cred != NULL)
5408 				db_printf(", ruid %d", entry->cred->cr_ruid);
5409 			db_printf(", object=%p, offset=0x%jx",
5410 			    (void *)entry->object.vm_object,
5411 			    (uintmax_t)entry->offset);
5412 			if (entry->object.vm_object && entry->object.vm_object->cred)
5413 				db_printf(", obj ruid %d charge %jx",
5414 				    entry->object.vm_object->cred->cr_ruid,
5415 				    (uintmax_t)entry->object.vm_object->charge);
5416 			if (entry->eflags & MAP_ENTRY_COW)
5417 				db_printf(", copy (%s)",
5418 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5419 			db_printf("\n");
5420 
5421 			if (prev == &map->header ||
5422 			    prev->object.vm_object !=
5423 				entry->object.vm_object) {
5424 				db_indent += 2;
5425 				vm_object_print((db_expr_t)(intptr_t)
5426 						entry->object.vm_object,
5427 						0, 0, (char *)0);
5428 				db_indent -= 2;
5429 			}
5430 		}
5431 		prev = entry;
5432 	}
5433 	db_indent -= 2;
5434 }
5435 
5436 DB_SHOW_COMMAND(map, map)
5437 {
5438 
5439 	if (!have_addr) {
5440 		db_printf("usage: show map <addr>\n");
5441 		return;
5442 	}
5443 	vm_map_print((vm_map_t)addr);
5444 }
5445 
5446 DB_SHOW_COMMAND(procvm, procvm)
5447 {
5448 	struct proc *p;
5449 
5450 	if (have_addr) {
5451 		p = db_lookup_proc(addr);
5452 	} else {
5453 		p = curproc;
5454 	}
5455 
5456 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5457 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5458 	    (void *)vmspace_pmap(p->p_vmspace));
5459 
5460 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5461 }
5462 
5463 #endif /* DDB */
5464