1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/ktr.h> 71 #include <sys/lock.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/vmmeter.h> 75 #include <sys/mman.h> 76 #include <sys/vnode.h> 77 #include <sys/resourcevar.h> 78 #include <sys/file.h> 79 #include <sys/sysent.h> 80 #include <sys/shm.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vm_kern.h> 90 #include <vm/vm_extern.h> 91 #include <vm/swap_pager.h> 92 #include <vm/uma.h> 93 94 /* 95 * Virtual memory maps provide for the mapping, protection, 96 * and sharing of virtual memory objects. In addition, 97 * this module provides for an efficient virtual copy of 98 * memory from one map to another. 99 * 100 * Synchronization is required prior to most operations. 101 * 102 * Maps consist of an ordered doubly-linked list of simple 103 * entries; a self-adjusting binary search tree of these 104 * entries is used to speed up lookups. 105 * 106 * Since portions of maps are specified by start/end addresses, 107 * which may not align with existing map entries, all 108 * routines merely "clip" entries to these start/end values. 109 * [That is, an entry is split into two, bordering at a 110 * start or end value.] Note that these clippings may not 111 * always be necessary (as the two resulting entries are then 112 * not changed); however, the clipping is done for convenience. 113 * 114 * As mentioned above, virtual copy operations are performed 115 * by copying VM object references from one map to 116 * another, and then marking both regions as copy-on-write. 117 */ 118 119 static struct mtx map_sleep_mtx; 120 static uma_zone_t mapentzone; 121 static uma_zone_t kmapentzone; 122 static uma_zone_t mapzone; 123 static uma_zone_t vmspace_zone; 124 static struct vm_object kmapentobj; 125 static int vmspace_zinit(void *mem, int size, int flags); 126 static void vmspace_zfini(void *mem, int size); 127 static int vm_map_zinit(void *mem, int ize, int flags); 128 static void vm_map_zfini(void *mem, int size); 129 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 130 vm_offset_t max); 131 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 132 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 133 #ifdef INVARIANTS 134 static void vm_map_zdtor(void *mem, int size, void *arg); 135 static void vmspace_zdtor(void *mem, int size, void *arg); 136 #endif 137 138 #define ENTRY_CHARGED(e) ((e)->uip != NULL || \ 139 ((e)->object.vm_object != NULL && (e)->object.vm_object->uip != NULL && \ 140 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 141 142 /* 143 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 144 * stable. 145 */ 146 #define PROC_VMSPACE_LOCK(p) do { } while (0) 147 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 148 149 /* 150 * VM_MAP_RANGE_CHECK: [ internal use only ] 151 * 152 * Asserts that the starting and ending region 153 * addresses fall within the valid range of the map. 154 */ 155 #define VM_MAP_RANGE_CHECK(map, start, end) \ 156 { \ 157 if (start < vm_map_min(map)) \ 158 start = vm_map_min(map); \ 159 if (end > vm_map_max(map)) \ 160 end = vm_map_max(map); \ 161 if (start > end) \ 162 start = end; \ 163 } 164 165 /* 166 * vm_map_startup: 167 * 168 * Initialize the vm_map module. Must be called before 169 * any other vm_map routines. 170 * 171 * Map and entry structures are allocated from the general 172 * purpose memory pool with some exceptions: 173 * 174 * - The kernel map and kmem submap are allocated statically. 175 * - Kernel map entries are allocated out of a static pool. 176 * 177 * These restrictions are necessary since malloc() uses the 178 * maps and requires map entries. 179 */ 180 181 void 182 vm_map_startup(void) 183 { 184 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 185 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 186 #ifdef INVARIANTS 187 vm_map_zdtor, 188 #else 189 NULL, 190 #endif 191 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 192 uma_prealloc(mapzone, MAX_KMAP); 193 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 194 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 195 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 196 uma_prealloc(kmapentzone, MAX_KMAPENT); 197 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 198 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 199 } 200 201 static void 202 vmspace_zfini(void *mem, int size) 203 { 204 struct vmspace *vm; 205 206 vm = (struct vmspace *)mem; 207 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 208 } 209 210 static int 211 vmspace_zinit(void *mem, int size, int flags) 212 { 213 struct vmspace *vm; 214 215 vm = (struct vmspace *)mem; 216 217 vm->vm_map.pmap = NULL; 218 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 219 return (0); 220 } 221 222 static void 223 vm_map_zfini(void *mem, int size) 224 { 225 vm_map_t map; 226 227 map = (vm_map_t)mem; 228 mtx_destroy(&map->system_mtx); 229 sx_destroy(&map->lock); 230 } 231 232 static int 233 vm_map_zinit(void *mem, int size, int flags) 234 { 235 vm_map_t map; 236 237 map = (vm_map_t)mem; 238 map->nentries = 0; 239 map->size = 0; 240 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 241 sx_init(&map->lock, "user map"); 242 return (0); 243 } 244 245 #ifdef INVARIANTS 246 static void 247 vmspace_zdtor(void *mem, int size, void *arg) 248 { 249 struct vmspace *vm; 250 251 vm = (struct vmspace *)mem; 252 253 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 254 } 255 static void 256 vm_map_zdtor(void *mem, int size, void *arg) 257 { 258 vm_map_t map; 259 260 map = (vm_map_t)mem; 261 KASSERT(map->nentries == 0, 262 ("map %p nentries == %d on free.", 263 map, map->nentries)); 264 KASSERT(map->size == 0, 265 ("map %p size == %lu on free.", 266 map, (unsigned long)map->size)); 267 } 268 #endif /* INVARIANTS */ 269 270 /* 271 * Allocate a vmspace structure, including a vm_map and pmap, 272 * and initialize those structures. The refcnt is set to 1. 273 */ 274 struct vmspace * 275 vmspace_alloc(min, max) 276 vm_offset_t min, max; 277 { 278 struct vmspace *vm; 279 280 vm = uma_zalloc(vmspace_zone, M_WAITOK); 281 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) { 282 uma_zfree(vmspace_zone, vm); 283 return (NULL); 284 } 285 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 286 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 287 vm->vm_refcnt = 1; 288 vm->vm_shm = NULL; 289 vm->vm_swrss = 0; 290 vm->vm_tsize = 0; 291 vm->vm_dsize = 0; 292 vm->vm_ssize = 0; 293 vm->vm_taddr = 0; 294 vm->vm_daddr = 0; 295 vm->vm_maxsaddr = 0; 296 return (vm); 297 } 298 299 void 300 vm_init2(void) 301 { 302 uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count, 303 (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 + 304 maxproc * 2 + maxfiles); 305 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 306 #ifdef INVARIANTS 307 vmspace_zdtor, 308 #else 309 NULL, 310 #endif 311 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 312 } 313 314 static inline void 315 vmspace_dofree(struct vmspace *vm) 316 { 317 318 CTR1(KTR_VM, "vmspace_free: %p", vm); 319 320 /* 321 * Make sure any SysV shm is freed, it might not have been in 322 * exit1(). 323 */ 324 shmexit(vm); 325 326 /* 327 * Lock the map, to wait out all other references to it. 328 * Delete all of the mappings and pages they hold, then call 329 * the pmap module to reclaim anything left. 330 */ 331 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 332 vm->vm_map.max_offset); 333 334 pmap_release(vmspace_pmap(vm)); 335 vm->vm_map.pmap = NULL; 336 uma_zfree(vmspace_zone, vm); 337 } 338 339 void 340 vmspace_free(struct vmspace *vm) 341 { 342 int refcnt; 343 344 if (vm->vm_refcnt == 0) 345 panic("vmspace_free: attempt to free already freed vmspace"); 346 347 do 348 refcnt = vm->vm_refcnt; 349 while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 350 if (refcnt == 1) 351 vmspace_dofree(vm); 352 } 353 354 void 355 vmspace_exitfree(struct proc *p) 356 { 357 struct vmspace *vm; 358 359 PROC_VMSPACE_LOCK(p); 360 vm = p->p_vmspace; 361 p->p_vmspace = NULL; 362 PROC_VMSPACE_UNLOCK(p); 363 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 364 vmspace_free(vm); 365 } 366 367 void 368 vmspace_exit(struct thread *td) 369 { 370 int refcnt; 371 struct vmspace *vm; 372 struct proc *p; 373 374 /* 375 * Release user portion of address space. 376 * This releases references to vnodes, 377 * which could cause I/O if the file has been unlinked. 378 * Need to do this early enough that we can still sleep. 379 * 380 * The last exiting process to reach this point releases as 381 * much of the environment as it can. vmspace_dofree() is the 382 * slower fallback in case another process had a temporary 383 * reference to the vmspace. 384 */ 385 386 p = td->td_proc; 387 vm = p->p_vmspace; 388 atomic_add_int(&vmspace0.vm_refcnt, 1); 389 do { 390 refcnt = vm->vm_refcnt; 391 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 392 /* Switch now since other proc might free vmspace */ 393 PROC_VMSPACE_LOCK(p); 394 p->p_vmspace = &vmspace0; 395 PROC_VMSPACE_UNLOCK(p); 396 pmap_activate(td); 397 } 398 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 399 if (refcnt == 1) { 400 if (p->p_vmspace != vm) { 401 /* vmspace not yet freed, switch back */ 402 PROC_VMSPACE_LOCK(p); 403 p->p_vmspace = vm; 404 PROC_VMSPACE_UNLOCK(p); 405 pmap_activate(td); 406 } 407 pmap_remove_pages(vmspace_pmap(vm)); 408 /* Switch now since this proc will free vmspace */ 409 PROC_VMSPACE_LOCK(p); 410 p->p_vmspace = &vmspace0; 411 PROC_VMSPACE_UNLOCK(p); 412 pmap_activate(td); 413 vmspace_dofree(vm); 414 } 415 } 416 417 /* Acquire reference to vmspace owned by another process. */ 418 419 struct vmspace * 420 vmspace_acquire_ref(struct proc *p) 421 { 422 struct vmspace *vm; 423 int refcnt; 424 425 PROC_VMSPACE_LOCK(p); 426 vm = p->p_vmspace; 427 if (vm == NULL) { 428 PROC_VMSPACE_UNLOCK(p); 429 return (NULL); 430 } 431 do { 432 refcnt = vm->vm_refcnt; 433 if (refcnt <= 0) { /* Avoid 0->1 transition */ 434 PROC_VMSPACE_UNLOCK(p); 435 return (NULL); 436 } 437 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 438 if (vm != p->p_vmspace) { 439 PROC_VMSPACE_UNLOCK(p); 440 vmspace_free(vm); 441 return (NULL); 442 } 443 PROC_VMSPACE_UNLOCK(p); 444 return (vm); 445 } 446 447 void 448 _vm_map_lock(vm_map_t map, const char *file, int line) 449 { 450 451 if (map->system_map) 452 _mtx_lock_flags(&map->system_mtx, 0, file, line); 453 else 454 (void)_sx_xlock(&map->lock, 0, file, line); 455 map->timestamp++; 456 } 457 458 static void 459 vm_map_process_deferred(void) 460 { 461 struct thread *td; 462 vm_map_entry_t entry; 463 464 td = curthread; 465 466 while ((entry = td->td_map_def_user) != NULL) { 467 td->td_map_def_user = entry->next; 468 vm_map_entry_deallocate(entry, FALSE); 469 } 470 } 471 472 void 473 _vm_map_unlock(vm_map_t map, const char *file, int line) 474 { 475 476 if (map->system_map) 477 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 478 else { 479 _sx_xunlock(&map->lock, file, line); 480 vm_map_process_deferred(); 481 } 482 } 483 484 void 485 _vm_map_lock_read(vm_map_t map, const char *file, int line) 486 { 487 488 if (map->system_map) 489 _mtx_lock_flags(&map->system_mtx, 0, file, line); 490 else 491 (void)_sx_slock(&map->lock, 0, file, line); 492 } 493 494 void 495 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 496 { 497 498 if (map->system_map) 499 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 500 else { 501 _sx_sunlock(&map->lock, file, line); 502 vm_map_process_deferred(); 503 } 504 } 505 506 int 507 _vm_map_trylock(vm_map_t map, const char *file, int line) 508 { 509 int error; 510 511 error = map->system_map ? 512 !_mtx_trylock(&map->system_mtx, 0, file, line) : 513 !_sx_try_xlock(&map->lock, file, line); 514 if (error == 0) 515 map->timestamp++; 516 return (error == 0); 517 } 518 519 int 520 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 521 { 522 int error; 523 524 error = map->system_map ? 525 !_mtx_trylock(&map->system_mtx, 0, file, line) : 526 !_sx_try_slock(&map->lock, file, line); 527 return (error == 0); 528 } 529 530 /* 531 * _vm_map_lock_upgrade: [ internal use only ] 532 * 533 * Tries to upgrade a read (shared) lock on the specified map to a write 534 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 535 * non-zero value if the upgrade fails. If the upgrade fails, the map is 536 * returned without a read or write lock held. 537 * 538 * Requires that the map be read locked. 539 */ 540 int 541 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 542 { 543 unsigned int last_timestamp; 544 545 if (map->system_map) { 546 #ifdef INVARIANTS 547 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 548 #endif 549 } else { 550 if (!_sx_try_upgrade(&map->lock, file, line)) { 551 last_timestamp = map->timestamp; 552 _sx_sunlock(&map->lock, file, line); 553 vm_map_process_deferred(); 554 /* 555 * If the map's timestamp does not change while the 556 * map is unlocked, then the upgrade succeeds. 557 */ 558 (void)_sx_xlock(&map->lock, 0, file, line); 559 if (last_timestamp != map->timestamp) { 560 _sx_xunlock(&map->lock, file, line); 561 return (1); 562 } 563 } 564 } 565 map->timestamp++; 566 return (0); 567 } 568 569 void 570 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 571 { 572 573 if (map->system_map) { 574 #ifdef INVARIANTS 575 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 576 #endif 577 } else 578 _sx_downgrade(&map->lock, file, line); 579 } 580 581 /* 582 * vm_map_locked: 583 * 584 * Returns a non-zero value if the caller holds a write (exclusive) lock 585 * on the specified map and the value "0" otherwise. 586 */ 587 int 588 vm_map_locked(vm_map_t map) 589 { 590 591 if (map->system_map) 592 return (mtx_owned(&map->system_mtx)); 593 else 594 return (sx_xlocked(&map->lock)); 595 } 596 597 #ifdef INVARIANTS 598 static void 599 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 600 { 601 602 if (map->system_map) 603 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 604 else 605 _sx_assert(&map->lock, SA_XLOCKED, file, line); 606 } 607 608 #if 0 609 static void 610 _vm_map_assert_locked_read(vm_map_t map, const char *file, int line) 611 { 612 613 if (map->system_map) 614 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 615 else 616 _sx_assert(&map->lock, SA_SLOCKED, file, line); 617 } 618 #endif 619 620 #define VM_MAP_ASSERT_LOCKED(map) \ 621 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 622 #define VM_MAP_ASSERT_LOCKED_READ(map) \ 623 _vm_map_assert_locked_read(map, LOCK_FILE, LOCK_LINE) 624 #else 625 #define VM_MAP_ASSERT_LOCKED(map) 626 #define VM_MAP_ASSERT_LOCKED_READ(map) 627 #endif 628 629 /* 630 * _vm_map_unlock_and_wait: 631 * 632 * Atomically releases the lock on the specified map and puts the calling 633 * thread to sleep. The calling thread will remain asleep until either 634 * vm_map_wakeup() is performed on the map or the specified timeout is 635 * exceeded. 636 * 637 * WARNING! This function does not perform deferred deallocations of 638 * objects and map entries. Therefore, the calling thread is expected to 639 * reacquire the map lock after reawakening and later perform an ordinary 640 * unlock operation, such as vm_map_unlock(), before completing its 641 * operation on the map. 642 */ 643 int 644 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 645 { 646 647 mtx_lock(&map_sleep_mtx); 648 if (map->system_map) 649 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 650 else 651 _sx_xunlock(&map->lock, file, line); 652 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 653 timo)); 654 } 655 656 /* 657 * vm_map_wakeup: 658 * 659 * Awaken any threads that have slept on the map using 660 * vm_map_unlock_and_wait(). 661 */ 662 void 663 vm_map_wakeup(vm_map_t map) 664 { 665 666 /* 667 * Acquire and release map_sleep_mtx to prevent a wakeup() 668 * from being performed (and lost) between the map unlock 669 * and the msleep() in _vm_map_unlock_and_wait(). 670 */ 671 mtx_lock(&map_sleep_mtx); 672 mtx_unlock(&map_sleep_mtx); 673 wakeup(&map->root); 674 } 675 676 long 677 vmspace_resident_count(struct vmspace *vmspace) 678 { 679 return pmap_resident_count(vmspace_pmap(vmspace)); 680 } 681 682 long 683 vmspace_wired_count(struct vmspace *vmspace) 684 { 685 return pmap_wired_count(vmspace_pmap(vmspace)); 686 } 687 688 /* 689 * vm_map_create: 690 * 691 * Creates and returns a new empty VM map with 692 * the given physical map structure, and having 693 * the given lower and upper address bounds. 694 */ 695 vm_map_t 696 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 697 { 698 vm_map_t result; 699 700 result = uma_zalloc(mapzone, M_WAITOK); 701 CTR1(KTR_VM, "vm_map_create: %p", result); 702 _vm_map_init(result, pmap, min, max); 703 return (result); 704 } 705 706 /* 707 * Initialize an existing vm_map structure 708 * such as that in the vmspace structure. 709 */ 710 static void 711 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 712 { 713 714 map->header.next = map->header.prev = &map->header; 715 map->needs_wakeup = FALSE; 716 map->system_map = 0; 717 map->pmap = pmap; 718 map->min_offset = min; 719 map->max_offset = max; 720 map->flags = 0; 721 map->root = NULL; 722 map->timestamp = 0; 723 } 724 725 void 726 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 727 { 728 729 _vm_map_init(map, pmap, min, max); 730 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 731 sx_init(&map->lock, "user map"); 732 } 733 734 /* 735 * vm_map_entry_dispose: [ internal use only ] 736 * 737 * Inverse of vm_map_entry_create. 738 */ 739 static void 740 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 741 { 742 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 743 } 744 745 /* 746 * vm_map_entry_create: [ internal use only ] 747 * 748 * Allocates a VM map entry for insertion. 749 * No entry fields are filled in. 750 */ 751 static vm_map_entry_t 752 vm_map_entry_create(vm_map_t map) 753 { 754 vm_map_entry_t new_entry; 755 756 if (map->system_map) 757 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 758 else 759 new_entry = uma_zalloc(mapentzone, M_WAITOK); 760 if (new_entry == NULL) 761 panic("vm_map_entry_create: kernel resources exhausted"); 762 return (new_entry); 763 } 764 765 /* 766 * vm_map_entry_set_behavior: 767 * 768 * Set the expected access behavior, either normal, random, or 769 * sequential. 770 */ 771 static inline void 772 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 773 { 774 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 775 (behavior & MAP_ENTRY_BEHAV_MASK); 776 } 777 778 /* 779 * vm_map_entry_set_max_free: 780 * 781 * Set the max_free field in a vm_map_entry. 782 */ 783 static inline void 784 vm_map_entry_set_max_free(vm_map_entry_t entry) 785 { 786 787 entry->max_free = entry->adj_free; 788 if (entry->left != NULL && entry->left->max_free > entry->max_free) 789 entry->max_free = entry->left->max_free; 790 if (entry->right != NULL && entry->right->max_free > entry->max_free) 791 entry->max_free = entry->right->max_free; 792 } 793 794 /* 795 * vm_map_entry_splay: 796 * 797 * The Sleator and Tarjan top-down splay algorithm with the 798 * following variation. Max_free must be computed bottom-up, so 799 * on the downward pass, maintain the left and right spines in 800 * reverse order. Then, make a second pass up each side to fix 801 * the pointers and compute max_free. The time bound is O(log n) 802 * amortized. 803 * 804 * The new root is the vm_map_entry containing "addr", or else an 805 * adjacent entry (lower or higher) if addr is not in the tree. 806 * 807 * The map must be locked, and leaves it so. 808 * 809 * Returns: the new root. 810 */ 811 static vm_map_entry_t 812 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 813 { 814 vm_map_entry_t llist, rlist; 815 vm_map_entry_t ltree, rtree; 816 vm_map_entry_t y; 817 818 /* Special case of empty tree. */ 819 if (root == NULL) 820 return (root); 821 822 /* 823 * Pass One: Splay down the tree until we find addr or a NULL 824 * pointer where addr would go. llist and rlist are the two 825 * sides in reverse order (bottom-up), with llist linked by 826 * the right pointer and rlist linked by the left pointer in 827 * the vm_map_entry. Wait until Pass Two to set max_free on 828 * the two spines. 829 */ 830 llist = NULL; 831 rlist = NULL; 832 for (;;) { 833 /* root is never NULL in here. */ 834 if (addr < root->start) { 835 y = root->left; 836 if (y == NULL) 837 break; 838 if (addr < y->start && y->left != NULL) { 839 /* Rotate right and put y on rlist. */ 840 root->left = y->right; 841 y->right = root; 842 vm_map_entry_set_max_free(root); 843 root = y->left; 844 y->left = rlist; 845 rlist = y; 846 } else { 847 /* Put root on rlist. */ 848 root->left = rlist; 849 rlist = root; 850 root = y; 851 } 852 } else if (addr >= root->end) { 853 y = root->right; 854 if (y == NULL) 855 break; 856 if (addr >= y->end && y->right != NULL) { 857 /* Rotate left and put y on llist. */ 858 root->right = y->left; 859 y->left = root; 860 vm_map_entry_set_max_free(root); 861 root = y->right; 862 y->right = llist; 863 llist = y; 864 } else { 865 /* Put root on llist. */ 866 root->right = llist; 867 llist = root; 868 root = y; 869 } 870 } else 871 break; 872 } 873 874 /* 875 * Pass Two: Walk back up the two spines, flip the pointers 876 * and set max_free. The subtrees of the root go at the 877 * bottom of llist and rlist. 878 */ 879 ltree = root->left; 880 while (llist != NULL) { 881 y = llist->right; 882 llist->right = ltree; 883 vm_map_entry_set_max_free(llist); 884 ltree = llist; 885 llist = y; 886 } 887 rtree = root->right; 888 while (rlist != NULL) { 889 y = rlist->left; 890 rlist->left = rtree; 891 vm_map_entry_set_max_free(rlist); 892 rtree = rlist; 893 rlist = y; 894 } 895 896 /* 897 * Final assembly: add ltree and rtree as subtrees of root. 898 */ 899 root->left = ltree; 900 root->right = rtree; 901 vm_map_entry_set_max_free(root); 902 903 return (root); 904 } 905 906 /* 907 * vm_map_entry_{un,}link: 908 * 909 * Insert/remove entries from maps. 910 */ 911 static void 912 vm_map_entry_link(vm_map_t map, 913 vm_map_entry_t after_where, 914 vm_map_entry_t entry) 915 { 916 917 CTR4(KTR_VM, 918 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 919 map->nentries, entry, after_where); 920 VM_MAP_ASSERT_LOCKED(map); 921 map->nentries++; 922 entry->prev = after_where; 923 entry->next = after_where->next; 924 entry->next->prev = entry; 925 after_where->next = entry; 926 927 if (after_where != &map->header) { 928 if (after_where != map->root) 929 vm_map_entry_splay(after_where->start, map->root); 930 entry->right = after_where->right; 931 entry->left = after_where; 932 after_where->right = NULL; 933 after_where->adj_free = entry->start - after_where->end; 934 vm_map_entry_set_max_free(after_where); 935 } else { 936 entry->right = map->root; 937 entry->left = NULL; 938 } 939 entry->adj_free = (entry->next == &map->header ? map->max_offset : 940 entry->next->start) - entry->end; 941 vm_map_entry_set_max_free(entry); 942 map->root = entry; 943 } 944 945 static void 946 vm_map_entry_unlink(vm_map_t map, 947 vm_map_entry_t entry) 948 { 949 vm_map_entry_t next, prev, root; 950 951 VM_MAP_ASSERT_LOCKED(map); 952 if (entry != map->root) 953 vm_map_entry_splay(entry->start, map->root); 954 if (entry->left == NULL) 955 root = entry->right; 956 else { 957 root = vm_map_entry_splay(entry->start, entry->left); 958 root->right = entry->right; 959 root->adj_free = (entry->next == &map->header ? map->max_offset : 960 entry->next->start) - root->end; 961 vm_map_entry_set_max_free(root); 962 } 963 map->root = root; 964 965 prev = entry->prev; 966 next = entry->next; 967 next->prev = prev; 968 prev->next = next; 969 map->nentries--; 970 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 971 map->nentries, entry); 972 } 973 974 /* 975 * vm_map_entry_resize_free: 976 * 977 * Recompute the amount of free space following a vm_map_entry 978 * and propagate that value up the tree. Call this function after 979 * resizing a map entry in-place, that is, without a call to 980 * vm_map_entry_link() or _unlink(). 981 * 982 * The map must be locked, and leaves it so. 983 */ 984 static void 985 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 986 { 987 988 /* 989 * Using splay trees without parent pointers, propagating 990 * max_free up the tree is done by moving the entry to the 991 * root and making the change there. 992 */ 993 if (entry != map->root) 994 map->root = vm_map_entry_splay(entry->start, map->root); 995 996 entry->adj_free = (entry->next == &map->header ? map->max_offset : 997 entry->next->start) - entry->end; 998 vm_map_entry_set_max_free(entry); 999 } 1000 1001 /* 1002 * vm_map_lookup_entry: [ internal use only ] 1003 * 1004 * Finds the map entry containing (or 1005 * immediately preceding) the specified address 1006 * in the given map; the entry is returned 1007 * in the "entry" parameter. The boolean 1008 * result indicates whether the address is 1009 * actually contained in the map. 1010 */ 1011 boolean_t 1012 vm_map_lookup_entry( 1013 vm_map_t map, 1014 vm_offset_t address, 1015 vm_map_entry_t *entry) /* OUT */ 1016 { 1017 vm_map_entry_t cur; 1018 boolean_t locked; 1019 1020 /* 1021 * If the map is empty, then the map entry immediately preceding 1022 * "address" is the map's header. 1023 */ 1024 cur = map->root; 1025 if (cur == NULL) 1026 *entry = &map->header; 1027 else if (address >= cur->start && cur->end > address) { 1028 *entry = cur; 1029 return (TRUE); 1030 } else if ((locked = vm_map_locked(map)) || 1031 sx_try_upgrade(&map->lock)) { 1032 /* 1033 * Splay requires a write lock on the map. However, it only 1034 * restructures the binary search tree; it does not otherwise 1035 * change the map. Thus, the map's timestamp need not change 1036 * on a temporary upgrade. 1037 */ 1038 map->root = cur = vm_map_entry_splay(address, cur); 1039 if (!locked) 1040 sx_downgrade(&map->lock); 1041 1042 /* 1043 * If "address" is contained within a map entry, the new root 1044 * is that map entry. Otherwise, the new root is a map entry 1045 * immediately before or after "address". 1046 */ 1047 if (address >= cur->start) { 1048 *entry = cur; 1049 if (cur->end > address) 1050 return (TRUE); 1051 } else 1052 *entry = cur->prev; 1053 } else 1054 /* 1055 * Since the map is only locked for read access, perform a 1056 * standard binary search tree lookup for "address". 1057 */ 1058 for (;;) { 1059 if (address < cur->start) { 1060 if (cur->left == NULL) { 1061 *entry = cur->prev; 1062 break; 1063 } 1064 cur = cur->left; 1065 } else if (cur->end > address) { 1066 *entry = cur; 1067 return (TRUE); 1068 } else { 1069 if (cur->right == NULL) { 1070 *entry = cur; 1071 break; 1072 } 1073 cur = cur->right; 1074 } 1075 } 1076 return (FALSE); 1077 } 1078 1079 /* 1080 * vm_map_insert: 1081 * 1082 * Inserts the given whole VM object into the target 1083 * map at the specified address range. The object's 1084 * size should match that of the address range. 1085 * 1086 * Requires that the map be locked, and leaves it so. 1087 * 1088 * If object is non-NULL, ref count must be bumped by caller 1089 * prior to making call to account for the new entry. 1090 */ 1091 int 1092 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1093 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1094 int cow) 1095 { 1096 vm_map_entry_t new_entry; 1097 vm_map_entry_t prev_entry; 1098 vm_map_entry_t temp_entry; 1099 vm_eflags_t protoeflags; 1100 struct uidinfo *uip; 1101 boolean_t charge_prev_obj; 1102 1103 VM_MAP_ASSERT_LOCKED(map); 1104 1105 /* 1106 * Check that the start and end points are not bogus. 1107 */ 1108 if ((start < map->min_offset) || (end > map->max_offset) || 1109 (start >= end)) 1110 return (KERN_INVALID_ADDRESS); 1111 1112 /* 1113 * Find the entry prior to the proposed starting address; if it's part 1114 * of an existing entry, this range is bogus. 1115 */ 1116 if (vm_map_lookup_entry(map, start, &temp_entry)) 1117 return (KERN_NO_SPACE); 1118 1119 prev_entry = temp_entry; 1120 1121 /* 1122 * Assert that the next entry doesn't overlap the end point. 1123 */ 1124 if ((prev_entry->next != &map->header) && 1125 (prev_entry->next->start < end)) 1126 return (KERN_NO_SPACE); 1127 1128 protoeflags = 0; 1129 charge_prev_obj = FALSE; 1130 1131 if (cow & MAP_COPY_ON_WRITE) 1132 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1133 1134 if (cow & MAP_NOFAULT) { 1135 protoeflags |= MAP_ENTRY_NOFAULT; 1136 1137 KASSERT(object == NULL, 1138 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1139 } 1140 if (cow & MAP_DISABLE_SYNCER) 1141 protoeflags |= MAP_ENTRY_NOSYNC; 1142 if (cow & MAP_DISABLE_COREDUMP) 1143 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1144 1145 uip = NULL; 1146 KASSERT((object != kmem_object && object != kernel_object) || 1147 ((object == kmem_object || object == kernel_object) && 1148 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1149 ("kmem or kernel object and cow")); 1150 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1151 goto charged; 1152 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1153 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1154 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1155 return (KERN_RESOURCE_SHORTAGE); 1156 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1157 object->uip == NULL, 1158 ("OVERCOMMIT: vm_map_insert o %p", object)); 1159 uip = curthread->td_ucred->cr_ruidinfo; 1160 uihold(uip); 1161 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1162 charge_prev_obj = TRUE; 1163 } 1164 1165 charged: 1166 /* Expand the kernel pmap, if necessary. */ 1167 if (map == kernel_map && end > kernel_vm_end) 1168 pmap_growkernel(end); 1169 if (object != NULL) { 1170 /* 1171 * OBJ_ONEMAPPING must be cleared unless this mapping 1172 * is trivially proven to be the only mapping for any 1173 * of the object's pages. (Object granularity 1174 * reference counting is insufficient to recognize 1175 * aliases with precision.) 1176 */ 1177 VM_OBJECT_LOCK(object); 1178 if (object->ref_count > 1 || object->shadow_count != 0) 1179 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1180 VM_OBJECT_UNLOCK(object); 1181 } 1182 else if ((prev_entry != &map->header) && 1183 (prev_entry->eflags == protoeflags) && 1184 (prev_entry->end == start) && 1185 (prev_entry->wired_count == 0) && 1186 (prev_entry->uip == uip || 1187 (prev_entry->object.vm_object != NULL && 1188 (prev_entry->object.vm_object->uip == uip))) && 1189 vm_object_coalesce(prev_entry->object.vm_object, 1190 prev_entry->offset, 1191 (vm_size_t)(prev_entry->end - prev_entry->start), 1192 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1193 /* 1194 * We were able to extend the object. Determine if we 1195 * can extend the previous map entry to include the 1196 * new range as well. 1197 */ 1198 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 1199 (prev_entry->protection == prot) && 1200 (prev_entry->max_protection == max)) { 1201 map->size += (end - prev_entry->end); 1202 prev_entry->end = end; 1203 vm_map_entry_resize_free(map, prev_entry); 1204 vm_map_simplify_entry(map, prev_entry); 1205 if (uip != NULL) 1206 uifree(uip); 1207 return (KERN_SUCCESS); 1208 } 1209 1210 /* 1211 * If we can extend the object but cannot extend the 1212 * map entry, we have to create a new map entry. We 1213 * must bump the ref count on the extended object to 1214 * account for it. object may be NULL. 1215 */ 1216 object = prev_entry->object.vm_object; 1217 offset = prev_entry->offset + 1218 (prev_entry->end - prev_entry->start); 1219 vm_object_reference(object); 1220 if (uip != NULL && object != NULL && object->uip != NULL && 1221 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1222 /* Object already accounts for this uid. */ 1223 uifree(uip); 1224 uip = NULL; 1225 } 1226 } 1227 1228 /* 1229 * NOTE: if conditionals fail, object can be NULL here. This occurs 1230 * in things like the buffer map where we manage kva but do not manage 1231 * backing objects. 1232 */ 1233 1234 /* 1235 * Create a new entry 1236 */ 1237 new_entry = vm_map_entry_create(map); 1238 new_entry->start = start; 1239 new_entry->end = end; 1240 new_entry->uip = NULL; 1241 1242 new_entry->eflags = protoeflags; 1243 new_entry->object.vm_object = object; 1244 new_entry->offset = offset; 1245 new_entry->avail_ssize = 0; 1246 1247 new_entry->inheritance = VM_INHERIT_DEFAULT; 1248 new_entry->protection = prot; 1249 new_entry->max_protection = max; 1250 new_entry->wired_count = 0; 1251 1252 KASSERT(uip == NULL || !ENTRY_CHARGED(new_entry), 1253 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1254 new_entry->uip = uip; 1255 1256 /* 1257 * Insert the new entry into the list 1258 */ 1259 vm_map_entry_link(map, prev_entry, new_entry); 1260 map->size += new_entry->end - new_entry->start; 1261 1262 #if 0 1263 /* 1264 * Temporarily removed to avoid MAP_STACK panic, due to 1265 * MAP_STACK being a huge hack. Will be added back in 1266 * when MAP_STACK (and the user stack mapping) is fixed. 1267 */ 1268 /* 1269 * It may be possible to simplify the entry 1270 */ 1271 vm_map_simplify_entry(map, new_entry); 1272 #endif 1273 1274 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1275 vm_map_pmap_enter(map, start, prot, 1276 object, OFF_TO_IDX(offset), end - start, 1277 cow & MAP_PREFAULT_PARTIAL); 1278 } 1279 1280 return (KERN_SUCCESS); 1281 } 1282 1283 /* 1284 * vm_map_findspace: 1285 * 1286 * Find the first fit (lowest VM address) for "length" free bytes 1287 * beginning at address >= start in the given map. 1288 * 1289 * In a vm_map_entry, "adj_free" is the amount of free space 1290 * adjacent (higher address) to this entry, and "max_free" is the 1291 * maximum amount of contiguous free space in its subtree. This 1292 * allows finding a free region in one path down the tree, so 1293 * O(log n) amortized with splay trees. 1294 * 1295 * The map must be locked, and leaves it so. 1296 * 1297 * Returns: 0 on success, and starting address in *addr, 1298 * 1 if insufficient space. 1299 */ 1300 int 1301 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1302 vm_offset_t *addr) /* OUT */ 1303 { 1304 vm_map_entry_t entry; 1305 vm_offset_t st; 1306 1307 /* 1308 * Request must fit within min/max VM address and must avoid 1309 * address wrap. 1310 */ 1311 if (start < map->min_offset) 1312 start = map->min_offset; 1313 if (start + length > map->max_offset || start + length < start) 1314 return (1); 1315 1316 /* Empty tree means wide open address space. */ 1317 if (map->root == NULL) { 1318 *addr = start; 1319 return (0); 1320 } 1321 1322 /* 1323 * After splay, if start comes before root node, then there 1324 * must be a gap from start to the root. 1325 */ 1326 map->root = vm_map_entry_splay(start, map->root); 1327 if (start + length <= map->root->start) { 1328 *addr = start; 1329 return (0); 1330 } 1331 1332 /* 1333 * Root is the last node that might begin its gap before 1334 * start, and this is the last comparison where address 1335 * wrap might be a problem. 1336 */ 1337 st = (start > map->root->end) ? start : map->root->end; 1338 if (length <= map->root->end + map->root->adj_free - st) { 1339 *addr = st; 1340 return (0); 1341 } 1342 1343 /* With max_free, can immediately tell if no solution. */ 1344 entry = map->root->right; 1345 if (entry == NULL || length > entry->max_free) 1346 return (1); 1347 1348 /* 1349 * Search the right subtree in the order: left subtree, root, 1350 * right subtree (first fit). The previous splay implies that 1351 * all regions in the right subtree have addresses > start. 1352 */ 1353 while (entry != NULL) { 1354 if (entry->left != NULL && entry->left->max_free >= length) 1355 entry = entry->left; 1356 else if (entry->adj_free >= length) { 1357 *addr = entry->end; 1358 return (0); 1359 } else 1360 entry = entry->right; 1361 } 1362 1363 /* Can't get here, so panic if we do. */ 1364 panic("vm_map_findspace: max_free corrupt"); 1365 } 1366 1367 int 1368 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1369 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1370 vm_prot_t max, int cow) 1371 { 1372 vm_offset_t end; 1373 int result; 1374 1375 end = start + length; 1376 vm_map_lock(map); 1377 VM_MAP_RANGE_CHECK(map, start, end); 1378 (void) vm_map_delete(map, start, end); 1379 result = vm_map_insert(map, object, offset, start, end, prot, 1380 max, cow); 1381 vm_map_unlock(map); 1382 return (result); 1383 } 1384 1385 /* 1386 * vm_map_find finds an unallocated region in the target address 1387 * map with the given length. The search is defined to be 1388 * first-fit from the specified address; the region found is 1389 * returned in the same parameter. 1390 * 1391 * If object is non-NULL, ref count must be bumped by caller 1392 * prior to making call to account for the new entry. 1393 */ 1394 int 1395 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1396 vm_offset_t *addr, /* IN/OUT */ 1397 vm_size_t length, int find_space, vm_prot_t prot, 1398 vm_prot_t max, int cow) 1399 { 1400 vm_offset_t start; 1401 int result; 1402 1403 start = *addr; 1404 vm_map_lock(map); 1405 do { 1406 if (find_space != VMFS_NO_SPACE) { 1407 if (vm_map_findspace(map, start, length, addr)) { 1408 vm_map_unlock(map); 1409 return (KERN_NO_SPACE); 1410 } 1411 switch (find_space) { 1412 case VMFS_ALIGNED_SPACE: 1413 pmap_align_superpage(object, offset, addr, 1414 length); 1415 break; 1416 #ifdef VMFS_TLB_ALIGNED_SPACE 1417 case VMFS_TLB_ALIGNED_SPACE: 1418 pmap_align_tlb(addr); 1419 break; 1420 #endif 1421 default: 1422 break; 1423 } 1424 1425 start = *addr; 1426 } 1427 result = vm_map_insert(map, object, offset, start, start + 1428 length, prot, max, cow); 1429 } while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE 1430 #ifdef VMFS_TLB_ALIGNED_SPACE 1431 || find_space == VMFS_TLB_ALIGNED_SPACE 1432 #endif 1433 )); 1434 vm_map_unlock(map); 1435 return (result); 1436 } 1437 1438 /* 1439 * vm_map_simplify_entry: 1440 * 1441 * Simplify the given map entry by merging with either neighbor. This 1442 * routine also has the ability to merge with both neighbors. 1443 * 1444 * The map must be locked. 1445 * 1446 * This routine guarentees that the passed entry remains valid (though 1447 * possibly extended). When merging, this routine may delete one or 1448 * both neighbors. 1449 */ 1450 void 1451 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1452 { 1453 vm_map_entry_t next, prev; 1454 vm_size_t prevsize, esize; 1455 1456 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1457 return; 1458 1459 prev = entry->prev; 1460 if (prev != &map->header) { 1461 prevsize = prev->end - prev->start; 1462 if ( (prev->end == entry->start) && 1463 (prev->object.vm_object == entry->object.vm_object) && 1464 (!prev->object.vm_object || 1465 (prev->offset + prevsize == entry->offset)) && 1466 (prev->eflags == entry->eflags) && 1467 (prev->protection == entry->protection) && 1468 (prev->max_protection == entry->max_protection) && 1469 (prev->inheritance == entry->inheritance) && 1470 (prev->wired_count == entry->wired_count) && 1471 (prev->uip == entry->uip)) { 1472 vm_map_entry_unlink(map, prev); 1473 entry->start = prev->start; 1474 entry->offset = prev->offset; 1475 if (entry->prev != &map->header) 1476 vm_map_entry_resize_free(map, entry->prev); 1477 1478 /* 1479 * If the backing object is a vnode object, 1480 * vm_object_deallocate() calls vrele(). 1481 * However, vrele() does not lock the vnode 1482 * because the vnode has additional 1483 * references. Thus, the map lock can be kept 1484 * without causing a lock-order reversal with 1485 * the vnode lock. 1486 */ 1487 if (prev->object.vm_object) 1488 vm_object_deallocate(prev->object.vm_object); 1489 if (prev->uip != NULL) 1490 uifree(prev->uip); 1491 vm_map_entry_dispose(map, prev); 1492 } 1493 } 1494 1495 next = entry->next; 1496 if (next != &map->header) { 1497 esize = entry->end - entry->start; 1498 if ((entry->end == next->start) && 1499 (next->object.vm_object == entry->object.vm_object) && 1500 (!entry->object.vm_object || 1501 (entry->offset + esize == next->offset)) && 1502 (next->eflags == entry->eflags) && 1503 (next->protection == entry->protection) && 1504 (next->max_protection == entry->max_protection) && 1505 (next->inheritance == entry->inheritance) && 1506 (next->wired_count == entry->wired_count) && 1507 (next->uip == entry->uip)) { 1508 vm_map_entry_unlink(map, next); 1509 entry->end = next->end; 1510 vm_map_entry_resize_free(map, entry); 1511 1512 /* 1513 * See comment above. 1514 */ 1515 if (next->object.vm_object) 1516 vm_object_deallocate(next->object.vm_object); 1517 if (next->uip != NULL) 1518 uifree(next->uip); 1519 vm_map_entry_dispose(map, next); 1520 } 1521 } 1522 } 1523 /* 1524 * vm_map_clip_start: [ internal use only ] 1525 * 1526 * Asserts that the given entry begins at or after 1527 * the specified address; if necessary, 1528 * it splits the entry into two. 1529 */ 1530 #define vm_map_clip_start(map, entry, startaddr) \ 1531 { \ 1532 if (startaddr > entry->start) \ 1533 _vm_map_clip_start(map, entry, startaddr); \ 1534 } 1535 1536 /* 1537 * This routine is called only when it is known that 1538 * the entry must be split. 1539 */ 1540 static void 1541 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1542 { 1543 vm_map_entry_t new_entry; 1544 1545 VM_MAP_ASSERT_LOCKED(map); 1546 1547 /* 1548 * Split off the front portion -- note that we must insert the new 1549 * entry BEFORE this one, so that this entry has the specified 1550 * starting address. 1551 */ 1552 vm_map_simplify_entry(map, entry); 1553 1554 /* 1555 * If there is no object backing this entry, we might as well create 1556 * one now. If we defer it, an object can get created after the map 1557 * is clipped, and individual objects will be created for the split-up 1558 * map. This is a bit of a hack, but is also about the best place to 1559 * put this improvement. 1560 */ 1561 if (entry->object.vm_object == NULL && !map->system_map) { 1562 vm_object_t object; 1563 object = vm_object_allocate(OBJT_DEFAULT, 1564 atop(entry->end - entry->start)); 1565 entry->object.vm_object = object; 1566 entry->offset = 0; 1567 if (entry->uip != NULL) { 1568 object->uip = entry->uip; 1569 object->charge = entry->end - entry->start; 1570 entry->uip = NULL; 1571 } 1572 } else if (entry->object.vm_object != NULL && 1573 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1574 entry->uip != NULL) { 1575 VM_OBJECT_LOCK(entry->object.vm_object); 1576 KASSERT(entry->object.vm_object->uip == NULL, 1577 ("OVERCOMMIT: vm_entry_clip_start: both uip e %p", entry)); 1578 entry->object.vm_object->uip = entry->uip; 1579 entry->object.vm_object->charge = entry->end - entry->start; 1580 VM_OBJECT_UNLOCK(entry->object.vm_object); 1581 entry->uip = NULL; 1582 } 1583 1584 new_entry = vm_map_entry_create(map); 1585 *new_entry = *entry; 1586 1587 new_entry->end = start; 1588 entry->offset += (start - entry->start); 1589 entry->start = start; 1590 if (new_entry->uip != NULL) 1591 uihold(entry->uip); 1592 1593 vm_map_entry_link(map, entry->prev, new_entry); 1594 1595 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1596 vm_object_reference(new_entry->object.vm_object); 1597 } 1598 } 1599 1600 /* 1601 * vm_map_clip_end: [ internal use only ] 1602 * 1603 * Asserts that the given entry ends at or before 1604 * the specified address; if necessary, 1605 * it splits the entry into two. 1606 */ 1607 #define vm_map_clip_end(map, entry, endaddr) \ 1608 { \ 1609 if ((endaddr) < (entry->end)) \ 1610 _vm_map_clip_end((map), (entry), (endaddr)); \ 1611 } 1612 1613 /* 1614 * This routine is called only when it is known that 1615 * the entry must be split. 1616 */ 1617 static void 1618 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1619 { 1620 vm_map_entry_t new_entry; 1621 1622 VM_MAP_ASSERT_LOCKED(map); 1623 1624 /* 1625 * If there is no object backing this entry, we might as well create 1626 * one now. If we defer it, an object can get created after the map 1627 * is clipped, and individual objects will be created for the split-up 1628 * map. This is a bit of a hack, but is also about the best place to 1629 * put this improvement. 1630 */ 1631 if (entry->object.vm_object == NULL && !map->system_map) { 1632 vm_object_t object; 1633 object = vm_object_allocate(OBJT_DEFAULT, 1634 atop(entry->end - entry->start)); 1635 entry->object.vm_object = object; 1636 entry->offset = 0; 1637 if (entry->uip != NULL) { 1638 object->uip = entry->uip; 1639 object->charge = entry->end - entry->start; 1640 entry->uip = NULL; 1641 } 1642 } else if (entry->object.vm_object != NULL && 1643 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1644 entry->uip != NULL) { 1645 VM_OBJECT_LOCK(entry->object.vm_object); 1646 KASSERT(entry->object.vm_object->uip == NULL, 1647 ("OVERCOMMIT: vm_entry_clip_end: both uip e %p", entry)); 1648 entry->object.vm_object->uip = entry->uip; 1649 entry->object.vm_object->charge = entry->end - entry->start; 1650 VM_OBJECT_UNLOCK(entry->object.vm_object); 1651 entry->uip = NULL; 1652 } 1653 1654 /* 1655 * Create a new entry and insert it AFTER the specified entry 1656 */ 1657 new_entry = vm_map_entry_create(map); 1658 *new_entry = *entry; 1659 1660 new_entry->start = entry->end = end; 1661 new_entry->offset += (end - entry->start); 1662 if (new_entry->uip != NULL) 1663 uihold(entry->uip); 1664 1665 vm_map_entry_link(map, entry, new_entry); 1666 1667 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1668 vm_object_reference(new_entry->object.vm_object); 1669 } 1670 } 1671 1672 /* 1673 * vm_map_submap: [ kernel use only ] 1674 * 1675 * Mark the given range as handled by a subordinate map. 1676 * 1677 * This range must have been created with vm_map_find, 1678 * and no other operations may have been performed on this 1679 * range prior to calling vm_map_submap. 1680 * 1681 * Only a limited number of operations can be performed 1682 * within this rage after calling vm_map_submap: 1683 * vm_fault 1684 * [Don't try vm_map_copy!] 1685 * 1686 * To remove a submapping, one must first remove the 1687 * range from the superior map, and then destroy the 1688 * submap (if desired). [Better yet, don't try it.] 1689 */ 1690 int 1691 vm_map_submap( 1692 vm_map_t map, 1693 vm_offset_t start, 1694 vm_offset_t end, 1695 vm_map_t submap) 1696 { 1697 vm_map_entry_t entry; 1698 int result = KERN_INVALID_ARGUMENT; 1699 1700 vm_map_lock(map); 1701 1702 VM_MAP_RANGE_CHECK(map, start, end); 1703 1704 if (vm_map_lookup_entry(map, start, &entry)) { 1705 vm_map_clip_start(map, entry, start); 1706 } else 1707 entry = entry->next; 1708 1709 vm_map_clip_end(map, entry, end); 1710 1711 if ((entry->start == start) && (entry->end == end) && 1712 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1713 (entry->object.vm_object == NULL)) { 1714 entry->object.sub_map = submap; 1715 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1716 result = KERN_SUCCESS; 1717 } 1718 vm_map_unlock(map); 1719 1720 return (result); 1721 } 1722 1723 /* 1724 * The maximum number of pages to map 1725 */ 1726 #define MAX_INIT_PT 96 1727 1728 /* 1729 * vm_map_pmap_enter: 1730 * 1731 * Preload read-only mappings for the given object's resident pages into 1732 * the given map. This eliminates the soft faults on process startup and 1733 * immediately after an mmap(2). Because these are speculative mappings, 1734 * cached pages are not reactivated and mapped. 1735 */ 1736 void 1737 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1738 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1739 { 1740 vm_offset_t start; 1741 vm_page_t p, p_start; 1742 vm_pindex_t psize, tmpidx; 1743 1744 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1745 return; 1746 VM_OBJECT_LOCK(object); 1747 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1748 pmap_object_init_pt(map->pmap, addr, object, pindex, size); 1749 goto unlock_return; 1750 } 1751 1752 psize = atop(size); 1753 1754 if ((flags & MAP_PREFAULT_PARTIAL) && psize > MAX_INIT_PT && 1755 object->resident_page_count > MAX_INIT_PT) 1756 goto unlock_return; 1757 1758 if (psize + pindex > object->size) { 1759 if (object->size < pindex) 1760 goto unlock_return; 1761 psize = object->size - pindex; 1762 } 1763 1764 start = 0; 1765 p_start = NULL; 1766 1767 p = vm_page_find_least(object, pindex); 1768 /* 1769 * Assert: the variable p is either (1) the page with the 1770 * least pindex greater than or equal to the parameter pindex 1771 * or (2) NULL. 1772 */ 1773 for (; 1774 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1775 p = TAILQ_NEXT(p, listq)) { 1776 /* 1777 * don't allow an madvise to blow away our really 1778 * free pages allocating pv entries. 1779 */ 1780 if ((flags & MAP_PREFAULT_MADVISE) && 1781 cnt.v_free_count < cnt.v_free_reserved) { 1782 psize = tmpidx; 1783 break; 1784 } 1785 if (p->valid == VM_PAGE_BITS_ALL) { 1786 if (p_start == NULL) { 1787 start = addr + ptoa(tmpidx); 1788 p_start = p; 1789 } 1790 } else if (p_start != NULL) { 1791 pmap_enter_object(map->pmap, start, addr + 1792 ptoa(tmpidx), p_start, prot); 1793 p_start = NULL; 1794 } 1795 } 1796 if (p_start != NULL) 1797 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1798 p_start, prot); 1799 unlock_return: 1800 VM_OBJECT_UNLOCK(object); 1801 } 1802 1803 /* 1804 * vm_map_protect: 1805 * 1806 * Sets the protection of the specified address 1807 * region in the target map. If "set_max" is 1808 * specified, the maximum protection is to be set; 1809 * otherwise, only the current protection is affected. 1810 */ 1811 int 1812 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1813 vm_prot_t new_prot, boolean_t set_max) 1814 { 1815 vm_map_entry_t current, entry; 1816 vm_object_t obj; 1817 struct uidinfo *uip; 1818 vm_prot_t old_prot; 1819 1820 vm_map_lock(map); 1821 1822 VM_MAP_RANGE_CHECK(map, start, end); 1823 1824 if (vm_map_lookup_entry(map, start, &entry)) { 1825 vm_map_clip_start(map, entry, start); 1826 } else { 1827 entry = entry->next; 1828 } 1829 1830 /* 1831 * Make a first pass to check for protection violations. 1832 */ 1833 current = entry; 1834 while ((current != &map->header) && (current->start < end)) { 1835 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1836 vm_map_unlock(map); 1837 return (KERN_INVALID_ARGUMENT); 1838 } 1839 if ((new_prot & current->max_protection) != new_prot) { 1840 vm_map_unlock(map); 1841 return (KERN_PROTECTION_FAILURE); 1842 } 1843 current = current->next; 1844 } 1845 1846 1847 /* 1848 * Do an accounting pass for private read-only mappings that 1849 * now will do cow due to allowed write (e.g. debugger sets 1850 * breakpoint on text segment) 1851 */ 1852 for (current = entry; (current != &map->header) && 1853 (current->start < end); current = current->next) { 1854 1855 vm_map_clip_end(map, current, end); 1856 1857 if (set_max || 1858 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1859 ENTRY_CHARGED(current)) { 1860 continue; 1861 } 1862 1863 uip = curthread->td_ucred->cr_ruidinfo; 1864 obj = current->object.vm_object; 1865 1866 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1867 if (!swap_reserve(current->end - current->start)) { 1868 vm_map_unlock(map); 1869 return (KERN_RESOURCE_SHORTAGE); 1870 } 1871 uihold(uip); 1872 current->uip = uip; 1873 continue; 1874 } 1875 1876 VM_OBJECT_LOCK(obj); 1877 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1878 VM_OBJECT_UNLOCK(obj); 1879 continue; 1880 } 1881 1882 /* 1883 * Charge for the whole object allocation now, since 1884 * we cannot distinguish between non-charged and 1885 * charged clipped mapping of the same object later. 1886 */ 1887 KASSERT(obj->charge == 0, 1888 ("vm_map_protect: object %p overcharged\n", obj)); 1889 if (!swap_reserve(ptoa(obj->size))) { 1890 VM_OBJECT_UNLOCK(obj); 1891 vm_map_unlock(map); 1892 return (KERN_RESOURCE_SHORTAGE); 1893 } 1894 1895 uihold(uip); 1896 obj->uip = uip; 1897 obj->charge = ptoa(obj->size); 1898 VM_OBJECT_UNLOCK(obj); 1899 } 1900 1901 /* 1902 * Go back and fix up protections. [Note that clipping is not 1903 * necessary the second time.] 1904 */ 1905 current = entry; 1906 while ((current != &map->header) && (current->start < end)) { 1907 old_prot = current->protection; 1908 1909 if (set_max) 1910 current->protection = 1911 (current->max_protection = new_prot) & 1912 old_prot; 1913 else 1914 current->protection = new_prot; 1915 1916 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1917 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1918 (current->protection & VM_PROT_WRITE) != 0 && 1919 (old_prot & VM_PROT_WRITE) == 0) { 1920 vm_fault_copy_entry(map, map, current, current, NULL); 1921 } 1922 1923 /* 1924 * When restricting access, update the physical map. Worry 1925 * about copy-on-write here. 1926 */ 1927 if ((old_prot & ~current->protection) != 0) { 1928 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1929 VM_PROT_ALL) 1930 pmap_protect(map->pmap, current->start, 1931 current->end, 1932 current->protection & MASK(current)); 1933 #undef MASK 1934 } 1935 vm_map_simplify_entry(map, current); 1936 current = current->next; 1937 } 1938 vm_map_unlock(map); 1939 return (KERN_SUCCESS); 1940 } 1941 1942 /* 1943 * vm_map_madvise: 1944 * 1945 * This routine traverses a processes map handling the madvise 1946 * system call. Advisories are classified as either those effecting 1947 * the vm_map_entry structure, or those effecting the underlying 1948 * objects. 1949 */ 1950 int 1951 vm_map_madvise( 1952 vm_map_t map, 1953 vm_offset_t start, 1954 vm_offset_t end, 1955 int behav) 1956 { 1957 vm_map_entry_t current, entry; 1958 int modify_map = 0; 1959 1960 /* 1961 * Some madvise calls directly modify the vm_map_entry, in which case 1962 * we need to use an exclusive lock on the map and we need to perform 1963 * various clipping operations. Otherwise we only need a read-lock 1964 * on the map. 1965 */ 1966 switch(behav) { 1967 case MADV_NORMAL: 1968 case MADV_SEQUENTIAL: 1969 case MADV_RANDOM: 1970 case MADV_NOSYNC: 1971 case MADV_AUTOSYNC: 1972 case MADV_NOCORE: 1973 case MADV_CORE: 1974 modify_map = 1; 1975 vm_map_lock(map); 1976 break; 1977 case MADV_WILLNEED: 1978 case MADV_DONTNEED: 1979 case MADV_FREE: 1980 vm_map_lock_read(map); 1981 break; 1982 default: 1983 return (KERN_INVALID_ARGUMENT); 1984 } 1985 1986 /* 1987 * Locate starting entry and clip if necessary. 1988 */ 1989 VM_MAP_RANGE_CHECK(map, start, end); 1990 1991 if (vm_map_lookup_entry(map, start, &entry)) { 1992 if (modify_map) 1993 vm_map_clip_start(map, entry, start); 1994 } else { 1995 entry = entry->next; 1996 } 1997 1998 if (modify_map) { 1999 /* 2000 * madvise behaviors that are implemented in the vm_map_entry. 2001 * 2002 * We clip the vm_map_entry so that behavioral changes are 2003 * limited to the specified address range. 2004 */ 2005 for (current = entry; 2006 (current != &map->header) && (current->start < end); 2007 current = current->next 2008 ) { 2009 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2010 continue; 2011 2012 vm_map_clip_end(map, current, end); 2013 2014 switch (behav) { 2015 case MADV_NORMAL: 2016 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2017 break; 2018 case MADV_SEQUENTIAL: 2019 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2020 break; 2021 case MADV_RANDOM: 2022 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2023 break; 2024 case MADV_NOSYNC: 2025 current->eflags |= MAP_ENTRY_NOSYNC; 2026 break; 2027 case MADV_AUTOSYNC: 2028 current->eflags &= ~MAP_ENTRY_NOSYNC; 2029 break; 2030 case MADV_NOCORE: 2031 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2032 break; 2033 case MADV_CORE: 2034 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2035 break; 2036 default: 2037 break; 2038 } 2039 vm_map_simplify_entry(map, current); 2040 } 2041 vm_map_unlock(map); 2042 } else { 2043 vm_pindex_t pindex; 2044 int count; 2045 2046 /* 2047 * madvise behaviors that are implemented in the underlying 2048 * vm_object. 2049 * 2050 * Since we don't clip the vm_map_entry, we have to clip 2051 * the vm_object pindex and count. 2052 */ 2053 for (current = entry; 2054 (current != &map->header) && (current->start < end); 2055 current = current->next 2056 ) { 2057 vm_offset_t useStart; 2058 2059 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2060 continue; 2061 2062 pindex = OFF_TO_IDX(current->offset); 2063 count = atop(current->end - current->start); 2064 useStart = current->start; 2065 2066 if (current->start < start) { 2067 pindex += atop(start - current->start); 2068 count -= atop(start - current->start); 2069 useStart = start; 2070 } 2071 if (current->end > end) 2072 count -= atop(current->end - end); 2073 2074 if (count <= 0) 2075 continue; 2076 2077 vm_object_madvise(current->object.vm_object, 2078 pindex, count, behav); 2079 if (behav == MADV_WILLNEED) { 2080 vm_map_pmap_enter(map, 2081 useStart, 2082 current->protection, 2083 current->object.vm_object, 2084 pindex, 2085 (count << PAGE_SHIFT), 2086 MAP_PREFAULT_MADVISE 2087 ); 2088 } 2089 } 2090 vm_map_unlock_read(map); 2091 } 2092 return (0); 2093 } 2094 2095 2096 /* 2097 * vm_map_inherit: 2098 * 2099 * Sets the inheritance of the specified address 2100 * range in the target map. Inheritance 2101 * affects how the map will be shared with 2102 * child maps at the time of vmspace_fork. 2103 */ 2104 int 2105 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2106 vm_inherit_t new_inheritance) 2107 { 2108 vm_map_entry_t entry; 2109 vm_map_entry_t temp_entry; 2110 2111 switch (new_inheritance) { 2112 case VM_INHERIT_NONE: 2113 case VM_INHERIT_COPY: 2114 case VM_INHERIT_SHARE: 2115 break; 2116 default: 2117 return (KERN_INVALID_ARGUMENT); 2118 } 2119 vm_map_lock(map); 2120 VM_MAP_RANGE_CHECK(map, start, end); 2121 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2122 entry = temp_entry; 2123 vm_map_clip_start(map, entry, start); 2124 } else 2125 entry = temp_entry->next; 2126 while ((entry != &map->header) && (entry->start < end)) { 2127 vm_map_clip_end(map, entry, end); 2128 entry->inheritance = new_inheritance; 2129 vm_map_simplify_entry(map, entry); 2130 entry = entry->next; 2131 } 2132 vm_map_unlock(map); 2133 return (KERN_SUCCESS); 2134 } 2135 2136 /* 2137 * vm_map_unwire: 2138 * 2139 * Implements both kernel and user unwiring. 2140 */ 2141 int 2142 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2143 int flags) 2144 { 2145 vm_map_entry_t entry, first_entry, tmp_entry; 2146 vm_offset_t saved_start; 2147 unsigned int last_timestamp; 2148 int rv; 2149 boolean_t need_wakeup, result, user_unwire; 2150 2151 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2152 vm_map_lock(map); 2153 VM_MAP_RANGE_CHECK(map, start, end); 2154 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2155 if (flags & VM_MAP_WIRE_HOLESOK) 2156 first_entry = first_entry->next; 2157 else { 2158 vm_map_unlock(map); 2159 return (KERN_INVALID_ADDRESS); 2160 } 2161 } 2162 last_timestamp = map->timestamp; 2163 entry = first_entry; 2164 while (entry != &map->header && entry->start < end) { 2165 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2166 /* 2167 * We have not yet clipped the entry. 2168 */ 2169 saved_start = (start >= entry->start) ? start : 2170 entry->start; 2171 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2172 if (vm_map_unlock_and_wait(map, 0)) { 2173 /* 2174 * Allow interruption of user unwiring? 2175 */ 2176 } 2177 vm_map_lock(map); 2178 if (last_timestamp+1 != map->timestamp) { 2179 /* 2180 * Look again for the entry because the map was 2181 * modified while it was unlocked. 2182 * Specifically, the entry may have been 2183 * clipped, merged, or deleted. 2184 */ 2185 if (!vm_map_lookup_entry(map, saved_start, 2186 &tmp_entry)) { 2187 if (flags & VM_MAP_WIRE_HOLESOK) 2188 tmp_entry = tmp_entry->next; 2189 else { 2190 if (saved_start == start) { 2191 /* 2192 * First_entry has been deleted. 2193 */ 2194 vm_map_unlock(map); 2195 return (KERN_INVALID_ADDRESS); 2196 } 2197 end = saved_start; 2198 rv = KERN_INVALID_ADDRESS; 2199 goto done; 2200 } 2201 } 2202 if (entry == first_entry) 2203 first_entry = tmp_entry; 2204 else 2205 first_entry = NULL; 2206 entry = tmp_entry; 2207 } 2208 last_timestamp = map->timestamp; 2209 continue; 2210 } 2211 vm_map_clip_start(map, entry, start); 2212 vm_map_clip_end(map, entry, end); 2213 /* 2214 * Mark the entry in case the map lock is released. (See 2215 * above.) 2216 */ 2217 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2218 /* 2219 * Check the map for holes in the specified region. 2220 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2221 */ 2222 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2223 (entry->end < end && (entry->next == &map->header || 2224 entry->next->start > entry->end))) { 2225 end = entry->end; 2226 rv = KERN_INVALID_ADDRESS; 2227 goto done; 2228 } 2229 /* 2230 * If system unwiring, require that the entry is system wired. 2231 */ 2232 if (!user_unwire && 2233 vm_map_entry_system_wired_count(entry) == 0) { 2234 end = entry->end; 2235 rv = KERN_INVALID_ARGUMENT; 2236 goto done; 2237 } 2238 entry = entry->next; 2239 } 2240 rv = KERN_SUCCESS; 2241 done: 2242 need_wakeup = FALSE; 2243 if (first_entry == NULL) { 2244 result = vm_map_lookup_entry(map, start, &first_entry); 2245 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2246 first_entry = first_entry->next; 2247 else 2248 KASSERT(result, ("vm_map_unwire: lookup failed")); 2249 } 2250 entry = first_entry; 2251 while (entry != &map->header && entry->start < end) { 2252 if (rv == KERN_SUCCESS && (!user_unwire || 2253 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2254 if (user_unwire) 2255 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2256 entry->wired_count--; 2257 if (entry->wired_count == 0) { 2258 /* 2259 * Retain the map lock. 2260 */ 2261 vm_fault_unwire(map, entry->start, entry->end, 2262 entry->object.vm_object != NULL && 2263 (entry->object.vm_object->type == OBJT_DEVICE || 2264 entry->object.vm_object->type == OBJT_SG)); 2265 } 2266 } 2267 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2268 ("vm_map_unwire: in-transition flag missing")); 2269 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2270 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2271 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2272 need_wakeup = TRUE; 2273 } 2274 vm_map_simplify_entry(map, entry); 2275 entry = entry->next; 2276 } 2277 vm_map_unlock(map); 2278 if (need_wakeup) 2279 vm_map_wakeup(map); 2280 return (rv); 2281 } 2282 2283 /* 2284 * vm_map_wire: 2285 * 2286 * Implements both kernel and user wiring. 2287 */ 2288 int 2289 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2290 int flags) 2291 { 2292 vm_map_entry_t entry, first_entry, tmp_entry; 2293 vm_offset_t saved_end, saved_start; 2294 unsigned int last_timestamp; 2295 int rv; 2296 boolean_t fictitious, need_wakeup, result, user_wire; 2297 2298 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2299 vm_map_lock(map); 2300 VM_MAP_RANGE_CHECK(map, start, end); 2301 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2302 if (flags & VM_MAP_WIRE_HOLESOK) 2303 first_entry = first_entry->next; 2304 else { 2305 vm_map_unlock(map); 2306 return (KERN_INVALID_ADDRESS); 2307 } 2308 } 2309 last_timestamp = map->timestamp; 2310 entry = first_entry; 2311 while (entry != &map->header && entry->start < end) { 2312 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2313 /* 2314 * We have not yet clipped the entry. 2315 */ 2316 saved_start = (start >= entry->start) ? start : 2317 entry->start; 2318 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2319 if (vm_map_unlock_and_wait(map, 0)) { 2320 /* 2321 * Allow interruption of user wiring? 2322 */ 2323 } 2324 vm_map_lock(map); 2325 if (last_timestamp + 1 != map->timestamp) { 2326 /* 2327 * Look again for the entry because the map was 2328 * modified while it was unlocked. 2329 * Specifically, the entry may have been 2330 * clipped, merged, or deleted. 2331 */ 2332 if (!vm_map_lookup_entry(map, saved_start, 2333 &tmp_entry)) { 2334 if (flags & VM_MAP_WIRE_HOLESOK) 2335 tmp_entry = tmp_entry->next; 2336 else { 2337 if (saved_start == start) { 2338 /* 2339 * first_entry has been deleted. 2340 */ 2341 vm_map_unlock(map); 2342 return (KERN_INVALID_ADDRESS); 2343 } 2344 end = saved_start; 2345 rv = KERN_INVALID_ADDRESS; 2346 goto done; 2347 } 2348 } 2349 if (entry == first_entry) 2350 first_entry = tmp_entry; 2351 else 2352 first_entry = NULL; 2353 entry = tmp_entry; 2354 } 2355 last_timestamp = map->timestamp; 2356 continue; 2357 } 2358 vm_map_clip_start(map, entry, start); 2359 vm_map_clip_end(map, entry, end); 2360 /* 2361 * Mark the entry in case the map lock is released. (See 2362 * above.) 2363 */ 2364 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2365 /* 2366 * 2367 */ 2368 if (entry->wired_count == 0) { 2369 if ((entry->protection & (VM_PROT_READ|VM_PROT_EXECUTE)) 2370 == 0) { 2371 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2372 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2373 end = entry->end; 2374 rv = KERN_INVALID_ADDRESS; 2375 goto done; 2376 } 2377 goto next_entry; 2378 } 2379 entry->wired_count++; 2380 saved_start = entry->start; 2381 saved_end = entry->end; 2382 fictitious = entry->object.vm_object != NULL && 2383 (entry->object.vm_object->type == OBJT_DEVICE || 2384 entry->object.vm_object->type == OBJT_SG); 2385 /* 2386 * Release the map lock, relying on the in-transition 2387 * mark. 2388 */ 2389 vm_map_unlock(map); 2390 rv = vm_fault_wire(map, saved_start, saved_end, 2391 fictitious); 2392 vm_map_lock(map); 2393 if (last_timestamp + 1 != map->timestamp) { 2394 /* 2395 * Look again for the entry because the map was 2396 * modified while it was unlocked. The entry 2397 * may have been clipped, but NOT merged or 2398 * deleted. 2399 */ 2400 result = vm_map_lookup_entry(map, saved_start, 2401 &tmp_entry); 2402 KASSERT(result, ("vm_map_wire: lookup failed")); 2403 if (entry == first_entry) 2404 first_entry = tmp_entry; 2405 else 2406 first_entry = NULL; 2407 entry = tmp_entry; 2408 while (entry->end < saved_end) { 2409 if (rv != KERN_SUCCESS) { 2410 KASSERT(entry->wired_count == 1, 2411 ("vm_map_wire: bad count")); 2412 entry->wired_count = -1; 2413 } 2414 entry = entry->next; 2415 } 2416 } 2417 last_timestamp = map->timestamp; 2418 if (rv != KERN_SUCCESS) { 2419 KASSERT(entry->wired_count == 1, 2420 ("vm_map_wire: bad count")); 2421 /* 2422 * Assign an out-of-range value to represent 2423 * the failure to wire this entry. 2424 */ 2425 entry->wired_count = -1; 2426 end = entry->end; 2427 goto done; 2428 } 2429 } else if (!user_wire || 2430 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2431 entry->wired_count++; 2432 } 2433 /* 2434 * Check the map for holes in the specified region. 2435 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2436 */ 2437 next_entry: 2438 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2439 (entry->end < end && (entry->next == &map->header || 2440 entry->next->start > entry->end))) { 2441 end = entry->end; 2442 rv = KERN_INVALID_ADDRESS; 2443 goto done; 2444 } 2445 entry = entry->next; 2446 } 2447 rv = KERN_SUCCESS; 2448 done: 2449 need_wakeup = FALSE; 2450 if (first_entry == NULL) { 2451 result = vm_map_lookup_entry(map, start, &first_entry); 2452 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2453 first_entry = first_entry->next; 2454 else 2455 KASSERT(result, ("vm_map_wire: lookup failed")); 2456 } 2457 entry = first_entry; 2458 while (entry != &map->header && entry->start < end) { 2459 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2460 goto next_entry_done; 2461 if (rv == KERN_SUCCESS) { 2462 if (user_wire) 2463 entry->eflags |= MAP_ENTRY_USER_WIRED; 2464 } else if (entry->wired_count == -1) { 2465 /* 2466 * Wiring failed on this entry. Thus, unwiring is 2467 * unnecessary. 2468 */ 2469 entry->wired_count = 0; 2470 } else { 2471 if (!user_wire || 2472 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2473 entry->wired_count--; 2474 if (entry->wired_count == 0) { 2475 /* 2476 * Retain the map lock. 2477 */ 2478 vm_fault_unwire(map, entry->start, entry->end, 2479 entry->object.vm_object != NULL && 2480 (entry->object.vm_object->type == OBJT_DEVICE || 2481 entry->object.vm_object->type == OBJT_SG)); 2482 } 2483 } 2484 next_entry_done: 2485 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2486 ("vm_map_wire: in-transition flag missing")); 2487 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED); 2488 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2489 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2490 need_wakeup = TRUE; 2491 } 2492 vm_map_simplify_entry(map, entry); 2493 entry = entry->next; 2494 } 2495 vm_map_unlock(map); 2496 if (need_wakeup) 2497 vm_map_wakeup(map); 2498 return (rv); 2499 } 2500 2501 /* 2502 * vm_map_sync 2503 * 2504 * Push any dirty cached pages in the address range to their pager. 2505 * If syncio is TRUE, dirty pages are written synchronously. 2506 * If invalidate is TRUE, any cached pages are freed as well. 2507 * 2508 * If the size of the region from start to end is zero, we are 2509 * supposed to flush all modified pages within the region containing 2510 * start. Unfortunately, a region can be split or coalesced with 2511 * neighboring regions, making it difficult to determine what the 2512 * original region was. Therefore, we approximate this requirement by 2513 * flushing the current region containing start. 2514 * 2515 * Returns an error if any part of the specified range is not mapped. 2516 */ 2517 int 2518 vm_map_sync( 2519 vm_map_t map, 2520 vm_offset_t start, 2521 vm_offset_t end, 2522 boolean_t syncio, 2523 boolean_t invalidate) 2524 { 2525 vm_map_entry_t current; 2526 vm_map_entry_t entry; 2527 vm_size_t size; 2528 vm_object_t object; 2529 vm_ooffset_t offset; 2530 unsigned int last_timestamp; 2531 2532 vm_map_lock_read(map); 2533 VM_MAP_RANGE_CHECK(map, start, end); 2534 if (!vm_map_lookup_entry(map, start, &entry)) { 2535 vm_map_unlock_read(map); 2536 return (KERN_INVALID_ADDRESS); 2537 } else if (start == end) { 2538 start = entry->start; 2539 end = entry->end; 2540 } 2541 /* 2542 * Make a first pass to check for user-wired memory and holes. 2543 */ 2544 for (current = entry; current != &map->header && current->start < end; 2545 current = current->next) { 2546 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2547 vm_map_unlock_read(map); 2548 return (KERN_INVALID_ARGUMENT); 2549 } 2550 if (end > current->end && 2551 (current->next == &map->header || 2552 current->end != current->next->start)) { 2553 vm_map_unlock_read(map); 2554 return (KERN_INVALID_ADDRESS); 2555 } 2556 } 2557 2558 if (invalidate) 2559 pmap_remove(map->pmap, start, end); 2560 2561 /* 2562 * Make a second pass, cleaning/uncaching pages from the indicated 2563 * objects as we go. 2564 */ 2565 for (current = entry; current != &map->header && current->start < end;) { 2566 offset = current->offset + (start - current->start); 2567 size = (end <= current->end ? end : current->end) - start; 2568 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2569 vm_map_t smap; 2570 vm_map_entry_t tentry; 2571 vm_size_t tsize; 2572 2573 smap = current->object.sub_map; 2574 vm_map_lock_read(smap); 2575 (void) vm_map_lookup_entry(smap, offset, &tentry); 2576 tsize = tentry->end - offset; 2577 if (tsize < size) 2578 size = tsize; 2579 object = tentry->object.vm_object; 2580 offset = tentry->offset + (offset - tentry->start); 2581 vm_map_unlock_read(smap); 2582 } else { 2583 object = current->object.vm_object; 2584 } 2585 vm_object_reference(object); 2586 last_timestamp = map->timestamp; 2587 vm_map_unlock_read(map); 2588 vm_object_sync(object, offset, size, syncio, invalidate); 2589 start += size; 2590 vm_object_deallocate(object); 2591 vm_map_lock_read(map); 2592 if (last_timestamp == map->timestamp || 2593 !vm_map_lookup_entry(map, start, ¤t)) 2594 current = current->next; 2595 } 2596 2597 vm_map_unlock_read(map); 2598 return (KERN_SUCCESS); 2599 } 2600 2601 /* 2602 * vm_map_entry_unwire: [ internal use only ] 2603 * 2604 * Make the region specified by this entry pageable. 2605 * 2606 * The map in question should be locked. 2607 * [This is the reason for this routine's existence.] 2608 */ 2609 static void 2610 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2611 { 2612 vm_fault_unwire(map, entry->start, entry->end, 2613 entry->object.vm_object != NULL && 2614 (entry->object.vm_object->type == OBJT_DEVICE || 2615 entry->object.vm_object->type == OBJT_SG)); 2616 entry->wired_count = 0; 2617 } 2618 2619 static void 2620 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2621 { 2622 2623 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2624 vm_object_deallocate(entry->object.vm_object); 2625 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2626 } 2627 2628 /* 2629 * vm_map_entry_delete: [ internal use only ] 2630 * 2631 * Deallocate the given entry from the target map. 2632 */ 2633 static void 2634 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2635 { 2636 vm_object_t object; 2637 vm_pindex_t offidxstart, offidxend, count, size1; 2638 vm_ooffset_t size; 2639 2640 vm_map_entry_unlink(map, entry); 2641 object = entry->object.vm_object; 2642 size = entry->end - entry->start; 2643 map->size -= size; 2644 2645 if (entry->uip != NULL) { 2646 swap_release_by_uid(size, entry->uip); 2647 uifree(entry->uip); 2648 } 2649 2650 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2651 (object != NULL)) { 2652 KASSERT(entry->uip == NULL || object->uip == NULL || 2653 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2654 ("OVERCOMMIT vm_map_entry_delete: both uip %p", entry)); 2655 count = OFF_TO_IDX(size); 2656 offidxstart = OFF_TO_IDX(entry->offset); 2657 offidxend = offidxstart + count; 2658 VM_OBJECT_LOCK(object); 2659 if (object->ref_count != 1 && 2660 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2661 object == kernel_object || object == kmem_object)) { 2662 vm_object_collapse(object); 2663 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2664 if (object->type == OBJT_SWAP) 2665 swap_pager_freespace(object, offidxstart, count); 2666 if (offidxend >= object->size && 2667 offidxstart < object->size) { 2668 size1 = object->size; 2669 object->size = offidxstart; 2670 if (object->uip != NULL) { 2671 size1 -= object->size; 2672 KASSERT(object->charge >= ptoa(size1), 2673 ("vm_map_entry_delete: object->charge < 0")); 2674 swap_release_by_uid(ptoa(size1), object->uip); 2675 object->charge -= ptoa(size1); 2676 } 2677 } 2678 } 2679 VM_OBJECT_UNLOCK(object); 2680 } else 2681 entry->object.vm_object = NULL; 2682 if (map->system_map) 2683 vm_map_entry_deallocate(entry, TRUE); 2684 else { 2685 entry->next = curthread->td_map_def_user; 2686 curthread->td_map_def_user = entry; 2687 } 2688 } 2689 2690 /* 2691 * vm_map_delete: [ internal use only ] 2692 * 2693 * Deallocates the given address range from the target 2694 * map. 2695 */ 2696 int 2697 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2698 { 2699 vm_map_entry_t entry; 2700 vm_map_entry_t first_entry; 2701 2702 VM_MAP_ASSERT_LOCKED(map); 2703 2704 /* 2705 * Find the start of the region, and clip it 2706 */ 2707 if (!vm_map_lookup_entry(map, start, &first_entry)) 2708 entry = first_entry->next; 2709 else { 2710 entry = first_entry; 2711 vm_map_clip_start(map, entry, start); 2712 } 2713 2714 /* 2715 * Step through all entries in this region 2716 */ 2717 while ((entry != &map->header) && (entry->start < end)) { 2718 vm_map_entry_t next; 2719 2720 /* 2721 * Wait for wiring or unwiring of an entry to complete. 2722 * Also wait for any system wirings to disappear on 2723 * user maps. 2724 */ 2725 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2726 (vm_map_pmap(map) != kernel_pmap && 2727 vm_map_entry_system_wired_count(entry) != 0)) { 2728 unsigned int last_timestamp; 2729 vm_offset_t saved_start; 2730 vm_map_entry_t tmp_entry; 2731 2732 saved_start = entry->start; 2733 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2734 last_timestamp = map->timestamp; 2735 (void) vm_map_unlock_and_wait(map, 0); 2736 vm_map_lock(map); 2737 if (last_timestamp + 1 != map->timestamp) { 2738 /* 2739 * Look again for the entry because the map was 2740 * modified while it was unlocked. 2741 * Specifically, the entry may have been 2742 * clipped, merged, or deleted. 2743 */ 2744 if (!vm_map_lookup_entry(map, saved_start, 2745 &tmp_entry)) 2746 entry = tmp_entry->next; 2747 else { 2748 entry = tmp_entry; 2749 vm_map_clip_start(map, entry, 2750 saved_start); 2751 } 2752 } 2753 continue; 2754 } 2755 vm_map_clip_end(map, entry, end); 2756 2757 next = entry->next; 2758 2759 /* 2760 * Unwire before removing addresses from the pmap; otherwise, 2761 * unwiring will put the entries back in the pmap. 2762 */ 2763 if (entry->wired_count != 0) { 2764 vm_map_entry_unwire(map, entry); 2765 } 2766 2767 pmap_remove(map->pmap, entry->start, entry->end); 2768 2769 /* 2770 * Delete the entry only after removing all pmap 2771 * entries pointing to its pages. (Otherwise, its 2772 * page frames may be reallocated, and any modify bits 2773 * will be set in the wrong object!) 2774 */ 2775 vm_map_entry_delete(map, entry); 2776 entry = next; 2777 } 2778 return (KERN_SUCCESS); 2779 } 2780 2781 /* 2782 * vm_map_remove: 2783 * 2784 * Remove the given address range from the target map. 2785 * This is the exported form of vm_map_delete. 2786 */ 2787 int 2788 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2789 { 2790 int result; 2791 2792 vm_map_lock(map); 2793 VM_MAP_RANGE_CHECK(map, start, end); 2794 result = vm_map_delete(map, start, end); 2795 vm_map_unlock(map); 2796 return (result); 2797 } 2798 2799 /* 2800 * vm_map_check_protection: 2801 * 2802 * Assert that the target map allows the specified privilege on the 2803 * entire address region given. The entire region must be allocated. 2804 * 2805 * WARNING! This code does not and should not check whether the 2806 * contents of the region is accessible. For example a smaller file 2807 * might be mapped into a larger address space. 2808 * 2809 * NOTE! This code is also called by munmap(). 2810 * 2811 * The map must be locked. A read lock is sufficient. 2812 */ 2813 boolean_t 2814 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2815 vm_prot_t protection) 2816 { 2817 vm_map_entry_t entry; 2818 vm_map_entry_t tmp_entry; 2819 2820 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2821 return (FALSE); 2822 entry = tmp_entry; 2823 2824 while (start < end) { 2825 if (entry == &map->header) 2826 return (FALSE); 2827 /* 2828 * No holes allowed! 2829 */ 2830 if (start < entry->start) 2831 return (FALSE); 2832 /* 2833 * Check protection associated with entry. 2834 */ 2835 if ((entry->protection & protection) != protection) 2836 return (FALSE); 2837 /* go to next entry */ 2838 start = entry->end; 2839 entry = entry->next; 2840 } 2841 return (TRUE); 2842 } 2843 2844 /* 2845 * vm_map_copy_entry: 2846 * 2847 * Copies the contents of the source entry to the destination 2848 * entry. The entries *must* be aligned properly. 2849 */ 2850 static void 2851 vm_map_copy_entry( 2852 vm_map_t src_map, 2853 vm_map_t dst_map, 2854 vm_map_entry_t src_entry, 2855 vm_map_entry_t dst_entry, 2856 vm_ooffset_t *fork_charge) 2857 { 2858 vm_object_t src_object; 2859 vm_offset_t size; 2860 struct uidinfo *uip; 2861 int charged; 2862 2863 VM_MAP_ASSERT_LOCKED(dst_map); 2864 2865 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2866 return; 2867 2868 if (src_entry->wired_count == 0) { 2869 2870 /* 2871 * If the source entry is marked needs_copy, it is already 2872 * write-protected. 2873 */ 2874 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2875 pmap_protect(src_map->pmap, 2876 src_entry->start, 2877 src_entry->end, 2878 src_entry->protection & ~VM_PROT_WRITE); 2879 } 2880 2881 /* 2882 * Make a copy of the object. 2883 */ 2884 size = src_entry->end - src_entry->start; 2885 if ((src_object = src_entry->object.vm_object) != NULL) { 2886 VM_OBJECT_LOCK(src_object); 2887 charged = ENTRY_CHARGED(src_entry); 2888 if ((src_object->handle == NULL) && 2889 (src_object->type == OBJT_DEFAULT || 2890 src_object->type == OBJT_SWAP)) { 2891 vm_object_collapse(src_object); 2892 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2893 vm_object_split(src_entry); 2894 src_object = src_entry->object.vm_object; 2895 } 2896 } 2897 vm_object_reference_locked(src_object); 2898 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2899 if (src_entry->uip != NULL && 2900 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 2901 KASSERT(src_object->uip == NULL, 2902 ("OVERCOMMIT: vm_map_copy_entry: uip %p", 2903 src_object)); 2904 src_object->uip = src_entry->uip; 2905 src_object->charge = size; 2906 } 2907 VM_OBJECT_UNLOCK(src_object); 2908 dst_entry->object.vm_object = src_object; 2909 if (charged) { 2910 uip = curthread->td_ucred->cr_ruidinfo; 2911 uihold(uip); 2912 dst_entry->uip = uip; 2913 *fork_charge += size; 2914 if (!(src_entry->eflags & 2915 MAP_ENTRY_NEEDS_COPY)) { 2916 uihold(uip); 2917 src_entry->uip = uip; 2918 *fork_charge += size; 2919 } 2920 } 2921 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2922 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2923 dst_entry->offset = src_entry->offset; 2924 } else { 2925 dst_entry->object.vm_object = NULL; 2926 dst_entry->offset = 0; 2927 if (src_entry->uip != NULL) { 2928 dst_entry->uip = curthread->td_ucred->cr_ruidinfo; 2929 uihold(dst_entry->uip); 2930 *fork_charge += size; 2931 } 2932 } 2933 2934 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2935 dst_entry->end - dst_entry->start, src_entry->start); 2936 } else { 2937 /* 2938 * Of course, wired down pages can't be set copy-on-write. 2939 * Cause wired pages to be copied into the new map by 2940 * simulating faults (the new pages are pageable) 2941 */ 2942 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 2943 fork_charge); 2944 } 2945 } 2946 2947 /* 2948 * vmspace_map_entry_forked: 2949 * Update the newly-forked vmspace each time a map entry is inherited 2950 * or copied. The values for vm_dsize and vm_tsize are approximate 2951 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 2952 */ 2953 static void 2954 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 2955 vm_map_entry_t entry) 2956 { 2957 vm_size_t entrysize; 2958 vm_offset_t newend; 2959 2960 entrysize = entry->end - entry->start; 2961 vm2->vm_map.size += entrysize; 2962 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 2963 vm2->vm_ssize += btoc(entrysize); 2964 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 2965 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 2966 newend = MIN(entry->end, 2967 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 2968 vm2->vm_dsize += btoc(newend - entry->start); 2969 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 2970 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 2971 newend = MIN(entry->end, 2972 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 2973 vm2->vm_tsize += btoc(newend - entry->start); 2974 } 2975 } 2976 2977 /* 2978 * vmspace_fork: 2979 * Create a new process vmspace structure and vm_map 2980 * based on those of an existing process. The new map 2981 * is based on the old map, according to the inheritance 2982 * values on the regions in that map. 2983 * 2984 * XXX It might be worth coalescing the entries added to the new vmspace. 2985 * 2986 * The source map must not be locked. 2987 */ 2988 struct vmspace * 2989 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 2990 { 2991 struct vmspace *vm2; 2992 vm_map_t old_map = &vm1->vm_map; 2993 vm_map_t new_map; 2994 vm_map_entry_t old_entry; 2995 vm_map_entry_t new_entry; 2996 vm_object_t object; 2997 int locked; 2998 2999 vm_map_lock(old_map); 3000 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3001 if (vm2 == NULL) 3002 goto unlock_and_return; 3003 vm2->vm_taddr = vm1->vm_taddr; 3004 vm2->vm_daddr = vm1->vm_daddr; 3005 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3006 new_map = &vm2->vm_map; /* XXX */ 3007 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3008 KASSERT(locked, ("vmspace_fork: lock failed")); 3009 new_map->timestamp = 1; 3010 3011 old_entry = old_map->header.next; 3012 3013 while (old_entry != &old_map->header) { 3014 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3015 panic("vm_map_fork: encountered a submap"); 3016 3017 switch (old_entry->inheritance) { 3018 case VM_INHERIT_NONE: 3019 break; 3020 3021 case VM_INHERIT_SHARE: 3022 /* 3023 * Clone the entry, creating the shared object if necessary. 3024 */ 3025 object = old_entry->object.vm_object; 3026 if (object == NULL) { 3027 object = vm_object_allocate(OBJT_DEFAULT, 3028 atop(old_entry->end - old_entry->start)); 3029 old_entry->object.vm_object = object; 3030 old_entry->offset = 0; 3031 if (old_entry->uip != NULL) { 3032 object->uip = old_entry->uip; 3033 object->charge = old_entry->end - 3034 old_entry->start; 3035 old_entry->uip = NULL; 3036 } 3037 } 3038 3039 /* 3040 * Add the reference before calling vm_object_shadow 3041 * to insure that a shadow object is created. 3042 */ 3043 vm_object_reference(object); 3044 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3045 vm_object_shadow(&old_entry->object.vm_object, 3046 &old_entry->offset, 3047 atop(old_entry->end - old_entry->start)); 3048 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3049 /* Transfer the second reference too. */ 3050 vm_object_reference( 3051 old_entry->object.vm_object); 3052 3053 /* 3054 * As in vm_map_simplify_entry(), the 3055 * vnode lock will not be acquired in 3056 * this call to vm_object_deallocate(). 3057 */ 3058 vm_object_deallocate(object); 3059 object = old_entry->object.vm_object; 3060 } 3061 VM_OBJECT_LOCK(object); 3062 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3063 if (old_entry->uip != NULL) { 3064 KASSERT(object->uip == NULL, ("vmspace_fork both uip")); 3065 object->uip = old_entry->uip; 3066 object->charge = old_entry->end - old_entry->start; 3067 old_entry->uip = NULL; 3068 } 3069 VM_OBJECT_UNLOCK(object); 3070 3071 /* 3072 * Clone the entry, referencing the shared object. 3073 */ 3074 new_entry = vm_map_entry_create(new_map); 3075 *new_entry = *old_entry; 3076 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3077 MAP_ENTRY_IN_TRANSITION); 3078 new_entry->wired_count = 0; 3079 3080 /* 3081 * Insert the entry into the new map -- we know we're 3082 * inserting at the end of the new map. 3083 */ 3084 vm_map_entry_link(new_map, new_map->header.prev, 3085 new_entry); 3086 vmspace_map_entry_forked(vm1, vm2, new_entry); 3087 3088 /* 3089 * Update the physical map 3090 */ 3091 pmap_copy(new_map->pmap, old_map->pmap, 3092 new_entry->start, 3093 (old_entry->end - old_entry->start), 3094 old_entry->start); 3095 break; 3096 3097 case VM_INHERIT_COPY: 3098 /* 3099 * Clone the entry and link into the map. 3100 */ 3101 new_entry = vm_map_entry_create(new_map); 3102 *new_entry = *old_entry; 3103 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3104 MAP_ENTRY_IN_TRANSITION); 3105 new_entry->wired_count = 0; 3106 new_entry->object.vm_object = NULL; 3107 new_entry->uip = NULL; 3108 vm_map_entry_link(new_map, new_map->header.prev, 3109 new_entry); 3110 vmspace_map_entry_forked(vm1, vm2, new_entry); 3111 vm_map_copy_entry(old_map, new_map, old_entry, 3112 new_entry, fork_charge); 3113 break; 3114 } 3115 old_entry = old_entry->next; 3116 } 3117 unlock_and_return: 3118 vm_map_unlock(old_map); 3119 if (vm2 != NULL) 3120 vm_map_unlock(new_map); 3121 3122 return (vm2); 3123 } 3124 3125 int 3126 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3127 vm_prot_t prot, vm_prot_t max, int cow) 3128 { 3129 vm_map_entry_t new_entry, prev_entry; 3130 vm_offset_t bot, top; 3131 vm_size_t init_ssize; 3132 int orient, rv; 3133 rlim_t vmemlim; 3134 3135 /* 3136 * The stack orientation is piggybacked with the cow argument. 3137 * Extract it into orient and mask the cow argument so that we 3138 * don't pass it around further. 3139 * NOTE: We explicitly allow bi-directional stacks. 3140 */ 3141 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3142 cow &= ~orient; 3143 KASSERT(orient != 0, ("No stack grow direction")); 3144 3145 if (addrbos < vm_map_min(map) || 3146 addrbos > vm_map_max(map) || 3147 addrbos + max_ssize < addrbos) 3148 return (KERN_NO_SPACE); 3149 3150 init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz; 3151 3152 PROC_LOCK(curthread->td_proc); 3153 vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM); 3154 PROC_UNLOCK(curthread->td_proc); 3155 3156 vm_map_lock(map); 3157 3158 /* If addr is already mapped, no go */ 3159 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3160 vm_map_unlock(map); 3161 return (KERN_NO_SPACE); 3162 } 3163 3164 /* If we would blow our VMEM resource limit, no go */ 3165 if (map->size + init_ssize > vmemlim) { 3166 vm_map_unlock(map); 3167 return (KERN_NO_SPACE); 3168 } 3169 3170 /* 3171 * If we can't accomodate max_ssize in the current mapping, no go. 3172 * However, we need to be aware that subsequent user mappings might 3173 * map into the space we have reserved for stack, and currently this 3174 * space is not protected. 3175 * 3176 * Hopefully we will at least detect this condition when we try to 3177 * grow the stack. 3178 */ 3179 if ((prev_entry->next != &map->header) && 3180 (prev_entry->next->start < addrbos + max_ssize)) { 3181 vm_map_unlock(map); 3182 return (KERN_NO_SPACE); 3183 } 3184 3185 /* 3186 * We initially map a stack of only init_ssize. We will grow as 3187 * needed later. Depending on the orientation of the stack (i.e. 3188 * the grow direction) we either map at the top of the range, the 3189 * bottom of the range or in the middle. 3190 * 3191 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3192 * and cow to be 0. Possibly we should eliminate these as input 3193 * parameters, and just pass these values here in the insert call. 3194 */ 3195 if (orient == MAP_STACK_GROWS_DOWN) 3196 bot = addrbos + max_ssize - init_ssize; 3197 else if (orient == MAP_STACK_GROWS_UP) 3198 bot = addrbos; 3199 else 3200 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3201 top = bot + init_ssize; 3202 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3203 3204 /* Now set the avail_ssize amount. */ 3205 if (rv == KERN_SUCCESS) { 3206 if (prev_entry != &map->header) 3207 vm_map_clip_end(map, prev_entry, bot); 3208 new_entry = prev_entry->next; 3209 if (new_entry->end != top || new_entry->start != bot) 3210 panic("Bad entry start/end for new stack entry"); 3211 3212 new_entry->avail_ssize = max_ssize - init_ssize; 3213 if (orient & MAP_STACK_GROWS_DOWN) 3214 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3215 if (orient & MAP_STACK_GROWS_UP) 3216 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3217 } 3218 3219 vm_map_unlock(map); 3220 return (rv); 3221 } 3222 3223 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3224 * desired address is already mapped, or if we successfully grow 3225 * the stack. Also returns KERN_SUCCESS if addr is outside the 3226 * stack range (this is strange, but preserves compatibility with 3227 * the grow function in vm_machdep.c). 3228 */ 3229 int 3230 vm_map_growstack(struct proc *p, vm_offset_t addr) 3231 { 3232 vm_map_entry_t next_entry, prev_entry; 3233 vm_map_entry_t new_entry, stack_entry; 3234 struct vmspace *vm = p->p_vmspace; 3235 vm_map_t map = &vm->vm_map; 3236 vm_offset_t end; 3237 size_t grow_amount, max_grow; 3238 rlim_t stacklim, vmemlim; 3239 int is_procstack, rv; 3240 struct uidinfo *uip; 3241 3242 Retry: 3243 PROC_LOCK(p); 3244 stacklim = lim_cur(p, RLIMIT_STACK); 3245 vmemlim = lim_cur(p, RLIMIT_VMEM); 3246 PROC_UNLOCK(p); 3247 3248 vm_map_lock_read(map); 3249 3250 /* If addr is already in the entry range, no need to grow.*/ 3251 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3252 vm_map_unlock_read(map); 3253 return (KERN_SUCCESS); 3254 } 3255 3256 next_entry = prev_entry->next; 3257 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3258 /* 3259 * This entry does not grow upwards. Since the address lies 3260 * beyond this entry, the next entry (if one exists) has to 3261 * be a downward growable entry. The entry list header is 3262 * never a growable entry, so it suffices to check the flags. 3263 */ 3264 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3265 vm_map_unlock_read(map); 3266 return (KERN_SUCCESS); 3267 } 3268 stack_entry = next_entry; 3269 } else { 3270 /* 3271 * This entry grows upward. If the next entry does not at 3272 * least grow downwards, this is the entry we need to grow. 3273 * otherwise we have two possible choices and we have to 3274 * select one. 3275 */ 3276 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3277 /* 3278 * We have two choices; grow the entry closest to 3279 * the address to minimize the amount of growth. 3280 */ 3281 if (addr - prev_entry->end <= next_entry->start - addr) 3282 stack_entry = prev_entry; 3283 else 3284 stack_entry = next_entry; 3285 } else 3286 stack_entry = prev_entry; 3287 } 3288 3289 if (stack_entry == next_entry) { 3290 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3291 KASSERT(addr < stack_entry->start, ("foo")); 3292 end = (prev_entry != &map->header) ? prev_entry->end : 3293 stack_entry->start - stack_entry->avail_ssize; 3294 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3295 max_grow = stack_entry->start - end; 3296 } else { 3297 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3298 KASSERT(addr >= stack_entry->end, ("foo")); 3299 end = (next_entry != &map->header) ? next_entry->start : 3300 stack_entry->end + stack_entry->avail_ssize; 3301 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3302 max_grow = end - stack_entry->end; 3303 } 3304 3305 if (grow_amount > stack_entry->avail_ssize) { 3306 vm_map_unlock_read(map); 3307 return (KERN_NO_SPACE); 3308 } 3309 3310 /* 3311 * If there is no longer enough space between the entries nogo, and 3312 * adjust the available space. Note: this should only happen if the 3313 * user has mapped into the stack area after the stack was created, 3314 * and is probably an error. 3315 * 3316 * This also effectively destroys any guard page the user might have 3317 * intended by limiting the stack size. 3318 */ 3319 if (grow_amount > max_grow) { 3320 if (vm_map_lock_upgrade(map)) 3321 goto Retry; 3322 3323 stack_entry->avail_ssize = max_grow; 3324 3325 vm_map_unlock(map); 3326 return (KERN_NO_SPACE); 3327 } 3328 3329 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3330 3331 /* 3332 * If this is the main process stack, see if we're over the stack 3333 * limit. 3334 */ 3335 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3336 vm_map_unlock_read(map); 3337 return (KERN_NO_SPACE); 3338 } 3339 3340 /* Round up the grow amount modulo SGROWSIZ */ 3341 grow_amount = roundup (grow_amount, sgrowsiz); 3342 if (grow_amount > stack_entry->avail_ssize) 3343 grow_amount = stack_entry->avail_ssize; 3344 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3345 grow_amount = stacklim - ctob(vm->vm_ssize); 3346 } 3347 3348 /* If we would blow our VMEM resource limit, no go */ 3349 if (map->size + grow_amount > vmemlim) { 3350 vm_map_unlock_read(map); 3351 return (KERN_NO_SPACE); 3352 } 3353 3354 if (vm_map_lock_upgrade(map)) 3355 goto Retry; 3356 3357 if (stack_entry == next_entry) { 3358 /* 3359 * Growing downward. 3360 */ 3361 /* Get the preliminary new entry start value */ 3362 addr = stack_entry->start - grow_amount; 3363 3364 /* 3365 * If this puts us into the previous entry, cut back our 3366 * growth to the available space. Also, see the note above. 3367 */ 3368 if (addr < end) { 3369 stack_entry->avail_ssize = max_grow; 3370 addr = end; 3371 } 3372 3373 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3374 p->p_sysent->sv_stackprot, VM_PROT_ALL, 0); 3375 3376 /* Adjust the available stack space by the amount we grew. */ 3377 if (rv == KERN_SUCCESS) { 3378 if (prev_entry != &map->header) 3379 vm_map_clip_end(map, prev_entry, addr); 3380 new_entry = prev_entry->next; 3381 KASSERT(new_entry == stack_entry->prev, ("foo")); 3382 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3383 KASSERT(new_entry->start == addr, ("foo")); 3384 grow_amount = new_entry->end - new_entry->start; 3385 new_entry->avail_ssize = stack_entry->avail_ssize - 3386 grow_amount; 3387 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3388 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3389 } 3390 } else { 3391 /* 3392 * Growing upward. 3393 */ 3394 addr = stack_entry->end + grow_amount; 3395 3396 /* 3397 * If this puts us into the next entry, cut back our growth 3398 * to the available space. Also, see the note above. 3399 */ 3400 if (addr > end) { 3401 stack_entry->avail_ssize = end - stack_entry->end; 3402 addr = end; 3403 } 3404 3405 grow_amount = addr - stack_entry->end; 3406 uip = stack_entry->uip; 3407 if (uip == NULL && stack_entry->object.vm_object != NULL) 3408 uip = stack_entry->object.vm_object->uip; 3409 if (uip != NULL && !swap_reserve_by_uid(grow_amount, uip)) 3410 rv = KERN_NO_SPACE; 3411 /* Grow the underlying object if applicable. */ 3412 else if (stack_entry->object.vm_object == NULL || 3413 vm_object_coalesce(stack_entry->object.vm_object, 3414 stack_entry->offset, 3415 (vm_size_t)(stack_entry->end - stack_entry->start), 3416 (vm_size_t)grow_amount, uip != NULL)) { 3417 map->size += (addr - stack_entry->end); 3418 /* Update the current entry. */ 3419 stack_entry->end = addr; 3420 stack_entry->avail_ssize -= grow_amount; 3421 vm_map_entry_resize_free(map, stack_entry); 3422 rv = KERN_SUCCESS; 3423 3424 if (next_entry != &map->header) 3425 vm_map_clip_start(map, next_entry, addr); 3426 } else 3427 rv = KERN_FAILURE; 3428 } 3429 3430 if (rv == KERN_SUCCESS && is_procstack) 3431 vm->vm_ssize += btoc(grow_amount); 3432 3433 vm_map_unlock(map); 3434 3435 /* 3436 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3437 */ 3438 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3439 vm_map_wire(map, 3440 (stack_entry == next_entry) ? addr : addr - grow_amount, 3441 (stack_entry == next_entry) ? stack_entry->start : addr, 3442 (p->p_flag & P_SYSTEM) 3443 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3444 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3445 } 3446 3447 return (rv); 3448 } 3449 3450 /* 3451 * Unshare the specified VM space for exec. If other processes are 3452 * mapped to it, then create a new one. The new vmspace is null. 3453 */ 3454 int 3455 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3456 { 3457 struct vmspace *oldvmspace = p->p_vmspace; 3458 struct vmspace *newvmspace; 3459 3460 newvmspace = vmspace_alloc(minuser, maxuser); 3461 if (newvmspace == NULL) 3462 return (ENOMEM); 3463 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3464 /* 3465 * This code is written like this for prototype purposes. The 3466 * goal is to avoid running down the vmspace here, but let the 3467 * other process's that are still using the vmspace to finally 3468 * run it down. Even though there is little or no chance of blocking 3469 * here, it is a good idea to keep this form for future mods. 3470 */ 3471 PROC_VMSPACE_LOCK(p); 3472 p->p_vmspace = newvmspace; 3473 PROC_VMSPACE_UNLOCK(p); 3474 if (p == curthread->td_proc) 3475 pmap_activate(curthread); 3476 vmspace_free(oldvmspace); 3477 return (0); 3478 } 3479 3480 /* 3481 * Unshare the specified VM space for forcing COW. This 3482 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3483 */ 3484 int 3485 vmspace_unshare(struct proc *p) 3486 { 3487 struct vmspace *oldvmspace = p->p_vmspace; 3488 struct vmspace *newvmspace; 3489 vm_ooffset_t fork_charge; 3490 3491 if (oldvmspace->vm_refcnt == 1) 3492 return (0); 3493 fork_charge = 0; 3494 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3495 if (newvmspace == NULL) 3496 return (ENOMEM); 3497 if (!swap_reserve_by_uid(fork_charge, p->p_ucred->cr_ruidinfo)) { 3498 vmspace_free(newvmspace); 3499 return (ENOMEM); 3500 } 3501 PROC_VMSPACE_LOCK(p); 3502 p->p_vmspace = newvmspace; 3503 PROC_VMSPACE_UNLOCK(p); 3504 if (p == curthread->td_proc) 3505 pmap_activate(curthread); 3506 vmspace_free(oldvmspace); 3507 return (0); 3508 } 3509 3510 /* 3511 * vm_map_lookup: 3512 * 3513 * Finds the VM object, offset, and 3514 * protection for a given virtual address in the 3515 * specified map, assuming a page fault of the 3516 * type specified. 3517 * 3518 * Leaves the map in question locked for read; return 3519 * values are guaranteed until a vm_map_lookup_done 3520 * call is performed. Note that the map argument 3521 * is in/out; the returned map must be used in 3522 * the call to vm_map_lookup_done. 3523 * 3524 * A handle (out_entry) is returned for use in 3525 * vm_map_lookup_done, to make that fast. 3526 * 3527 * If a lookup is requested with "write protection" 3528 * specified, the map may be changed to perform virtual 3529 * copying operations, although the data referenced will 3530 * remain the same. 3531 */ 3532 int 3533 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3534 vm_offset_t vaddr, 3535 vm_prot_t fault_typea, 3536 vm_map_entry_t *out_entry, /* OUT */ 3537 vm_object_t *object, /* OUT */ 3538 vm_pindex_t *pindex, /* OUT */ 3539 vm_prot_t *out_prot, /* OUT */ 3540 boolean_t *wired) /* OUT */ 3541 { 3542 vm_map_entry_t entry; 3543 vm_map_t map = *var_map; 3544 vm_prot_t prot; 3545 vm_prot_t fault_type = fault_typea; 3546 vm_object_t eobject; 3547 struct uidinfo *uip; 3548 vm_ooffset_t size; 3549 3550 RetryLookup:; 3551 3552 vm_map_lock_read(map); 3553 3554 /* 3555 * Lookup the faulting address. 3556 */ 3557 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3558 vm_map_unlock_read(map); 3559 return (KERN_INVALID_ADDRESS); 3560 } 3561 3562 entry = *out_entry; 3563 3564 /* 3565 * Handle submaps. 3566 */ 3567 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3568 vm_map_t old_map = map; 3569 3570 *var_map = map = entry->object.sub_map; 3571 vm_map_unlock_read(old_map); 3572 goto RetryLookup; 3573 } 3574 3575 /* 3576 * Check whether this task is allowed to have this page. 3577 */ 3578 prot = entry->protection; 3579 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3580 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3581 vm_map_unlock_read(map); 3582 return (KERN_PROTECTION_FAILURE); 3583 } 3584 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3585 (entry->eflags & MAP_ENTRY_COW) && 3586 (fault_type & VM_PROT_WRITE)) { 3587 vm_map_unlock_read(map); 3588 return (KERN_PROTECTION_FAILURE); 3589 } 3590 3591 /* 3592 * If this page is not pageable, we have to get it for all possible 3593 * accesses. 3594 */ 3595 *wired = (entry->wired_count != 0); 3596 if (*wired) 3597 fault_type = entry->protection; 3598 size = entry->end - entry->start; 3599 /* 3600 * If the entry was copy-on-write, we either ... 3601 */ 3602 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3603 /* 3604 * If we want to write the page, we may as well handle that 3605 * now since we've got the map locked. 3606 * 3607 * If we don't need to write the page, we just demote the 3608 * permissions allowed. 3609 */ 3610 if ((fault_type & VM_PROT_WRITE) != 0 || 3611 (fault_typea & VM_PROT_COPY) != 0) { 3612 /* 3613 * Make a new object, and place it in the object 3614 * chain. Note that no new references have appeared 3615 * -- one just moved from the map to the new 3616 * object. 3617 */ 3618 if (vm_map_lock_upgrade(map)) 3619 goto RetryLookup; 3620 3621 if (entry->uip == NULL) { 3622 /* 3623 * The debugger owner is charged for 3624 * the memory. 3625 */ 3626 uip = curthread->td_ucred->cr_ruidinfo; 3627 uihold(uip); 3628 if (!swap_reserve_by_uid(size, uip)) { 3629 uifree(uip); 3630 vm_map_unlock(map); 3631 return (KERN_RESOURCE_SHORTAGE); 3632 } 3633 entry->uip = uip; 3634 } 3635 vm_object_shadow( 3636 &entry->object.vm_object, 3637 &entry->offset, 3638 atop(size)); 3639 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3640 eobject = entry->object.vm_object; 3641 if (eobject->uip != NULL) { 3642 /* 3643 * The object was not shadowed. 3644 */ 3645 swap_release_by_uid(size, entry->uip); 3646 uifree(entry->uip); 3647 entry->uip = NULL; 3648 } else if (entry->uip != NULL) { 3649 VM_OBJECT_LOCK(eobject); 3650 eobject->uip = entry->uip; 3651 eobject->charge = size; 3652 VM_OBJECT_UNLOCK(eobject); 3653 entry->uip = NULL; 3654 } 3655 3656 vm_map_lock_downgrade(map); 3657 } else { 3658 /* 3659 * We're attempting to read a copy-on-write page -- 3660 * don't allow writes. 3661 */ 3662 prot &= ~VM_PROT_WRITE; 3663 } 3664 } 3665 3666 /* 3667 * Create an object if necessary. 3668 */ 3669 if (entry->object.vm_object == NULL && 3670 !map->system_map) { 3671 if (vm_map_lock_upgrade(map)) 3672 goto RetryLookup; 3673 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3674 atop(size)); 3675 entry->offset = 0; 3676 if (entry->uip != NULL) { 3677 VM_OBJECT_LOCK(entry->object.vm_object); 3678 entry->object.vm_object->uip = entry->uip; 3679 entry->object.vm_object->charge = size; 3680 VM_OBJECT_UNLOCK(entry->object.vm_object); 3681 entry->uip = NULL; 3682 } 3683 vm_map_lock_downgrade(map); 3684 } 3685 3686 /* 3687 * Return the object/offset from this entry. If the entry was 3688 * copy-on-write or empty, it has been fixed up. 3689 */ 3690 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3691 *object = entry->object.vm_object; 3692 3693 *out_prot = prot; 3694 return (KERN_SUCCESS); 3695 } 3696 3697 /* 3698 * vm_map_lookup_locked: 3699 * 3700 * Lookup the faulting address. A version of vm_map_lookup that returns 3701 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3702 */ 3703 int 3704 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3705 vm_offset_t vaddr, 3706 vm_prot_t fault_typea, 3707 vm_map_entry_t *out_entry, /* OUT */ 3708 vm_object_t *object, /* OUT */ 3709 vm_pindex_t *pindex, /* OUT */ 3710 vm_prot_t *out_prot, /* OUT */ 3711 boolean_t *wired) /* OUT */ 3712 { 3713 vm_map_entry_t entry; 3714 vm_map_t map = *var_map; 3715 vm_prot_t prot; 3716 vm_prot_t fault_type = fault_typea; 3717 3718 /* 3719 * Lookup the faulting address. 3720 */ 3721 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 3722 return (KERN_INVALID_ADDRESS); 3723 3724 entry = *out_entry; 3725 3726 /* 3727 * Fail if the entry refers to a submap. 3728 */ 3729 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3730 return (KERN_FAILURE); 3731 3732 /* 3733 * Check whether this task is allowed to have this page. 3734 */ 3735 prot = entry->protection; 3736 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 3737 if ((fault_type & prot) != fault_type) 3738 return (KERN_PROTECTION_FAILURE); 3739 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3740 (entry->eflags & MAP_ENTRY_COW) && 3741 (fault_type & VM_PROT_WRITE)) 3742 return (KERN_PROTECTION_FAILURE); 3743 3744 /* 3745 * If this page is not pageable, we have to get it for all possible 3746 * accesses. 3747 */ 3748 *wired = (entry->wired_count != 0); 3749 if (*wired) 3750 fault_type = entry->protection; 3751 3752 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3753 /* 3754 * Fail if the entry was copy-on-write for a write fault. 3755 */ 3756 if (fault_type & VM_PROT_WRITE) 3757 return (KERN_FAILURE); 3758 /* 3759 * We're attempting to read a copy-on-write page -- 3760 * don't allow writes. 3761 */ 3762 prot &= ~VM_PROT_WRITE; 3763 } 3764 3765 /* 3766 * Fail if an object should be created. 3767 */ 3768 if (entry->object.vm_object == NULL && !map->system_map) 3769 return (KERN_FAILURE); 3770 3771 /* 3772 * Return the object/offset from this entry. If the entry was 3773 * copy-on-write or empty, it has been fixed up. 3774 */ 3775 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3776 *object = entry->object.vm_object; 3777 3778 *out_prot = prot; 3779 return (KERN_SUCCESS); 3780 } 3781 3782 /* 3783 * vm_map_lookup_done: 3784 * 3785 * Releases locks acquired by a vm_map_lookup 3786 * (according to the handle returned by that lookup). 3787 */ 3788 void 3789 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 3790 { 3791 /* 3792 * Unlock the main-level map 3793 */ 3794 vm_map_unlock_read(map); 3795 } 3796 3797 #include "opt_ddb.h" 3798 #ifdef DDB 3799 #include <sys/kernel.h> 3800 3801 #include <ddb/ddb.h> 3802 3803 /* 3804 * vm_map_print: [ debug ] 3805 */ 3806 DB_SHOW_COMMAND(map, vm_map_print) 3807 { 3808 static int nlines; 3809 /* XXX convert args. */ 3810 vm_map_t map = (vm_map_t)addr; 3811 boolean_t full = have_addr; 3812 3813 vm_map_entry_t entry; 3814 3815 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3816 (void *)map, 3817 (void *)map->pmap, map->nentries, map->timestamp); 3818 nlines++; 3819 3820 if (!full && db_indent) 3821 return; 3822 3823 db_indent += 2; 3824 for (entry = map->header.next; entry != &map->header; 3825 entry = entry->next) { 3826 db_iprintf("map entry %p: start=%p, end=%p\n", 3827 (void *)entry, (void *)entry->start, (void *)entry->end); 3828 nlines++; 3829 { 3830 static char *inheritance_name[4] = 3831 {"share", "copy", "none", "donate_copy"}; 3832 3833 db_iprintf(" prot=%x/%x/%s", 3834 entry->protection, 3835 entry->max_protection, 3836 inheritance_name[(int)(unsigned char)entry->inheritance]); 3837 if (entry->wired_count != 0) 3838 db_printf(", wired"); 3839 } 3840 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3841 db_printf(", share=%p, offset=0x%jx\n", 3842 (void *)entry->object.sub_map, 3843 (uintmax_t)entry->offset); 3844 nlines++; 3845 if ((entry->prev == &map->header) || 3846 (entry->prev->object.sub_map != 3847 entry->object.sub_map)) { 3848 db_indent += 2; 3849 vm_map_print((db_expr_t)(intptr_t) 3850 entry->object.sub_map, 3851 full, 0, (char *)0); 3852 db_indent -= 2; 3853 } 3854 } else { 3855 if (entry->uip != NULL) 3856 db_printf(", uip %d", entry->uip->ui_uid); 3857 db_printf(", object=%p, offset=0x%jx", 3858 (void *)entry->object.vm_object, 3859 (uintmax_t)entry->offset); 3860 if (entry->object.vm_object && entry->object.vm_object->uip) 3861 db_printf(", obj uip %d charge %jx", 3862 entry->object.vm_object->uip->ui_uid, 3863 (uintmax_t)entry->object.vm_object->charge); 3864 if (entry->eflags & MAP_ENTRY_COW) 3865 db_printf(", copy (%s)", 3866 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3867 db_printf("\n"); 3868 nlines++; 3869 3870 if ((entry->prev == &map->header) || 3871 (entry->prev->object.vm_object != 3872 entry->object.vm_object)) { 3873 db_indent += 2; 3874 vm_object_print((db_expr_t)(intptr_t) 3875 entry->object.vm_object, 3876 full, 0, (char *)0); 3877 nlines += 4; 3878 db_indent -= 2; 3879 } 3880 } 3881 } 3882 db_indent -= 2; 3883 if (db_indent == 0) 3884 nlines = 0; 3885 } 3886 3887 3888 DB_SHOW_COMMAND(procvm, procvm) 3889 { 3890 struct proc *p; 3891 3892 if (have_addr) { 3893 p = (struct proc *) addr; 3894 } else { 3895 p = curproc; 3896 } 3897 3898 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3899 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3900 (void *)vmspace_pmap(p->p_vmspace)); 3901 3902 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3903 } 3904 3905 #endif /* DDB */ 3906