xref: /freebsd/sys/vm/vm_map.c (revision d9f0ce31900a48d1a2bfc1c8c86f79d1e831451a)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
137     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
138 #ifdef INVARIANTS
139 static void vm_map_zdtor(void *mem, int size, void *arg);
140 static void vmspace_zdtor(void *mem, int size, void *arg);
141 #endif
142 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
143     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
144     int cow);
145 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
146     vm_offset_t failed_addr);
147 
148 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
149     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151 
152 /*
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158 
159 /*
160  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
161  *
162  *	Asserts that the starting and ending region
163  *	addresses fall within the valid range of the map.
164  */
165 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
166 		{					\
167 		if (start < vm_map_min(map))		\
168 			start = vm_map_min(map);	\
169 		if (end > vm_map_max(map))		\
170 			end = vm_map_max(map);		\
171 		if (start > end)			\
172 			start = end;			\
173 		}
174 
175 /*
176  *	vm_map_startup:
177  *
178  *	Initialize the vm_map module.  Must be called before
179  *	any other vm_map routines.
180  *
181  *	Map and entry structures are allocated from the general
182  *	purpose memory pool with some exceptions:
183  *
184  *	- The kernel map and kmem submap are allocated statically.
185  *	- Kernel map entries are allocated out of a static pool.
186  *
187  *	These restrictions are necessary since malloc() uses the
188  *	maps and requires map entries.
189  */
190 
191 void
192 vm_map_startup(void)
193 {
194 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
195 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
196 #ifdef INVARIANTS
197 	    vm_map_zdtor,
198 #else
199 	    NULL,
200 #endif
201 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
202 	uma_prealloc(mapzone, MAX_KMAP);
203 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
204 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
205 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
206 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
207 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
208 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
209 #ifdef INVARIANTS
210 	    vmspace_zdtor,
211 #else
212 	    NULL,
213 #endif
214 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
215 }
216 
217 static int
218 vmspace_zinit(void *mem, int size, int flags)
219 {
220 	struct vmspace *vm;
221 
222 	vm = (struct vmspace *)mem;
223 
224 	vm->vm_map.pmap = NULL;
225 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
226 	PMAP_LOCK_INIT(vmspace_pmap(vm));
227 	return (0);
228 }
229 
230 static int
231 vm_map_zinit(void *mem, int size, int flags)
232 {
233 	vm_map_t map;
234 
235 	map = (vm_map_t)mem;
236 	memset(map, 0, sizeof(*map));
237 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
238 	sx_init(&map->lock, "vm map (user)");
239 	return (0);
240 }
241 
242 #ifdef INVARIANTS
243 static void
244 vmspace_zdtor(void *mem, int size, void *arg)
245 {
246 	struct vmspace *vm;
247 
248 	vm = (struct vmspace *)mem;
249 
250 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
251 }
252 static void
253 vm_map_zdtor(void *mem, int size, void *arg)
254 {
255 	vm_map_t map;
256 
257 	map = (vm_map_t)mem;
258 	KASSERT(map->nentries == 0,
259 	    ("map %p nentries == %d on free.",
260 	    map, map->nentries));
261 	KASSERT(map->size == 0,
262 	    ("map %p size == %lu on free.",
263 	    map, (unsigned long)map->size));
264 }
265 #endif	/* INVARIANTS */
266 
267 /*
268  * Allocate a vmspace structure, including a vm_map and pmap,
269  * and initialize those structures.  The refcnt is set to 1.
270  *
271  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
272  */
273 struct vmspace *
274 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
275 {
276 	struct vmspace *vm;
277 
278 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
279 
280 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
281 
282 	if (pinit == NULL)
283 		pinit = &pmap_pinit;
284 
285 	if (!pinit(vmspace_pmap(vm))) {
286 		uma_zfree(vmspace_zone, vm);
287 		return (NULL);
288 	}
289 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291 	vm->vm_refcnt = 1;
292 	vm->vm_shm = NULL;
293 	vm->vm_swrss = 0;
294 	vm->vm_tsize = 0;
295 	vm->vm_dsize = 0;
296 	vm->vm_ssize = 0;
297 	vm->vm_taddr = 0;
298 	vm->vm_daddr = 0;
299 	vm->vm_maxsaddr = 0;
300 	return (vm);
301 }
302 
303 #ifdef RACCT
304 static void
305 vmspace_container_reset(struct proc *p)
306 {
307 
308 	PROC_LOCK(p);
309 	racct_set(p, RACCT_DATA, 0);
310 	racct_set(p, RACCT_STACK, 0);
311 	racct_set(p, RACCT_RSS, 0);
312 	racct_set(p, RACCT_MEMLOCK, 0);
313 	racct_set(p, RACCT_VMEM, 0);
314 	PROC_UNLOCK(p);
315 }
316 #endif
317 
318 static inline void
319 vmspace_dofree(struct vmspace *vm)
320 {
321 
322 	CTR1(KTR_VM, "vmspace_free: %p", vm);
323 
324 	/*
325 	 * Make sure any SysV shm is freed, it might not have been in
326 	 * exit1().
327 	 */
328 	shmexit(vm);
329 
330 	/*
331 	 * Lock the map, to wait out all other references to it.
332 	 * Delete all of the mappings and pages they hold, then call
333 	 * the pmap module to reclaim anything left.
334 	 */
335 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
336 	    vm->vm_map.max_offset);
337 
338 	pmap_release(vmspace_pmap(vm));
339 	vm->vm_map.pmap = NULL;
340 	uma_zfree(vmspace_zone, vm);
341 }
342 
343 void
344 vmspace_free(struct vmspace *vm)
345 {
346 
347 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
348 	    "vmspace_free() called with non-sleepable lock held");
349 
350 	if (vm->vm_refcnt == 0)
351 		panic("vmspace_free: attempt to free already freed vmspace");
352 
353 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
354 		vmspace_dofree(vm);
355 }
356 
357 void
358 vmspace_exitfree(struct proc *p)
359 {
360 	struct vmspace *vm;
361 
362 	PROC_VMSPACE_LOCK(p);
363 	vm = p->p_vmspace;
364 	p->p_vmspace = NULL;
365 	PROC_VMSPACE_UNLOCK(p);
366 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
367 	vmspace_free(vm);
368 }
369 
370 void
371 vmspace_exit(struct thread *td)
372 {
373 	int refcnt;
374 	struct vmspace *vm;
375 	struct proc *p;
376 
377 	/*
378 	 * Release user portion of address space.
379 	 * This releases references to vnodes,
380 	 * which could cause I/O if the file has been unlinked.
381 	 * Need to do this early enough that we can still sleep.
382 	 *
383 	 * The last exiting process to reach this point releases as
384 	 * much of the environment as it can. vmspace_dofree() is the
385 	 * slower fallback in case another process had a temporary
386 	 * reference to the vmspace.
387 	 */
388 
389 	p = td->td_proc;
390 	vm = p->p_vmspace;
391 	atomic_add_int(&vmspace0.vm_refcnt, 1);
392 	do {
393 		refcnt = vm->vm_refcnt;
394 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
395 			/* Switch now since other proc might free vmspace */
396 			PROC_VMSPACE_LOCK(p);
397 			p->p_vmspace = &vmspace0;
398 			PROC_VMSPACE_UNLOCK(p);
399 			pmap_activate(td);
400 		}
401 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
402 	if (refcnt == 1) {
403 		if (p->p_vmspace != vm) {
404 			/* vmspace not yet freed, switch back */
405 			PROC_VMSPACE_LOCK(p);
406 			p->p_vmspace = vm;
407 			PROC_VMSPACE_UNLOCK(p);
408 			pmap_activate(td);
409 		}
410 		pmap_remove_pages(vmspace_pmap(vm));
411 		/* Switch now since this proc will free vmspace */
412 		PROC_VMSPACE_LOCK(p);
413 		p->p_vmspace = &vmspace0;
414 		PROC_VMSPACE_UNLOCK(p);
415 		pmap_activate(td);
416 		vmspace_dofree(vm);
417 	}
418 #ifdef RACCT
419 	if (racct_enable)
420 		vmspace_container_reset(p);
421 #endif
422 }
423 
424 /* Acquire reference to vmspace owned by another process. */
425 
426 struct vmspace *
427 vmspace_acquire_ref(struct proc *p)
428 {
429 	struct vmspace *vm;
430 	int refcnt;
431 
432 	PROC_VMSPACE_LOCK(p);
433 	vm = p->p_vmspace;
434 	if (vm == NULL) {
435 		PROC_VMSPACE_UNLOCK(p);
436 		return (NULL);
437 	}
438 	do {
439 		refcnt = vm->vm_refcnt;
440 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
441 			PROC_VMSPACE_UNLOCK(p);
442 			return (NULL);
443 		}
444 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
445 	if (vm != p->p_vmspace) {
446 		PROC_VMSPACE_UNLOCK(p);
447 		vmspace_free(vm);
448 		return (NULL);
449 	}
450 	PROC_VMSPACE_UNLOCK(p);
451 	return (vm);
452 }
453 
454 /*
455  * Switch between vmspaces in an AIO kernel process.
456  *
457  * The AIO kernel processes switch to and from a user process's
458  * vmspace while performing an I/O operation on behalf of a user
459  * process.  The new vmspace is either the vmspace of a user process
460  * obtained from an active AIO request or the initial vmspace of the
461  * AIO kernel process (when it is idling).  Because user processes
462  * will block to drain any active AIO requests before proceeding in
463  * exit() or execve(), the vmspace reference count for these vmspaces
464  * can never be 0.  This allows for a much simpler implementation than
465  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
466  * processes hold an extra reference on their initial vmspace for the
467  * life of the process so that this guarantee is true for any vmspace
468  * passed as 'newvm'.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473 	struct vmspace *oldvm;
474 
475 	/* XXX: Need some way to assert that this is an aio daemon. */
476 
477 	KASSERT(newvm->vm_refcnt > 0,
478 	    ("vmspace_switch_aio: newvm unreferenced"));
479 
480 	oldvm = curproc->p_vmspace;
481 	if (oldvm == newvm)
482 		return;
483 
484 	/*
485 	 * Point to the new address space and refer to it.
486 	 */
487 	curproc->p_vmspace = newvm;
488 	atomic_add_int(&newvm->vm_refcnt, 1);
489 
490 	/* Activate the new mapping. */
491 	pmap_activate(curthread);
492 
493 	/* Remove the daemon's reference to the old address space. */
494 	KASSERT(oldvm->vm_refcnt > 1,
495 	    ("vmspace_switch_aio: oldvm dropping last reference"));
496 	vmspace_free(oldvm);
497 }
498 
499 void
500 _vm_map_lock(vm_map_t map, const char *file, int line)
501 {
502 
503 	if (map->system_map)
504 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
505 	else
506 		sx_xlock_(&map->lock, file, line);
507 	map->timestamp++;
508 }
509 
510 static void
511 vm_map_process_deferred(void)
512 {
513 	struct thread *td;
514 	vm_map_entry_t entry, next;
515 	vm_object_t object;
516 
517 	td = curthread;
518 	entry = td->td_map_def_user;
519 	td->td_map_def_user = NULL;
520 	while (entry != NULL) {
521 		next = entry->next;
522 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
523 			/*
524 			 * Decrement the object's writemappings and
525 			 * possibly the vnode's v_writecount.
526 			 */
527 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
528 			    ("Submap with writecount"));
529 			object = entry->object.vm_object;
530 			KASSERT(object != NULL, ("No object for writecount"));
531 			vnode_pager_release_writecount(object, entry->start,
532 			    entry->end);
533 		}
534 		vm_map_entry_deallocate(entry, FALSE);
535 		entry = next;
536 	}
537 }
538 
539 void
540 _vm_map_unlock(vm_map_t map, const char *file, int line)
541 {
542 
543 	if (map->system_map)
544 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
545 	else {
546 		sx_xunlock_(&map->lock, file, line);
547 		vm_map_process_deferred();
548 	}
549 }
550 
551 void
552 _vm_map_lock_read(vm_map_t map, const char *file, int line)
553 {
554 
555 	if (map->system_map)
556 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
557 	else
558 		sx_slock_(&map->lock, file, line);
559 }
560 
561 void
562 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
563 {
564 
565 	if (map->system_map)
566 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
567 	else {
568 		sx_sunlock_(&map->lock, file, line);
569 		vm_map_process_deferred();
570 	}
571 }
572 
573 int
574 _vm_map_trylock(vm_map_t map, const char *file, int line)
575 {
576 	int error;
577 
578 	error = map->system_map ?
579 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
580 	    !sx_try_xlock_(&map->lock, file, line);
581 	if (error == 0)
582 		map->timestamp++;
583 	return (error == 0);
584 }
585 
586 int
587 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
588 {
589 	int error;
590 
591 	error = map->system_map ?
592 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
593 	    !sx_try_slock_(&map->lock, file, line);
594 	return (error == 0);
595 }
596 
597 /*
598  *	_vm_map_lock_upgrade:	[ internal use only ]
599  *
600  *	Tries to upgrade a read (shared) lock on the specified map to a write
601  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
602  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
603  *	returned without a read or write lock held.
604  *
605  *	Requires that the map be read locked.
606  */
607 int
608 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
609 {
610 	unsigned int last_timestamp;
611 
612 	if (map->system_map) {
613 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
614 	} else {
615 		if (!sx_try_upgrade_(&map->lock, file, line)) {
616 			last_timestamp = map->timestamp;
617 			sx_sunlock_(&map->lock, file, line);
618 			vm_map_process_deferred();
619 			/*
620 			 * If the map's timestamp does not change while the
621 			 * map is unlocked, then the upgrade succeeds.
622 			 */
623 			sx_xlock_(&map->lock, file, line);
624 			if (last_timestamp != map->timestamp) {
625 				sx_xunlock_(&map->lock, file, line);
626 				return (1);
627 			}
628 		}
629 	}
630 	map->timestamp++;
631 	return (0);
632 }
633 
634 void
635 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
636 {
637 
638 	if (map->system_map) {
639 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
640 	} else
641 		sx_downgrade_(&map->lock, file, line);
642 }
643 
644 /*
645  *	vm_map_locked:
646  *
647  *	Returns a non-zero value if the caller holds a write (exclusive) lock
648  *	on the specified map and the value "0" otherwise.
649  */
650 int
651 vm_map_locked(vm_map_t map)
652 {
653 
654 	if (map->system_map)
655 		return (mtx_owned(&map->system_mtx));
656 	else
657 		return (sx_xlocked(&map->lock));
658 }
659 
660 #ifdef INVARIANTS
661 static void
662 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
663 {
664 
665 	if (map->system_map)
666 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
667 	else
668 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
669 }
670 
671 #define	VM_MAP_ASSERT_LOCKED(map) \
672     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
673 #else
674 #define	VM_MAP_ASSERT_LOCKED(map)
675 #endif
676 
677 /*
678  *	_vm_map_unlock_and_wait:
679  *
680  *	Atomically releases the lock on the specified map and puts the calling
681  *	thread to sleep.  The calling thread will remain asleep until either
682  *	vm_map_wakeup() is performed on the map or the specified timeout is
683  *	exceeded.
684  *
685  *	WARNING!  This function does not perform deferred deallocations of
686  *	objects and map	entries.  Therefore, the calling thread is expected to
687  *	reacquire the map lock after reawakening and later perform an ordinary
688  *	unlock operation, such as vm_map_unlock(), before completing its
689  *	operation on the map.
690  */
691 int
692 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
693 {
694 
695 	mtx_lock(&map_sleep_mtx);
696 	if (map->system_map)
697 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
698 	else
699 		sx_xunlock_(&map->lock, file, line);
700 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
701 	    timo));
702 }
703 
704 /*
705  *	vm_map_wakeup:
706  *
707  *	Awaken any threads that have slept on the map using
708  *	vm_map_unlock_and_wait().
709  */
710 void
711 vm_map_wakeup(vm_map_t map)
712 {
713 
714 	/*
715 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
716 	 * from being performed (and lost) between the map unlock
717 	 * and the msleep() in _vm_map_unlock_and_wait().
718 	 */
719 	mtx_lock(&map_sleep_mtx);
720 	mtx_unlock(&map_sleep_mtx);
721 	wakeup(&map->root);
722 }
723 
724 void
725 vm_map_busy(vm_map_t map)
726 {
727 
728 	VM_MAP_ASSERT_LOCKED(map);
729 	map->busy++;
730 }
731 
732 void
733 vm_map_unbusy(vm_map_t map)
734 {
735 
736 	VM_MAP_ASSERT_LOCKED(map);
737 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
738 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
739 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
740 		wakeup(&map->busy);
741 	}
742 }
743 
744 void
745 vm_map_wait_busy(vm_map_t map)
746 {
747 
748 	VM_MAP_ASSERT_LOCKED(map);
749 	while (map->busy) {
750 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
751 		if (map->system_map)
752 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
753 		else
754 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
755 	}
756 	map->timestamp++;
757 }
758 
759 long
760 vmspace_resident_count(struct vmspace *vmspace)
761 {
762 	return pmap_resident_count(vmspace_pmap(vmspace));
763 }
764 
765 /*
766  *	vm_map_create:
767  *
768  *	Creates and returns a new empty VM map with
769  *	the given physical map structure, and having
770  *	the given lower and upper address bounds.
771  */
772 vm_map_t
773 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
774 {
775 	vm_map_t result;
776 
777 	result = uma_zalloc(mapzone, M_WAITOK);
778 	CTR1(KTR_VM, "vm_map_create: %p", result);
779 	_vm_map_init(result, pmap, min, max);
780 	return (result);
781 }
782 
783 /*
784  * Initialize an existing vm_map structure
785  * such as that in the vmspace structure.
786  */
787 static void
788 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
789 {
790 
791 	map->header.next = map->header.prev = &map->header;
792 	map->needs_wakeup = FALSE;
793 	map->system_map = 0;
794 	map->pmap = pmap;
795 	map->min_offset = min;
796 	map->max_offset = max;
797 	map->flags = 0;
798 	map->root = NULL;
799 	map->timestamp = 0;
800 	map->busy = 0;
801 }
802 
803 void
804 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
805 {
806 
807 	_vm_map_init(map, pmap, min, max);
808 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
809 	sx_init(&map->lock, "user map");
810 }
811 
812 /*
813  *	vm_map_entry_dispose:	[ internal use only ]
814  *
815  *	Inverse of vm_map_entry_create.
816  */
817 static void
818 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
819 {
820 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
821 }
822 
823 /*
824  *	vm_map_entry_create:	[ internal use only ]
825  *
826  *	Allocates a VM map entry for insertion.
827  *	No entry fields are filled in.
828  */
829 static vm_map_entry_t
830 vm_map_entry_create(vm_map_t map)
831 {
832 	vm_map_entry_t new_entry;
833 
834 	if (map->system_map)
835 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
836 	else
837 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
838 	if (new_entry == NULL)
839 		panic("vm_map_entry_create: kernel resources exhausted");
840 	return (new_entry);
841 }
842 
843 /*
844  *	vm_map_entry_set_behavior:
845  *
846  *	Set the expected access behavior, either normal, random, or
847  *	sequential.
848  */
849 static inline void
850 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
851 {
852 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
853 	    (behavior & MAP_ENTRY_BEHAV_MASK);
854 }
855 
856 /*
857  *	vm_map_entry_set_max_free:
858  *
859  *	Set the max_free field in a vm_map_entry.
860  */
861 static inline void
862 vm_map_entry_set_max_free(vm_map_entry_t entry)
863 {
864 
865 	entry->max_free = entry->adj_free;
866 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
867 		entry->max_free = entry->left->max_free;
868 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
869 		entry->max_free = entry->right->max_free;
870 }
871 
872 /*
873  *	vm_map_entry_splay:
874  *
875  *	The Sleator and Tarjan top-down splay algorithm with the
876  *	following variation.  Max_free must be computed bottom-up, so
877  *	on the downward pass, maintain the left and right spines in
878  *	reverse order.  Then, make a second pass up each side to fix
879  *	the pointers and compute max_free.  The time bound is O(log n)
880  *	amortized.
881  *
882  *	The new root is the vm_map_entry containing "addr", or else an
883  *	adjacent entry (lower or higher) if addr is not in the tree.
884  *
885  *	The map must be locked, and leaves it so.
886  *
887  *	Returns: the new root.
888  */
889 static vm_map_entry_t
890 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
891 {
892 	vm_map_entry_t llist, rlist;
893 	vm_map_entry_t ltree, rtree;
894 	vm_map_entry_t y;
895 
896 	/* Special case of empty tree. */
897 	if (root == NULL)
898 		return (root);
899 
900 	/*
901 	 * Pass One: Splay down the tree until we find addr or a NULL
902 	 * pointer where addr would go.  llist and rlist are the two
903 	 * sides in reverse order (bottom-up), with llist linked by
904 	 * the right pointer and rlist linked by the left pointer in
905 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
906 	 * the two spines.
907 	 */
908 	llist = NULL;
909 	rlist = NULL;
910 	for (;;) {
911 		/* root is never NULL in here. */
912 		if (addr < root->start) {
913 			y = root->left;
914 			if (y == NULL)
915 				break;
916 			if (addr < y->start && y->left != NULL) {
917 				/* Rotate right and put y on rlist. */
918 				root->left = y->right;
919 				y->right = root;
920 				vm_map_entry_set_max_free(root);
921 				root = y->left;
922 				y->left = rlist;
923 				rlist = y;
924 			} else {
925 				/* Put root on rlist. */
926 				root->left = rlist;
927 				rlist = root;
928 				root = y;
929 			}
930 		} else if (addr >= root->end) {
931 			y = root->right;
932 			if (y == NULL)
933 				break;
934 			if (addr >= y->end && y->right != NULL) {
935 				/* Rotate left and put y on llist. */
936 				root->right = y->left;
937 				y->left = root;
938 				vm_map_entry_set_max_free(root);
939 				root = y->right;
940 				y->right = llist;
941 				llist = y;
942 			} else {
943 				/* Put root on llist. */
944 				root->right = llist;
945 				llist = root;
946 				root = y;
947 			}
948 		} else
949 			break;
950 	}
951 
952 	/*
953 	 * Pass Two: Walk back up the two spines, flip the pointers
954 	 * and set max_free.  The subtrees of the root go at the
955 	 * bottom of llist and rlist.
956 	 */
957 	ltree = root->left;
958 	while (llist != NULL) {
959 		y = llist->right;
960 		llist->right = ltree;
961 		vm_map_entry_set_max_free(llist);
962 		ltree = llist;
963 		llist = y;
964 	}
965 	rtree = root->right;
966 	while (rlist != NULL) {
967 		y = rlist->left;
968 		rlist->left = rtree;
969 		vm_map_entry_set_max_free(rlist);
970 		rtree = rlist;
971 		rlist = y;
972 	}
973 
974 	/*
975 	 * Final assembly: add ltree and rtree as subtrees of root.
976 	 */
977 	root->left = ltree;
978 	root->right = rtree;
979 	vm_map_entry_set_max_free(root);
980 
981 	return (root);
982 }
983 
984 /*
985  *	vm_map_entry_{un,}link:
986  *
987  *	Insert/remove entries from maps.
988  */
989 static void
990 vm_map_entry_link(vm_map_t map,
991 		  vm_map_entry_t after_where,
992 		  vm_map_entry_t entry)
993 {
994 
995 	CTR4(KTR_VM,
996 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
997 	    map->nentries, entry, after_where);
998 	VM_MAP_ASSERT_LOCKED(map);
999 	KASSERT(after_where == &map->header ||
1000 	    after_where->end <= entry->start,
1001 	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
1002 	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
1003 	KASSERT(after_where->next == &map->header ||
1004 	    entry->end <= after_where->next->start,
1005 	    ("vm_map_entry_link: new end %jx next start %jx overlap",
1006 	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1007 
1008 	map->nentries++;
1009 	entry->prev = after_where;
1010 	entry->next = after_where->next;
1011 	entry->next->prev = entry;
1012 	after_where->next = entry;
1013 
1014 	if (after_where != &map->header) {
1015 		if (after_where != map->root)
1016 			vm_map_entry_splay(after_where->start, map->root);
1017 		entry->right = after_where->right;
1018 		entry->left = after_where;
1019 		after_where->right = NULL;
1020 		after_where->adj_free = entry->start - after_where->end;
1021 		vm_map_entry_set_max_free(after_where);
1022 	} else {
1023 		entry->right = map->root;
1024 		entry->left = NULL;
1025 	}
1026 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1027 	    entry->next->start) - entry->end;
1028 	vm_map_entry_set_max_free(entry);
1029 	map->root = entry;
1030 }
1031 
1032 static void
1033 vm_map_entry_unlink(vm_map_t map,
1034 		    vm_map_entry_t entry)
1035 {
1036 	vm_map_entry_t next, prev, root;
1037 
1038 	VM_MAP_ASSERT_LOCKED(map);
1039 	if (entry != map->root)
1040 		vm_map_entry_splay(entry->start, map->root);
1041 	if (entry->left == NULL)
1042 		root = entry->right;
1043 	else {
1044 		root = vm_map_entry_splay(entry->start, entry->left);
1045 		root->right = entry->right;
1046 		root->adj_free = (entry->next == &map->header ? map->max_offset :
1047 		    entry->next->start) - root->end;
1048 		vm_map_entry_set_max_free(root);
1049 	}
1050 	map->root = root;
1051 
1052 	prev = entry->prev;
1053 	next = entry->next;
1054 	next->prev = prev;
1055 	prev->next = next;
1056 	map->nentries--;
1057 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1058 	    map->nentries, entry);
1059 }
1060 
1061 /*
1062  *	vm_map_entry_resize_free:
1063  *
1064  *	Recompute the amount of free space following a vm_map_entry
1065  *	and propagate that value up the tree.  Call this function after
1066  *	resizing a map entry in-place, that is, without a call to
1067  *	vm_map_entry_link() or _unlink().
1068  *
1069  *	The map must be locked, and leaves it so.
1070  */
1071 static void
1072 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1073 {
1074 
1075 	/*
1076 	 * Using splay trees without parent pointers, propagating
1077 	 * max_free up the tree is done by moving the entry to the
1078 	 * root and making the change there.
1079 	 */
1080 	if (entry != map->root)
1081 		map->root = vm_map_entry_splay(entry->start, map->root);
1082 
1083 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1084 	    entry->next->start) - entry->end;
1085 	vm_map_entry_set_max_free(entry);
1086 }
1087 
1088 /*
1089  *	vm_map_lookup_entry:	[ internal use only ]
1090  *
1091  *	Finds the map entry containing (or
1092  *	immediately preceding) the specified address
1093  *	in the given map; the entry is returned
1094  *	in the "entry" parameter.  The boolean
1095  *	result indicates whether the address is
1096  *	actually contained in the map.
1097  */
1098 boolean_t
1099 vm_map_lookup_entry(
1100 	vm_map_t map,
1101 	vm_offset_t address,
1102 	vm_map_entry_t *entry)	/* OUT */
1103 {
1104 	vm_map_entry_t cur;
1105 	boolean_t locked;
1106 
1107 	/*
1108 	 * If the map is empty, then the map entry immediately preceding
1109 	 * "address" is the map's header.
1110 	 */
1111 	cur = map->root;
1112 	if (cur == NULL)
1113 		*entry = &map->header;
1114 	else if (address >= cur->start && cur->end > address) {
1115 		*entry = cur;
1116 		return (TRUE);
1117 	} else if ((locked = vm_map_locked(map)) ||
1118 	    sx_try_upgrade(&map->lock)) {
1119 		/*
1120 		 * Splay requires a write lock on the map.  However, it only
1121 		 * restructures the binary search tree; it does not otherwise
1122 		 * change the map.  Thus, the map's timestamp need not change
1123 		 * on a temporary upgrade.
1124 		 */
1125 		map->root = cur = vm_map_entry_splay(address, cur);
1126 		if (!locked)
1127 			sx_downgrade(&map->lock);
1128 
1129 		/*
1130 		 * If "address" is contained within a map entry, the new root
1131 		 * is that map entry.  Otherwise, the new root is a map entry
1132 		 * immediately before or after "address".
1133 		 */
1134 		if (address >= cur->start) {
1135 			*entry = cur;
1136 			if (cur->end > address)
1137 				return (TRUE);
1138 		} else
1139 			*entry = cur->prev;
1140 	} else
1141 		/*
1142 		 * Since the map is only locked for read access, perform a
1143 		 * standard binary search tree lookup for "address".
1144 		 */
1145 		for (;;) {
1146 			if (address < cur->start) {
1147 				if (cur->left == NULL) {
1148 					*entry = cur->prev;
1149 					break;
1150 				}
1151 				cur = cur->left;
1152 			} else if (cur->end > address) {
1153 				*entry = cur;
1154 				return (TRUE);
1155 			} else {
1156 				if (cur->right == NULL) {
1157 					*entry = cur;
1158 					break;
1159 				}
1160 				cur = cur->right;
1161 			}
1162 		}
1163 	return (FALSE);
1164 }
1165 
1166 /*
1167  *	vm_map_insert:
1168  *
1169  *	Inserts the given whole VM object into the target
1170  *	map at the specified address range.  The object's
1171  *	size should match that of the address range.
1172  *
1173  *	Requires that the map be locked, and leaves it so.
1174  *
1175  *	If object is non-NULL, ref count must be bumped by caller
1176  *	prior to making call to account for the new entry.
1177  */
1178 int
1179 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1180     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1181 {
1182 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1183 	vm_eflags_t protoeflags;
1184 	struct ucred *cred;
1185 	vm_inherit_t inheritance;
1186 
1187 	VM_MAP_ASSERT_LOCKED(map);
1188 	KASSERT((object != kmem_object && object != kernel_object) ||
1189 	    (cow & MAP_COPY_ON_WRITE) == 0,
1190 	    ("vm_map_insert: kmem or kernel object and COW"));
1191 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1192 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1193 
1194 	/*
1195 	 * Check that the start and end points are not bogus.
1196 	 */
1197 	if ((start < map->min_offset) || (end > map->max_offset) ||
1198 	    (start >= end))
1199 		return (KERN_INVALID_ADDRESS);
1200 
1201 	/*
1202 	 * Find the entry prior to the proposed starting address; if it's part
1203 	 * of an existing entry, this range is bogus.
1204 	 */
1205 	if (vm_map_lookup_entry(map, start, &temp_entry))
1206 		return (KERN_NO_SPACE);
1207 
1208 	prev_entry = temp_entry;
1209 
1210 	/*
1211 	 * Assert that the next entry doesn't overlap the end point.
1212 	 */
1213 	if ((prev_entry->next != &map->header) &&
1214 	    (prev_entry->next->start < end))
1215 		return (KERN_NO_SPACE);
1216 
1217 	protoeflags = 0;
1218 	if (cow & MAP_COPY_ON_WRITE)
1219 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1220 	if (cow & MAP_NOFAULT)
1221 		protoeflags |= MAP_ENTRY_NOFAULT;
1222 	if (cow & MAP_DISABLE_SYNCER)
1223 		protoeflags |= MAP_ENTRY_NOSYNC;
1224 	if (cow & MAP_DISABLE_COREDUMP)
1225 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1226 	if (cow & MAP_STACK_GROWS_DOWN)
1227 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1228 	if (cow & MAP_STACK_GROWS_UP)
1229 		protoeflags |= MAP_ENTRY_GROWS_UP;
1230 	if (cow & MAP_VN_WRITECOUNT)
1231 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1232 	if (cow & MAP_INHERIT_SHARE)
1233 		inheritance = VM_INHERIT_SHARE;
1234 	else
1235 		inheritance = VM_INHERIT_DEFAULT;
1236 
1237 	cred = NULL;
1238 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1239 		goto charged;
1240 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1241 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1242 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1243 			return (KERN_RESOURCE_SHORTAGE);
1244 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1245 		    object->cred == NULL,
1246 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1247 		cred = curthread->td_ucred;
1248 	}
1249 
1250 charged:
1251 	/* Expand the kernel pmap, if necessary. */
1252 	if (map == kernel_map && end > kernel_vm_end)
1253 		pmap_growkernel(end);
1254 	if (object != NULL) {
1255 		/*
1256 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1257 		 * is trivially proven to be the only mapping for any
1258 		 * of the object's pages.  (Object granularity
1259 		 * reference counting is insufficient to recognize
1260 		 * aliases with precision.)
1261 		 */
1262 		VM_OBJECT_WLOCK(object);
1263 		if (object->ref_count > 1 || object->shadow_count != 0)
1264 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1265 		VM_OBJECT_WUNLOCK(object);
1266 	}
1267 	else if ((prev_entry != &map->header) &&
1268 		 (prev_entry->eflags == protoeflags) &&
1269 		 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1270 		 (prev_entry->end == start) &&
1271 		 (prev_entry->wired_count == 0) &&
1272 		 (prev_entry->cred == cred ||
1273 		  (prev_entry->object.vm_object != NULL &&
1274 		   (prev_entry->object.vm_object->cred == cred))) &&
1275 		   vm_object_coalesce(prev_entry->object.vm_object,
1276 		       prev_entry->offset,
1277 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1278 		       (vm_size_t)(end - prev_entry->end), cred != NULL &&
1279 		       (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1280 		/*
1281 		 * We were able to extend the object.  Determine if we
1282 		 * can extend the previous map entry to include the
1283 		 * new range as well.
1284 		 */
1285 		if ((prev_entry->inheritance == inheritance) &&
1286 		    (prev_entry->protection == prot) &&
1287 		    (prev_entry->max_protection == max)) {
1288 			map->size += (end - prev_entry->end);
1289 			prev_entry->end = end;
1290 			vm_map_entry_resize_free(map, prev_entry);
1291 			vm_map_simplify_entry(map, prev_entry);
1292 			return (KERN_SUCCESS);
1293 		}
1294 
1295 		/*
1296 		 * If we can extend the object but cannot extend the
1297 		 * map entry, we have to create a new map entry.  We
1298 		 * must bump the ref count on the extended object to
1299 		 * account for it.  object may be NULL.
1300 		 */
1301 		object = prev_entry->object.vm_object;
1302 		offset = prev_entry->offset +
1303 			(prev_entry->end - prev_entry->start);
1304 		vm_object_reference(object);
1305 		if (cred != NULL && object != NULL && object->cred != NULL &&
1306 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1307 			/* Object already accounts for this uid. */
1308 			cred = NULL;
1309 		}
1310 	}
1311 	if (cred != NULL)
1312 		crhold(cred);
1313 
1314 	/*
1315 	 * Create a new entry
1316 	 */
1317 	new_entry = vm_map_entry_create(map);
1318 	new_entry->start = start;
1319 	new_entry->end = end;
1320 	new_entry->cred = NULL;
1321 
1322 	new_entry->eflags = protoeflags;
1323 	new_entry->object.vm_object = object;
1324 	new_entry->offset = offset;
1325 	new_entry->avail_ssize = 0;
1326 
1327 	new_entry->inheritance = inheritance;
1328 	new_entry->protection = prot;
1329 	new_entry->max_protection = max;
1330 	new_entry->wired_count = 0;
1331 	new_entry->wiring_thread = NULL;
1332 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1333 	new_entry->next_read = OFF_TO_IDX(offset);
1334 
1335 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1336 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1337 	new_entry->cred = cred;
1338 
1339 	/*
1340 	 * Insert the new entry into the list
1341 	 */
1342 	vm_map_entry_link(map, prev_entry, new_entry);
1343 	map->size += new_entry->end - new_entry->start;
1344 
1345 	/*
1346 	 * Try to coalesce the new entry with both the previous and next
1347 	 * entries in the list.  Previously, we only attempted to coalesce
1348 	 * with the previous entry when object is NULL.  Here, we handle the
1349 	 * other cases, which are less common.
1350 	 */
1351 	vm_map_simplify_entry(map, new_entry);
1352 
1353 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1354 		vm_map_pmap_enter(map, start, prot,
1355 				    object, OFF_TO_IDX(offset), end - start,
1356 				    cow & MAP_PREFAULT_PARTIAL);
1357 	}
1358 
1359 	return (KERN_SUCCESS);
1360 }
1361 
1362 /*
1363  *	vm_map_findspace:
1364  *
1365  *	Find the first fit (lowest VM address) for "length" free bytes
1366  *	beginning at address >= start in the given map.
1367  *
1368  *	In a vm_map_entry, "adj_free" is the amount of free space
1369  *	adjacent (higher address) to this entry, and "max_free" is the
1370  *	maximum amount of contiguous free space in its subtree.  This
1371  *	allows finding a free region in one path down the tree, so
1372  *	O(log n) amortized with splay trees.
1373  *
1374  *	The map must be locked, and leaves it so.
1375  *
1376  *	Returns: 0 on success, and starting address in *addr,
1377  *		 1 if insufficient space.
1378  */
1379 int
1380 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1381     vm_offset_t *addr)	/* OUT */
1382 {
1383 	vm_map_entry_t entry;
1384 	vm_offset_t st;
1385 
1386 	/*
1387 	 * Request must fit within min/max VM address and must avoid
1388 	 * address wrap.
1389 	 */
1390 	if (start < map->min_offset)
1391 		start = map->min_offset;
1392 	if (start + length > map->max_offset || start + length < start)
1393 		return (1);
1394 
1395 	/* Empty tree means wide open address space. */
1396 	if (map->root == NULL) {
1397 		*addr = start;
1398 		return (0);
1399 	}
1400 
1401 	/*
1402 	 * After splay, if start comes before root node, then there
1403 	 * must be a gap from start to the root.
1404 	 */
1405 	map->root = vm_map_entry_splay(start, map->root);
1406 	if (start + length <= map->root->start) {
1407 		*addr = start;
1408 		return (0);
1409 	}
1410 
1411 	/*
1412 	 * Root is the last node that might begin its gap before
1413 	 * start, and this is the last comparison where address
1414 	 * wrap might be a problem.
1415 	 */
1416 	st = (start > map->root->end) ? start : map->root->end;
1417 	if (length <= map->root->end + map->root->adj_free - st) {
1418 		*addr = st;
1419 		return (0);
1420 	}
1421 
1422 	/* With max_free, can immediately tell if no solution. */
1423 	entry = map->root->right;
1424 	if (entry == NULL || length > entry->max_free)
1425 		return (1);
1426 
1427 	/*
1428 	 * Search the right subtree in the order: left subtree, root,
1429 	 * right subtree (first fit).  The previous splay implies that
1430 	 * all regions in the right subtree have addresses > start.
1431 	 */
1432 	while (entry != NULL) {
1433 		if (entry->left != NULL && entry->left->max_free >= length)
1434 			entry = entry->left;
1435 		else if (entry->adj_free >= length) {
1436 			*addr = entry->end;
1437 			return (0);
1438 		} else
1439 			entry = entry->right;
1440 	}
1441 
1442 	/* Can't get here, so panic if we do. */
1443 	panic("vm_map_findspace: max_free corrupt");
1444 }
1445 
1446 int
1447 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1448     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1449     vm_prot_t max, int cow)
1450 {
1451 	vm_offset_t end;
1452 	int result;
1453 
1454 	end = start + length;
1455 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1456 	    object == NULL,
1457 	    ("vm_map_fixed: non-NULL backing object for stack"));
1458 	vm_map_lock(map);
1459 	VM_MAP_RANGE_CHECK(map, start, end);
1460 	if ((cow & MAP_CHECK_EXCL) == 0)
1461 		vm_map_delete(map, start, end);
1462 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1463 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1464 		    prot, max, cow);
1465 	} else {
1466 		result = vm_map_insert(map, object, offset, start, end,
1467 		    prot, max, cow);
1468 	}
1469 	vm_map_unlock(map);
1470 	return (result);
1471 }
1472 
1473 /*
1474  *	vm_map_find finds an unallocated region in the target address
1475  *	map with the given length.  The search is defined to be
1476  *	first-fit from the specified address; the region found is
1477  *	returned in the same parameter.
1478  *
1479  *	If object is non-NULL, ref count must be bumped by caller
1480  *	prior to making call to account for the new entry.
1481  */
1482 int
1483 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1484 	    vm_offset_t *addr,	/* IN/OUT */
1485 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1486 	    vm_prot_t prot, vm_prot_t max, int cow)
1487 {
1488 	vm_offset_t alignment, initial_addr, start;
1489 	int result;
1490 
1491 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1492 	    object == NULL,
1493 	    ("vm_map_find: non-NULL backing object for stack"));
1494 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1495 	    (object->flags & OBJ_COLORED) == 0))
1496 		find_space = VMFS_ANY_SPACE;
1497 	if (find_space >> 8 != 0) {
1498 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1499 		alignment = (vm_offset_t)1 << (find_space >> 8);
1500 	} else
1501 		alignment = 0;
1502 	initial_addr = *addr;
1503 again:
1504 	start = initial_addr;
1505 	vm_map_lock(map);
1506 	do {
1507 		if (find_space != VMFS_NO_SPACE) {
1508 			if (vm_map_findspace(map, start, length, addr) ||
1509 			    (max_addr != 0 && *addr + length > max_addr)) {
1510 				vm_map_unlock(map);
1511 				if (find_space == VMFS_OPTIMAL_SPACE) {
1512 					find_space = VMFS_ANY_SPACE;
1513 					goto again;
1514 				}
1515 				return (KERN_NO_SPACE);
1516 			}
1517 			switch (find_space) {
1518 			case VMFS_SUPER_SPACE:
1519 			case VMFS_OPTIMAL_SPACE:
1520 				pmap_align_superpage(object, offset, addr,
1521 				    length);
1522 				break;
1523 			case VMFS_ANY_SPACE:
1524 				break;
1525 			default:
1526 				if ((*addr & (alignment - 1)) != 0) {
1527 					*addr &= ~(alignment - 1);
1528 					*addr += alignment;
1529 				}
1530 				break;
1531 			}
1532 
1533 			start = *addr;
1534 		}
1535 		if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1536 			result = vm_map_stack_locked(map, start, length,
1537 			    sgrowsiz, prot, max, cow);
1538 		} else {
1539 			result = vm_map_insert(map, object, offset, start,
1540 			    start + length, prot, max, cow);
1541 		}
1542 	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1543 	    find_space != VMFS_ANY_SPACE);
1544 	vm_map_unlock(map);
1545 	return (result);
1546 }
1547 
1548 /*
1549  *	vm_map_simplify_entry:
1550  *
1551  *	Simplify the given map entry by merging with either neighbor.  This
1552  *	routine also has the ability to merge with both neighbors.
1553  *
1554  *	The map must be locked.
1555  *
1556  *	This routine guarantees that the passed entry remains valid (though
1557  *	possibly extended).  When merging, this routine may delete one or
1558  *	both neighbors.
1559  */
1560 void
1561 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1562 {
1563 	vm_map_entry_t next, prev;
1564 	vm_size_t prevsize, esize;
1565 
1566 	if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1567 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1568 		return;
1569 
1570 	prev = entry->prev;
1571 	if (prev != &map->header) {
1572 		prevsize = prev->end - prev->start;
1573 		if ( (prev->end == entry->start) &&
1574 		     (prev->object.vm_object == entry->object.vm_object) &&
1575 		     (!prev->object.vm_object ||
1576 			(prev->offset + prevsize == entry->offset)) &&
1577 		     (prev->eflags == entry->eflags) &&
1578 		     (prev->protection == entry->protection) &&
1579 		     (prev->max_protection == entry->max_protection) &&
1580 		     (prev->inheritance == entry->inheritance) &&
1581 		     (prev->wired_count == entry->wired_count) &&
1582 		     (prev->cred == entry->cred)) {
1583 			vm_map_entry_unlink(map, prev);
1584 			entry->start = prev->start;
1585 			entry->offset = prev->offset;
1586 			if (entry->prev != &map->header)
1587 				vm_map_entry_resize_free(map, entry->prev);
1588 
1589 			/*
1590 			 * If the backing object is a vnode object,
1591 			 * vm_object_deallocate() calls vrele().
1592 			 * However, vrele() does not lock the vnode
1593 			 * because the vnode has additional
1594 			 * references.  Thus, the map lock can be kept
1595 			 * without causing a lock-order reversal with
1596 			 * the vnode lock.
1597 			 *
1598 			 * Since we count the number of virtual page
1599 			 * mappings in object->un_pager.vnp.writemappings,
1600 			 * the writemappings value should not be adjusted
1601 			 * when the entry is disposed of.
1602 			 */
1603 			if (prev->object.vm_object)
1604 				vm_object_deallocate(prev->object.vm_object);
1605 			if (prev->cred != NULL)
1606 				crfree(prev->cred);
1607 			vm_map_entry_dispose(map, prev);
1608 		}
1609 	}
1610 
1611 	next = entry->next;
1612 	if (next != &map->header) {
1613 		esize = entry->end - entry->start;
1614 		if ((entry->end == next->start) &&
1615 		    (next->object.vm_object == entry->object.vm_object) &&
1616 		     (!entry->object.vm_object ||
1617 			(entry->offset + esize == next->offset)) &&
1618 		    (next->eflags == entry->eflags) &&
1619 		    (next->protection == entry->protection) &&
1620 		    (next->max_protection == entry->max_protection) &&
1621 		    (next->inheritance == entry->inheritance) &&
1622 		    (next->wired_count == entry->wired_count) &&
1623 		    (next->cred == entry->cred)) {
1624 			vm_map_entry_unlink(map, next);
1625 			entry->end = next->end;
1626 			vm_map_entry_resize_free(map, entry);
1627 
1628 			/*
1629 			 * See comment above.
1630 			 */
1631 			if (next->object.vm_object)
1632 				vm_object_deallocate(next->object.vm_object);
1633 			if (next->cred != NULL)
1634 				crfree(next->cred);
1635 			vm_map_entry_dispose(map, next);
1636 		}
1637 	}
1638 }
1639 /*
1640  *	vm_map_clip_start:	[ internal use only ]
1641  *
1642  *	Asserts that the given entry begins at or after
1643  *	the specified address; if necessary,
1644  *	it splits the entry into two.
1645  */
1646 #define vm_map_clip_start(map, entry, startaddr) \
1647 { \
1648 	if (startaddr > entry->start) \
1649 		_vm_map_clip_start(map, entry, startaddr); \
1650 }
1651 
1652 /*
1653  *	This routine is called only when it is known that
1654  *	the entry must be split.
1655  */
1656 static void
1657 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1658 {
1659 	vm_map_entry_t new_entry;
1660 
1661 	VM_MAP_ASSERT_LOCKED(map);
1662 
1663 	/*
1664 	 * Split off the front portion -- note that we must insert the new
1665 	 * entry BEFORE this one, so that this entry has the specified
1666 	 * starting address.
1667 	 */
1668 	vm_map_simplify_entry(map, entry);
1669 
1670 	/*
1671 	 * If there is no object backing this entry, we might as well create
1672 	 * one now.  If we defer it, an object can get created after the map
1673 	 * is clipped, and individual objects will be created for the split-up
1674 	 * map.  This is a bit of a hack, but is also about the best place to
1675 	 * put this improvement.
1676 	 */
1677 	if (entry->object.vm_object == NULL && !map->system_map) {
1678 		vm_object_t object;
1679 		object = vm_object_allocate(OBJT_DEFAULT,
1680 				atop(entry->end - entry->start));
1681 		entry->object.vm_object = object;
1682 		entry->offset = 0;
1683 		if (entry->cred != NULL) {
1684 			object->cred = entry->cred;
1685 			object->charge = entry->end - entry->start;
1686 			entry->cred = NULL;
1687 		}
1688 	} else if (entry->object.vm_object != NULL &&
1689 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1690 		   entry->cred != NULL) {
1691 		VM_OBJECT_WLOCK(entry->object.vm_object);
1692 		KASSERT(entry->object.vm_object->cred == NULL,
1693 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1694 		entry->object.vm_object->cred = entry->cred;
1695 		entry->object.vm_object->charge = entry->end - entry->start;
1696 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1697 		entry->cred = NULL;
1698 	}
1699 
1700 	new_entry = vm_map_entry_create(map);
1701 	*new_entry = *entry;
1702 
1703 	new_entry->end = start;
1704 	entry->offset += (start - entry->start);
1705 	entry->start = start;
1706 	if (new_entry->cred != NULL)
1707 		crhold(entry->cred);
1708 
1709 	vm_map_entry_link(map, entry->prev, new_entry);
1710 
1711 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1712 		vm_object_reference(new_entry->object.vm_object);
1713 		/*
1714 		 * The object->un_pager.vnp.writemappings for the
1715 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1716 		 * kept as is here.  The virtual pages are
1717 		 * re-distributed among the clipped entries, so the sum is
1718 		 * left the same.
1719 		 */
1720 	}
1721 }
1722 
1723 /*
1724  *	vm_map_clip_end:	[ internal use only ]
1725  *
1726  *	Asserts that the given entry ends at or before
1727  *	the specified address; if necessary,
1728  *	it splits the entry into two.
1729  */
1730 #define vm_map_clip_end(map, entry, endaddr) \
1731 { \
1732 	if ((endaddr) < (entry->end)) \
1733 		_vm_map_clip_end((map), (entry), (endaddr)); \
1734 }
1735 
1736 /*
1737  *	This routine is called only when it is known that
1738  *	the entry must be split.
1739  */
1740 static void
1741 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1742 {
1743 	vm_map_entry_t new_entry;
1744 
1745 	VM_MAP_ASSERT_LOCKED(map);
1746 
1747 	/*
1748 	 * If there is no object backing this entry, we might as well create
1749 	 * one now.  If we defer it, an object can get created after the map
1750 	 * is clipped, and individual objects will be created for the split-up
1751 	 * map.  This is a bit of a hack, but is also about the best place to
1752 	 * put this improvement.
1753 	 */
1754 	if (entry->object.vm_object == NULL && !map->system_map) {
1755 		vm_object_t object;
1756 		object = vm_object_allocate(OBJT_DEFAULT,
1757 				atop(entry->end - entry->start));
1758 		entry->object.vm_object = object;
1759 		entry->offset = 0;
1760 		if (entry->cred != NULL) {
1761 			object->cred = entry->cred;
1762 			object->charge = entry->end - entry->start;
1763 			entry->cred = NULL;
1764 		}
1765 	} else if (entry->object.vm_object != NULL &&
1766 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1767 		   entry->cred != NULL) {
1768 		VM_OBJECT_WLOCK(entry->object.vm_object);
1769 		KASSERT(entry->object.vm_object->cred == NULL,
1770 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1771 		entry->object.vm_object->cred = entry->cred;
1772 		entry->object.vm_object->charge = entry->end - entry->start;
1773 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1774 		entry->cred = NULL;
1775 	}
1776 
1777 	/*
1778 	 * Create a new entry and insert it AFTER the specified entry
1779 	 */
1780 	new_entry = vm_map_entry_create(map);
1781 	*new_entry = *entry;
1782 
1783 	new_entry->start = entry->end = end;
1784 	new_entry->offset += (end - entry->start);
1785 	if (new_entry->cred != NULL)
1786 		crhold(entry->cred);
1787 
1788 	vm_map_entry_link(map, entry, new_entry);
1789 
1790 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1791 		vm_object_reference(new_entry->object.vm_object);
1792 	}
1793 }
1794 
1795 /*
1796  *	vm_map_submap:		[ kernel use only ]
1797  *
1798  *	Mark the given range as handled by a subordinate map.
1799  *
1800  *	This range must have been created with vm_map_find,
1801  *	and no other operations may have been performed on this
1802  *	range prior to calling vm_map_submap.
1803  *
1804  *	Only a limited number of operations can be performed
1805  *	within this rage after calling vm_map_submap:
1806  *		vm_fault
1807  *	[Don't try vm_map_copy!]
1808  *
1809  *	To remove a submapping, one must first remove the
1810  *	range from the superior map, and then destroy the
1811  *	submap (if desired).  [Better yet, don't try it.]
1812  */
1813 int
1814 vm_map_submap(
1815 	vm_map_t map,
1816 	vm_offset_t start,
1817 	vm_offset_t end,
1818 	vm_map_t submap)
1819 {
1820 	vm_map_entry_t entry;
1821 	int result = KERN_INVALID_ARGUMENT;
1822 
1823 	vm_map_lock(map);
1824 
1825 	VM_MAP_RANGE_CHECK(map, start, end);
1826 
1827 	if (vm_map_lookup_entry(map, start, &entry)) {
1828 		vm_map_clip_start(map, entry, start);
1829 	} else
1830 		entry = entry->next;
1831 
1832 	vm_map_clip_end(map, entry, end);
1833 
1834 	if ((entry->start == start) && (entry->end == end) &&
1835 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1836 	    (entry->object.vm_object == NULL)) {
1837 		entry->object.sub_map = submap;
1838 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1839 		result = KERN_SUCCESS;
1840 	}
1841 	vm_map_unlock(map);
1842 
1843 	return (result);
1844 }
1845 
1846 /*
1847  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1848  */
1849 #define	MAX_INIT_PT	96
1850 
1851 /*
1852  *	vm_map_pmap_enter:
1853  *
1854  *	Preload the specified map's pmap with mappings to the specified
1855  *	object's memory-resident pages.  No further physical pages are
1856  *	allocated, and no further virtual pages are retrieved from secondary
1857  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1858  *	limited number of page mappings are created at the low-end of the
1859  *	specified address range.  (For this purpose, a superpage mapping
1860  *	counts as one page mapping.)  Otherwise, all resident pages within
1861  *	the specified address range are mapped.  Because these mappings are
1862  *	being created speculatively, cached pages are not reactivated and
1863  *	mapped.
1864  */
1865 static void
1866 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1867     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1868 {
1869 	vm_offset_t start;
1870 	vm_page_t p, p_start;
1871 	vm_pindex_t mask, psize, threshold, tmpidx;
1872 
1873 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1874 		return;
1875 	VM_OBJECT_RLOCK(object);
1876 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1877 		VM_OBJECT_RUNLOCK(object);
1878 		VM_OBJECT_WLOCK(object);
1879 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1880 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1881 			    size);
1882 			VM_OBJECT_WUNLOCK(object);
1883 			return;
1884 		}
1885 		VM_OBJECT_LOCK_DOWNGRADE(object);
1886 	}
1887 
1888 	psize = atop(size);
1889 	if (psize + pindex > object->size) {
1890 		if (object->size < pindex) {
1891 			VM_OBJECT_RUNLOCK(object);
1892 			return;
1893 		}
1894 		psize = object->size - pindex;
1895 	}
1896 
1897 	start = 0;
1898 	p_start = NULL;
1899 	threshold = MAX_INIT_PT;
1900 
1901 	p = vm_page_find_least(object, pindex);
1902 	/*
1903 	 * Assert: the variable p is either (1) the page with the
1904 	 * least pindex greater than or equal to the parameter pindex
1905 	 * or (2) NULL.
1906 	 */
1907 	for (;
1908 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1909 	     p = TAILQ_NEXT(p, listq)) {
1910 		/*
1911 		 * don't allow an madvise to blow away our really
1912 		 * free pages allocating pv entries.
1913 		 */
1914 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1915 		    vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1916 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1917 		    tmpidx >= threshold)) {
1918 			psize = tmpidx;
1919 			break;
1920 		}
1921 		if (p->valid == VM_PAGE_BITS_ALL) {
1922 			if (p_start == NULL) {
1923 				start = addr + ptoa(tmpidx);
1924 				p_start = p;
1925 			}
1926 			/* Jump ahead if a superpage mapping is possible. */
1927 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1928 			    (pagesizes[p->psind] - 1)) == 0) {
1929 				mask = atop(pagesizes[p->psind]) - 1;
1930 				if (tmpidx + mask < psize &&
1931 				    vm_page_ps_is_valid(p)) {
1932 					p += mask;
1933 					threshold += mask;
1934 				}
1935 			}
1936 		} else if (p_start != NULL) {
1937 			pmap_enter_object(map->pmap, start, addr +
1938 			    ptoa(tmpidx), p_start, prot);
1939 			p_start = NULL;
1940 		}
1941 	}
1942 	if (p_start != NULL)
1943 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1944 		    p_start, prot);
1945 	VM_OBJECT_RUNLOCK(object);
1946 }
1947 
1948 /*
1949  *	vm_map_protect:
1950  *
1951  *	Sets the protection of the specified address
1952  *	region in the target map.  If "set_max" is
1953  *	specified, the maximum protection is to be set;
1954  *	otherwise, only the current protection is affected.
1955  */
1956 int
1957 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1958 	       vm_prot_t new_prot, boolean_t set_max)
1959 {
1960 	vm_map_entry_t current, entry;
1961 	vm_object_t obj;
1962 	struct ucred *cred;
1963 	vm_prot_t old_prot;
1964 
1965 	if (start == end)
1966 		return (KERN_SUCCESS);
1967 
1968 	vm_map_lock(map);
1969 
1970 	VM_MAP_RANGE_CHECK(map, start, end);
1971 
1972 	if (vm_map_lookup_entry(map, start, &entry)) {
1973 		vm_map_clip_start(map, entry, start);
1974 	} else {
1975 		entry = entry->next;
1976 	}
1977 
1978 	/*
1979 	 * Make a first pass to check for protection violations.
1980 	 */
1981 	current = entry;
1982 	while ((current != &map->header) && (current->start < end)) {
1983 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1984 			vm_map_unlock(map);
1985 			return (KERN_INVALID_ARGUMENT);
1986 		}
1987 		if ((new_prot & current->max_protection) != new_prot) {
1988 			vm_map_unlock(map);
1989 			return (KERN_PROTECTION_FAILURE);
1990 		}
1991 		current = current->next;
1992 	}
1993 
1994 
1995 	/*
1996 	 * Do an accounting pass for private read-only mappings that
1997 	 * now will do cow due to allowed write (e.g. debugger sets
1998 	 * breakpoint on text segment)
1999 	 */
2000 	for (current = entry; (current != &map->header) &&
2001 	     (current->start < end); current = current->next) {
2002 
2003 		vm_map_clip_end(map, current, end);
2004 
2005 		if (set_max ||
2006 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2007 		    ENTRY_CHARGED(current)) {
2008 			continue;
2009 		}
2010 
2011 		cred = curthread->td_ucred;
2012 		obj = current->object.vm_object;
2013 
2014 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2015 			if (!swap_reserve(current->end - current->start)) {
2016 				vm_map_unlock(map);
2017 				return (KERN_RESOURCE_SHORTAGE);
2018 			}
2019 			crhold(cred);
2020 			current->cred = cred;
2021 			continue;
2022 		}
2023 
2024 		VM_OBJECT_WLOCK(obj);
2025 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2026 			VM_OBJECT_WUNLOCK(obj);
2027 			continue;
2028 		}
2029 
2030 		/*
2031 		 * Charge for the whole object allocation now, since
2032 		 * we cannot distinguish between non-charged and
2033 		 * charged clipped mapping of the same object later.
2034 		 */
2035 		KASSERT(obj->charge == 0,
2036 		    ("vm_map_protect: object %p overcharged (entry %p)",
2037 		    obj, current));
2038 		if (!swap_reserve(ptoa(obj->size))) {
2039 			VM_OBJECT_WUNLOCK(obj);
2040 			vm_map_unlock(map);
2041 			return (KERN_RESOURCE_SHORTAGE);
2042 		}
2043 
2044 		crhold(cred);
2045 		obj->cred = cred;
2046 		obj->charge = ptoa(obj->size);
2047 		VM_OBJECT_WUNLOCK(obj);
2048 	}
2049 
2050 	/*
2051 	 * Go back and fix up protections. [Note that clipping is not
2052 	 * necessary the second time.]
2053 	 */
2054 	current = entry;
2055 	while ((current != &map->header) && (current->start < end)) {
2056 		old_prot = current->protection;
2057 
2058 		if (set_max)
2059 			current->protection =
2060 			    (current->max_protection = new_prot) &
2061 			    old_prot;
2062 		else
2063 			current->protection = new_prot;
2064 
2065 		/*
2066 		 * For user wired map entries, the normal lazy evaluation of
2067 		 * write access upgrades through soft page faults is
2068 		 * undesirable.  Instead, immediately copy any pages that are
2069 		 * copy-on-write and enable write access in the physical map.
2070 		 */
2071 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2072 		    (current->protection & VM_PROT_WRITE) != 0 &&
2073 		    (old_prot & VM_PROT_WRITE) == 0)
2074 			vm_fault_copy_entry(map, map, current, current, NULL);
2075 
2076 		/*
2077 		 * When restricting access, update the physical map.  Worry
2078 		 * about copy-on-write here.
2079 		 */
2080 		if ((old_prot & ~current->protection) != 0) {
2081 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2082 							VM_PROT_ALL)
2083 			pmap_protect(map->pmap, current->start,
2084 			    current->end,
2085 			    current->protection & MASK(current));
2086 #undef	MASK
2087 		}
2088 		vm_map_simplify_entry(map, current);
2089 		current = current->next;
2090 	}
2091 	vm_map_unlock(map);
2092 	return (KERN_SUCCESS);
2093 }
2094 
2095 /*
2096  *	vm_map_madvise:
2097  *
2098  *	This routine traverses a processes map handling the madvise
2099  *	system call.  Advisories are classified as either those effecting
2100  *	the vm_map_entry structure, or those effecting the underlying
2101  *	objects.
2102  */
2103 int
2104 vm_map_madvise(
2105 	vm_map_t map,
2106 	vm_offset_t start,
2107 	vm_offset_t end,
2108 	int behav)
2109 {
2110 	vm_map_entry_t current, entry;
2111 	int modify_map = 0;
2112 
2113 	/*
2114 	 * Some madvise calls directly modify the vm_map_entry, in which case
2115 	 * we need to use an exclusive lock on the map and we need to perform
2116 	 * various clipping operations.  Otherwise we only need a read-lock
2117 	 * on the map.
2118 	 */
2119 	switch(behav) {
2120 	case MADV_NORMAL:
2121 	case MADV_SEQUENTIAL:
2122 	case MADV_RANDOM:
2123 	case MADV_NOSYNC:
2124 	case MADV_AUTOSYNC:
2125 	case MADV_NOCORE:
2126 	case MADV_CORE:
2127 		if (start == end)
2128 			return (KERN_SUCCESS);
2129 		modify_map = 1;
2130 		vm_map_lock(map);
2131 		break;
2132 	case MADV_WILLNEED:
2133 	case MADV_DONTNEED:
2134 	case MADV_FREE:
2135 		if (start == end)
2136 			return (KERN_SUCCESS);
2137 		vm_map_lock_read(map);
2138 		break;
2139 	default:
2140 		return (KERN_INVALID_ARGUMENT);
2141 	}
2142 
2143 	/*
2144 	 * Locate starting entry and clip if necessary.
2145 	 */
2146 	VM_MAP_RANGE_CHECK(map, start, end);
2147 
2148 	if (vm_map_lookup_entry(map, start, &entry)) {
2149 		if (modify_map)
2150 			vm_map_clip_start(map, entry, start);
2151 	} else {
2152 		entry = entry->next;
2153 	}
2154 
2155 	if (modify_map) {
2156 		/*
2157 		 * madvise behaviors that are implemented in the vm_map_entry.
2158 		 *
2159 		 * We clip the vm_map_entry so that behavioral changes are
2160 		 * limited to the specified address range.
2161 		 */
2162 		for (current = entry;
2163 		     (current != &map->header) && (current->start < end);
2164 		     current = current->next
2165 		) {
2166 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2167 				continue;
2168 
2169 			vm_map_clip_end(map, current, end);
2170 
2171 			switch (behav) {
2172 			case MADV_NORMAL:
2173 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2174 				break;
2175 			case MADV_SEQUENTIAL:
2176 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2177 				break;
2178 			case MADV_RANDOM:
2179 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2180 				break;
2181 			case MADV_NOSYNC:
2182 				current->eflags |= MAP_ENTRY_NOSYNC;
2183 				break;
2184 			case MADV_AUTOSYNC:
2185 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2186 				break;
2187 			case MADV_NOCORE:
2188 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2189 				break;
2190 			case MADV_CORE:
2191 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2192 				break;
2193 			default:
2194 				break;
2195 			}
2196 			vm_map_simplify_entry(map, current);
2197 		}
2198 		vm_map_unlock(map);
2199 	} else {
2200 		vm_pindex_t pstart, pend;
2201 
2202 		/*
2203 		 * madvise behaviors that are implemented in the underlying
2204 		 * vm_object.
2205 		 *
2206 		 * Since we don't clip the vm_map_entry, we have to clip
2207 		 * the vm_object pindex and count.
2208 		 */
2209 		for (current = entry;
2210 		     (current != &map->header) && (current->start < end);
2211 		     current = current->next
2212 		) {
2213 			vm_offset_t useEnd, useStart;
2214 
2215 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2216 				continue;
2217 
2218 			pstart = OFF_TO_IDX(current->offset);
2219 			pend = pstart + atop(current->end - current->start);
2220 			useStart = current->start;
2221 			useEnd = current->end;
2222 
2223 			if (current->start < start) {
2224 				pstart += atop(start - current->start);
2225 				useStart = start;
2226 			}
2227 			if (current->end > end) {
2228 				pend -= atop(current->end - end);
2229 				useEnd = end;
2230 			}
2231 
2232 			if (pstart >= pend)
2233 				continue;
2234 
2235 			/*
2236 			 * Perform the pmap_advise() before clearing
2237 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2238 			 * concurrent pmap operation, such as pmap_remove(),
2239 			 * could clear a reference in the pmap and set
2240 			 * PGA_REFERENCED on the page before the pmap_advise()
2241 			 * had completed.  Consequently, the page would appear
2242 			 * referenced based upon an old reference that
2243 			 * occurred before this pmap_advise() ran.
2244 			 */
2245 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2246 				pmap_advise(map->pmap, useStart, useEnd,
2247 				    behav);
2248 
2249 			vm_object_madvise(current->object.vm_object, pstart,
2250 			    pend, behav);
2251 
2252 			/*
2253 			 * Pre-populate paging structures in the
2254 			 * WILLNEED case.  For wired entries, the
2255 			 * paging structures are already populated.
2256 			 */
2257 			if (behav == MADV_WILLNEED &&
2258 			    current->wired_count == 0) {
2259 				vm_map_pmap_enter(map,
2260 				    useStart,
2261 				    current->protection,
2262 				    current->object.vm_object,
2263 				    pstart,
2264 				    ptoa(pend - pstart),
2265 				    MAP_PREFAULT_MADVISE
2266 				);
2267 			}
2268 		}
2269 		vm_map_unlock_read(map);
2270 	}
2271 	return (0);
2272 }
2273 
2274 
2275 /*
2276  *	vm_map_inherit:
2277  *
2278  *	Sets the inheritance of the specified address
2279  *	range in the target map.  Inheritance
2280  *	affects how the map will be shared with
2281  *	child maps at the time of vmspace_fork.
2282  */
2283 int
2284 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2285 	       vm_inherit_t new_inheritance)
2286 {
2287 	vm_map_entry_t entry;
2288 	vm_map_entry_t temp_entry;
2289 
2290 	switch (new_inheritance) {
2291 	case VM_INHERIT_NONE:
2292 	case VM_INHERIT_COPY:
2293 	case VM_INHERIT_SHARE:
2294 		break;
2295 	default:
2296 		return (KERN_INVALID_ARGUMENT);
2297 	}
2298 	if (start == end)
2299 		return (KERN_SUCCESS);
2300 	vm_map_lock(map);
2301 	VM_MAP_RANGE_CHECK(map, start, end);
2302 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2303 		entry = temp_entry;
2304 		vm_map_clip_start(map, entry, start);
2305 	} else
2306 		entry = temp_entry->next;
2307 	while ((entry != &map->header) && (entry->start < end)) {
2308 		vm_map_clip_end(map, entry, end);
2309 		entry->inheritance = new_inheritance;
2310 		vm_map_simplify_entry(map, entry);
2311 		entry = entry->next;
2312 	}
2313 	vm_map_unlock(map);
2314 	return (KERN_SUCCESS);
2315 }
2316 
2317 /*
2318  *	vm_map_unwire:
2319  *
2320  *	Implements both kernel and user unwiring.
2321  */
2322 int
2323 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2324     int flags)
2325 {
2326 	vm_map_entry_t entry, first_entry, tmp_entry;
2327 	vm_offset_t saved_start;
2328 	unsigned int last_timestamp;
2329 	int rv;
2330 	boolean_t need_wakeup, result, user_unwire;
2331 
2332 	if (start == end)
2333 		return (KERN_SUCCESS);
2334 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2335 	vm_map_lock(map);
2336 	VM_MAP_RANGE_CHECK(map, start, end);
2337 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2338 		if (flags & VM_MAP_WIRE_HOLESOK)
2339 			first_entry = first_entry->next;
2340 		else {
2341 			vm_map_unlock(map);
2342 			return (KERN_INVALID_ADDRESS);
2343 		}
2344 	}
2345 	last_timestamp = map->timestamp;
2346 	entry = first_entry;
2347 	while (entry != &map->header && entry->start < end) {
2348 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2349 			/*
2350 			 * We have not yet clipped the entry.
2351 			 */
2352 			saved_start = (start >= entry->start) ? start :
2353 			    entry->start;
2354 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2355 			if (vm_map_unlock_and_wait(map, 0)) {
2356 				/*
2357 				 * Allow interruption of user unwiring?
2358 				 */
2359 			}
2360 			vm_map_lock(map);
2361 			if (last_timestamp+1 != map->timestamp) {
2362 				/*
2363 				 * Look again for the entry because the map was
2364 				 * modified while it was unlocked.
2365 				 * Specifically, the entry may have been
2366 				 * clipped, merged, or deleted.
2367 				 */
2368 				if (!vm_map_lookup_entry(map, saved_start,
2369 				    &tmp_entry)) {
2370 					if (flags & VM_MAP_WIRE_HOLESOK)
2371 						tmp_entry = tmp_entry->next;
2372 					else {
2373 						if (saved_start == start) {
2374 							/*
2375 							 * First_entry has been deleted.
2376 							 */
2377 							vm_map_unlock(map);
2378 							return (KERN_INVALID_ADDRESS);
2379 						}
2380 						end = saved_start;
2381 						rv = KERN_INVALID_ADDRESS;
2382 						goto done;
2383 					}
2384 				}
2385 				if (entry == first_entry)
2386 					first_entry = tmp_entry;
2387 				else
2388 					first_entry = NULL;
2389 				entry = tmp_entry;
2390 			}
2391 			last_timestamp = map->timestamp;
2392 			continue;
2393 		}
2394 		vm_map_clip_start(map, entry, start);
2395 		vm_map_clip_end(map, entry, end);
2396 		/*
2397 		 * Mark the entry in case the map lock is released.  (See
2398 		 * above.)
2399 		 */
2400 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2401 		    entry->wiring_thread == NULL,
2402 		    ("owned map entry %p", entry));
2403 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2404 		entry->wiring_thread = curthread;
2405 		/*
2406 		 * Check the map for holes in the specified region.
2407 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2408 		 */
2409 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2410 		    (entry->end < end && (entry->next == &map->header ||
2411 		    entry->next->start > entry->end))) {
2412 			end = entry->end;
2413 			rv = KERN_INVALID_ADDRESS;
2414 			goto done;
2415 		}
2416 		/*
2417 		 * If system unwiring, require that the entry is system wired.
2418 		 */
2419 		if (!user_unwire &&
2420 		    vm_map_entry_system_wired_count(entry) == 0) {
2421 			end = entry->end;
2422 			rv = KERN_INVALID_ARGUMENT;
2423 			goto done;
2424 		}
2425 		entry = entry->next;
2426 	}
2427 	rv = KERN_SUCCESS;
2428 done:
2429 	need_wakeup = FALSE;
2430 	if (first_entry == NULL) {
2431 		result = vm_map_lookup_entry(map, start, &first_entry);
2432 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2433 			first_entry = first_entry->next;
2434 		else
2435 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2436 	}
2437 	for (entry = first_entry; entry != &map->header && entry->start < end;
2438 	    entry = entry->next) {
2439 		/*
2440 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2441 		 * space in the unwired region could have been mapped
2442 		 * while the map lock was dropped for draining
2443 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2444 		 * could be simultaneously wiring this new mapping
2445 		 * entry.  Detect these cases and skip any entries
2446 		 * marked as in transition by us.
2447 		 */
2448 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2449 		    entry->wiring_thread != curthread) {
2450 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2451 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2452 			continue;
2453 		}
2454 
2455 		if (rv == KERN_SUCCESS && (!user_unwire ||
2456 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2457 			if (user_unwire)
2458 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2459 			if (entry->wired_count == 1)
2460 				vm_map_entry_unwire(map, entry);
2461 			else
2462 				entry->wired_count--;
2463 		}
2464 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2465 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2466 		KASSERT(entry->wiring_thread == curthread,
2467 		    ("vm_map_unwire: alien wire %p", entry));
2468 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2469 		entry->wiring_thread = NULL;
2470 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2471 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2472 			need_wakeup = TRUE;
2473 		}
2474 		vm_map_simplify_entry(map, entry);
2475 	}
2476 	vm_map_unlock(map);
2477 	if (need_wakeup)
2478 		vm_map_wakeup(map);
2479 	return (rv);
2480 }
2481 
2482 /*
2483  *	vm_map_wire_entry_failure:
2484  *
2485  *	Handle a wiring failure on the given entry.
2486  *
2487  *	The map should be locked.
2488  */
2489 static void
2490 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2491     vm_offset_t failed_addr)
2492 {
2493 
2494 	VM_MAP_ASSERT_LOCKED(map);
2495 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2496 	    entry->wired_count == 1,
2497 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2498 	KASSERT(failed_addr < entry->end,
2499 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2500 
2501 	/*
2502 	 * If any pages at the start of this entry were successfully wired,
2503 	 * then unwire them.
2504 	 */
2505 	if (failed_addr > entry->start) {
2506 		pmap_unwire(map->pmap, entry->start, failed_addr);
2507 		vm_object_unwire(entry->object.vm_object, entry->offset,
2508 		    failed_addr - entry->start, PQ_ACTIVE);
2509 	}
2510 
2511 	/*
2512 	 * Assign an out-of-range value to represent the failure to wire this
2513 	 * entry.
2514 	 */
2515 	entry->wired_count = -1;
2516 }
2517 
2518 /*
2519  *	vm_map_wire:
2520  *
2521  *	Implements both kernel and user wiring.
2522  */
2523 int
2524 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2525     int flags)
2526 {
2527 	vm_map_entry_t entry, first_entry, tmp_entry;
2528 	vm_offset_t faddr, saved_end, saved_start;
2529 	unsigned int last_timestamp;
2530 	int rv;
2531 	boolean_t need_wakeup, result, user_wire;
2532 	vm_prot_t prot;
2533 
2534 	if (start == end)
2535 		return (KERN_SUCCESS);
2536 	prot = 0;
2537 	if (flags & VM_MAP_WIRE_WRITE)
2538 		prot |= VM_PROT_WRITE;
2539 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2540 	vm_map_lock(map);
2541 	VM_MAP_RANGE_CHECK(map, start, end);
2542 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2543 		if (flags & VM_MAP_WIRE_HOLESOK)
2544 			first_entry = first_entry->next;
2545 		else {
2546 			vm_map_unlock(map);
2547 			return (KERN_INVALID_ADDRESS);
2548 		}
2549 	}
2550 	last_timestamp = map->timestamp;
2551 	entry = first_entry;
2552 	while (entry != &map->header && entry->start < end) {
2553 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2554 			/*
2555 			 * We have not yet clipped the entry.
2556 			 */
2557 			saved_start = (start >= entry->start) ? start :
2558 			    entry->start;
2559 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2560 			if (vm_map_unlock_and_wait(map, 0)) {
2561 				/*
2562 				 * Allow interruption of user wiring?
2563 				 */
2564 			}
2565 			vm_map_lock(map);
2566 			if (last_timestamp + 1 != map->timestamp) {
2567 				/*
2568 				 * Look again for the entry because the map was
2569 				 * modified while it was unlocked.
2570 				 * Specifically, the entry may have been
2571 				 * clipped, merged, or deleted.
2572 				 */
2573 				if (!vm_map_lookup_entry(map, saved_start,
2574 				    &tmp_entry)) {
2575 					if (flags & VM_MAP_WIRE_HOLESOK)
2576 						tmp_entry = tmp_entry->next;
2577 					else {
2578 						if (saved_start == start) {
2579 							/*
2580 							 * first_entry has been deleted.
2581 							 */
2582 							vm_map_unlock(map);
2583 							return (KERN_INVALID_ADDRESS);
2584 						}
2585 						end = saved_start;
2586 						rv = KERN_INVALID_ADDRESS;
2587 						goto done;
2588 					}
2589 				}
2590 				if (entry == first_entry)
2591 					first_entry = tmp_entry;
2592 				else
2593 					first_entry = NULL;
2594 				entry = tmp_entry;
2595 			}
2596 			last_timestamp = map->timestamp;
2597 			continue;
2598 		}
2599 		vm_map_clip_start(map, entry, start);
2600 		vm_map_clip_end(map, entry, end);
2601 		/*
2602 		 * Mark the entry in case the map lock is released.  (See
2603 		 * above.)
2604 		 */
2605 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2606 		    entry->wiring_thread == NULL,
2607 		    ("owned map entry %p", entry));
2608 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2609 		entry->wiring_thread = curthread;
2610 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2611 		    || (entry->protection & prot) != prot) {
2612 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2613 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2614 				end = entry->end;
2615 				rv = KERN_INVALID_ADDRESS;
2616 				goto done;
2617 			}
2618 			goto next_entry;
2619 		}
2620 		if (entry->wired_count == 0) {
2621 			entry->wired_count++;
2622 			saved_start = entry->start;
2623 			saved_end = entry->end;
2624 
2625 			/*
2626 			 * Release the map lock, relying on the in-transition
2627 			 * mark.  Mark the map busy for fork.
2628 			 */
2629 			vm_map_busy(map);
2630 			vm_map_unlock(map);
2631 
2632 			faddr = saved_start;
2633 			do {
2634 				/*
2635 				 * Simulate a fault to get the page and enter
2636 				 * it into the physical map.
2637 				 */
2638 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2639 				    VM_FAULT_WIRE)) != KERN_SUCCESS)
2640 					break;
2641 			} while ((faddr += PAGE_SIZE) < saved_end);
2642 			vm_map_lock(map);
2643 			vm_map_unbusy(map);
2644 			if (last_timestamp + 1 != map->timestamp) {
2645 				/*
2646 				 * Look again for the entry because the map was
2647 				 * modified while it was unlocked.  The entry
2648 				 * may have been clipped, but NOT merged or
2649 				 * deleted.
2650 				 */
2651 				result = vm_map_lookup_entry(map, saved_start,
2652 				    &tmp_entry);
2653 				KASSERT(result, ("vm_map_wire: lookup failed"));
2654 				if (entry == first_entry)
2655 					first_entry = tmp_entry;
2656 				else
2657 					first_entry = NULL;
2658 				entry = tmp_entry;
2659 				while (entry->end < saved_end) {
2660 					/*
2661 					 * In case of failure, handle entries
2662 					 * that were not fully wired here;
2663 					 * fully wired entries are handled
2664 					 * later.
2665 					 */
2666 					if (rv != KERN_SUCCESS &&
2667 					    faddr < entry->end)
2668 						vm_map_wire_entry_failure(map,
2669 						    entry, faddr);
2670 					entry = entry->next;
2671 				}
2672 			}
2673 			last_timestamp = map->timestamp;
2674 			if (rv != KERN_SUCCESS) {
2675 				vm_map_wire_entry_failure(map, entry, faddr);
2676 				end = entry->end;
2677 				goto done;
2678 			}
2679 		} else if (!user_wire ||
2680 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2681 			entry->wired_count++;
2682 		}
2683 		/*
2684 		 * Check the map for holes in the specified region.
2685 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2686 		 */
2687 	next_entry:
2688 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2689 		    (entry->end < end && (entry->next == &map->header ||
2690 		    entry->next->start > entry->end))) {
2691 			end = entry->end;
2692 			rv = KERN_INVALID_ADDRESS;
2693 			goto done;
2694 		}
2695 		entry = entry->next;
2696 	}
2697 	rv = KERN_SUCCESS;
2698 done:
2699 	need_wakeup = FALSE;
2700 	if (first_entry == NULL) {
2701 		result = vm_map_lookup_entry(map, start, &first_entry);
2702 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2703 			first_entry = first_entry->next;
2704 		else
2705 			KASSERT(result, ("vm_map_wire: lookup failed"));
2706 	}
2707 	for (entry = first_entry; entry != &map->header && entry->start < end;
2708 	    entry = entry->next) {
2709 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2710 			goto next_entry_done;
2711 
2712 		/*
2713 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2714 		 * space in the unwired region could have been mapped
2715 		 * while the map lock was dropped for faulting in the
2716 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2717 		 * Moreover, another thread could be simultaneously
2718 		 * wiring this new mapping entry.  Detect these cases
2719 		 * and skip any entries marked as in transition by us.
2720 		 */
2721 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2722 		    entry->wiring_thread != curthread) {
2723 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2724 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2725 			continue;
2726 		}
2727 
2728 		if (rv == KERN_SUCCESS) {
2729 			if (user_wire)
2730 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2731 		} else if (entry->wired_count == -1) {
2732 			/*
2733 			 * Wiring failed on this entry.  Thus, unwiring is
2734 			 * unnecessary.
2735 			 */
2736 			entry->wired_count = 0;
2737 		} else if (!user_wire ||
2738 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2739 			/*
2740 			 * Undo the wiring.  Wiring succeeded on this entry
2741 			 * but failed on a later entry.
2742 			 */
2743 			if (entry->wired_count == 1)
2744 				vm_map_entry_unwire(map, entry);
2745 			else
2746 				entry->wired_count--;
2747 		}
2748 	next_entry_done:
2749 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2750 		    ("vm_map_wire: in-transition flag missing %p", entry));
2751 		KASSERT(entry->wiring_thread == curthread,
2752 		    ("vm_map_wire: alien wire %p", entry));
2753 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2754 		    MAP_ENTRY_WIRE_SKIPPED);
2755 		entry->wiring_thread = NULL;
2756 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2757 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2758 			need_wakeup = TRUE;
2759 		}
2760 		vm_map_simplify_entry(map, entry);
2761 	}
2762 	vm_map_unlock(map);
2763 	if (need_wakeup)
2764 		vm_map_wakeup(map);
2765 	return (rv);
2766 }
2767 
2768 /*
2769  * vm_map_sync
2770  *
2771  * Push any dirty cached pages in the address range to their pager.
2772  * If syncio is TRUE, dirty pages are written synchronously.
2773  * If invalidate is TRUE, any cached pages are freed as well.
2774  *
2775  * If the size of the region from start to end is zero, we are
2776  * supposed to flush all modified pages within the region containing
2777  * start.  Unfortunately, a region can be split or coalesced with
2778  * neighboring regions, making it difficult to determine what the
2779  * original region was.  Therefore, we approximate this requirement by
2780  * flushing the current region containing start.
2781  *
2782  * Returns an error if any part of the specified range is not mapped.
2783  */
2784 int
2785 vm_map_sync(
2786 	vm_map_t map,
2787 	vm_offset_t start,
2788 	vm_offset_t end,
2789 	boolean_t syncio,
2790 	boolean_t invalidate)
2791 {
2792 	vm_map_entry_t current;
2793 	vm_map_entry_t entry;
2794 	vm_size_t size;
2795 	vm_object_t object;
2796 	vm_ooffset_t offset;
2797 	unsigned int last_timestamp;
2798 	boolean_t failed;
2799 
2800 	vm_map_lock_read(map);
2801 	VM_MAP_RANGE_CHECK(map, start, end);
2802 	if (!vm_map_lookup_entry(map, start, &entry)) {
2803 		vm_map_unlock_read(map);
2804 		return (KERN_INVALID_ADDRESS);
2805 	} else if (start == end) {
2806 		start = entry->start;
2807 		end = entry->end;
2808 	}
2809 	/*
2810 	 * Make a first pass to check for user-wired memory and holes.
2811 	 */
2812 	for (current = entry; current != &map->header && current->start < end;
2813 	    current = current->next) {
2814 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2815 			vm_map_unlock_read(map);
2816 			return (KERN_INVALID_ARGUMENT);
2817 		}
2818 		if (end > current->end &&
2819 		    (current->next == &map->header ||
2820 			current->end != current->next->start)) {
2821 			vm_map_unlock_read(map);
2822 			return (KERN_INVALID_ADDRESS);
2823 		}
2824 	}
2825 
2826 	if (invalidate)
2827 		pmap_remove(map->pmap, start, end);
2828 	failed = FALSE;
2829 
2830 	/*
2831 	 * Make a second pass, cleaning/uncaching pages from the indicated
2832 	 * objects as we go.
2833 	 */
2834 	for (current = entry; current != &map->header && current->start < end;) {
2835 		offset = current->offset + (start - current->start);
2836 		size = (end <= current->end ? end : current->end) - start;
2837 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2838 			vm_map_t smap;
2839 			vm_map_entry_t tentry;
2840 			vm_size_t tsize;
2841 
2842 			smap = current->object.sub_map;
2843 			vm_map_lock_read(smap);
2844 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2845 			tsize = tentry->end - offset;
2846 			if (tsize < size)
2847 				size = tsize;
2848 			object = tentry->object.vm_object;
2849 			offset = tentry->offset + (offset - tentry->start);
2850 			vm_map_unlock_read(smap);
2851 		} else {
2852 			object = current->object.vm_object;
2853 		}
2854 		vm_object_reference(object);
2855 		last_timestamp = map->timestamp;
2856 		vm_map_unlock_read(map);
2857 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2858 			failed = TRUE;
2859 		start += size;
2860 		vm_object_deallocate(object);
2861 		vm_map_lock_read(map);
2862 		if (last_timestamp == map->timestamp ||
2863 		    !vm_map_lookup_entry(map, start, &current))
2864 			current = current->next;
2865 	}
2866 
2867 	vm_map_unlock_read(map);
2868 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2869 }
2870 
2871 /*
2872  *	vm_map_entry_unwire:	[ internal use only ]
2873  *
2874  *	Make the region specified by this entry pageable.
2875  *
2876  *	The map in question should be locked.
2877  *	[This is the reason for this routine's existence.]
2878  */
2879 static void
2880 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2881 {
2882 
2883 	VM_MAP_ASSERT_LOCKED(map);
2884 	KASSERT(entry->wired_count > 0,
2885 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
2886 	pmap_unwire(map->pmap, entry->start, entry->end);
2887 	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2888 	    entry->start, PQ_ACTIVE);
2889 	entry->wired_count = 0;
2890 }
2891 
2892 static void
2893 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2894 {
2895 
2896 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2897 		vm_object_deallocate(entry->object.vm_object);
2898 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2899 }
2900 
2901 /*
2902  *	vm_map_entry_delete:	[ internal use only ]
2903  *
2904  *	Deallocate the given entry from the target map.
2905  */
2906 static void
2907 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2908 {
2909 	vm_object_t object;
2910 	vm_pindex_t offidxstart, offidxend, count, size1;
2911 	vm_ooffset_t size;
2912 
2913 	vm_map_entry_unlink(map, entry);
2914 	object = entry->object.vm_object;
2915 	size = entry->end - entry->start;
2916 	map->size -= size;
2917 
2918 	if (entry->cred != NULL) {
2919 		swap_release_by_cred(size, entry->cred);
2920 		crfree(entry->cred);
2921 	}
2922 
2923 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2924 	    (object != NULL)) {
2925 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2926 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2927 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2928 		count = OFF_TO_IDX(size);
2929 		offidxstart = OFF_TO_IDX(entry->offset);
2930 		offidxend = offidxstart + count;
2931 		VM_OBJECT_WLOCK(object);
2932 		if (object->ref_count != 1 &&
2933 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2934 		    object == kernel_object || object == kmem_object)) {
2935 			vm_object_collapse(object);
2936 
2937 			/*
2938 			 * The option OBJPR_NOTMAPPED can be passed here
2939 			 * because vm_map_delete() already performed
2940 			 * pmap_remove() on the only mapping to this range
2941 			 * of pages.
2942 			 */
2943 			vm_object_page_remove(object, offidxstart, offidxend,
2944 			    OBJPR_NOTMAPPED);
2945 			if (object->type == OBJT_SWAP)
2946 				swap_pager_freespace(object, offidxstart, count);
2947 			if (offidxend >= object->size &&
2948 			    offidxstart < object->size) {
2949 				size1 = object->size;
2950 				object->size = offidxstart;
2951 				if (object->cred != NULL) {
2952 					size1 -= object->size;
2953 					KASSERT(object->charge >= ptoa(size1),
2954 					    ("vm_map_entry_delete: object->charge < 0"));
2955 					swap_release_by_cred(ptoa(size1), object->cred);
2956 					object->charge -= ptoa(size1);
2957 				}
2958 			}
2959 		}
2960 		VM_OBJECT_WUNLOCK(object);
2961 	} else
2962 		entry->object.vm_object = NULL;
2963 	if (map->system_map)
2964 		vm_map_entry_deallocate(entry, TRUE);
2965 	else {
2966 		entry->next = curthread->td_map_def_user;
2967 		curthread->td_map_def_user = entry;
2968 	}
2969 }
2970 
2971 /*
2972  *	vm_map_delete:	[ internal use only ]
2973  *
2974  *	Deallocates the given address range from the target
2975  *	map.
2976  */
2977 int
2978 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2979 {
2980 	vm_map_entry_t entry;
2981 	vm_map_entry_t first_entry;
2982 
2983 	VM_MAP_ASSERT_LOCKED(map);
2984 	if (start == end)
2985 		return (KERN_SUCCESS);
2986 
2987 	/*
2988 	 * Find the start of the region, and clip it
2989 	 */
2990 	if (!vm_map_lookup_entry(map, start, &first_entry))
2991 		entry = first_entry->next;
2992 	else {
2993 		entry = first_entry;
2994 		vm_map_clip_start(map, entry, start);
2995 	}
2996 
2997 	/*
2998 	 * Step through all entries in this region
2999 	 */
3000 	while ((entry != &map->header) && (entry->start < end)) {
3001 		vm_map_entry_t next;
3002 
3003 		/*
3004 		 * Wait for wiring or unwiring of an entry to complete.
3005 		 * Also wait for any system wirings to disappear on
3006 		 * user maps.
3007 		 */
3008 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3009 		    (vm_map_pmap(map) != kernel_pmap &&
3010 		    vm_map_entry_system_wired_count(entry) != 0)) {
3011 			unsigned int last_timestamp;
3012 			vm_offset_t saved_start;
3013 			vm_map_entry_t tmp_entry;
3014 
3015 			saved_start = entry->start;
3016 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3017 			last_timestamp = map->timestamp;
3018 			(void) vm_map_unlock_and_wait(map, 0);
3019 			vm_map_lock(map);
3020 			if (last_timestamp + 1 != map->timestamp) {
3021 				/*
3022 				 * Look again for the entry because the map was
3023 				 * modified while it was unlocked.
3024 				 * Specifically, the entry may have been
3025 				 * clipped, merged, or deleted.
3026 				 */
3027 				if (!vm_map_lookup_entry(map, saved_start,
3028 							 &tmp_entry))
3029 					entry = tmp_entry->next;
3030 				else {
3031 					entry = tmp_entry;
3032 					vm_map_clip_start(map, entry,
3033 							  saved_start);
3034 				}
3035 			}
3036 			continue;
3037 		}
3038 		vm_map_clip_end(map, entry, end);
3039 
3040 		next = entry->next;
3041 
3042 		/*
3043 		 * Unwire before removing addresses from the pmap; otherwise,
3044 		 * unwiring will put the entries back in the pmap.
3045 		 */
3046 		if (entry->wired_count != 0) {
3047 			vm_map_entry_unwire(map, entry);
3048 		}
3049 
3050 		pmap_remove(map->pmap, entry->start, entry->end);
3051 
3052 		/*
3053 		 * Delete the entry only after removing all pmap
3054 		 * entries pointing to its pages.  (Otherwise, its
3055 		 * page frames may be reallocated, and any modify bits
3056 		 * will be set in the wrong object!)
3057 		 */
3058 		vm_map_entry_delete(map, entry);
3059 		entry = next;
3060 	}
3061 	return (KERN_SUCCESS);
3062 }
3063 
3064 /*
3065  *	vm_map_remove:
3066  *
3067  *	Remove the given address range from the target map.
3068  *	This is the exported form of vm_map_delete.
3069  */
3070 int
3071 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3072 {
3073 	int result;
3074 
3075 	vm_map_lock(map);
3076 	VM_MAP_RANGE_CHECK(map, start, end);
3077 	result = vm_map_delete(map, start, end);
3078 	vm_map_unlock(map);
3079 	return (result);
3080 }
3081 
3082 /*
3083  *	vm_map_check_protection:
3084  *
3085  *	Assert that the target map allows the specified privilege on the
3086  *	entire address region given.  The entire region must be allocated.
3087  *
3088  *	WARNING!  This code does not and should not check whether the
3089  *	contents of the region is accessible.  For example a smaller file
3090  *	might be mapped into a larger address space.
3091  *
3092  *	NOTE!  This code is also called by munmap().
3093  *
3094  *	The map must be locked.  A read lock is sufficient.
3095  */
3096 boolean_t
3097 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3098 			vm_prot_t protection)
3099 {
3100 	vm_map_entry_t entry;
3101 	vm_map_entry_t tmp_entry;
3102 
3103 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3104 		return (FALSE);
3105 	entry = tmp_entry;
3106 
3107 	while (start < end) {
3108 		if (entry == &map->header)
3109 			return (FALSE);
3110 		/*
3111 		 * No holes allowed!
3112 		 */
3113 		if (start < entry->start)
3114 			return (FALSE);
3115 		/*
3116 		 * Check protection associated with entry.
3117 		 */
3118 		if ((entry->protection & protection) != protection)
3119 			return (FALSE);
3120 		/* go to next entry */
3121 		start = entry->end;
3122 		entry = entry->next;
3123 	}
3124 	return (TRUE);
3125 }
3126 
3127 /*
3128  *	vm_map_copy_entry:
3129  *
3130  *	Copies the contents of the source entry to the destination
3131  *	entry.  The entries *must* be aligned properly.
3132  */
3133 static void
3134 vm_map_copy_entry(
3135 	vm_map_t src_map,
3136 	vm_map_t dst_map,
3137 	vm_map_entry_t src_entry,
3138 	vm_map_entry_t dst_entry,
3139 	vm_ooffset_t *fork_charge)
3140 {
3141 	vm_object_t src_object;
3142 	vm_map_entry_t fake_entry;
3143 	vm_offset_t size;
3144 	struct ucred *cred;
3145 	int charged;
3146 
3147 	VM_MAP_ASSERT_LOCKED(dst_map);
3148 
3149 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3150 		return;
3151 
3152 	if (src_entry->wired_count == 0 ||
3153 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3154 		/*
3155 		 * If the source entry is marked needs_copy, it is already
3156 		 * write-protected.
3157 		 */
3158 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3159 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3160 			pmap_protect(src_map->pmap,
3161 			    src_entry->start,
3162 			    src_entry->end,
3163 			    src_entry->protection & ~VM_PROT_WRITE);
3164 		}
3165 
3166 		/*
3167 		 * Make a copy of the object.
3168 		 */
3169 		size = src_entry->end - src_entry->start;
3170 		if ((src_object = src_entry->object.vm_object) != NULL) {
3171 			VM_OBJECT_WLOCK(src_object);
3172 			charged = ENTRY_CHARGED(src_entry);
3173 			if ((src_object->handle == NULL) &&
3174 				(src_object->type == OBJT_DEFAULT ||
3175 				 src_object->type == OBJT_SWAP)) {
3176 				vm_object_collapse(src_object);
3177 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3178 					vm_object_split(src_entry);
3179 					src_object = src_entry->object.vm_object;
3180 				}
3181 			}
3182 			vm_object_reference_locked(src_object);
3183 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3184 			if (src_entry->cred != NULL &&
3185 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3186 				KASSERT(src_object->cred == NULL,
3187 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3188 				     src_object));
3189 				src_object->cred = src_entry->cred;
3190 				src_object->charge = size;
3191 			}
3192 			VM_OBJECT_WUNLOCK(src_object);
3193 			dst_entry->object.vm_object = src_object;
3194 			if (charged) {
3195 				cred = curthread->td_ucred;
3196 				crhold(cred);
3197 				dst_entry->cred = cred;
3198 				*fork_charge += size;
3199 				if (!(src_entry->eflags &
3200 				      MAP_ENTRY_NEEDS_COPY)) {
3201 					crhold(cred);
3202 					src_entry->cred = cred;
3203 					*fork_charge += size;
3204 				}
3205 			}
3206 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3207 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3208 			dst_entry->offset = src_entry->offset;
3209 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3210 				/*
3211 				 * MAP_ENTRY_VN_WRITECNT cannot
3212 				 * indicate write reference from
3213 				 * src_entry, since the entry is
3214 				 * marked as needs copy.  Allocate a
3215 				 * fake entry that is used to
3216 				 * decrement object->un_pager.vnp.writecount
3217 				 * at the appropriate time.  Attach
3218 				 * fake_entry to the deferred list.
3219 				 */
3220 				fake_entry = vm_map_entry_create(dst_map);
3221 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3222 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3223 				vm_object_reference(src_object);
3224 				fake_entry->object.vm_object = src_object;
3225 				fake_entry->start = src_entry->start;
3226 				fake_entry->end = src_entry->end;
3227 				fake_entry->next = curthread->td_map_def_user;
3228 				curthread->td_map_def_user = fake_entry;
3229 			}
3230 		} else {
3231 			dst_entry->object.vm_object = NULL;
3232 			dst_entry->offset = 0;
3233 			if (src_entry->cred != NULL) {
3234 				dst_entry->cred = curthread->td_ucred;
3235 				crhold(dst_entry->cred);
3236 				*fork_charge += size;
3237 			}
3238 		}
3239 
3240 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3241 		    dst_entry->end - dst_entry->start, src_entry->start);
3242 	} else {
3243 		/*
3244 		 * We don't want to make writeable wired pages copy-on-write.
3245 		 * Immediately copy these pages into the new map by simulating
3246 		 * page faults.  The new pages are pageable.
3247 		 */
3248 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3249 		    fork_charge);
3250 	}
3251 }
3252 
3253 /*
3254  * vmspace_map_entry_forked:
3255  * Update the newly-forked vmspace each time a map entry is inherited
3256  * or copied.  The values for vm_dsize and vm_tsize are approximate
3257  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3258  */
3259 static void
3260 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3261     vm_map_entry_t entry)
3262 {
3263 	vm_size_t entrysize;
3264 	vm_offset_t newend;
3265 
3266 	entrysize = entry->end - entry->start;
3267 	vm2->vm_map.size += entrysize;
3268 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3269 		vm2->vm_ssize += btoc(entrysize);
3270 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3271 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3272 		newend = MIN(entry->end,
3273 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3274 		vm2->vm_dsize += btoc(newend - entry->start);
3275 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3276 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3277 		newend = MIN(entry->end,
3278 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3279 		vm2->vm_tsize += btoc(newend - entry->start);
3280 	}
3281 }
3282 
3283 /*
3284  * vmspace_fork:
3285  * Create a new process vmspace structure and vm_map
3286  * based on those of an existing process.  The new map
3287  * is based on the old map, according to the inheritance
3288  * values on the regions in that map.
3289  *
3290  * XXX It might be worth coalescing the entries added to the new vmspace.
3291  *
3292  * The source map must not be locked.
3293  */
3294 struct vmspace *
3295 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3296 {
3297 	struct vmspace *vm2;
3298 	vm_map_t new_map, old_map;
3299 	vm_map_entry_t new_entry, old_entry;
3300 	vm_object_t object;
3301 	int locked;
3302 
3303 	old_map = &vm1->vm_map;
3304 	/* Copy immutable fields of vm1 to vm2. */
3305 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3306 	if (vm2 == NULL)
3307 		return (NULL);
3308 	vm2->vm_taddr = vm1->vm_taddr;
3309 	vm2->vm_daddr = vm1->vm_daddr;
3310 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3311 	vm_map_lock(old_map);
3312 	if (old_map->busy)
3313 		vm_map_wait_busy(old_map);
3314 	new_map = &vm2->vm_map;
3315 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3316 	KASSERT(locked, ("vmspace_fork: lock failed"));
3317 
3318 	old_entry = old_map->header.next;
3319 
3320 	while (old_entry != &old_map->header) {
3321 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3322 			panic("vm_map_fork: encountered a submap");
3323 
3324 		switch (old_entry->inheritance) {
3325 		case VM_INHERIT_NONE:
3326 			break;
3327 
3328 		case VM_INHERIT_SHARE:
3329 			/*
3330 			 * Clone the entry, creating the shared object if necessary.
3331 			 */
3332 			object = old_entry->object.vm_object;
3333 			if (object == NULL) {
3334 				object = vm_object_allocate(OBJT_DEFAULT,
3335 					atop(old_entry->end - old_entry->start));
3336 				old_entry->object.vm_object = object;
3337 				old_entry->offset = 0;
3338 				if (old_entry->cred != NULL) {
3339 					object->cred = old_entry->cred;
3340 					object->charge = old_entry->end -
3341 					    old_entry->start;
3342 					old_entry->cred = NULL;
3343 				}
3344 			}
3345 
3346 			/*
3347 			 * Add the reference before calling vm_object_shadow
3348 			 * to insure that a shadow object is created.
3349 			 */
3350 			vm_object_reference(object);
3351 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3352 				vm_object_shadow(&old_entry->object.vm_object,
3353 				    &old_entry->offset,
3354 				    old_entry->end - old_entry->start);
3355 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3356 				/* Transfer the second reference too. */
3357 				vm_object_reference(
3358 				    old_entry->object.vm_object);
3359 
3360 				/*
3361 				 * As in vm_map_simplify_entry(), the
3362 				 * vnode lock will not be acquired in
3363 				 * this call to vm_object_deallocate().
3364 				 */
3365 				vm_object_deallocate(object);
3366 				object = old_entry->object.vm_object;
3367 			}
3368 			VM_OBJECT_WLOCK(object);
3369 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3370 			if (old_entry->cred != NULL) {
3371 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3372 				object->cred = old_entry->cred;
3373 				object->charge = old_entry->end - old_entry->start;
3374 				old_entry->cred = NULL;
3375 			}
3376 
3377 			/*
3378 			 * Assert the correct state of the vnode
3379 			 * v_writecount while the object is locked, to
3380 			 * not relock it later for the assertion
3381 			 * correctness.
3382 			 */
3383 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3384 			    object->type == OBJT_VNODE) {
3385 				KASSERT(((struct vnode *)object->handle)->
3386 				    v_writecount > 0,
3387 				    ("vmspace_fork: v_writecount %p", object));
3388 				KASSERT(object->un_pager.vnp.writemappings > 0,
3389 				    ("vmspace_fork: vnp.writecount %p",
3390 				    object));
3391 			}
3392 			VM_OBJECT_WUNLOCK(object);
3393 
3394 			/*
3395 			 * Clone the entry, referencing the shared object.
3396 			 */
3397 			new_entry = vm_map_entry_create(new_map);
3398 			*new_entry = *old_entry;
3399 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3400 			    MAP_ENTRY_IN_TRANSITION);
3401 			new_entry->wiring_thread = NULL;
3402 			new_entry->wired_count = 0;
3403 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3404 				vnode_pager_update_writecount(object,
3405 				    new_entry->start, new_entry->end);
3406 			}
3407 
3408 			/*
3409 			 * Insert the entry into the new map -- we know we're
3410 			 * inserting at the end of the new map.
3411 			 */
3412 			vm_map_entry_link(new_map, new_map->header.prev,
3413 			    new_entry);
3414 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3415 
3416 			/*
3417 			 * Update the physical map
3418 			 */
3419 			pmap_copy(new_map->pmap, old_map->pmap,
3420 			    new_entry->start,
3421 			    (old_entry->end - old_entry->start),
3422 			    old_entry->start);
3423 			break;
3424 
3425 		case VM_INHERIT_COPY:
3426 			/*
3427 			 * Clone the entry and link into the map.
3428 			 */
3429 			new_entry = vm_map_entry_create(new_map);
3430 			*new_entry = *old_entry;
3431 			/*
3432 			 * Copied entry is COW over the old object.
3433 			 */
3434 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3435 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3436 			new_entry->wiring_thread = NULL;
3437 			new_entry->wired_count = 0;
3438 			new_entry->object.vm_object = NULL;
3439 			new_entry->cred = NULL;
3440 			vm_map_entry_link(new_map, new_map->header.prev,
3441 			    new_entry);
3442 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3443 			vm_map_copy_entry(old_map, new_map, old_entry,
3444 			    new_entry, fork_charge);
3445 			break;
3446 		}
3447 		old_entry = old_entry->next;
3448 	}
3449 	/*
3450 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3451 	 * map entries, which cannot be done until both old_map and
3452 	 * new_map locks are released.
3453 	 */
3454 	sx_xunlock(&old_map->lock);
3455 	sx_xunlock(&new_map->lock);
3456 	vm_map_process_deferred();
3457 
3458 	return (vm2);
3459 }
3460 
3461 int
3462 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3463     vm_prot_t prot, vm_prot_t max, int cow)
3464 {
3465 	vm_size_t growsize, init_ssize;
3466 	rlim_t lmemlim, vmemlim;
3467 	int rv;
3468 
3469 	growsize = sgrowsiz;
3470 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3471 	vm_map_lock(map);
3472 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3473 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3474 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3475 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3476 			rv = KERN_NO_SPACE;
3477 			goto out;
3478 		}
3479 	}
3480 	/* If we would blow our VMEM resource limit, no go */
3481 	if (map->size + init_ssize > vmemlim) {
3482 		rv = KERN_NO_SPACE;
3483 		goto out;
3484 	}
3485 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3486 	    max, cow);
3487 out:
3488 	vm_map_unlock(map);
3489 	return (rv);
3490 }
3491 
3492 static int
3493 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3494     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3495 {
3496 	vm_map_entry_t new_entry, prev_entry;
3497 	vm_offset_t bot, top;
3498 	vm_size_t init_ssize;
3499 	int orient, rv;
3500 
3501 	/*
3502 	 * The stack orientation is piggybacked with the cow argument.
3503 	 * Extract it into orient and mask the cow argument so that we
3504 	 * don't pass it around further.
3505 	 * NOTE: We explicitly allow bi-directional stacks.
3506 	 */
3507 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3508 	KASSERT(orient != 0, ("No stack grow direction"));
3509 
3510 	if (addrbos < vm_map_min(map) ||
3511 	    addrbos > vm_map_max(map) ||
3512 	    addrbos + max_ssize < addrbos)
3513 		return (KERN_NO_SPACE);
3514 
3515 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3516 
3517 	/* If addr is already mapped, no go */
3518 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3519 		return (KERN_NO_SPACE);
3520 
3521 	/*
3522 	 * If we can't accomodate max_ssize in the current mapping, no go.
3523 	 * However, we need to be aware that subsequent user mappings might
3524 	 * map into the space we have reserved for stack, and currently this
3525 	 * space is not protected.
3526 	 *
3527 	 * Hopefully we will at least detect this condition when we try to
3528 	 * grow the stack.
3529 	 */
3530 	if ((prev_entry->next != &map->header) &&
3531 	    (prev_entry->next->start < addrbos + max_ssize))
3532 		return (KERN_NO_SPACE);
3533 
3534 	/*
3535 	 * We initially map a stack of only init_ssize.  We will grow as
3536 	 * needed later.  Depending on the orientation of the stack (i.e.
3537 	 * the grow direction) we either map at the top of the range, the
3538 	 * bottom of the range or in the middle.
3539 	 *
3540 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3541 	 * and cow to be 0.  Possibly we should eliminate these as input
3542 	 * parameters, and just pass these values here in the insert call.
3543 	 */
3544 	if (orient == MAP_STACK_GROWS_DOWN)
3545 		bot = addrbos + max_ssize - init_ssize;
3546 	else if (orient == MAP_STACK_GROWS_UP)
3547 		bot = addrbos;
3548 	else
3549 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3550 	top = bot + init_ssize;
3551 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3552 
3553 	/* Now set the avail_ssize amount. */
3554 	if (rv == KERN_SUCCESS) {
3555 		new_entry = prev_entry->next;
3556 		if (new_entry->end != top || new_entry->start != bot)
3557 			panic("Bad entry start/end for new stack entry");
3558 
3559 		new_entry->avail_ssize = max_ssize - init_ssize;
3560 		KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3561 		    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3562 		    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3563 		KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3564 		    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3565 		    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3566 	}
3567 
3568 	return (rv);
3569 }
3570 
3571 static int stack_guard_page = 0;
3572 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3573     &stack_guard_page, 0,
3574     "Insert stack guard page ahead of the growable segments.");
3575 
3576 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3577  * desired address is already mapped, or if we successfully grow
3578  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3579  * stack range (this is strange, but preserves compatibility with
3580  * the grow function in vm_machdep.c).
3581  */
3582 int
3583 vm_map_growstack(struct proc *p, vm_offset_t addr)
3584 {
3585 	vm_map_entry_t next_entry, prev_entry;
3586 	vm_map_entry_t new_entry, stack_entry;
3587 	struct vmspace *vm = p->p_vmspace;
3588 	vm_map_t map = &vm->vm_map;
3589 	vm_offset_t end;
3590 	vm_size_t growsize;
3591 	size_t grow_amount, max_grow;
3592 	rlim_t lmemlim, stacklim, vmemlim;
3593 	int is_procstack, rv;
3594 	struct ucred *cred;
3595 #ifdef notyet
3596 	uint64_t limit;
3597 #endif
3598 #ifdef RACCT
3599 	int error;
3600 #endif
3601 
3602 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3603 	stacklim = lim_cur(curthread, RLIMIT_STACK);
3604 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3605 Retry:
3606 
3607 	vm_map_lock_read(map);
3608 
3609 	/* If addr is already in the entry range, no need to grow.*/
3610 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3611 		vm_map_unlock_read(map);
3612 		return (KERN_SUCCESS);
3613 	}
3614 
3615 	next_entry = prev_entry->next;
3616 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3617 		/*
3618 		 * This entry does not grow upwards. Since the address lies
3619 		 * beyond this entry, the next entry (if one exists) has to
3620 		 * be a downward growable entry. The entry list header is
3621 		 * never a growable entry, so it suffices to check the flags.
3622 		 */
3623 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3624 			vm_map_unlock_read(map);
3625 			return (KERN_SUCCESS);
3626 		}
3627 		stack_entry = next_entry;
3628 	} else {
3629 		/*
3630 		 * This entry grows upward. If the next entry does not at
3631 		 * least grow downwards, this is the entry we need to grow.
3632 		 * otherwise we have two possible choices and we have to
3633 		 * select one.
3634 		 */
3635 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3636 			/*
3637 			 * We have two choices; grow the entry closest to
3638 			 * the address to minimize the amount of growth.
3639 			 */
3640 			if (addr - prev_entry->end <= next_entry->start - addr)
3641 				stack_entry = prev_entry;
3642 			else
3643 				stack_entry = next_entry;
3644 		} else
3645 			stack_entry = prev_entry;
3646 	}
3647 
3648 	if (stack_entry == next_entry) {
3649 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3650 		KASSERT(addr < stack_entry->start, ("foo"));
3651 		end = (prev_entry != &map->header) ? prev_entry->end :
3652 		    stack_entry->start - stack_entry->avail_ssize;
3653 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3654 		max_grow = stack_entry->start - end;
3655 	} else {
3656 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3657 		KASSERT(addr >= stack_entry->end, ("foo"));
3658 		end = (next_entry != &map->header) ? next_entry->start :
3659 		    stack_entry->end + stack_entry->avail_ssize;
3660 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3661 		max_grow = end - stack_entry->end;
3662 	}
3663 
3664 	if (grow_amount > stack_entry->avail_ssize) {
3665 		vm_map_unlock_read(map);
3666 		return (KERN_NO_SPACE);
3667 	}
3668 
3669 	/*
3670 	 * If there is no longer enough space between the entries nogo, and
3671 	 * adjust the available space.  Note: this  should only happen if the
3672 	 * user has mapped into the stack area after the stack was created,
3673 	 * and is probably an error.
3674 	 *
3675 	 * This also effectively destroys any guard page the user might have
3676 	 * intended by limiting the stack size.
3677 	 */
3678 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3679 		if (vm_map_lock_upgrade(map))
3680 			goto Retry;
3681 
3682 		stack_entry->avail_ssize = max_grow;
3683 
3684 		vm_map_unlock(map);
3685 		return (KERN_NO_SPACE);
3686 	}
3687 
3688 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr &&
3689 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack) ? 1 : 0;
3690 
3691 	/*
3692 	 * If this is the main process stack, see if we're over the stack
3693 	 * limit.
3694 	 */
3695 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3696 		vm_map_unlock_read(map);
3697 		return (KERN_NO_SPACE);
3698 	}
3699 #ifdef RACCT
3700 	if (racct_enable) {
3701 		PROC_LOCK(p);
3702 		if (is_procstack && racct_set(p, RACCT_STACK,
3703 		    ctob(vm->vm_ssize) + grow_amount)) {
3704 			PROC_UNLOCK(p);
3705 			vm_map_unlock_read(map);
3706 			return (KERN_NO_SPACE);
3707 		}
3708 		PROC_UNLOCK(p);
3709 	}
3710 #endif
3711 
3712 	/* Round up the grow amount modulo sgrowsiz */
3713 	growsize = sgrowsiz;
3714 	grow_amount = roundup(grow_amount, growsize);
3715 	if (grow_amount > stack_entry->avail_ssize)
3716 		grow_amount = stack_entry->avail_ssize;
3717 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3718 		grow_amount = trunc_page((vm_size_t)stacklim) -
3719 		    ctob(vm->vm_ssize);
3720 	}
3721 #ifdef notyet
3722 	PROC_LOCK(p);
3723 	limit = racct_get_available(p, RACCT_STACK);
3724 	PROC_UNLOCK(p);
3725 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3726 		grow_amount = limit - ctob(vm->vm_ssize);
3727 #endif
3728 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3729 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3730 			vm_map_unlock_read(map);
3731 			rv = KERN_NO_SPACE;
3732 			goto out;
3733 		}
3734 #ifdef RACCT
3735 		if (racct_enable) {
3736 			PROC_LOCK(p);
3737 			if (racct_set(p, RACCT_MEMLOCK,
3738 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3739 				PROC_UNLOCK(p);
3740 				vm_map_unlock_read(map);
3741 				rv = KERN_NO_SPACE;
3742 				goto out;
3743 			}
3744 			PROC_UNLOCK(p);
3745 		}
3746 #endif
3747 	}
3748 	/* If we would blow our VMEM resource limit, no go */
3749 	if (map->size + grow_amount > vmemlim) {
3750 		vm_map_unlock_read(map);
3751 		rv = KERN_NO_SPACE;
3752 		goto out;
3753 	}
3754 #ifdef RACCT
3755 	if (racct_enable) {
3756 		PROC_LOCK(p);
3757 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3758 			PROC_UNLOCK(p);
3759 			vm_map_unlock_read(map);
3760 			rv = KERN_NO_SPACE;
3761 			goto out;
3762 		}
3763 		PROC_UNLOCK(p);
3764 	}
3765 #endif
3766 
3767 	if (vm_map_lock_upgrade(map))
3768 		goto Retry;
3769 
3770 	if (stack_entry == next_entry) {
3771 		/*
3772 		 * Growing downward.
3773 		 */
3774 		/* Get the preliminary new entry start value */
3775 		addr = stack_entry->start - grow_amount;
3776 
3777 		/*
3778 		 * If this puts us into the previous entry, cut back our
3779 		 * growth to the available space. Also, see the note above.
3780 		 */
3781 		if (addr < end) {
3782 			stack_entry->avail_ssize = max_grow;
3783 			addr = end;
3784 			if (stack_guard_page)
3785 				addr += PAGE_SIZE;
3786 		}
3787 
3788 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3789 		    next_entry->protection, next_entry->max_protection,
3790 		    MAP_STACK_GROWS_DOWN);
3791 
3792 		/* Adjust the available stack space by the amount we grew. */
3793 		if (rv == KERN_SUCCESS) {
3794 			new_entry = prev_entry->next;
3795 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3796 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3797 			KASSERT(new_entry->start == addr, ("foo"));
3798 			KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) !=
3799 			    0, ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3800 			grow_amount = new_entry->end - new_entry->start;
3801 			new_entry->avail_ssize = stack_entry->avail_ssize -
3802 			    grow_amount;
3803 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3804 		}
3805 	} else {
3806 		/*
3807 		 * Growing upward.
3808 		 */
3809 		addr = stack_entry->end + grow_amount;
3810 
3811 		/*
3812 		 * If this puts us into the next entry, cut back our growth
3813 		 * to the available space. Also, see the note above.
3814 		 */
3815 		if (addr > end) {
3816 			stack_entry->avail_ssize = end - stack_entry->end;
3817 			addr = end;
3818 			if (stack_guard_page)
3819 				addr -= PAGE_SIZE;
3820 		}
3821 
3822 		grow_amount = addr - stack_entry->end;
3823 		cred = stack_entry->cred;
3824 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3825 			cred = stack_entry->object.vm_object->cred;
3826 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3827 			rv = KERN_NO_SPACE;
3828 		/* Grow the underlying object if applicable. */
3829 		else if (stack_entry->object.vm_object == NULL ||
3830 			 vm_object_coalesce(stack_entry->object.vm_object,
3831 			 stack_entry->offset,
3832 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3833 			 (vm_size_t)grow_amount, cred != NULL)) {
3834 			map->size += (addr - stack_entry->end);
3835 			/* Update the current entry. */
3836 			stack_entry->end = addr;
3837 			stack_entry->avail_ssize -= grow_amount;
3838 			vm_map_entry_resize_free(map, stack_entry);
3839 			rv = KERN_SUCCESS;
3840 		} else
3841 			rv = KERN_FAILURE;
3842 	}
3843 
3844 	if (rv == KERN_SUCCESS && is_procstack)
3845 		vm->vm_ssize += btoc(grow_amount);
3846 
3847 	vm_map_unlock(map);
3848 
3849 	/*
3850 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3851 	 */
3852 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3853 		vm_map_wire(map,
3854 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3855 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3856 		    (p->p_flag & P_SYSTEM)
3857 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3858 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3859 	}
3860 
3861 out:
3862 #ifdef RACCT
3863 	if (racct_enable && rv != KERN_SUCCESS) {
3864 		PROC_LOCK(p);
3865 		error = racct_set(p, RACCT_VMEM, map->size);
3866 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3867 		if (!old_mlock) {
3868 			error = racct_set(p, RACCT_MEMLOCK,
3869 			    ptoa(pmap_wired_count(map->pmap)));
3870 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3871 		}
3872 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3873 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3874 		PROC_UNLOCK(p);
3875 	}
3876 #endif
3877 
3878 	return (rv);
3879 }
3880 
3881 /*
3882  * Unshare the specified VM space for exec.  If other processes are
3883  * mapped to it, then create a new one.  The new vmspace is null.
3884  */
3885 int
3886 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3887 {
3888 	struct vmspace *oldvmspace = p->p_vmspace;
3889 	struct vmspace *newvmspace;
3890 
3891 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3892 	    ("vmspace_exec recursed"));
3893 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3894 	if (newvmspace == NULL)
3895 		return (ENOMEM);
3896 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3897 	/*
3898 	 * This code is written like this for prototype purposes.  The
3899 	 * goal is to avoid running down the vmspace here, but let the
3900 	 * other process's that are still using the vmspace to finally
3901 	 * run it down.  Even though there is little or no chance of blocking
3902 	 * here, it is a good idea to keep this form for future mods.
3903 	 */
3904 	PROC_VMSPACE_LOCK(p);
3905 	p->p_vmspace = newvmspace;
3906 	PROC_VMSPACE_UNLOCK(p);
3907 	if (p == curthread->td_proc)
3908 		pmap_activate(curthread);
3909 	curthread->td_pflags |= TDP_EXECVMSPC;
3910 	return (0);
3911 }
3912 
3913 /*
3914  * Unshare the specified VM space for forcing COW.  This
3915  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3916  */
3917 int
3918 vmspace_unshare(struct proc *p)
3919 {
3920 	struct vmspace *oldvmspace = p->p_vmspace;
3921 	struct vmspace *newvmspace;
3922 	vm_ooffset_t fork_charge;
3923 
3924 	if (oldvmspace->vm_refcnt == 1)
3925 		return (0);
3926 	fork_charge = 0;
3927 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3928 	if (newvmspace == NULL)
3929 		return (ENOMEM);
3930 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3931 		vmspace_free(newvmspace);
3932 		return (ENOMEM);
3933 	}
3934 	PROC_VMSPACE_LOCK(p);
3935 	p->p_vmspace = newvmspace;
3936 	PROC_VMSPACE_UNLOCK(p);
3937 	if (p == curthread->td_proc)
3938 		pmap_activate(curthread);
3939 	vmspace_free(oldvmspace);
3940 	return (0);
3941 }
3942 
3943 /*
3944  *	vm_map_lookup:
3945  *
3946  *	Finds the VM object, offset, and
3947  *	protection for a given virtual address in the
3948  *	specified map, assuming a page fault of the
3949  *	type specified.
3950  *
3951  *	Leaves the map in question locked for read; return
3952  *	values are guaranteed until a vm_map_lookup_done
3953  *	call is performed.  Note that the map argument
3954  *	is in/out; the returned map must be used in
3955  *	the call to vm_map_lookup_done.
3956  *
3957  *	A handle (out_entry) is returned for use in
3958  *	vm_map_lookup_done, to make that fast.
3959  *
3960  *	If a lookup is requested with "write protection"
3961  *	specified, the map may be changed to perform virtual
3962  *	copying operations, although the data referenced will
3963  *	remain the same.
3964  */
3965 int
3966 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3967 	      vm_offset_t vaddr,
3968 	      vm_prot_t fault_typea,
3969 	      vm_map_entry_t *out_entry,	/* OUT */
3970 	      vm_object_t *object,		/* OUT */
3971 	      vm_pindex_t *pindex,		/* OUT */
3972 	      vm_prot_t *out_prot,		/* OUT */
3973 	      boolean_t *wired)			/* OUT */
3974 {
3975 	vm_map_entry_t entry;
3976 	vm_map_t map = *var_map;
3977 	vm_prot_t prot;
3978 	vm_prot_t fault_type = fault_typea;
3979 	vm_object_t eobject;
3980 	vm_size_t size;
3981 	struct ucred *cred;
3982 
3983 RetryLookup:;
3984 
3985 	vm_map_lock_read(map);
3986 
3987 	/*
3988 	 * Lookup the faulting address.
3989 	 */
3990 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3991 		vm_map_unlock_read(map);
3992 		return (KERN_INVALID_ADDRESS);
3993 	}
3994 
3995 	entry = *out_entry;
3996 
3997 	/*
3998 	 * Handle submaps.
3999 	 */
4000 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4001 		vm_map_t old_map = map;
4002 
4003 		*var_map = map = entry->object.sub_map;
4004 		vm_map_unlock_read(old_map);
4005 		goto RetryLookup;
4006 	}
4007 
4008 	/*
4009 	 * Check whether this task is allowed to have this page.
4010 	 */
4011 	prot = entry->protection;
4012 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4013 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4014 		vm_map_unlock_read(map);
4015 		return (KERN_PROTECTION_FAILURE);
4016 	}
4017 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4018 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4019 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4020 	    ("entry %p flags %x", entry, entry->eflags));
4021 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4022 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4023 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4024 		vm_map_unlock_read(map);
4025 		return (KERN_PROTECTION_FAILURE);
4026 	}
4027 
4028 	/*
4029 	 * If this page is not pageable, we have to get it for all possible
4030 	 * accesses.
4031 	 */
4032 	*wired = (entry->wired_count != 0);
4033 	if (*wired)
4034 		fault_type = entry->protection;
4035 	size = entry->end - entry->start;
4036 	/*
4037 	 * If the entry was copy-on-write, we either ...
4038 	 */
4039 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4040 		/*
4041 		 * If we want to write the page, we may as well handle that
4042 		 * now since we've got the map locked.
4043 		 *
4044 		 * If we don't need to write the page, we just demote the
4045 		 * permissions allowed.
4046 		 */
4047 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4048 		    (fault_typea & VM_PROT_COPY) != 0) {
4049 			/*
4050 			 * Make a new object, and place it in the object
4051 			 * chain.  Note that no new references have appeared
4052 			 * -- one just moved from the map to the new
4053 			 * object.
4054 			 */
4055 			if (vm_map_lock_upgrade(map))
4056 				goto RetryLookup;
4057 
4058 			if (entry->cred == NULL) {
4059 				/*
4060 				 * The debugger owner is charged for
4061 				 * the memory.
4062 				 */
4063 				cred = curthread->td_ucred;
4064 				crhold(cred);
4065 				if (!swap_reserve_by_cred(size, cred)) {
4066 					crfree(cred);
4067 					vm_map_unlock(map);
4068 					return (KERN_RESOURCE_SHORTAGE);
4069 				}
4070 				entry->cred = cred;
4071 			}
4072 			vm_object_shadow(&entry->object.vm_object,
4073 			    &entry->offset, size);
4074 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4075 			eobject = entry->object.vm_object;
4076 			if (eobject->cred != NULL) {
4077 				/*
4078 				 * The object was not shadowed.
4079 				 */
4080 				swap_release_by_cred(size, entry->cred);
4081 				crfree(entry->cred);
4082 				entry->cred = NULL;
4083 			} else if (entry->cred != NULL) {
4084 				VM_OBJECT_WLOCK(eobject);
4085 				eobject->cred = entry->cred;
4086 				eobject->charge = size;
4087 				VM_OBJECT_WUNLOCK(eobject);
4088 				entry->cred = NULL;
4089 			}
4090 
4091 			vm_map_lock_downgrade(map);
4092 		} else {
4093 			/*
4094 			 * We're attempting to read a copy-on-write page --
4095 			 * don't allow writes.
4096 			 */
4097 			prot &= ~VM_PROT_WRITE;
4098 		}
4099 	}
4100 
4101 	/*
4102 	 * Create an object if necessary.
4103 	 */
4104 	if (entry->object.vm_object == NULL &&
4105 	    !map->system_map) {
4106 		if (vm_map_lock_upgrade(map))
4107 			goto RetryLookup;
4108 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4109 		    atop(size));
4110 		entry->offset = 0;
4111 		if (entry->cred != NULL) {
4112 			VM_OBJECT_WLOCK(entry->object.vm_object);
4113 			entry->object.vm_object->cred = entry->cred;
4114 			entry->object.vm_object->charge = size;
4115 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4116 			entry->cred = NULL;
4117 		}
4118 		vm_map_lock_downgrade(map);
4119 	}
4120 
4121 	/*
4122 	 * Return the object/offset from this entry.  If the entry was
4123 	 * copy-on-write or empty, it has been fixed up.
4124 	 */
4125 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4126 	*object = entry->object.vm_object;
4127 
4128 	*out_prot = prot;
4129 	return (KERN_SUCCESS);
4130 }
4131 
4132 /*
4133  *	vm_map_lookup_locked:
4134  *
4135  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4136  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4137  */
4138 int
4139 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4140 		     vm_offset_t vaddr,
4141 		     vm_prot_t fault_typea,
4142 		     vm_map_entry_t *out_entry,	/* OUT */
4143 		     vm_object_t *object,	/* OUT */
4144 		     vm_pindex_t *pindex,	/* OUT */
4145 		     vm_prot_t *out_prot,	/* OUT */
4146 		     boolean_t *wired)		/* OUT */
4147 {
4148 	vm_map_entry_t entry;
4149 	vm_map_t map = *var_map;
4150 	vm_prot_t prot;
4151 	vm_prot_t fault_type = fault_typea;
4152 
4153 	/*
4154 	 * Lookup the faulting address.
4155 	 */
4156 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4157 		return (KERN_INVALID_ADDRESS);
4158 
4159 	entry = *out_entry;
4160 
4161 	/*
4162 	 * Fail if the entry refers to a submap.
4163 	 */
4164 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4165 		return (KERN_FAILURE);
4166 
4167 	/*
4168 	 * Check whether this task is allowed to have this page.
4169 	 */
4170 	prot = entry->protection;
4171 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4172 	if ((fault_type & prot) != fault_type)
4173 		return (KERN_PROTECTION_FAILURE);
4174 
4175 	/*
4176 	 * If this page is not pageable, we have to get it for all possible
4177 	 * accesses.
4178 	 */
4179 	*wired = (entry->wired_count != 0);
4180 	if (*wired)
4181 		fault_type = entry->protection;
4182 
4183 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4184 		/*
4185 		 * Fail if the entry was copy-on-write for a write fault.
4186 		 */
4187 		if (fault_type & VM_PROT_WRITE)
4188 			return (KERN_FAILURE);
4189 		/*
4190 		 * We're attempting to read a copy-on-write page --
4191 		 * don't allow writes.
4192 		 */
4193 		prot &= ~VM_PROT_WRITE;
4194 	}
4195 
4196 	/*
4197 	 * Fail if an object should be created.
4198 	 */
4199 	if (entry->object.vm_object == NULL && !map->system_map)
4200 		return (KERN_FAILURE);
4201 
4202 	/*
4203 	 * Return the object/offset from this entry.  If the entry was
4204 	 * copy-on-write or empty, it has been fixed up.
4205 	 */
4206 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4207 	*object = entry->object.vm_object;
4208 
4209 	*out_prot = prot;
4210 	return (KERN_SUCCESS);
4211 }
4212 
4213 /*
4214  *	vm_map_lookup_done:
4215  *
4216  *	Releases locks acquired by a vm_map_lookup
4217  *	(according to the handle returned by that lookup).
4218  */
4219 void
4220 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4221 {
4222 	/*
4223 	 * Unlock the main-level map
4224 	 */
4225 	vm_map_unlock_read(map);
4226 }
4227 
4228 #include "opt_ddb.h"
4229 #ifdef DDB
4230 #include <sys/kernel.h>
4231 
4232 #include <ddb/ddb.h>
4233 
4234 static void
4235 vm_map_print(vm_map_t map)
4236 {
4237 	vm_map_entry_t entry;
4238 
4239 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4240 	    (void *)map,
4241 	    (void *)map->pmap, map->nentries, map->timestamp);
4242 
4243 	db_indent += 2;
4244 	for (entry = map->header.next; entry != &map->header;
4245 	    entry = entry->next) {
4246 		db_iprintf("map entry %p: start=%p, end=%p\n",
4247 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4248 		{
4249 			static char *inheritance_name[4] =
4250 			{"share", "copy", "none", "donate_copy"};
4251 
4252 			db_iprintf(" prot=%x/%x/%s",
4253 			    entry->protection,
4254 			    entry->max_protection,
4255 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4256 			if (entry->wired_count != 0)
4257 				db_printf(", wired");
4258 		}
4259 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4260 			db_printf(", share=%p, offset=0x%jx\n",
4261 			    (void *)entry->object.sub_map,
4262 			    (uintmax_t)entry->offset);
4263 			if ((entry->prev == &map->header) ||
4264 			    (entry->prev->object.sub_map !=
4265 				entry->object.sub_map)) {
4266 				db_indent += 2;
4267 				vm_map_print((vm_map_t)entry->object.sub_map);
4268 				db_indent -= 2;
4269 			}
4270 		} else {
4271 			if (entry->cred != NULL)
4272 				db_printf(", ruid %d", entry->cred->cr_ruid);
4273 			db_printf(", object=%p, offset=0x%jx",
4274 			    (void *)entry->object.vm_object,
4275 			    (uintmax_t)entry->offset);
4276 			if (entry->object.vm_object && entry->object.vm_object->cred)
4277 				db_printf(", obj ruid %d charge %jx",
4278 				    entry->object.vm_object->cred->cr_ruid,
4279 				    (uintmax_t)entry->object.vm_object->charge);
4280 			if (entry->eflags & MAP_ENTRY_COW)
4281 				db_printf(", copy (%s)",
4282 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4283 			db_printf("\n");
4284 
4285 			if ((entry->prev == &map->header) ||
4286 			    (entry->prev->object.vm_object !=
4287 				entry->object.vm_object)) {
4288 				db_indent += 2;
4289 				vm_object_print((db_expr_t)(intptr_t)
4290 						entry->object.vm_object,
4291 						0, 0, (char *)0);
4292 				db_indent -= 2;
4293 			}
4294 		}
4295 	}
4296 	db_indent -= 2;
4297 }
4298 
4299 DB_SHOW_COMMAND(map, map)
4300 {
4301 
4302 	if (!have_addr) {
4303 		db_printf("usage: show map <addr>\n");
4304 		return;
4305 	}
4306 	vm_map_print((vm_map_t)addr);
4307 }
4308 
4309 DB_SHOW_COMMAND(procvm, procvm)
4310 {
4311 	struct proc *p;
4312 
4313 	if (have_addr) {
4314 		p = (struct proc *) addr;
4315 	} else {
4316 		p = curproc;
4317 	}
4318 
4319 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4320 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4321 	    (void *)vmspace_pmap(p->p_vmspace));
4322 
4323 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4324 }
4325 
4326 #endif /* DDB */
4327