1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/param.h> 66 #include <sys/systm.h> 67 #include <sys/elf.h> 68 #include <sys/kernel.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/vmmeter.h> 74 #include <sys/mman.h> 75 #include <sys/vnode.h> 76 #include <sys/racct.h> 77 #include <sys/resourcevar.h> 78 #include <sys/rwlock.h> 79 #include <sys/file.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/shm.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_param.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_pageout.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_radix.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t vmspace_zone; 128 static int vmspace_zinit(void *mem, int size, int flags); 129 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 130 vm_offset_t max); 131 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 132 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 133 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 134 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 135 vm_map_entry_t gap_entry); 136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 137 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 138 #ifdef INVARIANTS 139 static void vmspace_zdtor(void *mem, int size, void *arg); 140 #endif 141 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 142 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 143 int cow); 144 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 145 vm_offset_t failed_addr); 146 147 #define CONTAINS_BITS(set, bits) ((~(set) & (bits)) == 0) 148 149 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 150 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 151 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 152 153 /* 154 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 155 * stable. 156 */ 157 #define PROC_VMSPACE_LOCK(p) do { } while (0) 158 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 159 160 /* 161 * VM_MAP_RANGE_CHECK: [ internal use only ] 162 * 163 * Asserts that the starting and ending region 164 * addresses fall within the valid range of the map. 165 */ 166 #define VM_MAP_RANGE_CHECK(map, start, end) \ 167 { \ 168 if (start < vm_map_min(map)) \ 169 start = vm_map_min(map); \ 170 if (end > vm_map_max(map)) \ 171 end = vm_map_max(map); \ 172 if (start > end) \ 173 start = end; \ 174 } 175 176 #ifndef UMA_USE_DMAP 177 178 /* 179 * Allocate a new slab for kernel map entries. The kernel map may be locked or 180 * unlocked, depending on whether the request is coming from the kernel map or a 181 * submap. This function allocates a virtual address range directly from the 182 * kernel map instead of the kmem_* layer to avoid recursion on the kernel map 183 * lock and also to avoid triggering allocator recursion in the vmem boundary 184 * tag allocator. 185 */ 186 static void * 187 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 188 int wait) 189 { 190 vm_offset_t addr; 191 int error, locked; 192 193 *pflag = UMA_SLAB_PRIV; 194 195 if (!(locked = vm_map_locked(kernel_map))) 196 vm_map_lock(kernel_map); 197 addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes); 198 if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map)) 199 panic("%s: kernel map is exhausted", __func__); 200 error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes, 201 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 202 if (error != KERN_SUCCESS) 203 panic("%s: vm_map_insert() failed: %d", __func__, error); 204 if (!locked) 205 vm_map_unlock(kernel_map); 206 error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT | 207 M_USE_RESERVE | (wait & M_ZERO)); 208 if (error == KERN_SUCCESS) { 209 return ((void *)addr); 210 } else { 211 if (!locked) 212 vm_map_lock(kernel_map); 213 vm_map_delete(kernel_map, addr, bytes); 214 if (!locked) 215 vm_map_unlock(kernel_map); 216 return (NULL); 217 } 218 } 219 220 static void 221 kmapent_free(void *item, vm_size_t size, uint8_t pflag) 222 { 223 vm_offset_t addr; 224 int error __diagused; 225 226 if ((pflag & UMA_SLAB_PRIV) == 0) 227 /* XXX leaked */ 228 return; 229 230 addr = (vm_offset_t)item; 231 kmem_unback(kernel_object, addr, size); 232 error = vm_map_remove(kernel_map, addr, addr + size); 233 KASSERT(error == KERN_SUCCESS, 234 ("%s: vm_map_remove failed: %d", __func__, error)); 235 } 236 237 /* 238 * The worst-case upper bound on the number of kernel map entries that may be 239 * created before the zone must be replenished in _vm_map_unlock(). 240 */ 241 #define KMAPENT_RESERVE 1 242 243 #endif /* !UMD_MD_SMALL_ALLOC */ 244 245 /* 246 * vm_map_startup: 247 * 248 * Initialize the vm_map module. Must be called before any other vm_map 249 * routines. 250 * 251 * User map and entry structures are allocated from the general purpose 252 * memory pool. Kernel maps are statically defined. Kernel map entries 253 * require special handling to avoid recursion; see the comments above 254 * kmapent_alloc() and in vm_map_entry_create(). 255 */ 256 void 257 vm_map_startup(void) 258 { 259 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 260 261 /* 262 * Disable the use of per-CPU buckets: map entry allocation is 263 * serialized by the kernel map lock. 264 */ 265 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 266 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 267 UMA_ZONE_VM | UMA_ZONE_NOBUCKET); 268 #ifndef UMA_USE_DMAP 269 /* Reserve an extra map entry for use when replenishing the reserve. */ 270 uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1); 271 uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1); 272 uma_zone_set_allocf(kmapentzone, kmapent_alloc); 273 uma_zone_set_freef(kmapentzone, kmapent_free); 274 #endif 275 276 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 277 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 278 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 279 #ifdef INVARIANTS 280 vmspace_zdtor, 281 #else 282 NULL, 283 #endif 284 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 285 } 286 287 static int 288 vmspace_zinit(void *mem, int size, int flags) 289 { 290 struct vmspace *vm; 291 vm_map_t map; 292 293 vm = (struct vmspace *)mem; 294 map = &vm->vm_map; 295 296 memset(map, 0, sizeof(*map)); /* set MAP_SYSTEM_MAP to false */ 297 sx_init(&map->lock, "vm map (user)"); 298 PMAP_LOCK_INIT(vmspace_pmap(vm)); 299 return (0); 300 } 301 302 #ifdef INVARIANTS 303 static void 304 vmspace_zdtor(void *mem, int size, void *arg) 305 { 306 struct vmspace *vm; 307 308 vm = (struct vmspace *)mem; 309 KASSERT(vm->vm_map.nentries == 0, 310 ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries)); 311 KASSERT(vm->vm_map.size == 0, 312 ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size)); 313 } 314 #endif /* INVARIANTS */ 315 316 /* 317 * Allocate a vmspace structure, including a vm_map and pmap, 318 * and initialize those structures. The refcnt is set to 1. 319 */ 320 struct vmspace * 321 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 322 { 323 struct vmspace *vm; 324 325 vm = uma_zalloc(vmspace_zone, M_WAITOK); 326 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 327 if (!pinit(vmspace_pmap(vm))) { 328 uma_zfree(vmspace_zone, vm); 329 return (NULL); 330 } 331 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 332 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 333 refcount_init(&vm->vm_refcnt, 1); 334 vm->vm_shm = NULL; 335 vm->vm_swrss = 0; 336 vm->vm_tsize = 0; 337 vm->vm_dsize = 0; 338 vm->vm_ssize = 0; 339 vm->vm_taddr = 0; 340 vm->vm_daddr = 0; 341 vm->vm_maxsaddr = 0; 342 return (vm); 343 } 344 345 #ifdef RACCT 346 static void 347 vmspace_container_reset(struct proc *p) 348 { 349 350 PROC_LOCK(p); 351 racct_set(p, RACCT_DATA, 0); 352 racct_set(p, RACCT_STACK, 0); 353 racct_set(p, RACCT_RSS, 0); 354 racct_set(p, RACCT_MEMLOCK, 0); 355 racct_set(p, RACCT_VMEM, 0); 356 PROC_UNLOCK(p); 357 } 358 #endif 359 360 static inline void 361 vmspace_dofree(struct vmspace *vm) 362 { 363 364 CTR1(KTR_VM, "vmspace_free: %p", vm); 365 366 /* 367 * Make sure any SysV shm is freed, it might not have been in 368 * exit1(). 369 */ 370 shmexit(vm); 371 372 /* 373 * Lock the map, to wait out all other references to it. 374 * Delete all of the mappings and pages they hold, then call 375 * the pmap module to reclaim anything left. 376 */ 377 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 378 vm_map_max(&vm->vm_map)); 379 380 pmap_release(vmspace_pmap(vm)); 381 vm->vm_map.pmap = NULL; 382 uma_zfree(vmspace_zone, vm); 383 } 384 385 void 386 vmspace_free(struct vmspace *vm) 387 { 388 389 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 390 "vmspace_free() called"); 391 392 if (refcount_release(&vm->vm_refcnt)) 393 vmspace_dofree(vm); 394 } 395 396 void 397 vmspace_exitfree(struct proc *p) 398 { 399 struct vmspace *vm; 400 401 PROC_VMSPACE_LOCK(p); 402 vm = p->p_vmspace; 403 p->p_vmspace = NULL; 404 PROC_VMSPACE_UNLOCK(p); 405 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 406 vmspace_free(vm); 407 } 408 409 void 410 vmspace_exit(struct thread *td) 411 { 412 struct vmspace *vm; 413 struct proc *p; 414 bool released; 415 416 p = td->td_proc; 417 vm = p->p_vmspace; 418 419 /* 420 * Prepare to release the vmspace reference. The thread that releases 421 * the last reference is responsible for tearing down the vmspace. 422 * However, threads not releasing the final reference must switch to the 423 * kernel's vmspace0 before the decrement so that the subsequent pmap 424 * deactivation does not modify a freed vmspace. 425 */ 426 refcount_acquire(&vmspace0.vm_refcnt); 427 if (!(released = refcount_release_if_last(&vm->vm_refcnt))) { 428 if (p->p_vmspace != &vmspace0) { 429 PROC_VMSPACE_LOCK(p); 430 p->p_vmspace = &vmspace0; 431 PROC_VMSPACE_UNLOCK(p); 432 pmap_activate(td); 433 } 434 released = refcount_release(&vm->vm_refcnt); 435 } 436 if (released) { 437 /* 438 * pmap_remove_pages() expects the pmap to be active, so switch 439 * back first if necessary. 440 */ 441 if (p->p_vmspace != vm) { 442 PROC_VMSPACE_LOCK(p); 443 p->p_vmspace = vm; 444 PROC_VMSPACE_UNLOCK(p); 445 pmap_activate(td); 446 } 447 pmap_remove_pages(vmspace_pmap(vm)); 448 PROC_VMSPACE_LOCK(p); 449 p->p_vmspace = &vmspace0; 450 PROC_VMSPACE_UNLOCK(p); 451 pmap_activate(td); 452 vmspace_dofree(vm); 453 } 454 #ifdef RACCT 455 if (racct_enable) 456 vmspace_container_reset(p); 457 #endif 458 } 459 460 /* Acquire reference to vmspace owned by another process. */ 461 462 struct vmspace * 463 vmspace_acquire_ref(struct proc *p) 464 { 465 struct vmspace *vm; 466 467 PROC_VMSPACE_LOCK(p); 468 vm = p->p_vmspace; 469 if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) { 470 PROC_VMSPACE_UNLOCK(p); 471 return (NULL); 472 } 473 if (vm != p->p_vmspace) { 474 PROC_VMSPACE_UNLOCK(p); 475 vmspace_free(vm); 476 return (NULL); 477 } 478 PROC_VMSPACE_UNLOCK(p); 479 return (vm); 480 } 481 482 /* 483 * Switch between vmspaces in an AIO kernel process. 484 * 485 * The new vmspace is either the vmspace of a user process obtained 486 * from an active AIO request or the initial vmspace of the AIO kernel 487 * process (when it is idling). Because user processes will block to 488 * drain any active AIO requests before proceeding in exit() or 489 * execve(), the reference count for vmspaces from AIO requests can 490 * never be 0. Similarly, AIO kernel processes hold an extra 491 * reference on their initial vmspace for the life of the process. As 492 * a result, the 'newvm' vmspace always has a non-zero reference 493 * count. This permits an additional reference on 'newvm' to be 494 * acquired via a simple atomic increment rather than the loop in 495 * vmspace_acquire_ref() above. 496 */ 497 void 498 vmspace_switch_aio(struct vmspace *newvm) 499 { 500 struct vmspace *oldvm; 501 502 /* XXX: Need some way to assert that this is an aio daemon. */ 503 504 KASSERT(refcount_load(&newvm->vm_refcnt) > 0, 505 ("vmspace_switch_aio: newvm unreferenced")); 506 507 oldvm = curproc->p_vmspace; 508 if (oldvm == newvm) 509 return; 510 511 /* 512 * Point to the new address space and refer to it. 513 */ 514 curproc->p_vmspace = newvm; 515 refcount_acquire(&newvm->vm_refcnt); 516 517 /* Activate the new mapping. */ 518 pmap_activate(curthread); 519 520 vmspace_free(oldvm); 521 } 522 523 void 524 _vm_map_lock(vm_map_t map, const char *file, int line) 525 { 526 527 if (vm_map_is_system(map)) 528 mtx_lock_flags_(&map->system_mtx, 0, file, line); 529 else 530 sx_xlock_(&map->lock, file, line); 531 map->timestamp++; 532 } 533 534 void 535 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 536 { 537 vm_object_t object; 538 struct vnode *vp; 539 bool vp_held; 540 541 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 542 return; 543 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 544 ("Submap with execs")); 545 object = entry->object.vm_object; 546 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 547 if ((object->flags & OBJ_ANON) != 0) 548 object = object->handle; 549 else 550 KASSERT(object->backing_object == NULL, 551 ("non-anon object %p shadows", object)); 552 KASSERT(object != NULL, ("No content object for text, entry %p obj %p", 553 entry, entry->object.vm_object)); 554 555 /* 556 * Mostly, we do not lock the backing object. It is 557 * referenced by the entry we are processing, so it cannot go 558 * away. 559 */ 560 vm_pager_getvp(object, &vp, &vp_held); 561 if (vp != NULL) { 562 if (add) { 563 VOP_SET_TEXT_CHECKED(vp); 564 } else { 565 vn_lock(vp, LK_SHARED | LK_RETRY); 566 VOP_UNSET_TEXT_CHECKED(vp); 567 VOP_UNLOCK(vp); 568 } 569 if (vp_held) 570 vdrop(vp); 571 } 572 } 573 574 /* 575 * Use a different name for this vm_map_entry field when it's use 576 * is not consistent with its use as part of an ordered search tree. 577 */ 578 #define defer_next right 579 580 static void 581 vm_map_process_deferred(void) 582 { 583 struct thread *td; 584 vm_map_entry_t entry, next; 585 vm_object_t object; 586 587 td = curthread; 588 entry = td->td_map_def_user; 589 td->td_map_def_user = NULL; 590 while (entry != NULL) { 591 next = entry->defer_next; 592 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT | 593 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT | 594 MAP_ENTRY_VN_EXEC)); 595 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) { 596 /* 597 * Decrement the object's writemappings and 598 * possibly the vnode's v_writecount. 599 */ 600 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 601 ("Submap with writecount")); 602 object = entry->object.vm_object; 603 KASSERT(object != NULL, ("No object for writecount")); 604 vm_pager_release_writecount(object, entry->start, 605 entry->end); 606 } 607 vm_map_entry_set_vnode_text(entry, false); 608 vm_map_entry_deallocate(entry, FALSE); 609 entry = next; 610 } 611 } 612 613 #ifdef INVARIANTS 614 static void 615 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 616 { 617 618 if (vm_map_is_system(map)) 619 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 620 else 621 sx_assert_(&map->lock, SA_XLOCKED, file, line); 622 } 623 624 #define VM_MAP_ASSERT_LOCKED(map) \ 625 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 626 627 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL }; 628 #ifdef DIAGNOSTIC 629 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK; 630 #else 631 static int enable_vmmap_check = VMMAP_CHECK_NONE; 632 #endif 633 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 634 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 635 636 static void _vm_map_assert_consistent(vm_map_t map, int check); 637 638 #define VM_MAP_ASSERT_CONSISTENT(map) \ 639 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL) 640 #ifdef DIAGNOSTIC 641 #define VM_MAP_UNLOCK_CONSISTENT(map) do { \ 642 if (map->nupdates > map->nentries) { \ 643 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \ 644 map->nupdates = 0; \ 645 } \ 646 } while (0) 647 #else 648 #define VM_MAP_UNLOCK_CONSISTENT(map) 649 #endif 650 #else 651 #define VM_MAP_ASSERT_LOCKED(map) 652 #define VM_MAP_ASSERT_CONSISTENT(map) 653 #define VM_MAP_UNLOCK_CONSISTENT(map) 654 #endif /* INVARIANTS */ 655 656 void 657 _vm_map_unlock(vm_map_t map, const char *file, int line) 658 { 659 660 VM_MAP_UNLOCK_CONSISTENT(map); 661 if (vm_map_is_system(map)) { 662 #ifndef UMA_USE_DMAP 663 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) { 664 uma_prealloc(kmapentzone, 1); 665 map->flags &= ~MAP_REPLENISH; 666 } 667 #endif 668 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 669 } else { 670 sx_xunlock_(&map->lock, file, line); 671 vm_map_process_deferred(); 672 } 673 } 674 675 void 676 _vm_map_lock_read(vm_map_t map, const char *file, int line) 677 { 678 679 if (vm_map_is_system(map)) 680 mtx_lock_flags_(&map->system_mtx, 0, file, line); 681 else 682 sx_slock_(&map->lock, file, line); 683 } 684 685 void 686 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 687 { 688 689 if (vm_map_is_system(map)) { 690 KASSERT((map->flags & MAP_REPLENISH) == 0, 691 ("%s: MAP_REPLENISH leaked", __func__)); 692 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 693 } else { 694 sx_sunlock_(&map->lock, file, line); 695 vm_map_process_deferred(); 696 } 697 } 698 699 int 700 _vm_map_trylock(vm_map_t map, const char *file, int line) 701 { 702 int error; 703 704 error = vm_map_is_system(map) ? 705 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 706 !sx_try_xlock_(&map->lock, file, line); 707 if (error == 0) 708 map->timestamp++; 709 return (error == 0); 710 } 711 712 int 713 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 714 { 715 int error; 716 717 error = vm_map_is_system(map) ? 718 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 719 !sx_try_slock_(&map->lock, file, line); 720 return (error == 0); 721 } 722 723 /* 724 * _vm_map_lock_upgrade: [ internal use only ] 725 * 726 * Tries to upgrade a read (shared) lock on the specified map to a write 727 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 728 * non-zero value if the upgrade fails. If the upgrade fails, the map is 729 * returned without a read or write lock held. 730 * 731 * Requires that the map be read locked. 732 */ 733 int 734 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 735 { 736 unsigned int last_timestamp; 737 738 if (vm_map_is_system(map)) { 739 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 740 } else { 741 if (!sx_try_upgrade_(&map->lock, file, line)) { 742 last_timestamp = map->timestamp; 743 sx_sunlock_(&map->lock, file, line); 744 vm_map_process_deferred(); 745 /* 746 * If the map's timestamp does not change while the 747 * map is unlocked, then the upgrade succeeds. 748 */ 749 sx_xlock_(&map->lock, file, line); 750 if (last_timestamp != map->timestamp) { 751 sx_xunlock_(&map->lock, file, line); 752 return (1); 753 } 754 } 755 } 756 map->timestamp++; 757 return (0); 758 } 759 760 void 761 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 762 { 763 764 if (vm_map_is_system(map)) { 765 KASSERT((map->flags & MAP_REPLENISH) == 0, 766 ("%s: MAP_REPLENISH leaked", __func__)); 767 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 768 } else { 769 VM_MAP_UNLOCK_CONSISTENT(map); 770 sx_downgrade_(&map->lock, file, line); 771 } 772 } 773 774 /* 775 * vm_map_locked: 776 * 777 * Returns a non-zero value if the caller holds a write (exclusive) lock 778 * on the specified map and the value "0" otherwise. 779 */ 780 int 781 vm_map_locked(vm_map_t map) 782 { 783 784 if (vm_map_is_system(map)) 785 return (mtx_owned(&map->system_mtx)); 786 return (sx_xlocked(&map->lock)); 787 } 788 789 /* 790 * _vm_map_unlock_and_wait: 791 * 792 * Atomically releases the lock on the specified map and puts the calling 793 * thread to sleep. The calling thread will remain asleep until either 794 * vm_map_wakeup() is performed on the map or the specified timeout is 795 * exceeded. 796 * 797 * WARNING! This function does not perform deferred deallocations of 798 * objects and map entries. Therefore, the calling thread is expected to 799 * reacquire the map lock after reawakening and later perform an ordinary 800 * unlock operation, such as vm_map_unlock(), before completing its 801 * operation on the map. 802 */ 803 int 804 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 805 { 806 807 VM_MAP_UNLOCK_CONSISTENT(map); 808 mtx_lock(&map_sleep_mtx); 809 if (vm_map_is_system(map)) { 810 KASSERT((map->flags & MAP_REPLENISH) == 0, 811 ("%s: MAP_REPLENISH leaked", __func__)); 812 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 813 } else { 814 sx_xunlock_(&map->lock, file, line); 815 } 816 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 817 timo)); 818 } 819 820 /* 821 * vm_map_wakeup: 822 * 823 * Awaken any threads that have slept on the map using 824 * vm_map_unlock_and_wait(). 825 */ 826 void 827 vm_map_wakeup(vm_map_t map) 828 { 829 830 /* 831 * Acquire and release map_sleep_mtx to prevent a wakeup() 832 * from being performed (and lost) between the map unlock 833 * and the msleep() in _vm_map_unlock_and_wait(). 834 */ 835 mtx_lock(&map_sleep_mtx); 836 mtx_unlock(&map_sleep_mtx); 837 wakeup(&map->root); 838 } 839 840 void 841 vm_map_busy(vm_map_t map) 842 { 843 844 VM_MAP_ASSERT_LOCKED(map); 845 map->busy++; 846 } 847 848 void 849 vm_map_unbusy(vm_map_t map) 850 { 851 852 VM_MAP_ASSERT_LOCKED(map); 853 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 854 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 855 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 856 wakeup(&map->busy); 857 } 858 } 859 860 void 861 vm_map_wait_busy(vm_map_t map) 862 { 863 864 VM_MAP_ASSERT_LOCKED(map); 865 while (map->busy) { 866 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 867 if (vm_map_is_system(map)) 868 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 869 else 870 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 871 } 872 map->timestamp++; 873 } 874 875 long 876 vmspace_resident_count(struct vmspace *vmspace) 877 { 878 return pmap_resident_count(vmspace_pmap(vmspace)); 879 } 880 881 /* 882 * Initialize an existing vm_map structure 883 * such as that in the vmspace structure. 884 */ 885 static void 886 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 887 { 888 889 map->header.eflags = MAP_ENTRY_HEADER; 890 map->pmap = pmap; 891 map->header.end = min; 892 map->header.start = max; 893 map->flags = 0; 894 map->header.left = map->header.right = &map->header; 895 map->root = NULL; 896 map->timestamp = 0; 897 map->busy = 0; 898 map->anon_loc = 0; 899 #ifdef DIAGNOSTIC 900 map->nupdates = 0; 901 #endif 902 } 903 904 void 905 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 906 { 907 _vm_map_init(map, pmap, min, max); 908 sx_init(&map->lock, "vm map (user)"); 909 } 910 911 void 912 vm_map_init_system(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 913 { 914 _vm_map_init(map, pmap, min, max); 915 vm_map_modflags(map, MAP_SYSTEM_MAP, 0); 916 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | 917 MTX_DUPOK); 918 } 919 920 /* 921 * vm_map_entry_dispose: [ internal use only ] 922 * 923 * Inverse of vm_map_entry_create. 924 */ 925 static void 926 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 927 { 928 uma_zfree(vm_map_is_system(map) ? kmapentzone : mapentzone, entry); 929 } 930 931 /* 932 * vm_map_entry_create: [ internal use only ] 933 * 934 * Allocates a VM map entry for insertion. 935 * No entry fields are filled in. 936 */ 937 static vm_map_entry_t 938 vm_map_entry_create(vm_map_t map) 939 { 940 vm_map_entry_t new_entry; 941 942 #ifndef UMA_USE_DMAP 943 if (map == kernel_map) { 944 VM_MAP_ASSERT_LOCKED(map); 945 946 /* 947 * A new slab of kernel map entries cannot be allocated at this 948 * point because the kernel map has not yet been updated to 949 * reflect the caller's request. Therefore, we allocate a new 950 * map entry, dipping into the reserve if necessary, and set a 951 * flag indicating that the reserve must be replenished before 952 * the map is unlocked. 953 */ 954 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM); 955 if (new_entry == NULL) { 956 new_entry = uma_zalloc(kmapentzone, 957 M_NOWAIT | M_NOVM | M_USE_RESERVE); 958 kernel_map->flags |= MAP_REPLENISH; 959 } 960 } else 961 #endif 962 if (vm_map_is_system(map)) { 963 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 964 } else { 965 new_entry = uma_zalloc(mapentzone, M_WAITOK); 966 } 967 KASSERT(new_entry != NULL, 968 ("vm_map_entry_create: kernel resources exhausted")); 969 return (new_entry); 970 } 971 972 /* 973 * vm_map_entry_set_behavior: 974 * 975 * Set the expected access behavior, either normal, random, or 976 * sequential. 977 */ 978 static inline void 979 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 980 { 981 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 982 (behavior & MAP_ENTRY_BEHAV_MASK); 983 } 984 985 /* 986 * vm_map_entry_max_free_{left,right}: 987 * 988 * Compute the size of the largest free gap between two entries, 989 * one the root of a tree and the other the ancestor of that root 990 * that is the least or greatest ancestor found on the search path. 991 */ 992 static inline vm_size_t 993 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 994 { 995 996 return (root->left != left_ancestor ? 997 root->left->max_free : root->start - left_ancestor->end); 998 } 999 1000 static inline vm_size_t 1001 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 1002 { 1003 1004 return (root->right != right_ancestor ? 1005 root->right->max_free : right_ancestor->start - root->end); 1006 } 1007 1008 /* 1009 * vm_map_entry_{pred,succ}: 1010 * 1011 * Find the {predecessor, successor} of the entry by taking one step 1012 * in the appropriate direction and backtracking as much as necessary. 1013 * vm_map_entry_succ is defined in vm_map.h. 1014 */ 1015 static inline vm_map_entry_t 1016 vm_map_entry_pred(vm_map_entry_t entry) 1017 { 1018 vm_map_entry_t prior; 1019 1020 prior = entry->left; 1021 if (prior->right->start < entry->start) { 1022 do 1023 prior = prior->right; 1024 while (prior->right != entry); 1025 } 1026 return (prior); 1027 } 1028 1029 static inline vm_size_t 1030 vm_size_max(vm_size_t a, vm_size_t b) 1031 { 1032 1033 return (a > b ? a : b); 1034 } 1035 1036 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \ 1037 vm_map_entry_t z; \ 1038 vm_size_t max_free; \ 1039 \ 1040 /* \ 1041 * Infer root->right->max_free == root->max_free when \ 1042 * y->max_free < root->max_free || root->max_free == 0. \ 1043 * Otherwise, look right to find it. \ 1044 */ \ 1045 y = root->left; \ 1046 max_free = root->max_free; \ 1047 KASSERT(max_free == vm_size_max( \ 1048 vm_map_entry_max_free_left(root, llist), \ 1049 vm_map_entry_max_free_right(root, rlist)), \ 1050 ("%s: max_free invariant fails", __func__)); \ 1051 if (max_free - 1 < vm_map_entry_max_free_left(root, llist)) \ 1052 max_free = vm_map_entry_max_free_right(root, rlist); \ 1053 if (y != llist && (test)) { \ 1054 /* Rotate right and make y root. */ \ 1055 z = y->right; \ 1056 if (z != root) { \ 1057 root->left = z; \ 1058 y->right = root; \ 1059 if (max_free < y->max_free) \ 1060 root->max_free = max_free = \ 1061 vm_size_max(max_free, z->max_free); \ 1062 } else if (max_free < y->max_free) \ 1063 root->max_free = max_free = \ 1064 vm_size_max(max_free, root->start - y->end);\ 1065 root = y; \ 1066 y = root->left; \ 1067 } \ 1068 /* Copy right->max_free. Put root on rlist. */ \ 1069 root->max_free = max_free; \ 1070 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1071 ("%s: max_free not copied from right", __func__)); \ 1072 root->left = rlist; \ 1073 rlist = root; \ 1074 root = y != llist ? y : NULL; \ 1075 } while (0) 1076 1077 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \ 1078 vm_map_entry_t z; \ 1079 vm_size_t max_free; \ 1080 \ 1081 /* \ 1082 * Infer root->left->max_free == root->max_free when \ 1083 * y->max_free < root->max_free || root->max_free == 0. \ 1084 * Otherwise, look left to find it. \ 1085 */ \ 1086 y = root->right; \ 1087 max_free = root->max_free; \ 1088 KASSERT(max_free == vm_size_max( \ 1089 vm_map_entry_max_free_left(root, llist), \ 1090 vm_map_entry_max_free_right(root, rlist)), \ 1091 ("%s: max_free invariant fails", __func__)); \ 1092 if (max_free - 1 < vm_map_entry_max_free_right(root, rlist)) \ 1093 max_free = vm_map_entry_max_free_left(root, llist); \ 1094 if (y != rlist && (test)) { \ 1095 /* Rotate left and make y root. */ \ 1096 z = y->left; \ 1097 if (z != root) { \ 1098 root->right = z; \ 1099 y->left = root; \ 1100 if (max_free < y->max_free) \ 1101 root->max_free = max_free = \ 1102 vm_size_max(max_free, z->max_free); \ 1103 } else if (max_free < y->max_free) \ 1104 root->max_free = max_free = \ 1105 vm_size_max(max_free, y->start - root->end);\ 1106 root = y; \ 1107 y = root->right; \ 1108 } \ 1109 /* Copy left->max_free. Put root on llist. */ \ 1110 root->max_free = max_free; \ 1111 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1112 ("%s: max_free not copied from left", __func__)); \ 1113 root->right = llist; \ 1114 llist = root; \ 1115 root = y != rlist ? y : NULL; \ 1116 } while (0) 1117 1118 /* 1119 * Walk down the tree until we find addr or a gap where addr would go, breaking 1120 * off left and right subtrees of nodes less than, or greater than addr. Treat 1121 * subtrees with root->max_free < length as empty trees. llist and rlist are 1122 * the two sides in reverse order (bottom-up), with llist linked by the right 1123 * pointer and rlist linked by the left pointer in the vm_map_entry, and both 1124 * lists terminated by &map->header. This function, and the subsequent call to 1125 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address 1126 * values in &map->header. 1127 */ 1128 static __always_inline vm_map_entry_t 1129 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1130 vm_map_entry_t *llist, vm_map_entry_t *rlist) 1131 { 1132 vm_map_entry_t left, right, root, y; 1133 1134 left = right = &map->header; 1135 root = map->root; 1136 while (root != NULL && root->max_free >= length) { 1137 KASSERT(left->end <= root->start && 1138 root->end <= right->start, 1139 ("%s: root not within tree bounds", __func__)); 1140 if (addr < root->start) { 1141 SPLAY_LEFT_STEP(root, y, left, right, 1142 y->max_free >= length && addr < y->start); 1143 } else if (addr >= root->end) { 1144 SPLAY_RIGHT_STEP(root, y, left, right, 1145 y->max_free >= length && addr >= y->end); 1146 } else 1147 break; 1148 } 1149 *llist = left; 1150 *rlist = right; 1151 return (root); 1152 } 1153 1154 static __always_inline void 1155 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist) 1156 { 1157 vm_map_entry_t hi, right, y; 1158 1159 right = *rlist; 1160 hi = root->right == right ? NULL : root->right; 1161 if (hi == NULL) 1162 return; 1163 do 1164 SPLAY_LEFT_STEP(hi, y, root, right, true); 1165 while (hi != NULL); 1166 *rlist = right; 1167 } 1168 1169 static __always_inline void 1170 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist) 1171 { 1172 vm_map_entry_t left, lo, y; 1173 1174 left = *llist; 1175 lo = root->left == left ? NULL : root->left; 1176 if (lo == NULL) 1177 return; 1178 do 1179 SPLAY_RIGHT_STEP(lo, y, left, root, true); 1180 while (lo != NULL); 1181 *llist = left; 1182 } 1183 1184 static inline void 1185 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1186 { 1187 vm_map_entry_t tmp; 1188 1189 tmp = *b; 1190 *b = *a; 1191 *a = tmp; 1192 } 1193 1194 /* 1195 * Walk back up the two spines, flip the pointers and set max_free. The 1196 * subtrees of the root go at the bottom of llist and rlist. 1197 */ 1198 static vm_size_t 1199 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root, 1200 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist) 1201 { 1202 do { 1203 /* 1204 * The max_free values of the children of llist are in 1205 * llist->max_free and max_free. Update with the 1206 * max value. 1207 */ 1208 llist->max_free = max_free = 1209 vm_size_max(llist->max_free, max_free); 1210 vm_map_entry_swap(&llist->right, &tail); 1211 vm_map_entry_swap(&tail, &llist); 1212 } while (llist != header); 1213 root->left = tail; 1214 return (max_free); 1215 } 1216 1217 /* 1218 * When llist is known to be the predecessor of root. 1219 */ 1220 static inline vm_size_t 1221 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root, 1222 vm_map_entry_t llist) 1223 { 1224 vm_size_t max_free; 1225 1226 max_free = root->start - llist->end; 1227 if (llist != header) { 1228 max_free = vm_map_splay_merge_left_walk(header, root, 1229 root, max_free, llist); 1230 } else { 1231 root->left = header; 1232 header->right = root; 1233 } 1234 return (max_free); 1235 } 1236 1237 /* 1238 * When llist may or may not be the predecessor of root. 1239 */ 1240 static inline vm_size_t 1241 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root, 1242 vm_map_entry_t llist) 1243 { 1244 vm_size_t max_free; 1245 1246 max_free = vm_map_entry_max_free_left(root, llist); 1247 if (llist != header) { 1248 max_free = vm_map_splay_merge_left_walk(header, root, 1249 root->left == llist ? root : root->left, 1250 max_free, llist); 1251 } 1252 return (max_free); 1253 } 1254 1255 static vm_size_t 1256 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root, 1257 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist) 1258 { 1259 do { 1260 /* 1261 * The max_free values of the children of rlist are in 1262 * rlist->max_free and max_free. Update with the 1263 * max value. 1264 */ 1265 rlist->max_free = max_free = 1266 vm_size_max(rlist->max_free, max_free); 1267 vm_map_entry_swap(&rlist->left, &tail); 1268 vm_map_entry_swap(&tail, &rlist); 1269 } while (rlist != header); 1270 root->right = tail; 1271 return (max_free); 1272 } 1273 1274 /* 1275 * When rlist is known to be the succecessor of root. 1276 */ 1277 static inline vm_size_t 1278 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root, 1279 vm_map_entry_t rlist) 1280 { 1281 vm_size_t max_free; 1282 1283 max_free = rlist->start - root->end; 1284 if (rlist != header) { 1285 max_free = vm_map_splay_merge_right_walk(header, root, 1286 root, max_free, rlist); 1287 } else { 1288 root->right = header; 1289 header->left = root; 1290 } 1291 return (max_free); 1292 } 1293 1294 /* 1295 * When rlist may or may not be the succecessor of root. 1296 */ 1297 static inline vm_size_t 1298 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root, 1299 vm_map_entry_t rlist) 1300 { 1301 vm_size_t max_free; 1302 1303 max_free = vm_map_entry_max_free_right(root, rlist); 1304 if (rlist != header) { 1305 max_free = vm_map_splay_merge_right_walk(header, root, 1306 root->right == rlist ? root : root->right, 1307 max_free, rlist); 1308 } 1309 return (max_free); 1310 } 1311 1312 /* 1313 * vm_map_splay: 1314 * 1315 * The Sleator and Tarjan top-down splay algorithm with the 1316 * following variation. Max_free must be computed bottom-up, so 1317 * on the downward pass, maintain the left and right spines in 1318 * reverse order. Then, make a second pass up each side to fix 1319 * the pointers and compute max_free. The time bound is O(log n) 1320 * amortized. 1321 * 1322 * The tree is threaded, which means that there are no null pointers. 1323 * When a node has no left child, its left pointer points to its 1324 * predecessor, which the last ancestor on the search path from the root 1325 * where the search branched right. Likewise, when a node has no right 1326 * child, its right pointer points to its successor. The map header node 1327 * is the predecessor of the first map entry, and the successor of the 1328 * last. 1329 * 1330 * The new root is the vm_map_entry containing "addr", or else an 1331 * adjacent entry (lower if possible) if addr is not in the tree. 1332 * 1333 * The map must be locked, and leaves it so. 1334 * 1335 * Returns: the new root. 1336 */ 1337 static vm_map_entry_t 1338 vm_map_splay(vm_map_t map, vm_offset_t addr) 1339 { 1340 vm_map_entry_t header, llist, rlist, root; 1341 vm_size_t max_free_left, max_free_right; 1342 1343 header = &map->header; 1344 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1345 if (root != NULL) { 1346 max_free_left = vm_map_splay_merge_left(header, root, llist); 1347 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1348 } else if (llist != header) { 1349 /* 1350 * Recover the greatest node in the left 1351 * subtree and make it the root. 1352 */ 1353 root = llist; 1354 llist = root->right; 1355 max_free_left = vm_map_splay_merge_left(header, root, llist); 1356 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1357 } else if (rlist != header) { 1358 /* 1359 * Recover the least node in the right 1360 * subtree and make it the root. 1361 */ 1362 root = rlist; 1363 rlist = root->left; 1364 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1365 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1366 } else { 1367 /* There is no root. */ 1368 return (NULL); 1369 } 1370 root->max_free = vm_size_max(max_free_left, max_free_right); 1371 map->root = root; 1372 VM_MAP_ASSERT_CONSISTENT(map); 1373 return (root); 1374 } 1375 1376 /* 1377 * vm_map_entry_{un,}link: 1378 * 1379 * Insert/remove entries from maps. On linking, if new entry clips 1380 * existing entry, trim existing entry to avoid overlap, and manage 1381 * offsets. On unlinking, merge disappearing entry with neighbor, if 1382 * called for, and manage offsets. Callers should not modify fields in 1383 * entries already mapped. 1384 */ 1385 static void 1386 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1387 { 1388 vm_map_entry_t header, llist, rlist, root; 1389 vm_size_t max_free_left, max_free_right; 1390 1391 CTR3(KTR_VM, 1392 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1393 map->nentries, entry); 1394 VM_MAP_ASSERT_LOCKED(map); 1395 map->nentries++; 1396 header = &map->header; 1397 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1398 if (root == NULL) { 1399 /* 1400 * The new entry does not overlap any existing entry in the 1401 * map, so it becomes the new root of the map tree. 1402 */ 1403 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1404 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1405 } else if (entry->start == root->start) { 1406 /* 1407 * The new entry is a clone of root, with only the end field 1408 * changed. The root entry will be shrunk to abut the new 1409 * entry, and will be the right child of the new root entry in 1410 * the modified map. 1411 */ 1412 KASSERT(entry->end < root->end, 1413 ("%s: clip_start not within entry", __func__)); 1414 vm_map_splay_findprev(root, &llist); 1415 if ((root->eflags & MAP_ENTRY_STACK_GAP) == 0) 1416 root->offset += entry->end - root->start; 1417 root->start = entry->end; 1418 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1419 max_free_right = root->max_free = vm_size_max( 1420 vm_map_splay_merge_pred(entry, root, entry), 1421 vm_map_splay_merge_right(header, root, rlist)); 1422 } else { 1423 /* 1424 * The new entry is a clone of root, with only the start field 1425 * changed. The root entry will be shrunk to abut the new 1426 * entry, and will be the left child of the new root entry in 1427 * the modified map. 1428 */ 1429 KASSERT(entry->end == root->end, 1430 ("%s: clip_start not within entry", __func__)); 1431 vm_map_splay_findnext(root, &rlist); 1432 if ((entry->eflags & MAP_ENTRY_STACK_GAP) == 0) 1433 entry->offset += entry->start - root->start; 1434 root->end = entry->start; 1435 max_free_left = root->max_free = vm_size_max( 1436 vm_map_splay_merge_left(header, root, llist), 1437 vm_map_splay_merge_succ(entry, root, entry)); 1438 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1439 } 1440 entry->max_free = vm_size_max(max_free_left, max_free_right); 1441 map->root = entry; 1442 VM_MAP_ASSERT_CONSISTENT(map); 1443 } 1444 1445 enum unlink_merge_type { 1446 UNLINK_MERGE_NONE, 1447 UNLINK_MERGE_NEXT 1448 }; 1449 1450 static void 1451 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1452 enum unlink_merge_type op) 1453 { 1454 vm_map_entry_t header, llist, rlist, root; 1455 vm_size_t max_free_left, max_free_right; 1456 1457 VM_MAP_ASSERT_LOCKED(map); 1458 header = &map->header; 1459 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1460 KASSERT(root != NULL, 1461 ("vm_map_entry_unlink: unlink object not mapped")); 1462 1463 vm_map_splay_findprev(root, &llist); 1464 vm_map_splay_findnext(root, &rlist); 1465 if (op == UNLINK_MERGE_NEXT) { 1466 rlist->start = root->start; 1467 MPASS((rlist->eflags & MAP_ENTRY_STACK_GAP) == 0); 1468 rlist->offset = root->offset; 1469 } 1470 if (llist != header) { 1471 root = llist; 1472 llist = root->right; 1473 max_free_left = vm_map_splay_merge_left(header, root, llist); 1474 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1475 } else if (rlist != header) { 1476 root = rlist; 1477 rlist = root->left; 1478 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1479 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1480 } else { 1481 header->left = header->right = header; 1482 root = NULL; 1483 } 1484 if (root != NULL) 1485 root->max_free = vm_size_max(max_free_left, max_free_right); 1486 map->root = root; 1487 VM_MAP_ASSERT_CONSISTENT(map); 1488 map->nentries--; 1489 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1490 map->nentries, entry); 1491 } 1492 1493 /* 1494 * vm_map_entry_resize: 1495 * 1496 * Resize a vm_map_entry, recompute the amount of free space that 1497 * follows it and propagate that value up the tree. 1498 * 1499 * The map must be locked, and leaves it so. 1500 */ 1501 static void 1502 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1503 { 1504 vm_map_entry_t header, llist, rlist, root; 1505 1506 VM_MAP_ASSERT_LOCKED(map); 1507 header = &map->header; 1508 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1509 KASSERT(root != NULL, ("%s: resize object not mapped", __func__)); 1510 vm_map_splay_findnext(root, &rlist); 1511 entry->end += grow_amount; 1512 root->max_free = vm_size_max( 1513 vm_map_splay_merge_left(header, root, llist), 1514 vm_map_splay_merge_succ(header, root, rlist)); 1515 map->root = root; 1516 VM_MAP_ASSERT_CONSISTENT(map); 1517 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1518 __func__, map, map->nentries, entry); 1519 } 1520 1521 /* 1522 * vm_map_lookup_entry: [ internal use only ] 1523 * 1524 * Finds the map entry containing (or 1525 * immediately preceding) the specified address 1526 * in the given map; the entry is returned 1527 * in the "entry" parameter. The boolean 1528 * result indicates whether the address is 1529 * actually contained in the map. 1530 */ 1531 boolean_t 1532 vm_map_lookup_entry( 1533 vm_map_t map, 1534 vm_offset_t address, 1535 vm_map_entry_t *entry) /* OUT */ 1536 { 1537 vm_map_entry_t cur, header, lbound, ubound; 1538 boolean_t locked; 1539 1540 /* 1541 * If the map is empty, then the map entry immediately preceding 1542 * "address" is the map's header. 1543 */ 1544 header = &map->header; 1545 cur = map->root; 1546 if (cur == NULL) { 1547 *entry = header; 1548 return (FALSE); 1549 } 1550 if (address >= cur->start && cur->end > address) { 1551 *entry = cur; 1552 return (TRUE); 1553 } 1554 if ((locked = vm_map_locked(map)) || 1555 sx_try_upgrade(&map->lock)) { 1556 /* 1557 * Splay requires a write lock on the map. However, it only 1558 * restructures the binary search tree; it does not otherwise 1559 * change the map. Thus, the map's timestamp need not change 1560 * on a temporary upgrade. 1561 */ 1562 cur = vm_map_splay(map, address); 1563 if (!locked) { 1564 VM_MAP_UNLOCK_CONSISTENT(map); 1565 sx_downgrade(&map->lock); 1566 } 1567 1568 /* 1569 * If "address" is contained within a map entry, the new root 1570 * is that map entry. Otherwise, the new root is a map entry 1571 * immediately before or after "address". 1572 */ 1573 if (address < cur->start) { 1574 *entry = header; 1575 return (FALSE); 1576 } 1577 *entry = cur; 1578 return (address < cur->end); 1579 } 1580 /* 1581 * Since the map is only locked for read access, perform a 1582 * standard binary search tree lookup for "address". 1583 */ 1584 lbound = ubound = header; 1585 for (;;) { 1586 if (address < cur->start) { 1587 ubound = cur; 1588 cur = cur->left; 1589 if (cur == lbound) 1590 break; 1591 } else if (cur->end <= address) { 1592 lbound = cur; 1593 cur = cur->right; 1594 if (cur == ubound) 1595 break; 1596 } else { 1597 *entry = cur; 1598 return (TRUE); 1599 } 1600 } 1601 *entry = lbound; 1602 return (FALSE); 1603 } 1604 1605 /* 1606 * vm_map_insert1() is identical to vm_map_insert() except that it 1607 * returns the newly inserted map entry in '*res'. In case the new 1608 * entry is coalesced with a neighbor or an existing entry was 1609 * resized, that entry is returned. In any case, the returned entry 1610 * covers the specified address range. 1611 */ 1612 static int 1613 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1614 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow, 1615 vm_map_entry_t *res) 1616 { 1617 vm_map_entry_t new_entry, next_entry, prev_entry; 1618 struct ucred *cred; 1619 vm_eflags_t protoeflags; 1620 vm_inherit_t inheritance; 1621 u_long bdry; 1622 u_int bidx; 1623 int cflags; 1624 1625 VM_MAP_ASSERT_LOCKED(map); 1626 KASSERT(object != kernel_object || 1627 (cow & MAP_COPY_ON_WRITE) == 0, 1628 ("vm_map_insert: kernel object and COW")); 1629 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 || 1630 (cow & MAP_SPLIT_BOUNDARY_MASK) != 0, 1631 ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x", 1632 object, cow)); 1633 KASSERT((prot & ~max) == 0, 1634 ("prot %#x is not subset of max_prot %#x", prot, max)); 1635 1636 /* 1637 * Check that the start and end points are not bogus. 1638 */ 1639 if (start == end || !vm_map_range_valid(map, start, end)) 1640 return (KERN_INVALID_ADDRESS); 1641 1642 if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE | 1643 VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE)) 1644 return (KERN_PROTECTION_FAILURE); 1645 1646 /* 1647 * Find the entry prior to the proposed starting address; if it's part 1648 * of an existing entry, this range is bogus. 1649 */ 1650 if (vm_map_lookup_entry(map, start, &prev_entry)) 1651 return (KERN_NO_SPACE); 1652 1653 /* 1654 * Assert that the next entry doesn't overlap the end point. 1655 */ 1656 next_entry = vm_map_entry_succ(prev_entry); 1657 if (next_entry->start < end) 1658 return (KERN_NO_SPACE); 1659 1660 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1661 max != VM_PROT_NONE)) 1662 return (KERN_INVALID_ARGUMENT); 1663 1664 protoeflags = 0; 1665 if (cow & MAP_COPY_ON_WRITE) 1666 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1667 if (cow & MAP_NOFAULT) 1668 protoeflags |= MAP_ENTRY_NOFAULT; 1669 if (cow & MAP_DISABLE_SYNCER) 1670 protoeflags |= MAP_ENTRY_NOSYNC; 1671 if (cow & MAP_DISABLE_COREDUMP) 1672 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1673 if (cow & MAP_STACK_AREA) 1674 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1675 if (cow & MAP_WRITECOUNT) 1676 protoeflags |= MAP_ENTRY_WRITECNT; 1677 if (cow & MAP_VN_EXEC) 1678 protoeflags |= MAP_ENTRY_VN_EXEC; 1679 if ((cow & MAP_CREATE_GUARD) != 0) 1680 protoeflags |= MAP_ENTRY_GUARD; 1681 if ((cow & MAP_CREATE_STACK_GAP) != 0) 1682 protoeflags |= MAP_ENTRY_STACK_GAP; 1683 if (cow & MAP_INHERIT_SHARE) 1684 inheritance = VM_INHERIT_SHARE; 1685 else 1686 inheritance = VM_INHERIT_DEFAULT; 1687 if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) { 1688 /* This magically ignores index 0, for usual page size. */ 1689 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >> 1690 MAP_SPLIT_BOUNDARY_SHIFT; 1691 if (bidx >= MAXPAGESIZES) 1692 return (KERN_INVALID_ARGUMENT); 1693 bdry = pagesizes[bidx] - 1; 1694 if ((start & bdry) != 0 || (end & bdry) != 0) 1695 return (KERN_INVALID_ARGUMENT); 1696 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 1697 } 1698 1699 cred = NULL; 1700 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) { 1701 cflags = OBJCO_NO_CHARGE; 1702 } else { 1703 cflags = 0; 1704 if ((cow & MAP_ACC_CHARGED) != 0 || 1705 ((prot & VM_PROT_WRITE) != 0 && 1706 ((protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1707 object == NULL))) { 1708 if ((cow & MAP_ACC_CHARGED) == 0) { 1709 if (!swap_reserve(end - start)) 1710 return (KERN_RESOURCE_SHORTAGE); 1711 1712 /* 1713 * Only inform vm_object_coalesce() 1714 * that the object was charged if 1715 * there is no need for CoW, so the 1716 * swap amount reserved is applicable 1717 * to the prev_entry->object. 1718 */ 1719 if ((protoeflags & MAP_ENTRY_NEEDS_COPY) == 0) 1720 cflags |= OBJCO_CHARGED; 1721 } 1722 KASSERT(object == NULL || 1723 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1724 object->cred == NULL, 1725 ("overcommit: vm_map_insert o %p", object)); 1726 cred = curthread->td_ucred; 1727 } 1728 } 1729 1730 /* Expand the kernel pmap, if necessary. */ 1731 if (map == kernel_map && end > kernel_vm_end) { 1732 int rv; 1733 1734 rv = pmap_growkernel(end); 1735 if (rv != KERN_SUCCESS) 1736 return (rv); 1737 } 1738 if (object != NULL) { 1739 /* 1740 * OBJ_ONEMAPPING must be cleared unless this mapping 1741 * is trivially proven to be the only mapping for any 1742 * of the object's pages. (Object granularity 1743 * reference counting is insufficient to recognize 1744 * aliases with precision.) 1745 */ 1746 if ((object->flags & OBJ_ANON) != 0) { 1747 VM_OBJECT_WLOCK(object); 1748 if (object->ref_count > 1 || object->shadow_count != 0) 1749 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1750 VM_OBJECT_WUNLOCK(object); 1751 } 1752 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1753 protoeflags && 1754 (cow & (MAP_STACK_AREA | MAP_VN_EXEC)) == 0 && 1755 prev_entry->end == start && (prev_entry->cred == cred || 1756 (prev_entry->object.vm_object != NULL && 1757 prev_entry->object.vm_object->cred == cred)) && 1758 vm_object_coalesce(prev_entry->object.vm_object, 1759 prev_entry->offset, 1760 (vm_size_t)(prev_entry->end - prev_entry->start), 1761 (vm_size_t)(end - prev_entry->end), cflags)) { 1762 /* 1763 * We were able to extend the object. Determine if we 1764 * can extend the previous map entry to include the 1765 * new range as well. 1766 */ 1767 if (prev_entry->inheritance == inheritance && 1768 prev_entry->protection == prot && 1769 prev_entry->max_protection == max && 1770 prev_entry->wired_count == 0) { 1771 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1772 0, ("prev_entry %p has incoherent wiring", 1773 prev_entry)); 1774 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1775 map->size += end - prev_entry->end; 1776 vm_map_entry_resize(map, prev_entry, 1777 end - prev_entry->end); 1778 *res = vm_map_try_merge_entries(map, prev_entry, 1779 next_entry); 1780 return (KERN_SUCCESS); 1781 } 1782 1783 /* 1784 * If we can extend the object but cannot extend the 1785 * map entry, we have to create a new map entry. We 1786 * must bump the ref count on the extended object to 1787 * account for it. object may be NULL. 1788 */ 1789 object = prev_entry->object.vm_object; 1790 offset = prev_entry->offset + 1791 (prev_entry->end - prev_entry->start); 1792 vm_object_reference(object); 1793 if (cred != NULL && object != NULL && object->cred != NULL && 1794 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1795 /* Object already accounts for this uid. */ 1796 cred = NULL; 1797 } 1798 } 1799 if (cred != NULL) 1800 crhold(cred); 1801 1802 /* 1803 * Create a new entry 1804 */ 1805 new_entry = vm_map_entry_create(map); 1806 new_entry->start = start; 1807 new_entry->end = end; 1808 new_entry->cred = NULL; 1809 1810 new_entry->eflags = protoeflags; 1811 new_entry->object.vm_object = object; 1812 new_entry->offset = offset; 1813 1814 new_entry->inheritance = inheritance; 1815 new_entry->protection = prot; 1816 new_entry->max_protection = max; 1817 new_entry->wired_count = 0; 1818 new_entry->wiring_thread = NULL; 1819 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1820 new_entry->next_read = start; 1821 1822 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1823 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1824 new_entry->cred = cred; 1825 1826 /* 1827 * Insert the new entry into the list 1828 */ 1829 vm_map_entry_link(map, new_entry); 1830 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1831 map->size += new_entry->end - new_entry->start; 1832 1833 /* 1834 * Try to coalesce the new entry with both the previous and next 1835 * entries in the list. Previously, we only attempted to coalesce 1836 * with the previous entry when object is NULL. Here, we handle the 1837 * other cases, which are less common. 1838 */ 1839 vm_map_try_merge_entries(map, prev_entry, new_entry); 1840 *res = vm_map_try_merge_entries(map, new_entry, next_entry); 1841 1842 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1843 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1844 end - start, cow & MAP_PREFAULT_PARTIAL); 1845 } 1846 1847 return (KERN_SUCCESS); 1848 } 1849 1850 /* 1851 * vm_map_insert: 1852 * 1853 * Inserts the given VM object into the target map at the 1854 * specified address range. 1855 * 1856 * Requires that the map be locked, and leaves it so. 1857 * 1858 * If object is non-NULL, ref count must be bumped by caller 1859 * prior to making call to account for the new entry. 1860 */ 1861 int 1862 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1863 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1864 { 1865 vm_map_entry_t res; 1866 1867 return (vm_map_insert1(map, object, offset, start, end, prot, max, 1868 cow, &res)); 1869 } 1870 1871 /* 1872 * vm_map_findspace: 1873 * 1874 * Find the first fit (lowest VM address) for "length" free bytes 1875 * beginning at address >= start in the given map. 1876 * 1877 * In a vm_map_entry, "max_free" is the maximum amount of 1878 * contiguous free space between an entry in its subtree and a 1879 * neighbor of that entry. This allows finding a free region in 1880 * one path down the tree, so O(log n) amortized with splay 1881 * trees. 1882 * 1883 * The map must be locked, and leaves it so. 1884 * 1885 * Returns: starting address if sufficient space, 1886 * vm_map_max(map)-length+1 if insufficient space. 1887 */ 1888 vm_offset_t 1889 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1890 { 1891 vm_map_entry_t header, llist, rlist, root, y; 1892 vm_size_t left_length, max_free_left, max_free_right; 1893 vm_offset_t gap_end; 1894 1895 VM_MAP_ASSERT_LOCKED(map); 1896 1897 /* 1898 * Request must fit within min/max VM address and must avoid 1899 * address wrap. 1900 */ 1901 start = MAX(start, vm_map_min(map)); 1902 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1903 return (vm_map_max(map) - length + 1); 1904 1905 /* Empty tree means wide open address space. */ 1906 if (map->root == NULL) 1907 return (start); 1908 1909 /* 1910 * After splay_split, if start is within an entry, push it to the start 1911 * of the following gap. If rlist is at the end of the gap containing 1912 * start, save the end of that gap in gap_end to see if the gap is big 1913 * enough; otherwise set gap_end to start skip gap-checking and move 1914 * directly to a search of the right subtree. 1915 */ 1916 header = &map->header; 1917 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1918 gap_end = rlist->start; 1919 if (root != NULL) { 1920 start = root->end; 1921 if (root->right != rlist) 1922 gap_end = start; 1923 max_free_left = vm_map_splay_merge_left(header, root, llist); 1924 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1925 } else if (rlist != header) { 1926 root = rlist; 1927 rlist = root->left; 1928 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1929 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1930 } else { 1931 root = llist; 1932 llist = root->right; 1933 max_free_left = vm_map_splay_merge_left(header, root, llist); 1934 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1935 } 1936 root->max_free = vm_size_max(max_free_left, max_free_right); 1937 map->root = root; 1938 VM_MAP_ASSERT_CONSISTENT(map); 1939 if (length <= gap_end - start) 1940 return (start); 1941 1942 /* With max_free, can immediately tell if no solution. */ 1943 if (root->right == header || length > root->right->max_free) 1944 return (vm_map_max(map) - length + 1); 1945 1946 /* 1947 * Splay for the least large-enough gap in the right subtree. 1948 */ 1949 llist = rlist = header; 1950 for (left_length = 0;; 1951 left_length = vm_map_entry_max_free_left(root, llist)) { 1952 if (length <= left_length) 1953 SPLAY_LEFT_STEP(root, y, llist, rlist, 1954 length <= vm_map_entry_max_free_left(y, llist)); 1955 else 1956 SPLAY_RIGHT_STEP(root, y, llist, rlist, 1957 length > vm_map_entry_max_free_left(y, root)); 1958 if (root == NULL) 1959 break; 1960 } 1961 root = llist; 1962 llist = root->right; 1963 max_free_left = vm_map_splay_merge_left(header, root, llist); 1964 if (rlist == header) { 1965 root->max_free = vm_size_max(max_free_left, 1966 vm_map_splay_merge_succ(header, root, rlist)); 1967 } else { 1968 y = rlist; 1969 rlist = y->left; 1970 y->max_free = vm_size_max( 1971 vm_map_splay_merge_pred(root, y, root), 1972 vm_map_splay_merge_right(header, y, rlist)); 1973 root->max_free = vm_size_max(max_free_left, y->max_free); 1974 } 1975 map->root = root; 1976 VM_MAP_ASSERT_CONSISTENT(map); 1977 return (root->end); 1978 } 1979 1980 int 1981 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1982 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1983 vm_prot_t max, int cow) 1984 { 1985 vm_offset_t end; 1986 int result; 1987 1988 end = start + length; 1989 KASSERT((cow & MAP_STACK_AREA) == 0 || object == NULL, 1990 ("vm_map_fixed: non-NULL backing object for stack")); 1991 vm_map_lock(map); 1992 VM_MAP_RANGE_CHECK(map, start, end); 1993 if ((cow & MAP_CHECK_EXCL) == 0) { 1994 result = vm_map_delete(map, start, end); 1995 if (result != KERN_SUCCESS) 1996 goto out; 1997 } 1998 if ((cow & MAP_STACK_AREA) != 0) { 1999 result = vm_map_stack_locked(map, start, length, sgrowsiz, 2000 prot, max, cow); 2001 } else { 2002 result = vm_map_insert(map, object, offset, start, end, 2003 prot, max, cow); 2004 } 2005 out: 2006 vm_map_unlock(map); 2007 return (result); 2008 } 2009 2010 #if VM_NRESERVLEVEL <= 1 2011 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 2012 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 2013 #elif VM_NRESERVLEVEL == 2 2014 static const int aslr_pages_rnd_64[3] = {0x1000, 0x1000, 0x10}; 2015 static const int aslr_pages_rnd_32[3] = {0x100, 0x100, 0x4}; 2016 #else 2017 #error "Unsupported VM_NRESERVLEVEL" 2018 #endif 2019 2020 static int cluster_anon = 1; 2021 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 2022 &cluster_anon, 0, 2023 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 2024 2025 static bool 2026 clustering_anon_allowed(vm_offset_t addr, int cow) 2027 { 2028 2029 switch (cluster_anon) { 2030 case 0: 2031 return (false); 2032 case 1: 2033 return (addr == 0 || (cow & MAP_NO_HINT) != 0); 2034 case 2: 2035 default: 2036 return (true); 2037 } 2038 } 2039 2040 static long aslr_restarts; 2041 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 2042 &aslr_restarts, 0, 2043 "Number of aslr failures"); 2044 2045 /* 2046 * Searches for the specified amount of free space in the given map with the 2047 * specified alignment. Performs an address-ordered, first-fit search from 2048 * the given address "*addr", with an optional upper bound "max_addr". If the 2049 * parameter "alignment" is zero, then the alignment is computed from the 2050 * given (object, offset) pair so as to enable the greatest possible use of 2051 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 2052 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 2053 * 2054 * The map must be locked. Initially, there must be at least "length" bytes 2055 * of free space at the given address. 2056 */ 2057 static int 2058 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2059 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 2060 vm_offset_t alignment) 2061 { 2062 vm_offset_t aligned_addr, free_addr; 2063 2064 VM_MAP_ASSERT_LOCKED(map); 2065 free_addr = *addr; 2066 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 2067 ("caller failed to provide space %#jx at address %p", 2068 (uintmax_t)length, (void *)free_addr)); 2069 for (;;) { 2070 /* 2071 * At the start of every iteration, the free space at address 2072 * "*addr" is at least "length" bytes. 2073 */ 2074 if (alignment == 0) 2075 pmap_align_superpage(object, offset, addr, length); 2076 else 2077 *addr = roundup2(*addr, alignment); 2078 aligned_addr = *addr; 2079 if (aligned_addr == free_addr) { 2080 /* 2081 * Alignment did not change "*addr", so "*addr" must 2082 * still provide sufficient free space. 2083 */ 2084 return (KERN_SUCCESS); 2085 } 2086 2087 /* 2088 * Test for address wrap on "*addr". A wrapped "*addr" could 2089 * be a valid address, in which case vm_map_findspace() cannot 2090 * be relied upon to fail. 2091 */ 2092 if (aligned_addr < free_addr) 2093 return (KERN_NO_SPACE); 2094 *addr = vm_map_findspace(map, aligned_addr, length); 2095 if (*addr + length > vm_map_max(map) || 2096 (max_addr != 0 && *addr + length > max_addr)) 2097 return (KERN_NO_SPACE); 2098 free_addr = *addr; 2099 if (free_addr == aligned_addr) { 2100 /* 2101 * If a successful call to vm_map_findspace() did not 2102 * change "*addr", then "*addr" must still be aligned 2103 * and provide sufficient free space. 2104 */ 2105 return (KERN_SUCCESS); 2106 } 2107 } 2108 } 2109 2110 int 2111 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length, 2112 vm_offset_t max_addr, vm_offset_t alignment) 2113 { 2114 /* XXXKIB ASLR eh ? */ 2115 *addr = vm_map_findspace(map, *addr, length); 2116 if (*addr + length > vm_map_max(map) || 2117 (max_addr != 0 && *addr + length > max_addr)) 2118 return (KERN_NO_SPACE); 2119 return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr, 2120 alignment)); 2121 } 2122 2123 /* 2124 * vm_map_find finds an unallocated region in the target address 2125 * map with the given length. The search is defined to be 2126 * first-fit from the specified address; the region found is 2127 * returned in the same parameter. 2128 * 2129 * If object is non-NULL, ref count must be bumped by caller 2130 * prior to making call to account for the new entry. 2131 */ 2132 int 2133 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2134 vm_offset_t *addr, /* IN/OUT */ 2135 vm_size_t length, vm_offset_t max_addr, int find_space, 2136 vm_prot_t prot, vm_prot_t max, int cow) 2137 { 2138 int rv; 2139 2140 vm_map_lock(map); 2141 rv = vm_map_find_locked(map, object, offset, addr, length, max_addr, 2142 find_space, prot, max, cow); 2143 vm_map_unlock(map); 2144 return (rv); 2145 } 2146 2147 int 2148 vm_map_find_locked(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2149 vm_offset_t *addr, /* IN/OUT */ 2150 vm_size_t length, vm_offset_t max_addr, int find_space, 2151 vm_prot_t prot, vm_prot_t max, int cow) 2152 { 2153 vm_offset_t alignment, curr_min_addr, min_addr; 2154 int gap, pidx, rv, try; 2155 bool cluster, en_aslr, update_anon; 2156 2157 KASSERT((cow & MAP_STACK_AREA) == 0 || object == NULL, 2158 ("non-NULL backing object for stack")); 2159 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 2160 (cow & MAP_STACK_AREA) == 0)); 2161 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 2162 (object->flags & OBJ_COLORED) == 0)) 2163 find_space = VMFS_ANY_SPACE; 2164 if (find_space >> 8 != 0) { 2165 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 2166 alignment = (vm_offset_t)1 << (find_space >> 8); 2167 } else 2168 alignment = 0; 2169 en_aslr = (map->flags & MAP_ASLR) != 0; 2170 update_anon = cluster = clustering_anon_allowed(*addr, cow) && 2171 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 2172 find_space != VMFS_NO_SPACE && object == NULL && 2173 (cow & (MAP_INHERIT_SHARE | MAP_STACK_AREA)) == 0 && 2174 prot != PROT_NONE; 2175 curr_min_addr = min_addr = *addr; 2176 if (en_aslr && min_addr == 0 && !cluster && 2177 find_space != VMFS_NO_SPACE && 2178 (map->flags & MAP_ASLR_IGNSTART) != 0) 2179 curr_min_addr = min_addr = vm_map_min(map); 2180 try = 0; 2181 if (cluster) { 2182 curr_min_addr = map->anon_loc; 2183 if (curr_min_addr == 0) 2184 cluster = false; 2185 } 2186 if (find_space != VMFS_NO_SPACE) { 2187 KASSERT(find_space == VMFS_ANY_SPACE || 2188 find_space == VMFS_OPTIMAL_SPACE || 2189 find_space == VMFS_SUPER_SPACE || 2190 alignment != 0, ("unexpected VMFS flag")); 2191 again: 2192 /* 2193 * When creating an anonymous mapping, try clustering 2194 * with an existing anonymous mapping first. 2195 * 2196 * We make up to two attempts to find address space 2197 * for a given find_space value. The first attempt may 2198 * apply randomization or may cluster with an existing 2199 * anonymous mapping. If this first attempt fails, 2200 * perform a first-fit search of the available address 2201 * space. 2202 * 2203 * If all tries failed, and find_space is 2204 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 2205 * Again enable clustering and randomization. 2206 */ 2207 try++; 2208 MPASS(try <= 2); 2209 2210 if (try == 2) { 2211 /* 2212 * Second try: we failed either to find a 2213 * suitable region for randomizing the 2214 * allocation, or to cluster with an existing 2215 * mapping. Retry with free run. 2216 */ 2217 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 2218 vm_map_min(map) : min_addr; 2219 atomic_add_long(&aslr_restarts, 1); 2220 } 2221 2222 if (try == 1 && en_aslr && !cluster) { 2223 /* 2224 * Find space for allocation, including 2225 * gap needed for later randomization. 2226 */ 2227 pidx = 0; 2228 #if VM_NRESERVLEVEL > 0 2229 if ((find_space == VMFS_SUPER_SPACE || 2230 find_space == VMFS_OPTIMAL_SPACE) && 2231 pagesizes[VM_NRESERVLEVEL] != 0) { 2232 /* 2233 * Do not pointlessly increase the space that 2234 * is requested from vm_map_findspace(). 2235 * pmap_align_superpage() will only change a 2236 * mapping's alignment if that mapping is at 2237 * least a superpage in size. 2238 */ 2239 pidx = VM_NRESERVLEVEL; 2240 while (pidx > 0 && length < pagesizes[pidx]) 2241 pidx--; 2242 } 2243 #endif 2244 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 2245 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 2246 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 2247 *addr = vm_map_findspace(map, curr_min_addr, 2248 length + gap * pagesizes[pidx]); 2249 if (*addr + length + gap * pagesizes[pidx] > 2250 vm_map_max(map)) 2251 goto again; 2252 /* And randomize the start address. */ 2253 *addr += (arc4random() % gap) * pagesizes[pidx]; 2254 if (max_addr != 0 && *addr + length > max_addr) 2255 goto again; 2256 } else { 2257 *addr = vm_map_findspace(map, curr_min_addr, length); 2258 if (*addr + length > vm_map_max(map) || 2259 (max_addr != 0 && *addr + length > max_addr)) { 2260 if (cluster) { 2261 cluster = false; 2262 MPASS(try == 1); 2263 goto again; 2264 } 2265 return (KERN_NO_SPACE); 2266 } 2267 } 2268 2269 if (find_space != VMFS_ANY_SPACE && 2270 (rv = vm_map_alignspace(map, object, offset, addr, length, 2271 max_addr, alignment)) != KERN_SUCCESS) { 2272 if (find_space == VMFS_OPTIMAL_SPACE) { 2273 find_space = VMFS_ANY_SPACE; 2274 curr_min_addr = min_addr; 2275 cluster = update_anon; 2276 try = 0; 2277 goto again; 2278 } 2279 return (rv); 2280 } 2281 } else if ((cow & MAP_REMAP) != 0) { 2282 if (!vm_map_range_valid(map, *addr, *addr + length)) 2283 return (KERN_INVALID_ADDRESS); 2284 rv = vm_map_delete(map, *addr, *addr + length); 2285 if (rv != KERN_SUCCESS) 2286 return (rv); 2287 } 2288 if ((cow & MAP_STACK_AREA) != 0) { 2289 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 2290 max, cow); 2291 } else { 2292 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 2293 prot, max, cow); 2294 } 2295 2296 /* 2297 * Update the starting address for clustered anonymous memory mappings 2298 * if a starting address was not previously defined or an ASLR restart 2299 * placed an anonymous memory mapping at a lower address. 2300 */ 2301 if (update_anon && rv == KERN_SUCCESS && (map->anon_loc == 0 || 2302 *addr < map->anon_loc)) 2303 map->anon_loc = *addr; 2304 return (rv); 2305 } 2306 2307 /* 2308 * vm_map_find_min() is a variant of vm_map_find() that takes an 2309 * additional parameter ("default_addr") and treats the given address 2310 * ("*addr") differently. Specifically, it treats "*addr" as a hint 2311 * and not as the minimum address where the mapping is created. 2312 * 2313 * This function works in two phases. First, it tries to 2314 * allocate above the hint. If that fails and the hint is 2315 * greater than "default_addr", it performs a second pass, replacing 2316 * the hint with "default_addr" as the minimum address for the 2317 * allocation. 2318 */ 2319 int 2320 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2321 vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr, 2322 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2323 int cow) 2324 { 2325 vm_offset_t hint; 2326 int rv; 2327 2328 hint = *addr; 2329 if (hint == 0) { 2330 cow |= MAP_NO_HINT; 2331 *addr = hint = default_addr; 2332 } 2333 for (;;) { 2334 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2335 find_space, prot, max, cow); 2336 if (rv == KERN_SUCCESS || default_addr >= hint) 2337 return (rv); 2338 *addr = hint = default_addr; 2339 } 2340 } 2341 2342 /* 2343 * A map entry with any of the following flags set must not be merged with 2344 * another entry. 2345 */ 2346 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | \ 2347 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \ 2348 MAP_ENTRY_STACK_GAP) 2349 2350 static bool 2351 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2352 { 2353 2354 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2355 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2356 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2357 prev, entry)); 2358 return (prev->end == entry->start && 2359 prev->object.vm_object == entry->object.vm_object && 2360 (prev->object.vm_object == NULL || 2361 prev->offset + (prev->end - prev->start) == entry->offset) && 2362 prev->eflags == entry->eflags && 2363 prev->protection == entry->protection && 2364 prev->max_protection == entry->max_protection && 2365 prev->inheritance == entry->inheritance && 2366 prev->wired_count == entry->wired_count && 2367 prev->cred == entry->cred); 2368 } 2369 2370 static void 2371 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2372 { 2373 2374 /* 2375 * If the backing object is a vnode object, vm_object_deallocate() 2376 * calls vrele(). However, vrele() does not lock the vnode because 2377 * the vnode has additional references. Thus, the map lock can be 2378 * kept without causing a lock-order reversal with the vnode lock. 2379 * 2380 * Since we count the number of virtual page mappings in 2381 * object->un_pager.vnp.writemappings, the writemappings value 2382 * should not be adjusted when the entry is disposed of. 2383 */ 2384 if (entry->object.vm_object != NULL) 2385 vm_object_deallocate(entry->object.vm_object); 2386 if (entry->cred != NULL) 2387 crfree(entry->cred); 2388 vm_map_entry_dispose(map, entry); 2389 } 2390 2391 /* 2392 * vm_map_try_merge_entries: 2393 * 2394 * Compare two map entries that represent consecutive ranges. If 2395 * the entries can be merged, expand the range of the second to 2396 * cover the range of the first and delete the first. Then return 2397 * the map entry that includes the first range. 2398 * 2399 * The map must be locked. 2400 */ 2401 vm_map_entry_t 2402 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry, 2403 vm_map_entry_t entry) 2404 { 2405 2406 VM_MAP_ASSERT_LOCKED(map); 2407 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 && 2408 vm_map_mergeable_neighbors(prev_entry, entry)) { 2409 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT); 2410 vm_map_merged_neighbor_dispose(map, prev_entry); 2411 return (entry); 2412 } 2413 return (prev_entry); 2414 } 2415 2416 /* 2417 * vm_map_entry_back: 2418 * 2419 * Allocate an object to back a map entry. 2420 */ 2421 static inline void 2422 vm_map_entry_back(vm_map_entry_t entry) 2423 { 2424 vm_object_t object; 2425 2426 KASSERT(entry->object.vm_object == NULL, 2427 ("map entry %p has backing object", entry)); 2428 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2429 ("map entry %p is a submap", entry)); 2430 object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL, 2431 entry->cred, entry->end - entry->start); 2432 entry->object.vm_object = object; 2433 entry->offset = 0; 2434 entry->cred = NULL; 2435 } 2436 2437 /* 2438 * vm_map_entry_charge_object 2439 * 2440 * If there is no object backing this entry, create one. Otherwise, if 2441 * the entry has cred, give it to the backing object. 2442 */ 2443 static inline void 2444 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2445 { 2446 2447 VM_MAP_ASSERT_LOCKED(map); 2448 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2449 ("map entry %p is a submap", entry)); 2450 if (entry->object.vm_object == NULL && !vm_map_is_system(map) && 2451 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2452 vm_map_entry_back(entry); 2453 else if (entry->object.vm_object != NULL && 2454 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2455 entry->cred != NULL) { 2456 VM_OBJECT_WLOCK(entry->object.vm_object); 2457 KASSERT(entry->object.vm_object->cred == NULL, 2458 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2459 entry->object.vm_object->cred = entry->cred; 2460 entry->object.vm_object->charge = entry->end - entry->start; 2461 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2462 entry->cred = NULL; 2463 } 2464 } 2465 2466 /* 2467 * vm_map_entry_clone 2468 * 2469 * Create a duplicate map entry for clipping. 2470 */ 2471 static vm_map_entry_t 2472 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry) 2473 { 2474 vm_map_entry_t new_entry; 2475 2476 VM_MAP_ASSERT_LOCKED(map); 2477 2478 /* 2479 * Create a backing object now, if none exists, so that more individual 2480 * objects won't be created after the map entry is split. 2481 */ 2482 vm_map_entry_charge_object(map, entry); 2483 2484 /* Clone the entry. */ 2485 new_entry = vm_map_entry_create(map); 2486 *new_entry = *entry; 2487 if (new_entry->cred != NULL) 2488 crhold(entry->cred); 2489 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2490 vm_object_reference(new_entry->object.vm_object); 2491 vm_map_entry_set_vnode_text(new_entry, true); 2492 /* 2493 * The object->un_pager.vnp.writemappings for the object of 2494 * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The 2495 * virtual pages are re-distributed among the clipped entries, 2496 * so the sum is left the same. 2497 */ 2498 } 2499 return (new_entry); 2500 } 2501 2502 /* 2503 * vm_map_clip_start: [ internal use only ] 2504 * 2505 * Asserts that the given entry begins at or after 2506 * the specified address; if necessary, 2507 * it splits the entry into two. 2508 */ 2509 static int 2510 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr) 2511 { 2512 vm_map_entry_t new_entry; 2513 int bdry_idx; 2514 2515 if (!vm_map_is_system(map)) 2516 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2517 "%s: map %p entry %p start 0x%jx", __func__, map, entry, 2518 (uintmax_t)startaddr); 2519 2520 if (startaddr <= entry->start) 2521 return (KERN_SUCCESS); 2522 2523 VM_MAP_ASSERT_LOCKED(map); 2524 KASSERT(entry->end > startaddr && entry->start < startaddr, 2525 ("%s: invalid clip of entry %p", __func__, entry)); 2526 2527 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 2528 if (bdry_idx != 0) { 2529 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0) 2530 return (KERN_INVALID_ARGUMENT); 2531 } 2532 2533 new_entry = vm_map_entry_clone(map, entry); 2534 2535 /* 2536 * Split off the front portion. Insert the new entry BEFORE this one, 2537 * so that this entry has the specified starting address. 2538 */ 2539 new_entry->end = startaddr; 2540 vm_map_entry_link(map, new_entry); 2541 return (KERN_SUCCESS); 2542 } 2543 2544 /* 2545 * vm_map_lookup_clip_start: 2546 * 2547 * Find the entry at or just after 'start', and clip it if 'start' is in 2548 * the interior of the entry. Return entry after 'start', and in 2549 * prev_entry set the entry before 'start'. 2550 */ 2551 static int 2552 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start, 2553 vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry) 2554 { 2555 vm_map_entry_t entry; 2556 int rv; 2557 2558 if (!vm_map_is_system(map)) 2559 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2560 "%s: map %p start 0x%jx prev %p", __func__, map, 2561 (uintmax_t)start, prev_entry); 2562 2563 if (vm_map_lookup_entry(map, start, prev_entry)) { 2564 entry = *prev_entry; 2565 rv = vm_map_clip_start(map, entry, start); 2566 if (rv != KERN_SUCCESS) 2567 return (rv); 2568 *prev_entry = vm_map_entry_pred(entry); 2569 } else 2570 entry = vm_map_entry_succ(*prev_entry); 2571 *res_entry = entry; 2572 return (KERN_SUCCESS); 2573 } 2574 2575 /* 2576 * vm_map_clip_end: [ internal use only ] 2577 * 2578 * Asserts that the given entry ends at or before 2579 * the specified address; if necessary, 2580 * it splits the entry into two. 2581 */ 2582 static int 2583 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr) 2584 { 2585 vm_map_entry_t new_entry; 2586 int bdry_idx; 2587 2588 if (!vm_map_is_system(map)) 2589 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2590 "%s: map %p entry %p end 0x%jx", __func__, map, entry, 2591 (uintmax_t)endaddr); 2592 2593 if (endaddr >= entry->end) 2594 return (KERN_SUCCESS); 2595 2596 VM_MAP_ASSERT_LOCKED(map); 2597 KASSERT(entry->start < endaddr && entry->end > endaddr, 2598 ("%s: invalid clip of entry %p", __func__, entry)); 2599 2600 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 2601 if (bdry_idx != 0) { 2602 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0) 2603 return (KERN_INVALID_ARGUMENT); 2604 } 2605 2606 new_entry = vm_map_entry_clone(map, entry); 2607 2608 /* 2609 * Split off the back portion. Insert the new entry AFTER this one, 2610 * so that this entry has the specified ending address. 2611 */ 2612 new_entry->start = endaddr; 2613 vm_map_entry_link(map, new_entry); 2614 2615 return (KERN_SUCCESS); 2616 } 2617 2618 /* 2619 * vm_map_submap: [ kernel use only ] 2620 * 2621 * Mark the given range as handled by a subordinate map. 2622 * 2623 * This range must have been created with vm_map_find, 2624 * and no other operations may have been performed on this 2625 * range prior to calling vm_map_submap. 2626 * 2627 * Only a limited number of operations can be performed 2628 * within this rage after calling vm_map_submap: 2629 * vm_fault 2630 * [Don't try vm_map_copy!] 2631 * 2632 * To remove a submapping, one must first remove the 2633 * range from the superior map, and then destroy the 2634 * submap (if desired). [Better yet, don't try it.] 2635 */ 2636 int 2637 vm_map_submap( 2638 vm_map_t map, 2639 vm_offset_t start, 2640 vm_offset_t end, 2641 vm_map_t submap) 2642 { 2643 vm_map_entry_t entry; 2644 int result; 2645 2646 result = KERN_INVALID_ARGUMENT; 2647 2648 vm_map_lock(submap); 2649 submap->flags |= MAP_IS_SUB_MAP; 2650 vm_map_unlock(submap); 2651 2652 vm_map_lock(map); 2653 VM_MAP_RANGE_CHECK(map, start, end); 2654 if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end && 2655 (entry->eflags & MAP_ENTRY_COW) == 0 && 2656 entry->object.vm_object == NULL) { 2657 result = vm_map_clip_start(map, entry, start); 2658 if (result != KERN_SUCCESS) 2659 goto unlock; 2660 result = vm_map_clip_end(map, entry, end); 2661 if (result != KERN_SUCCESS) 2662 goto unlock; 2663 entry->object.sub_map = submap; 2664 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2665 result = KERN_SUCCESS; 2666 } 2667 unlock: 2668 vm_map_unlock(map); 2669 2670 if (result != KERN_SUCCESS) { 2671 vm_map_lock(submap); 2672 submap->flags &= ~MAP_IS_SUB_MAP; 2673 vm_map_unlock(submap); 2674 } 2675 return (result); 2676 } 2677 2678 /* 2679 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2680 */ 2681 #define MAX_INIT_PT 96 2682 2683 /* 2684 * vm_map_pmap_enter: 2685 * 2686 * Preload the specified map's pmap with mappings to the specified 2687 * object's memory-resident pages. No further physical pages are 2688 * allocated, and no further virtual pages are retrieved from secondary 2689 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2690 * limited number of page mappings are created at the low-end of the 2691 * specified address range. (For this purpose, a superpage mapping 2692 * counts as one page mapping.) Otherwise, all resident pages within 2693 * the specified address range are mapped. 2694 */ 2695 static void 2696 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2697 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2698 { 2699 struct pctrie_iter pages; 2700 vm_offset_t start; 2701 vm_page_t p, p_start; 2702 vm_pindex_t jump, mask, psize, threshold, tmpidx; 2703 int psind; 2704 2705 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2706 return; 2707 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2708 VM_OBJECT_WLOCK(object); 2709 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2710 pmap_object_init_pt(map->pmap, addr, object, pindex, 2711 size); 2712 VM_OBJECT_WUNLOCK(object); 2713 return; 2714 } 2715 VM_OBJECT_LOCK_DOWNGRADE(object); 2716 } else 2717 VM_OBJECT_RLOCK(object); 2718 2719 psize = atop(size); 2720 if (psize + pindex > object->size) { 2721 if (pindex >= object->size) { 2722 VM_OBJECT_RUNLOCK(object); 2723 return; 2724 } 2725 psize = object->size - pindex; 2726 } 2727 2728 start = 0; 2729 p_start = NULL; 2730 threshold = MAX_INIT_PT; 2731 2732 vm_page_iter_limit_init(&pages, object, pindex + psize); 2733 for (p = vm_radix_iter_lookup_ge(&pages, pindex); p != NULL; 2734 p = vm_radix_iter_jump(&pages, jump)) { 2735 /* 2736 * don't allow an madvise to blow away our really 2737 * free pages allocating pv entries. 2738 */ 2739 tmpidx = p->pindex - pindex; 2740 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2741 vm_page_count_severe()) || 2742 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2743 tmpidx >= threshold)) { 2744 psize = tmpidx; 2745 break; 2746 } 2747 jump = 1; 2748 if (vm_page_all_valid(p)) { 2749 if (p_start == NULL) { 2750 start = addr + ptoa(tmpidx); 2751 p_start = p; 2752 } 2753 /* Jump ahead if a superpage mapping is possible. */ 2754 for (psind = p->psind; psind > 0; psind--) { 2755 if (((addr + ptoa(tmpidx)) & 2756 (pagesizes[psind] - 1)) == 0) { 2757 mask = atop(pagesizes[psind]) - 1; 2758 if (tmpidx + mask < psize && 2759 vm_page_ps_test(p, psind, 2760 PS_ALL_VALID, NULL)) { 2761 jump += mask; 2762 threshold += mask; 2763 break; 2764 } 2765 } 2766 } 2767 } else if (p_start != NULL) { 2768 pmap_enter_object(map->pmap, start, addr + 2769 ptoa(tmpidx), p_start, prot); 2770 p_start = NULL; 2771 } 2772 } 2773 if (p_start != NULL) 2774 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2775 p_start, prot); 2776 VM_OBJECT_RUNLOCK(object); 2777 } 2778 2779 static void 2780 vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot, 2781 vm_prot_t new_maxprot, int flags) 2782 { 2783 vm_prot_t old_prot; 2784 2785 MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0); 2786 if ((entry->eflags & MAP_ENTRY_STACK_GAP) == 0) 2787 return; 2788 2789 old_prot = PROT_EXTRACT(entry->offset); 2790 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) { 2791 entry->offset = PROT_MAX(new_maxprot) | 2792 (new_maxprot & old_prot); 2793 } 2794 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) { 2795 entry->offset = new_prot | PROT_MAX( 2796 PROT_MAX_EXTRACT(entry->offset)); 2797 } 2798 } 2799 2800 /* 2801 * vm_map_protect: 2802 * 2803 * Sets the protection and/or the maximum protection of the 2804 * specified address region in the target map. 2805 */ 2806 int 2807 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2808 vm_prot_t new_prot, vm_prot_t new_maxprot, int flags) 2809 { 2810 vm_map_entry_t entry, first_entry, in_tran, prev_entry; 2811 vm_object_t obj; 2812 struct ucred *cred; 2813 vm_offset_t orig_start; 2814 vm_prot_t check_prot, max_prot, old_prot; 2815 int rv; 2816 2817 if (start == end) 2818 return (KERN_SUCCESS); 2819 2820 if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT | 2821 VM_MAP_PROTECT_SET_MAXPROT) && 2822 !CONTAINS_BITS(new_maxprot, new_prot)) 2823 return (KERN_OUT_OF_BOUNDS); 2824 2825 orig_start = start; 2826 again: 2827 in_tran = NULL; 2828 start = orig_start; 2829 vm_map_lock(map); 2830 2831 if ((map->flags & MAP_WXORX) != 0 && 2832 (flags & VM_MAP_PROTECT_SET_PROT) != 0 && 2833 CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) { 2834 vm_map_unlock(map); 2835 return (KERN_PROTECTION_FAILURE); 2836 } 2837 2838 /* 2839 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2840 * need to fault pages into the map and will drop the map lock while 2841 * doing so, and the VM object may end up in an inconsistent state if we 2842 * update the protection on the map entry in between faults. 2843 */ 2844 vm_map_wait_busy(map); 2845 2846 VM_MAP_RANGE_CHECK(map, start, end); 2847 2848 if (!vm_map_lookup_entry(map, start, &first_entry)) 2849 first_entry = vm_map_entry_succ(first_entry); 2850 2851 if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 && 2852 (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) { 2853 /* 2854 * Handle Linux's PROT_GROWSDOWN flag. 2855 * It means that protection is applied down to the 2856 * whole stack, including the specified range of the 2857 * mapped region, and the grow down region (AKA 2858 * guard). 2859 */ 2860 while (!CONTAINS_BITS(first_entry->eflags, 2861 MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP) && 2862 first_entry != vm_map_entry_first(map)) 2863 first_entry = vm_map_entry_pred(first_entry); 2864 start = first_entry->start; 2865 } 2866 2867 /* 2868 * Make a first pass to check for protection violations. 2869 */ 2870 check_prot = 0; 2871 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) 2872 check_prot |= new_prot; 2873 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) 2874 check_prot |= new_maxprot; 2875 for (entry = first_entry; entry->start < end; 2876 entry = vm_map_entry_succ(entry)) { 2877 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 2878 vm_map_unlock(map); 2879 return (KERN_INVALID_ARGUMENT); 2880 } 2881 if ((entry->eflags & (MAP_ENTRY_GUARD | 2882 MAP_ENTRY_STACK_GAP)) == MAP_ENTRY_GUARD) 2883 continue; 2884 max_prot = (entry->eflags & MAP_ENTRY_STACK_GAP) != 0 ? 2885 PROT_MAX_EXTRACT(entry->offset) : entry->max_protection; 2886 if (!CONTAINS_BITS(max_prot, check_prot)) { 2887 vm_map_unlock(map); 2888 return (KERN_PROTECTION_FAILURE); 2889 } 2890 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2891 in_tran = entry; 2892 } 2893 2894 /* 2895 * Postpone the operation until all in-transition map entries have 2896 * stabilized. An in-transition entry might already have its pages 2897 * wired and wired_count incremented, but not yet have its 2898 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call 2899 * vm_fault_copy_entry() in the final loop below. 2900 */ 2901 if (in_tran != NULL) { 2902 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2903 vm_map_unlock_and_wait(map, 0); 2904 goto again; 2905 } 2906 2907 /* 2908 * Before changing the protections, try to reserve swap space for any 2909 * private (i.e., copy-on-write) mappings that are transitioning from 2910 * read-only to read/write access. If a reservation fails, break out 2911 * of this loop early and let the next loop simplify the entries, since 2912 * some may now be mergeable. 2913 */ 2914 rv = vm_map_clip_start(map, first_entry, start); 2915 if (rv != KERN_SUCCESS) { 2916 vm_map_unlock(map); 2917 return (rv); 2918 } 2919 for (entry = first_entry; entry->start < end; 2920 entry = vm_map_entry_succ(entry)) { 2921 rv = vm_map_clip_end(map, entry, end); 2922 if (rv != KERN_SUCCESS) { 2923 vm_map_unlock(map); 2924 return (rv); 2925 } 2926 2927 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 || 2928 ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 || 2929 ENTRY_CHARGED(entry) || 2930 (entry->eflags & MAP_ENTRY_GUARD) != 0) 2931 continue; 2932 2933 cred = curthread->td_ucred; 2934 obj = entry->object.vm_object; 2935 2936 if (obj == NULL || 2937 (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) { 2938 if (!swap_reserve(entry->end - entry->start)) { 2939 rv = KERN_RESOURCE_SHORTAGE; 2940 end = entry->end; 2941 break; 2942 } 2943 crhold(cred); 2944 entry->cred = cred; 2945 continue; 2946 } 2947 2948 VM_OBJECT_WLOCK(obj); 2949 if ((obj->flags & OBJ_SWAP) == 0) { 2950 VM_OBJECT_WUNLOCK(obj); 2951 continue; 2952 } 2953 2954 /* 2955 * Charge for the whole object allocation now, since 2956 * we cannot distinguish between non-charged and 2957 * charged clipped mapping of the same object later. 2958 */ 2959 KASSERT(obj->charge == 0, 2960 ("vm_map_protect: object %p overcharged (entry %p)", 2961 obj, entry)); 2962 if (!swap_reserve(ptoa(obj->size))) { 2963 VM_OBJECT_WUNLOCK(obj); 2964 rv = KERN_RESOURCE_SHORTAGE; 2965 end = entry->end; 2966 break; 2967 } 2968 2969 crhold(cred); 2970 obj->cred = cred; 2971 obj->charge = ptoa(obj->size); 2972 VM_OBJECT_WUNLOCK(obj); 2973 } 2974 2975 /* 2976 * If enough swap space was available, go back and fix up protections. 2977 * Otherwise, just simplify entries, since some may have been modified. 2978 * [Note that clipping is not necessary the second time.] 2979 */ 2980 for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry; 2981 entry->start < end; 2982 vm_map_try_merge_entries(map, prev_entry, entry), 2983 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2984 if (rv != KERN_SUCCESS) 2985 continue; 2986 2987 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 2988 vm_map_protect_guard(entry, new_prot, new_maxprot, 2989 flags); 2990 continue; 2991 } 2992 2993 old_prot = entry->protection; 2994 2995 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) { 2996 entry->max_protection = new_maxprot; 2997 entry->protection = new_maxprot & old_prot; 2998 } 2999 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) 3000 entry->protection = new_prot; 3001 3002 /* 3003 * For user wired map entries, the normal lazy evaluation of 3004 * write access upgrades through soft page faults is 3005 * undesirable. Instead, immediately copy any pages that are 3006 * copy-on-write and enable write access in the physical map. 3007 */ 3008 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 && 3009 (entry->protection & VM_PROT_WRITE) != 0 && 3010 (old_prot & VM_PROT_WRITE) == 0) 3011 vm_fault_copy_entry(map, map, entry, entry, NULL); 3012 3013 /* 3014 * When restricting access, update the physical map. Worry 3015 * about copy-on-write here. 3016 */ 3017 if ((old_prot & ~entry->protection) != 0) { 3018 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 3019 VM_PROT_ALL) 3020 pmap_protect(map->pmap, entry->start, 3021 entry->end, 3022 entry->protection & MASK(entry)); 3023 #undef MASK 3024 } 3025 } 3026 vm_map_try_merge_entries(map, prev_entry, entry); 3027 vm_map_unlock(map); 3028 return (rv); 3029 } 3030 3031 /* 3032 * vm_map_madvise: 3033 * 3034 * This routine traverses a processes map handling the madvise 3035 * system call. Advisories are classified as either those effecting 3036 * the vm_map_entry structure, or those effecting the underlying 3037 * objects. 3038 */ 3039 int 3040 vm_map_madvise( 3041 vm_map_t map, 3042 vm_offset_t start, 3043 vm_offset_t end, 3044 int behav) 3045 { 3046 vm_map_entry_t entry, prev_entry; 3047 int rv; 3048 bool modify_map; 3049 3050 /* 3051 * Some madvise calls directly modify the vm_map_entry, in which case 3052 * we need to use an exclusive lock on the map and we need to perform 3053 * various clipping operations. Otherwise we only need a read-lock 3054 * on the map. 3055 */ 3056 switch(behav) { 3057 case MADV_NORMAL: 3058 case MADV_SEQUENTIAL: 3059 case MADV_RANDOM: 3060 case MADV_NOSYNC: 3061 case MADV_AUTOSYNC: 3062 case MADV_NOCORE: 3063 case MADV_CORE: 3064 if (start == end) 3065 return (0); 3066 modify_map = true; 3067 vm_map_lock(map); 3068 break; 3069 case MADV_WILLNEED: 3070 case MADV_DONTNEED: 3071 case MADV_FREE: 3072 if (start == end) 3073 return (0); 3074 modify_map = false; 3075 vm_map_lock_read(map); 3076 break; 3077 default: 3078 return (EINVAL); 3079 } 3080 3081 /* 3082 * Locate starting entry and clip if necessary. 3083 */ 3084 VM_MAP_RANGE_CHECK(map, start, end); 3085 3086 if (modify_map) { 3087 /* 3088 * madvise behaviors that are implemented in the vm_map_entry. 3089 * 3090 * We clip the vm_map_entry so that behavioral changes are 3091 * limited to the specified address range. 3092 */ 3093 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry); 3094 if (rv != KERN_SUCCESS) { 3095 vm_map_unlock(map); 3096 return (vm_mmap_to_errno(rv)); 3097 } 3098 3099 for (; entry->start < end; prev_entry = entry, 3100 entry = vm_map_entry_succ(entry)) { 3101 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 3102 continue; 3103 3104 rv = vm_map_clip_end(map, entry, end); 3105 if (rv != KERN_SUCCESS) { 3106 vm_map_unlock(map); 3107 return (vm_mmap_to_errno(rv)); 3108 } 3109 3110 switch (behav) { 3111 case MADV_NORMAL: 3112 vm_map_entry_set_behavior(entry, 3113 MAP_ENTRY_BEHAV_NORMAL); 3114 break; 3115 case MADV_SEQUENTIAL: 3116 vm_map_entry_set_behavior(entry, 3117 MAP_ENTRY_BEHAV_SEQUENTIAL); 3118 break; 3119 case MADV_RANDOM: 3120 vm_map_entry_set_behavior(entry, 3121 MAP_ENTRY_BEHAV_RANDOM); 3122 break; 3123 case MADV_NOSYNC: 3124 entry->eflags |= MAP_ENTRY_NOSYNC; 3125 break; 3126 case MADV_AUTOSYNC: 3127 entry->eflags &= ~MAP_ENTRY_NOSYNC; 3128 break; 3129 case MADV_NOCORE: 3130 entry->eflags |= MAP_ENTRY_NOCOREDUMP; 3131 break; 3132 case MADV_CORE: 3133 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP; 3134 break; 3135 default: 3136 break; 3137 } 3138 vm_map_try_merge_entries(map, prev_entry, entry); 3139 } 3140 vm_map_try_merge_entries(map, prev_entry, entry); 3141 vm_map_unlock(map); 3142 } else { 3143 vm_pindex_t pstart, pend; 3144 3145 /* 3146 * madvise behaviors that are implemented in the underlying 3147 * vm_object. 3148 * 3149 * Since we don't clip the vm_map_entry, we have to clip 3150 * the vm_object pindex and count. 3151 */ 3152 if (!vm_map_lookup_entry(map, start, &entry)) 3153 entry = vm_map_entry_succ(entry); 3154 for (; entry->start < end; 3155 entry = vm_map_entry_succ(entry)) { 3156 vm_offset_t useEnd, useStart; 3157 3158 if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP | 3159 MAP_ENTRY_GUARD)) != 0) 3160 continue; 3161 3162 /* 3163 * MADV_FREE would otherwise rewind time to 3164 * the creation of the shadow object. Because 3165 * we hold the VM map read-locked, neither the 3166 * entry's object nor the presence of a 3167 * backing object can change. 3168 */ 3169 if (behav == MADV_FREE && 3170 entry->object.vm_object != NULL && 3171 entry->object.vm_object->backing_object != NULL) 3172 continue; 3173 3174 pstart = OFF_TO_IDX(entry->offset); 3175 pend = pstart + atop(entry->end - entry->start); 3176 useStart = entry->start; 3177 useEnd = entry->end; 3178 3179 if (entry->start < start) { 3180 pstart += atop(start - entry->start); 3181 useStart = start; 3182 } 3183 if (entry->end > end) { 3184 pend -= atop(entry->end - end); 3185 useEnd = end; 3186 } 3187 3188 if (pstart >= pend) 3189 continue; 3190 3191 /* 3192 * Perform the pmap_advise() before clearing 3193 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 3194 * concurrent pmap operation, such as pmap_remove(), 3195 * could clear a reference in the pmap and set 3196 * PGA_REFERENCED on the page before the pmap_advise() 3197 * had completed. Consequently, the page would appear 3198 * referenced based upon an old reference that 3199 * occurred before this pmap_advise() ran. 3200 */ 3201 if (behav == MADV_DONTNEED || behav == MADV_FREE) 3202 pmap_advise(map->pmap, useStart, useEnd, 3203 behav); 3204 3205 vm_object_madvise(entry->object.vm_object, pstart, 3206 pend, behav); 3207 3208 /* 3209 * Pre-populate paging structures in the 3210 * WILLNEED case. For wired entries, the 3211 * paging structures are already populated. 3212 */ 3213 if (behav == MADV_WILLNEED && 3214 entry->wired_count == 0) { 3215 vm_map_pmap_enter(map, 3216 useStart, 3217 entry->protection, 3218 entry->object.vm_object, 3219 pstart, 3220 ptoa(pend - pstart), 3221 MAP_PREFAULT_MADVISE 3222 ); 3223 } 3224 } 3225 vm_map_unlock_read(map); 3226 } 3227 return (0); 3228 } 3229 3230 /* 3231 * vm_map_inherit: 3232 * 3233 * Sets the inheritance of the specified address 3234 * range in the target map. Inheritance 3235 * affects how the map will be shared with 3236 * child maps at the time of vmspace_fork. 3237 */ 3238 int 3239 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 3240 vm_inherit_t new_inheritance) 3241 { 3242 vm_map_entry_t entry, lentry, prev_entry, start_entry; 3243 int rv; 3244 3245 switch (new_inheritance) { 3246 case VM_INHERIT_NONE: 3247 case VM_INHERIT_COPY: 3248 case VM_INHERIT_SHARE: 3249 case VM_INHERIT_ZERO: 3250 break; 3251 default: 3252 return (KERN_INVALID_ARGUMENT); 3253 } 3254 if (start == end) 3255 return (KERN_SUCCESS); 3256 vm_map_lock(map); 3257 VM_MAP_RANGE_CHECK(map, start, end); 3258 rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry); 3259 if (rv != KERN_SUCCESS) 3260 goto unlock; 3261 if (vm_map_lookup_entry(map, end - 1, &lentry)) { 3262 rv = vm_map_clip_end(map, lentry, end); 3263 if (rv != KERN_SUCCESS) 3264 goto unlock; 3265 } 3266 if (new_inheritance == VM_INHERIT_COPY) { 3267 for (entry = start_entry; entry->start < end; 3268 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3269 if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) 3270 != 0) { 3271 rv = KERN_INVALID_ARGUMENT; 3272 goto unlock; 3273 } 3274 } 3275 } 3276 for (entry = start_entry; entry->start < end; prev_entry = entry, 3277 entry = vm_map_entry_succ(entry)) { 3278 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx", 3279 entry, (uintmax_t)entry->end, (uintmax_t)end)); 3280 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 3281 new_inheritance != VM_INHERIT_ZERO) 3282 entry->inheritance = new_inheritance; 3283 vm_map_try_merge_entries(map, prev_entry, entry); 3284 } 3285 vm_map_try_merge_entries(map, prev_entry, entry); 3286 unlock: 3287 vm_map_unlock(map); 3288 return (rv); 3289 } 3290 3291 /* 3292 * vm_map_entry_in_transition: 3293 * 3294 * Release the map lock, and sleep until the entry is no longer in 3295 * transition. Awake and acquire the map lock. If the map changed while 3296 * another held the lock, lookup a possibly-changed entry at or after the 3297 * 'start' position of the old entry. 3298 */ 3299 static vm_map_entry_t 3300 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, 3301 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) 3302 { 3303 vm_map_entry_t entry; 3304 vm_offset_t start; 3305 u_int last_timestamp; 3306 3307 VM_MAP_ASSERT_LOCKED(map); 3308 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3309 ("not in-tranition map entry %p", in_entry)); 3310 /* 3311 * We have not yet clipped the entry. 3312 */ 3313 start = MAX(in_start, in_entry->start); 3314 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3315 last_timestamp = map->timestamp; 3316 if (vm_map_unlock_and_wait(map, 0)) { 3317 /* 3318 * Allow interruption of user wiring/unwiring? 3319 */ 3320 } 3321 vm_map_lock(map); 3322 if (last_timestamp + 1 == map->timestamp) 3323 return (in_entry); 3324 3325 /* 3326 * Look again for the entry because the map was modified while it was 3327 * unlocked. Specifically, the entry may have been clipped, merged, or 3328 * deleted. 3329 */ 3330 if (!vm_map_lookup_entry(map, start, &entry)) { 3331 if (!holes_ok) { 3332 *io_end = start; 3333 return (NULL); 3334 } 3335 entry = vm_map_entry_succ(entry); 3336 } 3337 return (entry); 3338 } 3339 3340 /* 3341 * vm_map_unwire: 3342 * 3343 * Implements both kernel and user unwiring. 3344 */ 3345 int 3346 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 3347 int flags) 3348 { 3349 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3350 int rv; 3351 bool holes_ok, need_wakeup, user_unwire; 3352 3353 if (start == end) 3354 return (KERN_SUCCESS); 3355 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3356 user_unwire = (flags & VM_MAP_WIRE_USER) != 0; 3357 vm_map_lock(map); 3358 VM_MAP_RANGE_CHECK(map, start, end); 3359 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3360 if (holes_ok) 3361 first_entry = vm_map_entry_succ(first_entry); 3362 else { 3363 vm_map_unlock(map); 3364 return (KERN_INVALID_ADDRESS); 3365 } 3366 } 3367 rv = KERN_SUCCESS; 3368 for (entry = first_entry; entry->start < end; entry = next_entry) { 3369 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3370 /* 3371 * We have not yet clipped the entry. 3372 */ 3373 next_entry = vm_map_entry_in_transition(map, start, 3374 &end, holes_ok, entry); 3375 if (next_entry == NULL) { 3376 if (entry == first_entry) { 3377 vm_map_unlock(map); 3378 return (KERN_INVALID_ADDRESS); 3379 } 3380 rv = KERN_INVALID_ADDRESS; 3381 break; 3382 } 3383 first_entry = (entry == first_entry) ? 3384 next_entry : NULL; 3385 continue; 3386 } 3387 rv = vm_map_clip_start(map, entry, start); 3388 if (rv != KERN_SUCCESS) 3389 break; 3390 rv = vm_map_clip_end(map, entry, end); 3391 if (rv != KERN_SUCCESS) 3392 break; 3393 3394 /* 3395 * Mark the entry in case the map lock is released. (See 3396 * above.) 3397 */ 3398 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3399 entry->wiring_thread == NULL, 3400 ("owned map entry %p", entry)); 3401 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3402 entry->wiring_thread = curthread; 3403 next_entry = vm_map_entry_succ(entry); 3404 /* 3405 * Check the map for holes in the specified region. 3406 * If holes_ok, skip this check. 3407 */ 3408 if (!holes_ok && 3409 entry->end < end && next_entry->start > entry->end) { 3410 end = entry->end; 3411 rv = KERN_INVALID_ADDRESS; 3412 break; 3413 } 3414 /* 3415 * If system unwiring, require that the entry is system wired. 3416 */ 3417 if (!user_unwire && 3418 vm_map_entry_system_wired_count(entry) == 0) { 3419 end = entry->end; 3420 rv = KERN_INVALID_ARGUMENT; 3421 break; 3422 } 3423 } 3424 need_wakeup = false; 3425 if (first_entry == NULL && 3426 !vm_map_lookup_entry(map, start, &first_entry)) { 3427 KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); 3428 prev_entry = first_entry; 3429 entry = vm_map_entry_succ(first_entry); 3430 } else { 3431 prev_entry = vm_map_entry_pred(first_entry); 3432 entry = first_entry; 3433 } 3434 for (; entry->start < end; 3435 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3436 /* 3437 * If holes_ok was specified, an empty 3438 * space in the unwired region could have been mapped 3439 * while the map lock was dropped for draining 3440 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 3441 * could be simultaneously wiring this new mapping 3442 * entry. Detect these cases and skip any entries 3443 * marked as in transition by us. 3444 */ 3445 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3446 entry->wiring_thread != curthread) { 3447 KASSERT(holes_ok, 3448 ("vm_map_unwire: !HOLESOK and new/changed entry")); 3449 continue; 3450 } 3451 3452 if (rv == KERN_SUCCESS && (!user_unwire || 3453 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 3454 if (entry->wired_count == 1) 3455 vm_map_entry_unwire(map, entry); 3456 else 3457 entry->wired_count--; 3458 if (user_unwire) 3459 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3460 } 3461 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3462 ("vm_map_unwire: in-transition flag missing %p", entry)); 3463 KASSERT(entry->wiring_thread == curthread, 3464 ("vm_map_unwire: alien wire %p", entry)); 3465 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 3466 entry->wiring_thread = NULL; 3467 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3468 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3469 need_wakeup = true; 3470 } 3471 vm_map_try_merge_entries(map, prev_entry, entry); 3472 } 3473 vm_map_try_merge_entries(map, prev_entry, entry); 3474 vm_map_unlock(map); 3475 if (need_wakeup) 3476 vm_map_wakeup(map); 3477 return (rv); 3478 } 3479 3480 static void 3481 vm_map_wire_user_count_sub(u_long npages) 3482 { 3483 3484 atomic_subtract_long(&vm_user_wire_count, npages); 3485 } 3486 3487 static bool 3488 vm_map_wire_user_count_add(u_long npages) 3489 { 3490 u_long wired; 3491 3492 wired = vm_user_wire_count; 3493 do { 3494 if (npages + wired > vm_page_max_user_wired) 3495 return (false); 3496 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3497 npages + wired)); 3498 3499 return (true); 3500 } 3501 3502 /* 3503 * vm_map_wire_entry_failure: 3504 * 3505 * Handle a wiring failure on the given entry. 3506 * 3507 * The map should be locked. 3508 */ 3509 static void 3510 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3511 vm_offset_t failed_addr) 3512 { 3513 3514 VM_MAP_ASSERT_LOCKED(map); 3515 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3516 entry->wired_count == 1, 3517 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3518 KASSERT(failed_addr < entry->end, 3519 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3520 3521 /* 3522 * If any pages at the start of this entry were successfully wired, 3523 * then unwire them. 3524 */ 3525 if (failed_addr > entry->start) { 3526 pmap_unwire(map->pmap, entry->start, failed_addr); 3527 vm_object_unwire(entry->object.vm_object, entry->offset, 3528 failed_addr - entry->start, PQ_ACTIVE); 3529 } 3530 3531 /* 3532 * Assign an out-of-range value to represent the failure to wire this 3533 * entry. 3534 */ 3535 entry->wired_count = -1; 3536 } 3537 3538 int 3539 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3540 { 3541 int rv; 3542 3543 vm_map_lock(map); 3544 rv = vm_map_wire_locked(map, start, end, flags); 3545 vm_map_unlock(map); 3546 return (rv); 3547 } 3548 3549 /* 3550 * vm_map_wire_locked: 3551 * 3552 * Implements both kernel and user wiring. Returns with the map locked, 3553 * the map lock may be dropped. 3554 */ 3555 int 3556 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3557 { 3558 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3559 vm_offset_t faddr, saved_end, saved_start; 3560 u_long incr, npages; 3561 u_int bidx, last_timestamp; 3562 int rv; 3563 bool holes_ok, need_wakeup, user_wire; 3564 vm_prot_t prot; 3565 3566 VM_MAP_ASSERT_LOCKED(map); 3567 3568 if (start == end) 3569 return (KERN_SUCCESS); 3570 prot = 0; 3571 if (flags & VM_MAP_WIRE_WRITE) 3572 prot |= VM_PROT_WRITE; 3573 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3574 user_wire = (flags & VM_MAP_WIRE_USER) != 0; 3575 VM_MAP_RANGE_CHECK(map, start, end); 3576 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3577 if (holes_ok) 3578 first_entry = vm_map_entry_succ(first_entry); 3579 else 3580 return (KERN_INVALID_ADDRESS); 3581 } 3582 for (entry = first_entry; entry->start < end; entry = next_entry) { 3583 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3584 /* 3585 * We have not yet clipped the entry. 3586 */ 3587 next_entry = vm_map_entry_in_transition(map, start, 3588 &end, holes_ok, entry); 3589 if (next_entry == NULL) { 3590 if (entry == first_entry) 3591 return (KERN_INVALID_ADDRESS); 3592 rv = KERN_INVALID_ADDRESS; 3593 goto done; 3594 } 3595 first_entry = (entry == first_entry) ? 3596 next_entry : NULL; 3597 continue; 3598 } 3599 rv = vm_map_clip_start(map, entry, start); 3600 if (rv != KERN_SUCCESS) 3601 goto done; 3602 rv = vm_map_clip_end(map, entry, end); 3603 if (rv != KERN_SUCCESS) 3604 goto done; 3605 3606 /* 3607 * Mark the entry in case the map lock is released. (See 3608 * above.) 3609 */ 3610 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3611 entry->wiring_thread == NULL, 3612 ("owned map entry %p", entry)); 3613 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3614 entry->wiring_thread = curthread; 3615 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3616 || (entry->protection & prot) != prot) { 3617 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3618 if (!holes_ok) { 3619 end = entry->end; 3620 rv = KERN_INVALID_ADDRESS; 3621 goto done; 3622 } 3623 } else if (entry->wired_count == 0) { 3624 entry->wired_count++; 3625 3626 npages = atop(entry->end - entry->start); 3627 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3628 vm_map_wire_entry_failure(map, entry, 3629 entry->start); 3630 end = entry->end; 3631 rv = KERN_RESOURCE_SHORTAGE; 3632 goto done; 3633 } 3634 3635 /* 3636 * Release the map lock, relying on the in-transition 3637 * mark. Mark the map busy for fork. 3638 */ 3639 saved_start = entry->start; 3640 saved_end = entry->end; 3641 last_timestamp = map->timestamp; 3642 bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 3643 incr = pagesizes[bidx]; 3644 vm_map_busy(map); 3645 vm_map_unlock(map); 3646 3647 for (faddr = saved_start; faddr < saved_end; 3648 faddr += incr) { 3649 /* 3650 * Simulate a fault to get the page and enter 3651 * it into the physical map. 3652 */ 3653 rv = vm_fault(map, faddr, VM_PROT_NONE, 3654 VM_FAULT_WIRE, NULL); 3655 if (rv != KERN_SUCCESS) 3656 break; 3657 } 3658 vm_map_lock(map); 3659 vm_map_unbusy(map); 3660 if (last_timestamp + 1 != map->timestamp) { 3661 /* 3662 * Look again for the entry because the map was 3663 * modified while it was unlocked. The entry 3664 * may have been clipped, but NOT merged or 3665 * deleted. 3666 */ 3667 if (!vm_map_lookup_entry(map, saved_start, 3668 &next_entry)) 3669 KASSERT(false, 3670 ("vm_map_wire: lookup failed")); 3671 first_entry = (entry == first_entry) ? 3672 next_entry : NULL; 3673 for (entry = next_entry; entry->end < saved_end; 3674 entry = vm_map_entry_succ(entry)) { 3675 /* 3676 * In case of failure, handle entries 3677 * that were not fully wired here; 3678 * fully wired entries are handled 3679 * later. 3680 */ 3681 if (rv != KERN_SUCCESS && 3682 faddr < entry->end) 3683 vm_map_wire_entry_failure(map, 3684 entry, faddr); 3685 } 3686 } 3687 if (rv != KERN_SUCCESS) { 3688 vm_map_wire_entry_failure(map, entry, faddr); 3689 if (user_wire) 3690 vm_map_wire_user_count_sub(npages); 3691 end = entry->end; 3692 goto done; 3693 } 3694 } else if (!user_wire || 3695 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3696 entry->wired_count++; 3697 } 3698 /* 3699 * Check the map for holes in the specified region. 3700 * If holes_ok was specified, skip this check. 3701 */ 3702 next_entry = vm_map_entry_succ(entry); 3703 if (!holes_ok && 3704 entry->end < end && next_entry->start > entry->end) { 3705 end = entry->end; 3706 rv = KERN_INVALID_ADDRESS; 3707 goto done; 3708 } 3709 } 3710 rv = KERN_SUCCESS; 3711 done: 3712 need_wakeup = false; 3713 if (first_entry == NULL && 3714 !vm_map_lookup_entry(map, start, &first_entry)) { 3715 KASSERT(holes_ok, ("vm_map_wire: lookup failed")); 3716 prev_entry = first_entry; 3717 entry = vm_map_entry_succ(first_entry); 3718 } else { 3719 prev_entry = vm_map_entry_pred(first_entry); 3720 entry = first_entry; 3721 } 3722 for (; entry->start < end; 3723 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3724 /* 3725 * If holes_ok was specified, an empty 3726 * space in the unwired region could have been mapped 3727 * while the map lock was dropped for faulting in the 3728 * pages or draining MAP_ENTRY_IN_TRANSITION. 3729 * Moreover, another thread could be simultaneously 3730 * wiring this new mapping entry. Detect these cases 3731 * and skip any entries marked as in transition not by us. 3732 * 3733 * Another way to get an entry not marked with 3734 * MAP_ENTRY_IN_TRANSITION is after failed clipping, 3735 * which set rv to KERN_INVALID_ARGUMENT. 3736 */ 3737 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3738 entry->wiring_thread != curthread) { 3739 KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT, 3740 ("vm_map_wire: !HOLESOK and new/changed entry")); 3741 continue; 3742 } 3743 3744 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { 3745 /* do nothing */ 3746 } else if (rv == KERN_SUCCESS) { 3747 if (user_wire) 3748 entry->eflags |= MAP_ENTRY_USER_WIRED; 3749 } else if (entry->wired_count == -1) { 3750 /* 3751 * Wiring failed on this entry. Thus, unwiring is 3752 * unnecessary. 3753 */ 3754 entry->wired_count = 0; 3755 } else if (!user_wire || 3756 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3757 /* 3758 * Undo the wiring. Wiring succeeded on this entry 3759 * but failed on a later entry. 3760 */ 3761 if (entry->wired_count == 1) { 3762 vm_map_entry_unwire(map, entry); 3763 if (user_wire) 3764 vm_map_wire_user_count_sub( 3765 atop(entry->end - entry->start)); 3766 } else 3767 entry->wired_count--; 3768 } 3769 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3770 ("vm_map_wire: in-transition flag missing %p", entry)); 3771 KASSERT(entry->wiring_thread == curthread, 3772 ("vm_map_wire: alien wire %p", entry)); 3773 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3774 MAP_ENTRY_WIRE_SKIPPED); 3775 entry->wiring_thread = NULL; 3776 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3777 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3778 need_wakeup = true; 3779 } 3780 vm_map_try_merge_entries(map, prev_entry, entry); 3781 } 3782 vm_map_try_merge_entries(map, prev_entry, entry); 3783 if (need_wakeup) 3784 vm_map_wakeup(map); 3785 return (rv); 3786 } 3787 3788 /* 3789 * vm_map_sync 3790 * 3791 * Push any dirty cached pages in the address range to their pager. 3792 * If syncio is TRUE, dirty pages are written synchronously. 3793 * If invalidate is TRUE, any cached pages are freed as well. 3794 * 3795 * If the size of the region from start to end is zero, we are 3796 * supposed to flush all modified pages within the region containing 3797 * start. Unfortunately, a region can be split or coalesced with 3798 * neighboring regions, making it difficult to determine what the 3799 * original region was. Therefore, we approximate this requirement by 3800 * flushing the current region containing start. 3801 * 3802 * Returns an error if any part of the specified range is not mapped. 3803 */ 3804 int 3805 vm_map_sync( 3806 vm_map_t map, 3807 vm_offset_t start, 3808 vm_offset_t end, 3809 boolean_t syncio, 3810 boolean_t invalidate) 3811 { 3812 vm_map_entry_t entry, first_entry, next_entry; 3813 vm_size_t size; 3814 vm_object_t object; 3815 vm_ooffset_t offset; 3816 unsigned int last_timestamp; 3817 int bdry_idx; 3818 boolean_t failed; 3819 3820 vm_map_lock_read(map); 3821 VM_MAP_RANGE_CHECK(map, start, end); 3822 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3823 vm_map_unlock_read(map); 3824 return (KERN_INVALID_ADDRESS); 3825 } else if (start == end) { 3826 start = first_entry->start; 3827 end = first_entry->end; 3828 } 3829 3830 /* 3831 * Make a first pass to check for user-wired memory, holes, 3832 * and partial invalidation of largepage mappings. 3833 */ 3834 for (entry = first_entry; entry->start < end; entry = next_entry) { 3835 if (invalidate) { 3836 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) { 3837 vm_map_unlock_read(map); 3838 return (KERN_INVALID_ARGUMENT); 3839 } 3840 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 3841 if (bdry_idx != 0 && 3842 ((start & (pagesizes[bdry_idx] - 1)) != 0 || 3843 (end & (pagesizes[bdry_idx] - 1)) != 0)) { 3844 vm_map_unlock_read(map); 3845 return (KERN_INVALID_ARGUMENT); 3846 } 3847 } 3848 next_entry = vm_map_entry_succ(entry); 3849 if (end > entry->end && 3850 entry->end != next_entry->start) { 3851 vm_map_unlock_read(map); 3852 return (KERN_INVALID_ADDRESS); 3853 } 3854 } 3855 3856 if (invalidate) 3857 pmap_remove(map->pmap, start, end); 3858 failed = FALSE; 3859 3860 /* 3861 * Make a second pass, cleaning/uncaching pages from the indicated 3862 * objects as we go. 3863 */ 3864 for (entry = first_entry; entry->start < end;) { 3865 offset = entry->offset + (start - entry->start); 3866 size = (end <= entry->end ? end : entry->end) - start; 3867 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 3868 vm_map_t smap; 3869 vm_map_entry_t tentry; 3870 vm_size_t tsize; 3871 3872 smap = entry->object.sub_map; 3873 vm_map_lock_read(smap); 3874 (void) vm_map_lookup_entry(smap, offset, &tentry); 3875 tsize = tentry->end - offset; 3876 if (tsize < size) 3877 size = tsize; 3878 object = tentry->object.vm_object; 3879 offset = tentry->offset + (offset - tentry->start); 3880 vm_map_unlock_read(smap); 3881 } else { 3882 object = entry->object.vm_object; 3883 } 3884 vm_object_reference(object); 3885 last_timestamp = map->timestamp; 3886 vm_map_unlock_read(map); 3887 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3888 failed = TRUE; 3889 start += size; 3890 vm_object_deallocate(object); 3891 vm_map_lock_read(map); 3892 if (last_timestamp == map->timestamp || 3893 !vm_map_lookup_entry(map, start, &entry)) 3894 entry = vm_map_entry_succ(entry); 3895 } 3896 3897 vm_map_unlock_read(map); 3898 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3899 } 3900 3901 /* 3902 * vm_map_entry_unwire: [ internal use only ] 3903 * 3904 * Make the region specified by this entry pageable. 3905 * 3906 * The map in question should be locked. 3907 * [This is the reason for this routine's existence.] 3908 */ 3909 static void 3910 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3911 { 3912 vm_size_t size; 3913 3914 VM_MAP_ASSERT_LOCKED(map); 3915 KASSERT(entry->wired_count > 0, 3916 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3917 3918 size = entry->end - entry->start; 3919 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3920 vm_map_wire_user_count_sub(atop(size)); 3921 pmap_unwire(map->pmap, entry->start, entry->end); 3922 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3923 PQ_ACTIVE); 3924 entry->wired_count = 0; 3925 } 3926 3927 static void 3928 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3929 { 3930 3931 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3932 vm_object_deallocate(entry->object.vm_object); 3933 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3934 } 3935 3936 /* 3937 * vm_map_entry_delete: [ internal use only ] 3938 * 3939 * Deallocate the given entry from the target map. 3940 */ 3941 static void 3942 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3943 { 3944 vm_object_t object; 3945 vm_pindex_t offidxstart, offidxend, size1; 3946 vm_size_t size; 3947 3948 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3949 object = entry->object.vm_object; 3950 3951 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3952 MPASS(entry->cred == NULL); 3953 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3954 MPASS(object == NULL); 3955 vm_map_entry_deallocate(entry, vm_map_is_system(map)); 3956 return; 3957 } 3958 3959 size = entry->end - entry->start; 3960 map->size -= size; 3961 3962 if (entry->cred != NULL) { 3963 swap_release_by_cred(size, entry->cred); 3964 crfree(entry->cred); 3965 } 3966 3967 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) { 3968 entry->object.vm_object = NULL; 3969 } else if ((object->flags & OBJ_ANON) != 0 || 3970 object == kernel_object) { 3971 KASSERT(entry->cred == NULL || object->cred == NULL || 3972 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3973 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3974 offidxstart = OFF_TO_IDX(entry->offset); 3975 offidxend = offidxstart + atop(size); 3976 VM_OBJECT_WLOCK(object); 3977 if (object->ref_count != 1 && 3978 ((object->flags & OBJ_ONEMAPPING) != 0 || 3979 object == kernel_object)) { 3980 vm_object_collapse(object); 3981 3982 /* 3983 * The option OBJPR_NOTMAPPED can be passed here 3984 * because vm_map_delete() already performed 3985 * pmap_remove() on the only mapping to this range 3986 * of pages. 3987 */ 3988 vm_object_page_remove(object, offidxstart, offidxend, 3989 OBJPR_NOTMAPPED); 3990 if (offidxend >= object->size && 3991 offidxstart < object->size) { 3992 size1 = object->size; 3993 object->size = offidxstart; 3994 if (object->cred != NULL) { 3995 size1 -= object->size; 3996 KASSERT(object->charge >= ptoa(size1), 3997 ("object %p charge < 0", object)); 3998 swap_release_by_cred(ptoa(size1), 3999 object->cred); 4000 object->charge -= ptoa(size1); 4001 } 4002 } 4003 } 4004 VM_OBJECT_WUNLOCK(object); 4005 } 4006 if (vm_map_is_system(map)) 4007 vm_map_entry_deallocate(entry, TRUE); 4008 else { 4009 entry->defer_next = curthread->td_map_def_user; 4010 curthread->td_map_def_user = entry; 4011 } 4012 } 4013 4014 /* 4015 * vm_map_delete: [ internal use only ] 4016 * 4017 * Deallocates the given address range from the target 4018 * map. 4019 */ 4020 int 4021 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 4022 { 4023 vm_map_entry_t entry, next_entry, scratch_entry; 4024 int rv; 4025 4026 VM_MAP_ASSERT_LOCKED(map); 4027 4028 if (start == end) 4029 return (KERN_SUCCESS); 4030 4031 /* 4032 * Find the start of the region, and clip it. 4033 * Step through all entries in this region. 4034 */ 4035 rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry); 4036 if (rv != KERN_SUCCESS) 4037 return (rv); 4038 for (; entry->start < end; entry = next_entry) { 4039 /* 4040 * Wait for wiring or unwiring of an entry to complete. 4041 * Also wait for any system wirings to disappear on 4042 * user maps. 4043 */ 4044 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 4045 (vm_map_pmap(map) != kernel_pmap && 4046 vm_map_entry_system_wired_count(entry) != 0)) { 4047 unsigned int last_timestamp; 4048 vm_offset_t saved_start; 4049 4050 saved_start = entry->start; 4051 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 4052 last_timestamp = map->timestamp; 4053 (void) vm_map_unlock_and_wait(map, 0); 4054 vm_map_lock(map); 4055 if (last_timestamp + 1 != map->timestamp) { 4056 /* 4057 * Look again for the entry because the map was 4058 * modified while it was unlocked. 4059 * Specifically, the entry may have been 4060 * clipped, merged, or deleted. 4061 */ 4062 rv = vm_map_lookup_clip_start(map, saved_start, 4063 &next_entry, &scratch_entry); 4064 if (rv != KERN_SUCCESS) 4065 break; 4066 } else 4067 next_entry = entry; 4068 continue; 4069 } 4070 4071 /* XXXKIB or delete to the upper superpage boundary ? */ 4072 rv = vm_map_clip_end(map, entry, end); 4073 if (rv != KERN_SUCCESS) 4074 break; 4075 next_entry = vm_map_entry_succ(entry); 4076 4077 /* 4078 * Unwire before removing addresses from the pmap; otherwise, 4079 * unwiring will put the entries back in the pmap. 4080 */ 4081 if (entry->wired_count != 0) 4082 vm_map_entry_unwire(map, entry); 4083 4084 /* 4085 * Remove mappings for the pages, but only if the 4086 * mappings could exist. For instance, it does not 4087 * make sense to call pmap_remove() for guard entries. 4088 */ 4089 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 4090 entry->object.vm_object != NULL) 4091 pmap_map_delete(map->pmap, entry->start, entry->end); 4092 4093 /* 4094 * Delete the entry only after removing all pmap 4095 * entries pointing to its pages. (Otherwise, its 4096 * page frames may be reallocated, and any modify bits 4097 * will be set in the wrong object!) 4098 */ 4099 vm_map_entry_delete(map, entry); 4100 } 4101 return (rv); 4102 } 4103 4104 /* 4105 * vm_map_remove: 4106 * 4107 * Remove the given address range from the target map. 4108 * This is the exported form of vm_map_delete. 4109 */ 4110 int 4111 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 4112 { 4113 int result; 4114 4115 vm_map_lock(map); 4116 VM_MAP_RANGE_CHECK(map, start, end); 4117 result = vm_map_delete(map, start, end); 4118 vm_map_unlock(map); 4119 return (result); 4120 } 4121 4122 /* 4123 * vm_map_check_protection: 4124 * 4125 * Assert that the target map allows the specified privilege on the 4126 * entire address region given. The entire region must be allocated. 4127 * 4128 * WARNING! This code does not and should not check whether the 4129 * contents of the region is accessible. For example a smaller file 4130 * might be mapped into a larger address space. 4131 * 4132 * NOTE! This code is also called by munmap(). 4133 * 4134 * The map must be locked. A read lock is sufficient. 4135 */ 4136 boolean_t 4137 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 4138 vm_prot_t protection) 4139 { 4140 vm_map_entry_t entry; 4141 vm_map_entry_t tmp_entry; 4142 4143 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 4144 return (FALSE); 4145 entry = tmp_entry; 4146 4147 while (start < end) { 4148 /* 4149 * No holes allowed! 4150 */ 4151 if (start < entry->start) 4152 return (FALSE); 4153 /* 4154 * Check protection associated with entry. 4155 */ 4156 if ((entry->protection & protection) != protection) 4157 return (FALSE); 4158 /* go to next entry */ 4159 start = entry->end; 4160 entry = vm_map_entry_succ(entry); 4161 } 4162 return (TRUE); 4163 } 4164 4165 /* 4166 * 4167 * vm_map_copy_swap_object: 4168 * 4169 * Copies a swap-backed object from an existing map entry to a 4170 * new one. Carries forward the swap charge. May change the 4171 * src object on return. 4172 */ 4173 static void 4174 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry, 4175 vm_offset_t size, vm_ooffset_t *fork_charge) 4176 { 4177 vm_object_t src_object; 4178 struct ucred *cred; 4179 int charged; 4180 4181 src_object = src_entry->object.vm_object; 4182 charged = ENTRY_CHARGED(src_entry); 4183 if ((src_object->flags & OBJ_ANON) != 0) { 4184 VM_OBJECT_WLOCK(src_object); 4185 vm_object_collapse(src_object); 4186 if ((src_object->flags & OBJ_ONEMAPPING) != 0) { 4187 vm_object_split(src_entry); 4188 src_object = src_entry->object.vm_object; 4189 } 4190 vm_object_reference_locked(src_object); 4191 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 4192 VM_OBJECT_WUNLOCK(src_object); 4193 } else 4194 vm_object_reference(src_object); 4195 if (src_entry->cred != NULL && 4196 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4197 KASSERT(src_object->cred == NULL, 4198 ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p", 4199 src_object)); 4200 src_object->cred = src_entry->cred; 4201 src_object->charge = size; 4202 } 4203 dst_entry->object.vm_object = src_object; 4204 if (charged) { 4205 cred = curthread->td_ucred; 4206 crhold(cred); 4207 dst_entry->cred = cred; 4208 *fork_charge += size; 4209 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4210 crhold(cred); 4211 src_entry->cred = cred; 4212 *fork_charge += size; 4213 } 4214 } 4215 } 4216 4217 /* 4218 * vm_map_copy_entry: 4219 * 4220 * Copies the contents of the source entry to the destination 4221 * entry. The entries *must* be aligned properly. 4222 */ 4223 static void 4224 vm_map_copy_entry( 4225 vm_map_t src_map, 4226 vm_map_t dst_map, 4227 vm_map_entry_t src_entry, 4228 vm_map_entry_t dst_entry, 4229 vm_ooffset_t *fork_charge) 4230 { 4231 vm_object_t src_object; 4232 vm_map_entry_t fake_entry; 4233 vm_offset_t size; 4234 4235 VM_MAP_ASSERT_LOCKED(dst_map); 4236 4237 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 4238 return; 4239 4240 if (src_entry->wired_count == 0 || 4241 (src_entry->protection & VM_PROT_WRITE) == 0) { 4242 /* 4243 * If the source entry is marked needs_copy, it is already 4244 * write-protected. 4245 */ 4246 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 4247 (src_entry->protection & VM_PROT_WRITE) != 0) { 4248 pmap_protect(src_map->pmap, 4249 src_entry->start, 4250 src_entry->end, 4251 src_entry->protection & ~VM_PROT_WRITE); 4252 } 4253 4254 /* 4255 * Make a copy of the object. 4256 */ 4257 size = src_entry->end - src_entry->start; 4258 if ((src_object = src_entry->object.vm_object) != NULL) { 4259 if ((src_object->flags & OBJ_SWAP) != 0) { 4260 vm_map_copy_swap_object(src_entry, dst_entry, 4261 size, fork_charge); 4262 /* May have split/collapsed, reload obj. */ 4263 src_object = src_entry->object.vm_object; 4264 } else { 4265 vm_object_reference(src_object); 4266 dst_entry->object.vm_object = src_object; 4267 } 4268 src_entry->eflags |= MAP_ENTRY_COW | 4269 MAP_ENTRY_NEEDS_COPY; 4270 dst_entry->eflags |= MAP_ENTRY_COW | 4271 MAP_ENTRY_NEEDS_COPY; 4272 dst_entry->offset = src_entry->offset; 4273 if (src_entry->eflags & MAP_ENTRY_WRITECNT) { 4274 /* 4275 * MAP_ENTRY_WRITECNT cannot 4276 * indicate write reference from 4277 * src_entry, since the entry is 4278 * marked as needs copy. Allocate a 4279 * fake entry that is used to 4280 * decrement object->un_pager writecount 4281 * at the appropriate time. Attach 4282 * fake_entry to the deferred list. 4283 */ 4284 fake_entry = vm_map_entry_create(dst_map); 4285 fake_entry->eflags = MAP_ENTRY_WRITECNT; 4286 src_entry->eflags &= ~MAP_ENTRY_WRITECNT; 4287 vm_object_reference(src_object); 4288 fake_entry->object.vm_object = src_object; 4289 fake_entry->start = src_entry->start; 4290 fake_entry->end = src_entry->end; 4291 fake_entry->defer_next = 4292 curthread->td_map_def_user; 4293 curthread->td_map_def_user = fake_entry; 4294 } 4295 4296 pmap_copy(dst_map->pmap, src_map->pmap, 4297 dst_entry->start, dst_entry->end - dst_entry->start, 4298 src_entry->start); 4299 } else { 4300 dst_entry->object.vm_object = NULL; 4301 if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0) 4302 dst_entry->offset = 0; 4303 if (src_entry->cred != NULL) { 4304 dst_entry->cred = curthread->td_ucred; 4305 crhold(dst_entry->cred); 4306 *fork_charge += size; 4307 } 4308 } 4309 } else { 4310 /* 4311 * We don't want to make writeable wired pages copy-on-write. 4312 * Immediately copy these pages into the new map by simulating 4313 * page faults. The new pages are pageable. 4314 */ 4315 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 4316 fork_charge); 4317 } 4318 } 4319 4320 /* 4321 * vmspace_map_entry_forked: 4322 * Update the newly-forked vmspace each time a map entry is inherited 4323 * or copied. The values for vm_dsize and vm_tsize are approximate 4324 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 4325 */ 4326 static void 4327 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 4328 vm_map_entry_t entry) 4329 { 4330 vm_size_t entrysize; 4331 vm_offset_t newend; 4332 4333 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 4334 return; 4335 entrysize = entry->end - entry->start; 4336 vm2->vm_map.size += entrysize; 4337 if ((entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) { 4338 vm2->vm_ssize += btoc(entrysize); 4339 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 4340 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 4341 newend = MIN(entry->end, 4342 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 4343 vm2->vm_dsize += btoc(newend - entry->start); 4344 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 4345 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 4346 newend = MIN(entry->end, 4347 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 4348 vm2->vm_tsize += btoc(newend - entry->start); 4349 } 4350 } 4351 4352 /* 4353 * vmspace_fork: 4354 * Create a new process vmspace structure and vm_map 4355 * based on those of an existing process. The new map 4356 * is based on the old map, according to the inheritance 4357 * values on the regions in that map. 4358 * 4359 * XXX It might be worth coalescing the entries added to the new vmspace. 4360 * 4361 * The source map must not be locked. 4362 */ 4363 struct vmspace * 4364 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 4365 { 4366 struct vmspace *vm2; 4367 vm_map_t new_map, old_map; 4368 vm_map_entry_t new_entry, old_entry; 4369 vm_object_t object; 4370 int error, locked __diagused; 4371 vm_inherit_t inh; 4372 4373 old_map = &vm1->vm_map; 4374 /* Copy immutable fields of vm1 to vm2. */ 4375 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 4376 pmap_pinit); 4377 if (vm2 == NULL) 4378 return (NULL); 4379 4380 vm2->vm_taddr = vm1->vm_taddr; 4381 vm2->vm_daddr = vm1->vm_daddr; 4382 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 4383 vm2->vm_stacktop = vm1->vm_stacktop; 4384 vm2->vm_shp_base = vm1->vm_shp_base; 4385 vm_map_lock(old_map); 4386 if (old_map->busy) 4387 vm_map_wait_busy(old_map); 4388 new_map = &vm2->vm_map; 4389 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 4390 KASSERT(locked, ("vmspace_fork: lock failed")); 4391 4392 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 4393 if (error != 0) { 4394 sx_xunlock(&old_map->lock); 4395 sx_xunlock(&new_map->lock); 4396 vm_map_process_deferred(); 4397 vmspace_free(vm2); 4398 return (NULL); 4399 } 4400 4401 new_map->anon_loc = old_map->anon_loc; 4402 new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART | 4403 MAP_ASLR_STACK | MAP_WXORX); 4404 4405 VM_MAP_ENTRY_FOREACH(old_entry, old_map) { 4406 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 4407 panic("vm_map_fork: encountered a submap"); 4408 4409 inh = old_entry->inheritance; 4410 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 4411 inh != VM_INHERIT_NONE) 4412 inh = VM_INHERIT_COPY; 4413 4414 switch (inh) { 4415 case VM_INHERIT_NONE: 4416 break; 4417 4418 case VM_INHERIT_SHARE: 4419 /* 4420 * Clone the entry, creating the shared object if 4421 * necessary. 4422 */ 4423 object = old_entry->object.vm_object; 4424 if (object == NULL) { 4425 vm_map_entry_back(old_entry); 4426 object = old_entry->object.vm_object; 4427 } 4428 4429 /* 4430 * Add the reference before calling vm_object_shadow 4431 * to insure that a shadow object is created. 4432 */ 4433 vm_object_reference(object); 4434 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4435 vm_object_shadow(&old_entry->object.vm_object, 4436 &old_entry->offset, 4437 old_entry->end - old_entry->start, 4438 old_entry->cred, 4439 /* Transfer the second reference too. */ 4440 true); 4441 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4442 old_entry->cred = NULL; 4443 4444 /* 4445 * As in vm_map_merged_neighbor_dispose(), 4446 * the vnode lock will not be acquired in 4447 * this call to vm_object_deallocate(). 4448 */ 4449 vm_object_deallocate(object); 4450 object = old_entry->object.vm_object; 4451 } else { 4452 VM_OBJECT_WLOCK(object); 4453 vm_object_clear_flag(object, OBJ_ONEMAPPING); 4454 if (old_entry->cred != NULL) { 4455 KASSERT(object->cred == NULL, 4456 ("vmspace_fork both cred")); 4457 object->cred = old_entry->cred; 4458 object->charge = old_entry->end - 4459 old_entry->start; 4460 old_entry->cred = NULL; 4461 } 4462 4463 /* 4464 * Assert the correct state of the vnode 4465 * v_writecount while the object is locked, to 4466 * not relock it later for the assertion 4467 * correctness. 4468 */ 4469 if (old_entry->eflags & MAP_ENTRY_WRITECNT && 4470 object->type == OBJT_VNODE) { 4471 KASSERT(((struct vnode *)object-> 4472 handle)->v_writecount > 0, 4473 ("vmspace_fork: v_writecount %p", 4474 object)); 4475 KASSERT(object->un_pager.vnp. 4476 writemappings > 0, 4477 ("vmspace_fork: vnp.writecount %p", 4478 object)); 4479 } 4480 VM_OBJECT_WUNLOCK(object); 4481 } 4482 4483 /* 4484 * Clone the entry, referencing the shared object. 4485 */ 4486 new_entry = vm_map_entry_create(new_map); 4487 *new_entry = *old_entry; 4488 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4489 MAP_ENTRY_IN_TRANSITION); 4490 new_entry->wiring_thread = NULL; 4491 new_entry->wired_count = 0; 4492 if (new_entry->eflags & MAP_ENTRY_WRITECNT) { 4493 vm_pager_update_writecount(object, 4494 new_entry->start, new_entry->end); 4495 } 4496 vm_map_entry_set_vnode_text(new_entry, true); 4497 4498 /* 4499 * Insert the entry into the new map -- we know we're 4500 * inserting at the end of the new map. 4501 */ 4502 vm_map_entry_link(new_map, new_entry); 4503 vmspace_map_entry_forked(vm1, vm2, new_entry); 4504 4505 /* 4506 * Update the physical map 4507 */ 4508 pmap_copy(new_map->pmap, old_map->pmap, 4509 new_entry->start, 4510 (old_entry->end - old_entry->start), 4511 old_entry->start); 4512 break; 4513 4514 case VM_INHERIT_COPY: 4515 /* 4516 * Clone the entry and link into the map. 4517 */ 4518 new_entry = vm_map_entry_create(new_map); 4519 *new_entry = *old_entry; 4520 /* 4521 * Copied entry is COW over the old object. 4522 */ 4523 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4524 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT); 4525 new_entry->wiring_thread = NULL; 4526 new_entry->wired_count = 0; 4527 new_entry->object.vm_object = NULL; 4528 new_entry->cred = NULL; 4529 vm_map_entry_link(new_map, new_entry); 4530 vmspace_map_entry_forked(vm1, vm2, new_entry); 4531 vm_map_copy_entry(old_map, new_map, old_entry, 4532 new_entry, fork_charge); 4533 vm_map_entry_set_vnode_text(new_entry, true); 4534 break; 4535 4536 case VM_INHERIT_ZERO: 4537 /* 4538 * Create a new anonymous mapping entry modelled from 4539 * the old one. 4540 */ 4541 new_entry = vm_map_entry_create(new_map); 4542 memset(new_entry, 0, sizeof(*new_entry)); 4543 4544 new_entry->start = old_entry->start; 4545 new_entry->end = old_entry->end; 4546 new_entry->eflags = old_entry->eflags & 4547 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4548 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC | 4549 MAP_ENTRY_SPLIT_BOUNDARY_MASK); 4550 new_entry->protection = old_entry->protection; 4551 new_entry->max_protection = old_entry->max_protection; 4552 new_entry->inheritance = VM_INHERIT_ZERO; 4553 4554 vm_map_entry_link(new_map, new_entry); 4555 vmspace_map_entry_forked(vm1, vm2, new_entry); 4556 4557 new_entry->cred = curthread->td_ucred; 4558 crhold(new_entry->cred); 4559 *fork_charge += (new_entry->end - new_entry->start); 4560 4561 break; 4562 } 4563 } 4564 /* 4565 * Use inlined vm_map_unlock() to postpone handling the deferred 4566 * map entries, which cannot be done until both old_map and 4567 * new_map locks are released. 4568 */ 4569 sx_xunlock(&old_map->lock); 4570 sx_xunlock(&new_map->lock); 4571 vm_map_process_deferred(); 4572 4573 return (vm2); 4574 } 4575 4576 /* 4577 * Create a process's stack for exec_new_vmspace(). This function is never 4578 * asked to wire the newly created stack. 4579 */ 4580 int 4581 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4582 vm_prot_t prot, vm_prot_t max, int cow) 4583 { 4584 vm_size_t growsize, init_ssize; 4585 rlim_t vmemlim; 4586 int rv; 4587 4588 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4589 growsize = sgrowsiz; 4590 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4591 vm_map_lock(map); 4592 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4593 /* If we would blow our VMEM resource limit, no go */ 4594 if (map->size + init_ssize > vmemlim) { 4595 rv = KERN_NO_SPACE; 4596 goto out; 4597 } 4598 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4599 max, cow); 4600 out: 4601 vm_map_unlock(map); 4602 return (rv); 4603 } 4604 4605 static int stack_guard_page = 1; 4606 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4607 &stack_guard_page, 0, 4608 "Specifies the number of guard pages for a stack that grows"); 4609 4610 static int 4611 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4612 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4613 { 4614 vm_map_entry_t gap_entry, new_entry, prev_entry; 4615 vm_offset_t bot, gap_bot, gap_top, top; 4616 vm_size_t init_ssize, sgp; 4617 int rv; 4618 4619 KASSERT((cow & MAP_STACK_AREA) != 0, 4620 ("New mapping is not a stack")); 4621 4622 if (max_ssize == 0 || 4623 !vm_map_range_valid(map, addrbos, addrbos + max_ssize)) 4624 return (KERN_INVALID_ADDRESS); 4625 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4626 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4627 (vm_size_t)stack_guard_page * PAGE_SIZE; 4628 if (sgp >= max_ssize) 4629 return (KERN_INVALID_ARGUMENT); 4630 4631 init_ssize = growsize; 4632 if (max_ssize < init_ssize + sgp) 4633 init_ssize = max_ssize - sgp; 4634 4635 /* If addr is already mapped, no go */ 4636 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4637 return (KERN_NO_SPACE); 4638 4639 /* 4640 * If we can't accommodate max_ssize in the current mapping, no go. 4641 */ 4642 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize) 4643 return (KERN_NO_SPACE); 4644 4645 /* 4646 * We initially map a stack of only init_ssize, at the top of 4647 * the range. We will grow as needed later. 4648 * 4649 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4650 * and cow to be 0. Possibly we should eliminate these as input 4651 * parameters, and just pass these values here in the insert call. 4652 */ 4653 bot = addrbos + max_ssize - init_ssize; 4654 top = bot + init_ssize; 4655 gap_bot = addrbos; 4656 gap_top = bot; 4657 rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow, 4658 &new_entry); 4659 if (rv != KERN_SUCCESS) 4660 return (rv); 4661 KASSERT(new_entry->end == top || new_entry->start == bot, 4662 ("Bad entry start/end for new stack entry")); 4663 KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4664 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4665 if (gap_bot == gap_top) 4666 return (KERN_SUCCESS); 4667 rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4668 VM_PROT_NONE, MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP, 4669 &gap_entry); 4670 if (rv == KERN_SUCCESS) { 4671 KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0, 4672 ("entry %p not gap %#x", gap_entry, gap_entry->eflags)); 4673 KASSERT((gap_entry->eflags & MAP_ENTRY_STACK_GAP) != 0, 4674 ("entry %p not stack gap %#x", gap_entry, 4675 gap_entry->eflags)); 4676 4677 /* 4678 * Gap can never successfully handle a fault, so 4679 * read-ahead logic is never used for it. Re-use 4680 * next_read of the gap entry to store 4681 * stack_guard_page for vm_map_growstack(). 4682 * Similarly, since a gap cannot have a backing object, 4683 * store the original stack protections in the 4684 * object offset. 4685 */ 4686 gap_entry->next_read = sgp; 4687 gap_entry->offset = prot | PROT_MAX(max); 4688 } else { 4689 (void)vm_map_delete(map, bot, top); 4690 } 4691 return (rv); 4692 } 4693 4694 /* 4695 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4696 * successfully grow the stack. 4697 */ 4698 static int 4699 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4700 { 4701 vm_map_entry_t stack_entry; 4702 struct proc *p; 4703 struct vmspace *vm; 4704 vm_offset_t gap_end, gap_start, grow_start; 4705 vm_size_t grow_amount, guard, max_grow, sgp; 4706 vm_prot_t prot, max; 4707 rlim_t lmemlim, stacklim, vmemlim; 4708 int rv, rv1 __diagused; 4709 bool gap_deleted, is_procstack; 4710 #ifdef notyet 4711 uint64_t limit; 4712 #endif 4713 #ifdef RACCT 4714 int error __diagused; 4715 #endif 4716 4717 p = curproc; 4718 vm = p->p_vmspace; 4719 4720 /* 4721 * Disallow stack growth when the access is performed by a 4722 * debugger or AIO daemon. The reason is that the wrong 4723 * resource limits are applied. 4724 */ 4725 if (p != initproc && (map != &p->p_vmspace->vm_map || 4726 p->p_textvp == NULL)) 4727 return (KERN_FAILURE); 4728 4729 MPASS(!vm_map_is_system(map)); 4730 4731 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4732 stacklim = lim_cur(curthread, RLIMIT_STACK); 4733 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4734 retry: 4735 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4736 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4737 return (KERN_FAILURE); 4738 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4739 return (KERN_SUCCESS); 4740 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP) != 0) { 4741 stack_entry = vm_map_entry_succ(gap_entry); 4742 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4743 stack_entry->start != gap_entry->end) 4744 return (KERN_FAILURE); 4745 grow_amount = round_page(stack_entry->start - addr); 4746 } else { 4747 return (KERN_FAILURE); 4748 } 4749 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4750 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4751 gap_entry->next_read; 4752 max_grow = gap_entry->end - gap_entry->start; 4753 if (guard > max_grow) 4754 return (KERN_NO_SPACE); 4755 max_grow -= guard; 4756 if (grow_amount > max_grow) 4757 return (KERN_NO_SPACE); 4758 4759 /* 4760 * If this is the main process stack, see if we're over the stack 4761 * limit. 4762 */ 4763 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4764 addr < (vm_offset_t)vm->vm_stacktop; 4765 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4766 return (KERN_NO_SPACE); 4767 4768 #ifdef RACCT 4769 if (racct_enable) { 4770 PROC_LOCK(p); 4771 if (is_procstack && racct_set(p, RACCT_STACK, 4772 ctob(vm->vm_ssize) + grow_amount)) { 4773 PROC_UNLOCK(p); 4774 return (KERN_NO_SPACE); 4775 } 4776 PROC_UNLOCK(p); 4777 } 4778 #endif 4779 4780 grow_amount = roundup(grow_amount, sgrowsiz); 4781 if (grow_amount > max_grow) 4782 grow_amount = max_grow; 4783 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4784 grow_amount = trunc_page((vm_size_t)stacklim) - 4785 ctob(vm->vm_ssize); 4786 } 4787 4788 #ifdef notyet 4789 PROC_LOCK(p); 4790 limit = racct_get_available(p, RACCT_STACK); 4791 PROC_UNLOCK(p); 4792 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4793 grow_amount = limit - ctob(vm->vm_ssize); 4794 #endif 4795 4796 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4797 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4798 rv = KERN_NO_SPACE; 4799 goto out; 4800 } 4801 #ifdef RACCT 4802 if (racct_enable) { 4803 PROC_LOCK(p); 4804 if (racct_set(p, RACCT_MEMLOCK, 4805 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4806 PROC_UNLOCK(p); 4807 rv = KERN_NO_SPACE; 4808 goto out; 4809 } 4810 PROC_UNLOCK(p); 4811 } 4812 #endif 4813 } 4814 4815 /* If we would blow our VMEM resource limit, no go */ 4816 if (map->size + grow_amount > vmemlim) { 4817 rv = KERN_NO_SPACE; 4818 goto out; 4819 } 4820 #ifdef RACCT 4821 if (racct_enable) { 4822 PROC_LOCK(p); 4823 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4824 PROC_UNLOCK(p); 4825 rv = KERN_NO_SPACE; 4826 goto out; 4827 } 4828 PROC_UNLOCK(p); 4829 } 4830 #endif 4831 4832 if (vm_map_lock_upgrade(map)) { 4833 gap_entry = NULL; 4834 vm_map_lock_read(map); 4835 goto retry; 4836 } 4837 4838 /* 4839 * The gap_entry "offset" field is overloaded. See 4840 * vm_map_stack_locked(). 4841 */ 4842 prot = PROT_EXTRACT(gap_entry->offset); 4843 max = PROT_MAX_EXTRACT(gap_entry->offset); 4844 sgp = gap_entry->next_read; 4845 4846 grow_start = gap_entry->end - grow_amount; 4847 if (gap_entry->start + grow_amount == gap_entry->end) { 4848 gap_start = gap_entry->start; 4849 gap_end = gap_entry->end; 4850 vm_map_entry_delete(map, gap_entry); 4851 gap_deleted = true; 4852 } else { 4853 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4854 vm_map_entry_resize(map, gap_entry, -grow_amount); 4855 gap_deleted = false; 4856 } 4857 rv = vm_map_insert(map, NULL, 0, grow_start, 4858 grow_start + grow_amount, prot, max, MAP_STACK_AREA); 4859 if (rv != KERN_SUCCESS) { 4860 if (gap_deleted) { 4861 rv1 = vm_map_insert1(map, NULL, 0, gap_start, 4862 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4863 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP, 4864 &gap_entry); 4865 MPASS(rv1 == KERN_SUCCESS); 4866 gap_entry->next_read = sgp; 4867 gap_entry->offset = prot | PROT_MAX(max); 4868 } else { 4869 vm_map_entry_resize(map, gap_entry, 4870 grow_amount); 4871 } 4872 } 4873 if (rv == KERN_SUCCESS && is_procstack) 4874 vm->vm_ssize += btoc(grow_amount); 4875 4876 /* 4877 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4878 */ 4879 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4880 rv = vm_map_wire_locked(map, grow_start, 4881 grow_start + grow_amount, 4882 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4883 } 4884 vm_map_lock_downgrade(map); 4885 4886 out: 4887 #ifdef RACCT 4888 if (racct_enable && rv != KERN_SUCCESS) { 4889 PROC_LOCK(p); 4890 error = racct_set(p, RACCT_VMEM, map->size); 4891 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4892 if (!old_mlock) { 4893 error = racct_set(p, RACCT_MEMLOCK, 4894 ptoa(pmap_wired_count(map->pmap))); 4895 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4896 } 4897 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4898 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4899 PROC_UNLOCK(p); 4900 } 4901 #endif 4902 4903 return (rv); 4904 } 4905 4906 /* 4907 * Unshare the specified VM space for exec. If other processes are 4908 * mapped to it, then create a new one. The new vmspace is null. 4909 */ 4910 int 4911 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4912 { 4913 struct vmspace *oldvmspace = p->p_vmspace; 4914 struct vmspace *newvmspace; 4915 4916 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4917 ("vmspace_exec recursed")); 4918 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4919 if (newvmspace == NULL) 4920 return (ENOMEM); 4921 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4922 /* 4923 * This code is written like this for prototype purposes. The 4924 * goal is to avoid running down the vmspace here, but let the 4925 * other process's that are still using the vmspace to finally 4926 * run it down. Even though there is little or no chance of blocking 4927 * here, it is a good idea to keep this form for future mods. 4928 */ 4929 PROC_VMSPACE_LOCK(p); 4930 p->p_vmspace = newvmspace; 4931 PROC_VMSPACE_UNLOCK(p); 4932 if (p == curthread->td_proc) 4933 pmap_activate(curthread); 4934 curthread->td_pflags |= TDP_EXECVMSPC; 4935 return (0); 4936 } 4937 4938 /* 4939 * Unshare the specified VM space for forcing COW. This 4940 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4941 */ 4942 int 4943 vmspace_unshare(struct proc *p) 4944 { 4945 struct vmspace *oldvmspace = p->p_vmspace; 4946 struct vmspace *newvmspace; 4947 vm_ooffset_t fork_charge; 4948 4949 /* 4950 * The caller is responsible for ensuring that the reference count 4951 * cannot concurrently transition 1 -> 2. 4952 */ 4953 if (refcount_load(&oldvmspace->vm_refcnt) == 1) 4954 return (0); 4955 fork_charge = 0; 4956 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4957 if (newvmspace == NULL) 4958 return (ENOMEM); 4959 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4960 vmspace_free(newvmspace); 4961 return (ENOMEM); 4962 } 4963 PROC_VMSPACE_LOCK(p); 4964 p->p_vmspace = newvmspace; 4965 PROC_VMSPACE_UNLOCK(p); 4966 if (p == curthread->td_proc) 4967 pmap_activate(curthread); 4968 vmspace_free(oldvmspace); 4969 return (0); 4970 } 4971 4972 /* 4973 * vm_map_lookup: 4974 * 4975 * Finds the VM object, offset, and 4976 * protection for a given virtual address in the 4977 * specified map, assuming a page fault of the 4978 * type specified. 4979 * 4980 * Leaves the map in question locked for read; return 4981 * values are guaranteed until a vm_map_lookup_done 4982 * call is performed. Note that the map argument 4983 * is in/out; the returned map must be used in 4984 * the call to vm_map_lookup_done. 4985 * 4986 * A handle (out_entry) is returned for use in 4987 * vm_map_lookup_done, to make that fast. 4988 * 4989 * If a lookup is requested with "write protection" 4990 * specified, the map may be changed to perform virtual 4991 * copying operations, although the data referenced will 4992 * remain the same. 4993 */ 4994 int 4995 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4996 vm_offset_t vaddr, 4997 vm_prot_t fault_typea, 4998 vm_map_entry_t *out_entry, /* OUT */ 4999 vm_object_t *object, /* OUT */ 5000 vm_pindex_t *pindex, /* OUT */ 5001 vm_prot_t *out_prot, /* OUT */ 5002 boolean_t *wired) /* OUT */ 5003 { 5004 vm_map_entry_t entry; 5005 vm_map_t map = *var_map; 5006 vm_prot_t prot; 5007 vm_prot_t fault_type; 5008 vm_object_t eobject; 5009 vm_size_t size; 5010 struct ucred *cred; 5011 5012 RetryLookup: 5013 5014 vm_map_lock_read(map); 5015 5016 RetryLookupLocked: 5017 /* 5018 * Lookup the faulting address. 5019 */ 5020 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 5021 vm_map_unlock_read(map); 5022 return (KERN_INVALID_ADDRESS); 5023 } 5024 5025 entry = *out_entry; 5026 5027 /* 5028 * Handle submaps. 5029 */ 5030 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5031 vm_map_t old_map = map; 5032 5033 *var_map = map = entry->object.sub_map; 5034 vm_map_unlock_read(old_map); 5035 goto RetryLookup; 5036 } 5037 5038 /* 5039 * Check whether this task is allowed to have this page. 5040 */ 5041 prot = entry->protection; 5042 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 5043 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 5044 if (prot == VM_PROT_NONE && map != kernel_map && 5045 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 5046 (entry->eflags & MAP_ENTRY_STACK_GAP) != 0 && 5047 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 5048 goto RetryLookupLocked; 5049 } 5050 fault_type = fault_typea & VM_PROT_ALL; 5051 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 5052 vm_map_unlock_read(map); 5053 return (KERN_PROTECTION_FAILURE); 5054 } 5055 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 5056 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 5057 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 5058 ("entry %p flags %x", entry, entry->eflags)); 5059 if ((fault_typea & VM_PROT_COPY) != 0 && 5060 (entry->max_protection & VM_PROT_WRITE) == 0 && 5061 (entry->eflags & MAP_ENTRY_COW) == 0) { 5062 vm_map_unlock_read(map); 5063 return (KERN_PROTECTION_FAILURE); 5064 } 5065 5066 /* 5067 * If this page is not pageable, we have to get it for all possible 5068 * accesses. 5069 */ 5070 *wired = (entry->wired_count != 0); 5071 if (*wired) 5072 fault_type = entry->protection; 5073 size = entry->end - entry->start; 5074 5075 /* 5076 * If the entry was copy-on-write, we either ... 5077 */ 5078 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5079 /* 5080 * If we want to write the page, we may as well handle that 5081 * now since we've got the map locked. 5082 * 5083 * If we don't need to write the page, we just demote the 5084 * permissions allowed. 5085 */ 5086 if ((fault_type & VM_PROT_WRITE) != 0 || 5087 (fault_typea & VM_PROT_COPY) != 0) { 5088 /* 5089 * Make a new object, and place it in the object 5090 * chain. Note that no new references have appeared 5091 * -- one just moved from the map to the new 5092 * object. 5093 */ 5094 if (vm_map_lock_upgrade(map)) 5095 goto RetryLookup; 5096 5097 if (entry->cred == NULL) { 5098 /* 5099 * The debugger owner is charged for 5100 * the memory. 5101 */ 5102 cred = curthread->td_ucred; 5103 crhold(cred); 5104 if (!swap_reserve_by_cred(size, cred)) { 5105 crfree(cred); 5106 vm_map_unlock(map); 5107 return (KERN_RESOURCE_SHORTAGE); 5108 } 5109 entry->cred = cred; 5110 } 5111 eobject = entry->object.vm_object; 5112 vm_object_shadow(&entry->object.vm_object, 5113 &entry->offset, size, entry->cred, false); 5114 if (eobject == entry->object.vm_object) { 5115 /* 5116 * The object was not shadowed. 5117 */ 5118 swap_release_by_cred(size, entry->cred); 5119 crfree(entry->cred); 5120 } 5121 entry->cred = NULL; 5122 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 5123 5124 vm_map_lock_downgrade(map); 5125 } else { 5126 /* 5127 * We're attempting to read a copy-on-write page -- 5128 * don't allow writes. 5129 */ 5130 prot &= ~VM_PROT_WRITE; 5131 } 5132 } 5133 5134 /* 5135 * Create an object if necessary. 5136 */ 5137 if (entry->object.vm_object == NULL && !vm_map_is_system(map)) { 5138 if (vm_map_lock_upgrade(map)) 5139 goto RetryLookup; 5140 entry->object.vm_object = vm_object_allocate_anon(atop(size), 5141 NULL, entry->cred, size); 5142 entry->offset = 0; 5143 entry->cred = NULL; 5144 vm_map_lock_downgrade(map); 5145 } 5146 5147 /* 5148 * Return the object/offset from this entry. If the entry was 5149 * copy-on-write or empty, it has been fixed up. 5150 */ 5151 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5152 *object = entry->object.vm_object; 5153 5154 *out_prot = prot; 5155 return (KERN_SUCCESS); 5156 } 5157 5158 /* 5159 * vm_map_lookup_locked: 5160 * 5161 * Lookup the faulting address. A version of vm_map_lookup that returns 5162 * KERN_FAILURE instead of blocking on map lock or memory allocation. 5163 */ 5164 int 5165 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 5166 vm_offset_t vaddr, 5167 vm_prot_t fault_typea, 5168 vm_map_entry_t *out_entry, /* OUT */ 5169 vm_object_t *object, /* OUT */ 5170 vm_pindex_t *pindex, /* OUT */ 5171 vm_prot_t *out_prot, /* OUT */ 5172 boolean_t *wired) /* OUT */ 5173 { 5174 vm_map_entry_t entry; 5175 vm_map_t map = *var_map; 5176 vm_prot_t prot; 5177 vm_prot_t fault_type = fault_typea; 5178 5179 /* 5180 * Lookup the faulting address. 5181 */ 5182 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 5183 return (KERN_INVALID_ADDRESS); 5184 5185 entry = *out_entry; 5186 5187 /* 5188 * Fail if the entry refers to a submap. 5189 */ 5190 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 5191 return (KERN_FAILURE); 5192 5193 /* 5194 * Check whether this task is allowed to have this page. 5195 */ 5196 prot = entry->protection; 5197 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 5198 if ((fault_type & prot) != fault_type) 5199 return (KERN_PROTECTION_FAILURE); 5200 5201 /* 5202 * If this page is not pageable, we have to get it for all possible 5203 * accesses. 5204 */ 5205 *wired = (entry->wired_count != 0); 5206 if (*wired) 5207 fault_type = entry->protection; 5208 5209 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5210 /* 5211 * Fail if the entry was copy-on-write for a write fault. 5212 */ 5213 if (fault_type & VM_PROT_WRITE) 5214 return (KERN_FAILURE); 5215 /* 5216 * We're attempting to read a copy-on-write page -- 5217 * don't allow writes. 5218 */ 5219 prot &= ~VM_PROT_WRITE; 5220 } 5221 5222 /* 5223 * Fail if an object should be created. 5224 */ 5225 if (entry->object.vm_object == NULL && !vm_map_is_system(map)) 5226 return (KERN_FAILURE); 5227 5228 /* 5229 * Return the object/offset from this entry. If the entry was 5230 * copy-on-write or empty, it has been fixed up. 5231 */ 5232 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5233 *object = entry->object.vm_object; 5234 5235 *out_prot = prot; 5236 return (KERN_SUCCESS); 5237 } 5238 5239 /* 5240 * vm_map_lookup_done: 5241 * 5242 * Releases locks acquired by a vm_map_lookup 5243 * (according to the handle returned by that lookup). 5244 */ 5245 void 5246 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 5247 { 5248 /* 5249 * Unlock the main-level map 5250 */ 5251 vm_map_unlock_read(map); 5252 } 5253 5254 vm_offset_t 5255 vm_map_max_KBI(const struct vm_map *map) 5256 { 5257 5258 return (vm_map_max(map)); 5259 } 5260 5261 vm_offset_t 5262 vm_map_min_KBI(const struct vm_map *map) 5263 { 5264 5265 return (vm_map_min(map)); 5266 } 5267 5268 pmap_t 5269 vm_map_pmap_KBI(vm_map_t map) 5270 { 5271 5272 return (map->pmap); 5273 } 5274 5275 bool 5276 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end) 5277 { 5278 5279 return (vm_map_range_valid(map, start, end)); 5280 } 5281 5282 #ifdef INVARIANTS 5283 static void 5284 _vm_map_assert_consistent(vm_map_t map, int check) 5285 { 5286 vm_map_entry_t entry, prev; 5287 vm_map_entry_t cur, header, lbound, ubound; 5288 vm_size_t max_left, max_right; 5289 5290 #ifdef DIAGNOSTIC 5291 ++map->nupdates; 5292 #endif 5293 if (enable_vmmap_check != check) 5294 return; 5295 5296 header = prev = &map->header; 5297 VM_MAP_ENTRY_FOREACH(entry, map) { 5298 KASSERT(prev->end <= entry->start, 5299 ("map %p prev->end = %jx, start = %jx", map, 5300 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5301 KASSERT(entry->start < entry->end, 5302 ("map %p start = %jx, end = %jx", map, 5303 (uintmax_t)entry->start, (uintmax_t)entry->end)); 5304 KASSERT(entry->left == header || 5305 entry->left->start < entry->start, 5306 ("map %p left->start = %jx, start = %jx", map, 5307 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 5308 KASSERT(entry->right == header || 5309 entry->start < entry->right->start, 5310 ("map %p start = %jx, right->start = %jx", map, 5311 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 5312 cur = map->root; 5313 lbound = ubound = header; 5314 for (;;) { 5315 if (entry->start < cur->start) { 5316 ubound = cur; 5317 cur = cur->left; 5318 KASSERT(cur != lbound, 5319 ("map %p cannot find %jx", 5320 map, (uintmax_t)entry->start)); 5321 } else if (cur->end <= entry->start) { 5322 lbound = cur; 5323 cur = cur->right; 5324 KASSERT(cur != ubound, 5325 ("map %p cannot find %jx", 5326 map, (uintmax_t)entry->start)); 5327 } else { 5328 KASSERT(cur == entry, 5329 ("map %p cannot find %jx", 5330 map, (uintmax_t)entry->start)); 5331 break; 5332 } 5333 } 5334 max_left = vm_map_entry_max_free_left(entry, lbound); 5335 max_right = vm_map_entry_max_free_right(entry, ubound); 5336 KASSERT(entry->max_free == vm_size_max(max_left, max_right), 5337 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 5338 (uintmax_t)entry->max_free, 5339 (uintmax_t)max_left, (uintmax_t)max_right)); 5340 prev = entry; 5341 } 5342 KASSERT(prev->end <= entry->start, 5343 ("map %p prev->end = %jx, start = %jx", map, 5344 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5345 } 5346 #endif 5347 5348 #include "opt_ddb.h" 5349 #ifdef DDB 5350 #include <sys/kernel.h> 5351 5352 #include <ddb/ddb.h> 5353 5354 static void 5355 vm_map_print(vm_map_t map) 5356 { 5357 vm_map_entry_t entry, prev; 5358 5359 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 5360 (void *)map, 5361 (void *)map->pmap, map->nentries, map->timestamp); 5362 5363 db_indent += 2; 5364 prev = &map->header; 5365 VM_MAP_ENTRY_FOREACH(entry, map) { 5366 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 5367 (void *)entry, (void *)entry->start, (void *)entry->end, 5368 entry->eflags); 5369 { 5370 static const char * const inheritance_name[4] = 5371 {"share", "copy", "none", "donate_copy"}; 5372 5373 db_iprintf(" prot=%x/%x/%s", 5374 entry->protection, 5375 entry->max_protection, 5376 inheritance_name[(int)(unsigned char) 5377 entry->inheritance]); 5378 if (entry->wired_count != 0) 5379 db_printf(", wired"); 5380 } 5381 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5382 db_printf(", share=%p, offset=0x%jx\n", 5383 (void *)entry->object.sub_map, 5384 (uintmax_t)entry->offset); 5385 if (prev == &map->header || 5386 prev->object.sub_map != 5387 entry->object.sub_map) { 5388 db_indent += 2; 5389 vm_map_print((vm_map_t)entry->object.sub_map); 5390 db_indent -= 2; 5391 } 5392 } else { 5393 if (entry->cred != NULL) 5394 db_printf(", ruid %d", entry->cred->cr_ruid); 5395 db_printf(", object=%p, offset=0x%jx", 5396 (void *)entry->object.vm_object, 5397 (uintmax_t)entry->offset); 5398 if (entry->object.vm_object && entry->object.vm_object->cred) 5399 db_printf(", obj ruid %d charge %jx", 5400 entry->object.vm_object->cred->cr_ruid, 5401 (uintmax_t)entry->object.vm_object->charge); 5402 if (entry->eflags & MAP_ENTRY_COW) 5403 db_printf(", copy (%s)", 5404 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 5405 db_printf("\n"); 5406 5407 if (prev == &map->header || 5408 prev->object.vm_object != 5409 entry->object.vm_object) { 5410 db_indent += 2; 5411 vm_object_print((db_expr_t)(intptr_t) 5412 entry->object.vm_object, 5413 0, 0, (char *)0); 5414 db_indent -= 2; 5415 } 5416 } 5417 prev = entry; 5418 } 5419 db_indent -= 2; 5420 } 5421 5422 DB_SHOW_COMMAND(map, map) 5423 { 5424 5425 if (!have_addr) { 5426 db_printf("usage: show map <addr>\n"); 5427 return; 5428 } 5429 vm_map_print((vm_map_t)addr); 5430 } 5431 5432 DB_SHOW_COMMAND(procvm, procvm) 5433 { 5434 struct proc *p; 5435 5436 if (have_addr) { 5437 p = db_lookup_proc(addr); 5438 } else { 5439 p = curproc; 5440 } 5441 5442 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 5443 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 5444 (void *)vmspace_pmap(p->p_vmspace)); 5445 5446 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 5447 } 5448 5449 #endif /* DDB */ 5450