xref: /freebsd/sys/vm/vm_map.c (revision d302c0539307d1b7ae9a0206d83a1fb9ccc44900)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/elf.h>
68 #include <sys/kernel.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/mman.h>
75 #include <sys/vnode.h>
76 #include <sys/racct.h>
77 #include <sys/resourcevar.h>
78 #include <sys/rwlock.h>
79 #include <sys/file.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/shm.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/uma.h>
97 
98 /*
99  *	Virtual memory maps provide for the mapping, protection,
100  *	and sharing of virtual memory objects.  In addition,
101  *	this module provides for an efficient virtual copy of
102  *	memory from one map to another.
103  *
104  *	Synchronization is required prior to most operations.
105  *
106  *	Maps consist of an ordered doubly-linked list of simple
107  *	entries; a self-adjusting binary search tree of these
108  *	entries is used to speed up lookups.
109  *
110  *	Since portions of maps are specified by start/end addresses,
111  *	which may not align with existing map entries, all
112  *	routines merely "clip" entries to these start/end values.
113  *	[That is, an entry is split into two, bordering at a
114  *	start or end value.]  Note that these clippings may not
115  *	always be necessary (as the two resulting entries are then
116  *	not changed); however, the clipping is done for convenience.
117  *
118  *	As mentioned above, virtual copy operations are performed
119  *	by copying VM object references from one map to
120  *	another, and then marking both regions as copy-on-write.
121  */
122 
123 static struct mtx map_sleep_mtx;
124 static uma_zone_t mapentzone;
125 static uma_zone_t kmapentzone;
126 static uma_zone_t vmspace_zone;
127 static int vmspace_zinit(void *mem, int size, int flags);
128 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
129     vm_offset_t max);
130 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
131 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
132 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
133 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
134     vm_map_entry_t gap_entry);
135 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
136     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
137 #ifdef INVARIANTS
138 static void vmspace_zdtor(void *mem, int size, void *arg);
139 #endif
140 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
141     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
142     int cow);
143 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
144     vm_offset_t failed_addr);
145 
146 #define	CONTAINS_BITS(set, bits)	((~(set) & (bits)) == 0)
147 
148 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
149     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151 
152 /*
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158 
159 /*
160  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
161  *
162  *	Asserts that the starting and ending region
163  *	addresses fall within the valid range of the map.
164  */
165 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
166 		{					\
167 		if (start < vm_map_min(map))		\
168 			start = vm_map_min(map);	\
169 		if (end > vm_map_max(map))		\
170 			end = vm_map_max(map);		\
171 		if (start > end)			\
172 			start = end;			\
173 		}
174 
175 #ifndef UMA_USE_DMAP
176 
177 /*
178  * Allocate a new slab for kernel map entries.  The kernel map may be locked or
179  * unlocked, depending on whether the request is coming from the kernel map or a
180  * submap.  This function allocates a virtual address range directly from the
181  * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
182  * lock and also to avoid triggering allocator recursion in the vmem boundary
183  * tag allocator.
184  */
185 static void *
186 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
187     int wait)
188 {
189 	vm_offset_t addr;
190 	int error, locked;
191 
192 	*pflag = UMA_SLAB_PRIV;
193 
194 	if (!(locked = vm_map_locked(kernel_map)))
195 		vm_map_lock(kernel_map);
196 	addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
197 	if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
198 		panic("%s: kernel map is exhausted", __func__);
199 	error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
200 	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
201 	if (error != KERN_SUCCESS)
202 		panic("%s: vm_map_insert() failed: %d", __func__, error);
203 	if (!locked)
204 		vm_map_unlock(kernel_map);
205 	error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
206 	    M_USE_RESERVE | (wait & M_ZERO));
207 	if (error == KERN_SUCCESS) {
208 		return ((void *)addr);
209 	} else {
210 		if (!locked)
211 			vm_map_lock(kernel_map);
212 		vm_map_delete(kernel_map, addr, bytes);
213 		if (!locked)
214 			vm_map_unlock(kernel_map);
215 		return (NULL);
216 	}
217 }
218 
219 static void
220 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
221 {
222 	vm_offset_t addr;
223 	int error __diagused;
224 
225 	if ((pflag & UMA_SLAB_PRIV) == 0)
226 		/* XXX leaked */
227 		return;
228 
229 	addr = (vm_offset_t)item;
230 	kmem_unback(kernel_object, addr, size);
231 	error = vm_map_remove(kernel_map, addr, addr + size);
232 	KASSERT(error == KERN_SUCCESS,
233 	    ("%s: vm_map_remove failed: %d", __func__, error));
234 }
235 
236 /*
237  * The worst-case upper bound on the number of kernel map entries that may be
238  * created before the zone must be replenished in _vm_map_unlock().
239  */
240 #define	KMAPENT_RESERVE		1
241 
242 #endif /* !UMD_MD_SMALL_ALLOC */
243 
244 /*
245  *	vm_map_startup:
246  *
247  *	Initialize the vm_map module.  Must be called before any other vm_map
248  *	routines.
249  *
250  *	User map and entry structures are allocated from the general purpose
251  *	memory pool.  Kernel maps are statically defined.  Kernel map entries
252  *	require special handling to avoid recursion; see the comments above
253  *	kmapent_alloc() and in vm_map_entry_create().
254  */
255 void
256 vm_map_startup(void)
257 {
258 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
259 
260 	/*
261 	 * Disable the use of per-CPU buckets: map entry allocation is
262 	 * serialized by the kernel map lock.
263 	 */
264 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
265 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
266 	    UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
267 #ifndef UMA_USE_DMAP
268 	/* Reserve an extra map entry for use when replenishing the reserve. */
269 	uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
270 	uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
271 	uma_zone_set_allocf(kmapentzone, kmapent_alloc);
272 	uma_zone_set_freef(kmapentzone, kmapent_free);
273 #endif
274 
275 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
276 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
277 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
278 #ifdef INVARIANTS
279 	    vmspace_zdtor,
280 #else
281 	    NULL,
282 #endif
283 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
284 }
285 
286 static int
287 vmspace_zinit(void *mem, int size, int flags)
288 {
289 	struct vmspace *vm;
290 	vm_map_t map;
291 
292 	vm = (struct vmspace *)mem;
293 	map = &vm->vm_map;
294 
295 	memset(map, 0, sizeof(*map));
296 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
297 	    MTX_DEF | MTX_DUPOK);
298 	sx_init(&map->lock, "vm map (user)");
299 	PMAP_LOCK_INIT(vmspace_pmap(vm));
300 	return (0);
301 }
302 
303 #ifdef INVARIANTS
304 static void
305 vmspace_zdtor(void *mem, int size, void *arg)
306 {
307 	struct vmspace *vm;
308 
309 	vm = (struct vmspace *)mem;
310 	KASSERT(vm->vm_map.nentries == 0,
311 	    ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
312 	KASSERT(vm->vm_map.size == 0,
313 	    ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
314 }
315 #endif	/* INVARIANTS */
316 
317 /*
318  * Allocate a vmspace structure, including a vm_map and pmap,
319  * and initialize those structures.  The refcnt is set to 1.
320  */
321 struct vmspace *
322 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
323 {
324 	struct vmspace *vm;
325 
326 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
327 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
328 	if (!pinit(vmspace_pmap(vm))) {
329 		uma_zfree(vmspace_zone, vm);
330 		return (NULL);
331 	}
332 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
333 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
334 	refcount_init(&vm->vm_refcnt, 1);
335 	vm->vm_shm = NULL;
336 	vm->vm_swrss = 0;
337 	vm->vm_tsize = 0;
338 	vm->vm_dsize = 0;
339 	vm->vm_ssize = 0;
340 	vm->vm_taddr = 0;
341 	vm->vm_daddr = 0;
342 	vm->vm_maxsaddr = 0;
343 	return (vm);
344 }
345 
346 #ifdef RACCT
347 static void
348 vmspace_container_reset(struct proc *p)
349 {
350 
351 	PROC_LOCK(p);
352 	racct_set(p, RACCT_DATA, 0);
353 	racct_set(p, RACCT_STACK, 0);
354 	racct_set(p, RACCT_RSS, 0);
355 	racct_set(p, RACCT_MEMLOCK, 0);
356 	racct_set(p, RACCT_VMEM, 0);
357 	PROC_UNLOCK(p);
358 }
359 #endif
360 
361 static inline void
362 vmspace_dofree(struct vmspace *vm)
363 {
364 
365 	CTR1(KTR_VM, "vmspace_free: %p", vm);
366 
367 	/*
368 	 * Make sure any SysV shm is freed, it might not have been in
369 	 * exit1().
370 	 */
371 	shmexit(vm);
372 
373 	/*
374 	 * Lock the map, to wait out all other references to it.
375 	 * Delete all of the mappings and pages they hold, then call
376 	 * the pmap module to reclaim anything left.
377 	 */
378 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
379 	    vm_map_max(&vm->vm_map));
380 
381 	pmap_release(vmspace_pmap(vm));
382 	vm->vm_map.pmap = NULL;
383 	uma_zfree(vmspace_zone, vm);
384 }
385 
386 void
387 vmspace_free(struct vmspace *vm)
388 {
389 
390 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
391 	    "vmspace_free() called");
392 
393 	if (refcount_release(&vm->vm_refcnt))
394 		vmspace_dofree(vm);
395 }
396 
397 void
398 vmspace_exitfree(struct proc *p)
399 {
400 	struct vmspace *vm;
401 
402 	PROC_VMSPACE_LOCK(p);
403 	vm = p->p_vmspace;
404 	p->p_vmspace = NULL;
405 	PROC_VMSPACE_UNLOCK(p);
406 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
407 	vmspace_free(vm);
408 }
409 
410 void
411 vmspace_exit(struct thread *td)
412 {
413 	struct vmspace *vm;
414 	struct proc *p;
415 	bool released;
416 
417 	p = td->td_proc;
418 	vm = p->p_vmspace;
419 
420 	/*
421 	 * Prepare to release the vmspace reference.  The thread that releases
422 	 * the last reference is responsible for tearing down the vmspace.
423 	 * However, threads not releasing the final reference must switch to the
424 	 * kernel's vmspace0 before the decrement so that the subsequent pmap
425 	 * deactivation does not modify a freed vmspace.
426 	 */
427 	refcount_acquire(&vmspace0.vm_refcnt);
428 	if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
429 		if (p->p_vmspace != &vmspace0) {
430 			PROC_VMSPACE_LOCK(p);
431 			p->p_vmspace = &vmspace0;
432 			PROC_VMSPACE_UNLOCK(p);
433 			pmap_activate(td);
434 		}
435 		released = refcount_release(&vm->vm_refcnt);
436 	}
437 	if (released) {
438 		/*
439 		 * pmap_remove_pages() expects the pmap to be active, so switch
440 		 * back first if necessary.
441 		 */
442 		if (p->p_vmspace != vm) {
443 			PROC_VMSPACE_LOCK(p);
444 			p->p_vmspace = vm;
445 			PROC_VMSPACE_UNLOCK(p);
446 			pmap_activate(td);
447 		}
448 		pmap_remove_pages(vmspace_pmap(vm));
449 		PROC_VMSPACE_LOCK(p);
450 		p->p_vmspace = &vmspace0;
451 		PROC_VMSPACE_UNLOCK(p);
452 		pmap_activate(td);
453 		vmspace_dofree(vm);
454 	}
455 #ifdef RACCT
456 	if (racct_enable)
457 		vmspace_container_reset(p);
458 #endif
459 }
460 
461 /* Acquire reference to vmspace owned by another process. */
462 
463 struct vmspace *
464 vmspace_acquire_ref(struct proc *p)
465 {
466 	struct vmspace *vm;
467 
468 	PROC_VMSPACE_LOCK(p);
469 	vm = p->p_vmspace;
470 	if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
471 		PROC_VMSPACE_UNLOCK(p);
472 		return (NULL);
473 	}
474 	if (vm != p->p_vmspace) {
475 		PROC_VMSPACE_UNLOCK(p);
476 		vmspace_free(vm);
477 		return (NULL);
478 	}
479 	PROC_VMSPACE_UNLOCK(p);
480 	return (vm);
481 }
482 
483 /*
484  * Switch between vmspaces in an AIO kernel process.
485  *
486  * The new vmspace is either the vmspace of a user process obtained
487  * from an active AIO request or the initial vmspace of the AIO kernel
488  * process (when it is idling).  Because user processes will block to
489  * drain any active AIO requests before proceeding in exit() or
490  * execve(), the reference count for vmspaces from AIO requests can
491  * never be 0.  Similarly, AIO kernel processes hold an extra
492  * reference on their initial vmspace for the life of the process.  As
493  * a result, the 'newvm' vmspace always has a non-zero reference
494  * count.  This permits an additional reference on 'newvm' to be
495  * acquired via a simple atomic increment rather than the loop in
496  * vmspace_acquire_ref() above.
497  */
498 void
499 vmspace_switch_aio(struct vmspace *newvm)
500 {
501 	struct vmspace *oldvm;
502 
503 	/* XXX: Need some way to assert that this is an aio daemon. */
504 
505 	KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
506 	    ("vmspace_switch_aio: newvm unreferenced"));
507 
508 	oldvm = curproc->p_vmspace;
509 	if (oldvm == newvm)
510 		return;
511 
512 	/*
513 	 * Point to the new address space and refer to it.
514 	 */
515 	curproc->p_vmspace = newvm;
516 	refcount_acquire(&newvm->vm_refcnt);
517 
518 	/* Activate the new mapping. */
519 	pmap_activate(curthread);
520 
521 	vmspace_free(oldvm);
522 }
523 
524 void
525 _vm_map_lock(vm_map_t map, const char *file, int line)
526 {
527 
528 	if (map->system_map)
529 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
530 	else
531 		sx_xlock_(&map->lock, file, line);
532 	map->timestamp++;
533 }
534 
535 void
536 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
537 {
538 	vm_object_t object;
539 	struct vnode *vp;
540 	bool vp_held;
541 
542 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
543 		return;
544 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
545 	    ("Submap with execs"));
546 	object = entry->object.vm_object;
547 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
548 	if ((object->flags & OBJ_ANON) != 0)
549 		object = object->handle;
550 	else
551 		KASSERT(object->backing_object == NULL,
552 		    ("non-anon object %p shadows", object));
553 	KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
554 	    entry, entry->object.vm_object));
555 
556 	/*
557 	 * Mostly, we do not lock the backing object.  It is
558 	 * referenced by the entry we are processing, so it cannot go
559 	 * away.
560 	 */
561 	vm_pager_getvp(object, &vp, &vp_held);
562 	if (vp != NULL) {
563 		if (add) {
564 			VOP_SET_TEXT_CHECKED(vp);
565 		} else {
566 			vn_lock(vp, LK_SHARED | LK_RETRY);
567 			VOP_UNSET_TEXT_CHECKED(vp);
568 			VOP_UNLOCK(vp);
569 		}
570 		if (vp_held)
571 			vdrop(vp);
572 	}
573 }
574 
575 /*
576  * Use a different name for this vm_map_entry field when it's use
577  * is not consistent with its use as part of an ordered search tree.
578  */
579 #define defer_next right
580 
581 static void
582 vm_map_process_deferred(void)
583 {
584 	struct thread *td;
585 	vm_map_entry_t entry, next;
586 	vm_object_t object;
587 
588 	td = curthread;
589 	entry = td->td_map_def_user;
590 	td->td_map_def_user = NULL;
591 	while (entry != NULL) {
592 		next = entry->defer_next;
593 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
594 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
595 		    MAP_ENTRY_VN_EXEC));
596 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
597 			/*
598 			 * Decrement the object's writemappings and
599 			 * possibly the vnode's v_writecount.
600 			 */
601 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
602 			    ("Submap with writecount"));
603 			object = entry->object.vm_object;
604 			KASSERT(object != NULL, ("No object for writecount"));
605 			vm_pager_release_writecount(object, entry->start,
606 			    entry->end);
607 		}
608 		vm_map_entry_set_vnode_text(entry, false);
609 		vm_map_entry_deallocate(entry, FALSE);
610 		entry = next;
611 	}
612 }
613 
614 #ifdef INVARIANTS
615 static void
616 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
617 {
618 
619 	if (map->system_map)
620 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
621 	else
622 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
623 }
624 
625 #define	VM_MAP_ASSERT_LOCKED(map) \
626     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
627 
628 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
629 #ifdef DIAGNOSTIC
630 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
631 #else
632 static int enable_vmmap_check = VMMAP_CHECK_NONE;
633 #endif
634 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
635     &enable_vmmap_check, 0, "Enable vm map consistency checking");
636 
637 static void _vm_map_assert_consistent(vm_map_t map, int check);
638 
639 #define VM_MAP_ASSERT_CONSISTENT(map) \
640     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
641 #ifdef DIAGNOSTIC
642 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
643 	if (map->nupdates > map->nentries) {				\
644 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
645 		map->nupdates = 0;					\
646 	}								\
647 } while (0)
648 #else
649 #define VM_MAP_UNLOCK_CONSISTENT(map)
650 #endif
651 #else
652 #define	VM_MAP_ASSERT_LOCKED(map)
653 #define VM_MAP_ASSERT_CONSISTENT(map)
654 #define VM_MAP_UNLOCK_CONSISTENT(map)
655 #endif /* INVARIANTS */
656 
657 void
658 _vm_map_unlock(vm_map_t map, const char *file, int line)
659 {
660 
661 	VM_MAP_UNLOCK_CONSISTENT(map);
662 	if (map->system_map) {
663 #ifndef UMA_USE_DMAP
664 		if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
665 			uma_prealloc(kmapentzone, 1);
666 			map->flags &= ~MAP_REPLENISH;
667 		}
668 #endif
669 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
670 	} else {
671 		sx_xunlock_(&map->lock, file, line);
672 		vm_map_process_deferred();
673 	}
674 }
675 
676 void
677 _vm_map_lock_read(vm_map_t map, const char *file, int line)
678 {
679 
680 	if (map->system_map)
681 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
682 	else
683 		sx_slock_(&map->lock, file, line);
684 }
685 
686 void
687 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
688 {
689 
690 	if (map->system_map) {
691 		KASSERT((map->flags & MAP_REPLENISH) == 0,
692 		    ("%s: MAP_REPLENISH leaked", __func__));
693 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
694 	} else {
695 		sx_sunlock_(&map->lock, file, line);
696 		vm_map_process_deferred();
697 	}
698 }
699 
700 int
701 _vm_map_trylock(vm_map_t map, const char *file, int line)
702 {
703 	int error;
704 
705 	error = map->system_map ?
706 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
707 	    !sx_try_xlock_(&map->lock, file, line);
708 	if (error == 0)
709 		map->timestamp++;
710 	return (error == 0);
711 }
712 
713 int
714 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
715 {
716 	int error;
717 
718 	error = map->system_map ?
719 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
720 	    !sx_try_slock_(&map->lock, file, line);
721 	return (error == 0);
722 }
723 
724 /*
725  *	_vm_map_lock_upgrade:	[ internal use only ]
726  *
727  *	Tries to upgrade a read (shared) lock on the specified map to a write
728  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
729  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
730  *	returned without a read or write lock held.
731  *
732  *	Requires that the map be read locked.
733  */
734 int
735 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
736 {
737 	unsigned int last_timestamp;
738 
739 	if (map->system_map) {
740 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
741 	} else {
742 		if (!sx_try_upgrade_(&map->lock, file, line)) {
743 			last_timestamp = map->timestamp;
744 			sx_sunlock_(&map->lock, file, line);
745 			vm_map_process_deferred();
746 			/*
747 			 * If the map's timestamp does not change while the
748 			 * map is unlocked, then the upgrade succeeds.
749 			 */
750 			sx_xlock_(&map->lock, file, line);
751 			if (last_timestamp != map->timestamp) {
752 				sx_xunlock_(&map->lock, file, line);
753 				return (1);
754 			}
755 		}
756 	}
757 	map->timestamp++;
758 	return (0);
759 }
760 
761 void
762 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
763 {
764 
765 	if (map->system_map) {
766 		KASSERT((map->flags & MAP_REPLENISH) == 0,
767 		    ("%s: MAP_REPLENISH leaked", __func__));
768 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
769 	} else {
770 		VM_MAP_UNLOCK_CONSISTENT(map);
771 		sx_downgrade_(&map->lock, file, line);
772 	}
773 }
774 
775 /*
776  *	vm_map_locked:
777  *
778  *	Returns a non-zero value if the caller holds a write (exclusive) lock
779  *	on the specified map and the value "0" otherwise.
780  */
781 int
782 vm_map_locked(vm_map_t map)
783 {
784 
785 	if (map->system_map)
786 		return (mtx_owned(&map->system_mtx));
787 	else
788 		return (sx_xlocked(&map->lock));
789 }
790 
791 /*
792  *	_vm_map_unlock_and_wait:
793  *
794  *	Atomically releases the lock on the specified map and puts the calling
795  *	thread to sleep.  The calling thread will remain asleep until either
796  *	vm_map_wakeup() is performed on the map or the specified timeout is
797  *	exceeded.
798  *
799  *	WARNING!  This function does not perform deferred deallocations of
800  *	objects and map	entries.  Therefore, the calling thread is expected to
801  *	reacquire the map lock after reawakening and later perform an ordinary
802  *	unlock operation, such as vm_map_unlock(), before completing its
803  *	operation on the map.
804  */
805 int
806 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
807 {
808 
809 	VM_MAP_UNLOCK_CONSISTENT(map);
810 	mtx_lock(&map_sleep_mtx);
811 	if (map->system_map) {
812 		KASSERT((map->flags & MAP_REPLENISH) == 0,
813 		    ("%s: MAP_REPLENISH leaked", __func__));
814 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
815 	} else {
816 		sx_xunlock_(&map->lock, file, line);
817 	}
818 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
819 	    timo));
820 }
821 
822 /*
823  *	vm_map_wakeup:
824  *
825  *	Awaken any threads that have slept on the map using
826  *	vm_map_unlock_and_wait().
827  */
828 void
829 vm_map_wakeup(vm_map_t map)
830 {
831 
832 	/*
833 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
834 	 * from being performed (and lost) between the map unlock
835 	 * and the msleep() in _vm_map_unlock_and_wait().
836 	 */
837 	mtx_lock(&map_sleep_mtx);
838 	mtx_unlock(&map_sleep_mtx);
839 	wakeup(&map->root);
840 }
841 
842 void
843 vm_map_busy(vm_map_t map)
844 {
845 
846 	VM_MAP_ASSERT_LOCKED(map);
847 	map->busy++;
848 }
849 
850 void
851 vm_map_unbusy(vm_map_t map)
852 {
853 
854 	VM_MAP_ASSERT_LOCKED(map);
855 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
856 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
857 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
858 		wakeup(&map->busy);
859 	}
860 }
861 
862 void
863 vm_map_wait_busy(vm_map_t map)
864 {
865 
866 	VM_MAP_ASSERT_LOCKED(map);
867 	while (map->busy) {
868 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
869 		if (map->system_map)
870 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
871 		else
872 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
873 	}
874 	map->timestamp++;
875 }
876 
877 long
878 vmspace_resident_count(struct vmspace *vmspace)
879 {
880 	return pmap_resident_count(vmspace_pmap(vmspace));
881 }
882 
883 /*
884  * Initialize an existing vm_map structure
885  * such as that in the vmspace structure.
886  */
887 static void
888 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
889 {
890 
891 	map->header.eflags = MAP_ENTRY_HEADER;
892 	map->needs_wakeup = FALSE;
893 	map->system_map = 0;
894 	map->pmap = pmap;
895 	map->header.end = min;
896 	map->header.start = max;
897 	map->flags = 0;
898 	map->header.left = map->header.right = &map->header;
899 	map->root = NULL;
900 	map->timestamp = 0;
901 	map->busy = 0;
902 	map->anon_loc = 0;
903 #ifdef DIAGNOSTIC
904 	map->nupdates = 0;
905 #endif
906 }
907 
908 void
909 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
910 {
911 
912 	_vm_map_init(map, pmap, min, max);
913 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
914 	    MTX_DEF | MTX_DUPOK);
915 	sx_init(&map->lock, "vm map (user)");
916 }
917 
918 /*
919  *	vm_map_entry_dispose:	[ internal use only ]
920  *
921  *	Inverse of vm_map_entry_create.
922  */
923 static void
924 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
925 {
926 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
927 }
928 
929 /*
930  *	vm_map_entry_create:	[ internal use only ]
931  *
932  *	Allocates a VM map entry for insertion.
933  *	No entry fields are filled in.
934  */
935 static vm_map_entry_t
936 vm_map_entry_create(vm_map_t map)
937 {
938 	vm_map_entry_t new_entry;
939 
940 #ifndef UMA_USE_DMAP
941 	if (map == kernel_map) {
942 		VM_MAP_ASSERT_LOCKED(map);
943 
944 		/*
945 		 * A new slab of kernel map entries cannot be allocated at this
946 		 * point because the kernel map has not yet been updated to
947 		 * reflect the caller's request.  Therefore, we allocate a new
948 		 * map entry, dipping into the reserve if necessary, and set a
949 		 * flag indicating that the reserve must be replenished before
950 		 * the map is unlocked.
951 		 */
952 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
953 		if (new_entry == NULL) {
954 			new_entry = uma_zalloc(kmapentzone,
955 			    M_NOWAIT | M_NOVM | M_USE_RESERVE);
956 			kernel_map->flags |= MAP_REPLENISH;
957 		}
958 	} else
959 #endif
960 	if (map->system_map) {
961 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
962 	} else {
963 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
964 	}
965 	KASSERT(new_entry != NULL,
966 	    ("vm_map_entry_create: kernel resources exhausted"));
967 	return (new_entry);
968 }
969 
970 /*
971  *	vm_map_entry_set_behavior:
972  *
973  *	Set the expected access behavior, either normal, random, or
974  *	sequential.
975  */
976 static inline void
977 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
978 {
979 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
980 	    (behavior & MAP_ENTRY_BEHAV_MASK);
981 }
982 
983 /*
984  *	vm_map_entry_max_free_{left,right}:
985  *
986  *	Compute the size of the largest free gap between two entries,
987  *	one the root of a tree and the other the ancestor of that root
988  *	that is the least or greatest ancestor found on the search path.
989  */
990 static inline vm_size_t
991 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
992 {
993 
994 	return (root->left != left_ancestor ?
995 	    root->left->max_free : root->start - left_ancestor->end);
996 }
997 
998 static inline vm_size_t
999 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1000 {
1001 
1002 	return (root->right != right_ancestor ?
1003 	    root->right->max_free : right_ancestor->start - root->end);
1004 }
1005 
1006 /*
1007  *	vm_map_entry_{pred,succ}:
1008  *
1009  *	Find the {predecessor, successor} of the entry by taking one step
1010  *	in the appropriate direction and backtracking as much as necessary.
1011  *	vm_map_entry_succ is defined in vm_map.h.
1012  */
1013 static inline vm_map_entry_t
1014 vm_map_entry_pred(vm_map_entry_t entry)
1015 {
1016 	vm_map_entry_t prior;
1017 
1018 	prior = entry->left;
1019 	if (prior->right->start < entry->start) {
1020 		do
1021 			prior = prior->right;
1022 		while (prior->right != entry);
1023 	}
1024 	return (prior);
1025 }
1026 
1027 static inline vm_size_t
1028 vm_size_max(vm_size_t a, vm_size_t b)
1029 {
1030 
1031 	return (a > b ? a : b);
1032 }
1033 
1034 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {		\
1035 	vm_map_entry_t z;						\
1036 	vm_size_t max_free;						\
1037 									\
1038 	/*								\
1039 	 * Infer root->right->max_free == root->max_free when		\
1040 	 * y->max_free < root->max_free || root->max_free == 0.		\
1041 	 * Otherwise, look right to find it.				\
1042 	 */								\
1043 	y = root->left;							\
1044 	max_free = root->max_free;					\
1045 	KASSERT(max_free == vm_size_max(				\
1046 	    vm_map_entry_max_free_left(root, llist),			\
1047 	    vm_map_entry_max_free_right(root, rlist)),			\
1048 	    ("%s: max_free invariant fails", __func__));		\
1049 	if (max_free - 1 < vm_map_entry_max_free_left(root, llist))	\
1050 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1051 	if (y != llist && (test)) {					\
1052 		/* Rotate right and make y root. */			\
1053 		z = y->right;						\
1054 		if (z != root) {					\
1055 			root->left = z;					\
1056 			y->right = root;				\
1057 			if (max_free < y->max_free)			\
1058 			    root->max_free = max_free =			\
1059 			    vm_size_max(max_free, z->max_free);		\
1060 		} else if (max_free < y->max_free)			\
1061 			root->max_free = max_free =			\
1062 			    vm_size_max(max_free, root->start - y->end);\
1063 		root = y;						\
1064 		y = root->left;						\
1065 	}								\
1066 	/* Copy right->max_free.  Put root on rlist. */			\
1067 	root->max_free = max_free;					\
1068 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1069 	    ("%s: max_free not copied from right", __func__));		\
1070 	root->left = rlist;						\
1071 	rlist = root;							\
1072 	root = y != llist ? y : NULL;					\
1073 } while (0)
1074 
1075 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {		\
1076 	vm_map_entry_t z;						\
1077 	vm_size_t max_free;						\
1078 									\
1079 	/*								\
1080 	 * Infer root->left->max_free == root->max_free when		\
1081 	 * y->max_free < root->max_free || root->max_free == 0.		\
1082 	 * Otherwise, look left to find it.				\
1083 	 */								\
1084 	y = root->right;						\
1085 	max_free = root->max_free;					\
1086 	KASSERT(max_free == vm_size_max(				\
1087 	    vm_map_entry_max_free_left(root, llist),			\
1088 	    vm_map_entry_max_free_right(root, rlist)),			\
1089 	    ("%s: max_free invariant fails", __func__));		\
1090 	if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))	\
1091 		max_free = vm_map_entry_max_free_left(root, llist);	\
1092 	if (y != rlist && (test)) {					\
1093 		/* Rotate left and make y root. */			\
1094 		z = y->left;						\
1095 		if (z != root) {					\
1096 			root->right = z;				\
1097 			y->left = root;					\
1098 			if (max_free < y->max_free)			\
1099 			    root->max_free = max_free =			\
1100 			    vm_size_max(max_free, z->max_free);		\
1101 		} else if (max_free < y->max_free)			\
1102 			root->max_free = max_free =			\
1103 			    vm_size_max(max_free, y->start - root->end);\
1104 		root = y;						\
1105 		y = root->right;					\
1106 	}								\
1107 	/* Copy left->max_free.  Put root on llist. */			\
1108 	root->max_free = max_free;					\
1109 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1110 	    ("%s: max_free not copied from left", __func__));		\
1111 	root->right = llist;						\
1112 	llist = root;							\
1113 	root = y != rlist ? y : NULL;					\
1114 } while (0)
1115 
1116 /*
1117  * Walk down the tree until we find addr or a gap where addr would go, breaking
1118  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1119  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1120  * the two sides in reverse order (bottom-up), with llist linked by the right
1121  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1122  * lists terminated by &map->header.  This function, and the subsequent call to
1123  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1124  * values in &map->header.
1125  */
1126 static __always_inline vm_map_entry_t
1127 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1128     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1129 {
1130 	vm_map_entry_t left, right, root, y;
1131 
1132 	left = right = &map->header;
1133 	root = map->root;
1134 	while (root != NULL && root->max_free >= length) {
1135 		KASSERT(left->end <= root->start &&
1136 		    root->end <= right->start,
1137 		    ("%s: root not within tree bounds", __func__));
1138 		if (addr < root->start) {
1139 			SPLAY_LEFT_STEP(root, y, left, right,
1140 			    y->max_free >= length && addr < y->start);
1141 		} else if (addr >= root->end) {
1142 			SPLAY_RIGHT_STEP(root, y, left, right,
1143 			    y->max_free >= length && addr >= y->end);
1144 		} else
1145 			break;
1146 	}
1147 	*llist = left;
1148 	*rlist = right;
1149 	return (root);
1150 }
1151 
1152 static __always_inline void
1153 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1154 {
1155 	vm_map_entry_t hi, right, y;
1156 
1157 	right = *rlist;
1158 	hi = root->right == right ? NULL : root->right;
1159 	if (hi == NULL)
1160 		return;
1161 	do
1162 		SPLAY_LEFT_STEP(hi, y, root, right, true);
1163 	while (hi != NULL);
1164 	*rlist = right;
1165 }
1166 
1167 static __always_inline void
1168 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1169 {
1170 	vm_map_entry_t left, lo, y;
1171 
1172 	left = *llist;
1173 	lo = root->left == left ? NULL : root->left;
1174 	if (lo == NULL)
1175 		return;
1176 	do
1177 		SPLAY_RIGHT_STEP(lo, y, left, root, true);
1178 	while (lo != NULL);
1179 	*llist = left;
1180 }
1181 
1182 static inline void
1183 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1184 {
1185 	vm_map_entry_t tmp;
1186 
1187 	tmp = *b;
1188 	*b = *a;
1189 	*a = tmp;
1190 }
1191 
1192 /*
1193  * Walk back up the two spines, flip the pointers and set max_free.  The
1194  * subtrees of the root go at the bottom of llist and rlist.
1195  */
1196 static vm_size_t
1197 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1198     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1199 {
1200 	do {
1201 		/*
1202 		 * The max_free values of the children of llist are in
1203 		 * llist->max_free and max_free.  Update with the
1204 		 * max value.
1205 		 */
1206 		llist->max_free = max_free =
1207 		    vm_size_max(llist->max_free, max_free);
1208 		vm_map_entry_swap(&llist->right, &tail);
1209 		vm_map_entry_swap(&tail, &llist);
1210 	} while (llist != header);
1211 	root->left = tail;
1212 	return (max_free);
1213 }
1214 
1215 /*
1216  * When llist is known to be the predecessor of root.
1217  */
1218 static inline vm_size_t
1219 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1220     vm_map_entry_t llist)
1221 {
1222 	vm_size_t max_free;
1223 
1224 	max_free = root->start - llist->end;
1225 	if (llist != header) {
1226 		max_free = vm_map_splay_merge_left_walk(header, root,
1227 		    root, max_free, llist);
1228 	} else {
1229 		root->left = header;
1230 		header->right = root;
1231 	}
1232 	return (max_free);
1233 }
1234 
1235 /*
1236  * When llist may or may not be the predecessor of root.
1237  */
1238 static inline vm_size_t
1239 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1240     vm_map_entry_t llist)
1241 {
1242 	vm_size_t max_free;
1243 
1244 	max_free = vm_map_entry_max_free_left(root, llist);
1245 	if (llist != header) {
1246 		max_free = vm_map_splay_merge_left_walk(header, root,
1247 		    root->left == llist ? root : root->left,
1248 		    max_free, llist);
1249 	}
1250 	return (max_free);
1251 }
1252 
1253 static vm_size_t
1254 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1255     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1256 {
1257 	do {
1258 		/*
1259 		 * The max_free values of the children of rlist are in
1260 		 * rlist->max_free and max_free.  Update with the
1261 		 * max value.
1262 		 */
1263 		rlist->max_free = max_free =
1264 		    vm_size_max(rlist->max_free, max_free);
1265 		vm_map_entry_swap(&rlist->left, &tail);
1266 		vm_map_entry_swap(&tail, &rlist);
1267 	} while (rlist != header);
1268 	root->right = tail;
1269 	return (max_free);
1270 }
1271 
1272 /*
1273  * When rlist is known to be the succecessor of root.
1274  */
1275 static inline vm_size_t
1276 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1277     vm_map_entry_t rlist)
1278 {
1279 	vm_size_t max_free;
1280 
1281 	max_free = rlist->start - root->end;
1282 	if (rlist != header) {
1283 		max_free = vm_map_splay_merge_right_walk(header, root,
1284 		    root, max_free, rlist);
1285 	} else {
1286 		root->right = header;
1287 		header->left = root;
1288 	}
1289 	return (max_free);
1290 }
1291 
1292 /*
1293  * When rlist may or may not be the succecessor of root.
1294  */
1295 static inline vm_size_t
1296 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1297     vm_map_entry_t rlist)
1298 {
1299 	vm_size_t max_free;
1300 
1301 	max_free = vm_map_entry_max_free_right(root, rlist);
1302 	if (rlist != header) {
1303 		max_free = vm_map_splay_merge_right_walk(header, root,
1304 		    root->right == rlist ? root : root->right,
1305 		    max_free, rlist);
1306 	}
1307 	return (max_free);
1308 }
1309 
1310 /*
1311  *	vm_map_splay:
1312  *
1313  *	The Sleator and Tarjan top-down splay algorithm with the
1314  *	following variation.  Max_free must be computed bottom-up, so
1315  *	on the downward pass, maintain the left and right spines in
1316  *	reverse order.  Then, make a second pass up each side to fix
1317  *	the pointers and compute max_free.  The time bound is O(log n)
1318  *	amortized.
1319  *
1320  *	The tree is threaded, which means that there are no null pointers.
1321  *	When a node has no left child, its left pointer points to its
1322  *	predecessor, which the last ancestor on the search path from the root
1323  *	where the search branched right.  Likewise, when a node has no right
1324  *	child, its right pointer points to its successor.  The map header node
1325  *	is the predecessor of the first map entry, and the successor of the
1326  *	last.
1327  *
1328  *	The new root is the vm_map_entry containing "addr", or else an
1329  *	adjacent entry (lower if possible) if addr is not in the tree.
1330  *
1331  *	The map must be locked, and leaves it so.
1332  *
1333  *	Returns: the new root.
1334  */
1335 static vm_map_entry_t
1336 vm_map_splay(vm_map_t map, vm_offset_t addr)
1337 {
1338 	vm_map_entry_t header, llist, rlist, root;
1339 	vm_size_t max_free_left, max_free_right;
1340 
1341 	header = &map->header;
1342 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1343 	if (root != NULL) {
1344 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1345 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1346 	} else if (llist != header) {
1347 		/*
1348 		 * Recover the greatest node in the left
1349 		 * subtree and make it the root.
1350 		 */
1351 		root = llist;
1352 		llist = root->right;
1353 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1354 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1355 	} else if (rlist != header) {
1356 		/*
1357 		 * Recover the least node in the right
1358 		 * subtree and make it the root.
1359 		 */
1360 		root = rlist;
1361 		rlist = root->left;
1362 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1363 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1364 	} else {
1365 		/* There is no root. */
1366 		return (NULL);
1367 	}
1368 	root->max_free = vm_size_max(max_free_left, max_free_right);
1369 	map->root = root;
1370 	VM_MAP_ASSERT_CONSISTENT(map);
1371 	return (root);
1372 }
1373 
1374 /*
1375  *	vm_map_entry_{un,}link:
1376  *
1377  *	Insert/remove entries from maps.  On linking, if new entry clips
1378  *	existing entry, trim existing entry to avoid overlap, and manage
1379  *	offsets.  On unlinking, merge disappearing entry with neighbor, if
1380  *	called for, and manage offsets.  Callers should not modify fields in
1381  *	entries already mapped.
1382  */
1383 static void
1384 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1385 {
1386 	vm_map_entry_t header, llist, rlist, root;
1387 	vm_size_t max_free_left, max_free_right;
1388 
1389 	CTR3(KTR_VM,
1390 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1391 	    map->nentries, entry);
1392 	VM_MAP_ASSERT_LOCKED(map);
1393 	map->nentries++;
1394 	header = &map->header;
1395 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1396 	if (root == NULL) {
1397 		/*
1398 		 * The new entry does not overlap any existing entry in the
1399 		 * map, so it becomes the new root of the map tree.
1400 		 */
1401 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1402 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1403 	} else if (entry->start == root->start) {
1404 		/*
1405 		 * The new entry is a clone of root, with only the end field
1406 		 * changed.  The root entry will be shrunk to abut the new
1407 		 * entry, and will be the right child of the new root entry in
1408 		 * the modified map.
1409 		 */
1410 		KASSERT(entry->end < root->end,
1411 		    ("%s: clip_start not within entry", __func__));
1412 		vm_map_splay_findprev(root, &llist);
1413 		if ((root->eflags & MAP_ENTRY_STACK_GAP) == 0)
1414 			root->offset += entry->end - root->start;
1415 		root->start = entry->end;
1416 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1417 		max_free_right = root->max_free = vm_size_max(
1418 		    vm_map_splay_merge_pred(entry, root, entry),
1419 		    vm_map_splay_merge_right(header, root, rlist));
1420 	} else {
1421 		/*
1422 		 * The new entry is a clone of root, with only the start field
1423 		 * changed.  The root entry will be shrunk to abut the new
1424 		 * entry, and will be the left child of the new root entry in
1425 		 * the modified map.
1426 		 */
1427 		KASSERT(entry->end == root->end,
1428 		    ("%s: clip_start not within entry", __func__));
1429 		vm_map_splay_findnext(root, &rlist);
1430 		if ((entry->eflags & MAP_ENTRY_STACK_GAP) == 0)
1431 			entry->offset += entry->start - root->start;
1432 		root->end = entry->start;
1433 		max_free_left = root->max_free = vm_size_max(
1434 		    vm_map_splay_merge_left(header, root, llist),
1435 		    vm_map_splay_merge_succ(entry, root, entry));
1436 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1437 	}
1438 	entry->max_free = vm_size_max(max_free_left, max_free_right);
1439 	map->root = entry;
1440 	VM_MAP_ASSERT_CONSISTENT(map);
1441 }
1442 
1443 enum unlink_merge_type {
1444 	UNLINK_MERGE_NONE,
1445 	UNLINK_MERGE_NEXT
1446 };
1447 
1448 static void
1449 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1450     enum unlink_merge_type op)
1451 {
1452 	vm_map_entry_t header, llist, rlist, root;
1453 	vm_size_t max_free_left, max_free_right;
1454 
1455 	VM_MAP_ASSERT_LOCKED(map);
1456 	header = &map->header;
1457 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1458 	KASSERT(root != NULL,
1459 	    ("vm_map_entry_unlink: unlink object not mapped"));
1460 
1461 	vm_map_splay_findprev(root, &llist);
1462 	vm_map_splay_findnext(root, &rlist);
1463 	if (op == UNLINK_MERGE_NEXT) {
1464 		rlist->start = root->start;
1465 		MPASS((rlist->eflags & MAP_ENTRY_STACK_GAP) == 0);
1466 		rlist->offset = root->offset;
1467 	}
1468 	if (llist != header) {
1469 		root = llist;
1470 		llist = root->right;
1471 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1472 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1473 	} else if (rlist != header) {
1474 		root = rlist;
1475 		rlist = root->left;
1476 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1477 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1478 	} else {
1479 		header->left = header->right = header;
1480 		root = NULL;
1481 	}
1482 	if (root != NULL)
1483 		root->max_free = vm_size_max(max_free_left, max_free_right);
1484 	map->root = root;
1485 	VM_MAP_ASSERT_CONSISTENT(map);
1486 	map->nentries--;
1487 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1488 	    map->nentries, entry);
1489 }
1490 
1491 /*
1492  *	vm_map_entry_resize:
1493  *
1494  *	Resize a vm_map_entry, recompute the amount of free space that
1495  *	follows it and propagate that value up the tree.
1496  *
1497  *	The map must be locked, and leaves it so.
1498  */
1499 static void
1500 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1501 {
1502 	vm_map_entry_t header, llist, rlist, root;
1503 
1504 	VM_MAP_ASSERT_LOCKED(map);
1505 	header = &map->header;
1506 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1507 	KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1508 	vm_map_splay_findnext(root, &rlist);
1509 	entry->end += grow_amount;
1510 	root->max_free = vm_size_max(
1511 	    vm_map_splay_merge_left(header, root, llist),
1512 	    vm_map_splay_merge_succ(header, root, rlist));
1513 	map->root = root;
1514 	VM_MAP_ASSERT_CONSISTENT(map);
1515 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1516 	    __func__, map, map->nentries, entry);
1517 }
1518 
1519 /*
1520  *	vm_map_lookup_entry:	[ internal use only ]
1521  *
1522  *	Finds the map entry containing (or
1523  *	immediately preceding) the specified address
1524  *	in the given map; the entry is returned
1525  *	in the "entry" parameter.  The boolean
1526  *	result indicates whether the address is
1527  *	actually contained in the map.
1528  */
1529 boolean_t
1530 vm_map_lookup_entry(
1531 	vm_map_t map,
1532 	vm_offset_t address,
1533 	vm_map_entry_t *entry)	/* OUT */
1534 {
1535 	vm_map_entry_t cur, header, lbound, ubound;
1536 	boolean_t locked;
1537 
1538 	/*
1539 	 * If the map is empty, then the map entry immediately preceding
1540 	 * "address" is the map's header.
1541 	 */
1542 	header = &map->header;
1543 	cur = map->root;
1544 	if (cur == NULL) {
1545 		*entry = header;
1546 		return (FALSE);
1547 	}
1548 	if (address >= cur->start && cur->end > address) {
1549 		*entry = cur;
1550 		return (TRUE);
1551 	}
1552 	if ((locked = vm_map_locked(map)) ||
1553 	    sx_try_upgrade(&map->lock)) {
1554 		/*
1555 		 * Splay requires a write lock on the map.  However, it only
1556 		 * restructures the binary search tree; it does not otherwise
1557 		 * change the map.  Thus, the map's timestamp need not change
1558 		 * on a temporary upgrade.
1559 		 */
1560 		cur = vm_map_splay(map, address);
1561 		if (!locked) {
1562 			VM_MAP_UNLOCK_CONSISTENT(map);
1563 			sx_downgrade(&map->lock);
1564 		}
1565 
1566 		/*
1567 		 * If "address" is contained within a map entry, the new root
1568 		 * is that map entry.  Otherwise, the new root is a map entry
1569 		 * immediately before or after "address".
1570 		 */
1571 		if (address < cur->start) {
1572 			*entry = header;
1573 			return (FALSE);
1574 		}
1575 		*entry = cur;
1576 		return (address < cur->end);
1577 	}
1578 	/*
1579 	 * Since the map is only locked for read access, perform a
1580 	 * standard binary search tree lookup for "address".
1581 	 */
1582 	lbound = ubound = header;
1583 	for (;;) {
1584 		if (address < cur->start) {
1585 			ubound = cur;
1586 			cur = cur->left;
1587 			if (cur == lbound)
1588 				break;
1589 		} else if (cur->end <= address) {
1590 			lbound = cur;
1591 			cur = cur->right;
1592 			if (cur == ubound)
1593 				break;
1594 		} else {
1595 			*entry = cur;
1596 			return (TRUE);
1597 		}
1598 	}
1599 	*entry = lbound;
1600 	return (FALSE);
1601 }
1602 
1603 /*
1604  * vm_map_insert1() is identical to vm_map_insert() except that it
1605  * returns the newly inserted map entry in '*res'.  In case the new
1606  * entry is coalesced with a neighbor or an existing entry was
1607  * resized, that entry is returned.  In any case, the returned entry
1608  * covers the specified address range.
1609  */
1610 static int
1611 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1612     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow,
1613     vm_map_entry_t *res)
1614 {
1615 	vm_map_entry_t new_entry, next_entry, prev_entry;
1616 	struct ucred *cred;
1617 	vm_eflags_t protoeflags;
1618 	vm_inherit_t inheritance;
1619 	u_long bdry;
1620 	u_int bidx;
1621 
1622 	VM_MAP_ASSERT_LOCKED(map);
1623 	KASSERT(object != kernel_object ||
1624 	    (cow & MAP_COPY_ON_WRITE) == 0,
1625 	    ("vm_map_insert: kernel object and COW"));
1626 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1627 	    (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1628 	    ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1629 	    object, cow));
1630 	KASSERT((prot & ~max) == 0,
1631 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1632 
1633 	/*
1634 	 * Check that the start and end points are not bogus.
1635 	 */
1636 	if (start == end || !vm_map_range_valid(map, start, end))
1637 		return (KERN_INVALID_ADDRESS);
1638 
1639 	if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1640 	    VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1641 		return (KERN_PROTECTION_FAILURE);
1642 
1643 	/*
1644 	 * Find the entry prior to the proposed starting address; if it's part
1645 	 * of an existing entry, this range is bogus.
1646 	 */
1647 	if (vm_map_lookup_entry(map, start, &prev_entry))
1648 		return (KERN_NO_SPACE);
1649 
1650 	/*
1651 	 * Assert that the next entry doesn't overlap the end point.
1652 	 */
1653 	next_entry = vm_map_entry_succ(prev_entry);
1654 	if (next_entry->start < end)
1655 		return (KERN_NO_SPACE);
1656 
1657 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1658 	    max != VM_PROT_NONE))
1659 		return (KERN_INVALID_ARGUMENT);
1660 
1661 	protoeflags = 0;
1662 	if (cow & MAP_COPY_ON_WRITE)
1663 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1664 	if (cow & MAP_NOFAULT)
1665 		protoeflags |= MAP_ENTRY_NOFAULT;
1666 	if (cow & MAP_DISABLE_SYNCER)
1667 		protoeflags |= MAP_ENTRY_NOSYNC;
1668 	if (cow & MAP_DISABLE_COREDUMP)
1669 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1670 	if (cow & MAP_STACK_AREA)
1671 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1672 	if (cow & MAP_WRITECOUNT)
1673 		protoeflags |= MAP_ENTRY_WRITECNT;
1674 	if (cow & MAP_VN_EXEC)
1675 		protoeflags |= MAP_ENTRY_VN_EXEC;
1676 	if ((cow & MAP_CREATE_GUARD) != 0)
1677 		protoeflags |= MAP_ENTRY_GUARD;
1678 	if ((cow & MAP_CREATE_STACK_GAP) != 0)
1679 		protoeflags |= MAP_ENTRY_STACK_GAP;
1680 	if (cow & MAP_INHERIT_SHARE)
1681 		inheritance = VM_INHERIT_SHARE;
1682 	else
1683 		inheritance = VM_INHERIT_DEFAULT;
1684 	if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1685 		/* This magically ignores index 0, for usual page size. */
1686 		bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1687 		    MAP_SPLIT_BOUNDARY_SHIFT;
1688 		if (bidx >= MAXPAGESIZES)
1689 			return (KERN_INVALID_ARGUMENT);
1690 		bdry = pagesizes[bidx] - 1;
1691 		if ((start & bdry) != 0 || (end & bdry) != 0)
1692 			return (KERN_INVALID_ARGUMENT);
1693 		protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1694 	}
1695 
1696 	cred = NULL;
1697 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1698 		goto charged;
1699 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1700 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1701 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1702 			return (KERN_RESOURCE_SHORTAGE);
1703 		KASSERT(object == NULL ||
1704 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1705 		    object->cred == NULL,
1706 		    ("overcommit: vm_map_insert o %p", object));
1707 		cred = curthread->td_ucred;
1708 	}
1709 
1710 charged:
1711 	/* Expand the kernel pmap, if necessary. */
1712 	if (map == kernel_map && end > kernel_vm_end)
1713 		pmap_growkernel(end);
1714 	if (object != NULL) {
1715 		/*
1716 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1717 		 * is trivially proven to be the only mapping for any
1718 		 * of the object's pages.  (Object granularity
1719 		 * reference counting is insufficient to recognize
1720 		 * aliases with precision.)
1721 		 */
1722 		if ((object->flags & OBJ_ANON) != 0) {
1723 			VM_OBJECT_WLOCK(object);
1724 			if (object->ref_count > 1 || object->shadow_count != 0)
1725 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1726 			VM_OBJECT_WUNLOCK(object);
1727 		}
1728 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1729 	    protoeflags &&
1730 	    (cow & (MAP_STACK_AREA | MAP_VN_EXEC)) == 0 &&
1731 	    prev_entry->end == start && (prev_entry->cred == cred ||
1732 	    (prev_entry->object.vm_object != NULL &&
1733 	    prev_entry->object.vm_object->cred == cred)) &&
1734 	    vm_object_coalesce(prev_entry->object.vm_object,
1735 	    prev_entry->offset,
1736 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1737 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1738 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1739 		/*
1740 		 * We were able to extend the object.  Determine if we
1741 		 * can extend the previous map entry to include the
1742 		 * new range as well.
1743 		 */
1744 		if (prev_entry->inheritance == inheritance &&
1745 		    prev_entry->protection == prot &&
1746 		    prev_entry->max_protection == max &&
1747 		    prev_entry->wired_count == 0) {
1748 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1749 			    0, ("prev_entry %p has incoherent wiring",
1750 			    prev_entry));
1751 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1752 				map->size += end - prev_entry->end;
1753 			vm_map_entry_resize(map, prev_entry,
1754 			    end - prev_entry->end);
1755 			*res = vm_map_try_merge_entries(map, prev_entry,
1756 			    next_entry);
1757 			return (KERN_SUCCESS);
1758 		}
1759 
1760 		/*
1761 		 * If we can extend the object but cannot extend the
1762 		 * map entry, we have to create a new map entry.  We
1763 		 * must bump the ref count on the extended object to
1764 		 * account for it.  object may be NULL.
1765 		 */
1766 		object = prev_entry->object.vm_object;
1767 		offset = prev_entry->offset +
1768 		    (prev_entry->end - prev_entry->start);
1769 		vm_object_reference(object);
1770 		if (cred != NULL && object != NULL && object->cred != NULL &&
1771 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1772 			/* Object already accounts for this uid. */
1773 			cred = NULL;
1774 		}
1775 	}
1776 	if (cred != NULL)
1777 		crhold(cred);
1778 
1779 	/*
1780 	 * Create a new entry
1781 	 */
1782 	new_entry = vm_map_entry_create(map);
1783 	new_entry->start = start;
1784 	new_entry->end = end;
1785 	new_entry->cred = NULL;
1786 
1787 	new_entry->eflags = protoeflags;
1788 	new_entry->object.vm_object = object;
1789 	new_entry->offset = offset;
1790 
1791 	new_entry->inheritance = inheritance;
1792 	new_entry->protection = prot;
1793 	new_entry->max_protection = max;
1794 	new_entry->wired_count = 0;
1795 	new_entry->wiring_thread = NULL;
1796 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1797 	new_entry->next_read = start;
1798 
1799 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1800 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1801 	new_entry->cred = cred;
1802 
1803 	/*
1804 	 * Insert the new entry into the list
1805 	 */
1806 	vm_map_entry_link(map, new_entry);
1807 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1808 		map->size += new_entry->end - new_entry->start;
1809 
1810 	/*
1811 	 * Try to coalesce the new entry with both the previous and next
1812 	 * entries in the list.  Previously, we only attempted to coalesce
1813 	 * with the previous entry when object is NULL.  Here, we handle the
1814 	 * other cases, which are less common.
1815 	 */
1816 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1817 	*res = vm_map_try_merge_entries(map, new_entry, next_entry);
1818 
1819 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1820 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1821 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1822 	}
1823 
1824 	return (KERN_SUCCESS);
1825 }
1826 
1827 /*
1828  *	vm_map_insert:
1829  *
1830  *	Inserts the given VM object into the target map at the
1831  *	specified address range.
1832  *
1833  *	Requires that the map be locked, and leaves it so.
1834  *
1835  *	If object is non-NULL, ref count must be bumped by caller
1836  *	prior to making call to account for the new entry.
1837  */
1838 int
1839 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1840     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1841 {
1842 	vm_map_entry_t res;
1843 
1844 	return (vm_map_insert1(map, object, offset, start, end, prot, max,
1845 	    cow, &res));
1846 }
1847 
1848 /*
1849  *	vm_map_findspace:
1850  *
1851  *	Find the first fit (lowest VM address) for "length" free bytes
1852  *	beginning at address >= start in the given map.
1853  *
1854  *	In a vm_map_entry, "max_free" is the maximum amount of
1855  *	contiguous free space between an entry in its subtree and a
1856  *	neighbor of that entry.  This allows finding a free region in
1857  *	one path down the tree, so O(log n) amortized with splay
1858  *	trees.
1859  *
1860  *	The map must be locked, and leaves it so.
1861  *
1862  *	Returns: starting address if sufficient space,
1863  *		 vm_map_max(map)-length+1 if insufficient space.
1864  */
1865 vm_offset_t
1866 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1867 {
1868 	vm_map_entry_t header, llist, rlist, root, y;
1869 	vm_size_t left_length, max_free_left, max_free_right;
1870 	vm_offset_t gap_end;
1871 
1872 	VM_MAP_ASSERT_LOCKED(map);
1873 
1874 	/*
1875 	 * Request must fit within min/max VM address and must avoid
1876 	 * address wrap.
1877 	 */
1878 	start = MAX(start, vm_map_min(map));
1879 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1880 		return (vm_map_max(map) - length + 1);
1881 
1882 	/* Empty tree means wide open address space. */
1883 	if (map->root == NULL)
1884 		return (start);
1885 
1886 	/*
1887 	 * After splay_split, if start is within an entry, push it to the start
1888 	 * of the following gap.  If rlist is at the end of the gap containing
1889 	 * start, save the end of that gap in gap_end to see if the gap is big
1890 	 * enough; otherwise set gap_end to start skip gap-checking and move
1891 	 * directly to a search of the right subtree.
1892 	 */
1893 	header = &map->header;
1894 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1895 	gap_end = rlist->start;
1896 	if (root != NULL) {
1897 		start = root->end;
1898 		if (root->right != rlist)
1899 			gap_end = start;
1900 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1901 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1902 	} else if (rlist != header) {
1903 		root = rlist;
1904 		rlist = root->left;
1905 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1906 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1907 	} else {
1908 		root = llist;
1909 		llist = root->right;
1910 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1911 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1912 	}
1913 	root->max_free = vm_size_max(max_free_left, max_free_right);
1914 	map->root = root;
1915 	VM_MAP_ASSERT_CONSISTENT(map);
1916 	if (length <= gap_end - start)
1917 		return (start);
1918 
1919 	/* With max_free, can immediately tell if no solution. */
1920 	if (root->right == header || length > root->right->max_free)
1921 		return (vm_map_max(map) - length + 1);
1922 
1923 	/*
1924 	 * Splay for the least large-enough gap in the right subtree.
1925 	 */
1926 	llist = rlist = header;
1927 	for (left_length = 0;;
1928 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1929 		if (length <= left_length)
1930 			SPLAY_LEFT_STEP(root, y, llist, rlist,
1931 			    length <= vm_map_entry_max_free_left(y, llist));
1932 		else
1933 			SPLAY_RIGHT_STEP(root, y, llist, rlist,
1934 			    length > vm_map_entry_max_free_left(y, root));
1935 		if (root == NULL)
1936 			break;
1937 	}
1938 	root = llist;
1939 	llist = root->right;
1940 	max_free_left = vm_map_splay_merge_left(header, root, llist);
1941 	if (rlist == header) {
1942 		root->max_free = vm_size_max(max_free_left,
1943 		    vm_map_splay_merge_succ(header, root, rlist));
1944 	} else {
1945 		y = rlist;
1946 		rlist = y->left;
1947 		y->max_free = vm_size_max(
1948 		    vm_map_splay_merge_pred(root, y, root),
1949 		    vm_map_splay_merge_right(header, y, rlist));
1950 		root->max_free = vm_size_max(max_free_left, y->max_free);
1951 	}
1952 	map->root = root;
1953 	VM_MAP_ASSERT_CONSISTENT(map);
1954 	return (root->end);
1955 }
1956 
1957 int
1958 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1959     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1960     vm_prot_t max, int cow)
1961 {
1962 	vm_offset_t end;
1963 	int result;
1964 
1965 	end = start + length;
1966 	KASSERT((cow & MAP_STACK_AREA) == 0 || object == NULL,
1967 	    ("vm_map_fixed: non-NULL backing object for stack"));
1968 	vm_map_lock(map);
1969 	VM_MAP_RANGE_CHECK(map, start, end);
1970 	if ((cow & MAP_CHECK_EXCL) == 0) {
1971 		result = vm_map_delete(map, start, end);
1972 		if (result != KERN_SUCCESS)
1973 			goto out;
1974 	}
1975 	if ((cow & MAP_STACK_AREA) != 0) {
1976 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1977 		    prot, max, cow);
1978 	} else {
1979 		result = vm_map_insert(map, object, offset, start, end,
1980 		    prot, max, cow);
1981 	}
1982 out:
1983 	vm_map_unlock(map);
1984 	return (result);
1985 }
1986 
1987 #if VM_NRESERVLEVEL <= 1
1988 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1989 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1990 #elif VM_NRESERVLEVEL == 2
1991 static const int aslr_pages_rnd_64[3] = {0x1000, 0x1000, 0x10};
1992 static const int aslr_pages_rnd_32[3] = {0x100, 0x100, 0x4};
1993 #else
1994 #error "Unsupported VM_NRESERVLEVEL"
1995 #endif
1996 
1997 static int cluster_anon = 1;
1998 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1999     &cluster_anon, 0,
2000     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
2001 
2002 static bool
2003 clustering_anon_allowed(vm_offset_t addr, int cow)
2004 {
2005 
2006 	switch (cluster_anon) {
2007 	case 0:
2008 		return (false);
2009 	case 1:
2010 		return (addr == 0 || (cow & MAP_NO_HINT) != 0);
2011 	case 2:
2012 	default:
2013 		return (true);
2014 	}
2015 }
2016 
2017 static long aslr_restarts;
2018 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2019     &aslr_restarts, 0,
2020     "Number of aslr failures");
2021 
2022 /*
2023  * Searches for the specified amount of free space in the given map with the
2024  * specified alignment.  Performs an address-ordered, first-fit search from
2025  * the given address "*addr", with an optional upper bound "max_addr".  If the
2026  * parameter "alignment" is zero, then the alignment is computed from the
2027  * given (object, offset) pair so as to enable the greatest possible use of
2028  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
2029  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
2030  *
2031  * The map must be locked.  Initially, there must be at least "length" bytes
2032  * of free space at the given address.
2033  */
2034 static int
2035 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2036     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2037     vm_offset_t alignment)
2038 {
2039 	vm_offset_t aligned_addr, free_addr;
2040 
2041 	VM_MAP_ASSERT_LOCKED(map);
2042 	free_addr = *addr;
2043 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2044 	    ("caller failed to provide space %#jx at address %p",
2045 	     (uintmax_t)length, (void *)free_addr));
2046 	for (;;) {
2047 		/*
2048 		 * At the start of every iteration, the free space at address
2049 		 * "*addr" is at least "length" bytes.
2050 		 */
2051 		if (alignment == 0)
2052 			pmap_align_superpage(object, offset, addr, length);
2053 		else
2054 			*addr = roundup2(*addr, alignment);
2055 		aligned_addr = *addr;
2056 		if (aligned_addr == free_addr) {
2057 			/*
2058 			 * Alignment did not change "*addr", so "*addr" must
2059 			 * still provide sufficient free space.
2060 			 */
2061 			return (KERN_SUCCESS);
2062 		}
2063 
2064 		/*
2065 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
2066 		 * be a valid address, in which case vm_map_findspace() cannot
2067 		 * be relied upon to fail.
2068 		 */
2069 		if (aligned_addr < free_addr)
2070 			return (KERN_NO_SPACE);
2071 		*addr = vm_map_findspace(map, aligned_addr, length);
2072 		if (*addr + length > vm_map_max(map) ||
2073 		    (max_addr != 0 && *addr + length > max_addr))
2074 			return (KERN_NO_SPACE);
2075 		free_addr = *addr;
2076 		if (free_addr == aligned_addr) {
2077 			/*
2078 			 * If a successful call to vm_map_findspace() did not
2079 			 * change "*addr", then "*addr" must still be aligned
2080 			 * and provide sufficient free space.
2081 			 */
2082 			return (KERN_SUCCESS);
2083 		}
2084 	}
2085 }
2086 
2087 int
2088 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2089     vm_offset_t max_addr, vm_offset_t alignment)
2090 {
2091 	/* XXXKIB ASLR eh ? */
2092 	*addr = vm_map_findspace(map, *addr, length);
2093 	if (*addr + length > vm_map_max(map) ||
2094 	    (max_addr != 0 && *addr + length > max_addr))
2095 		return (KERN_NO_SPACE);
2096 	return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2097 	    alignment));
2098 }
2099 
2100 /*
2101  *	vm_map_find finds an unallocated region in the target address
2102  *	map with the given length.  The search is defined to be
2103  *	first-fit from the specified address; the region found is
2104  *	returned in the same parameter.
2105  *
2106  *	If object is non-NULL, ref count must be bumped by caller
2107  *	prior to making call to account for the new entry.
2108  */
2109 int
2110 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2111     vm_offset_t *addr,	/* IN/OUT */
2112     vm_size_t length, vm_offset_t max_addr, int find_space,
2113     vm_prot_t prot, vm_prot_t max, int cow)
2114 {
2115 	int rv;
2116 
2117 	vm_map_lock(map);
2118 	rv = vm_map_find_locked(map, object, offset, addr, length, max_addr,
2119 	    find_space, prot, max, cow);
2120 	vm_map_unlock(map);
2121 	return (rv);
2122 }
2123 
2124 int
2125 vm_map_find_locked(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2126     vm_offset_t *addr,	/* IN/OUT */
2127     vm_size_t length, vm_offset_t max_addr, int find_space,
2128     vm_prot_t prot, vm_prot_t max, int cow)
2129 {
2130 	vm_offset_t alignment, curr_min_addr, min_addr;
2131 	int gap, pidx, rv, try;
2132 	bool cluster, en_aslr, update_anon;
2133 
2134 	KASSERT((cow & MAP_STACK_AREA) == 0 || object == NULL,
2135 	    ("non-NULL backing object for stack"));
2136 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2137 	    (cow & MAP_STACK_AREA) == 0));
2138 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2139 	    (object->flags & OBJ_COLORED) == 0))
2140 		find_space = VMFS_ANY_SPACE;
2141 	if (find_space >> 8 != 0) {
2142 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2143 		alignment = (vm_offset_t)1 << (find_space >> 8);
2144 	} else
2145 		alignment = 0;
2146 	en_aslr = (map->flags & MAP_ASLR) != 0;
2147 	update_anon = cluster = clustering_anon_allowed(*addr, cow) &&
2148 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2149 	    find_space != VMFS_NO_SPACE && object == NULL &&
2150 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_AREA)) == 0 &&
2151 	    prot != PROT_NONE;
2152 	curr_min_addr = min_addr = *addr;
2153 	if (en_aslr && min_addr == 0 && !cluster &&
2154 	    find_space != VMFS_NO_SPACE &&
2155 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
2156 		curr_min_addr = min_addr = vm_map_min(map);
2157 	try = 0;
2158 	if (cluster) {
2159 		curr_min_addr = map->anon_loc;
2160 		if (curr_min_addr == 0)
2161 			cluster = false;
2162 	}
2163 	if (find_space != VMFS_NO_SPACE) {
2164 		KASSERT(find_space == VMFS_ANY_SPACE ||
2165 		    find_space == VMFS_OPTIMAL_SPACE ||
2166 		    find_space == VMFS_SUPER_SPACE ||
2167 		    alignment != 0, ("unexpected VMFS flag"));
2168 again:
2169 		/*
2170 		 * When creating an anonymous mapping, try clustering
2171 		 * with an existing anonymous mapping first.
2172 		 *
2173 		 * We make up to two attempts to find address space
2174 		 * for a given find_space value. The first attempt may
2175 		 * apply randomization or may cluster with an existing
2176 		 * anonymous mapping. If this first attempt fails,
2177 		 * perform a first-fit search of the available address
2178 		 * space.
2179 		 *
2180 		 * If all tries failed, and find_space is
2181 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2182 		 * Again enable clustering and randomization.
2183 		 */
2184 		try++;
2185 		MPASS(try <= 2);
2186 
2187 		if (try == 2) {
2188 			/*
2189 			 * Second try: we failed either to find a
2190 			 * suitable region for randomizing the
2191 			 * allocation, or to cluster with an existing
2192 			 * mapping.  Retry with free run.
2193 			 */
2194 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2195 			    vm_map_min(map) : min_addr;
2196 			atomic_add_long(&aslr_restarts, 1);
2197 		}
2198 
2199 		if (try == 1 && en_aslr && !cluster) {
2200 			/*
2201 			 * Find space for allocation, including
2202 			 * gap needed for later randomization.
2203 			 */
2204 			pidx = 0;
2205 #if VM_NRESERVLEVEL > 0
2206 			if ((find_space == VMFS_SUPER_SPACE ||
2207 			    find_space == VMFS_OPTIMAL_SPACE) &&
2208 			    pagesizes[VM_NRESERVLEVEL] != 0) {
2209 				/*
2210 				 * Do not pointlessly increase the space that
2211 				 * is requested from vm_map_findspace().
2212 				 * pmap_align_superpage() will only change a
2213 				 * mapping's alignment if that mapping is at
2214 				 * least a superpage in size.
2215 				 */
2216 				pidx = VM_NRESERVLEVEL;
2217 				while (pidx > 0 && length < pagesizes[pidx])
2218 					pidx--;
2219 			}
2220 #endif
2221 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2222 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2223 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2224 			*addr = vm_map_findspace(map, curr_min_addr,
2225 			    length + gap * pagesizes[pidx]);
2226 			if (*addr + length + gap * pagesizes[pidx] >
2227 			    vm_map_max(map))
2228 				goto again;
2229 			/* And randomize the start address. */
2230 			*addr += (arc4random() % gap) * pagesizes[pidx];
2231 			if (max_addr != 0 && *addr + length > max_addr)
2232 				goto again;
2233 		} else {
2234 			*addr = vm_map_findspace(map, curr_min_addr, length);
2235 			if (*addr + length > vm_map_max(map) ||
2236 			    (max_addr != 0 && *addr + length > max_addr)) {
2237 				if (cluster) {
2238 					cluster = false;
2239 					MPASS(try == 1);
2240 					goto again;
2241 				}
2242 				return (KERN_NO_SPACE);
2243 			}
2244 		}
2245 
2246 		if (find_space != VMFS_ANY_SPACE &&
2247 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
2248 		    max_addr, alignment)) != KERN_SUCCESS) {
2249 			if (find_space == VMFS_OPTIMAL_SPACE) {
2250 				find_space = VMFS_ANY_SPACE;
2251 				curr_min_addr = min_addr;
2252 				cluster = update_anon;
2253 				try = 0;
2254 				goto again;
2255 			}
2256 			return (rv);
2257 		}
2258 	} else if ((cow & MAP_REMAP) != 0) {
2259 		if (!vm_map_range_valid(map, *addr, *addr + length))
2260 			return (KERN_INVALID_ADDRESS);
2261 		rv = vm_map_delete(map, *addr, *addr + length);
2262 		if (rv != KERN_SUCCESS)
2263 			return (rv);
2264 	}
2265 	if ((cow & MAP_STACK_AREA) != 0) {
2266 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2267 		    max, cow);
2268 	} else {
2269 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2270 		    prot, max, cow);
2271 	}
2272 
2273 	/*
2274 	 * Update the starting address for clustered anonymous memory mappings
2275 	 * if a starting address was not previously defined or an ASLR restart
2276 	 * placed an anonymous memory mapping at a lower address.
2277 	 */
2278 	if (update_anon && rv == KERN_SUCCESS && (map->anon_loc == 0 ||
2279 	    *addr < map->anon_loc))
2280 		map->anon_loc = *addr;
2281 	return (rv);
2282 }
2283 
2284 /*
2285  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2286  *	additional parameter ("default_addr") and treats the given address
2287  *	("*addr") differently.  Specifically, it treats "*addr" as a hint
2288  *	and not as the minimum address where the mapping is created.
2289  *
2290  *	This function works in two phases.  First, it tries to
2291  *	allocate above the hint.  If that fails and the hint is
2292  *	greater than "default_addr", it performs a second pass, replacing
2293  *	the hint with "default_addr" as the minimum address for the
2294  *	allocation.
2295  */
2296 int
2297 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2298     vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr,
2299     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2300     int cow)
2301 {
2302 	vm_offset_t hint;
2303 	int rv;
2304 
2305 	hint = *addr;
2306 	if (hint == 0) {
2307 		cow |= MAP_NO_HINT;
2308 		*addr = hint = default_addr;
2309 	}
2310 	for (;;) {
2311 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2312 		    find_space, prot, max, cow);
2313 		if (rv == KERN_SUCCESS || default_addr >= hint)
2314 			return (rv);
2315 		*addr = hint = default_addr;
2316 	}
2317 }
2318 
2319 /*
2320  * A map entry with any of the following flags set must not be merged with
2321  * another entry.
2322  */
2323 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | \
2324     MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \
2325     MAP_ENTRY_STACK_GAP)
2326 
2327 static bool
2328 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2329 {
2330 
2331 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2332 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2333 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2334 	    prev, entry));
2335 	return (prev->end == entry->start &&
2336 	    prev->object.vm_object == entry->object.vm_object &&
2337 	    (prev->object.vm_object == NULL ||
2338 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2339 	    prev->eflags == entry->eflags &&
2340 	    prev->protection == entry->protection &&
2341 	    prev->max_protection == entry->max_protection &&
2342 	    prev->inheritance == entry->inheritance &&
2343 	    prev->wired_count == entry->wired_count &&
2344 	    prev->cred == entry->cred);
2345 }
2346 
2347 static void
2348 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2349 {
2350 
2351 	/*
2352 	 * If the backing object is a vnode object, vm_object_deallocate()
2353 	 * calls vrele().  However, vrele() does not lock the vnode because
2354 	 * the vnode has additional references.  Thus, the map lock can be
2355 	 * kept without causing a lock-order reversal with the vnode lock.
2356 	 *
2357 	 * Since we count the number of virtual page mappings in
2358 	 * object->un_pager.vnp.writemappings, the writemappings value
2359 	 * should not be adjusted when the entry is disposed of.
2360 	 */
2361 	if (entry->object.vm_object != NULL)
2362 		vm_object_deallocate(entry->object.vm_object);
2363 	if (entry->cred != NULL)
2364 		crfree(entry->cred);
2365 	vm_map_entry_dispose(map, entry);
2366 }
2367 
2368 /*
2369  *	vm_map_try_merge_entries:
2370  *
2371  *	Compare two map entries that represent consecutive ranges. If
2372  *	the entries can be merged, expand the range of the second to
2373  *	cover the range of the first and delete the first. Then return
2374  *	the map entry that includes the first range.
2375  *
2376  *	The map must be locked.
2377  */
2378 vm_map_entry_t
2379 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2380     vm_map_entry_t entry)
2381 {
2382 
2383 	VM_MAP_ASSERT_LOCKED(map);
2384 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2385 	    vm_map_mergeable_neighbors(prev_entry, entry)) {
2386 		vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2387 		vm_map_merged_neighbor_dispose(map, prev_entry);
2388 		return (entry);
2389 	}
2390 	return (prev_entry);
2391 }
2392 
2393 /*
2394  *	vm_map_entry_back:
2395  *
2396  *	Allocate an object to back a map entry.
2397  */
2398 static inline void
2399 vm_map_entry_back(vm_map_entry_t entry)
2400 {
2401 	vm_object_t object;
2402 
2403 	KASSERT(entry->object.vm_object == NULL,
2404 	    ("map entry %p has backing object", entry));
2405 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2406 	    ("map entry %p is a submap", entry));
2407 	object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2408 	    entry->cred, entry->end - entry->start);
2409 	entry->object.vm_object = object;
2410 	entry->offset = 0;
2411 	entry->cred = NULL;
2412 }
2413 
2414 /*
2415  *	vm_map_entry_charge_object
2416  *
2417  *	If there is no object backing this entry, create one.  Otherwise, if
2418  *	the entry has cred, give it to the backing object.
2419  */
2420 static inline void
2421 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2422 {
2423 
2424 	VM_MAP_ASSERT_LOCKED(map);
2425 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2426 	    ("map entry %p is a submap", entry));
2427 	if (entry->object.vm_object == NULL && !map->system_map &&
2428 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2429 		vm_map_entry_back(entry);
2430 	else if (entry->object.vm_object != NULL &&
2431 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2432 	    entry->cred != NULL) {
2433 		VM_OBJECT_WLOCK(entry->object.vm_object);
2434 		KASSERT(entry->object.vm_object->cred == NULL,
2435 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2436 		entry->object.vm_object->cred = entry->cred;
2437 		entry->object.vm_object->charge = entry->end - entry->start;
2438 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2439 		entry->cred = NULL;
2440 	}
2441 }
2442 
2443 /*
2444  *	vm_map_entry_clone
2445  *
2446  *	Create a duplicate map entry for clipping.
2447  */
2448 static vm_map_entry_t
2449 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2450 {
2451 	vm_map_entry_t new_entry;
2452 
2453 	VM_MAP_ASSERT_LOCKED(map);
2454 
2455 	/*
2456 	 * Create a backing object now, if none exists, so that more individual
2457 	 * objects won't be created after the map entry is split.
2458 	 */
2459 	vm_map_entry_charge_object(map, entry);
2460 
2461 	/* Clone the entry. */
2462 	new_entry = vm_map_entry_create(map);
2463 	*new_entry = *entry;
2464 	if (new_entry->cred != NULL)
2465 		crhold(entry->cred);
2466 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2467 		vm_object_reference(new_entry->object.vm_object);
2468 		vm_map_entry_set_vnode_text(new_entry, true);
2469 		/*
2470 		 * The object->un_pager.vnp.writemappings for the object of
2471 		 * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2472 		 * virtual pages are re-distributed among the clipped entries,
2473 		 * so the sum is left the same.
2474 		 */
2475 	}
2476 	return (new_entry);
2477 }
2478 
2479 /*
2480  *	vm_map_clip_start:	[ internal use only ]
2481  *
2482  *	Asserts that the given entry begins at or after
2483  *	the specified address; if necessary,
2484  *	it splits the entry into two.
2485  */
2486 static int
2487 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2488 {
2489 	vm_map_entry_t new_entry;
2490 	int bdry_idx;
2491 
2492 	if (!map->system_map)
2493 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2494 		    "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2495 		    (uintmax_t)startaddr);
2496 
2497 	if (startaddr <= entry->start)
2498 		return (KERN_SUCCESS);
2499 
2500 	VM_MAP_ASSERT_LOCKED(map);
2501 	KASSERT(entry->end > startaddr && entry->start < startaddr,
2502 	    ("%s: invalid clip of entry %p", __func__, entry));
2503 
2504 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2505 	if (bdry_idx != 0) {
2506 		if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2507 			return (KERN_INVALID_ARGUMENT);
2508 	}
2509 
2510 	new_entry = vm_map_entry_clone(map, entry);
2511 
2512 	/*
2513 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2514 	 * so that this entry has the specified starting address.
2515 	 */
2516 	new_entry->end = startaddr;
2517 	vm_map_entry_link(map, new_entry);
2518 	return (KERN_SUCCESS);
2519 }
2520 
2521 /*
2522  *	vm_map_lookup_clip_start:
2523  *
2524  *	Find the entry at or just after 'start', and clip it if 'start' is in
2525  *	the interior of the entry.  Return entry after 'start', and in
2526  *	prev_entry set the entry before 'start'.
2527  */
2528 static int
2529 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2530     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2531 {
2532 	vm_map_entry_t entry;
2533 	int rv;
2534 
2535 	if (!map->system_map)
2536 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2537 		    "%s: map %p start 0x%jx prev %p", __func__, map,
2538 		    (uintmax_t)start, prev_entry);
2539 
2540 	if (vm_map_lookup_entry(map, start, prev_entry)) {
2541 		entry = *prev_entry;
2542 		rv = vm_map_clip_start(map, entry, start);
2543 		if (rv != KERN_SUCCESS)
2544 			return (rv);
2545 		*prev_entry = vm_map_entry_pred(entry);
2546 	} else
2547 		entry = vm_map_entry_succ(*prev_entry);
2548 	*res_entry = entry;
2549 	return (KERN_SUCCESS);
2550 }
2551 
2552 /*
2553  *	vm_map_clip_end:	[ internal use only ]
2554  *
2555  *	Asserts that the given entry ends at or before
2556  *	the specified address; if necessary,
2557  *	it splits the entry into two.
2558  */
2559 static int
2560 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2561 {
2562 	vm_map_entry_t new_entry;
2563 	int bdry_idx;
2564 
2565 	if (!map->system_map)
2566 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2567 		    "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2568 		    (uintmax_t)endaddr);
2569 
2570 	if (endaddr >= entry->end)
2571 		return (KERN_SUCCESS);
2572 
2573 	VM_MAP_ASSERT_LOCKED(map);
2574 	KASSERT(entry->start < endaddr && entry->end > endaddr,
2575 	    ("%s: invalid clip of entry %p", __func__, entry));
2576 
2577 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2578 	if (bdry_idx != 0) {
2579 		if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2580 			return (KERN_INVALID_ARGUMENT);
2581 	}
2582 
2583 	new_entry = vm_map_entry_clone(map, entry);
2584 
2585 	/*
2586 	 * Split off the back portion.  Insert the new entry AFTER this one,
2587 	 * so that this entry has the specified ending address.
2588 	 */
2589 	new_entry->start = endaddr;
2590 	vm_map_entry_link(map, new_entry);
2591 
2592 	return (KERN_SUCCESS);
2593 }
2594 
2595 /*
2596  *	vm_map_submap:		[ kernel use only ]
2597  *
2598  *	Mark the given range as handled by a subordinate map.
2599  *
2600  *	This range must have been created with vm_map_find,
2601  *	and no other operations may have been performed on this
2602  *	range prior to calling vm_map_submap.
2603  *
2604  *	Only a limited number of operations can be performed
2605  *	within this rage after calling vm_map_submap:
2606  *		vm_fault
2607  *	[Don't try vm_map_copy!]
2608  *
2609  *	To remove a submapping, one must first remove the
2610  *	range from the superior map, and then destroy the
2611  *	submap (if desired).  [Better yet, don't try it.]
2612  */
2613 int
2614 vm_map_submap(
2615 	vm_map_t map,
2616 	vm_offset_t start,
2617 	vm_offset_t end,
2618 	vm_map_t submap)
2619 {
2620 	vm_map_entry_t entry;
2621 	int result;
2622 
2623 	result = KERN_INVALID_ARGUMENT;
2624 
2625 	vm_map_lock(submap);
2626 	submap->flags |= MAP_IS_SUB_MAP;
2627 	vm_map_unlock(submap);
2628 
2629 	vm_map_lock(map);
2630 	VM_MAP_RANGE_CHECK(map, start, end);
2631 	if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2632 	    (entry->eflags & MAP_ENTRY_COW) == 0 &&
2633 	    entry->object.vm_object == NULL) {
2634 		result = vm_map_clip_start(map, entry, start);
2635 		if (result != KERN_SUCCESS)
2636 			goto unlock;
2637 		result = vm_map_clip_end(map, entry, end);
2638 		if (result != KERN_SUCCESS)
2639 			goto unlock;
2640 		entry->object.sub_map = submap;
2641 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2642 		result = KERN_SUCCESS;
2643 	}
2644 unlock:
2645 	vm_map_unlock(map);
2646 
2647 	if (result != KERN_SUCCESS) {
2648 		vm_map_lock(submap);
2649 		submap->flags &= ~MAP_IS_SUB_MAP;
2650 		vm_map_unlock(submap);
2651 	}
2652 	return (result);
2653 }
2654 
2655 /*
2656  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2657  */
2658 #define	MAX_INIT_PT	96
2659 
2660 /*
2661  *	vm_map_pmap_enter:
2662  *
2663  *	Preload the specified map's pmap with mappings to the specified
2664  *	object's memory-resident pages.  No further physical pages are
2665  *	allocated, and no further virtual pages are retrieved from secondary
2666  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2667  *	limited number of page mappings are created at the low-end of the
2668  *	specified address range.  (For this purpose, a superpage mapping
2669  *	counts as one page mapping.)  Otherwise, all resident pages within
2670  *	the specified address range are mapped.
2671  */
2672 static void
2673 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2674     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2675 {
2676 	vm_offset_t start;
2677 	vm_page_t p, p_start;
2678 	vm_pindex_t mask, psize, threshold, tmpidx;
2679 	int psind;
2680 
2681 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2682 		return;
2683 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2684 		VM_OBJECT_WLOCK(object);
2685 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2686 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2687 			    size);
2688 			VM_OBJECT_WUNLOCK(object);
2689 			return;
2690 		}
2691 		VM_OBJECT_LOCK_DOWNGRADE(object);
2692 	} else
2693 		VM_OBJECT_RLOCK(object);
2694 
2695 	psize = atop(size);
2696 	if (psize + pindex > object->size) {
2697 		if (pindex >= object->size) {
2698 			VM_OBJECT_RUNLOCK(object);
2699 			return;
2700 		}
2701 		psize = object->size - pindex;
2702 	}
2703 
2704 	start = 0;
2705 	p_start = NULL;
2706 	threshold = MAX_INIT_PT;
2707 
2708 	p = vm_page_find_least(object, pindex);
2709 	/*
2710 	 * Assert: the variable p is either (1) the page with the
2711 	 * least pindex greater than or equal to the parameter pindex
2712 	 * or (2) NULL.
2713 	 */
2714 	for (;
2715 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2716 	     p = TAILQ_NEXT(p, listq)) {
2717 		/*
2718 		 * don't allow an madvise to blow away our really
2719 		 * free pages allocating pv entries.
2720 		 */
2721 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2722 		    vm_page_count_severe()) ||
2723 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2724 		    tmpidx >= threshold)) {
2725 			psize = tmpidx;
2726 			break;
2727 		}
2728 		if (vm_page_all_valid(p)) {
2729 			if (p_start == NULL) {
2730 				start = addr + ptoa(tmpidx);
2731 				p_start = p;
2732 			}
2733 			/* Jump ahead if a superpage mapping is possible. */
2734 			for (psind = p->psind; psind > 0; psind--) {
2735 				if (((addr + ptoa(tmpidx)) &
2736 				    (pagesizes[psind] - 1)) == 0) {
2737 					mask = atop(pagesizes[psind]) - 1;
2738 					if (tmpidx + mask < psize &&
2739 					    vm_page_ps_test(p, psind,
2740 					    PS_ALL_VALID, NULL)) {
2741 						p += mask;
2742 						threshold += mask;
2743 						break;
2744 					}
2745 				}
2746 			}
2747 		} else if (p_start != NULL) {
2748 			pmap_enter_object(map->pmap, start, addr +
2749 			    ptoa(tmpidx), p_start, prot);
2750 			p_start = NULL;
2751 		}
2752 	}
2753 	if (p_start != NULL)
2754 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2755 		    p_start, prot);
2756 	VM_OBJECT_RUNLOCK(object);
2757 }
2758 
2759 static void
2760 vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot,
2761     vm_prot_t new_maxprot, int flags)
2762 {
2763 	vm_prot_t old_prot;
2764 
2765 	MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0);
2766 	if ((entry->eflags & MAP_ENTRY_STACK_GAP) == 0)
2767 		return;
2768 
2769 	old_prot = PROT_EXTRACT(entry->offset);
2770 	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2771 		entry->offset = PROT_MAX(new_maxprot) |
2772 		    (new_maxprot & old_prot);
2773 	}
2774 	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) {
2775 		entry->offset = new_prot | PROT_MAX(
2776 		    PROT_MAX_EXTRACT(entry->offset));
2777 	}
2778 }
2779 
2780 /*
2781  *	vm_map_protect:
2782  *
2783  *	Sets the protection and/or the maximum protection of the
2784  *	specified address region in the target map.
2785  */
2786 int
2787 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2788     vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2789 {
2790 	vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2791 	vm_object_t obj;
2792 	struct ucred *cred;
2793 	vm_offset_t orig_start;
2794 	vm_prot_t check_prot, max_prot, old_prot;
2795 	int rv;
2796 
2797 	if (start == end)
2798 		return (KERN_SUCCESS);
2799 
2800 	if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT |
2801 	    VM_MAP_PROTECT_SET_MAXPROT) &&
2802 	    !CONTAINS_BITS(new_maxprot, new_prot))
2803 		return (KERN_OUT_OF_BOUNDS);
2804 
2805 	orig_start = start;
2806 again:
2807 	in_tran = NULL;
2808 	start = orig_start;
2809 	vm_map_lock(map);
2810 
2811 	if ((map->flags & MAP_WXORX) != 0 &&
2812 	    (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2813 	    CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) {
2814 		vm_map_unlock(map);
2815 		return (KERN_PROTECTION_FAILURE);
2816 	}
2817 
2818 	/*
2819 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2820 	 * need to fault pages into the map and will drop the map lock while
2821 	 * doing so, and the VM object may end up in an inconsistent state if we
2822 	 * update the protection on the map entry in between faults.
2823 	 */
2824 	vm_map_wait_busy(map);
2825 
2826 	VM_MAP_RANGE_CHECK(map, start, end);
2827 
2828 	if (!vm_map_lookup_entry(map, start, &first_entry))
2829 		first_entry = vm_map_entry_succ(first_entry);
2830 
2831 	if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 &&
2832 	    (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) {
2833 		/*
2834 		 * Handle Linux's PROT_GROWSDOWN flag.
2835 		 * It means that protection is applied down to the
2836 		 * whole stack, including the specified range of the
2837 		 * mapped region, and the grow down region (AKA
2838 		 * guard).
2839 		 */
2840 		while (!CONTAINS_BITS(first_entry->eflags,
2841 		    MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP) &&
2842 		    first_entry != vm_map_entry_first(map))
2843 			first_entry = vm_map_entry_pred(first_entry);
2844 		start = first_entry->start;
2845 	}
2846 
2847 	/*
2848 	 * Make a first pass to check for protection violations.
2849 	 */
2850 	check_prot = 0;
2851 	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2852 		check_prot |= new_prot;
2853 	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0)
2854 		check_prot |= new_maxprot;
2855 	for (entry = first_entry; entry->start < end;
2856 	    entry = vm_map_entry_succ(entry)) {
2857 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2858 			vm_map_unlock(map);
2859 			return (KERN_INVALID_ARGUMENT);
2860 		}
2861 		if ((entry->eflags & (MAP_ENTRY_GUARD |
2862 		    MAP_ENTRY_STACK_GAP)) == MAP_ENTRY_GUARD)
2863 			continue;
2864 		max_prot = (entry->eflags & MAP_ENTRY_STACK_GAP) != 0 ?
2865 		    PROT_MAX_EXTRACT(entry->offset) : entry->max_protection;
2866 		if (!CONTAINS_BITS(max_prot, check_prot)) {
2867 			vm_map_unlock(map);
2868 			return (KERN_PROTECTION_FAILURE);
2869 		}
2870 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2871 			in_tran = entry;
2872 	}
2873 
2874 	/*
2875 	 * Postpone the operation until all in-transition map entries have
2876 	 * stabilized.  An in-transition entry might already have its pages
2877 	 * wired and wired_count incremented, but not yet have its
2878 	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2879 	 * vm_fault_copy_entry() in the final loop below.
2880 	 */
2881 	if (in_tran != NULL) {
2882 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2883 		vm_map_unlock_and_wait(map, 0);
2884 		goto again;
2885 	}
2886 
2887 	/*
2888 	 * Before changing the protections, try to reserve swap space for any
2889 	 * private (i.e., copy-on-write) mappings that are transitioning from
2890 	 * read-only to read/write access.  If a reservation fails, break out
2891 	 * of this loop early and let the next loop simplify the entries, since
2892 	 * some may now be mergeable.
2893 	 */
2894 	rv = vm_map_clip_start(map, first_entry, start);
2895 	if (rv != KERN_SUCCESS) {
2896 		vm_map_unlock(map);
2897 		return (rv);
2898 	}
2899 	for (entry = first_entry; entry->start < end;
2900 	    entry = vm_map_entry_succ(entry)) {
2901 		rv = vm_map_clip_end(map, entry, end);
2902 		if (rv != KERN_SUCCESS) {
2903 			vm_map_unlock(map);
2904 			return (rv);
2905 		}
2906 
2907 		if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2908 		    ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2909 		    ENTRY_CHARGED(entry) ||
2910 		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2911 			continue;
2912 
2913 		cred = curthread->td_ucred;
2914 		obj = entry->object.vm_object;
2915 
2916 		if (obj == NULL ||
2917 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2918 			if (!swap_reserve(entry->end - entry->start)) {
2919 				rv = KERN_RESOURCE_SHORTAGE;
2920 				end = entry->end;
2921 				break;
2922 			}
2923 			crhold(cred);
2924 			entry->cred = cred;
2925 			continue;
2926 		}
2927 
2928 		VM_OBJECT_WLOCK(obj);
2929 		if ((obj->flags & OBJ_SWAP) == 0) {
2930 			VM_OBJECT_WUNLOCK(obj);
2931 			continue;
2932 		}
2933 
2934 		/*
2935 		 * Charge for the whole object allocation now, since
2936 		 * we cannot distinguish between non-charged and
2937 		 * charged clipped mapping of the same object later.
2938 		 */
2939 		KASSERT(obj->charge == 0,
2940 		    ("vm_map_protect: object %p overcharged (entry %p)",
2941 		    obj, entry));
2942 		if (!swap_reserve(ptoa(obj->size))) {
2943 			VM_OBJECT_WUNLOCK(obj);
2944 			rv = KERN_RESOURCE_SHORTAGE;
2945 			end = entry->end;
2946 			break;
2947 		}
2948 
2949 		crhold(cred);
2950 		obj->cred = cred;
2951 		obj->charge = ptoa(obj->size);
2952 		VM_OBJECT_WUNLOCK(obj);
2953 	}
2954 
2955 	/*
2956 	 * If enough swap space was available, go back and fix up protections.
2957 	 * Otherwise, just simplify entries, since some may have been modified.
2958 	 * [Note that clipping is not necessary the second time.]
2959 	 */
2960 	for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2961 	    entry->start < end;
2962 	    vm_map_try_merge_entries(map, prev_entry, entry),
2963 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2964 		if (rv != KERN_SUCCESS)
2965 			continue;
2966 
2967 		if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2968 			vm_map_protect_guard(entry, new_prot, new_maxprot,
2969 			    flags);
2970 			continue;
2971 		}
2972 
2973 		old_prot = entry->protection;
2974 
2975 		if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2976 			entry->max_protection = new_maxprot;
2977 			entry->protection = new_maxprot & old_prot;
2978 		}
2979 		if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2980 			entry->protection = new_prot;
2981 
2982 		/*
2983 		 * For user wired map entries, the normal lazy evaluation of
2984 		 * write access upgrades through soft page faults is
2985 		 * undesirable.  Instead, immediately copy any pages that are
2986 		 * copy-on-write and enable write access in the physical map.
2987 		 */
2988 		if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2989 		    (entry->protection & VM_PROT_WRITE) != 0 &&
2990 		    (old_prot & VM_PROT_WRITE) == 0)
2991 			vm_fault_copy_entry(map, map, entry, entry, NULL);
2992 
2993 		/*
2994 		 * When restricting access, update the physical map.  Worry
2995 		 * about copy-on-write here.
2996 		 */
2997 		if ((old_prot & ~entry->protection) != 0) {
2998 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2999 							VM_PROT_ALL)
3000 			pmap_protect(map->pmap, entry->start,
3001 			    entry->end,
3002 			    entry->protection & MASK(entry));
3003 #undef	MASK
3004 		}
3005 	}
3006 	vm_map_try_merge_entries(map, prev_entry, entry);
3007 	vm_map_unlock(map);
3008 	return (rv);
3009 }
3010 
3011 /*
3012  *	vm_map_madvise:
3013  *
3014  *	This routine traverses a processes map handling the madvise
3015  *	system call.  Advisories are classified as either those effecting
3016  *	the vm_map_entry structure, or those effecting the underlying
3017  *	objects.
3018  */
3019 int
3020 vm_map_madvise(
3021 	vm_map_t map,
3022 	vm_offset_t start,
3023 	vm_offset_t end,
3024 	int behav)
3025 {
3026 	vm_map_entry_t entry, prev_entry;
3027 	int rv;
3028 	bool modify_map;
3029 
3030 	/*
3031 	 * Some madvise calls directly modify the vm_map_entry, in which case
3032 	 * we need to use an exclusive lock on the map and we need to perform
3033 	 * various clipping operations.  Otherwise we only need a read-lock
3034 	 * on the map.
3035 	 */
3036 	switch(behav) {
3037 	case MADV_NORMAL:
3038 	case MADV_SEQUENTIAL:
3039 	case MADV_RANDOM:
3040 	case MADV_NOSYNC:
3041 	case MADV_AUTOSYNC:
3042 	case MADV_NOCORE:
3043 	case MADV_CORE:
3044 		if (start == end)
3045 			return (0);
3046 		modify_map = true;
3047 		vm_map_lock(map);
3048 		break;
3049 	case MADV_WILLNEED:
3050 	case MADV_DONTNEED:
3051 	case MADV_FREE:
3052 		if (start == end)
3053 			return (0);
3054 		modify_map = false;
3055 		vm_map_lock_read(map);
3056 		break;
3057 	default:
3058 		return (EINVAL);
3059 	}
3060 
3061 	/*
3062 	 * Locate starting entry and clip if necessary.
3063 	 */
3064 	VM_MAP_RANGE_CHECK(map, start, end);
3065 
3066 	if (modify_map) {
3067 		/*
3068 		 * madvise behaviors that are implemented in the vm_map_entry.
3069 		 *
3070 		 * We clip the vm_map_entry so that behavioral changes are
3071 		 * limited to the specified address range.
3072 		 */
3073 		rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
3074 		if (rv != KERN_SUCCESS) {
3075 			vm_map_unlock(map);
3076 			return (vm_mmap_to_errno(rv));
3077 		}
3078 
3079 		for (; entry->start < end; prev_entry = entry,
3080 		    entry = vm_map_entry_succ(entry)) {
3081 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3082 				continue;
3083 
3084 			rv = vm_map_clip_end(map, entry, end);
3085 			if (rv != KERN_SUCCESS) {
3086 				vm_map_unlock(map);
3087 				return (vm_mmap_to_errno(rv));
3088 			}
3089 
3090 			switch (behav) {
3091 			case MADV_NORMAL:
3092 				vm_map_entry_set_behavior(entry,
3093 				    MAP_ENTRY_BEHAV_NORMAL);
3094 				break;
3095 			case MADV_SEQUENTIAL:
3096 				vm_map_entry_set_behavior(entry,
3097 				    MAP_ENTRY_BEHAV_SEQUENTIAL);
3098 				break;
3099 			case MADV_RANDOM:
3100 				vm_map_entry_set_behavior(entry,
3101 				    MAP_ENTRY_BEHAV_RANDOM);
3102 				break;
3103 			case MADV_NOSYNC:
3104 				entry->eflags |= MAP_ENTRY_NOSYNC;
3105 				break;
3106 			case MADV_AUTOSYNC:
3107 				entry->eflags &= ~MAP_ENTRY_NOSYNC;
3108 				break;
3109 			case MADV_NOCORE:
3110 				entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3111 				break;
3112 			case MADV_CORE:
3113 				entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3114 				break;
3115 			default:
3116 				break;
3117 			}
3118 			vm_map_try_merge_entries(map, prev_entry, entry);
3119 		}
3120 		vm_map_try_merge_entries(map, prev_entry, entry);
3121 		vm_map_unlock(map);
3122 	} else {
3123 		vm_pindex_t pstart, pend;
3124 
3125 		/*
3126 		 * madvise behaviors that are implemented in the underlying
3127 		 * vm_object.
3128 		 *
3129 		 * Since we don't clip the vm_map_entry, we have to clip
3130 		 * the vm_object pindex and count.
3131 		 */
3132 		if (!vm_map_lookup_entry(map, start, &entry))
3133 			entry = vm_map_entry_succ(entry);
3134 		for (; entry->start < end;
3135 		    entry = vm_map_entry_succ(entry)) {
3136 			vm_offset_t useEnd, useStart;
3137 
3138 			if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP |
3139 			    MAP_ENTRY_GUARD)) != 0)
3140 				continue;
3141 
3142 			/*
3143 			 * MADV_FREE would otherwise rewind time to
3144 			 * the creation of the shadow object.  Because
3145 			 * we hold the VM map read-locked, neither the
3146 			 * entry's object nor the presence of a
3147 			 * backing object can change.
3148 			 */
3149 			if (behav == MADV_FREE &&
3150 			    entry->object.vm_object != NULL &&
3151 			    entry->object.vm_object->backing_object != NULL)
3152 				continue;
3153 
3154 			pstart = OFF_TO_IDX(entry->offset);
3155 			pend = pstart + atop(entry->end - entry->start);
3156 			useStart = entry->start;
3157 			useEnd = entry->end;
3158 
3159 			if (entry->start < start) {
3160 				pstart += atop(start - entry->start);
3161 				useStart = start;
3162 			}
3163 			if (entry->end > end) {
3164 				pend -= atop(entry->end - end);
3165 				useEnd = end;
3166 			}
3167 
3168 			if (pstart >= pend)
3169 				continue;
3170 
3171 			/*
3172 			 * Perform the pmap_advise() before clearing
3173 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
3174 			 * concurrent pmap operation, such as pmap_remove(),
3175 			 * could clear a reference in the pmap and set
3176 			 * PGA_REFERENCED on the page before the pmap_advise()
3177 			 * had completed.  Consequently, the page would appear
3178 			 * referenced based upon an old reference that
3179 			 * occurred before this pmap_advise() ran.
3180 			 */
3181 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
3182 				pmap_advise(map->pmap, useStart, useEnd,
3183 				    behav);
3184 
3185 			vm_object_madvise(entry->object.vm_object, pstart,
3186 			    pend, behav);
3187 
3188 			/*
3189 			 * Pre-populate paging structures in the
3190 			 * WILLNEED case.  For wired entries, the
3191 			 * paging structures are already populated.
3192 			 */
3193 			if (behav == MADV_WILLNEED &&
3194 			    entry->wired_count == 0) {
3195 				vm_map_pmap_enter(map,
3196 				    useStart,
3197 				    entry->protection,
3198 				    entry->object.vm_object,
3199 				    pstart,
3200 				    ptoa(pend - pstart),
3201 				    MAP_PREFAULT_MADVISE
3202 				);
3203 			}
3204 		}
3205 		vm_map_unlock_read(map);
3206 	}
3207 	return (0);
3208 }
3209 
3210 /*
3211  *	vm_map_inherit:
3212  *
3213  *	Sets the inheritance of the specified address
3214  *	range in the target map.  Inheritance
3215  *	affects how the map will be shared with
3216  *	child maps at the time of vmspace_fork.
3217  */
3218 int
3219 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3220 	       vm_inherit_t new_inheritance)
3221 {
3222 	vm_map_entry_t entry, lentry, prev_entry, start_entry;
3223 	int rv;
3224 
3225 	switch (new_inheritance) {
3226 	case VM_INHERIT_NONE:
3227 	case VM_INHERIT_COPY:
3228 	case VM_INHERIT_SHARE:
3229 	case VM_INHERIT_ZERO:
3230 		break;
3231 	default:
3232 		return (KERN_INVALID_ARGUMENT);
3233 	}
3234 	if (start == end)
3235 		return (KERN_SUCCESS);
3236 	vm_map_lock(map);
3237 	VM_MAP_RANGE_CHECK(map, start, end);
3238 	rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3239 	if (rv != KERN_SUCCESS)
3240 		goto unlock;
3241 	if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3242 		rv = vm_map_clip_end(map, lentry, end);
3243 		if (rv != KERN_SUCCESS)
3244 			goto unlock;
3245 	}
3246 	if (new_inheritance == VM_INHERIT_COPY) {
3247 		for (entry = start_entry; entry->start < end;
3248 		    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3249 			if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3250 			    != 0) {
3251 				rv = KERN_INVALID_ARGUMENT;
3252 				goto unlock;
3253 			}
3254 		}
3255 	}
3256 	for (entry = start_entry; entry->start < end; prev_entry = entry,
3257 	    entry = vm_map_entry_succ(entry)) {
3258 		KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3259 		    entry, (uintmax_t)entry->end, (uintmax_t)end));
3260 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3261 		    new_inheritance != VM_INHERIT_ZERO)
3262 			entry->inheritance = new_inheritance;
3263 		vm_map_try_merge_entries(map, prev_entry, entry);
3264 	}
3265 	vm_map_try_merge_entries(map, prev_entry, entry);
3266 unlock:
3267 	vm_map_unlock(map);
3268 	return (rv);
3269 }
3270 
3271 /*
3272  *	vm_map_entry_in_transition:
3273  *
3274  *	Release the map lock, and sleep until the entry is no longer in
3275  *	transition.  Awake and acquire the map lock.  If the map changed while
3276  *	another held the lock, lookup a possibly-changed entry at or after the
3277  *	'start' position of the old entry.
3278  */
3279 static vm_map_entry_t
3280 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3281     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3282 {
3283 	vm_map_entry_t entry;
3284 	vm_offset_t start;
3285 	u_int last_timestamp;
3286 
3287 	VM_MAP_ASSERT_LOCKED(map);
3288 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3289 	    ("not in-tranition map entry %p", in_entry));
3290 	/*
3291 	 * We have not yet clipped the entry.
3292 	 */
3293 	start = MAX(in_start, in_entry->start);
3294 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3295 	last_timestamp = map->timestamp;
3296 	if (vm_map_unlock_and_wait(map, 0)) {
3297 		/*
3298 		 * Allow interruption of user wiring/unwiring?
3299 		 */
3300 	}
3301 	vm_map_lock(map);
3302 	if (last_timestamp + 1 == map->timestamp)
3303 		return (in_entry);
3304 
3305 	/*
3306 	 * Look again for the entry because the map was modified while it was
3307 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
3308 	 * deleted.
3309 	 */
3310 	if (!vm_map_lookup_entry(map, start, &entry)) {
3311 		if (!holes_ok) {
3312 			*io_end = start;
3313 			return (NULL);
3314 		}
3315 		entry = vm_map_entry_succ(entry);
3316 	}
3317 	return (entry);
3318 }
3319 
3320 /*
3321  *	vm_map_unwire:
3322  *
3323  *	Implements both kernel and user unwiring.
3324  */
3325 int
3326 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3327     int flags)
3328 {
3329 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3330 	int rv;
3331 	bool holes_ok, need_wakeup, user_unwire;
3332 
3333 	if (start == end)
3334 		return (KERN_SUCCESS);
3335 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3336 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3337 	vm_map_lock(map);
3338 	VM_MAP_RANGE_CHECK(map, start, end);
3339 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3340 		if (holes_ok)
3341 			first_entry = vm_map_entry_succ(first_entry);
3342 		else {
3343 			vm_map_unlock(map);
3344 			return (KERN_INVALID_ADDRESS);
3345 		}
3346 	}
3347 	rv = KERN_SUCCESS;
3348 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3349 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3350 			/*
3351 			 * We have not yet clipped the entry.
3352 			 */
3353 			next_entry = vm_map_entry_in_transition(map, start,
3354 			    &end, holes_ok, entry);
3355 			if (next_entry == NULL) {
3356 				if (entry == first_entry) {
3357 					vm_map_unlock(map);
3358 					return (KERN_INVALID_ADDRESS);
3359 				}
3360 				rv = KERN_INVALID_ADDRESS;
3361 				break;
3362 			}
3363 			first_entry = (entry == first_entry) ?
3364 			    next_entry : NULL;
3365 			continue;
3366 		}
3367 		rv = vm_map_clip_start(map, entry, start);
3368 		if (rv != KERN_SUCCESS)
3369 			break;
3370 		rv = vm_map_clip_end(map, entry, end);
3371 		if (rv != KERN_SUCCESS)
3372 			break;
3373 
3374 		/*
3375 		 * Mark the entry in case the map lock is released.  (See
3376 		 * above.)
3377 		 */
3378 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3379 		    entry->wiring_thread == NULL,
3380 		    ("owned map entry %p", entry));
3381 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3382 		entry->wiring_thread = curthread;
3383 		next_entry = vm_map_entry_succ(entry);
3384 		/*
3385 		 * Check the map for holes in the specified region.
3386 		 * If holes_ok, skip this check.
3387 		 */
3388 		if (!holes_ok &&
3389 		    entry->end < end && next_entry->start > entry->end) {
3390 			end = entry->end;
3391 			rv = KERN_INVALID_ADDRESS;
3392 			break;
3393 		}
3394 		/*
3395 		 * If system unwiring, require that the entry is system wired.
3396 		 */
3397 		if (!user_unwire &&
3398 		    vm_map_entry_system_wired_count(entry) == 0) {
3399 			end = entry->end;
3400 			rv = KERN_INVALID_ARGUMENT;
3401 			break;
3402 		}
3403 	}
3404 	need_wakeup = false;
3405 	if (first_entry == NULL &&
3406 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3407 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3408 		prev_entry = first_entry;
3409 		entry = vm_map_entry_succ(first_entry);
3410 	} else {
3411 		prev_entry = vm_map_entry_pred(first_entry);
3412 		entry = first_entry;
3413 	}
3414 	for (; entry->start < end;
3415 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3416 		/*
3417 		 * If holes_ok was specified, an empty
3418 		 * space in the unwired region could have been mapped
3419 		 * while the map lock was dropped for draining
3420 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3421 		 * could be simultaneously wiring this new mapping
3422 		 * entry.  Detect these cases and skip any entries
3423 		 * marked as in transition by us.
3424 		 */
3425 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3426 		    entry->wiring_thread != curthread) {
3427 			KASSERT(holes_ok,
3428 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
3429 			continue;
3430 		}
3431 
3432 		if (rv == KERN_SUCCESS && (!user_unwire ||
3433 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3434 			if (entry->wired_count == 1)
3435 				vm_map_entry_unwire(map, entry);
3436 			else
3437 				entry->wired_count--;
3438 			if (user_unwire)
3439 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3440 		}
3441 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3442 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3443 		KASSERT(entry->wiring_thread == curthread,
3444 		    ("vm_map_unwire: alien wire %p", entry));
3445 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3446 		entry->wiring_thread = NULL;
3447 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3448 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3449 			need_wakeup = true;
3450 		}
3451 		vm_map_try_merge_entries(map, prev_entry, entry);
3452 	}
3453 	vm_map_try_merge_entries(map, prev_entry, entry);
3454 	vm_map_unlock(map);
3455 	if (need_wakeup)
3456 		vm_map_wakeup(map);
3457 	return (rv);
3458 }
3459 
3460 static void
3461 vm_map_wire_user_count_sub(u_long npages)
3462 {
3463 
3464 	atomic_subtract_long(&vm_user_wire_count, npages);
3465 }
3466 
3467 static bool
3468 vm_map_wire_user_count_add(u_long npages)
3469 {
3470 	u_long wired;
3471 
3472 	wired = vm_user_wire_count;
3473 	do {
3474 		if (npages + wired > vm_page_max_user_wired)
3475 			return (false);
3476 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3477 	    npages + wired));
3478 
3479 	return (true);
3480 }
3481 
3482 /*
3483  *	vm_map_wire_entry_failure:
3484  *
3485  *	Handle a wiring failure on the given entry.
3486  *
3487  *	The map should be locked.
3488  */
3489 static void
3490 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3491     vm_offset_t failed_addr)
3492 {
3493 
3494 	VM_MAP_ASSERT_LOCKED(map);
3495 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3496 	    entry->wired_count == 1,
3497 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3498 	KASSERT(failed_addr < entry->end,
3499 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3500 
3501 	/*
3502 	 * If any pages at the start of this entry were successfully wired,
3503 	 * then unwire them.
3504 	 */
3505 	if (failed_addr > entry->start) {
3506 		pmap_unwire(map->pmap, entry->start, failed_addr);
3507 		vm_object_unwire(entry->object.vm_object, entry->offset,
3508 		    failed_addr - entry->start, PQ_ACTIVE);
3509 	}
3510 
3511 	/*
3512 	 * Assign an out-of-range value to represent the failure to wire this
3513 	 * entry.
3514 	 */
3515 	entry->wired_count = -1;
3516 }
3517 
3518 int
3519 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3520 {
3521 	int rv;
3522 
3523 	vm_map_lock(map);
3524 	rv = vm_map_wire_locked(map, start, end, flags);
3525 	vm_map_unlock(map);
3526 	return (rv);
3527 }
3528 
3529 /*
3530  *	vm_map_wire_locked:
3531  *
3532  *	Implements both kernel and user wiring.  Returns with the map locked,
3533  *	the map lock may be dropped.
3534  */
3535 int
3536 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3537 {
3538 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3539 	vm_offset_t faddr, saved_end, saved_start;
3540 	u_long incr, npages;
3541 	u_int bidx, last_timestamp;
3542 	int rv;
3543 	bool holes_ok, need_wakeup, user_wire;
3544 	vm_prot_t prot;
3545 
3546 	VM_MAP_ASSERT_LOCKED(map);
3547 
3548 	if (start == end)
3549 		return (KERN_SUCCESS);
3550 	prot = 0;
3551 	if (flags & VM_MAP_WIRE_WRITE)
3552 		prot |= VM_PROT_WRITE;
3553 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3554 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3555 	VM_MAP_RANGE_CHECK(map, start, end);
3556 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3557 		if (holes_ok)
3558 			first_entry = vm_map_entry_succ(first_entry);
3559 		else
3560 			return (KERN_INVALID_ADDRESS);
3561 	}
3562 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3563 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3564 			/*
3565 			 * We have not yet clipped the entry.
3566 			 */
3567 			next_entry = vm_map_entry_in_transition(map, start,
3568 			    &end, holes_ok, entry);
3569 			if (next_entry == NULL) {
3570 				if (entry == first_entry)
3571 					return (KERN_INVALID_ADDRESS);
3572 				rv = KERN_INVALID_ADDRESS;
3573 				goto done;
3574 			}
3575 			first_entry = (entry == first_entry) ?
3576 			    next_entry : NULL;
3577 			continue;
3578 		}
3579 		rv = vm_map_clip_start(map, entry, start);
3580 		if (rv != KERN_SUCCESS)
3581 			goto done;
3582 		rv = vm_map_clip_end(map, entry, end);
3583 		if (rv != KERN_SUCCESS)
3584 			goto done;
3585 
3586 		/*
3587 		 * Mark the entry in case the map lock is released.  (See
3588 		 * above.)
3589 		 */
3590 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3591 		    entry->wiring_thread == NULL,
3592 		    ("owned map entry %p", entry));
3593 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3594 		entry->wiring_thread = curthread;
3595 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3596 		    || (entry->protection & prot) != prot) {
3597 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3598 			if (!holes_ok) {
3599 				end = entry->end;
3600 				rv = KERN_INVALID_ADDRESS;
3601 				goto done;
3602 			}
3603 		} else if (entry->wired_count == 0) {
3604 			entry->wired_count++;
3605 
3606 			npages = atop(entry->end - entry->start);
3607 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3608 				vm_map_wire_entry_failure(map, entry,
3609 				    entry->start);
3610 				end = entry->end;
3611 				rv = KERN_RESOURCE_SHORTAGE;
3612 				goto done;
3613 			}
3614 
3615 			/*
3616 			 * Release the map lock, relying on the in-transition
3617 			 * mark.  Mark the map busy for fork.
3618 			 */
3619 			saved_start = entry->start;
3620 			saved_end = entry->end;
3621 			last_timestamp = map->timestamp;
3622 			bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3623 			incr =  pagesizes[bidx];
3624 			vm_map_busy(map);
3625 			vm_map_unlock(map);
3626 
3627 			for (faddr = saved_start; faddr < saved_end;
3628 			    faddr += incr) {
3629 				/*
3630 				 * Simulate a fault to get the page and enter
3631 				 * it into the physical map.
3632 				 */
3633 				rv = vm_fault(map, faddr, VM_PROT_NONE,
3634 				    VM_FAULT_WIRE, NULL);
3635 				if (rv != KERN_SUCCESS)
3636 					break;
3637 			}
3638 			vm_map_lock(map);
3639 			vm_map_unbusy(map);
3640 			if (last_timestamp + 1 != map->timestamp) {
3641 				/*
3642 				 * Look again for the entry because the map was
3643 				 * modified while it was unlocked.  The entry
3644 				 * may have been clipped, but NOT merged or
3645 				 * deleted.
3646 				 */
3647 				if (!vm_map_lookup_entry(map, saved_start,
3648 				    &next_entry))
3649 					KASSERT(false,
3650 					    ("vm_map_wire: lookup failed"));
3651 				first_entry = (entry == first_entry) ?
3652 				    next_entry : NULL;
3653 				for (entry = next_entry; entry->end < saved_end;
3654 				    entry = vm_map_entry_succ(entry)) {
3655 					/*
3656 					 * In case of failure, handle entries
3657 					 * that were not fully wired here;
3658 					 * fully wired entries are handled
3659 					 * later.
3660 					 */
3661 					if (rv != KERN_SUCCESS &&
3662 					    faddr < entry->end)
3663 						vm_map_wire_entry_failure(map,
3664 						    entry, faddr);
3665 				}
3666 			}
3667 			if (rv != KERN_SUCCESS) {
3668 				vm_map_wire_entry_failure(map, entry, faddr);
3669 				if (user_wire)
3670 					vm_map_wire_user_count_sub(npages);
3671 				end = entry->end;
3672 				goto done;
3673 			}
3674 		} else if (!user_wire ||
3675 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3676 			entry->wired_count++;
3677 		}
3678 		/*
3679 		 * Check the map for holes in the specified region.
3680 		 * If holes_ok was specified, skip this check.
3681 		 */
3682 		next_entry = vm_map_entry_succ(entry);
3683 		if (!holes_ok &&
3684 		    entry->end < end && next_entry->start > entry->end) {
3685 			end = entry->end;
3686 			rv = KERN_INVALID_ADDRESS;
3687 			goto done;
3688 		}
3689 	}
3690 	rv = KERN_SUCCESS;
3691 done:
3692 	need_wakeup = false;
3693 	if (first_entry == NULL &&
3694 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3695 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3696 		prev_entry = first_entry;
3697 		entry = vm_map_entry_succ(first_entry);
3698 	} else {
3699 		prev_entry = vm_map_entry_pred(first_entry);
3700 		entry = first_entry;
3701 	}
3702 	for (; entry->start < end;
3703 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3704 		/*
3705 		 * If holes_ok was specified, an empty
3706 		 * space in the unwired region could have been mapped
3707 		 * while the map lock was dropped for faulting in the
3708 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3709 		 * Moreover, another thread could be simultaneously
3710 		 * wiring this new mapping entry.  Detect these cases
3711 		 * and skip any entries marked as in transition not by us.
3712 		 *
3713 		 * Another way to get an entry not marked with
3714 		 * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3715 		 * which set rv to KERN_INVALID_ARGUMENT.
3716 		 */
3717 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3718 		    entry->wiring_thread != curthread) {
3719 			KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3720 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3721 			continue;
3722 		}
3723 
3724 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3725 			/* do nothing */
3726 		} else if (rv == KERN_SUCCESS) {
3727 			if (user_wire)
3728 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3729 		} else if (entry->wired_count == -1) {
3730 			/*
3731 			 * Wiring failed on this entry.  Thus, unwiring is
3732 			 * unnecessary.
3733 			 */
3734 			entry->wired_count = 0;
3735 		} else if (!user_wire ||
3736 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3737 			/*
3738 			 * Undo the wiring.  Wiring succeeded on this entry
3739 			 * but failed on a later entry.
3740 			 */
3741 			if (entry->wired_count == 1) {
3742 				vm_map_entry_unwire(map, entry);
3743 				if (user_wire)
3744 					vm_map_wire_user_count_sub(
3745 					    atop(entry->end - entry->start));
3746 			} else
3747 				entry->wired_count--;
3748 		}
3749 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3750 		    ("vm_map_wire: in-transition flag missing %p", entry));
3751 		KASSERT(entry->wiring_thread == curthread,
3752 		    ("vm_map_wire: alien wire %p", entry));
3753 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3754 		    MAP_ENTRY_WIRE_SKIPPED);
3755 		entry->wiring_thread = NULL;
3756 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3757 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3758 			need_wakeup = true;
3759 		}
3760 		vm_map_try_merge_entries(map, prev_entry, entry);
3761 	}
3762 	vm_map_try_merge_entries(map, prev_entry, entry);
3763 	if (need_wakeup)
3764 		vm_map_wakeup(map);
3765 	return (rv);
3766 }
3767 
3768 /*
3769  * vm_map_sync
3770  *
3771  * Push any dirty cached pages in the address range to their pager.
3772  * If syncio is TRUE, dirty pages are written synchronously.
3773  * If invalidate is TRUE, any cached pages are freed as well.
3774  *
3775  * If the size of the region from start to end is zero, we are
3776  * supposed to flush all modified pages within the region containing
3777  * start.  Unfortunately, a region can be split or coalesced with
3778  * neighboring regions, making it difficult to determine what the
3779  * original region was.  Therefore, we approximate this requirement by
3780  * flushing the current region containing start.
3781  *
3782  * Returns an error if any part of the specified range is not mapped.
3783  */
3784 int
3785 vm_map_sync(
3786 	vm_map_t map,
3787 	vm_offset_t start,
3788 	vm_offset_t end,
3789 	boolean_t syncio,
3790 	boolean_t invalidate)
3791 {
3792 	vm_map_entry_t entry, first_entry, next_entry;
3793 	vm_size_t size;
3794 	vm_object_t object;
3795 	vm_ooffset_t offset;
3796 	unsigned int last_timestamp;
3797 	int bdry_idx;
3798 	boolean_t failed;
3799 
3800 	vm_map_lock_read(map);
3801 	VM_MAP_RANGE_CHECK(map, start, end);
3802 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3803 		vm_map_unlock_read(map);
3804 		return (KERN_INVALID_ADDRESS);
3805 	} else if (start == end) {
3806 		start = first_entry->start;
3807 		end = first_entry->end;
3808 	}
3809 
3810 	/*
3811 	 * Make a first pass to check for user-wired memory, holes,
3812 	 * and partial invalidation of largepage mappings.
3813 	 */
3814 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3815 		if (invalidate) {
3816 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3817 				vm_map_unlock_read(map);
3818 				return (KERN_INVALID_ARGUMENT);
3819 			}
3820 			bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3821 			if (bdry_idx != 0 &&
3822 			    ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3823 			    (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3824 				vm_map_unlock_read(map);
3825 				return (KERN_INVALID_ARGUMENT);
3826 			}
3827 		}
3828 		next_entry = vm_map_entry_succ(entry);
3829 		if (end > entry->end &&
3830 		    entry->end != next_entry->start) {
3831 			vm_map_unlock_read(map);
3832 			return (KERN_INVALID_ADDRESS);
3833 		}
3834 	}
3835 
3836 	if (invalidate)
3837 		pmap_remove(map->pmap, start, end);
3838 	failed = FALSE;
3839 
3840 	/*
3841 	 * Make a second pass, cleaning/uncaching pages from the indicated
3842 	 * objects as we go.
3843 	 */
3844 	for (entry = first_entry; entry->start < end;) {
3845 		offset = entry->offset + (start - entry->start);
3846 		size = (end <= entry->end ? end : entry->end) - start;
3847 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3848 			vm_map_t smap;
3849 			vm_map_entry_t tentry;
3850 			vm_size_t tsize;
3851 
3852 			smap = entry->object.sub_map;
3853 			vm_map_lock_read(smap);
3854 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3855 			tsize = tentry->end - offset;
3856 			if (tsize < size)
3857 				size = tsize;
3858 			object = tentry->object.vm_object;
3859 			offset = tentry->offset + (offset - tentry->start);
3860 			vm_map_unlock_read(smap);
3861 		} else {
3862 			object = entry->object.vm_object;
3863 		}
3864 		vm_object_reference(object);
3865 		last_timestamp = map->timestamp;
3866 		vm_map_unlock_read(map);
3867 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3868 			failed = TRUE;
3869 		start += size;
3870 		vm_object_deallocate(object);
3871 		vm_map_lock_read(map);
3872 		if (last_timestamp == map->timestamp ||
3873 		    !vm_map_lookup_entry(map, start, &entry))
3874 			entry = vm_map_entry_succ(entry);
3875 	}
3876 
3877 	vm_map_unlock_read(map);
3878 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3879 }
3880 
3881 /*
3882  *	vm_map_entry_unwire:	[ internal use only ]
3883  *
3884  *	Make the region specified by this entry pageable.
3885  *
3886  *	The map in question should be locked.
3887  *	[This is the reason for this routine's existence.]
3888  */
3889 static void
3890 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3891 {
3892 	vm_size_t size;
3893 
3894 	VM_MAP_ASSERT_LOCKED(map);
3895 	KASSERT(entry->wired_count > 0,
3896 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3897 
3898 	size = entry->end - entry->start;
3899 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3900 		vm_map_wire_user_count_sub(atop(size));
3901 	pmap_unwire(map->pmap, entry->start, entry->end);
3902 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3903 	    PQ_ACTIVE);
3904 	entry->wired_count = 0;
3905 }
3906 
3907 static void
3908 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3909 {
3910 
3911 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3912 		vm_object_deallocate(entry->object.vm_object);
3913 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3914 }
3915 
3916 /*
3917  *	vm_map_entry_delete:	[ internal use only ]
3918  *
3919  *	Deallocate the given entry from the target map.
3920  */
3921 static void
3922 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3923 {
3924 	vm_object_t object;
3925 	vm_pindex_t offidxstart, offidxend, size1;
3926 	vm_size_t size;
3927 
3928 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3929 	object = entry->object.vm_object;
3930 
3931 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3932 		MPASS(entry->cred == NULL);
3933 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3934 		MPASS(object == NULL);
3935 		vm_map_entry_deallocate(entry, map->system_map);
3936 		return;
3937 	}
3938 
3939 	size = entry->end - entry->start;
3940 	map->size -= size;
3941 
3942 	if (entry->cred != NULL) {
3943 		swap_release_by_cred(size, entry->cred);
3944 		crfree(entry->cred);
3945 	}
3946 
3947 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3948 		entry->object.vm_object = NULL;
3949 	} else if ((object->flags & OBJ_ANON) != 0 ||
3950 	    object == kernel_object) {
3951 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3952 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3953 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3954 		offidxstart = OFF_TO_IDX(entry->offset);
3955 		offidxend = offidxstart + atop(size);
3956 		VM_OBJECT_WLOCK(object);
3957 		if (object->ref_count != 1 &&
3958 		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3959 		    object == kernel_object)) {
3960 			vm_object_collapse(object);
3961 
3962 			/*
3963 			 * The option OBJPR_NOTMAPPED can be passed here
3964 			 * because vm_map_delete() already performed
3965 			 * pmap_remove() on the only mapping to this range
3966 			 * of pages.
3967 			 */
3968 			vm_object_page_remove(object, offidxstart, offidxend,
3969 			    OBJPR_NOTMAPPED);
3970 			if (offidxend >= object->size &&
3971 			    offidxstart < object->size) {
3972 				size1 = object->size;
3973 				object->size = offidxstart;
3974 				if (object->cred != NULL) {
3975 					size1 -= object->size;
3976 					KASSERT(object->charge >= ptoa(size1),
3977 					    ("object %p charge < 0", object));
3978 					swap_release_by_cred(ptoa(size1),
3979 					    object->cred);
3980 					object->charge -= ptoa(size1);
3981 				}
3982 			}
3983 		}
3984 		VM_OBJECT_WUNLOCK(object);
3985 	}
3986 	if (map->system_map)
3987 		vm_map_entry_deallocate(entry, TRUE);
3988 	else {
3989 		entry->defer_next = curthread->td_map_def_user;
3990 		curthread->td_map_def_user = entry;
3991 	}
3992 }
3993 
3994 /*
3995  *	vm_map_delete:	[ internal use only ]
3996  *
3997  *	Deallocates the given address range from the target
3998  *	map.
3999  */
4000 int
4001 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
4002 {
4003 	vm_map_entry_t entry, next_entry, scratch_entry;
4004 	int rv;
4005 
4006 	VM_MAP_ASSERT_LOCKED(map);
4007 
4008 	if (start == end)
4009 		return (KERN_SUCCESS);
4010 
4011 	/*
4012 	 * Find the start of the region, and clip it.
4013 	 * Step through all entries in this region.
4014 	 */
4015 	rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
4016 	if (rv != KERN_SUCCESS)
4017 		return (rv);
4018 	for (; entry->start < end; entry = next_entry) {
4019 		/*
4020 		 * Wait for wiring or unwiring of an entry to complete.
4021 		 * Also wait for any system wirings to disappear on
4022 		 * user maps.
4023 		 */
4024 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
4025 		    (vm_map_pmap(map) != kernel_pmap &&
4026 		    vm_map_entry_system_wired_count(entry) != 0)) {
4027 			unsigned int last_timestamp;
4028 			vm_offset_t saved_start;
4029 
4030 			saved_start = entry->start;
4031 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4032 			last_timestamp = map->timestamp;
4033 			(void) vm_map_unlock_and_wait(map, 0);
4034 			vm_map_lock(map);
4035 			if (last_timestamp + 1 != map->timestamp) {
4036 				/*
4037 				 * Look again for the entry because the map was
4038 				 * modified while it was unlocked.
4039 				 * Specifically, the entry may have been
4040 				 * clipped, merged, or deleted.
4041 				 */
4042 				rv = vm_map_lookup_clip_start(map, saved_start,
4043 				    &next_entry, &scratch_entry);
4044 				if (rv != KERN_SUCCESS)
4045 					break;
4046 			} else
4047 				next_entry = entry;
4048 			continue;
4049 		}
4050 
4051 		/* XXXKIB or delete to the upper superpage boundary ? */
4052 		rv = vm_map_clip_end(map, entry, end);
4053 		if (rv != KERN_SUCCESS)
4054 			break;
4055 		next_entry = vm_map_entry_succ(entry);
4056 
4057 		/*
4058 		 * Unwire before removing addresses from the pmap; otherwise,
4059 		 * unwiring will put the entries back in the pmap.
4060 		 */
4061 		if (entry->wired_count != 0)
4062 			vm_map_entry_unwire(map, entry);
4063 
4064 		/*
4065 		 * Remove mappings for the pages, but only if the
4066 		 * mappings could exist.  For instance, it does not
4067 		 * make sense to call pmap_remove() for guard entries.
4068 		 */
4069 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
4070 		    entry->object.vm_object != NULL)
4071 			pmap_map_delete(map->pmap, entry->start, entry->end);
4072 
4073 		/*
4074 		 * Delete the entry only after removing all pmap
4075 		 * entries pointing to its pages.  (Otherwise, its
4076 		 * page frames may be reallocated, and any modify bits
4077 		 * will be set in the wrong object!)
4078 		 */
4079 		vm_map_entry_delete(map, entry);
4080 	}
4081 	return (rv);
4082 }
4083 
4084 /*
4085  *	vm_map_remove:
4086  *
4087  *	Remove the given address range from the target map.
4088  *	This is the exported form of vm_map_delete.
4089  */
4090 int
4091 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
4092 {
4093 	int result;
4094 
4095 	vm_map_lock(map);
4096 	VM_MAP_RANGE_CHECK(map, start, end);
4097 	result = vm_map_delete(map, start, end);
4098 	vm_map_unlock(map);
4099 	return (result);
4100 }
4101 
4102 /*
4103  *	vm_map_check_protection:
4104  *
4105  *	Assert that the target map allows the specified privilege on the
4106  *	entire address region given.  The entire region must be allocated.
4107  *
4108  *	WARNING!  This code does not and should not check whether the
4109  *	contents of the region is accessible.  For example a smaller file
4110  *	might be mapped into a larger address space.
4111  *
4112  *	NOTE!  This code is also called by munmap().
4113  *
4114  *	The map must be locked.  A read lock is sufficient.
4115  */
4116 boolean_t
4117 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4118 			vm_prot_t protection)
4119 {
4120 	vm_map_entry_t entry;
4121 	vm_map_entry_t tmp_entry;
4122 
4123 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
4124 		return (FALSE);
4125 	entry = tmp_entry;
4126 
4127 	while (start < end) {
4128 		/*
4129 		 * No holes allowed!
4130 		 */
4131 		if (start < entry->start)
4132 			return (FALSE);
4133 		/*
4134 		 * Check protection associated with entry.
4135 		 */
4136 		if ((entry->protection & protection) != protection)
4137 			return (FALSE);
4138 		/* go to next entry */
4139 		start = entry->end;
4140 		entry = vm_map_entry_succ(entry);
4141 	}
4142 	return (TRUE);
4143 }
4144 
4145 /*
4146  *
4147  *	vm_map_copy_swap_object:
4148  *
4149  *	Copies a swap-backed object from an existing map entry to a
4150  *	new one.  Carries forward the swap charge.  May change the
4151  *	src object on return.
4152  */
4153 static void
4154 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4155     vm_offset_t size, vm_ooffset_t *fork_charge)
4156 {
4157 	vm_object_t src_object;
4158 	struct ucred *cred;
4159 	int charged;
4160 
4161 	src_object = src_entry->object.vm_object;
4162 	charged = ENTRY_CHARGED(src_entry);
4163 	if ((src_object->flags & OBJ_ANON) != 0) {
4164 		VM_OBJECT_WLOCK(src_object);
4165 		vm_object_collapse(src_object);
4166 		if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4167 			vm_object_split(src_entry);
4168 			src_object = src_entry->object.vm_object;
4169 		}
4170 		vm_object_reference_locked(src_object);
4171 		vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4172 		VM_OBJECT_WUNLOCK(src_object);
4173 	} else
4174 		vm_object_reference(src_object);
4175 	if (src_entry->cred != NULL &&
4176 	    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4177 		KASSERT(src_object->cred == NULL,
4178 		    ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4179 		     src_object));
4180 		src_object->cred = src_entry->cred;
4181 		src_object->charge = size;
4182 	}
4183 	dst_entry->object.vm_object = src_object;
4184 	if (charged) {
4185 		cred = curthread->td_ucred;
4186 		crhold(cred);
4187 		dst_entry->cred = cred;
4188 		*fork_charge += size;
4189 		if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4190 			crhold(cred);
4191 			src_entry->cred = cred;
4192 			*fork_charge += size;
4193 		}
4194 	}
4195 }
4196 
4197 /*
4198  *	vm_map_copy_entry:
4199  *
4200  *	Copies the contents of the source entry to the destination
4201  *	entry.  The entries *must* be aligned properly.
4202  */
4203 static void
4204 vm_map_copy_entry(
4205 	vm_map_t src_map,
4206 	vm_map_t dst_map,
4207 	vm_map_entry_t src_entry,
4208 	vm_map_entry_t dst_entry,
4209 	vm_ooffset_t *fork_charge)
4210 {
4211 	vm_object_t src_object;
4212 	vm_map_entry_t fake_entry;
4213 	vm_offset_t size;
4214 
4215 	VM_MAP_ASSERT_LOCKED(dst_map);
4216 
4217 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4218 		return;
4219 
4220 	if (src_entry->wired_count == 0 ||
4221 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
4222 		/*
4223 		 * If the source entry is marked needs_copy, it is already
4224 		 * write-protected.
4225 		 */
4226 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4227 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
4228 			pmap_protect(src_map->pmap,
4229 			    src_entry->start,
4230 			    src_entry->end,
4231 			    src_entry->protection & ~VM_PROT_WRITE);
4232 		}
4233 
4234 		/*
4235 		 * Make a copy of the object.
4236 		 */
4237 		size = src_entry->end - src_entry->start;
4238 		if ((src_object = src_entry->object.vm_object) != NULL) {
4239 			if ((src_object->flags & OBJ_SWAP) != 0) {
4240 				vm_map_copy_swap_object(src_entry, dst_entry,
4241 				    size, fork_charge);
4242 				/* May have split/collapsed, reload obj. */
4243 				src_object = src_entry->object.vm_object;
4244 			} else {
4245 				vm_object_reference(src_object);
4246 				dst_entry->object.vm_object = src_object;
4247 			}
4248 			src_entry->eflags |= MAP_ENTRY_COW |
4249 			    MAP_ENTRY_NEEDS_COPY;
4250 			dst_entry->eflags |= MAP_ENTRY_COW |
4251 			    MAP_ENTRY_NEEDS_COPY;
4252 			dst_entry->offset = src_entry->offset;
4253 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4254 				/*
4255 				 * MAP_ENTRY_WRITECNT cannot
4256 				 * indicate write reference from
4257 				 * src_entry, since the entry is
4258 				 * marked as needs copy.  Allocate a
4259 				 * fake entry that is used to
4260 				 * decrement object->un_pager writecount
4261 				 * at the appropriate time.  Attach
4262 				 * fake_entry to the deferred list.
4263 				 */
4264 				fake_entry = vm_map_entry_create(dst_map);
4265 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
4266 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4267 				vm_object_reference(src_object);
4268 				fake_entry->object.vm_object = src_object;
4269 				fake_entry->start = src_entry->start;
4270 				fake_entry->end = src_entry->end;
4271 				fake_entry->defer_next =
4272 				    curthread->td_map_def_user;
4273 				curthread->td_map_def_user = fake_entry;
4274 			}
4275 
4276 			pmap_copy(dst_map->pmap, src_map->pmap,
4277 			    dst_entry->start, dst_entry->end - dst_entry->start,
4278 			    src_entry->start);
4279 		} else {
4280 			dst_entry->object.vm_object = NULL;
4281 			if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0)
4282 				dst_entry->offset = 0;
4283 			if (src_entry->cred != NULL) {
4284 				dst_entry->cred = curthread->td_ucred;
4285 				crhold(dst_entry->cred);
4286 				*fork_charge += size;
4287 			}
4288 		}
4289 	} else {
4290 		/*
4291 		 * We don't want to make writeable wired pages copy-on-write.
4292 		 * Immediately copy these pages into the new map by simulating
4293 		 * page faults.  The new pages are pageable.
4294 		 */
4295 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4296 		    fork_charge);
4297 	}
4298 }
4299 
4300 /*
4301  * vmspace_map_entry_forked:
4302  * Update the newly-forked vmspace each time a map entry is inherited
4303  * or copied.  The values for vm_dsize and vm_tsize are approximate
4304  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4305  */
4306 static void
4307 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4308     vm_map_entry_t entry)
4309 {
4310 	vm_size_t entrysize;
4311 	vm_offset_t newend;
4312 
4313 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4314 		return;
4315 	entrysize = entry->end - entry->start;
4316 	vm2->vm_map.size += entrysize;
4317 	if ((entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) {
4318 		vm2->vm_ssize += btoc(entrysize);
4319 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4320 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4321 		newend = MIN(entry->end,
4322 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4323 		vm2->vm_dsize += btoc(newend - entry->start);
4324 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4325 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4326 		newend = MIN(entry->end,
4327 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4328 		vm2->vm_tsize += btoc(newend - entry->start);
4329 	}
4330 }
4331 
4332 /*
4333  * vmspace_fork:
4334  * Create a new process vmspace structure and vm_map
4335  * based on those of an existing process.  The new map
4336  * is based on the old map, according to the inheritance
4337  * values on the regions in that map.
4338  *
4339  * XXX It might be worth coalescing the entries added to the new vmspace.
4340  *
4341  * The source map must not be locked.
4342  */
4343 struct vmspace *
4344 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4345 {
4346 	struct vmspace *vm2;
4347 	vm_map_t new_map, old_map;
4348 	vm_map_entry_t new_entry, old_entry;
4349 	vm_object_t object;
4350 	int error, locked __diagused;
4351 	vm_inherit_t inh;
4352 
4353 	old_map = &vm1->vm_map;
4354 	/* Copy immutable fields of vm1 to vm2. */
4355 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4356 	    pmap_pinit);
4357 	if (vm2 == NULL)
4358 		return (NULL);
4359 
4360 	vm2->vm_taddr = vm1->vm_taddr;
4361 	vm2->vm_daddr = vm1->vm_daddr;
4362 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4363 	vm2->vm_stacktop = vm1->vm_stacktop;
4364 	vm2->vm_shp_base = vm1->vm_shp_base;
4365 	vm_map_lock(old_map);
4366 	if (old_map->busy)
4367 		vm_map_wait_busy(old_map);
4368 	new_map = &vm2->vm_map;
4369 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4370 	KASSERT(locked, ("vmspace_fork: lock failed"));
4371 
4372 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4373 	if (error != 0) {
4374 		sx_xunlock(&old_map->lock);
4375 		sx_xunlock(&new_map->lock);
4376 		vm_map_process_deferred();
4377 		vmspace_free(vm2);
4378 		return (NULL);
4379 	}
4380 
4381 	new_map->anon_loc = old_map->anon_loc;
4382 	new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4383 	    MAP_ASLR_STACK | MAP_WXORX);
4384 
4385 	VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4386 		if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4387 			panic("vm_map_fork: encountered a submap");
4388 
4389 		inh = old_entry->inheritance;
4390 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4391 		    inh != VM_INHERIT_NONE)
4392 			inh = VM_INHERIT_COPY;
4393 
4394 		switch (inh) {
4395 		case VM_INHERIT_NONE:
4396 			break;
4397 
4398 		case VM_INHERIT_SHARE:
4399 			/*
4400 			 * Clone the entry, creating the shared object if
4401 			 * necessary.
4402 			 */
4403 			object = old_entry->object.vm_object;
4404 			if (object == NULL) {
4405 				vm_map_entry_back(old_entry);
4406 				object = old_entry->object.vm_object;
4407 			}
4408 
4409 			/*
4410 			 * Add the reference before calling vm_object_shadow
4411 			 * to insure that a shadow object is created.
4412 			 */
4413 			vm_object_reference(object);
4414 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4415 				vm_object_shadow(&old_entry->object.vm_object,
4416 				    &old_entry->offset,
4417 				    old_entry->end - old_entry->start,
4418 				    old_entry->cred,
4419 				    /* Transfer the second reference too. */
4420 				    true);
4421 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4422 				old_entry->cred = NULL;
4423 
4424 				/*
4425 				 * As in vm_map_merged_neighbor_dispose(),
4426 				 * the vnode lock will not be acquired in
4427 				 * this call to vm_object_deallocate().
4428 				 */
4429 				vm_object_deallocate(object);
4430 				object = old_entry->object.vm_object;
4431 			} else {
4432 				VM_OBJECT_WLOCK(object);
4433 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
4434 				if (old_entry->cred != NULL) {
4435 					KASSERT(object->cred == NULL,
4436 					    ("vmspace_fork both cred"));
4437 					object->cred = old_entry->cred;
4438 					object->charge = old_entry->end -
4439 					    old_entry->start;
4440 					old_entry->cred = NULL;
4441 				}
4442 
4443 				/*
4444 				 * Assert the correct state of the vnode
4445 				 * v_writecount while the object is locked, to
4446 				 * not relock it later for the assertion
4447 				 * correctness.
4448 				 */
4449 				if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4450 				    object->type == OBJT_VNODE) {
4451 					KASSERT(((struct vnode *)object->
4452 					    handle)->v_writecount > 0,
4453 					    ("vmspace_fork: v_writecount %p",
4454 					    object));
4455 					KASSERT(object->un_pager.vnp.
4456 					    writemappings > 0,
4457 					    ("vmspace_fork: vnp.writecount %p",
4458 					    object));
4459 				}
4460 				VM_OBJECT_WUNLOCK(object);
4461 			}
4462 
4463 			/*
4464 			 * Clone the entry, referencing the shared object.
4465 			 */
4466 			new_entry = vm_map_entry_create(new_map);
4467 			*new_entry = *old_entry;
4468 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4469 			    MAP_ENTRY_IN_TRANSITION);
4470 			new_entry->wiring_thread = NULL;
4471 			new_entry->wired_count = 0;
4472 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4473 				vm_pager_update_writecount(object,
4474 				    new_entry->start, new_entry->end);
4475 			}
4476 			vm_map_entry_set_vnode_text(new_entry, true);
4477 
4478 			/*
4479 			 * Insert the entry into the new map -- we know we're
4480 			 * inserting at the end of the new map.
4481 			 */
4482 			vm_map_entry_link(new_map, new_entry);
4483 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4484 
4485 			/*
4486 			 * Update the physical map
4487 			 */
4488 			pmap_copy(new_map->pmap, old_map->pmap,
4489 			    new_entry->start,
4490 			    (old_entry->end - old_entry->start),
4491 			    old_entry->start);
4492 			break;
4493 
4494 		case VM_INHERIT_COPY:
4495 			/*
4496 			 * Clone the entry and link into the map.
4497 			 */
4498 			new_entry = vm_map_entry_create(new_map);
4499 			*new_entry = *old_entry;
4500 			/*
4501 			 * Copied entry is COW over the old object.
4502 			 */
4503 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4504 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4505 			new_entry->wiring_thread = NULL;
4506 			new_entry->wired_count = 0;
4507 			new_entry->object.vm_object = NULL;
4508 			new_entry->cred = NULL;
4509 			vm_map_entry_link(new_map, new_entry);
4510 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4511 			vm_map_copy_entry(old_map, new_map, old_entry,
4512 			    new_entry, fork_charge);
4513 			vm_map_entry_set_vnode_text(new_entry, true);
4514 			break;
4515 
4516 		case VM_INHERIT_ZERO:
4517 			/*
4518 			 * Create a new anonymous mapping entry modelled from
4519 			 * the old one.
4520 			 */
4521 			new_entry = vm_map_entry_create(new_map);
4522 			memset(new_entry, 0, sizeof(*new_entry));
4523 
4524 			new_entry->start = old_entry->start;
4525 			new_entry->end = old_entry->end;
4526 			new_entry->eflags = old_entry->eflags &
4527 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4528 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4529 			    MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4530 			new_entry->protection = old_entry->protection;
4531 			new_entry->max_protection = old_entry->max_protection;
4532 			new_entry->inheritance = VM_INHERIT_ZERO;
4533 
4534 			vm_map_entry_link(new_map, new_entry);
4535 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4536 
4537 			new_entry->cred = curthread->td_ucred;
4538 			crhold(new_entry->cred);
4539 			*fork_charge += (new_entry->end - new_entry->start);
4540 
4541 			break;
4542 		}
4543 	}
4544 	/*
4545 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4546 	 * map entries, which cannot be done until both old_map and
4547 	 * new_map locks are released.
4548 	 */
4549 	sx_xunlock(&old_map->lock);
4550 	sx_xunlock(&new_map->lock);
4551 	vm_map_process_deferred();
4552 
4553 	return (vm2);
4554 }
4555 
4556 /*
4557  * Create a process's stack for exec_new_vmspace().  This function is never
4558  * asked to wire the newly created stack.
4559  */
4560 int
4561 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4562     vm_prot_t prot, vm_prot_t max, int cow)
4563 {
4564 	vm_size_t growsize, init_ssize;
4565 	rlim_t vmemlim;
4566 	int rv;
4567 
4568 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4569 	growsize = sgrowsiz;
4570 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4571 	vm_map_lock(map);
4572 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4573 	/* If we would blow our VMEM resource limit, no go */
4574 	if (map->size + init_ssize > vmemlim) {
4575 		rv = KERN_NO_SPACE;
4576 		goto out;
4577 	}
4578 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4579 	    max, cow);
4580 out:
4581 	vm_map_unlock(map);
4582 	return (rv);
4583 }
4584 
4585 static int stack_guard_page = 1;
4586 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4587     &stack_guard_page, 0,
4588     "Specifies the number of guard pages for a stack that grows");
4589 
4590 static int
4591 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4592     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4593 {
4594 	vm_map_entry_t gap_entry, new_entry, prev_entry;
4595 	vm_offset_t bot, gap_bot, gap_top, top;
4596 	vm_size_t init_ssize, sgp;
4597 	int rv;
4598 
4599 	KASSERT((cow & MAP_STACK_AREA) != 0,
4600 	    ("New mapping is not a stack"));
4601 
4602 	if (max_ssize == 0 ||
4603 	    !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4604 		return (KERN_INVALID_ADDRESS);
4605 	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4606 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4607 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4608 	if (sgp >= max_ssize)
4609 		return (KERN_INVALID_ARGUMENT);
4610 
4611 	init_ssize = growsize;
4612 	if (max_ssize < init_ssize + sgp)
4613 		init_ssize = max_ssize - sgp;
4614 
4615 	/* If addr is already mapped, no go */
4616 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4617 		return (KERN_NO_SPACE);
4618 
4619 	/*
4620 	 * If we can't accommodate max_ssize in the current mapping, no go.
4621 	 */
4622 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4623 		return (KERN_NO_SPACE);
4624 
4625 	/*
4626 	 * We initially map a stack of only init_ssize, at the top of
4627 	 * the range.  We will grow as needed later.
4628 	 *
4629 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4630 	 * and cow to be 0.  Possibly we should eliminate these as input
4631 	 * parameters, and just pass these values here in the insert call.
4632 	 */
4633 	bot = addrbos + max_ssize - init_ssize;
4634 	top = bot + init_ssize;
4635 	gap_bot = addrbos;
4636 	gap_top = bot;
4637 	rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow,
4638 	    &new_entry);
4639 	if (rv != KERN_SUCCESS)
4640 		return (rv);
4641 	KASSERT(new_entry->end == top || new_entry->start == bot,
4642 	    ("Bad entry start/end for new stack entry"));
4643 	KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4644 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4645 	if (gap_bot == gap_top)
4646 		return (KERN_SUCCESS);
4647 	rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4648 	    VM_PROT_NONE, MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP,
4649 	    &gap_entry);
4650 	if (rv == KERN_SUCCESS) {
4651 		KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0,
4652 		    ("entry %p not gap %#x", gap_entry, gap_entry->eflags));
4653 		KASSERT((gap_entry->eflags & MAP_ENTRY_STACK_GAP) != 0,
4654 		    ("entry %p not stack gap %#x", gap_entry,
4655 		    gap_entry->eflags));
4656 
4657 		/*
4658 		 * Gap can never successfully handle a fault, so
4659 		 * read-ahead logic is never used for it.  Re-use
4660 		 * next_read of the gap entry to store
4661 		 * stack_guard_page for vm_map_growstack().
4662 		 * Similarly, since a gap cannot have a backing object,
4663 		 * store the original stack protections in the
4664 		 * object offset.
4665 		 */
4666 		gap_entry->next_read = sgp;
4667 		gap_entry->offset = prot | PROT_MAX(max);
4668 	} else {
4669 		(void)vm_map_delete(map, bot, top);
4670 	}
4671 	return (rv);
4672 }
4673 
4674 /*
4675  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4676  * successfully grow the stack.
4677  */
4678 static int
4679 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4680 {
4681 	vm_map_entry_t stack_entry;
4682 	struct proc *p;
4683 	struct vmspace *vm;
4684 	vm_offset_t gap_end, gap_start, grow_start;
4685 	vm_size_t grow_amount, guard, max_grow, sgp;
4686 	vm_prot_t prot, max;
4687 	rlim_t lmemlim, stacklim, vmemlim;
4688 	int rv, rv1 __diagused;
4689 	bool gap_deleted, is_procstack;
4690 #ifdef notyet
4691 	uint64_t limit;
4692 #endif
4693 #ifdef RACCT
4694 	int error __diagused;
4695 #endif
4696 
4697 	p = curproc;
4698 	vm = p->p_vmspace;
4699 
4700 	/*
4701 	 * Disallow stack growth when the access is performed by a
4702 	 * debugger or AIO daemon.  The reason is that the wrong
4703 	 * resource limits are applied.
4704 	 */
4705 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4706 	    p->p_textvp == NULL))
4707 		return (KERN_FAILURE);
4708 
4709 	MPASS(!map->system_map);
4710 
4711 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4712 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4713 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4714 retry:
4715 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4716 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4717 		return (KERN_FAILURE);
4718 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4719 		return (KERN_SUCCESS);
4720 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP) != 0) {
4721 		stack_entry = vm_map_entry_succ(gap_entry);
4722 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4723 		    stack_entry->start != gap_entry->end)
4724 			return (KERN_FAILURE);
4725 		grow_amount = round_page(stack_entry->start - addr);
4726 	} else {
4727 		return (KERN_FAILURE);
4728 	}
4729 	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4730 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4731 	    gap_entry->next_read;
4732 	max_grow = gap_entry->end - gap_entry->start;
4733 	if (guard > max_grow)
4734 		return (KERN_NO_SPACE);
4735 	max_grow -= guard;
4736 	if (grow_amount > max_grow)
4737 		return (KERN_NO_SPACE);
4738 
4739 	/*
4740 	 * If this is the main process stack, see if we're over the stack
4741 	 * limit.
4742 	 */
4743 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4744 	    addr < (vm_offset_t)vm->vm_stacktop;
4745 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4746 		return (KERN_NO_SPACE);
4747 
4748 #ifdef RACCT
4749 	if (racct_enable) {
4750 		PROC_LOCK(p);
4751 		if (is_procstack && racct_set(p, RACCT_STACK,
4752 		    ctob(vm->vm_ssize) + grow_amount)) {
4753 			PROC_UNLOCK(p);
4754 			return (KERN_NO_SPACE);
4755 		}
4756 		PROC_UNLOCK(p);
4757 	}
4758 #endif
4759 
4760 	grow_amount = roundup(grow_amount, sgrowsiz);
4761 	if (grow_amount > max_grow)
4762 		grow_amount = max_grow;
4763 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4764 		grow_amount = trunc_page((vm_size_t)stacklim) -
4765 		    ctob(vm->vm_ssize);
4766 	}
4767 
4768 #ifdef notyet
4769 	PROC_LOCK(p);
4770 	limit = racct_get_available(p, RACCT_STACK);
4771 	PROC_UNLOCK(p);
4772 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4773 		grow_amount = limit - ctob(vm->vm_ssize);
4774 #endif
4775 
4776 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4777 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4778 			rv = KERN_NO_SPACE;
4779 			goto out;
4780 		}
4781 #ifdef RACCT
4782 		if (racct_enable) {
4783 			PROC_LOCK(p);
4784 			if (racct_set(p, RACCT_MEMLOCK,
4785 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4786 				PROC_UNLOCK(p);
4787 				rv = KERN_NO_SPACE;
4788 				goto out;
4789 			}
4790 			PROC_UNLOCK(p);
4791 		}
4792 #endif
4793 	}
4794 
4795 	/* If we would blow our VMEM resource limit, no go */
4796 	if (map->size + grow_amount > vmemlim) {
4797 		rv = KERN_NO_SPACE;
4798 		goto out;
4799 	}
4800 #ifdef RACCT
4801 	if (racct_enable) {
4802 		PROC_LOCK(p);
4803 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4804 			PROC_UNLOCK(p);
4805 			rv = KERN_NO_SPACE;
4806 			goto out;
4807 		}
4808 		PROC_UNLOCK(p);
4809 	}
4810 #endif
4811 
4812 	if (vm_map_lock_upgrade(map)) {
4813 		gap_entry = NULL;
4814 		vm_map_lock_read(map);
4815 		goto retry;
4816 	}
4817 
4818 	/*
4819 	 * The gap_entry "offset" field is overloaded.  See
4820 	 * vm_map_stack_locked().
4821 	 */
4822 	prot = PROT_EXTRACT(gap_entry->offset);
4823 	max = PROT_MAX_EXTRACT(gap_entry->offset);
4824 	sgp = gap_entry->next_read;
4825 
4826 	grow_start = gap_entry->end - grow_amount;
4827 	if (gap_entry->start + grow_amount == gap_entry->end) {
4828 		gap_start = gap_entry->start;
4829 		gap_end = gap_entry->end;
4830 		vm_map_entry_delete(map, gap_entry);
4831 		gap_deleted = true;
4832 	} else {
4833 		MPASS(gap_entry->start < gap_entry->end - grow_amount);
4834 		vm_map_entry_resize(map, gap_entry, -grow_amount);
4835 		gap_deleted = false;
4836 	}
4837 	rv = vm_map_insert(map, NULL, 0, grow_start,
4838 	    grow_start + grow_amount, prot, max, MAP_STACK_AREA);
4839 	if (rv != KERN_SUCCESS) {
4840 		if (gap_deleted) {
4841 			rv1 = vm_map_insert1(map, NULL, 0, gap_start,
4842 			    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4843 			    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP,
4844 			    &gap_entry);
4845 			MPASS(rv1 == KERN_SUCCESS);
4846 			gap_entry->next_read = sgp;
4847 			gap_entry->offset = prot | PROT_MAX(max);
4848 		} else {
4849 			vm_map_entry_resize(map, gap_entry,
4850 			    grow_amount);
4851 		}
4852 	}
4853 	if (rv == KERN_SUCCESS && is_procstack)
4854 		vm->vm_ssize += btoc(grow_amount);
4855 
4856 	/*
4857 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4858 	 */
4859 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4860 		rv = vm_map_wire_locked(map, grow_start,
4861 		    grow_start + grow_amount,
4862 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4863 	}
4864 	vm_map_lock_downgrade(map);
4865 
4866 out:
4867 #ifdef RACCT
4868 	if (racct_enable && rv != KERN_SUCCESS) {
4869 		PROC_LOCK(p);
4870 		error = racct_set(p, RACCT_VMEM, map->size);
4871 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4872 		if (!old_mlock) {
4873 			error = racct_set(p, RACCT_MEMLOCK,
4874 			    ptoa(pmap_wired_count(map->pmap)));
4875 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4876 		}
4877 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4878 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4879 		PROC_UNLOCK(p);
4880 	}
4881 #endif
4882 
4883 	return (rv);
4884 }
4885 
4886 /*
4887  * Unshare the specified VM space for exec.  If other processes are
4888  * mapped to it, then create a new one.  The new vmspace is null.
4889  */
4890 int
4891 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4892 {
4893 	struct vmspace *oldvmspace = p->p_vmspace;
4894 	struct vmspace *newvmspace;
4895 
4896 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4897 	    ("vmspace_exec recursed"));
4898 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4899 	if (newvmspace == NULL)
4900 		return (ENOMEM);
4901 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4902 	/*
4903 	 * This code is written like this for prototype purposes.  The
4904 	 * goal is to avoid running down the vmspace here, but let the
4905 	 * other process's that are still using the vmspace to finally
4906 	 * run it down.  Even though there is little or no chance of blocking
4907 	 * here, it is a good idea to keep this form for future mods.
4908 	 */
4909 	PROC_VMSPACE_LOCK(p);
4910 	p->p_vmspace = newvmspace;
4911 	PROC_VMSPACE_UNLOCK(p);
4912 	if (p == curthread->td_proc)
4913 		pmap_activate(curthread);
4914 	curthread->td_pflags |= TDP_EXECVMSPC;
4915 	return (0);
4916 }
4917 
4918 /*
4919  * Unshare the specified VM space for forcing COW.  This
4920  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4921  */
4922 int
4923 vmspace_unshare(struct proc *p)
4924 {
4925 	struct vmspace *oldvmspace = p->p_vmspace;
4926 	struct vmspace *newvmspace;
4927 	vm_ooffset_t fork_charge;
4928 
4929 	/*
4930 	 * The caller is responsible for ensuring that the reference count
4931 	 * cannot concurrently transition 1 -> 2.
4932 	 */
4933 	if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4934 		return (0);
4935 	fork_charge = 0;
4936 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4937 	if (newvmspace == NULL)
4938 		return (ENOMEM);
4939 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4940 		vmspace_free(newvmspace);
4941 		return (ENOMEM);
4942 	}
4943 	PROC_VMSPACE_LOCK(p);
4944 	p->p_vmspace = newvmspace;
4945 	PROC_VMSPACE_UNLOCK(p);
4946 	if (p == curthread->td_proc)
4947 		pmap_activate(curthread);
4948 	vmspace_free(oldvmspace);
4949 	return (0);
4950 }
4951 
4952 /*
4953  *	vm_map_lookup:
4954  *
4955  *	Finds the VM object, offset, and
4956  *	protection for a given virtual address in the
4957  *	specified map, assuming a page fault of the
4958  *	type specified.
4959  *
4960  *	Leaves the map in question locked for read; return
4961  *	values are guaranteed until a vm_map_lookup_done
4962  *	call is performed.  Note that the map argument
4963  *	is in/out; the returned map must be used in
4964  *	the call to vm_map_lookup_done.
4965  *
4966  *	A handle (out_entry) is returned for use in
4967  *	vm_map_lookup_done, to make that fast.
4968  *
4969  *	If a lookup is requested with "write protection"
4970  *	specified, the map may be changed to perform virtual
4971  *	copying operations, although the data referenced will
4972  *	remain the same.
4973  */
4974 int
4975 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4976 	      vm_offset_t vaddr,
4977 	      vm_prot_t fault_typea,
4978 	      vm_map_entry_t *out_entry,	/* OUT */
4979 	      vm_object_t *object,		/* OUT */
4980 	      vm_pindex_t *pindex,		/* OUT */
4981 	      vm_prot_t *out_prot,		/* OUT */
4982 	      boolean_t *wired)			/* OUT */
4983 {
4984 	vm_map_entry_t entry;
4985 	vm_map_t map = *var_map;
4986 	vm_prot_t prot;
4987 	vm_prot_t fault_type;
4988 	vm_object_t eobject;
4989 	vm_size_t size;
4990 	struct ucred *cred;
4991 
4992 RetryLookup:
4993 
4994 	vm_map_lock_read(map);
4995 
4996 RetryLookupLocked:
4997 	/*
4998 	 * Lookup the faulting address.
4999 	 */
5000 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
5001 		vm_map_unlock_read(map);
5002 		return (KERN_INVALID_ADDRESS);
5003 	}
5004 
5005 	entry = *out_entry;
5006 
5007 	/*
5008 	 * Handle submaps.
5009 	 */
5010 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5011 		vm_map_t old_map = map;
5012 
5013 		*var_map = map = entry->object.sub_map;
5014 		vm_map_unlock_read(old_map);
5015 		goto RetryLookup;
5016 	}
5017 
5018 	/*
5019 	 * Check whether this task is allowed to have this page.
5020 	 */
5021 	prot = entry->protection;
5022 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
5023 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
5024 		if (prot == VM_PROT_NONE && map != kernel_map &&
5025 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
5026 		    (entry->eflags & MAP_ENTRY_STACK_GAP) != 0 &&
5027 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
5028 			goto RetryLookupLocked;
5029 	}
5030 	fault_type = fault_typea & VM_PROT_ALL;
5031 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
5032 		vm_map_unlock_read(map);
5033 		return (KERN_PROTECTION_FAILURE);
5034 	}
5035 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
5036 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
5037 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
5038 	    ("entry %p flags %x", entry, entry->eflags));
5039 	if ((fault_typea & VM_PROT_COPY) != 0 &&
5040 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
5041 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
5042 		vm_map_unlock_read(map);
5043 		return (KERN_PROTECTION_FAILURE);
5044 	}
5045 
5046 	/*
5047 	 * If this page is not pageable, we have to get it for all possible
5048 	 * accesses.
5049 	 */
5050 	*wired = (entry->wired_count != 0);
5051 	if (*wired)
5052 		fault_type = entry->protection;
5053 	size = entry->end - entry->start;
5054 
5055 	/*
5056 	 * If the entry was copy-on-write, we either ...
5057 	 */
5058 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5059 		/*
5060 		 * If we want to write the page, we may as well handle that
5061 		 * now since we've got the map locked.
5062 		 *
5063 		 * If we don't need to write the page, we just demote the
5064 		 * permissions allowed.
5065 		 */
5066 		if ((fault_type & VM_PROT_WRITE) != 0 ||
5067 		    (fault_typea & VM_PROT_COPY) != 0) {
5068 			/*
5069 			 * Make a new object, and place it in the object
5070 			 * chain.  Note that no new references have appeared
5071 			 * -- one just moved from the map to the new
5072 			 * object.
5073 			 */
5074 			if (vm_map_lock_upgrade(map))
5075 				goto RetryLookup;
5076 
5077 			if (entry->cred == NULL) {
5078 				/*
5079 				 * The debugger owner is charged for
5080 				 * the memory.
5081 				 */
5082 				cred = curthread->td_ucred;
5083 				crhold(cred);
5084 				if (!swap_reserve_by_cred(size, cred)) {
5085 					crfree(cred);
5086 					vm_map_unlock(map);
5087 					return (KERN_RESOURCE_SHORTAGE);
5088 				}
5089 				entry->cred = cred;
5090 			}
5091 			eobject = entry->object.vm_object;
5092 			vm_object_shadow(&entry->object.vm_object,
5093 			    &entry->offset, size, entry->cred, false);
5094 			if (eobject == entry->object.vm_object) {
5095 				/*
5096 				 * The object was not shadowed.
5097 				 */
5098 				swap_release_by_cred(size, entry->cred);
5099 				crfree(entry->cred);
5100 			}
5101 			entry->cred = NULL;
5102 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5103 
5104 			vm_map_lock_downgrade(map);
5105 		} else {
5106 			/*
5107 			 * We're attempting to read a copy-on-write page --
5108 			 * don't allow writes.
5109 			 */
5110 			prot &= ~VM_PROT_WRITE;
5111 		}
5112 	}
5113 
5114 	/*
5115 	 * Create an object if necessary.
5116 	 */
5117 	if (entry->object.vm_object == NULL && !map->system_map) {
5118 		if (vm_map_lock_upgrade(map))
5119 			goto RetryLookup;
5120 		entry->object.vm_object = vm_object_allocate_anon(atop(size),
5121 		    NULL, entry->cred, size);
5122 		entry->offset = 0;
5123 		entry->cred = NULL;
5124 		vm_map_lock_downgrade(map);
5125 	}
5126 
5127 	/*
5128 	 * Return the object/offset from this entry.  If the entry was
5129 	 * copy-on-write or empty, it has been fixed up.
5130 	 */
5131 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5132 	*object = entry->object.vm_object;
5133 
5134 	*out_prot = prot;
5135 	return (KERN_SUCCESS);
5136 }
5137 
5138 /*
5139  *	vm_map_lookup_locked:
5140  *
5141  *	Lookup the faulting address.  A version of vm_map_lookup that returns
5142  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
5143  */
5144 int
5145 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
5146 		     vm_offset_t vaddr,
5147 		     vm_prot_t fault_typea,
5148 		     vm_map_entry_t *out_entry,	/* OUT */
5149 		     vm_object_t *object,	/* OUT */
5150 		     vm_pindex_t *pindex,	/* OUT */
5151 		     vm_prot_t *out_prot,	/* OUT */
5152 		     boolean_t *wired)		/* OUT */
5153 {
5154 	vm_map_entry_t entry;
5155 	vm_map_t map = *var_map;
5156 	vm_prot_t prot;
5157 	vm_prot_t fault_type = fault_typea;
5158 
5159 	/*
5160 	 * Lookup the faulting address.
5161 	 */
5162 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
5163 		return (KERN_INVALID_ADDRESS);
5164 
5165 	entry = *out_entry;
5166 
5167 	/*
5168 	 * Fail if the entry refers to a submap.
5169 	 */
5170 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5171 		return (KERN_FAILURE);
5172 
5173 	/*
5174 	 * Check whether this task is allowed to have this page.
5175 	 */
5176 	prot = entry->protection;
5177 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5178 	if ((fault_type & prot) != fault_type)
5179 		return (KERN_PROTECTION_FAILURE);
5180 
5181 	/*
5182 	 * If this page is not pageable, we have to get it for all possible
5183 	 * accesses.
5184 	 */
5185 	*wired = (entry->wired_count != 0);
5186 	if (*wired)
5187 		fault_type = entry->protection;
5188 
5189 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5190 		/*
5191 		 * Fail if the entry was copy-on-write for a write fault.
5192 		 */
5193 		if (fault_type & VM_PROT_WRITE)
5194 			return (KERN_FAILURE);
5195 		/*
5196 		 * We're attempting to read a copy-on-write page --
5197 		 * don't allow writes.
5198 		 */
5199 		prot &= ~VM_PROT_WRITE;
5200 	}
5201 
5202 	/*
5203 	 * Fail if an object should be created.
5204 	 */
5205 	if (entry->object.vm_object == NULL && !map->system_map)
5206 		return (KERN_FAILURE);
5207 
5208 	/*
5209 	 * Return the object/offset from this entry.  If the entry was
5210 	 * copy-on-write or empty, it has been fixed up.
5211 	 */
5212 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5213 	*object = entry->object.vm_object;
5214 
5215 	*out_prot = prot;
5216 	return (KERN_SUCCESS);
5217 }
5218 
5219 /*
5220  *	vm_map_lookup_done:
5221  *
5222  *	Releases locks acquired by a vm_map_lookup
5223  *	(according to the handle returned by that lookup).
5224  */
5225 void
5226 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5227 {
5228 	/*
5229 	 * Unlock the main-level map
5230 	 */
5231 	vm_map_unlock_read(map);
5232 }
5233 
5234 vm_offset_t
5235 vm_map_max_KBI(const struct vm_map *map)
5236 {
5237 
5238 	return (vm_map_max(map));
5239 }
5240 
5241 vm_offset_t
5242 vm_map_min_KBI(const struct vm_map *map)
5243 {
5244 
5245 	return (vm_map_min(map));
5246 }
5247 
5248 pmap_t
5249 vm_map_pmap_KBI(vm_map_t map)
5250 {
5251 
5252 	return (map->pmap);
5253 }
5254 
5255 bool
5256 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5257 {
5258 
5259 	return (vm_map_range_valid(map, start, end));
5260 }
5261 
5262 #ifdef INVARIANTS
5263 static void
5264 _vm_map_assert_consistent(vm_map_t map, int check)
5265 {
5266 	vm_map_entry_t entry, prev;
5267 	vm_map_entry_t cur, header, lbound, ubound;
5268 	vm_size_t max_left, max_right;
5269 
5270 #ifdef DIAGNOSTIC
5271 	++map->nupdates;
5272 #endif
5273 	if (enable_vmmap_check != check)
5274 		return;
5275 
5276 	header = prev = &map->header;
5277 	VM_MAP_ENTRY_FOREACH(entry, map) {
5278 		KASSERT(prev->end <= entry->start,
5279 		    ("map %p prev->end = %jx, start = %jx", map,
5280 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
5281 		KASSERT(entry->start < entry->end,
5282 		    ("map %p start = %jx, end = %jx", map,
5283 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
5284 		KASSERT(entry->left == header ||
5285 		    entry->left->start < entry->start,
5286 		    ("map %p left->start = %jx, start = %jx", map,
5287 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5288 		KASSERT(entry->right == header ||
5289 		    entry->start < entry->right->start,
5290 		    ("map %p start = %jx, right->start = %jx", map,
5291 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5292 		cur = map->root;
5293 		lbound = ubound = header;
5294 		for (;;) {
5295 			if (entry->start < cur->start) {
5296 				ubound = cur;
5297 				cur = cur->left;
5298 				KASSERT(cur != lbound,
5299 				    ("map %p cannot find %jx",
5300 				    map, (uintmax_t)entry->start));
5301 			} else if (cur->end <= entry->start) {
5302 				lbound = cur;
5303 				cur = cur->right;
5304 				KASSERT(cur != ubound,
5305 				    ("map %p cannot find %jx",
5306 				    map, (uintmax_t)entry->start));
5307 			} else {
5308 				KASSERT(cur == entry,
5309 				    ("map %p cannot find %jx",
5310 				    map, (uintmax_t)entry->start));
5311 				break;
5312 			}
5313 		}
5314 		max_left = vm_map_entry_max_free_left(entry, lbound);
5315 		max_right = vm_map_entry_max_free_right(entry, ubound);
5316 		KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5317 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5318 		    (uintmax_t)entry->max_free,
5319 		    (uintmax_t)max_left, (uintmax_t)max_right));
5320 		prev = entry;
5321 	}
5322 	KASSERT(prev->end <= entry->start,
5323 	    ("map %p prev->end = %jx, start = %jx", map,
5324 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
5325 }
5326 #endif
5327 
5328 #include "opt_ddb.h"
5329 #ifdef DDB
5330 #include <sys/kernel.h>
5331 
5332 #include <ddb/ddb.h>
5333 
5334 static void
5335 vm_map_print(vm_map_t map)
5336 {
5337 	vm_map_entry_t entry, prev;
5338 
5339 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5340 	    (void *)map,
5341 	    (void *)map->pmap, map->nentries, map->timestamp);
5342 
5343 	db_indent += 2;
5344 	prev = &map->header;
5345 	VM_MAP_ENTRY_FOREACH(entry, map) {
5346 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5347 		    (void *)entry, (void *)entry->start, (void *)entry->end,
5348 		    entry->eflags);
5349 		{
5350 			static const char * const inheritance_name[4] =
5351 			{"share", "copy", "none", "donate_copy"};
5352 
5353 			db_iprintf(" prot=%x/%x/%s",
5354 			    entry->protection,
5355 			    entry->max_protection,
5356 			    inheritance_name[(int)(unsigned char)
5357 			    entry->inheritance]);
5358 			if (entry->wired_count != 0)
5359 				db_printf(", wired");
5360 		}
5361 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5362 			db_printf(", share=%p, offset=0x%jx\n",
5363 			    (void *)entry->object.sub_map,
5364 			    (uintmax_t)entry->offset);
5365 			if (prev == &map->header ||
5366 			    prev->object.sub_map !=
5367 				entry->object.sub_map) {
5368 				db_indent += 2;
5369 				vm_map_print((vm_map_t)entry->object.sub_map);
5370 				db_indent -= 2;
5371 			}
5372 		} else {
5373 			if (entry->cred != NULL)
5374 				db_printf(", ruid %d", entry->cred->cr_ruid);
5375 			db_printf(", object=%p, offset=0x%jx",
5376 			    (void *)entry->object.vm_object,
5377 			    (uintmax_t)entry->offset);
5378 			if (entry->object.vm_object && entry->object.vm_object->cred)
5379 				db_printf(", obj ruid %d charge %jx",
5380 				    entry->object.vm_object->cred->cr_ruid,
5381 				    (uintmax_t)entry->object.vm_object->charge);
5382 			if (entry->eflags & MAP_ENTRY_COW)
5383 				db_printf(", copy (%s)",
5384 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5385 			db_printf("\n");
5386 
5387 			if (prev == &map->header ||
5388 			    prev->object.vm_object !=
5389 				entry->object.vm_object) {
5390 				db_indent += 2;
5391 				vm_object_print((db_expr_t)(intptr_t)
5392 						entry->object.vm_object,
5393 						0, 0, (char *)0);
5394 				db_indent -= 2;
5395 			}
5396 		}
5397 		prev = entry;
5398 	}
5399 	db_indent -= 2;
5400 }
5401 
5402 DB_SHOW_COMMAND(map, map)
5403 {
5404 
5405 	if (!have_addr) {
5406 		db_printf("usage: show map <addr>\n");
5407 		return;
5408 	}
5409 	vm_map_print((vm_map_t)addr);
5410 }
5411 
5412 DB_SHOW_COMMAND(procvm, procvm)
5413 {
5414 	struct proc *p;
5415 
5416 	if (have_addr) {
5417 		p = db_lookup_proc(addr);
5418 	} else {
5419 		p = curproc;
5420 	}
5421 
5422 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5423 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5424 	    (void *)vmspace_pmap(p->p_vmspace));
5425 
5426 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5427 }
5428 
5429 #endif /* DDB */
5430