xref: /freebsd/sys/vm/vm_map.c (revision d22c735e033e47d58878a9c00aa09e90e6e83f06)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 #ifdef INVARIANTS
136 static void vm_map_zdtor(void *mem, int size, void *arg);
137 static void vmspace_zdtor(void *mem, int size, void *arg);
138 #endif
139 
140 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
141     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
142      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
143 
144 /*
145  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
146  * stable.
147  */
148 #define PROC_VMSPACE_LOCK(p) do { } while (0)
149 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
150 
151 /*
152  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
153  *
154  *	Asserts that the starting and ending region
155  *	addresses fall within the valid range of the map.
156  */
157 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
158 		{					\
159 		if (start < vm_map_min(map))		\
160 			start = vm_map_min(map);	\
161 		if (end > vm_map_max(map))		\
162 			end = vm_map_max(map);		\
163 		if (start > end)			\
164 			start = end;			\
165 		}
166 
167 /*
168  *	vm_map_startup:
169  *
170  *	Initialize the vm_map module.  Must be called before
171  *	any other vm_map routines.
172  *
173  *	Map and entry structures are allocated from the general
174  *	purpose memory pool with some exceptions:
175  *
176  *	- The kernel map and kmem submap are allocated statically.
177  *	- Kernel map entries are allocated out of a static pool.
178  *
179  *	These restrictions are necessary since malloc() uses the
180  *	maps and requires map entries.
181  */
182 
183 void
184 vm_map_startup(void)
185 {
186 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
187 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
188 #ifdef INVARIANTS
189 	    vm_map_zdtor,
190 #else
191 	    NULL,
192 #endif
193 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
194 	uma_prealloc(mapzone, MAX_KMAP);
195 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
196 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
197 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
198 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
199 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
200 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
201 #ifdef INVARIANTS
202 	    vmspace_zdtor,
203 #else
204 	    NULL,
205 #endif
206 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
207 }
208 
209 static int
210 vmspace_zinit(void *mem, int size, int flags)
211 {
212 	struct vmspace *vm;
213 
214 	vm = (struct vmspace *)mem;
215 
216 	vm->vm_map.pmap = NULL;
217 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
218 	PMAP_LOCK_INIT(vmspace_pmap(vm));
219 	return (0);
220 }
221 
222 static int
223 vm_map_zinit(void *mem, int size, int flags)
224 {
225 	vm_map_t map;
226 
227 	map = (vm_map_t)mem;
228 	memset(map, 0, sizeof(*map));
229 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
230 	sx_init(&map->lock, "vm map (user)");
231 	return (0);
232 }
233 
234 #ifdef INVARIANTS
235 static void
236 vmspace_zdtor(void *mem, int size, void *arg)
237 {
238 	struct vmspace *vm;
239 
240 	vm = (struct vmspace *)mem;
241 
242 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
243 }
244 static void
245 vm_map_zdtor(void *mem, int size, void *arg)
246 {
247 	vm_map_t map;
248 
249 	map = (vm_map_t)mem;
250 	KASSERT(map->nentries == 0,
251 	    ("map %p nentries == %d on free.",
252 	    map, map->nentries));
253 	KASSERT(map->size == 0,
254 	    ("map %p size == %lu on free.",
255 	    map, (unsigned long)map->size));
256 }
257 #endif	/* INVARIANTS */
258 
259 /*
260  * Allocate a vmspace structure, including a vm_map and pmap,
261  * and initialize those structures.  The refcnt is set to 1.
262  *
263  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
264  */
265 struct vmspace *
266 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
267 {
268 	struct vmspace *vm;
269 
270 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
271 
272 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
273 
274 	if (pinit == NULL)
275 		pinit = &pmap_pinit;
276 
277 	if (!pinit(vmspace_pmap(vm))) {
278 		uma_zfree(vmspace_zone, vm);
279 		return (NULL);
280 	}
281 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
282 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
283 	vm->vm_refcnt = 1;
284 	vm->vm_shm = NULL;
285 	vm->vm_swrss = 0;
286 	vm->vm_tsize = 0;
287 	vm->vm_dsize = 0;
288 	vm->vm_ssize = 0;
289 	vm->vm_taddr = 0;
290 	vm->vm_daddr = 0;
291 	vm->vm_maxsaddr = 0;
292 	return (vm);
293 }
294 
295 static void
296 vmspace_container_reset(struct proc *p)
297 {
298 
299 #ifdef RACCT
300 	PROC_LOCK(p);
301 	racct_set(p, RACCT_DATA, 0);
302 	racct_set(p, RACCT_STACK, 0);
303 	racct_set(p, RACCT_RSS, 0);
304 	racct_set(p, RACCT_MEMLOCK, 0);
305 	racct_set(p, RACCT_VMEM, 0);
306 	PROC_UNLOCK(p);
307 #endif
308 }
309 
310 static inline void
311 vmspace_dofree(struct vmspace *vm)
312 {
313 
314 	CTR1(KTR_VM, "vmspace_free: %p", vm);
315 
316 	/*
317 	 * Make sure any SysV shm is freed, it might not have been in
318 	 * exit1().
319 	 */
320 	shmexit(vm);
321 
322 	/*
323 	 * Lock the map, to wait out all other references to it.
324 	 * Delete all of the mappings and pages they hold, then call
325 	 * the pmap module to reclaim anything left.
326 	 */
327 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
328 	    vm->vm_map.max_offset);
329 
330 	pmap_release(vmspace_pmap(vm));
331 	vm->vm_map.pmap = NULL;
332 	uma_zfree(vmspace_zone, vm);
333 }
334 
335 void
336 vmspace_free(struct vmspace *vm)
337 {
338 
339 	if (vm->vm_refcnt == 0)
340 		panic("vmspace_free: attempt to free already freed vmspace");
341 
342 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
343 		vmspace_dofree(vm);
344 }
345 
346 void
347 vmspace_exitfree(struct proc *p)
348 {
349 	struct vmspace *vm;
350 
351 	PROC_VMSPACE_LOCK(p);
352 	vm = p->p_vmspace;
353 	p->p_vmspace = NULL;
354 	PROC_VMSPACE_UNLOCK(p);
355 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
356 	vmspace_free(vm);
357 }
358 
359 void
360 vmspace_exit(struct thread *td)
361 {
362 	int refcnt;
363 	struct vmspace *vm;
364 	struct proc *p;
365 
366 	/*
367 	 * Release user portion of address space.
368 	 * This releases references to vnodes,
369 	 * which could cause I/O if the file has been unlinked.
370 	 * Need to do this early enough that we can still sleep.
371 	 *
372 	 * The last exiting process to reach this point releases as
373 	 * much of the environment as it can. vmspace_dofree() is the
374 	 * slower fallback in case another process had a temporary
375 	 * reference to the vmspace.
376 	 */
377 
378 	p = td->td_proc;
379 	vm = p->p_vmspace;
380 	atomic_add_int(&vmspace0.vm_refcnt, 1);
381 	do {
382 		refcnt = vm->vm_refcnt;
383 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
384 			/* Switch now since other proc might free vmspace */
385 			PROC_VMSPACE_LOCK(p);
386 			p->p_vmspace = &vmspace0;
387 			PROC_VMSPACE_UNLOCK(p);
388 			pmap_activate(td);
389 		}
390 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
391 	if (refcnt == 1) {
392 		if (p->p_vmspace != vm) {
393 			/* vmspace not yet freed, switch back */
394 			PROC_VMSPACE_LOCK(p);
395 			p->p_vmspace = vm;
396 			PROC_VMSPACE_UNLOCK(p);
397 			pmap_activate(td);
398 		}
399 		pmap_remove_pages(vmspace_pmap(vm));
400 		/* Switch now since this proc will free vmspace */
401 		PROC_VMSPACE_LOCK(p);
402 		p->p_vmspace = &vmspace0;
403 		PROC_VMSPACE_UNLOCK(p);
404 		pmap_activate(td);
405 		vmspace_dofree(vm);
406 	}
407 	vmspace_container_reset(p);
408 }
409 
410 /* Acquire reference to vmspace owned by another process. */
411 
412 struct vmspace *
413 vmspace_acquire_ref(struct proc *p)
414 {
415 	struct vmspace *vm;
416 	int refcnt;
417 
418 	PROC_VMSPACE_LOCK(p);
419 	vm = p->p_vmspace;
420 	if (vm == NULL) {
421 		PROC_VMSPACE_UNLOCK(p);
422 		return (NULL);
423 	}
424 	do {
425 		refcnt = vm->vm_refcnt;
426 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
427 			PROC_VMSPACE_UNLOCK(p);
428 			return (NULL);
429 		}
430 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
431 	if (vm != p->p_vmspace) {
432 		PROC_VMSPACE_UNLOCK(p);
433 		vmspace_free(vm);
434 		return (NULL);
435 	}
436 	PROC_VMSPACE_UNLOCK(p);
437 	return (vm);
438 }
439 
440 void
441 _vm_map_lock(vm_map_t map, const char *file, int line)
442 {
443 
444 	if (map->system_map)
445 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
446 	else
447 		sx_xlock_(&map->lock, file, line);
448 	map->timestamp++;
449 }
450 
451 static void
452 vm_map_process_deferred(void)
453 {
454 	struct thread *td;
455 	vm_map_entry_t entry, next;
456 	vm_object_t object;
457 
458 	td = curthread;
459 	entry = td->td_map_def_user;
460 	td->td_map_def_user = NULL;
461 	while (entry != NULL) {
462 		next = entry->next;
463 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
464 			/*
465 			 * Decrement the object's writemappings and
466 			 * possibly the vnode's v_writecount.
467 			 */
468 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
469 			    ("Submap with writecount"));
470 			object = entry->object.vm_object;
471 			KASSERT(object != NULL, ("No object for writecount"));
472 			vnode_pager_release_writecount(object, entry->start,
473 			    entry->end);
474 		}
475 		vm_map_entry_deallocate(entry, FALSE);
476 		entry = next;
477 	}
478 }
479 
480 void
481 _vm_map_unlock(vm_map_t map, const char *file, int line)
482 {
483 
484 	if (map->system_map)
485 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
486 	else {
487 		sx_xunlock_(&map->lock, file, line);
488 		vm_map_process_deferred();
489 	}
490 }
491 
492 void
493 _vm_map_lock_read(vm_map_t map, const char *file, int line)
494 {
495 
496 	if (map->system_map)
497 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
498 	else
499 		sx_slock_(&map->lock, file, line);
500 }
501 
502 void
503 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
504 {
505 
506 	if (map->system_map)
507 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
508 	else {
509 		sx_sunlock_(&map->lock, file, line);
510 		vm_map_process_deferred();
511 	}
512 }
513 
514 int
515 _vm_map_trylock(vm_map_t map, const char *file, int line)
516 {
517 	int error;
518 
519 	error = map->system_map ?
520 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
521 	    !sx_try_xlock_(&map->lock, file, line);
522 	if (error == 0)
523 		map->timestamp++;
524 	return (error == 0);
525 }
526 
527 int
528 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
529 {
530 	int error;
531 
532 	error = map->system_map ?
533 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
534 	    !sx_try_slock_(&map->lock, file, line);
535 	return (error == 0);
536 }
537 
538 /*
539  *	_vm_map_lock_upgrade:	[ internal use only ]
540  *
541  *	Tries to upgrade a read (shared) lock on the specified map to a write
542  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
543  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
544  *	returned without a read or write lock held.
545  *
546  *	Requires that the map be read locked.
547  */
548 int
549 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
550 {
551 	unsigned int last_timestamp;
552 
553 	if (map->system_map) {
554 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
555 	} else {
556 		if (!sx_try_upgrade_(&map->lock, file, line)) {
557 			last_timestamp = map->timestamp;
558 			sx_sunlock_(&map->lock, file, line);
559 			vm_map_process_deferred();
560 			/*
561 			 * If the map's timestamp does not change while the
562 			 * map is unlocked, then the upgrade succeeds.
563 			 */
564 			sx_xlock_(&map->lock, file, line);
565 			if (last_timestamp != map->timestamp) {
566 				sx_xunlock_(&map->lock, file, line);
567 				return (1);
568 			}
569 		}
570 	}
571 	map->timestamp++;
572 	return (0);
573 }
574 
575 void
576 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
577 {
578 
579 	if (map->system_map) {
580 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
581 	} else
582 		sx_downgrade_(&map->lock, file, line);
583 }
584 
585 /*
586  *	vm_map_locked:
587  *
588  *	Returns a non-zero value if the caller holds a write (exclusive) lock
589  *	on the specified map and the value "0" otherwise.
590  */
591 int
592 vm_map_locked(vm_map_t map)
593 {
594 
595 	if (map->system_map)
596 		return (mtx_owned(&map->system_mtx));
597 	else
598 		return (sx_xlocked(&map->lock));
599 }
600 
601 #ifdef INVARIANTS
602 static void
603 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
604 {
605 
606 	if (map->system_map)
607 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
608 	else
609 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
610 }
611 
612 #define	VM_MAP_ASSERT_LOCKED(map) \
613     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
614 #else
615 #define	VM_MAP_ASSERT_LOCKED(map)
616 #endif
617 
618 /*
619  *	_vm_map_unlock_and_wait:
620  *
621  *	Atomically releases the lock on the specified map and puts the calling
622  *	thread to sleep.  The calling thread will remain asleep until either
623  *	vm_map_wakeup() is performed on the map or the specified timeout is
624  *	exceeded.
625  *
626  *	WARNING!  This function does not perform deferred deallocations of
627  *	objects and map	entries.  Therefore, the calling thread is expected to
628  *	reacquire the map lock after reawakening and later perform an ordinary
629  *	unlock operation, such as vm_map_unlock(), before completing its
630  *	operation on the map.
631  */
632 int
633 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
634 {
635 
636 	mtx_lock(&map_sleep_mtx);
637 	if (map->system_map)
638 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
639 	else
640 		sx_xunlock_(&map->lock, file, line);
641 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
642 	    timo));
643 }
644 
645 /*
646  *	vm_map_wakeup:
647  *
648  *	Awaken any threads that have slept on the map using
649  *	vm_map_unlock_and_wait().
650  */
651 void
652 vm_map_wakeup(vm_map_t map)
653 {
654 
655 	/*
656 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
657 	 * from being performed (and lost) between the map unlock
658 	 * and the msleep() in _vm_map_unlock_and_wait().
659 	 */
660 	mtx_lock(&map_sleep_mtx);
661 	mtx_unlock(&map_sleep_mtx);
662 	wakeup(&map->root);
663 }
664 
665 void
666 vm_map_busy(vm_map_t map)
667 {
668 
669 	VM_MAP_ASSERT_LOCKED(map);
670 	map->busy++;
671 }
672 
673 void
674 vm_map_unbusy(vm_map_t map)
675 {
676 
677 	VM_MAP_ASSERT_LOCKED(map);
678 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
679 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
680 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
681 		wakeup(&map->busy);
682 	}
683 }
684 
685 void
686 vm_map_wait_busy(vm_map_t map)
687 {
688 
689 	VM_MAP_ASSERT_LOCKED(map);
690 	while (map->busy) {
691 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
692 		if (map->system_map)
693 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
694 		else
695 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
696 	}
697 	map->timestamp++;
698 }
699 
700 long
701 vmspace_resident_count(struct vmspace *vmspace)
702 {
703 	return pmap_resident_count(vmspace_pmap(vmspace));
704 }
705 
706 /*
707  *	vm_map_create:
708  *
709  *	Creates and returns a new empty VM map with
710  *	the given physical map structure, and having
711  *	the given lower and upper address bounds.
712  */
713 vm_map_t
714 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
715 {
716 	vm_map_t result;
717 
718 	result = uma_zalloc(mapzone, M_WAITOK);
719 	CTR1(KTR_VM, "vm_map_create: %p", result);
720 	_vm_map_init(result, pmap, min, max);
721 	return (result);
722 }
723 
724 /*
725  * Initialize an existing vm_map structure
726  * such as that in the vmspace structure.
727  */
728 static void
729 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
730 {
731 
732 	map->header.next = map->header.prev = &map->header;
733 	map->needs_wakeup = FALSE;
734 	map->system_map = 0;
735 	map->pmap = pmap;
736 	map->min_offset = min;
737 	map->max_offset = max;
738 	map->flags = 0;
739 	map->root = NULL;
740 	map->timestamp = 0;
741 	map->busy = 0;
742 }
743 
744 void
745 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
746 {
747 
748 	_vm_map_init(map, pmap, min, max);
749 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
750 	sx_init(&map->lock, "user map");
751 }
752 
753 /*
754  *	vm_map_entry_dispose:	[ internal use only ]
755  *
756  *	Inverse of vm_map_entry_create.
757  */
758 static void
759 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
760 {
761 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
762 }
763 
764 /*
765  *	vm_map_entry_create:	[ internal use only ]
766  *
767  *	Allocates a VM map entry for insertion.
768  *	No entry fields are filled in.
769  */
770 static vm_map_entry_t
771 vm_map_entry_create(vm_map_t map)
772 {
773 	vm_map_entry_t new_entry;
774 
775 	if (map->system_map)
776 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
777 	else
778 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
779 	if (new_entry == NULL)
780 		panic("vm_map_entry_create: kernel resources exhausted");
781 	return (new_entry);
782 }
783 
784 /*
785  *	vm_map_entry_set_behavior:
786  *
787  *	Set the expected access behavior, either normal, random, or
788  *	sequential.
789  */
790 static inline void
791 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
792 {
793 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
794 	    (behavior & MAP_ENTRY_BEHAV_MASK);
795 }
796 
797 /*
798  *	vm_map_entry_set_max_free:
799  *
800  *	Set the max_free field in a vm_map_entry.
801  */
802 static inline void
803 vm_map_entry_set_max_free(vm_map_entry_t entry)
804 {
805 
806 	entry->max_free = entry->adj_free;
807 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
808 		entry->max_free = entry->left->max_free;
809 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
810 		entry->max_free = entry->right->max_free;
811 }
812 
813 /*
814  *	vm_map_entry_splay:
815  *
816  *	The Sleator and Tarjan top-down splay algorithm with the
817  *	following variation.  Max_free must be computed bottom-up, so
818  *	on the downward pass, maintain the left and right spines in
819  *	reverse order.  Then, make a second pass up each side to fix
820  *	the pointers and compute max_free.  The time bound is O(log n)
821  *	amortized.
822  *
823  *	The new root is the vm_map_entry containing "addr", or else an
824  *	adjacent entry (lower or higher) if addr is not in the tree.
825  *
826  *	The map must be locked, and leaves it so.
827  *
828  *	Returns: the new root.
829  */
830 static vm_map_entry_t
831 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
832 {
833 	vm_map_entry_t llist, rlist;
834 	vm_map_entry_t ltree, rtree;
835 	vm_map_entry_t y;
836 
837 	/* Special case of empty tree. */
838 	if (root == NULL)
839 		return (root);
840 
841 	/*
842 	 * Pass One: Splay down the tree until we find addr or a NULL
843 	 * pointer where addr would go.  llist and rlist are the two
844 	 * sides in reverse order (bottom-up), with llist linked by
845 	 * the right pointer and rlist linked by the left pointer in
846 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
847 	 * the two spines.
848 	 */
849 	llist = NULL;
850 	rlist = NULL;
851 	for (;;) {
852 		/* root is never NULL in here. */
853 		if (addr < root->start) {
854 			y = root->left;
855 			if (y == NULL)
856 				break;
857 			if (addr < y->start && y->left != NULL) {
858 				/* Rotate right and put y on rlist. */
859 				root->left = y->right;
860 				y->right = root;
861 				vm_map_entry_set_max_free(root);
862 				root = y->left;
863 				y->left = rlist;
864 				rlist = y;
865 			} else {
866 				/* Put root on rlist. */
867 				root->left = rlist;
868 				rlist = root;
869 				root = y;
870 			}
871 		} else if (addr >= root->end) {
872 			y = root->right;
873 			if (y == NULL)
874 				break;
875 			if (addr >= y->end && y->right != NULL) {
876 				/* Rotate left and put y on llist. */
877 				root->right = y->left;
878 				y->left = root;
879 				vm_map_entry_set_max_free(root);
880 				root = y->right;
881 				y->right = llist;
882 				llist = y;
883 			} else {
884 				/* Put root on llist. */
885 				root->right = llist;
886 				llist = root;
887 				root = y;
888 			}
889 		} else
890 			break;
891 	}
892 
893 	/*
894 	 * Pass Two: Walk back up the two spines, flip the pointers
895 	 * and set max_free.  The subtrees of the root go at the
896 	 * bottom of llist and rlist.
897 	 */
898 	ltree = root->left;
899 	while (llist != NULL) {
900 		y = llist->right;
901 		llist->right = ltree;
902 		vm_map_entry_set_max_free(llist);
903 		ltree = llist;
904 		llist = y;
905 	}
906 	rtree = root->right;
907 	while (rlist != NULL) {
908 		y = rlist->left;
909 		rlist->left = rtree;
910 		vm_map_entry_set_max_free(rlist);
911 		rtree = rlist;
912 		rlist = y;
913 	}
914 
915 	/*
916 	 * Final assembly: add ltree and rtree as subtrees of root.
917 	 */
918 	root->left = ltree;
919 	root->right = rtree;
920 	vm_map_entry_set_max_free(root);
921 
922 	return (root);
923 }
924 
925 /*
926  *	vm_map_entry_{un,}link:
927  *
928  *	Insert/remove entries from maps.
929  */
930 static void
931 vm_map_entry_link(vm_map_t map,
932 		  vm_map_entry_t after_where,
933 		  vm_map_entry_t entry)
934 {
935 
936 	CTR4(KTR_VM,
937 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
938 	    map->nentries, entry, after_where);
939 	VM_MAP_ASSERT_LOCKED(map);
940 	map->nentries++;
941 	entry->prev = after_where;
942 	entry->next = after_where->next;
943 	entry->next->prev = entry;
944 	after_where->next = entry;
945 
946 	if (after_where != &map->header) {
947 		if (after_where != map->root)
948 			vm_map_entry_splay(after_where->start, map->root);
949 		entry->right = after_where->right;
950 		entry->left = after_where;
951 		after_where->right = NULL;
952 		after_where->adj_free = entry->start - after_where->end;
953 		vm_map_entry_set_max_free(after_where);
954 	} else {
955 		entry->right = map->root;
956 		entry->left = NULL;
957 	}
958 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
959 	    entry->next->start) - entry->end;
960 	vm_map_entry_set_max_free(entry);
961 	map->root = entry;
962 }
963 
964 static void
965 vm_map_entry_unlink(vm_map_t map,
966 		    vm_map_entry_t entry)
967 {
968 	vm_map_entry_t next, prev, root;
969 
970 	VM_MAP_ASSERT_LOCKED(map);
971 	if (entry != map->root)
972 		vm_map_entry_splay(entry->start, map->root);
973 	if (entry->left == NULL)
974 		root = entry->right;
975 	else {
976 		root = vm_map_entry_splay(entry->start, entry->left);
977 		root->right = entry->right;
978 		root->adj_free = (entry->next == &map->header ? map->max_offset :
979 		    entry->next->start) - root->end;
980 		vm_map_entry_set_max_free(root);
981 	}
982 	map->root = root;
983 
984 	prev = entry->prev;
985 	next = entry->next;
986 	next->prev = prev;
987 	prev->next = next;
988 	map->nentries--;
989 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
990 	    map->nentries, entry);
991 }
992 
993 /*
994  *	vm_map_entry_resize_free:
995  *
996  *	Recompute the amount of free space following a vm_map_entry
997  *	and propagate that value up the tree.  Call this function after
998  *	resizing a map entry in-place, that is, without a call to
999  *	vm_map_entry_link() or _unlink().
1000  *
1001  *	The map must be locked, and leaves it so.
1002  */
1003 static void
1004 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1005 {
1006 
1007 	/*
1008 	 * Using splay trees without parent pointers, propagating
1009 	 * max_free up the tree is done by moving the entry to the
1010 	 * root and making the change there.
1011 	 */
1012 	if (entry != map->root)
1013 		map->root = vm_map_entry_splay(entry->start, map->root);
1014 
1015 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1016 	    entry->next->start) - entry->end;
1017 	vm_map_entry_set_max_free(entry);
1018 }
1019 
1020 /*
1021  *	vm_map_lookup_entry:	[ internal use only ]
1022  *
1023  *	Finds the map entry containing (or
1024  *	immediately preceding) the specified address
1025  *	in the given map; the entry is returned
1026  *	in the "entry" parameter.  The boolean
1027  *	result indicates whether the address is
1028  *	actually contained in the map.
1029  */
1030 boolean_t
1031 vm_map_lookup_entry(
1032 	vm_map_t map,
1033 	vm_offset_t address,
1034 	vm_map_entry_t *entry)	/* OUT */
1035 {
1036 	vm_map_entry_t cur;
1037 	boolean_t locked;
1038 
1039 	/*
1040 	 * If the map is empty, then the map entry immediately preceding
1041 	 * "address" is the map's header.
1042 	 */
1043 	cur = map->root;
1044 	if (cur == NULL)
1045 		*entry = &map->header;
1046 	else if (address >= cur->start && cur->end > address) {
1047 		*entry = cur;
1048 		return (TRUE);
1049 	} else if ((locked = vm_map_locked(map)) ||
1050 	    sx_try_upgrade(&map->lock)) {
1051 		/*
1052 		 * Splay requires a write lock on the map.  However, it only
1053 		 * restructures the binary search tree; it does not otherwise
1054 		 * change the map.  Thus, the map's timestamp need not change
1055 		 * on a temporary upgrade.
1056 		 */
1057 		map->root = cur = vm_map_entry_splay(address, cur);
1058 		if (!locked)
1059 			sx_downgrade(&map->lock);
1060 
1061 		/*
1062 		 * If "address" is contained within a map entry, the new root
1063 		 * is that map entry.  Otherwise, the new root is a map entry
1064 		 * immediately before or after "address".
1065 		 */
1066 		if (address >= cur->start) {
1067 			*entry = cur;
1068 			if (cur->end > address)
1069 				return (TRUE);
1070 		} else
1071 			*entry = cur->prev;
1072 	} else
1073 		/*
1074 		 * Since the map is only locked for read access, perform a
1075 		 * standard binary search tree lookup for "address".
1076 		 */
1077 		for (;;) {
1078 			if (address < cur->start) {
1079 				if (cur->left == NULL) {
1080 					*entry = cur->prev;
1081 					break;
1082 				}
1083 				cur = cur->left;
1084 			} else if (cur->end > address) {
1085 				*entry = cur;
1086 				return (TRUE);
1087 			} else {
1088 				if (cur->right == NULL) {
1089 					*entry = cur;
1090 					break;
1091 				}
1092 				cur = cur->right;
1093 			}
1094 		}
1095 	return (FALSE);
1096 }
1097 
1098 /*
1099  *	vm_map_insert:
1100  *
1101  *	Inserts the given whole VM object into the target
1102  *	map at the specified address range.  The object's
1103  *	size should match that of the address range.
1104  *
1105  *	Requires that the map be locked, and leaves it so.
1106  *
1107  *	If object is non-NULL, ref count must be bumped by caller
1108  *	prior to making call to account for the new entry.
1109  */
1110 int
1111 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1112 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1113 	      int cow)
1114 {
1115 	vm_map_entry_t new_entry;
1116 	vm_map_entry_t prev_entry;
1117 	vm_map_entry_t temp_entry;
1118 	vm_eflags_t protoeflags;
1119 	struct ucred *cred;
1120 	vm_inherit_t inheritance;
1121 	boolean_t charge_prev_obj;
1122 
1123 	VM_MAP_ASSERT_LOCKED(map);
1124 
1125 	/*
1126 	 * Check that the start and end points are not bogus.
1127 	 */
1128 	if ((start < map->min_offset) || (end > map->max_offset) ||
1129 	    (start >= end))
1130 		return (KERN_INVALID_ADDRESS);
1131 
1132 	/*
1133 	 * Find the entry prior to the proposed starting address; if it's part
1134 	 * of an existing entry, this range is bogus.
1135 	 */
1136 	if (vm_map_lookup_entry(map, start, &temp_entry))
1137 		return (KERN_NO_SPACE);
1138 
1139 	prev_entry = temp_entry;
1140 
1141 	/*
1142 	 * Assert that the next entry doesn't overlap the end point.
1143 	 */
1144 	if ((prev_entry->next != &map->header) &&
1145 	    (prev_entry->next->start < end))
1146 		return (KERN_NO_SPACE);
1147 
1148 	protoeflags = 0;
1149 	charge_prev_obj = FALSE;
1150 
1151 	if (cow & MAP_COPY_ON_WRITE)
1152 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1153 
1154 	if (cow & MAP_NOFAULT) {
1155 		protoeflags |= MAP_ENTRY_NOFAULT;
1156 
1157 		KASSERT(object == NULL,
1158 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1159 	}
1160 	if (cow & MAP_DISABLE_SYNCER)
1161 		protoeflags |= MAP_ENTRY_NOSYNC;
1162 	if (cow & MAP_DISABLE_COREDUMP)
1163 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1164 	if (cow & MAP_VN_WRITECOUNT)
1165 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1166 	if (cow & MAP_INHERIT_SHARE)
1167 		inheritance = VM_INHERIT_SHARE;
1168 	else
1169 		inheritance = VM_INHERIT_DEFAULT;
1170 
1171 	cred = NULL;
1172 	KASSERT((object != kmem_object && object != kernel_object) ||
1173 	    ((object == kmem_object || object == kernel_object) &&
1174 		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1175 	    ("kmem or kernel object and cow"));
1176 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1177 		goto charged;
1178 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1179 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1180 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1181 			return (KERN_RESOURCE_SHORTAGE);
1182 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1183 		    object->cred == NULL,
1184 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1185 		cred = curthread->td_ucred;
1186 		crhold(cred);
1187 		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1188 			charge_prev_obj = TRUE;
1189 	}
1190 
1191 charged:
1192 	/* Expand the kernel pmap, if necessary. */
1193 	if (map == kernel_map && end > kernel_vm_end)
1194 		pmap_growkernel(end);
1195 	if (object != NULL) {
1196 		/*
1197 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1198 		 * is trivially proven to be the only mapping for any
1199 		 * of the object's pages.  (Object granularity
1200 		 * reference counting is insufficient to recognize
1201 		 * aliases with precision.)
1202 		 */
1203 		VM_OBJECT_WLOCK(object);
1204 		if (object->ref_count > 1 || object->shadow_count != 0)
1205 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1206 		VM_OBJECT_WUNLOCK(object);
1207 	}
1208 	else if ((prev_entry != &map->header) &&
1209 		 (prev_entry->eflags == protoeflags) &&
1210 		 (cow & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) == 0 &&
1211 		 (prev_entry->end == start) &&
1212 		 (prev_entry->wired_count == 0) &&
1213 		 (prev_entry->cred == cred ||
1214 		  (prev_entry->object.vm_object != NULL &&
1215 		   (prev_entry->object.vm_object->cred == cred))) &&
1216 		   vm_object_coalesce(prev_entry->object.vm_object,
1217 		       prev_entry->offset,
1218 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1219 		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1220 		/*
1221 		 * We were able to extend the object.  Determine if we
1222 		 * can extend the previous map entry to include the
1223 		 * new range as well.
1224 		 */
1225 		if ((prev_entry->inheritance == inheritance) &&
1226 		    (prev_entry->protection == prot) &&
1227 		    (prev_entry->max_protection == max)) {
1228 			map->size += (end - prev_entry->end);
1229 			prev_entry->end = end;
1230 			vm_map_entry_resize_free(map, prev_entry);
1231 			vm_map_simplify_entry(map, prev_entry);
1232 			if (cred != NULL)
1233 				crfree(cred);
1234 			return (KERN_SUCCESS);
1235 		}
1236 
1237 		/*
1238 		 * If we can extend the object but cannot extend the
1239 		 * map entry, we have to create a new map entry.  We
1240 		 * must bump the ref count on the extended object to
1241 		 * account for it.  object may be NULL.
1242 		 */
1243 		object = prev_entry->object.vm_object;
1244 		offset = prev_entry->offset +
1245 			(prev_entry->end - prev_entry->start);
1246 		vm_object_reference(object);
1247 		if (cred != NULL && object != NULL && object->cred != NULL &&
1248 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1249 			/* Object already accounts for this uid. */
1250 			crfree(cred);
1251 			cred = NULL;
1252 		}
1253 	}
1254 
1255 	/*
1256 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1257 	 * in things like the buffer map where we manage kva but do not manage
1258 	 * backing objects.
1259 	 */
1260 
1261 	/*
1262 	 * Create a new entry
1263 	 */
1264 	new_entry = vm_map_entry_create(map);
1265 	new_entry->start = start;
1266 	new_entry->end = end;
1267 	new_entry->cred = NULL;
1268 
1269 	new_entry->eflags = protoeflags;
1270 	new_entry->object.vm_object = object;
1271 	new_entry->offset = offset;
1272 	new_entry->avail_ssize = 0;
1273 
1274 	new_entry->inheritance = inheritance;
1275 	new_entry->protection = prot;
1276 	new_entry->max_protection = max;
1277 	new_entry->wired_count = 0;
1278 	new_entry->wiring_thread = NULL;
1279 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1280 	new_entry->next_read = OFF_TO_IDX(offset);
1281 
1282 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1283 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1284 	new_entry->cred = cred;
1285 
1286 	/*
1287 	 * Insert the new entry into the list
1288 	 */
1289 	vm_map_entry_link(map, prev_entry, new_entry);
1290 	map->size += new_entry->end - new_entry->start;
1291 
1292 	/*
1293 	 * It may be possible to merge the new entry with the next and/or
1294 	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1295 	 * panic can result from merging such entries.
1296 	 */
1297 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1298 		vm_map_simplify_entry(map, new_entry);
1299 
1300 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1301 		vm_map_pmap_enter(map, start, prot,
1302 				    object, OFF_TO_IDX(offset), end - start,
1303 				    cow & MAP_PREFAULT_PARTIAL);
1304 	}
1305 
1306 	return (KERN_SUCCESS);
1307 }
1308 
1309 /*
1310  *	vm_map_findspace:
1311  *
1312  *	Find the first fit (lowest VM address) for "length" free bytes
1313  *	beginning at address >= start in the given map.
1314  *
1315  *	In a vm_map_entry, "adj_free" is the amount of free space
1316  *	adjacent (higher address) to this entry, and "max_free" is the
1317  *	maximum amount of contiguous free space in its subtree.  This
1318  *	allows finding a free region in one path down the tree, so
1319  *	O(log n) amortized with splay trees.
1320  *
1321  *	The map must be locked, and leaves it so.
1322  *
1323  *	Returns: 0 on success, and starting address in *addr,
1324  *		 1 if insufficient space.
1325  */
1326 int
1327 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1328     vm_offset_t *addr)	/* OUT */
1329 {
1330 	vm_map_entry_t entry;
1331 	vm_offset_t st;
1332 
1333 	/*
1334 	 * Request must fit within min/max VM address and must avoid
1335 	 * address wrap.
1336 	 */
1337 	if (start < map->min_offset)
1338 		start = map->min_offset;
1339 	if (start + length > map->max_offset || start + length < start)
1340 		return (1);
1341 
1342 	/* Empty tree means wide open address space. */
1343 	if (map->root == NULL) {
1344 		*addr = start;
1345 		return (0);
1346 	}
1347 
1348 	/*
1349 	 * After splay, if start comes before root node, then there
1350 	 * must be a gap from start to the root.
1351 	 */
1352 	map->root = vm_map_entry_splay(start, map->root);
1353 	if (start + length <= map->root->start) {
1354 		*addr = start;
1355 		return (0);
1356 	}
1357 
1358 	/*
1359 	 * Root is the last node that might begin its gap before
1360 	 * start, and this is the last comparison where address
1361 	 * wrap might be a problem.
1362 	 */
1363 	st = (start > map->root->end) ? start : map->root->end;
1364 	if (length <= map->root->end + map->root->adj_free - st) {
1365 		*addr = st;
1366 		return (0);
1367 	}
1368 
1369 	/* With max_free, can immediately tell if no solution. */
1370 	entry = map->root->right;
1371 	if (entry == NULL || length > entry->max_free)
1372 		return (1);
1373 
1374 	/*
1375 	 * Search the right subtree in the order: left subtree, root,
1376 	 * right subtree (first fit).  The previous splay implies that
1377 	 * all regions in the right subtree have addresses > start.
1378 	 */
1379 	while (entry != NULL) {
1380 		if (entry->left != NULL && entry->left->max_free >= length)
1381 			entry = entry->left;
1382 		else if (entry->adj_free >= length) {
1383 			*addr = entry->end;
1384 			return (0);
1385 		} else
1386 			entry = entry->right;
1387 	}
1388 
1389 	/* Can't get here, so panic if we do. */
1390 	panic("vm_map_findspace: max_free corrupt");
1391 }
1392 
1393 int
1394 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1395     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1396     vm_prot_t max, int cow)
1397 {
1398 	vm_offset_t end;
1399 	int result;
1400 
1401 	end = start + length;
1402 	vm_map_lock(map);
1403 	VM_MAP_RANGE_CHECK(map, start, end);
1404 	(void) vm_map_delete(map, start, end);
1405 	result = vm_map_insert(map, object, offset, start, end, prot,
1406 	    max, cow);
1407 	vm_map_unlock(map);
1408 	return (result);
1409 }
1410 
1411 /*
1412  *	vm_map_find finds an unallocated region in the target address
1413  *	map with the given length.  The search is defined to be
1414  *	first-fit from the specified address; the region found is
1415  *	returned in the same parameter.
1416  *
1417  *	If object is non-NULL, ref count must be bumped by caller
1418  *	prior to making call to account for the new entry.
1419  */
1420 int
1421 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1422 	    vm_offset_t *addr,	/* IN/OUT */
1423 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1424 	    vm_prot_t prot, vm_prot_t max, int cow)
1425 {
1426 	vm_offset_t alignment, initial_addr, start;
1427 	int result;
1428 
1429 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1430 	    (object->flags & OBJ_COLORED) == 0))
1431 		find_space = VMFS_ANY_SPACE;
1432 	if (find_space >> 8 != 0) {
1433 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1434 		alignment = (vm_offset_t)1 << (find_space >> 8);
1435 	} else
1436 		alignment = 0;
1437 	initial_addr = *addr;
1438 again:
1439 	start = initial_addr;
1440 	vm_map_lock(map);
1441 	do {
1442 		if (find_space != VMFS_NO_SPACE) {
1443 			if (vm_map_findspace(map, start, length, addr) ||
1444 			    (max_addr != 0 && *addr + length > max_addr)) {
1445 				vm_map_unlock(map);
1446 				if (find_space == VMFS_OPTIMAL_SPACE) {
1447 					find_space = VMFS_ANY_SPACE;
1448 					goto again;
1449 				}
1450 				return (KERN_NO_SPACE);
1451 			}
1452 			switch (find_space) {
1453 			case VMFS_SUPER_SPACE:
1454 			case VMFS_OPTIMAL_SPACE:
1455 				pmap_align_superpage(object, offset, addr,
1456 				    length);
1457 				break;
1458 			case VMFS_ANY_SPACE:
1459 				break;
1460 			default:
1461 				if ((*addr & (alignment - 1)) != 0) {
1462 					*addr &= ~(alignment - 1);
1463 					*addr += alignment;
1464 				}
1465 				break;
1466 			}
1467 
1468 			start = *addr;
1469 		}
1470 		result = vm_map_insert(map, object, offset, start, start +
1471 		    length, prot, max, cow);
1472 	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1473 	    find_space != VMFS_ANY_SPACE);
1474 	vm_map_unlock(map);
1475 	return (result);
1476 }
1477 
1478 /*
1479  *	vm_map_simplify_entry:
1480  *
1481  *	Simplify the given map entry by merging with either neighbor.  This
1482  *	routine also has the ability to merge with both neighbors.
1483  *
1484  *	The map must be locked.
1485  *
1486  *	This routine guarentees that the passed entry remains valid (though
1487  *	possibly extended).  When merging, this routine may delete one or
1488  *	both neighbors.
1489  */
1490 void
1491 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1492 {
1493 	vm_map_entry_t next, prev;
1494 	vm_size_t prevsize, esize;
1495 
1496 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1497 		return;
1498 
1499 	prev = entry->prev;
1500 	if (prev != &map->header) {
1501 		prevsize = prev->end - prev->start;
1502 		if ( (prev->end == entry->start) &&
1503 		     (prev->object.vm_object == entry->object.vm_object) &&
1504 		     (!prev->object.vm_object ||
1505 			(prev->offset + prevsize == entry->offset)) &&
1506 		     (prev->eflags == entry->eflags) &&
1507 		     (prev->protection == entry->protection) &&
1508 		     (prev->max_protection == entry->max_protection) &&
1509 		     (prev->inheritance == entry->inheritance) &&
1510 		     (prev->wired_count == entry->wired_count) &&
1511 		     (prev->cred == entry->cred)) {
1512 			vm_map_entry_unlink(map, prev);
1513 			entry->start = prev->start;
1514 			entry->offset = prev->offset;
1515 			if (entry->prev != &map->header)
1516 				vm_map_entry_resize_free(map, entry->prev);
1517 
1518 			/*
1519 			 * If the backing object is a vnode object,
1520 			 * vm_object_deallocate() calls vrele().
1521 			 * However, vrele() does not lock the vnode
1522 			 * because the vnode has additional
1523 			 * references.  Thus, the map lock can be kept
1524 			 * without causing a lock-order reversal with
1525 			 * the vnode lock.
1526 			 *
1527 			 * Since we count the number of virtual page
1528 			 * mappings in object->un_pager.vnp.writemappings,
1529 			 * the writemappings value should not be adjusted
1530 			 * when the entry is disposed of.
1531 			 */
1532 			if (prev->object.vm_object)
1533 				vm_object_deallocate(prev->object.vm_object);
1534 			if (prev->cred != NULL)
1535 				crfree(prev->cred);
1536 			vm_map_entry_dispose(map, prev);
1537 		}
1538 	}
1539 
1540 	next = entry->next;
1541 	if (next != &map->header) {
1542 		esize = entry->end - entry->start;
1543 		if ((entry->end == next->start) &&
1544 		    (next->object.vm_object == entry->object.vm_object) &&
1545 		     (!entry->object.vm_object ||
1546 			(entry->offset + esize == next->offset)) &&
1547 		    (next->eflags == entry->eflags) &&
1548 		    (next->protection == entry->protection) &&
1549 		    (next->max_protection == entry->max_protection) &&
1550 		    (next->inheritance == entry->inheritance) &&
1551 		    (next->wired_count == entry->wired_count) &&
1552 		    (next->cred == entry->cred)) {
1553 			vm_map_entry_unlink(map, next);
1554 			entry->end = next->end;
1555 			vm_map_entry_resize_free(map, entry);
1556 
1557 			/*
1558 			 * See comment above.
1559 			 */
1560 			if (next->object.vm_object)
1561 				vm_object_deallocate(next->object.vm_object);
1562 			if (next->cred != NULL)
1563 				crfree(next->cred);
1564 			vm_map_entry_dispose(map, next);
1565 		}
1566 	}
1567 }
1568 /*
1569  *	vm_map_clip_start:	[ internal use only ]
1570  *
1571  *	Asserts that the given entry begins at or after
1572  *	the specified address; if necessary,
1573  *	it splits the entry into two.
1574  */
1575 #define vm_map_clip_start(map, entry, startaddr) \
1576 { \
1577 	if (startaddr > entry->start) \
1578 		_vm_map_clip_start(map, entry, startaddr); \
1579 }
1580 
1581 /*
1582  *	This routine is called only when it is known that
1583  *	the entry must be split.
1584  */
1585 static void
1586 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1587 {
1588 	vm_map_entry_t new_entry;
1589 
1590 	VM_MAP_ASSERT_LOCKED(map);
1591 
1592 	/*
1593 	 * Split off the front portion -- note that we must insert the new
1594 	 * entry BEFORE this one, so that this entry has the specified
1595 	 * starting address.
1596 	 */
1597 	vm_map_simplify_entry(map, entry);
1598 
1599 	/*
1600 	 * If there is no object backing this entry, we might as well create
1601 	 * one now.  If we defer it, an object can get created after the map
1602 	 * is clipped, and individual objects will be created for the split-up
1603 	 * map.  This is a bit of a hack, but is also about the best place to
1604 	 * put this improvement.
1605 	 */
1606 	if (entry->object.vm_object == NULL && !map->system_map) {
1607 		vm_object_t object;
1608 		object = vm_object_allocate(OBJT_DEFAULT,
1609 				atop(entry->end - entry->start));
1610 		entry->object.vm_object = object;
1611 		entry->offset = 0;
1612 		if (entry->cred != NULL) {
1613 			object->cred = entry->cred;
1614 			object->charge = entry->end - entry->start;
1615 			entry->cred = NULL;
1616 		}
1617 	} else if (entry->object.vm_object != NULL &&
1618 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1619 		   entry->cred != NULL) {
1620 		VM_OBJECT_WLOCK(entry->object.vm_object);
1621 		KASSERT(entry->object.vm_object->cred == NULL,
1622 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1623 		entry->object.vm_object->cred = entry->cred;
1624 		entry->object.vm_object->charge = entry->end - entry->start;
1625 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1626 		entry->cred = NULL;
1627 	}
1628 
1629 	new_entry = vm_map_entry_create(map);
1630 	*new_entry = *entry;
1631 
1632 	new_entry->end = start;
1633 	entry->offset += (start - entry->start);
1634 	entry->start = start;
1635 	if (new_entry->cred != NULL)
1636 		crhold(entry->cred);
1637 
1638 	vm_map_entry_link(map, entry->prev, new_entry);
1639 
1640 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1641 		vm_object_reference(new_entry->object.vm_object);
1642 		/*
1643 		 * The object->un_pager.vnp.writemappings for the
1644 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1645 		 * kept as is here.  The virtual pages are
1646 		 * re-distributed among the clipped entries, so the sum is
1647 		 * left the same.
1648 		 */
1649 	}
1650 }
1651 
1652 /*
1653  *	vm_map_clip_end:	[ internal use only ]
1654  *
1655  *	Asserts that the given entry ends at or before
1656  *	the specified address; if necessary,
1657  *	it splits the entry into two.
1658  */
1659 #define vm_map_clip_end(map, entry, endaddr) \
1660 { \
1661 	if ((endaddr) < (entry->end)) \
1662 		_vm_map_clip_end((map), (entry), (endaddr)); \
1663 }
1664 
1665 /*
1666  *	This routine is called only when it is known that
1667  *	the entry must be split.
1668  */
1669 static void
1670 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1671 {
1672 	vm_map_entry_t new_entry;
1673 
1674 	VM_MAP_ASSERT_LOCKED(map);
1675 
1676 	/*
1677 	 * If there is no object backing this entry, we might as well create
1678 	 * one now.  If we defer it, an object can get created after the map
1679 	 * is clipped, and individual objects will be created for the split-up
1680 	 * map.  This is a bit of a hack, but is also about the best place to
1681 	 * put this improvement.
1682 	 */
1683 	if (entry->object.vm_object == NULL && !map->system_map) {
1684 		vm_object_t object;
1685 		object = vm_object_allocate(OBJT_DEFAULT,
1686 				atop(entry->end - entry->start));
1687 		entry->object.vm_object = object;
1688 		entry->offset = 0;
1689 		if (entry->cred != NULL) {
1690 			object->cred = entry->cred;
1691 			object->charge = entry->end - entry->start;
1692 			entry->cred = NULL;
1693 		}
1694 	} else if (entry->object.vm_object != NULL &&
1695 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1696 		   entry->cred != NULL) {
1697 		VM_OBJECT_WLOCK(entry->object.vm_object);
1698 		KASSERT(entry->object.vm_object->cred == NULL,
1699 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1700 		entry->object.vm_object->cred = entry->cred;
1701 		entry->object.vm_object->charge = entry->end - entry->start;
1702 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1703 		entry->cred = NULL;
1704 	}
1705 
1706 	/*
1707 	 * Create a new entry and insert it AFTER the specified entry
1708 	 */
1709 	new_entry = vm_map_entry_create(map);
1710 	*new_entry = *entry;
1711 
1712 	new_entry->start = entry->end = end;
1713 	new_entry->offset += (end - entry->start);
1714 	if (new_entry->cred != NULL)
1715 		crhold(entry->cred);
1716 
1717 	vm_map_entry_link(map, entry, new_entry);
1718 
1719 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1720 		vm_object_reference(new_entry->object.vm_object);
1721 	}
1722 }
1723 
1724 /*
1725  *	vm_map_submap:		[ kernel use only ]
1726  *
1727  *	Mark the given range as handled by a subordinate map.
1728  *
1729  *	This range must have been created with vm_map_find,
1730  *	and no other operations may have been performed on this
1731  *	range prior to calling vm_map_submap.
1732  *
1733  *	Only a limited number of operations can be performed
1734  *	within this rage after calling vm_map_submap:
1735  *		vm_fault
1736  *	[Don't try vm_map_copy!]
1737  *
1738  *	To remove a submapping, one must first remove the
1739  *	range from the superior map, and then destroy the
1740  *	submap (if desired).  [Better yet, don't try it.]
1741  */
1742 int
1743 vm_map_submap(
1744 	vm_map_t map,
1745 	vm_offset_t start,
1746 	vm_offset_t end,
1747 	vm_map_t submap)
1748 {
1749 	vm_map_entry_t entry;
1750 	int result = KERN_INVALID_ARGUMENT;
1751 
1752 	vm_map_lock(map);
1753 
1754 	VM_MAP_RANGE_CHECK(map, start, end);
1755 
1756 	if (vm_map_lookup_entry(map, start, &entry)) {
1757 		vm_map_clip_start(map, entry, start);
1758 	} else
1759 		entry = entry->next;
1760 
1761 	vm_map_clip_end(map, entry, end);
1762 
1763 	if ((entry->start == start) && (entry->end == end) &&
1764 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1765 	    (entry->object.vm_object == NULL)) {
1766 		entry->object.sub_map = submap;
1767 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1768 		result = KERN_SUCCESS;
1769 	}
1770 	vm_map_unlock(map);
1771 
1772 	return (result);
1773 }
1774 
1775 /*
1776  * The maximum number of pages to map
1777  */
1778 #define	MAX_INIT_PT	96
1779 
1780 /*
1781  *	vm_map_pmap_enter:
1782  *
1783  *	Preload read-only mappings for the specified object's resident pages
1784  *	into the target map.  If "flags" is MAP_PREFAULT_PARTIAL, then only
1785  *	the resident pages within the address range [addr, addr + ulmin(size,
1786  *	ptoa(MAX_INIT_PT))) are mapped.  Otherwise, all resident pages within
1787  *	the specified address range are mapped.  This eliminates many soft
1788  *	faults on process startup and immediately after an mmap(2).  Because
1789  *	these are speculative mappings, cached pages are not reactivated and
1790  *	mapped.
1791  */
1792 void
1793 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1794     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1795 {
1796 	vm_offset_t start;
1797 	vm_page_t p, p_start;
1798 	vm_pindex_t psize, tmpidx;
1799 
1800 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1801 		return;
1802 	VM_OBJECT_RLOCK(object);
1803 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1804 		VM_OBJECT_RUNLOCK(object);
1805 		VM_OBJECT_WLOCK(object);
1806 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1807 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1808 			    size);
1809 			VM_OBJECT_WUNLOCK(object);
1810 			return;
1811 		}
1812 		VM_OBJECT_LOCK_DOWNGRADE(object);
1813 	}
1814 
1815 	psize = atop(size);
1816 	if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1817 		psize = MAX_INIT_PT;
1818 	if (psize + pindex > object->size) {
1819 		if (object->size < pindex) {
1820 			VM_OBJECT_RUNLOCK(object);
1821 			return;
1822 		}
1823 		psize = object->size - pindex;
1824 	}
1825 
1826 	start = 0;
1827 	p_start = NULL;
1828 
1829 	p = vm_page_find_least(object, pindex);
1830 	/*
1831 	 * Assert: the variable p is either (1) the page with the
1832 	 * least pindex greater than or equal to the parameter pindex
1833 	 * or (2) NULL.
1834 	 */
1835 	for (;
1836 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1837 	     p = TAILQ_NEXT(p, listq)) {
1838 		/*
1839 		 * don't allow an madvise to blow away our really
1840 		 * free pages allocating pv entries.
1841 		 */
1842 		if ((flags & MAP_PREFAULT_MADVISE) &&
1843 		    vm_cnt.v_free_count < vm_cnt.v_free_reserved) {
1844 			psize = tmpidx;
1845 			break;
1846 		}
1847 		if (p->valid == VM_PAGE_BITS_ALL) {
1848 			if (p_start == NULL) {
1849 				start = addr + ptoa(tmpidx);
1850 				p_start = p;
1851 			}
1852 		} else if (p_start != NULL) {
1853 			pmap_enter_object(map->pmap, start, addr +
1854 			    ptoa(tmpidx), p_start, prot);
1855 			p_start = NULL;
1856 		}
1857 	}
1858 	if (p_start != NULL)
1859 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1860 		    p_start, prot);
1861 	VM_OBJECT_RUNLOCK(object);
1862 }
1863 
1864 /*
1865  *	vm_map_protect:
1866  *
1867  *	Sets the protection of the specified address
1868  *	region in the target map.  If "set_max" is
1869  *	specified, the maximum protection is to be set;
1870  *	otherwise, only the current protection is affected.
1871  */
1872 int
1873 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1874 	       vm_prot_t new_prot, boolean_t set_max)
1875 {
1876 	vm_map_entry_t current, entry;
1877 	vm_object_t obj;
1878 	struct ucred *cred;
1879 	vm_prot_t old_prot;
1880 
1881 	if (start == end)
1882 		return (KERN_SUCCESS);
1883 
1884 	vm_map_lock(map);
1885 
1886 	VM_MAP_RANGE_CHECK(map, start, end);
1887 
1888 	if (vm_map_lookup_entry(map, start, &entry)) {
1889 		vm_map_clip_start(map, entry, start);
1890 	} else {
1891 		entry = entry->next;
1892 	}
1893 
1894 	/*
1895 	 * Make a first pass to check for protection violations.
1896 	 */
1897 	current = entry;
1898 	while ((current != &map->header) && (current->start < end)) {
1899 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1900 			vm_map_unlock(map);
1901 			return (KERN_INVALID_ARGUMENT);
1902 		}
1903 		if ((new_prot & current->max_protection) != new_prot) {
1904 			vm_map_unlock(map);
1905 			return (KERN_PROTECTION_FAILURE);
1906 		}
1907 		current = current->next;
1908 	}
1909 
1910 
1911 	/*
1912 	 * Do an accounting pass for private read-only mappings that
1913 	 * now will do cow due to allowed write (e.g. debugger sets
1914 	 * breakpoint on text segment)
1915 	 */
1916 	for (current = entry; (current != &map->header) &&
1917 	     (current->start < end); current = current->next) {
1918 
1919 		vm_map_clip_end(map, current, end);
1920 
1921 		if (set_max ||
1922 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1923 		    ENTRY_CHARGED(current)) {
1924 			continue;
1925 		}
1926 
1927 		cred = curthread->td_ucred;
1928 		obj = current->object.vm_object;
1929 
1930 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1931 			if (!swap_reserve(current->end - current->start)) {
1932 				vm_map_unlock(map);
1933 				return (KERN_RESOURCE_SHORTAGE);
1934 			}
1935 			crhold(cred);
1936 			current->cred = cred;
1937 			continue;
1938 		}
1939 
1940 		VM_OBJECT_WLOCK(obj);
1941 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1942 			VM_OBJECT_WUNLOCK(obj);
1943 			continue;
1944 		}
1945 
1946 		/*
1947 		 * Charge for the whole object allocation now, since
1948 		 * we cannot distinguish between non-charged and
1949 		 * charged clipped mapping of the same object later.
1950 		 */
1951 		KASSERT(obj->charge == 0,
1952 		    ("vm_map_protect: object %p overcharged (entry %p)",
1953 		    obj, current));
1954 		if (!swap_reserve(ptoa(obj->size))) {
1955 			VM_OBJECT_WUNLOCK(obj);
1956 			vm_map_unlock(map);
1957 			return (KERN_RESOURCE_SHORTAGE);
1958 		}
1959 
1960 		crhold(cred);
1961 		obj->cred = cred;
1962 		obj->charge = ptoa(obj->size);
1963 		VM_OBJECT_WUNLOCK(obj);
1964 	}
1965 
1966 	/*
1967 	 * Go back and fix up protections. [Note that clipping is not
1968 	 * necessary the second time.]
1969 	 */
1970 	current = entry;
1971 	while ((current != &map->header) && (current->start < end)) {
1972 		old_prot = current->protection;
1973 
1974 		if (set_max)
1975 			current->protection =
1976 			    (current->max_protection = new_prot) &
1977 			    old_prot;
1978 		else
1979 			current->protection = new_prot;
1980 
1981 		/*
1982 		 * For user wired map entries, the normal lazy evaluation of
1983 		 * write access upgrades through soft page faults is
1984 		 * undesirable.  Instead, immediately copy any pages that are
1985 		 * copy-on-write and enable write access in the physical map.
1986 		 */
1987 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
1988 		    (current->protection & VM_PROT_WRITE) != 0 &&
1989 		    (old_prot & VM_PROT_WRITE) == 0)
1990 			vm_fault_copy_entry(map, map, current, current, NULL);
1991 
1992 		/*
1993 		 * When restricting access, update the physical map.  Worry
1994 		 * about copy-on-write here.
1995 		 */
1996 		if ((old_prot & ~current->protection) != 0) {
1997 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1998 							VM_PROT_ALL)
1999 			pmap_protect(map->pmap, current->start,
2000 			    current->end,
2001 			    current->protection & MASK(current));
2002 #undef	MASK
2003 		}
2004 		vm_map_simplify_entry(map, current);
2005 		current = current->next;
2006 	}
2007 	vm_map_unlock(map);
2008 	return (KERN_SUCCESS);
2009 }
2010 
2011 /*
2012  *	vm_map_madvise:
2013  *
2014  *	This routine traverses a processes map handling the madvise
2015  *	system call.  Advisories are classified as either those effecting
2016  *	the vm_map_entry structure, or those effecting the underlying
2017  *	objects.
2018  */
2019 int
2020 vm_map_madvise(
2021 	vm_map_t map,
2022 	vm_offset_t start,
2023 	vm_offset_t end,
2024 	int behav)
2025 {
2026 	vm_map_entry_t current, entry;
2027 	int modify_map = 0;
2028 
2029 	/*
2030 	 * Some madvise calls directly modify the vm_map_entry, in which case
2031 	 * we need to use an exclusive lock on the map and we need to perform
2032 	 * various clipping operations.  Otherwise we only need a read-lock
2033 	 * on the map.
2034 	 */
2035 	switch(behav) {
2036 	case MADV_NORMAL:
2037 	case MADV_SEQUENTIAL:
2038 	case MADV_RANDOM:
2039 	case MADV_NOSYNC:
2040 	case MADV_AUTOSYNC:
2041 	case MADV_NOCORE:
2042 	case MADV_CORE:
2043 		if (start == end)
2044 			return (KERN_SUCCESS);
2045 		modify_map = 1;
2046 		vm_map_lock(map);
2047 		break;
2048 	case MADV_WILLNEED:
2049 	case MADV_DONTNEED:
2050 	case MADV_FREE:
2051 		if (start == end)
2052 			return (KERN_SUCCESS);
2053 		vm_map_lock_read(map);
2054 		break;
2055 	default:
2056 		return (KERN_INVALID_ARGUMENT);
2057 	}
2058 
2059 	/*
2060 	 * Locate starting entry and clip if necessary.
2061 	 */
2062 	VM_MAP_RANGE_CHECK(map, start, end);
2063 
2064 	if (vm_map_lookup_entry(map, start, &entry)) {
2065 		if (modify_map)
2066 			vm_map_clip_start(map, entry, start);
2067 	} else {
2068 		entry = entry->next;
2069 	}
2070 
2071 	if (modify_map) {
2072 		/*
2073 		 * madvise behaviors that are implemented in the vm_map_entry.
2074 		 *
2075 		 * We clip the vm_map_entry so that behavioral changes are
2076 		 * limited to the specified address range.
2077 		 */
2078 		for (current = entry;
2079 		     (current != &map->header) && (current->start < end);
2080 		     current = current->next
2081 		) {
2082 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2083 				continue;
2084 
2085 			vm_map_clip_end(map, current, end);
2086 
2087 			switch (behav) {
2088 			case MADV_NORMAL:
2089 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2090 				break;
2091 			case MADV_SEQUENTIAL:
2092 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2093 				break;
2094 			case MADV_RANDOM:
2095 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2096 				break;
2097 			case MADV_NOSYNC:
2098 				current->eflags |= MAP_ENTRY_NOSYNC;
2099 				break;
2100 			case MADV_AUTOSYNC:
2101 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2102 				break;
2103 			case MADV_NOCORE:
2104 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2105 				break;
2106 			case MADV_CORE:
2107 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2108 				break;
2109 			default:
2110 				break;
2111 			}
2112 			vm_map_simplify_entry(map, current);
2113 		}
2114 		vm_map_unlock(map);
2115 	} else {
2116 		vm_pindex_t pstart, pend;
2117 
2118 		/*
2119 		 * madvise behaviors that are implemented in the underlying
2120 		 * vm_object.
2121 		 *
2122 		 * Since we don't clip the vm_map_entry, we have to clip
2123 		 * the vm_object pindex and count.
2124 		 */
2125 		for (current = entry;
2126 		     (current != &map->header) && (current->start < end);
2127 		     current = current->next
2128 		) {
2129 			vm_offset_t useEnd, useStart;
2130 
2131 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2132 				continue;
2133 
2134 			pstart = OFF_TO_IDX(current->offset);
2135 			pend = pstart + atop(current->end - current->start);
2136 			useStart = current->start;
2137 			useEnd = current->end;
2138 
2139 			if (current->start < start) {
2140 				pstart += atop(start - current->start);
2141 				useStart = start;
2142 			}
2143 			if (current->end > end) {
2144 				pend -= atop(current->end - end);
2145 				useEnd = end;
2146 			}
2147 
2148 			if (pstart >= pend)
2149 				continue;
2150 
2151 			/*
2152 			 * Perform the pmap_advise() before clearing
2153 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2154 			 * concurrent pmap operation, such as pmap_remove(),
2155 			 * could clear a reference in the pmap and set
2156 			 * PGA_REFERENCED on the page before the pmap_advise()
2157 			 * had completed.  Consequently, the page would appear
2158 			 * referenced based upon an old reference that
2159 			 * occurred before this pmap_advise() ran.
2160 			 */
2161 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2162 				pmap_advise(map->pmap, useStart, useEnd,
2163 				    behav);
2164 
2165 			vm_object_madvise(current->object.vm_object, pstart,
2166 			    pend, behav);
2167 			if (behav == MADV_WILLNEED) {
2168 				vm_map_pmap_enter(map,
2169 				    useStart,
2170 				    current->protection,
2171 				    current->object.vm_object,
2172 				    pstart,
2173 				    ptoa(pend - pstart),
2174 				    MAP_PREFAULT_MADVISE
2175 				);
2176 			}
2177 		}
2178 		vm_map_unlock_read(map);
2179 	}
2180 	return (0);
2181 }
2182 
2183 
2184 /*
2185  *	vm_map_inherit:
2186  *
2187  *	Sets the inheritance of the specified address
2188  *	range in the target map.  Inheritance
2189  *	affects how the map will be shared with
2190  *	child maps at the time of vmspace_fork.
2191  */
2192 int
2193 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2194 	       vm_inherit_t new_inheritance)
2195 {
2196 	vm_map_entry_t entry;
2197 	vm_map_entry_t temp_entry;
2198 
2199 	switch (new_inheritance) {
2200 	case VM_INHERIT_NONE:
2201 	case VM_INHERIT_COPY:
2202 	case VM_INHERIT_SHARE:
2203 		break;
2204 	default:
2205 		return (KERN_INVALID_ARGUMENT);
2206 	}
2207 	if (start == end)
2208 		return (KERN_SUCCESS);
2209 	vm_map_lock(map);
2210 	VM_MAP_RANGE_CHECK(map, start, end);
2211 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2212 		entry = temp_entry;
2213 		vm_map_clip_start(map, entry, start);
2214 	} else
2215 		entry = temp_entry->next;
2216 	while ((entry != &map->header) && (entry->start < end)) {
2217 		vm_map_clip_end(map, entry, end);
2218 		entry->inheritance = new_inheritance;
2219 		vm_map_simplify_entry(map, entry);
2220 		entry = entry->next;
2221 	}
2222 	vm_map_unlock(map);
2223 	return (KERN_SUCCESS);
2224 }
2225 
2226 /*
2227  *	vm_map_unwire:
2228  *
2229  *	Implements both kernel and user unwiring.
2230  */
2231 int
2232 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2233     int flags)
2234 {
2235 	vm_map_entry_t entry, first_entry, tmp_entry;
2236 	vm_offset_t saved_start;
2237 	unsigned int last_timestamp;
2238 	int rv;
2239 	boolean_t need_wakeup, result, user_unwire;
2240 
2241 	if (start == end)
2242 		return (KERN_SUCCESS);
2243 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2244 	vm_map_lock(map);
2245 	VM_MAP_RANGE_CHECK(map, start, end);
2246 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2247 		if (flags & VM_MAP_WIRE_HOLESOK)
2248 			first_entry = first_entry->next;
2249 		else {
2250 			vm_map_unlock(map);
2251 			return (KERN_INVALID_ADDRESS);
2252 		}
2253 	}
2254 	last_timestamp = map->timestamp;
2255 	entry = first_entry;
2256 	while (entry != &map->header && entry->start < end) {
2257 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2258 			/*
2259 			 * We have not yet clipped the entry.
2260 			 */
2261 			saved_start = (start >= entry->start) ? start :
2262 			    entry->start;
2263 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2264 			if (vm_map_unlock_and_wait(map, 0)) {
2265 				/*
2266 				 * Allow interruption of user unwiring?
2267 				 */
2268 			}
2269 			vm_map_lock(map);
2270 			if (last_timestamp+1 != map->timestamp) {
2271 				/*
2272 				 * Look again for the entry because the map was
2273 				 * modified while it was unlocked.
2274 				 * Specifically, the entry may have been
2275 				 * clipped, merged, or deleted.
2276 				 */
2277 				if (!vm_map_lookup_entry(map, saved_start,
2278 				    &tmp_entry)) {
2279 					if (flags & VM_MAP_WIRE_HOLESOK)
2280 						tmp_entry = tmp_entry->next;
2281 					else {
2282 						if (saved_start == start) {
2283 							/*
2284 							 * First_entry has been deleted.
2285 							 */
2286 							vm_map_unlock(map);
2287 							return (KERN_INVALID_ADDRESS);
2288 						}
2289 						end = saved_start;
2290 						rv = KERN_INVALID_ADDRESS;
2291 						goto done;
2292 					}
2293 				}
2294 				if (entry == first_entry)
2295 					first_entry = tmp_entry;
2296 				else
2297 					first_entry = NULL;
2298 				entry = tmp_entry;
2299 			}
2300 			last_timestamp = map->timestamp;
2301 			continue;
2302 		}
2303 		vm_map_clip_start(map, entry, start);
2304 		vm_map_clip_end(map, entry, end);
2305 		/*
2306 		 * Mark the entry in case the map lock is released.  (See
2307 		 * above.)
2308 		 */
2309 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2310 		    entry->wiring_thread == NULL,
2311 		    ("owned map entry %p", entry));
2312 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2313 		entry->wiring_thread = curthread;
2314 		/*
2315 		 * Check the map for holes in the specified region.
2316 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2317 		 */
2318 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2319 		    (entry->end < end && (entry->next == &map->header ||
2320 		    entry->next->start > entry->end))) {
2321 			end = entry->end;
2322 			rv = KERN_INVALID_ADDRESS;
2323 			goto done;
2324 		}
2325 		/*
2326 		 * If system unwiring, require that the entry is system wired.
2327 		 */
2328 		if (!user_unwire &&
2329 		    vm_map_entry_system_wired_count(entry) == 0) {
2330 			end = entry->end;
2331 			rv = KERN_INVALID_ARGUMENT;
2332 			goto done;
2333 		}
2334 		entry = entry->next;
2335 	}
2336 	rv = KERN_SUCCESS;
2337 done:
2338 	need_wakeup = FALSE;
2339 	if (first_entry == NULL) {
2340 		result = vm_map_lookup_entry(map, start, &first_entry);
2341 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2342 			first_entry = first_entry->next;
2343 		else
2344 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2345 	}
2346 	for (entry = first_entry; entry != &map->header && entry->start < end;
2347 	    entry = entry->next) {
2348 		/*
2349 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2350 		 * space in the unwired region could have been mapped
2351 		 * while the map lock was dropped for draining
2352 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2353 		 * could be simultaneously wiring this new mapping
2354 		 * entry.  Detect these cases and skip any entries
2355 		 * marked as in transition by us.
2356 		 */
2357 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2358 		    entry->wiring_thread != curthread) {
2359 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2360 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2361 			continue;
2362 		}
2363 
2364 		if (rv == KERN_SUCCESS && (!user_unwire ||
2365 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2366 			if (user_unwire)
2367 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2368 			entry->wired_count--;
2369 			if (entry->wired_count == 0) {
2370 				/*
2371 				 * Retain the map lock.
2372 				 */
2373 				vm_fault_unwire(map, entry->start, entry->end,
2374 				    entry->object.vm_object != NULL &&
2375 				    (entry->object.vm_object->flags &
2376 				    OBJ_FICTITIOUS) != 0);
2377 			}
2378 		}
2379 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2380 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2381 		KASSERT(entry->wiring_thread == curthread,
2382 		    ("vm_map_unwire: alien wire %p", entry));
2383 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2384 		entry->wiring_thread = NULL;
2385 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2386 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2387 			need_wakeup = TRUE;
2388 		}
2389 		vm_map_simplify_entry(map, entry);
2390 	}
2391 	vm_map_unlock(map);
2392 	if (need_wakeup)
2393 		vm_map_wakeup(map);
2394 	return (rv);
2395 }
2396 
2397 /*
2398  *	vm_map_wire:
2399  *
2400  *	Implements both kernel and user wiring.
2401  */
2402 int
2403 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2404     int flags)
2405 {
2406 	vm_map_entry_t entry, first_entry, tmp_entry;
2407 	vm_offset_t saved_end, saved_start;
2408 	unsigned int last_timestamp;
2409 	int rv;
2410 	boolean_t fictitious, need_wakeup, result, user_wire;
2411 	vm_prot_t prot;
2412 
2413 	if (start == end)
2414 		return (KERN_SUCCESS);
2415 	prot = 0;
2416 	if (flags & VM_MAP_WIRE_WRITE)
2417 		prot |= VM_PROT_WRITE;
2418 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2419 	vm_map_lock(map);
2420 	VM_MAP_RANGE_CHECK(map, start, end);
2421 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2422 		if (flags & VM_MAP_WIRE_HOLESOK)
2423 			first_entry = first_entry->next;
2424 		else {
2425 			vm_map_unlock(map);
2426 			return (KERN_INVALID_ADDRESS);
2427 		}
2428 	}
2429 	last_timestamp = map->timestamp;
2430 	entry = first_entry;
2431 	while (entry != &map->header && entry->start < end) {
2432 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2433 			/*
2434 			 * We have not yet clipped the entry.
2435 			 */
2436 			saved_start = (start >= entry->start) ? start :
2437 			    entry->start;
2438 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2439 			if (vm_map_unlock_and_wait(map, 0)) {
2440 				/*
2441 				 * Allow interruption of user wiring?
2442 				 */
2443 			}
2444 			vm_map_lock(map);
2445 			if (last_timestamp + 1 != map->timestamp) {
2446 				/*
2447 				 * Look again for the entry because the map was
2448 				 * modified while it was unlocked.
2449 				 * Specifically, the entry may have been
2450 				 * clipped, merged, or deleted.
2451 				 */
2452 				if (!vm_map_lookup_entry(map, saved_start,
2453 				    &tmp_entry)) {
2454 					if (flags & VM_MAP_WIRE_HOLESOK)
2455 						tmp_entry = tmp_entry->next;
2456 					else {
2457 						if (saved_start == start) {
2458 							/*
2459 							 * first_entry has been deleted.
2460 							 */
2461 							vm_map_unlock(map);
2462 							return (KERN_INVALID_ADDRESS);
2463 						}
2464 						end = saved_start;
2465 						rv = KERN_INVALID_ADDRESS;
2466 						goto done;
2467 					}
2468 				}
2469 				if (entry == first_entry)
2470 					first_entry = tmp_entry;
2471 				else
2472 					first_entry = NULL;
2473 				entry = tmp_entry;
2474 			}
2475 			last_timestamp = map->timestamp;
2476 			continue;
2477 		}
2478 		vm_map_clip_start(map, entry, start);
2479 		vm_map_clip_end(map, entry, end);
2480 		/*
2481 		 * Mark the entry in case the map lock is released.  (See
2482 		 * above.)
2483 		 */
2484 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2485 		    entry->wiring_thread == NULL,
2486 		    ("owned map entry %p", entry));
2487 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2488 		entry->wiring_thread = curthread;
2489 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2490 		    || (entry->protection & prot) != prot) {
2491 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2492 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2493 				end = entry->end;
2494 				rv = KERN_INVALID_ADDRESS;
2495 				goto done;
2496 			}
2497 			goto next_entry;
2498 		}
2499 		if (entry->wired_count == 0) {
2500 			entry->wired_count++;
2501 			saved_start = entry->start;
2502 			saved_end = entry->end;
2503 			fictitious = entry->object.vm_object != NULL &&
2504 			    (entry->object.vm_object->flags &
2505 			    OBJ_FICTITIOUS) != 0;
2506 			/*
2507 			 * Release the map lock, relying on the in-transition
2508 			 * mark.  Mark the map busy for fork.
2509 			 */
2510 			vm_map_busy(map);
2511 			vm_map_unlock(map);
2512 			rv = vm_fault_wire(map, saved_start, saved_end,
2513 			    fictitious);
2514 			vm_map_lock(map);
2515 			vm_map_unbusy(map);
2516 			if (last_timestamp + 1 != map->timestamp) {
2517 				/*
2518 				 * Look again for the entry because the map was
2519 				 * modified while it was unlocked.  The entry
2520 				 * may have been clipped, but NOT merged or
2521 				 * deleted.
2522 				 */
2523 				result = vm_map_lookup_entry(map, saved_start,
2524 				    &tmp_entry);
2525 				KASSERT(result, ("vm_map_wire: lookup failed"));
2526 				if (entry == first_entry)
2527 					first_entry = tmp_entry;
2528 				else
2529 					first_entry = NULL;
2530 				entry = tmp_entry;
2531 				while (entry->end < saved_end) {
2532 					if (rv != KERN_SUCCESS) {
2533 						KASSERT(entry->wired_count == 1,
2534 						    ("vm_map_wire: bad count"));
2535 						entry->wired_count = -1;
2536 					}
2537 					entry = entry->next;
2538 				}
2539 			}
2540 			last_timestamp = map->timestamp;
2541 			if (rv != KERN_SUCCESS) {
2542 				KASSERT(entry->wired_count == 1,
2543 				    ("vm_map_wire: bad count"));
2544 				/*
2545 				 * Assign an out-of-range value to represent
2546 				 * the failure to wire this entry.
2547 				 */
2548 				entry->wired_count = -1;
2549 				end = entry->end;
2550 				goto done;
2551 			}
2552 		} else if (!user_wire ||
2553 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2554 			entry->wired_count++;
2555 		}
2556 		/*
2557 		 * Check the map for holes in the specified region.
2558 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2559 		 */
2560 	next_entry:
2561 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2562 		    (entry->end < end && (entry->next == &map->header ||
2563 		    entry->next->start > entry->end))) {
2564 			end = entry->end;
2565 			rv = KERN_INVALID_ADDRESS;
2566 			goto done;
2567 		}
2568 		entry = entry->next;
2569 	}
2570 	rv = KERN_SUCCESS;
2571 done:
2572 	need_wakeup = FALSE;
2573 	if (first_entry == NULL) {
2574 		result = vm_map_lookup_entry(map, start, &first_entry);
2575 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2576 			first_entry = first_entry->next;
2577 		else
2578 			KASSERT(result, ("vm_map_wire: lookup failed"));
2579 	}
2580 	for (entry = first_entry; entry != &map->header && entry->start < end;
2581 	    entry = entry->next) {
2582 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2583 			goto next_entry_done;
2584 
2585 		/*
2586 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2587 		 * space in the unwired region could have been mapped
2588 		 * while the map lock was dropped for faulting in the
2589 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2590 		 * Moreover, another thread could be simultaneously
2591 		 * wiring this new mapping entry.  Detect these cases
2592 		 * and skip any entries marked as in transition by us.
2593 		 */
2594 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2595 		    entry->wiring_thread != curthread) {
2596 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2597 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2598 			continue;
2599 		}
2600 
2601 		if (rv == KERN_SUCCESS) {
2602 			if (user_wire)
2603 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2604 		} else if (entry->wired_count == -1) {
2605 			/*
2606 			 * Wiring failed on this entry.  Thus, unwiring is
2607 			 * unnecessary.
2608 			 */
2609 			entry->wired_count = 0;
2610 		} else {
2611 			if (!user_wire ||
2612 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2613 				entry->wired_count--;
2614 			if (entry->wired_count == 0) {
2615 				/*
2616 				 * Retain the map lock.
2617 				 */
2618 				vm_fault_unwire(map, entry->start, entry->end,
2619 				    entry->object.vm_object != NULL &&
2620 				    (entry->object.vm_object->flags &
2621 				    OBJ_FICTITIOUS) != 0);
2622 			}
2623 		}
2624 	next_entry_done:
2625 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2626 		    ("vm_map_wire: in-transition flag missing %p", entry));
2627 		KASSERT(entry->wiring_thread == curthread,
2628 		    ("vm_map_wire: alien wire %p", entry));
2629 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2630 		    MAP_ENTRY_WIRE_SKIPPED);
2631 		entry->wiring_thread = NULL;
2632 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2633 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2634 			need_wakeup = TRUE;
2635 		}
2636 		vm_map_simplify_entry(map, entry);
2637 	}
2638 	vm_map_unlock(map);
2639 	if (need_wakeup)
2640 		vm_map_wakeup(map);
2641 	return (rv);
2642 }
2643 
2644 /*
2645  * vm_map_sync
2646  *
2647  * Push any dirty cached pages in the address range to their pager.
2648  * If syncio is TRUE, dirty pages are written synchronously.
2649  * If invalidate is TRUE, any cached pages are freed as well.
2650  *
2651  * If the size of the region from start to end is zero, we are
2652  * supposed to flush all modified pages within the region containing
2653  * start.  Unfortunately, a region can be split or coalesced with
2654  * neighboring regions, making it difficult to determine what the
2655  * original region was.  Therefore, we approximate this requirement by
2656  * flushing the current region containing start.
2657  *
2658  * Returns an error if any part of the specified range is not mapped.
2659  */
2660 int
2661 vm_map_sync(
2662 	vm_map_t map,
2663 	vm_offset_t start,
2664 	vm_offset_t end,
2665 	boolean_t syncio,
2666 	boolean_t invalidate)
2667 {
2668 	vm_map_entry_t current;
2669 	vm_map_entry_t entry;
2670 	vm_size_t size;
2671 	vm_object_t object;
2672 	vm_ooffset_t offset;
2673 	unsigned int last_timestamp;
2674 	boolean_t failed;
2675 
2676 	vm_map_lock_read(map);
2677 	VM_MAP_RANGE_CHECK(map, start, end);
2678 	if (!vm_map_lookup_entry(map, start, &entry)) {
2679 		vm_map_unlock_read(map);
2680 		return (KERN_INVALID_ADDRESS);
2681 	} else if (start == end) {
2682 		start = entry->start;
2683 		end = entry->end;
2684 	}
2685 	/*
2686 	 * Make a first pass to check for user-wired memory and holes.
2687 	 */
2688 	for (current = entry; current != &map->header && current->start < end;
2689 	    current = current->next) {
2690 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2691 			vm_map_unlock_read(map);
2692 			return (KERN_INVALID_ARGUMENT);
2693 		}
2694 		if (end > current->end &&
2695 		    (current->next == &map->header ||
2696 			current->end != current->next->start)) {
2697 			vm_map_unlock_read(map);
2698 			return (KERN_INVALID_ADDRESS);
2699 		}
2700 	}
2701 
2702 	if (invalidate)
2703 		pmap_remove(map->pmap, start, end);
2704 	failed = FALSE;
2705 
2706 	/*
2707 	 * Make a second pass, cleaning/uncaching pages from the indicated
2708 	 * objects as we go.
2709 	 */
2710 	for (current = entry; current != &map->header && current->start < end;) {
2711 		offset = current->offset + (start - current->start);
2712 		size = (end <= current->end ? end : current->end) - start;
2713 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2714 			vm_map_t smap;
2715 			vm_map_entry_t tentry;
2716 			vm_size_t tsize;
2717 
2718 			smap = current->object.sub_map;
2719 			vm_map_lock_read(smap);
2720 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2721 			tsize = tentry->end - offset;
2722 			if (tsize < size)
2723 				size = tsize;
2724 			object = tentry->object.vm_object;
2725 			offset = tentry->offset + (offset - tentry->start);
2726 			vm_map_unlock_read(smap);
2727 		} else {
2728 			object = current->object.vm_object;
2729 		}
2730 		vm_object_reference(object);
2731 		last_timestamp = map->timestamp;
2732 		vm_map_unlock_read(map);
2733 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2734 			failed = TRUE;
2735 		start += size;
2736 		vm_object_deallocate(object);
2737 		vm_map_lock_read(map);
2738 		if (last_timestamp == map->timestamp ||
2739 		    !vm_map_lookup_entry(map, start, &current))
2740 			current = current->next;
2741 	}
2742 
2743 	vm_map_unlock_read(map);
2744 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2745 }
2746 
2747 /*
2748  *	vm_map_entry_unwire:	[ internal use only ]
2749  *
2750  *	Make the region specified by this entry pageable.
2751  *
2752  *	The map in question should be locked.
2753  *	[This is the reason for this routine's existence.]
2754  */
2755 static void
2756 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2757 {
2758 	vm_fault_unwire(map, entry->start, entry->end,
2759 	    entry->object.vm_object != NULL &&
2760 	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2761 	entry->wired_count = 0;
2762 }
2763 
2764 static void
2765 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2766 {
2767 
2768 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2769 		vm_object_deallocate(entry->object.vm_object);
2770 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2771 }
2772 
2773 /*
2774  *	vm_map_entry_delete:	[ internal use only ]
2775  *
2776  *	Deallocate the given entry from the target map.
2777  */
2778 static void
2779 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2780 {
2781 	vm_object_t object;
2782 	vm_pindex_t offidxstart, offidxend, count, size1;
2783 	vm_ooffset_t size;
2784 
2785 	vm_map_entry_unlink(map, entry);
2786 	object = entry->object.vm_object;
2787 	size = entry->end - entry->start;
2788 	map->size -= size;
2789 
2790 	if (entry->cred != NULL) {
2791 		swap_release_by_cred(size, entry->cred);
2792 		crfree(entry->cred);
2793 	}
2794 
2795 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2796 	    (object != NULL)) {
2797 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2798 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2799 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2800 		count = OFF_TO_IDX(size);
2801 		offidxstart = OFF_TO_IDX(entry->offset);
2802 		offidxend = offidxstart + count;
2803 		VM_OBJECT_WLOCK(object);
2804 		if (object->ref_count != 1 &&
2805 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2806 		    object == kernel_object || object == kmem_object)) {
2807 			vm_object_collapse(object);
2808 
2809 			/*
2810 			 * The option OBJPR_NOTMAPPED can be passed here
2811 			 * because vm_map_delete() already performed
2812 			 * pmap_remove() on the only mapping to this range
2813 			 * of pages.
2814 			 */
2815 			vm_object_page_remove(object, offidxstart, offidxend,
2816 			    OBJPR_NOTMAPPED);
2817 			if (object->type == OBJT_SWAP)
2818 				swap_pager_freespace(object, offidxstart, count);
2819 			if (offidxend >= object->size &&
2820 			    offidxstart < object->size) {
2821 				size1 = object->size;
2822 				object->size = offidxstart;
2823 				if (object->cred != NULL) {
2824 					size1 -= object->size;
2825 					KASSERT(object->charge >= ptoa(size1),
2826 					    ("vm_map_entry_delete: object->charge < 0"));
2827 					swap_release_by_cred(ptoa(size1), object->cred);
2828 					object->charge -= ptoa(size1);
2829 				}
2830 			}
2831 		}
2832 		VM_OBJECT_WUNLOCK(object);
2833 	} else
2834 		entry->object.vm_object = NULL;
2835 	if (map->system_map)
2836 		vm_map_entry_deallocate(entry, TRUE);
2837 	else {
2838 		entry->next = curthread->td_map_def_user;
2839 		curthread->td_map_def_user = entry;
2840 	}
2841 }
2842 
2843 /*
2844  *	vm_map_delete:	[ internal use only ]
2845  *
2846  *	Deallocates the given address range from the target
2847  *	map.
2848  */
2849 int
2850 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2851 {
2852 	vm_map_entry_t entry;
2853 	vm_map_entry_t first_entry;
2854 
2855 	VM_MAP_ASSERT_LOCKED(map);
2856 	if (start == end)
2857 		return (KERN_SUCCESS);
2858 
2859 	/*
2860 	 * Find the start of the region, and clip it
2861 	 */
2862 	if (!vm_map_lookup_entry(map, start, &first_entry))
2863 		entry = first_entry->next;
2864 	else {
2865 		entry = first_entry;
2866 		vm_map_clip_start(map, entry, start);
2867 	}
2868 
2869 	/*
2870 	 * Step through all entries in this region
2871 	 */
2872 	while ((entry != &map->header) && (entry->start < end)) {
2873 		vm_map_entry_t next;
2874 
2875 		/*
2876 		 * Wait for wiring or unwiring of an entry to complete.
2877 		 * Also wait for any system wirings to disappear on
2878 		 * user maps.
2879 		 */
2880 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2881 		    (vm_map_pmap(map) != kernel_pmap &&
2882 		    vm_map_entry_system_wired_count(entry) != 0)) {
2883 			unsigned int last_timestamp;
2884 			vm_offset_t saved_start;
2885 			vm_map_entry_t tmp_entry;
2886 
2887 			saved_start = entry->start;
2888 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2889 			last_timestamp = map->timestamp;
2890 			(void) vm_map_unlock_and_wait(map, 0);
2891 			vm_map_lock(map);
2892 			if (last_timestamp + 1 != map->timestamp) {
2893 				/*
2894 				 * Look again for the entry because the map was
2895 				 * modified while it was unlocked.
2896 				 * Specifically, the entry may have been
2897 				 * clipped, merged, or deleted.
2898 				 */
2899 				if (!vm_map_lookup_entry(map, saved_start,
2900 							 &tmp_entry))
2901 					entry = tmp_entry->next;
2902 				else {
2903 					entry = tmp_entry;
2904 					vm_map_clip_start(map, entry,
2905 							  saved_start);
2906 				}
2907 			}
2908 			continue;
2909 		}
2910 		vm_map_clip_end(map, entry, end);
2911 
2912 		next = entry->next;
2913 
2914 		/*
2915 		 * Unwire before removing addresses from the pmap; otherwise,
2916 		 * unwiring will put the entries back in the pmap.
2917 		 */
2918 		if (entry->wired_count != 0) {
2919 			vm_map_entry_unwire(map, entry);
2920 		}
2921 
2922 		pmap_remove(map->pmap, entry->start, entry->end);
2923 
2924 		/*
2925 		 * Delete the entry only after removing all pmap
2926 		 * entries pointing to its pages.  (Otherwise, its
2927 		 * page frames may be reallocated, and any modify bits
2928 		 * will be set in the wrong object!)
2929 		 */
2930 		vm_map_entry_delete(map, entry);
2931 		entry = next;
2932 	}
2933 	return (KERN_SUCCESS);
2934 }
2935 
2936 /*
2937  *	vm_map_remove:
2938  *
2939  *	Remove the given address range from the target map.
2940  *	This is the exported form of vm_map_delete.
2941  */
2942 int
2943 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2944 {
2945 	int result;
2946 
2947 	vm_map_lock(map);
2948 	VM_MAP_RANGE_CHECK(map, start, end);
2949 	result = vm_map_delete(map, start, end);
2950 	vm_map_unlock(map);
2951 	return (result);
2952 }
2953 
2954 /*
2955  *	vm_map_check_protection:
2956  *
2957  *	Assert that the target map allows the specified privilege on the
2958  *	entire address region given.  The entire region must be allocated.
2959  *
2960  *	WARNING!  This code does not and should not check whether the
2961  *	contents of the region is accessible.  For example a smaller file
2962  *	might be mapped into a larger address space.
2963  *
2964  *	NOTE!  This code is also called by munmap().
2965  *
2966  *	The map must be locked.  A read lock is sufficient.
2967  */
2968 boolean_t
2969 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2970 			vm_prot_t protection)
2971 {
2972 	vm_map_entry_t entry;
2973 	vm_map_entry_t tmp_entry;
2974 
2975 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2976 		return (FALSE);
2977 	entry = tmp_entry;
2978 
2979 	while (start < end) {
2980 		if (entry == &map->header)
2981 			return (FALSE);
2982 		/*
2983 		 * No holes allowed!
2984 		 */
2985 		if (start < entry->start)
2986 			return (FALSE);
2987 		/*
2988 		 * Check protection associated with entry.
2989 		 */
2990 		if ((entry->protection & protection) != protection)
2991 			return (FALSE);
2992 		/* go to next entry */
2993 		start = entry->end;
2994 		entry = entry->next;
2995 	}
2996 	return (TRUE);
2997 }
2998 
2999 /*
3000  *	vm_map_copy_entry:
3001  *
3002  *	Copies the contents of the source entry to the destination
3003  *	entry.  The entries *must* be aligned properly.
3004  */
3005 static void
3006 vm_map_copy_entry(
3007 	vm_map_t src_map,
3008 	vm_map_t dst_map,
3009 	vm_map_entry_t src_entry,
3010 	vm_map_entry_t dst_entry,
3011 	vm_ooffset_t *fork_charge)
3012 {
3013 	vm_object_t src_object;
3014 	vm_map_entry_t fake_entry;
3015 	vm_offset_t size;
3016 	struct ucred *cred;
3017 	int charged;
3018 
3019 	VM_MAP_ASSERT_LOCKED(dst_map);
3020 
3021 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3022 		return;
3023 
3024 	if (src_entry->wired_count == 0 ||
3025 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3026 		/*
3027 		 * If the source entry is marked needs_copy, it is already
3028 		 * write-protected.
3029 		 */
3030 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3031 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3032 			pmap_protect(src_map->pmap,
3033 			    src_entry->start,
3034 			    src_entry->end,
3035 			    src_entry->protection & ~VM_PROT_WRITE);
3036 		}
3037 
3038 		/*
3039 		 * Make a copy of the object.
3040 		 */
3041 		size = src_entry->end - src_entry->start;
3042 		if ((src_object = src_entry->object.vm_object) != NULL) {
3043 			VM_OBJECT_WLOCK(src_object);
3044 			charged = ENTRY_CHARGED(src_entry);
3045 			if ((src_object->handle == NULL) &&
3046 				(src_object->type == OBJT_DEFAULT ||
3047 				 src_object->type == OBJT_SWAP)) {
3048 				vm_object_collapse(src_object);
3049 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3050 					vm_object_split(src_entry);
3051 					src_object = src_entry->object.vm_object;
3052 				}
3053 			}
3054 			vm_object_reference_locked(src_object);
3055 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3056 			if (src_entry->cred != NULL &&
3057 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3058 				KASSERT(src_object->cred == NULL,
3059 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3060 				     src_object));
3061 				src_object->cred = src_entry->cred;
3062 				src_object->charge = size;
3063 			}
3064 			VM_OBJECT_WUNLOCK(src_object);
3065 			dst_entry->object.vm_object = src_object;
3066 			if (charged) {
3067 				cred = curthread->td_ucred;
3068 				crhold(cred);
3069 				dst_entry->cred = cred;
3070 				*fork_charge += size;
3071 				if (!(src_entry->eflags &
3072 				      MAP_ENTRY_NEEDS_COPY)) {
3073 					crhold(cred);
3074 					src_entry->cred = cred;
3075 					*fork_charge += size;
3076 				}
3077 			}
3078 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3079 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3080 			dst_entry->offset = src_entry->offset;
3081 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3082 				/*
3083 				 * MAP_ENTRY_VN_WRITECNT cannot
3084 				 * indicate write reference from
3085 				 * src_entry, since the entry is
3086 				 * marked as needs copy.  Allocate a
3087 				 * fake entry that is used to
3088 				 * decrement object->un_pager.vnp.writecount
3089 				 * at the appropriate time.  Attach
3090 				 * fake_entry to the deferred list.
3091 				 */
3092 				fake_entry = vm_map_entry_create(dst_map);
3093 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3094 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3095 				vm_object_reference(src_object);
3096 				fake_entry->object.vm_object = src_object;
3097 				fake_entry->start = src_entry->start;
3098 				fake_entry->end = src_entry->end;
3099 				fake_entry->next = curthread->td_map_def_user;
3100 				curthread->td_map_def_user = fake_entry;
3101 			}
3102 		} else {
3103 			dst_entry->object.vm_object = NULL;
3104 			dst_entry->offset = 0;
3105 			if (src_entry->cred != NULL) {
3106 				dst_entry->cred = curthread->td_ucred;
3107 				crhold(dst_entry->cred);
3108 				*fork_charge += size;
3109 			}
3110 		}
3111 
3112 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3113 		    dst_entry->end - dst_entry->start, src_entry->start);
3114 	} else {
3115 		/*
3116 		 * We don't want to make writeable wired pages copy-on-write.
3117 		 * Immediately copy these pages into the new map by simulating
3118 		 * page faults.  The new pages are pageable.
3119 		 */
3120 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3121 		    fork_charge);
3122 	}
3123 }
3124 
3125 /*
3126  * vmspace_map_entry_forked:
3127  * Update the newly-forked vmspace each time a map entry is inherited
3128  * or copied.  The values for vm_dsize and vm_tsize are approximate
3129  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3130  */
3131 static void
3132 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3133     vm_map_entry_t entry)
3134 {
3135 	vm_size_t entrysize;
3136 	vm_offset_t newend;
3137 
3138 	entrysize = entry->end - entry->start;
3139 	vm2->vm_map.size += entrysize;
3140 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3141 		vm2->vm_ssize += btoc(entrysize);
3142 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3143 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3144 		newend = MIN(entry->end,
3145 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3146 		vm2->vm_dsize += btoc(newend - entry->start);
3147 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3148 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3149 		newend = MIN(entry->end,
3150 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3151 		vm2->vm_tsize += btoc(newend - entry->start);
3152 	}
3153 }
3154 
3155 /*
3156  * vmspace_fork:
3157  * Create a new process vmspace structure and vm_map
3158  * based on those of an existing process.  The new map
3159  * is based on the old map, according to the inheritance
3160  * values on the regions in that map.
3161  *
3162  * XXX It might be worth coalescing the entries added to the new vmspace.
3163  *
3164  * The source map must not be locked.
3165  */
3166 struct vmspace *
3167 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3168 {
3169 	struct vmspace *vm2;
3170 	vm_map_t new_map, old_map;
3171 	vm_map_entry_t new_entry, old_entry;
3172 	vm_object_t object;
3173 	int locked;
3174 
3175 	old_map = &vm1->vm_map;
3176 	/* Copy immutable fields of vm1 to vm2. */
3177 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3178 	if (vm2 == NULL)
3179 		return (NULL);
3180 	vm2->vm_taddr = vm1->vm_taddr;
3181 	vm2->vm_daddr = vm1->vm_daddr;
3182 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3183 	vm_map_lock(old_map);
3184 	if (old_map->busy)
3185 		vm_map_wait_busy(old_map);
3186 	new_map = &vm2->vm_map;
3187 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3188 	KASSERT(locked, ("vmspace_fork: lock failed"));
3189 
3190 	old_entry = old_map->header.next;
3191 
3192 	while (old_entry != &old_map->header) {
3193 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3194 			panic("vm_map_fork: encountered a submap");
3195 
3196 		switch (old_entry->inheritance) {
3197 		case VM_INHERIT_NONE:
3198 			break;
3199 
3200 		case VM_INHERIT_SHARE:
3201 			/*
3202 			 * Clone the entry, creating the shared object if necessary.
3203 			 */
3204 			object = old_entry->object.vm_object;
3205 			if (object == NULL) {
3206 				object = vm_object_allocate(OBJT_DEFAULT,
3207 					atop(old_entry->end - old_entry->start));
3208 				old_entry->object.vm_object = object;
3209 				old_entry->offset = 0;
3210 				if (old_entry->cred != NULL) {
3211 					object->cred = old_entry->cred;
3212 					object->charge = old_entry->end -
3213 					    old_entry->start;
3214 					old_entry->cred = NULL;
3215 				}
3216 			}
3217 
3218 			/*
3219 			 * Add the reference before calling vm_object_shadow
3220 			 * to insure that a shadow object is created.
3221 			 */
3222 			vm_object_reference(object);
3223 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3224 				vm_object_shadow(&old_entry->object.vm_object,
3225 				    &old_entry->offset,
3226 				    old_entry->end - old_entry->start);
3227 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3228 				/* Transfer the second reference too. */
3229 				vm_object_reference(
3230 				    old_entry->object.vm_object);
3231 
3232 				/*
3233 				 * As in vm_map_simplify_entry(), the
3234 				 * vnode lock will not be acquired in
3235 				 * this call to vm_object_deallocate().
3236 				 */
3237 				vm_object_deallocate(object);
3238 				object = old_entry->object.vm_object;
3239 			}
3240 			VM_OBJECT_WLOCK(object);
3241 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3242 			if (old_entry->cred != NULL) {
3243 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3244 				object->cred = old_entry->cred;
3245 				object->charge = old_entry->end - old_entry->start;
3246 				old_entry->cred = NULL;
3247 			}
3248 
3249 			/*
3250 			 * Assert the correct state of the vnode
3251 			 * v_writecount while the object is locked, to
3252 			 * not relock it later for the assertion
3253 			 * correctness.
3254 			 */
3255 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3256 			    object->type == OBJT_VNODE) {
3257 				KASSERT(((struct vnode *)object->handle)->
3258 				    v_writecount > 0,
3259 				    ("vmspace_fork: v_writecount %p", object));
3260 				KASSERT(object->un_pager.vnp.writemappings > 0,
3261 				    ("vmspace_fork: vnp.writecount %p",
3262 				    object));
3263 			}
3264 			VM_OBJECT_WUNLOCK(object);
3265 
3266 			/*
3267 			 * Clone the entry, referencing the shared object.
3268 			 */
3269 			new_entry = vm_map_entry_create(new_map);
3270 			*new_entry = *old_entry;
3271 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3272 			    MAP_ENTRY_IN_TRANSITION);
3273 			new_entry->wiring_thread = NULL;
3274 			new_entry->wired_count = 0;
3275 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3276 				vnode_pager_update_writecount(object,
3277 				    new_entry->start, new_entry->end);
3278 			}
3279 
3280 			/*
3281 			 * Insert the entry into the new map -- we know we're
3282 			 * inserting at the end of the new map.
3283 			 */
3284 			vm_map_entry_link(new_map, new_map->header.prev,
3285 			    new_entry);
3286 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3287 
3288 			/*
3289 			 * Update the physical map
3290 			 */
3291 			pmap_copy(new_map->pmap, old_map->pmap,
3292 			    new_entry->start,
3293 			    (old_entry->end - old_entry->start),
3294 			    old_entry->start);
3295 			break;
3296 
3297 		case VM_INHERIT_COPY:
3298 			/*
3299 			 * Clone the entry and link into the map.
3300 			 */
3301 			new_entry = vm_map_entry_create(new_map);
3302 			*new_entry = *old_entry;
3303 			/*
3304 			 * Copied entry is COW over the old object.
3305 			 */
3306 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3307 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3308 			new_entry->wiring_thread = NULL;
3309 			new_entry->wired_count = 0;
3310 			new_entry->object.vm_object = NULL;
3311 			new_entry->cred = NULL;
3312 			vm_map_entry_link(new_map, new_map->header.prev,
3313 			    new_entry);
3314 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3315 			vm_map_copy_entry(old_map, new_map, old_entry,
3316 			    new_entry, fork_charge);
3317 			break;
3318 		}
3319 		old_entry = old_entry->next;
3320 	}
3321 	/*
3322 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3323 	 * map entries, which cannot be done until both old_map and
3324 	 * new_map locks are released.
3325 	 */
3326 	sx_xunlock(&old_map->lock);
3327 	sx_xunlock(&new_map->lock);
3328 	vm_map_process_deferred();
3329 
3330 	return (vm2);
3331 }
3332 
3333 int
3334 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3335     vm_prot_t prot, vm_prot_t max, int cow)
3336 {
3337 	vm_map_entry_t new_entry, prev_entry;
3338 	vm_offset_t bot, top;
3339 	vm_size_t growsize, init_ssize;
3340 	int orient, rv;
3341 	rlim_t lmemlim, vmemlim;
3342 
3343 	/*
3344 	 * The stack orientation is piggybacked with the cow argument.
3345 	 * Extract it into orient and mask the cow argument so that we
3346 	 * don't pass it around further.
3347 	 * NOTE: We explicitly allow bi-directional stacks.
3348 	 */
3349 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3350 	KASSERT(orient != 0, ("No stack grow direction"));
3351 
3352 	if (addrbos < vm_map_min(map) ||
3353 	    addrbos > vm_map_max(map) ||
3354 	    addrbos + max_ssize < addrbos)
3355 		return (KERN_NO_SPACE);
3356 
3357 	growsize = sgrowsiz;
3358 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3359 
3360 	PROC_LOCK(curproc);
3361 	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3362 	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3363 	PROC_UNLOCK(curproc);
3364 
3365 	vm_map_lock(map);
3366 
3367 	/* If addr is already mapped, no go */
3368 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3369 		vm_map_unlock(map);
3370 		return (KERN_NO_SPACE);
3371 	}
3372 
3373 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3374 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3375 			vm_map_unlock(map);
3376 			return (KERN_NO_SPACE);
3377 		}
3378 	}
3379 
3380 	/* If we would blow our VMEM resource limit, no go */
3381 	if (map->size + init_ssize > vmemlim) {
3382 		vm_map_unlock(map);
3383 		return (KERN_NO_SPACE);
3384 	}
3385 
3386 	/*
3387 	 * If we can't accomodate max_ssize in the current mapping, no go.
3388 	 * However, we need to be aware that subsequent user mappings might
3389 	 * map into the space we have reserved for stack, and currently this
3390 	 * space is not protected.
3391 	 *
3392 	 * Hopefully we will at least detect this condition when we try to
3393 	 * grow the stack.
3394 	 */
3395 	if ((prev_entry->next != &map->header) &&
3396 	    (prev_entry->next->start < addrbos + max_ssize)) {
3397 		vm_map_unlock(map);
3398 		return (KERN_NO_SPACE);
3399 	}
3400 
3401 	/*
3402 	 * We initially map a stack of only init_ssize.  We will grow as
3403 	 * needed later.  Depending on the orientation of the stack (i.e.
3404 	 * the grow direction) we either map at the top of the range, the
3405 	 * bottom of the range or in the middle.
3406 	 *
3407 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3408 	 * and cow to be 0.  Possibly we should eliminate these as input
3409 	 * parameters, and just pass these values here in the insert call.
3410 	 */
3411 	if (orient == MAP_STACK_GROWS_DOWN)
3412 		bot = addrbos + max_ssize - init_ssize;
3413 	else if (orient == MAP_STACK_GROWS_UP)
3414 		bot = addrbos;
3415 	else
3416 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3417 	top = bot + init_ssize;
3418 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3419 
3420 	/* Now set the avail_ssize amount. */
3421 	if (rv == KERN_SUCCESS) {
3422 		if (prev_entry != &map->header)
3423 			vm_map_clip_end(map, prev_entry, bot);
3424 		new_entry = prev_entry->next;
3425 		if (new_entry->end != top || new_entry->start != bot)
3426 			panic("Bad entry start/end for new stack entry");
3427 
3428 		new_entry->avail_ssize = max_ssize - init_ssize;
3429 		if (orient & MAP_STACK_GROWS_DOWN)
3430 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3431 		if (orient & MAP_STACK_GROWS_UP)
3432 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3433 	}
3434 
3435 	vm_map_unlock(map);
3436 	return (rv);
3437 }
3438 
3439 static int stack_guard_page = 0;
3440 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3441 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3442     &stack_guard_page, 0,
3443     "Insert stack guard page ahead of the growable segments.");
3444 
3445 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3446  * desired address is already mapped, or if we successfully grow
3447  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3448  * stack range (this is strange, but preserves compatibility with
3449  * the grow function in vm_machdep.c).
3450  */
3451 int
3452 vm_map_growstack(struct proc *p, vm_offset_t addr)
3453 {
3454 	vm_map_entry_t next_entry, prev_entry;
3455 	vm_map_entry_t new_entry, stack_entry;
3456 	struct vmspace *vm = p->p_vmspace;
3457 	vm_map_t map = &vm->vm_map;
3458 	vm_offset_t end;
3459 	vm_size_t growsize;
3460 	size_t grow_amount, max_grow;
3461 	rlim_t lmemlim, stacklim, vmemlim;
3462 	int is_procstack, rv;
3463 	struct ucred *cred;
3464 #ifdef notyet
3465 	uint64_t limit;
3466 #endif
3467 #ifdef RACCT
3468 	int error;
3469 #endif
3470 
3471 Retry:
3472 	PROC_LOCK(p);
3473 	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3474 	stacklim = lim_cur(p, RLIMIT_STACK);
3475 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3476 	PROC_UNLOCK(p);
3477 
3478 	vm_map_lock_read(map);
3479 
3480 	/* If addr is already in the entry range, no need to grow.*/
3481 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3482 		vm_map_unlock_read(map);
3483 		return (KERN_SUCCESS);
3484 	}
3485 
3486 	next_entry = prev_entry->next;
3487 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3488 		/*
3489 		 * This entry does not grow upwards. Since the address lies
3490 		 * beyond this entry, the next entry (if one exists) has to
3491 		 * be a downward growable entry. The entry list header is
3492 		 * never a growable entry, so it suffices to check the flags.
3493 		 */
3494 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3495 			vm_map_unlock_read(map);
3496 			return (KERN_SUCCESS);
3497 		}
3498 		stack_entry = next_entry;
3499 	} else {
3500 		/*
3501 		 * This entry grows upward. If the next entry does not at
3502 		 * least grow downwards, this is the entry we need to grow.
3503 		 * otherwise we have two possible choices and we have to
3504 		 * select one.
3505 		 */
3506 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3507 			/*
3508 			 * We have two choices; grow the entry closest to
3509 			 * the address to minimize the amount of growth.
3510 			 */
3511 			if (addr - prev_entry->end <= next_entry->start - addr)
3512 				stack_entry = prev_entry;
3513 			else
3514 				stack_entry = next_entry;
3515 		} else
3516 			stack_entry = prev_entry;
3517 	}
3518 
3519 	if (stack_entry == next_entry) {
3520 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3521 		KASSERT(addr < stack_entry->start, ("foo"));
3522 		end = (prev_entry != &map->header) ? prev_entry->end :
3523 		    stack_entry->start - stack_entry->avail_ssize;
3524 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3525 		max_grow = stack_entry->start - end;
3526 	} else {
3527 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3528 		KASSERT(addr >= stack_entry->end, ("foo"));
3529 		end = (next_entry != &map->header) ? next_entry->start :
3530 		    stack_entry->end + stack_entry->avail_ssize;
3531 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3532 		max_grow = end - stack_entry->end;
3533 	}
3534 
3535 	if (grow_amount > stack_entry->avail_ssize) {
3536 		vm_map_unlock_read(map);
3537 		return (KERN_NO_SPACE);
3538 	}
3539 
3540 	/*
3541 	 * If there is no longer enough space between the entries nogo, and
3542 	 * adjust the available space.  Note: this  should only happen if the
3543 	 * user has mapped into the stack area after the stack was created,
3544 	 * and is probably an error.
3545 	 *
3546 	 * This also effectively destroys any guard page the user might have
3547 	 * intended by limiting the stack size.
3548 	 */
3549 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3550 		if (vm_map_lock_upgrade(map))
3551 			goto Retry;
3552 
3553 		stack_entry->avail_ssize = max_grow;
3554 
3555 		vm_map_unlock(map);
3556 		return (KERN_NO_SPACE);
3557 	}
3558 
3559 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3560 
3561 	/*
3562 	 * If this is the main process stack, see if we're over the stack
3563 	 * limit.
3564 	 */
3565 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3566 		vm_map_unlock_read(map);
3567 		return (KERN_NO_SPACE);
3568 	}
3569 #ifdef RACCT
3570 	PROC_LOCK(p);
3571 	if (is_procstack &&
3572 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3573 		PROC_UNLOCK(p);
3574 		vm_map_unlock_read(map);
3575 		return (KERN_NO_SPACE);
3576 	}
3577 	PROC_UNLOCK(p);
3578 #endif
3579 
3580 	/* Round up the grow amount modulo sgrowsiz */
3581 	growsize = sgrowsiz;
3582 	grow_amount = roundup(grow_amount, growsize);
3583 	if (grow_amount > stack_entry->avail_ssize)
3584 		grow_amount = stack_entry->avail_ssize;
3585 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3586 		grow_amount = trunc_page((vm_size_t)stacklim) -
3587 		    ctob(vm->vm_ssize);
3588 	}
3589 #ifdef notyet
3590 	PROC_LOCK(p);
3591 	limit = racct_get_available(p, RACCT_STACK);
3592 	PROC_UNLOCK(p);
3593 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3594 		grow_amount = limit - ctob(vm->vm_ssize);
3595 #endif
3596 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3597 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3598 			vm_map_unlock_read(map);
3599 			rv = KERN_NO_SPACE;
3600 			goto out;
3601 		}
3602 #ifdef RACCT
3603 		PROC_LOCK(p);
3604 		if (racct_set(p, RACCT_MEMLOCK,
3605 		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3606 			PROC_UNLOCK(p);
3607 			vm_map_unlock_read(map);
3608 			rv = KERN_NO_SPACE;
3609 			goto out;
3610 		}
3611 		PROC_UNLOCK(p);
3612 #endif
3613 	}
3614 	/* If we would blow our VMEM resource limit, no go */
3615 	if (map->size + grow_amount > vmemlim) {
3616 		vm_map_unlock_read(map);
3617 		rv = KERN_NO_SPACE;
3618 		goto out;
3619 	}
3620 #ifdef RACCT
3621 	PROC_LOCK(p);
3622 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3623 		PROC_UNLOCK(p);
3624 		vm_map_unlock_read(map);
3625 		rv = KERN_NO_SPACE;
3626 		goto out;
3627 	}
3628 	PROC_UNLOCK(p);
3629 #endif
3630 
3631 	if (vm_map_lock_upgrade(map))
3632 		goto Retry;
3633 
3634 	if (stack_entry == next_entry) {
3635 		/*
3636 		 * Growing downward.
3637 		 */
3638 		/* Get the preliminary new entry start value */
3639 		addr = stack_entry->start - grow_amount;
3640 
3641 		/*
3642 		 * If this puts us into the previous entry, cut back our
3643 		 * growth to the available space. Also, see the note above.
3644 		 */
3645 		if (addr < end) {
3646 			stack_entry->avail_ssize = max_grow;
3647 			addr = end;
3648 			if (stack_guard_page)
3649 				addr += PAGE_SIZE;
3650 		}
3651 
3652 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3653 		    next_entry->protection, next_entry->max_protection, 0);
3654 
3655 		/* Adjust the available stack space by the amount we grew. */
3656 		if (rv == KERN_SUCCESS) {
3657 			if (prev_entry != &map->header)
3658 				vm_map_clip_end(map, prev_entry, addr);
3659 			new_entry = prev_entry->next;
3660 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3661 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3662 			KASSERT(new_entry->start == addr, ("foo"));
3663 			grow_amount = new_entry->end - new_entry->start;
3664 			new_entry->avail_ssize = stack_entry->avail_ssize -
3665 			    grow_amount;
3666 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3667 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3668 		}
3669 	} else {
3670 		/*
3671 		 * Growing upward.
3672 		 */
3673 		addr = stack_entry->end + grow_amount;
3674 
3675 		/*
3676 		 * If this puts us into the next entry, cut back our growth
3677 		 * to the available space. Also, see the note above.
3678 		 */
3679 		if (addr > end) {
3680 			stack_entry->avail_ssize = end - stack_entry->end;
3681 			addr = end;
3682 			if (stack_guard_page)
3683 				addr -= PAGE_SIZE;
3684 		}
3685 
3686 		grow_amount = addr - stack_entry->end;
3687 		cred = stack_entry->cred;
3688 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3689 			cred = stack_entry->object.vm_object->cred;
3690 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3691 			rv = KERN_NO_SPACE;
3692 		/* Grow the underlying object if applicable. */
3693 		else if (stack_entry->object.vm_object == NULL ||
3694 			 vm_object_coalesce(stack_entry->object.vm_object,
3695 			 stack_entry->offset,
3696 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3697 			 (vm_size_t)grow_amount, cred != NULL)) {
3698 			map->size += (addr - stack_entry->end);
3699 			/* Update the current entry. */
3700 			stack_entry->end = addr;
3701 			stack_entry->avail_ssize -= grow_amount;
3702 			vm_map_entry_resize_free(map, stack_entry);
3703 			rv = KERN_SUCCESS;
3704 
3705 			if (next_entry != &map->header)
3706 				vm_map_clip_start(map, next_entry, addr);
3707 		} else
3708 			rv = KERN_FAILURE;
3709 	}
3710 
3711 	if (rv == KERN_SUCCESS && is_procstack)
3712 		vm->vm_ssize += btoc(grow_amount);
3713 
3714 	vm_map_unlock(map);
3715 
3716 	/*
3717 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3718 	 */
3719 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3720 		vm_map_wire(map,
3721 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3722 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3723 		    (p->p_flag & P_SYSTEM)
3724 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3725 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3726 	}
3727 
3728 out:
3729 #ifdef RACCT
3730 	if (rv != KERN_SUCCESS) {
3731 		PROC_LOCK(p);
3732 		error = racct_set(p, RACCT_VMEM, map->size);
3733 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3734 		if (!old_mlock) {
3735 			error = racct_set(p, RACCT_MEMLOCK,
3736 			    ptoa(pmap_wired_count(map->pmap)));
3737 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3738 		}
3739 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3740 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3741 		PROC_UNLOCK(p);
3742 	}
3743 #endif
3744 
3745 	return (rv);
3746 }
3747 
3748 /*
3749  * Unshare the specified VM space for exec.  If other processes are
3750  * mapped to it, then create a new one.  The new vmspace is null.
3751  */
3752 int
3753 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3754 {
3755 	struct vmspace *oldvmspace = p->p_vmspace;
3756 	struct vmspace *newvmspace;
3757 
3758 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3759 	    ("vmspace_exec recursed"));
3760 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3761 	if (newvmspace == NULL)
3762 		return (ENOMEM);
3763 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3764 	/*
3765 	 * This code is written like this for prototype purposes.  The
3766 	 * goal is to avoid running down the vmspace here, but let the
3767 	 * other process's that are still using the vmspace to finally
3768 	 * run it down.  Even though there is little or no chance of blocking
3769 	 * here, it is a good idea to keep this form for future mods.
3770 	 */
3771 	PROC_VMSPACE_LOCK(p);
3772 	p->p_vmspace = newvmspace;
3773 	PROC_VMSPACE_UNLOCK(p);
3774 	if (p == curthread->td_proc)
3775 		pmap_activate(curthread);
3776 	curthread->td_pflags |= TDP_EXECVMSPC;
3777 	return (0);
3778 }
3779 
3780 /*
3781  * Unshare the specified VM space for forcing COW.  This
3782  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3783  */
3784 int
3785 vmspace_unshare(struct proc *p)
3786 {
3787 	struct vmspace *oldvmspace = p->p_vmspace;
3788 	struct vmspace *newvmspace;
3789 	vm_ooffset_t fork_charge;
3790 
3791 	if (oldvmspace->vm_refcnt == 1)
3792 		return (0);
3793 	fork_charge = 0;
3794 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3795 	if (newvmspace == NULL)
3796 		return (ENOMEM);
3797 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3798 		vmspace_free(newvmspace);
3799 		return (ENOMEM);
3800 	}
3801 	PROC_VMSPACE_LOCK(p);
3802 	p->p_vmspace = newvmspace;
3803 	PROC_VMSPACE_UNLOCK(p);
3804 	if (p == curthread->td_proc)
3805 		pmap_activate(curthread);
3806 	vmspace_free(oldvmspace);
3807 	return (0);
3808 }
3809 
3810 /*
3811  *	vm_map_lookup:
3812  *
3813  *	Finds the VM object, offset, and
3814  *	protection for a given virtual address in the
3815  *	specified map, assuming a page fault of the
3816  *	type specified.
3817  *
3818  *	Leaves the map in question locked for read; return
3819  *	values are guaranteed until a vm_map_lookup_done
3820  *	call is performed.  Note that the map argument
3821  *	is in/out; the returned map must be used in
3822  *	the call to vm_map_lookup_done.
3823  *
3824  *	A handle (out_entry) is returned for use in
3825  *	vm_map_lookup_done, to make that fast.
3826  *
3827  *	If a lookup is requested with "write protection"
3828  *	specified, the map may be changed to perform virtual
3829  *	copying operations, although the data referenced will
3830  *	remain the same.
3831  */
3832 int
3833 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3834 	      vm_offset_t vaddr,
3835 	      vm_prot_t fault_typea,
3836 	      vm_map_entry_t *out_entry,	/* OUT */
3837 	      vm_object_t *object,		/* OUT */
3838 	      vm_pindex_t *pindex,		/* OUT */
3839 	      vm_prot_t *out_prot,		/* OUT */
3840 	      boolean_t *wired)			/* OUT */
3841 {
3842 	vm_map_entry_t entry;
3843 	vm_map_t map = *var_map;
3844 	vm_prot_t prot;
3845 	vm_prot_t fault_type = fault_typea;
3846 	vm_object_t eobject;
3847 	vm_size_t size;
3848 	struct ucred *cred;
3849 
3850 RetryLookup:;
3851 
3852 	vm_map_lock_read(map);
3853 
3854 	/*
3855 	 * Lookup the faulting address.
3856 	 */
3857 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3858 		vm_map_unlock_read(map);
3859 		return (KERN_INVALID_ADDRESS);
3860 	}
3861 
3862 	entry = *out_entry;
3863 
3864 	/*
3865 	 * Handle submaps.
3866 	 */
3867 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3868 		vm_map_t old_map = map;
3869 
3870 		*var_map = map = entry->object.sub_map;
3871 		vm_map_unlock_read(old_map);
3872 		goto RetryLookup;
3873 	}
3874 
3875 	/*
3876 	 * Check whether this task is allowed to have this page.
3877 	 */
3878 	prot = entry->protection;
3879 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3880 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3881 		vm_map_unlock_read(map);
3882 		return (KERN_PROTECTION_FAILURE);
3883 	}
3884 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3885 	    (entry->eflags & MAP_ENTRY_COW) &&
3886 	    (fault_type & VM_PROT_WRITE)) {
3887 		vm_map_unlock_read(map);
3888 		return (KERN_PROTECTION_FAILURE);
3889 	}
3890 	if ((fault_typea & VM_PROT_COPY) != 0 &&
3891 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3892 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3893 		vm_map_unlock_read(map);
3894 		return (KERN_PROTECTION_FAILURE);
3895 	}
3896 
3897 	/*
3898 	 * If this page is not pageable, we have to get it for all possible
3899 	 * accesses.
3900 	 */
3901 	*wired = (entry->wired_count != 0);
3902 	if (*wired)
3903 		fault_type = entry->protection;
3904 	size = entry->end - entry->start;
3905 	/*
3906 	 * If the entry was copy-on-write, we either ...
3907 	 */
3908 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3909 		/*
3910 		 * If we want to write the page, we may as well handle that
3911 		 * now since we've got the map locked.
3912 		 *
3913 		 * If we don't need to write the page, we just demote the
3914 		 * permissions allowed.
3915 		 */
3916 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3917 		    (fault_typea & VM_PROT_COPY) != 0) {
3918 			/*
3919 			 * Make a new object, and place it in the object
3920 			 * chain.  Note that no new references have appeared
3921 			 * -- one just moved from the map to the new
3922 			 * object.
3923 			 */
3924 			if (vm_map_lock_upgrade(map))
3925 				goto RetryLookup;
3926 
3927 			if (entry->cred == NULL) {
3928 				/*
3929 				 * The debugger owner is charged for
3930 				 * the memory.
3931 				 */
3932 				cred = curthread->td_ucred;
3933 				crhold(cred);
3934 				if (!swap_reserve_by_cred(size, cred)) {
3935 					crfree(cred);
3936 					vm_map_unlock(map);
3937 					return (KERN_RESOURCE_SHORTAGE);
3938 				}
3939 				entry->cred = cred;
3940 			}
3941 			vm_object_shadow(&entry->object.vm_object,
3942 			    &entry->offset, size);
3943 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3944 			eobject = entry->object.vm_object;
3945 			if (eobject->cred != NULL) {
3946 				/*
3947 				 * The object was not shadowed.
3948 				 */
3949 				swap_release_by_cred(size, entry->cred);
3950 				crfree(entry->cred);
3951 				entry->cred = NULL;
3952 			} else if (entry->cred != NULL) {
3953 				VM_OBJECT_WLOCK(eobject);
3954 				eobject->cred = entry->cred;
3955 				eobject->charge = size;
3956 				VM_OBJECT_WUNLOCK(eobject);
3957 				entry->cred = NULL;
3958 			}
3959 
3960 			vm_map_lock_downgrade(map);
3961 		} else {
3962 			/*
3963 			 * We're attempting to read a copy-on-write page --
3964 			 * don't allow writes.
3965 			 */
3966 			prot &= ~VM_PROT_WRITE;
3967 		}
3968 	}
3969 
3970 	/*
3971 	 * Create an object if necessary.
3972 	 */
3973 	if (entry->object.vm_object == NULL &&
3974 	    !map->system_map) {
3975 		if (vm_map_lock_upgrade(map))
3976 			goto RetryLookup;
3977 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3978 		    atop(size));
3979 		entry->offset = 0;
3980 		if (entry->cred != NULL) {
3981 			VM_OBJECT_WLOCK(entry->object.vm_object);
3982 			entry->object.vm_object->cred = entry->cred;
3983 			entry->object.vm_object->charge = size;
3984 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
3985 			entry->cred = NULL;
3986 		}
3987 		vm_map_lock_downgrade(map);
3988 	}
3989 
3990 	/*
3991 	 * Return the object/offset from this entry.  If the entry was
3992 	 * copy-on-write or empty, it has been fixed up.
3993 	 */
3994 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3995 	*object = entry->object.vm_object;
3996 
3997 	*out_prot = prot;
3998 	return (KERN_SUCCESS);
3999 }
4000 
4001 /*
4002  *	vm_map_lookup_locked:
4003  *
4004  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4005  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4006  */
4007 int
4008 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4009 		     vm_offset_t vaddr,
4010 		     vm_prot_t fault_typea,
4011 		     vm_map_entry_t *out_entry,	/* OUT */
4012 		     vm_object_t *object,	/* OUT */
4013 		     vm_pindex_t *pindex,	/* OUT */
4014 		     vm_prot_t *out_prot,	/* OUT */
4015 		     boolean_t *wired)		/* OUT */
4016 {
4017 	vm_map_entry_t entry;
4018 	vm_map_t map = *var_map;
4019 	vm_prot_t prot;
4020 	vm_prot_t fault_type = fault_typea;
4021 
4022 	/*
4023 	 * Lookup the faulting address.
4024 	 */
4025 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4026 		return (KERN_INVALID_ADDRESS);
4027 
4028 	entry = *out_entry;
4029 
4030 	/*
4031 	 * Fail if the entry refers to a submap.
4032 	 */
4033 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4034 		return (KERN_FAILURE);
4035 
4036 	/*
4037 	 * Check whether this task is allowed to have this page.
4038 	 */
4039 	prot = entry->protection;
4040 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4041 	if ((fault_type & prot) != fault_type)
4042 		return (KERN_PROTECTION_FAILURE);
4043 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4044 	    (entry->eflags & MAP_ENTRY_COW) &&
4045 	    (fault_type & VM_PROT_WRITE))
4046 		return (KERN_PROTECTION_FAILURE);
4047 
4048 	/*
4049 	 * If this page is not pageable, we have to get it for all possible
4050 	 * accesses.
4051 	 */
4052 	*wired = (entry->wired_count != 0);
4053 	if (*wired)
4054 		fault_type = entry->protection;
4055 
4056 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4057 		/*
4058 		 * Fail if the entry was copy-on-write for a write fault.
4059 		 */
4060 		if (fault_type & VM_PROT_WRITE)
4061 			return (KERN_FAILURE);
4062 		/*
4063 		 * We're attempting to read a copy-on-write page --
4064 		 * don't allow writes.
4065 		 */
4066 		prot &= ~VM_PROT_WRITE;
4067 	}
4068 
4069 	/*
4070 	 * Fail if an object should be created.
4071 	 */
4072 	if (entry->object.vm_object == NULL && !map->system_map)
4073 		return (KERN_FAILURE);
4074 
4075 	/*
4076 	 * Return the object/offset from this entry.  If the entry was
4077 	 * copy-on-write or empty, it has been fixed up.
4078 	 */
4079 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4080 	*object = entry->object.vm_object;
4081 
4082 	*out_prot = prot;
4083 	return (KERN_SUCCESS);
4084 }
4085 
4086 /*
4087  *	vm_map_lookup_done:
4088  *
4089  *	Releases locks acquired by a vm_map_lookup
4090  *	(according to the handle returned by that lookup).
4091  */
4092 void
4093 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4094 {
4095 	/*
4096 	 * Unlock the main-level map
4097 	 */
4098 	vm_map_unlock_read(map);
4099 }
4100 
4101 #include "opt_ddb.h"
4102 #ifdef DDB
4103 #include <sys/kernel.h>
4104 
4105 #include <ddb/ddb.h>
4106 
4107 static void
4108 vm_map_print(vm_map_t map)
4109 {
4110 	vm_map_entry_t entry;
4111 
4112 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4113 	    (void *)map,
4114 	    (void *)map->pmap, map->nentries, map->timestamp);
4115 
4116 	db_indent += 2;
4117 	for (entry = map->header.next; entry != &map->header;
4118 	    entry = entry->next) {
4119 		db_iprintf("map entry %p: start=%p, end=%p\n",
4120 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4121 		{
4122 			static char *inheritance_name[4] =
4123 			{"share", "copy", "none", "donate_copy"};
4124 
4125 			db_iprintf(" prot=%x/%x/%s",
4126 			    entry->protection,
4127 			    entry->max_protection,
4128 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4129 			if (entry->wired_count != 0)
4130 				db_printf(", wired");
4131 		}
4132 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4133 			db_printf(", share=%p, offset=0x%jx\n",
4134 			    (void *)entry->object.sub_map,
4135 			    (uintmax_t)entry->offset);
4136 			if ((entry->prev == &map->header) ||
4137 			    (entry->prev->object.sub_map !=
4138 				entry->object.sub_map)) {
4139 				db_indent += 2;
4140 				vm_map_print((vm_map_t)entry->object.sub_map);
4141 				db_indent -= 2;
4142 			}
4143 		} else {
4144 			if (entry->cred != NULL)
4145 				db_printf(", ruid %d", entry->cred->cr_ruid);
4146 			db_printf(", object=%p, offset=0x%jx",
4147 			    (void *)entry->object.vm_object,
4148 			    (uintmax_t)entry->offset);
4149 			if (entry->object.vm_object && entry->object.vm_object->cred)
4150 				db_printf(", obj ruid %d charge %jx",
4151 				    entry->object.vm_object->cred->cr_ruid,
4152 				    (uintmax_t)entry->object.vm_object->charge);
4153 			if (entry->eflags & MAP_ENTRY_COW)
4154 				db_printf(", copy (%s)",
4155 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4156 			db_printf("\n");
4157 
4158 			if ((entry->prev == &map->header) ||
4159 			    (entry->prev->object.vm_object !=
4160 				entry->object.vm_object)) {
4161 				db_indent += 2;
4162 				vm_object_print((db_expr_t)(intptr_t)
4163 						entry->object.vm_object,
4164 						0, 0, (char *)0);
4165 				db_indent -= 2;
4166 			}
4167 		}
4168 	}
4169 	db_indent -= 2;
4170 }
4171 
4172 DB_SHOW_COMMAND(map, map)
4173 {
4174 
4175 	if (!have_addr) {
4176 		db_printf("usage: show map <addr>\n");
4177 		return;
4178 	}
4179 	vm_map_print((vm_map_t)addr);
4180 }
4181 
4182 DB_SHOW_COMMAND(procvm, procvm)
4183 {
4184 	struct proc *p;
4185 
4186 	if (have_addr) {
4187 		p = (struct proc *) addr;
4188 	} else {
4189 		p = curproc;
4190 	}
4191 
4192 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4193 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4194 	    (void *)vmspace_pmap(p->p_vmspace));
4195 
4196 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4197 }
4198 
4199 #endif /* DDB */
4200