1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/rwlock.h> 81 #include <sys/file.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/shm.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_pager.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t mapzone; 128 static uma_zone_t vmspace_zone; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static void vmspace_zfini(void *mem, int size); 131 static int vm_map_zinit(void *mem, int ize, int flags); 132 static void vm_map_zfini(void *mem, int size); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 137 #ifdef INVARIANTS 138 static void vm_map_zdtor(void *mem, int size, void *arg); 139 static void vmspace_zdtor(void *mem, int size, void *arg); 140 #endif 141 142 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 143 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 144 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 145 146 /* 147 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 148 * stable. 149 */ 150 #define PROC_VMSPACE_LOCK(p) do { } while (0) 151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 152 153 /* 154 * VM_MAP_RANGE_CHECK: [ internal use only ] 155 * 156 * Asserts that the starting and ending region 157 * addresses fall within the valid range of the map. 158 */ 159 #define VM_MAP_RANGE_CHECK(map, start, end) \ 160 { \ 161 if (start < vm_map_min(map)) \ 162 start = vm_map_min(map); \ 163 if (end > vm_map_max(map)) \ 164 end = vm_map_max(map); \ 165 if (start > end) \ 166 start = end; \ 167 } 168 169 /* 170 * vm_map_startup: 171 * 172 * Initialize the vm_map module. Must be called before 173 * any other vm_map routines. 174 * 175 * Map and entry structures are allocated from the general 176 * purpose memory pool with some exceptions: 177 * 178 * - The kernel map and kmem submap are allocated statically. 179 * - Kernel map entries are allocated out of a static pool. 180 * 181 * These restrictions are necessary since malloc() uses the 182 * maps and requires map entries. 183 */ 184 185 void 186 vm_map_startup(void) 187 { 188 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 189 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 190 #ifdef INVARIANTS 191 vm_map_zdtor, 192 #else 193 NULL, 194 #endif 195 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 196 uma_prealloc(mapzone, MAX_KMAP); 197 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 198 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 199 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 200 uma_prealloc(kmapentzone, MAX_KMAPENT); 201 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 202 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 203 } 204 205 static void 206 vmspace_zfini(void *mem, int size) 207 { 208 struct vmspace *vm; 209 210 vm = (struct vmspace *)mem; 211 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 212 } 213 214 static int 215 vmspace_zinit(void *mem, int size, int flags) 216 { 217 struct vmspace *vm; 218 219 vm = (struct vmspace *)mem; 220 221 vm->vm_map.pmap = NULL; 222 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 223 return (0); 224 } 225 226 static void 227 vm_map_zfini(void *mem, int size) 228 { 229 vm_map_t map; 230 231 map = (vm_map_t)mem; 232 mtx_destroy(&map->system_mtx); 233 sx_destroy(&map->lock); 234 } 235 236 static int 237 vm_map_zinit(void *mem, int size, int flags) 238 { 239 vm_map_t map; 240 241 map = (vm_map_t)mem; 242 map->nentries = 0; 243 map->size = 0; 244 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 245 sx_init(&map->lock, "vm map (user)"); 246 return (0); 247 } 248 249 #ifdef INVARIANTS 250 static void 251 vmspace_zdtor(void *mem, int size, void *arg) 252 { 253 struct vmspace *vm; 254 255 vm = (struct vmspace *)mem; 256 257 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 258 } 259 static void 260 vm_map_zdtor(void *mem, int size, void *arg) 261 { 262 vm_map_t map; 263 264 map = (vm_map_t)mem; 265 KASSERT(map->nentries == 0, 266 ("map %p nentries == %d on free.", 267 map, map->nentries)); 268 KASSERT(map->size == 0, 269 ("map %p size == %lu on free.", 270 map, (unsigned long)map->size)); 271 } 272 #endif /* INVARIANTS */ 273 274 /* 275 * Allocate a vmspace structure, including a vm_map and pmap, 276 * and initialize those structures. The refcnt is set to 1. 277 */ 278 struct vmspace * 279 vmspace_alloc(min, max) 280 vm_offset_t min, max; 281 { 282 struct vmspace *vm; 283 284 vm = uma_zalloc(vmspace_zone, M_WAITOK); 285 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 void 304 vm_init2(void) 305 { 306 uma_zone_reserve_kva(kmapentzone, lmin(cnt.v_page_count, 307 (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 + 308 maxproc * 2 + maxfiles); 309 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 310 #ifdef INVARIANTS 311 vmspace_zdtor, 312 #else 313 NULL, 314 #endif 315 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 316 } 317 318 static void 319 vmspace_container_reset(struct proc *p) 320 { 321 322 #ifdef RACCT 323 PROC_LOCK(p); 324 racct_set(p, RACCT_DATA, 0); 325 racct_set(p, RACCT_STACK, 0); 326 racct_set(p, RACCT_RSS, 0); 327 racct_set(p, RACCT_MEMLOCK, 0); 328 racct_set(p, RACCT_VMEM, 0); 329 PROC_UNLOCK(p); 330 #endif 331 } 332 333 static inline void 334 vmspace_dofree(struct vmspace *vm) 335 { 336 337 CTR1(KTR_VM, "vmspace_free: %p", vm); 338 339 /* 340 * Make sure any SysV shm is freed, it might not have been in 341 * exit1(). 342 */ 343 shmexit(vm); 344 345 /* 346 * Lock the map, to wait out all other references to it. 347 * Delete all of the mappings and pages they hold, then call 348 * the pmap module to reclaim anything left. 349 */ 350 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 351 vm->vm_map.max_offset); 352 353 pmap_release(vmspace_pmap(vm)); 354 vm->vm_map.pmap = NULL; 355 uma_zfree(vmspace_zone, vm); 356 } 357 358 void 359 vmspace_free(struct vmspace *vm) 360 { 361 362 if (vm->vm_refcnt == 0) 363 panic("vmspace_free: attempt to free already freed vmspace"); 364 365 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 366 vmspace_dofree(vm); 367 } 368 369 void 370 vmspace_exitfree(struct proc *p) 371 { 372 struct vmspace *vm; 373 374 PROC_VMSPACE_LOCK(p); 375 vm = p->p_vmspace; 376 p->p_vmspace = NULL; 377 PROC_VMSPACE_UNLOCK(p); 378 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 379 vmspace_free(vm); 380 } 381 382 void 383 vmspace_exit(struct thread *td) 384 { 385 int refcnt; 386 struct vmspace *vm; 387 struct proc *p; 388 389 /* 390 * Release user portion of address space. 391 * This releases references to vnodes, 392 * which could cause I/O if the file has been unlinked. 393 * Need to do this early enough that we can still sleep. 394 * 395 * The last exiting process to reach this point releases as 396 * much of the environment as it can. vmspace_dofree() is the 397 * slower fallback in case another process had a temporary 398 * reference to the vmspace. 399 */ 400 401 p = td->td_proc; 402 vm = p->p_vmspace; 403 atomic_add_int(&vmspace0.vm_refcnt, 1); 404 do { 405 refcnt = vm->vm_refcnt; 406 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 407 /* Switch now since other proc might free vmspace */ 408 PROC_VMSPACE_LOCK(p); 409 p->p_vmspace = &vmspace0; 410 PROC_VMSPACE_UNLOCK(p); 411 pmap_activate(td); 412 } 413 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 414 if (refcnt == 1) { 415 if (p->p_vmspace != vm) { 416 /* vmspace not yet freed, switch back */ 417 PROC_VMSPACE_LOCK(p); 418 p->p_vmspace = vm; 419 PROC_VMSPACE_UNLOCK(p); 420 pmap_activate(td); 421 } 422 pmap_remove_pages(vmspace_pmap(vm)); 423 /* Switch now since this proc will free vmspace */ 424 PROC_VMSPACE_LOCK(p); 425 p->p_vmspace = &vmspace0; 426 PROC_VMSPACE_UNLOCK(p); 427 pmap_activate(td); 428 vmspace_dofree(vm); 429 } 430 vmspace_container_reset(p); 431 } 432 433 /* Acquire reference to vmspace owned by another process. */ 434 435 struct vmspace * 436 vmspace_acquire_ref(struct proc *p) 437 { 438 struct vmspace *vm; 439 int refcnt; 440 441 PROC_VMSPACE_LOCK(p); 442 vm = p->p_vmspace; 443 if (vm == NULL) { 444 PROC_VMSPACE_UNLOCK(p); 445 return (NULL); 446 } 447 do { 448 refcnt = vm->vm_refcnt; 449 if (refcnt <= 0) { /* Avoid 0->1 transition */ 450 PROC_VMSPACE_UNLOCK(p); 451 return (NULL); 452 } 453 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 454 if (vm != p->p_vmspace) { 455 PROC_VMSPACE_UNLOCK(p); 456 vmspace_free(vm); 457 return (NULL); 458 } 459 PROC_VMSPACE_UNLOCK(p); 460 return (vm); 461 } 462 463 void 464 _vm_map_lock(vm_map_t map, const char *file, int line) 465 { 466 467 if (map->system_map) 468 mtx_lock_flags_(&map->system_mtx, 0, file, line); 469 else 470 sx_xlock_(&map->lock, file, line); 471 map->timestamp++; 472 } 473 474 static void 475 vm_map_process_deferred(void) 476 { 477 struct thread *td; 478 vm_map_entry_t entry, next; 479 vm_object_t object; 480 481 td = curthread; 482 entry = td->td_map_def_user; 483 td->td_map_def_user = NULL; 484 while (entry != NULL) { 485 next = entry->next; 486 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 487 /* 488 * Decrement the object's writemappings and 489 * possibly the vnode's v_writecount. 490 */ 491 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 492 ("Submap with writecount")); 493 object = entry->object.vm_object; 494 KASSERT(object != NULL, ("No object for writecount")); 495 vnode_pager_release_writecount(object, entry->start, 496 entry->end); 497 } 498 vm_map_entry_deallocate(entry, FALSE); 499 entry = next; 500 } 501 } 502 503 void 504 _vm_map_unlock(vm_map_t map, const char *file, int line) 505 { 506 507 if (map->system_map) 508 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 509 else { 510 sx_xunlock_(&map->lock, file, line); 511 vm_map_process_deferred(); 512 } 513 } 514 515 void 516 _vm_map_lock_read(vm_map_t map, const char *file, int line) 517 { 518 519 if (map->system_map) 520 mtx_lock_flags_(&map->system_mtx, 0, file, line); 521 else 522 sx_slock_(&map->lock, file, line); 523 } 524 525 void 526 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 527 { 528 529 if (map->system_map) 530 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 531 else { 532 sx_sunlock_(&map->lock, file, line); 533 vm_map_process_deferred(); 534 } 535 } 536 537 int 538 _vm_map_trylock(vm_map_t map, const char *file, int line) 539 { 540 int error; 541 542 error = map->system_map ? 543 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 544 !sx_try_xlock_(&map->lock, file, line); 545 if (error == 0) 546 map->timestamp++; 547 return (error == 0); 548 } 549 550 int 551 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 552 { 553 int error; 554 555 error = map->system_map ? 556 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 557 !sx_try_slock_(&map->lock, file, line); 558 return (error == 0); 559 } 560 561 /* 562 * _vm_map_lock_upgrade: [ internal use only ] 563 * 564 * Tries to upgrade a read (shared) lock on the specified map to a write 565 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 566 * non-zero value if the upgrade fails. If the upgrade fails, the map is 567 * returned without a read or write lock held. 568 * 569 * Requires that the map be read locked. 570 */ 571 int 572 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 573 { 574 unsigned int last_timestamp; 575 576 if (map->system_map) { 577 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 578 } else { 579 if (!sx_try_upgrade_(&map->lock, file, line)) { 580 last_timestamp = map->timestamp; 581 sx_sunlock_(&map->lock, file, line); 582 vm_map_process_deferred(); 583 /* 584 * If the map's timestamp does not change while the 585 * map is unlocked, then the upgrade succeeds. 586 */ 587 sx_xlock_(&map->lock, file, line); 588 if (last_timestamp != map->timestamp) { 589 sx_xunlock_(&map->lock, file, line); 590 return (1); 591 } 592 } 593 } 594 map->timestamp++; 595 return (0); 596 } 597 598 void 599 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 600 { 601 602 if (map->system_map) { 603 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 604 } else 605 sx_downgrade_(&map->lock, file, line); 606 } 607 608 /* 609 * vm_map_locked: 610 * 611 * Returns a non-zero value if the caller holds a write (exclusive) lock 612 * on the specified map and the value "0" otherwise. 613 */ 614 int 615 vm_map_locked(vm_map_t map) 616 { 617 618 if (map->system_map) 619 return (mtx_owned(&map->system_mtx)); 620 else 621 return (sx_xlocked(&map->lock)); 622 } 623 624 #ifdef INVARIANTS 625 static void 626 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 627 { 628 629 if (map->system_map) 630 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 631 else 632 sx_assert_(&map->lock, SA_XLOCKED, file, line); 633 } 634 635 #define VM_MAP_ASSERT_LOCKED(map) \ 636 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 637 #else 638 #define VM_MAP_ASSERT_LOCKED(map) 639 #endif 640 641 /* 642 * _vm_map_unlock_and_wait: 643 * 644 * Atomically releases the lock on the specified map and puts the calling 645 * thread to sleep. The calling thread will remain asleep until either 646 * vm_map_wakeup() is performed on the map or the specified timeout is 647 * exceeded. 648 * 649 * WARNING! This function does not perform deferred deallocations of 650 * objects and map entries. Therefore, the calling thread is expected to 651 * reacquire the map lock after reawakening and later perform an ordinary 652 * unlock operation, such as vm_map_unlock(), before completing its 653 * operation on the map. 654 */ 655 int 656 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 657 { 658 659 mtx_lock(&map_sleep_mtx); 660 if (map->system_map) 661 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 662 else 663 sx_xunlock_(&map->lock, file, line); 664 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 665 timo)); 666 } 667 668 /* 669 * vm_map_wakeup: 670 * 671 * Awaken any threads that have slept on the map using 672 * vm_map_unlock_and_wait(). 673 */ 674 void 675 vm_map_wakeup(vm_map_t map) 676 { 677 678 /* 679 * Acquire and release map_sleep_mtx to prevent a wakeup() 680 * from being performed (and lost) between the map unlock 681 * and the msleep() in _vm_map_unlock_and_wait(). 682 */ 683 mtx_lock(&map_sleep_mtx); 684 mtx_unlock(&map_sleep_mtx); 685 wakeup(&map->root); 686 } 687 688 void 689 vm_map_busy(vm_map_t map) 690 { 691 692 VM_MAP_ASSERT_LOCKED(map); 693 map->busy++; 694 } 695 696 void 697 vm_map_unbusy(vm_map_t map) 698 { 699 700 VM_MAP_ASSERT_LOCKED(map); 701 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 702 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 703 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 704 wakeup(&map->busy); 705 } 706 } 707 708 void 709 vm_map_wait_busy(vm_map_t map) 710 { 711 712 VM_MAP_ASSERT_LOCKED(map); 713 while (map->busy) { 714 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 715 if (map->system_map) 716 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 717 else 718 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 719 } 720 map->timestamp++; 721 } 722 723 long 724 vmspace_resident_count(struct vmspace *vmspace) 725 { 726 return pmap_resident_count(vmspace_pmap(vmspace)); 727 } 728 729 /* 730 * vm_map_create: 731 * 732 * Creates and returns a new empty VM map with 733 * the given physical map structure, and having 734 * the given lower and upper address bounds. 735 */ 736 vm_map_t 737 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 738 { 739 vm_map_t result; 740 741 result = uma_zalloc(mapzone, M_WAITOK); 742 CTR1(KTR_VM, "vm_map_create: %p", result); 743 _vm_map_init(result, pmap, min, max); 744 return (result); 745 } 746 747 /* 748 * Initialize an existing vm_map structure 749 * such as that in the vmspace structure. 750 */ 751 static void 752 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 753 { 754 755 map->header.next = map->header.prev = &map->header; 756 map->needs_wakeup = FALSE; 757 map->system_map = 0; 758 map->pmap = pmap; 759 map->min_offset = min; 760 map->max_offset = max; 761 map->flags = 0; 762 map->root = NULL; 763 map->timestamp = 0; 764 map->busy = 0; 765 } 766 767 void 768 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 769 { 770 771 _vm_map_init(map, pmap, min, max); 772 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 773 sx_init(&map->lock, "user map"); 774 } 775 776 /* 777 * vm_map_entry_dispose: [ internal use only ] 778 * 779 * Inverse of vm_map_entry_create. 780 */ 781 static void 782 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 783 { 784 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 785 } 786 787 /* 788 * vm_map_entry_create: [ internal use only ] 789 * 790 * Allocates a VM map entry for insertion. 791 * No entry fields are filled in. 792 */ 793 static vm_map_entry_t 794 vm_map_entry_create(vm_map_t map) 795 { 796 vm_map_entry_t new_entry; 797 798 if (map->system_map) 799 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 800 else 801 new_entry = uma_zalloc(mapentzone, M_WAITOK); 802 if (new_entry == NULL) 803 panic("vm_map_entry_create: kernel resources exhausted"); 804 return (new_entry); 805 } 806 807 /* 808 * vm_map_entry_set_behavior: 809 * 810 * Set the expected access behavior, either normal, random, or 811 * sequential. 812 */ 813 static inline void 814 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 815 { 816 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 817 (behavior & MAP_ENTRY_BEHAV_MASK); 818 } 819 820 /* 821 * vm_map_entry_set_max_free: 822 * 823 * Set the max_free field in a vm_map_entry. 824 */ 825 static inline void 826 vm_map_entry_set_max_free(vm_map_entry_t entry) 827 { 828 829 entry->max_free = entry->adj_free; 830 if (entry->left != NULL && entry->left->max_free > entry->max_free) 831 entry->max_free = entry->left->max_free; 832 if (entry->right != NULL && entry->right->max_free > entry->max_free) 833 entry->max_free = entry->right->max_free; 834 } 835 836 /* 837 * vm_map_entry_splay: 838 * 839 * The Sleator and Tarjan top-down splay algorithm with the 840 * following variation. Max_free must be computed bottom-up, so 841 * on the downward pass, maintain the left and right spines in 842 * reverse order. Then, make a second pass up each side to fix 843 * the pointers and compute max_free. The time bound is O(log n) 844 * amortized. 845 * 846 * The new root is the vm_map_entry containing "addr", or else an 847 * adjacent entry (lower or higher) if addr is not in the tree. 848 * 849 * The map must be locked, and leaves it so. 850 * 851 * Returns: the new root. 852 */ 853 static vm_map_entry_t 854 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 855 { 856 vm_map_entry_t llist, rlist; 857 vm_map_entry_t ltree, rtree; 858 vm_map_entry_t y; 859 860 /* Special case of empty tree. */ 861 if (root == NULL) 862 return (root); 863 864 /* 865 * Pass One: Splay down the tree until we find addr or a NULL 866 * pointer where addr would go. llist and rlist are the two 867 * sides in reverse order (bottom-up), with llist linked by 868 * the right pointer and rlist linked by the left pointer in 869 * the vm_map_entry. Wait until Pass Two to set max_free on 870 * the two spines. 871 */ 872 llist = NULL; 873 rlist = NULL; 874 for (;;) { 875 /* root is never NULL in here. */ 876 if (addr < root->start) { 877 y = root->left; 878 if (y == NULL) 879 break; 880 if (addr < y->start && y->left != NULL) { 881 /* Rotate right and put y on rlist. */ 882 root->left = y->right; 883 y->right = root; 884 vm_map_entry_set_max_free(root); 885 root = y->left; 886 y->left = rlist; 887 rlist = y; 888 } else { 889 /* Put root on rlist. */ 890 root->left = rlist; 891 rlist = root; 892 root = y; 893 } 894 } else if (addr >= root->end) { 895 y = root->right; 896 if (y == NULL) 897 break; 898 if (addr >= y->end && y->right != NULL) { 899 /* Rotate left and put y on llist. */ 900 root->right = y->left; 901 y->left = root; 902 vm_map_entry_set_max_free(root); 903 root = y->right; 904 y->right = llist; 905 llist = y; 906 } else { 907 /* Put root on llist. */ 908 root->right = llist; 909 llist = root; 910 root = y; 911 } 912 } else 913 break; 914 } 915 916 /* 917 * Pass Two: Walk back up the two spines, flip the pointers 918 * and set max_free. The subtrees of the root go at the 919 * bottom of llist and rlist. 920 */ 921 ltree = root->left; 922 while (llist != NULL) { 923 y = llist->right; 924 llist->right = ltree; 925 vm_map_entry_set_max_free(llist); 926 ltree = llist; 927 llist = y; 928 } 929 rtree = root->right; 930 while (rlist != NULL) { 931 y = rlist->left; 932 rlist->left = rtree; 933 vm_map_entry_set_max_free(rlist); 934 rtree = rlist; 935 rlist = y; 936 } 937 938 /* 939 * Final assembly: add ltree and rtree as subtrees of root. 940 */ 941 root->left = ltree; 942 root->right = rtree; 943 vm_map_entry_set_max_free(root); 944 945 return (root); 946 } 947 948 /* 949 * vm_map_entry_{un,}link: 950 * 951 * Insert/remove entries from maps. 952 */ 953 static void 954 vm_map_entry_link(vm_map_t map, 955 vm_map_entry_t after_where, 956 vm_map_entry_t entry) 957 { 958 959 CTR4(KTR_VM, 960 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 961 map->nentries, entry, after_where); 962 VM_MAP_ASSERT_LOCKED(map); 963 map->nentries++; 964 entry->prev = after_where; 965 entry->next = after_where->next; 966 entry->next->prev = entry; 967 after_where->next = entry; 968 969 if (after_where != &map->header) { 970 if (after_where != map->root) 971 vm_map_entry_splay(after_where->start, map->root); 972 entry->right = after_where->right; 973 entry->left = after_where; 974 after_where->right = NULL; 975 after_where->adj_free = entry->start - after_where->end; 976 vm_map_entry_set_max_free(after_where); 977 } else { 978 entry->right = map->root; 979 entry->left = NULL; 980 } 981 entry->adj_free = (entry->next == &map->header ? map->max_offset : 982 entry->next->start) - entry->end; 983 vm_map_entry_set_max_free(entry); 984 map->root = entry; 985 } 986 987 static void 988 vm_map_entry_unlink(vm_map_t map, 989 vm_map_entry_t entry) 990 { 991 vm_map_entry_t next, prev, root; 992 993 VM_MAP_ASSERT_LOCKED(map); 994 if (entry != map->root) 995 vm_map_entry_splay(entry->start, map->root); 996 if (entry->left == NULL) 997 root = entry->right; 998 else { 999 root = vm_map_entry_splay(entry->start, entry->left); 1000 root->right = entry->right; 1001 root->adj_free = (entry->next == &map->header ? map->max_offset : 1002 entry->next->start) - root->end; 1003 vm_map_entry_set_max_free(root); 1004 } 1005 map->root = root; 1006 1007 prev = entry->prev; 1008 next = entry->next; 1009 next->prev = prev; 1010 prev->next = next; 1011 map->nentries--; 1012 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1013 map->nentries, entry); 1014 } 1015 1016 /* 1017 * vm_map_entry_resize_free: 1018 * 1019 * Recompute the amount of free space following a vm_map_entry 1020 * and propagate that value up the tree. Call this function after 1021 * resizing a map entry in-place, that is, without a call to 1022 * vm_map_entry_link() or _unlink(). 1023 * 1024 * The map must be locked, and leaves it so. 1025 */ 1026 static void 1027 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1028 { 1029 1030 /* 1031 * Using splay trees without parent pointers, propagating 1032 * max_free up the tree is done by moving the entry to the 1033 * root and making the change there. 1034 */ 1035 if (entry != map->root) 1036 map->root = vm_map_entry_splay(entry->start, map->root); 1037 1038 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1039 entry->next->start) - entry->end; 1040 vm_map_entry_set_max_free(entry); 1041 } 1042 1043 /* 1044 * vm_map_lookup_entry: [ internal use only ] 1045 * 1046 * Finds the map entry containing (or 1047 * immediately preceding) the specified address 1048 * in the given map; the entry is returned 1049 * in the "entry" parameter. The boolean 1050 * result indicates whether the address is 1051 * actually contained in the map. 1052 */ 1053 boolean_t 1054 vm_map_lookup_entry( 1055 vm_map_t map, 1056 vm_offset_t address, 1057 vm_map_entry_t *entry) /* OUT */ 1058 { 1059 vm_map_entry_t cur; 1060 boolean_t locked; 1061 1062 /* 1063 * If the map is empty, then the map entry immediately preceding 1064 * "address" is the map's header. 1065 */ 1066 cur = map->root; 1067 if (cur == NULL) 1068 *entry = &map->header; 1069 else if (address >= cur->start && cur->end > address) { 1070 *entry = cur; 1071 return (TRUE); 1072 } else if ((locked = vm_map_locked(map)) || 1073 sx_try_upgrade(&map->lock)) { 1074 /* 1075 * Splay requires a write lock on the map. However, it only 1076 * restructures the binary search tree; it does not otherwise 1077 * change the map. Thus, the map's timestamp need not change 1078 * on a temporary upgrade. 1079 */ 1080 map->root = cur = vm_map_entry_splay(address, cur); 1081 if (!locked) 1082 sx_downgrade(&map->lock); 1083 1084 /* 1085 * If "address" is contained within a map entry, the new root 1086 * is that map entry. Otherwise, the new root is a map entry 1087 * immediately before or after "address". 1088 */ 1089 if (address >= cur->start) { 1090 *entry = cur; 1091 if (cur->end > address) 1092 return (TRUE); 1093 } else 1094 *entry = cur->prev; 1095 } else 1096 /* 1097 * Since the map is only locked for read access, perform a 1098 * standard binary search tree lookup for "address". 1099 */ 1100 for (;;) { 1101 if (address < cur->start) { 1102 if (cur->left == NULL) { 1103 *entry = cur->prev; 1104 break; 1105 } 1106 cur = cur->left; 1107 } else if (cur->end > address) { 1108 *entry = cur; 1109 return (TRUE); 1110 } else { 1111 if (cur->right == NULL) { 1112 *entry = cur; 1113 break; 1114 } 1115 cur = cur->right; 1116 } 1117 } 1118 return (FALSE); 1119 } 1120 1121 /* 1122 * vm_map_insert: 1123 * 1124 * Inserts the given whole VM object into the target 1125 * map at the specified address range. The object's 1126 * size should match that of the address range. 1127 * 1128 * Requires that the map be locked, and leaves it so. 1129 * 1130 * If object is non-NULL, ref count must be bumped by caller 1131 * prior to making call to account for the new entry. 1132 */ 1133 int 1134 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1135 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1136 int cow) 1137 { 1138 vm_map_entry_t new_entry; 1139 vm_map_entry_t prev_entry; 1140 vm_map_entry_t temp_entry; 1141 vm_eflags_t protoeflags; 1142 struct ucred *cred; 1143 vm_inherit_t inheritance; 1144 boolean_t charge_prev_obj; 1145 1146 VM_MAP_ASSERT_LOCKED(map); 1147 1148 /* 1149 * Check that the start and end points are not bogus. 1150 */ 1151 if ((start < map->min_offset) || (end > map->max_offset) || 1152 (start >= end)) 1153 return (KERN_INVALID_ADDRESS); 1154 1155 /* 1156 * Find the entry prior to the proposed starting address; if it's part 1157 * of an existing entry, this range is bogus. 1158 */ 1159 if (vm_map_lookup_entry(map, start, &temp_entry)) 1160 return (KERN_NO_SPACE); 1161 1162 prev_entry = temp_entry; 1163 1164 /* 1165 * Assert that the next entry doesn't overlap the end point. 1166 */ 1167 if ((prev_entry->next != &map->header) && 1168 (prev_entry->next->start < end)) 1169 return (KERN_NO_SPACE); 1170 1171 protoeflags = 0; 1172 charge_prev_obj = FALSE; 1173 1174 if (cow & MAP_COPY_ON_WRITE) 1175 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1176 1177 if (cow & MAP_NOFAULT) { 1178 protoeflags |= MAP_ENTRY_NOFAULT; 1179 1180 KASSERT(object == NULL, 1181 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1182 } 1183 if (cow & MAP_DISABLE_SYNCER) 1184 protoeflags |= MAP_ENTRY_NOSYNC; 1185 if (cow & MAP_DISABLE_COREDUMP) 1186 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1187 if (cow & MAP_VN_WRITECOUNT) 1188 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1189 if (cow & MAP_INHERIT_SHARE) 1190 inheritance = VM_INHERIT_SHARE; 1191 else 1192 inheritance = VM_INHERIT_DEFAULT; 1193 1194 cred = NULL; 1195 KASSERT((object != kmem_object && object != kernel_object) || 1196 ((object == kmem_object || object == kernel_object) && 1197 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1198 ("kmem or kernel object and cow")); 1199 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1200 goto charged; 1201 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1202 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1203 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1204 return (KERN_RESOURCE_SHORTAGE); 1205 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1206 object->cred == NULL, 1207 ("OVERCOMMIT: vm_map_insert o %p", object)); 1208 cred = curthread->td_ucred; 1209 crhold(cred); 1210 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1211 charge_prev_obj = TRUE; 1212 } 1213 1214 charged: 1215 /* Expand the kernel pmap, if necessary. */ 1216 if (map == kernel_map && end > kernel_vm_end) 1217 pmap_growkernel(end); 1218 if (object != NULL) { 1219 /* 1220 * OBJ_ONEMAPPING must be cleared unless this mapping 1221 * is trivially proven to be the only mapping for any 1222 * of the object's pages. (Object granularity 1223 * reference counting is insufficient to recognize 1224 * aliases with precision.) 1225 */ 1226 VM_OBJECT_WLOCK(object); 1227 if (object->ref_count > 1 || object->shadow_count != 0) 1228 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1229 VM_OBJECT_WUNLOCK(object); 1230 } 1231 else if ((prev_entry != &map->header) && 1232 (prev_entry->eflags == protoeflags) && 1233 (prev_entry->end == start) && 1234 (prev_entry->wired_count == 0) && 1235 (prev_entry->cred == cred || 1236 (prev_entry->object.vm_object != NULL && 1237 (prev_entry->object.vm_object->cred == cred))) && 1238 vm_object_coalesce(prev_entry->object.vm_object, 1239 prev_entry->offset, 1240 (vm_size_t)(prev_entry->end - prev_entry->start), 1241 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1242 /* 1243 * We were able to extend the object. Determine if we 1244 * can extend the previous map entry to include the 1245 * new range as well. 1246 */ 1247 if ((prev_entry->inheritance == inheritance) && 1248 (prev_entry->protection == prot) && 1249 (prev_entry->max_protection == max)) { 1250 map->size += (end - prev_entry->end); 1251 prev_entry->end = end; 1252 vm_map_entry_resize_free(map, prev_entry); 1253 vm_map_simplify_entry(map, prev_entry); 1254 if (cred != NULL) 1255 crfree(cred); 1256 return (KERN_SUCCESS); 1257 } 1258 1259 /* 1260 * If we can extend the object but cannot extend the 1261 * map entry, we have to create a new map entry. We 1262 * must bump the ref count on the extended object to 1263 * account for it. object may be NULL. 1264 */ 1265 object = prev_entry->object.vm_object; 1266 offset = prev_entry->offset + 1267 (prev_entry->end - prev_entry->start); 1268 vm_object_reference(object); 1269 if (cred != NULL && object != NULL && object->cred != NULL && 1270 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1271 /* Object already accounts for this uid. */ 1272 crfree(cred); 1273 cred = NULL; 1274 } 1275 } 1276 1277 /* 1278 * NOTE: if conditionals fail, object can be NULL here. This occurs 1279 * in things like the buffer map where we manage kva but do not manage 1280 * backing objects. 1281 */ 1282 1283 /* 1284 * Create a new entry 1285 */ 1286 new_entry = vm_map_entry_create(map); 1287 new_entry->start = start; 1288 new_entry->end = end; 1289 new_entry->cred = NULL; 1290 1291 new_entry->eflags = protoeflags; 1292 new_entry->object.vm_object = object; 1293 new_entry->offset = offset; 1294 new_entry->avail_ssize = 0; 1295 1296 new_entry->inheritance = inheritance; 1297 new_entry->protection = prot; 1298 new_entry->max_protection = max; 1299 new_entry->wired_count = 0; 1300 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1301 new_entry->next_read = OFF_TO_IDX(offset); 1302 1303 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1304 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1305 new_entry->cred = cred; 1306 1307 /* 1308 * Insert the new entry into the list 1309 */ 1310 vm_map_entry_link(map, prev_entry, new_entry); 1311 map->size += new_entry->end - new_entry->start; 1312 1313 /* 1314 * It may be possible to merge the new entry with the next and/or 1315 * previous entries. However, due to MAP_STACK_* being a hack, a 1316 * panic can result from merging such entries. 1317 */ 1318 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1319 vm_map_simplify_entry(map, new_entry); 1320 1321 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1322 vm_map_pmap_enter(map, start, prot, 1323 object, OFF_TO_IDX(offset), end - start, 1324 cow & MAP_PREFAULT_PARTIAL); 1325 } 1326 1327 return (KERN_SUCCESS); 1328 } 1329 1330 /* 1331 * vm_map_findspace: 1332 * 1333 * Find the first fit (lowest VM address) for "length" free bytes 1334 * beginning at address >= start in the given map. 1335 * 1336 * In a vm_map_entry, "adj_free" is the amount of free space 1337 * adjacent (higher address) to this entry, and "max_free" is the 1338 * maximum amount of contiguous free space in its subtree. This 1339 * allows finding a free region in one path down the tree, so 1340 * O(log n) amortized with splay trees. 1341 * 1342 * The map must be locked, and leaves it so. 1343 * 1344 * Returns: 0 on success, and starting address in *addr, 1345 * 1 if insufficient space. 1346 */ 1347 int 1348 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1349 vm_offset_t *addr) /* OUT */ 1350 { 1351 vm_map_entry_t entry; 1352 vm_offset_t st; 1353 1354 /* 1355 * Request must fit within min/max VM address and must avoid 1356 * address wrap. 1357 */ 1358 if (start < map->min_offset) 1359 start = map->min_offset; 1360 if (start + length > map->max_offset || start + length < start) 1361 return (1); 1362 1363 /* Empty tree means wide open address space. */ 1364 if (map->root == NULL) { 1365 *addr = start; 1366 return (0); 1367 } 1368 1369 /* 1370 * After splay, if start comes before root node, then there 1371 * must be a gap from start to the root. 1372 */ 1373 map->root = vm_map_entry_splay(start, map->root); 1374 if (start + length <= map->root->start) { 1375 *addr = start; 1376 return (0); 1377 } 1378 1379 /* 1380 * Root is the last node that might begin its gap before 1381 * start, and this is the last comparison where address 1382 * wrap might be a problem. 1383 */ 1384 st = (start > map->root->end) ? start : map->root->end; 1385 if (length <= map->root->end + map->root->adj_free - st) { 1386 *addr = st; 1387 return (0); 1388 } 1389 1390 /* With max_free, can immediately tell if no solution. */ 1391 entry = map->root->right; 1392 if (entry == NULL || length > entry->max_free) 1393 return (1); 1394 1395 /* 1396 * Search the right subtree in the order: left subtree, root, 1397 * right subtree (first fit). The previous splay implies that 1398 * all regions in the right subtree have addresses > start. 1399 */ 1400 while (entry != NULL) { 1401 if (entry->left != NULL && entry->left->max_free >= length) 1402 entry = entry->left; 1403 else if (entry->adj_free >= length) { 1404 *addr = entry->end; 1405 return (0); 1406 } else 1407 entry = entry->right; 1408 } 1409 1410 /* Can't get here, so panic if we do. */ 1411 panic("vm_map_findspace: max_free corrupt"); 1412 } 1413 1414 int 1415 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1416 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1417 vm_prot_t max, int cow) 1418 { 1419 vm_offset_t end; 1420 int result; 1421 1422 end = start + length; 1423 vm_map_lock(map); 1424 VM_MAP_RANGE_CHECK(map, start, end); 1425 (void) vm_map_delete(map, start, end); 1426 result = vm_map_insert(map, object, offset, start, end, prot, 1427 max, cow); 1428 vm_map_unlock(map); 1429 return (result); 1430 } 1431 1432 /* 1433 * vm_map_find finds an unallocated region in the target address 1434 * map with the given length. The search is defined to be 1435 * first-fit from the specified address; the region found is 1436 * returned in the same parameter. 1437 * 1438 * If object is non-NULL, ref count must be bumped by caller 1439 * prior to making call to account for the new entry. 1440 */ 1441 int 1442 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1443 vm_offset_t *addr, /* IN/OUT */ 1444 vm_size_t length, int find_space, vm_prot_t prot, 1445 vm_prot_t max, int cow) 1446 { 1447 vm_offset_t start; 1448 int result; 1449 1450 start = *addr; 1451 vm_map_lock(map); 1452 do { 1453 if (find_space != VMFS_NO_SPACE) { 1454 if (vm_map_findspace(map, start, length, addr)) { 1455 vm_map_unlock(map); 1456 return (KERN_NO_SPACE); 1457 } 1458 switch (find_space) { 1459 case VMFS_ALIGNED_SPACE: 1460 pmap_align_superpage(object, offset, addr, 1461 length); 1462 break; 1463 #ifdef VMFS_TLB_ALIGNED_SPACE 1464 case VMFS_TLB_ALIGNED_SPACE: 1465 pmap_align_tlb(addr); 1466 break; 1467 #endif 1468 default: 1469 break; 1470 } 1471 1472 start = *addr; 1473 } 1474 result = vm_map_insert(map, object, offset, start, start + 1475 length, prot, max, cow); 1476 } while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE 1477 #ifdef VMFS_TLB_ALIGNED_SPACE 1478 || find_space == VMFS_TLB_ALIGNED_SPACE 1479 #endif 1480 )); 1481 vm_map_unlock(map); 1482 return (result); 1483 } 1484 1485 /* 1486 * vm_map_simplify_entry: 1487 * 1488 * Simplify the given map entry by merging with either neighbor. This 1489 * routine also has the ability to merge with both neighbors. 1490 * 1491 * The map must be locked. 1492 * 1493 * This routine guarentees that the passed entry remains valid (though 1494 * possibly extended). When merging, this routine may delete one or 1495 * both neighbors. 1496 */ 1497 void 1498 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1499 { 1500 vm_map_entry_t next, prev; 1501 vm_size_t prevsize, esize; 1502 1503 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1504 return; 1505 1506 prev = entry->prev; 1507 if (prev != &map->header) { 1508 prevsize = prev->end - prev->start; 1509 if ( (prev->end == entry->start) && 1510 (prev->object.vm_object == entry->object.vm_object) && 1511 (!prev->object.vm_object || 1512 (prev->offset + prevsize == entry->offset)) && 1513 (prev->eflags == entry->eflags) && 1514 (prev->protection == entry->protection) && 1515 (prev->max_protection == entry->max_protection) && 1516 (prev->inheritance == entry->inheritance) && 1517 (prev->wired_count == entry->wired_count) && 1518 (prev->cred == entry->cred)) { 1519 vm_map_entry_unlink(map, prev); 1520 entry->start = prev->start; 1521 entry->offset = prev->offset; 1522 if (entry->prev != &map->header) 1523 vm_map_entry_resize_free(map, entry->prev); 1524 1525 /* 1526 * If the backing object is a vnode object, 1527 * vm_object_deallocate() calls vrele(). 1528 * However, vrele() does not lock the vnode 1529 * because the vnode has additional 1530 * references. Thus, the map lock can be kept 1531 * without causing a lock-order reversal with 1532 * the vnode lock. 1533 * 1534 * Since we count the number of virtual page 1535 * mappings in object->un_pager.vnp.writemappings, 1536 * the writemappings value should not be adjusted 1537 * when the entry is disposed of. 1538 */ 1539 if (prev->object.vm_object) 1540 vm_object_deallocate(prev->object.vm_object); 1541 if (prev->cred != NULL) 1542 crfree(prev->cred); 1543 vm_map_entry_dispose(map, prev); 1544 } 1545 } 1546 1547 next = entry->next; 1548 if (next != &map->header) { 1549 esize = entry->end - entry->start; 1550 if ((entry->end == next->start) && 1551 (next->object.vm_object == entry->object.vm_object) && 1552 (!entry->object.vm_object || 1553 (entry->offset + esize == next->offset)) && 1554 (next->eflags == entry->eflags) && 1555 (next->protection == entry->protection) && 1556 (next->max_protection == entry->max_protection) && 1557 (next->inheritance == entry->inheritance) && 1558 (next->wired_count == entry->wired_count) && 1559 (next->cred == entry->cred)) { 1560 vm_map_entry_unlink(map, next); 1561 entry->end = next->end; 1562 vm_map_entry_resize_free(map, entry); 1563 1564 /* 1565 * See comment above. 1566 */ 1567 if (next->object.vm_object) 1568 vm_object_deallocate(next->object.vm_object); 1569 if (next->cred != NULL) 1570 crfree(next->cred); 1571 vm_map_entry_dispose(map, next); 1572 } 1573 } 1574 } 1575 /* 1576 * vm_map_clip_start: [ internal use only ] 1577 * 1578 * Asserts that the given entry begins at or after 1579 * the specified address; if necessary, 1580 * it splits the entry into two. 1581 */ 1582 #define vm_map_clip_start(map, entry, startaddr) \ 1583 { \ 1584 if (startaddr > entry->start) \ 1585 _vm_map_clip_start(map, entry, startaddr); \ 1586 } 1587 1588 /* 1589 * This routine is called only when it is known that 1590 * the entry must be split. 1591 */ 1592 static void 1593 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1594 { 1595 vm_map_entry_t new_entry; 1596 1597 VM_MAP_ASSERT_LOCKED(map); 1598 1599 /* 1600 * Split off the front portion -- note that we must insert the new 1601 * entry BEFORE this one, so that this entry has the specified 1602 * starting address. 1603 */ 1604 vm_map_simplify_entry(map, entry); 1605 1606 /* 1607 * If there is no object backing this entry, we might as well create 1608 * one now. If we defer it, an object can get created after the map 1609 * is clipped, and individual objects will be created for the split-up 1610 * map. This is a bit of a hack, but is also about the best place to 1611 * put this improvement. 1612 */ 1613 if (entry->object.vm_object == NULL && !map->system_map) { 1614 vm_object_t object; 1615 object = vm_object_allocate(OBJT_DEFAULT, 1616 atop(entry->end - entry->start)); 1617 entry->object.vm_object = object; 1618 entry->offset = 0; 1619 if (entry->cred != NULL) { 1620 object->cred = entry->cred; 1621 object->charge = entry->end - entry->start; 1622 entry->cred = NULL; 1623 } 1624 } else if (entry->object.vm_object != NULL && 1625 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1626 entry->cred != NULL) { 1627 VM_OBJECT_WLOCK(entry->object.vm_object); 1628 KASSERT(entry->object.vm_object->cred == NULL, 1629 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1630 entry->object.vm_object->cred = entry->cred; 1631 entry->object.vm_object->charge = entry->end - entry->start; 1632 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1633 entry->cred = NULL; 1634 } 1635 1636 new_entry = vm_map_entry_create(map); 1637 *new_entry = *entry; 1638 1639 new_entry->end = start; 1640 entry->offset += (start - entry->start); 1641 entry->start = start; 1642 if (new_entry->cred != NULL) 1643 crhold(entry->cred); 1644 1645 vm_map_entry_link(map, entry->prev, new_entry); 1646 1647 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1648 vm_object_reference(new_entry->object.vm_object); 1649 /* 1650 * The object->un_pager.vnp.writemappings for the 1651 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1652 * kept as is here. The virtual pages are 1653 * re-distributed among the clipped entries, so the sum is 1654 * left the same. 1655 */ 1656 } 1657 } 1658 1659 /* 1660 * vm_map_clip_end: [ internal use only ] 1661 * 1662 * Asserts that the given entry ends at or before 1663 * the specified address; if necessary, 1664 * it splits the entry into two. 1665 */ 1666 #define vm_map_clip_end(map, entry, endaddr) \ 1667 { \ 1668 if ((endaddr) < (entry->end)) \ 1669 _vm_map_clip_end((map), (entry), (endaddr)); \ 1670 } 1671 1672 /* 1673 * This routine is called only when it is known that 1674 * the entry must be split. 1675 */ 1676 static void 1677 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1678 { 1679 vm_map_entry_t new_entry; 1680 1681 VM_MAP_ASSERT_LOCKED(map); 1682 1683 /* 1684 * If there is no object backing this entry, we might as well create 1685 * one now. If we defer it, an object can get created after the map 1686 * is clipped, and individual objects will be created for the split-up 1687 * map. This is a bit of a hack, but is also about the best place to 1688 * put this improvement. 1689 */ 1690 if (entry->object.vm_object == NULL && !map->system_map) { 1691 vm_object_t object; 1692 object = vm_object_allocate(OBJT_DEFAULT, 1693 atop(entry->end - entry->start)); 1694 entry->object.vm_object = object; 1695 entry->offset = 0; 1696 if (entry->cred != NULL) { 1697 object->cred = entry->cred; 1698 object->charge = entry->end - entry->start; 1699 entry->cred = NULL; 1700 } 1701 } else if (entry->object.vm_object != NULL && 1702 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1703 entry->cred != NULL) { 1704 VM_OBJECT_WLOCK(entry->object.vm_object); 1705 KASSERT(entry->object.vm_object->cred == NULL, 1706 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1707 entry->object.vm_object->cred = entry->cred; 1708 entry->object.vm_object->charge = entry->end - entry->start; 1709 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1710 entry->cred = NULL; 1711 } 1712 1713 /* 1714 * Create a new entry and insert it AFTER the specified entry 1715 */ 1716 new_entry = vm_map_entry_create(map); 1717 *new_entry = *entry; 1718 1719 new_entry->start = entry->end = end; 1720 new_entry->offset += (end - entry->start); 1721 if (new_entry->cred != NULL) 1722 crhold(entry->cred); 1723 1724 vm_map_entry_link(map, entry, new_entry); 1725 1726 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1727 vm_object_reference(new_entry->object.vm_object); 1728 } 1729 } 1730 1731 /* 1732 * vm_map_submap: [ kernel use only ] 1733 * 1734 * Mark the given range as handled by a subordinate map. 1735 * 1736 * This range must have been created with vm_map_find, 1737 * and no other operations may have been performed on this 1738 * range prior to calling vm_map_submap. 1739 * 1740 * Only a limited number of operations can be performed 1741 * within this rage after calling vm_map_submap: 1742 * vm_fault 1743 * [Don't try vm_map_copy!] 1744 * 1745 * To remove a submapping, one must first remove the 1746 * range from the superior map, and then destroy the 1747 * submap (if desired). [Better yet, don't try it.] 1748 */ 1749 int 1750 vm_map_submap( 1751 vm_map_t map, 1752 vm_offset_t start, 1753 vm_offset_t end, 1754 vm_map_t submap) 1755 { 1756 vm_map_entry_t entry; 1757 int result = KERN_INVALID_ARGUMENT; 1758 1759 vm_map_lock(map); 1760 1761 VM_MAP_RANGE_CHECK(map, start, end); 1762 1763 if (vm_map_lookup_entry(map, start, &entry)) { 1764 vm_map_clip_start(map, entry, start); 1765 } else 1766 entry = entry->next; 1767 1768 vm_map_clip_end(map, entry, end); 1769 1770 if ((entry->start == start) && (entry->end == end) && 1771 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1772 (entry->object.vm_object == NULL)) { 1773 entry->object.sub_map = submap; 1774 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1775 result = KERN_SUCCESS; 1776 } 1777 vm_map_unlock(map); 1778 1779 return (result); 1780 } 1781 1782 /* 1783 * The maximum number of pages to map 1784 */ 1785 #define MAX_INIT_PT 96 1786 1787 /* 1788 * vm_map_pmap_enter: 1789 * 1790 * Preload read-only mappings for the specified object's resident pages 1791 * into the target map. If "flags" is MAP_PREFAULT_PARTIAL, then only 1792 * the resident pages within the address range [addr, addr + ulmin(size, 1793 * ptoa(MAX_INIT_PT))) are mapped. Otherwise, all resident pages within 1794 * the specified address range are mapped. This eliminates many soft 1795 * faults on process startup and immediately after an mmap(2). Because 1796 * these are speculative mappings, cached pages are not reactivated and 1797 * mapped. 1798 */ 1799 void 1800 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1801 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1802 { 1803 vm_offset_t start; 1804 vm_page_t p, p_start; 1805 vm_pindex_t psize, tmpidx; 1806 1807 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1808 return; 1809 VM_OBJECT_WLOCK(object); 1810 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1811 pmap_object_init_pt(map->pmap, addr, object, pindex, size); 1812 goto unlock_return; 1813 } 1814 1815 psize = atop(size); 1816 if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0) 1817 psize = MAX_INIT_PT; 1818 if (psize + pindex > object->size) { 1819 if (object->size < pindex) 1820 goto unlock_return; 1821 psize = object->size - pindex; 1822 } 1823 1824 start = 0; 1825 p_start = NULL; 1826 1827 p = vm_page_find_least(object, pindex); 1828 /* 1829 * Assert: the variable p is either (1) the page with the 1830 * least pindex greater than or equal to the parameter pindex 1831 * or (2) NULL. 1832 */ 1833 for (; 1834 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1835 p = TAILQ_NEXT(p, listq)) { 1836 /* 1837 * don't allow an madvise to blow away our really 1838 * free pages allocating pv entries. 1839 */ 1840 if ((flags & MAP_PREFAULT_MADVISE) && 1841 cnt.v_free_count < cnt.v_free_reserved) { 1842 psize = tmpidx; 1843 break; 1844 } 1845 if (p->valid == VM_PAGE_BITS_ALL) { 1846 if (p_start == NULL) { 1847 start = addr + ptoa(tmpidx); 1848 p_start = p; 1849 } 1850 } else if (p_start != NULL) { 1851 pmap_enter_object(map->pmap, start, addr + 1852 ptoa(tmpidx), p_start, prot); 1853 p_start = NULL; 1854 } 1855 } 1856 if (p_start != NULL) 1857 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1858 p_start, prot); 1859 unlock_return: 1860 VM_OBJECT_WUNLOCK(object); 1861 } 1862 1863 /* 1864 * vm_map_protect: 1865 * 1866 * Sets the protection of the specified address 1867 * region in the target map. If "set_max" is 1868 * specified, the maximum protection is to be set; 1869 * otherwise, only the current protection is affected. 1870 */ 1871 int 1872 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1873 vm_prot_t new_prot, boolean_t set_max) 1874 { 1875 vm_map_entry_t current, entry; 1876 vm_object_t obj; 1877 struct ucred *cred; 1878 vm_prot_t old_prot; 1879 1880 vm_map_lock(map); 1881 1882 VM_MAP_RANGE_CHECK(map, start, end); 1883 1884 if (vm_map_lookup_entry(map, start, &entry)) { 1885 vm_map_clip_start(map, entry, start); 1886 } else { 1887 entry = entry->next; 1888 } 1889 1890 /* 1891 * Make a first pass to check for protection violations. 1892 */ 1893 current = entry; 1894 while ((current != &map->header) && (current->start < end)) { 1895 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1896 vm_map_unlock(map); 1897 return (KERN_INVALID_ARGUMENT); 1898 } 1899 if ((new_prot & current->max_protection) != new_prot) { 1900 vm_map_unlock(map); 1901 return (KERN_PROTECTION_FAILURE); 1902 } 1903 current = current->next; 1904 } 1905 1906 1907 /* 1908 * Do an accounting pass for private read-only mappings that 1909 * now will do cow due to allowed write (e.g. debugger sets 1910 * breakpoint on text segment) 1911 */ 1912 for (current = entry; (current != &map->header) && 1913 (current->start < end); current = current->next) { 1914 1915 vm_map_clip_end(map, current, end); 1916 1917 if (set_max || 1918 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1919 ENTRY_CHARGED(current)) { 1920 continue; 1921 } 1922 1923 cred = curthread->td_ucred; 1924 obj = current->object.vm_object; 1925 1926 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1927 if (!swap_reserve(current->end - current->start)) { 1928 vm_map_unlock(map); 1929 return (KERN_RESOURCE_SHORTAGE); 1930 } 1931 crhold(cred); 1932 current->cred = cred; 1933 continue; 1934 } 1935 1936 VM_OBJECT_WLOCK(obj); 1937 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1938 VM_OBJECT_WUNLOCK(obj); 1939 continue; 1940 } 1941 1942 /* 1943 * Charge for the whole object allocation now, since 1944 * we cannot distinguish between non-charged and 1945 * charged clipped mapping of the same object later. 1946 */ 1947 KASSERT(obj->charge == 0, 1948 ("vm_map_protect: object %p overcharged\n", obj)); 1949 if (!swap_reserve(ptoa(obj->size))) { 1950 VM_OBJECT_WUNLOCK(obj); 1951 vm_map_unlock(map); 1952 return (KERN_RESOURCE_SHORTAGE); 1953 } 1954 1955 crhold(cred); 1956 obj->cred = cred; 1957 obj->charge = ptoa(obj->size); 1958 VM_OBJECT_WUNLOCK(obj); 1959 } 1960 1961 /* 1962 * Go back and fix up protections. [Note that clipping is not 1963 * necessary the second time.] 1964 */ 1965 current = entry; 1966 while ((current != &map->header) && (current->start < end)) { 1967 old_prot = current->protection; 1968 1969 if (set_max) 1970 current->protection = 1971 (current->max_protection = new_prot) & 1972 old_prot; 1973 else 1974 current->protection = new_prot; 1975 1976 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1977 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1978 (current->protection & VM_PROT_WRITE) != 0 && 1979 (old_prot & VM_PROT_WRITE) == 0) { 1980 vm_fault_copy_entry(map, map, current, current, NULL); 1981 } 1982 1983 /* 1984 * When restricting access, update the physical map. Worry 1985 * about copy-on-write here. 1986 */ 1987 if ((old_prot & ~current->protection) != 0) { 1988 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1989 VM_PROT_ALL) 1990 pmap_protect(map->pmap, current->start, 1991 current->end, 1992 current->protection & MASK(current)); 1993 #undef MASK 1994 } 1995 vm_map_simplify_entry(map, current); 1996 current = current->next; 1997 } 1998 vm_map_unlock(map); 1999 return (KERN_SUCCESS); 2000 } 2001 2002 /* 2003 * vm_map_madvise: 2004 * 2005 * This routine traverses a processes map handling the madvise 2006 * system call. Advisories are classified as either those effecting 2007 * the vm_map_entry structure, or those effecting the underlying 2008 * objects. 2009 */ 2010 int 2011 vm_map_madvise( 2012 vm_map_t map, 2013 vm_offset_t start, 2014 vm_offset_t end, 2015 int behav) 2016 { 2017 vm_map_entry_t current, entry; 2018 int modify_map = 0; 2019 2020 /* 2021 * Some madvise calls directly modify the vm_map_entry, in which case 2022 * we need to use an exclusive lock on the map and we need to perform 2023 * various clipping operations. Otherwise we only need a read-lock 2024 * on the map. 2025 */ 2026 switch(behav) { 2027 case MADV_NORMAL: 2028 case MADV_SEQUENTIAL: 2029 case MADV_RANDOM: 2030 case MADV_NOSYNC: 2031 case MADV_AUTOSYNC: 2032 case MADV_NOCORE: 2033 case MADV_CORE: 2034 modify_map = 1; 2035 vm_map_lock(map); 2036 break; 2037 case MADV_WILLNEED: 2038 case MADV_DONTNEED: 2039 case MADV_FREE: 2040 vm_map_lock_read(map); 2041 break; 2042 default: 2043 return (KERN_INVALID_ARGUMENT); 2044 } 2045 2046 /* 2047 * Locate starting entry and clip if necessary. 2048 */ 2049 VM_MAP_RANGE_CHECK(map, start, end); 2050 2051 if (vm_map_lookup_entry(map, start, &entry)) { 2052 if (modify_map) 2053 vm_map_clip_start(map, entry, start); 2054 } else { 2055 entry = entry->next; 2056 } 2057 2058 if (modify_map) { 2059 /* 2060 * madvise behaviors that are implemented in the vm_map_entry. 2061 * 2062 * We clip the vm_map_entry so that behavioral changes are 2063 * limited to the specified address range. 2064 */ 2065 for (current = entry; 2066 (current != &map->header) && (current->start < end); 2067 current = current->next 2068 ) { 2069 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2070 continue; 2071 2072 vm_map_clip_end(map, current, end); 2073 2074 switch (behav) { 2075 case MADV_NORMAL: 2076 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2077 break; 2078 case MADV_SEQUENTIAL: 2079 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2080 break; 2081 case MADV_RANDOM: 2082 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2083 break; 2084 case MADV_NOSYNC: 2085 current->eflags |= MAP_ENTRY_NOSYNC; 2086 break; 2087 case MADV_AUTOSYNC: 2088 current->eflags &= ~MAP_ENTRY_NOSYNC; 2089 break; 2090 case MADV_NOCORE: 2091 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2092 break; 2093 case MADV_CORE: 2094 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2095 break; 2096 default: 2097 break; 2098 } 2099 vm_map_simplify_entry(map, current); 2100 } 2101 vm_map_unlock(map); 2102 } else { 2103 vm_pindex_t pstart, pend; 2104 2105 /* 2106 * madvise behaviors that are implemented in the underlying 2107 * vm_object. 2108 * 2109 * Since we don't clip the vm_map_entry, we have to clip 2110 * the vm_object pindex and count. 2111 */ 2112 for (current = entry; 2113 (current != &map->header) && (current->start < end); 2114 current = current->next 2115 ) { 2116 vm_offset_t useStart; 2117 2118 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2119 continue; 2120 2121 pstart = OFF_TO_IDX(current->offset); 2122 pend = pstart + atop(current->end - current->start); 2123 useStart = current->start; 2124 2125 if (current->start < start) { 2126 pstart += atop(start - current->start); 2127 useStart = start; 2128 } 2129 if (current->end > end) 2130 pend -= atop(current->end - end); 2131 2132 if (pstart >= pend) 2133 continue; 2134 2135 vm_object_madvise(current->object.vm_object, pstart, 2136 pend, behav); 2137 if (behav == MADV_WILLNEED) { 2138 vm_map_pmap_enter(map, 2139 useStart, 2140 current->protection, 2141 current->object.vm_object, 2142 pstart, 2143 ptoa(pend - pstart), 2144 MAP_PREFAULT_MADVISE 2145 ); 2146 } 2147 } 2148 vm_map_unlock_read(map); 2149 } 2150 return (0); 2151 } 2152 2153 2154 /* 2155 * vm_map_inherit: 2156 * 2157 * Sets the inheritance of the specified address 2158 * range in the target map. Inheritance 2159 * affects how the map will be shared with 2160 * child maps at the time of vmspace_fork. 2161 */ 2162 int 2163 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2164 vm_inherit_t new_inheritance) 2165 { 2166 vm_map_entry_t entry; 2167 vm_map_entry_t temp_entry; 2168 2169 switch (new_inheritance) { 2170 case VM_INHERIT_NONE: 2171 case VM_INHERIT_COPY: 2172 case VM_INHERIT_SHARE: 2173 break; 2174 default: 2175 return (KERN_INVALID_ARGUMENT); 2176 } 2177 vm_map_lock(map); 2178 VM_MAP_RANGE_CHECK(map, start, end); 2179 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2180 entry = temp_entry; 2181 vm_map_clip_start(map, entry, start); 2182 } else 2183 entry = temp_entry->next; 2184 while ((entry != &map->header) && (entry->start < end)) { 2185 vm_map_clip_end(map, entry, end); 2186 entry->inheritance = new_inheritance; 2187 vm_map_simplify_entry(map, entry); 2188 entry = entry->next; 2189 } 2190 vm_map_unlock(map); 2191 return (KERN_SUCCESS); 2192 } 2193 2194 /* 2195 * vm_map_unwire: 2196 * 2197 * Implements both kernel and user unwiring. 2198 */ 2199 int 2200 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2201 int flags) 2202 { 2203 vm_map_entry_t entry, first_entry, tmp_entry; 2204 vm_offset_t saved_start; 2205 unsigned int last_timestamp; 2206 int rv; 2207 boolean_t need_wakeup, result, user_unwire; 2208 2209 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2210 vm_map_lock(map); 2211 VM_MAP_RANGE_CHECK(map, start, end); 2212 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2213 if (flags & VM_MAP_WIRE_HOLESOK) 2214 first_entry = first_entry->next; 2215 else { 2216 vm_map_unlock(map); 2217 return (KERN_INVALID_ADDRESS); 2218 } 2219 } 2220 last_timestamp = map->timestamp; 2221 entry = first_entry; 2222 while (entry != &map->header && entry->start < end) { 2223 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2224 /* 2225 * We have not yet clipped the entry. 2226 */ 2227 saved_start = (start >= entry->start) ? start : 2228 entry->start; 2229 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2230 if (vm_map_unlock_and_wait(map, 0)) { 2231 /* 2232 * Allow interruption of user unwiring? 2233 */ 2234 } 2235 vm_map_lock(map); 2236 if (last_timestamp+1 != map->timestamp) { 2237 /* 2238 * Look again for the entry because the map was 2239 * modified while it was unlocked. 2240 * Specifically, the entry may have been 2241 * clipped, merged, or deleted. 2242 */ 2243 if (!vm_map_lookup_entry(map, saved_start, 2244 &tmp_entry)) { 2245 if (flags & VM_MAP_WIRE_HOLESOK) 2246 tmp_entry = tmp_entry->next; 2247 else { 2248 if (saved_start == start) { 2249 /* 2250 * First_entry has been deleted. 2251 */ 2252 vm_map_unlock(map); 2253 return (KERN_INVALID_ADDRESS); 2254 } 2255 end = saved_start; 2256 rv = KERN_INVALID_ADDRESS; 2257 goto done; 2258 } 2259 } 2260 if (entry == first_entry) 2261 first_entry = tmp_entry; 2262 else 2263 first_entry = NULL; 2264 entry = tmp_entry; 2265 } 2266 last_timestamp = map->timestamp; 2267 continue; 2268 } 2269 vm_map_clip_start(map, entry, start); 2270 vm_map_clip_end(map, entry, end); 2271 /* 2272 * Mark the entry in case the map lock is released. (See 2273 * above.) 2274 */ 2275 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2276 /* 2277 * Check the map for holes in the specified region. 2278 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2279 */ 2280 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2281 (entry->end < end && (entry->next == &map->header || 2282 entry->next->start > entry->end))) { 2283 end = entry->end; 2284 rv = KERN_INVALID_ADDRESS; 2285 goto done; 2286 } 2287 /* 2288 * If system unwiring, require that the entry is system wired. 2289 */ 2290 if (!user_unwire && 2291 vm_map_entry_system_wired_count(entry) == 0) { 2292 end = entry->end; 2293 rv = KERN_INVALID_ARGUMENT; 2294 goto done; 2295 } 2296 entry = entry->next; 2297 } 2298 rv = KERN_SUCCESS; 2299 done: 2300 need_wakeup = FALSE; 2301 if (first_entry == NULL) { 2302 result = vm_map_lookup_entry(map, start, &first_entry); 2303 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2304 first_entry = first_entry->next; 2305 else 2306 KASSERT(result, ("vm_map_unwire: lookup failed")); 2307 } 2308 entry = first_entry; 2309 while (entry != &map->header && entry->start < end) { 2310 if (rv == KERN_SUCCESS && (!user_unwire || 2311 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2312 if (user_unwire) 2313 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2314 entry->wired_count--; 2315 if (entry->wired_count == 0) { 2316 /* 2317 * Retain the map lock. 2318 */ 2319 vm_fault_unwire(map, entry->start, entry->end, 2320 entry->object.vm_object != NULL && 2321 (entry->object.vm_object->flags & 2322 OBJ_FICTITIOUS) != 0); 2323 } 2324 } 2325 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2326 ("vm_map_unwire: in-transition flag missing")); 2327 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2328 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2329 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2330 need_wakeup = TRUE; 2331 } 2332 vm_map_simplify_entry(map, entry); 2333 entry = entry->next; 2334 } 2335 vm_map_unlock(map); 2336 if (need_wakeup) 2337 vm_map_wakeup(map); 2338 return (rv); 2339 } 2340 2341 /* 2342 * vm_map_wire: 2343 * 2344 * Implements both kernel and user wiring. 2345 */ 2346 int 2347 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2348 int flags) 2349 { 2350 vm_map_entry_t entry, first_entry, tmp_entry; 2351 vm_offset_t saved_end, saved_start; 2352 unsigned int last_timestamp; 2353 int rv; 2354 boolean_t fictitious, need_wakeup, result, user_wire; 2355 vm_prot_t prot; 2356 2357 prot = 0; 2358 if (flags & VM_MAP_WIRE_WRITE) 2359 prot |= VM_PROT_WRITE; 2360 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2361 vm_map_lock(map); 2362 VM_MAP_RANGE_CHECK(map, start, end); 2363 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2364 if (flags & VM_MAP_WIRE_HOLESOK) 2365 first_entry = first_entry->next; 2366 else { 2367 vm_map_unlock(map); 2368 return (KERN_INVALID_ADDRESS); 2369 } 2370 } 2371 last_timestamp = map->timestamp; 2372 entry = first_entry; 2373 while (entry != &map->header && entry->start < end) { 2374 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2375 /* 2376 * We have not yet clipped the entry. 2377 */ 2378 saved_start = (start >= entry->start) ? start : 2379 entry->start; 2380 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2381 if (vm_map_unlock_and_wait(map, 0)) { 2382 /* 2383 * Allow interruption of user wiring? 2384 */ 2385 } 2386 vm_map_lock(map); 2387 if (last_timestamp + 1 != map->timestamp) { 2388 /* 2389 * Look again for the entry because the map was 2390 * modified while it was unlocked. 2391 * Specifically, the entry may have been 2392 * clipped, merged, or deleted. 2393 */ 2394 if (!vm_map_lookup_entry(map, saved_start, 2395 &tmp_entry)) { 2396 if (flags & VM_MAP_WIRE_HOLESOK) 2397 tmp_entry = tmp_entry->next; 2398 else { 2399 if (saved_start == start) { 2400 /* 2401 * first_entry has been deleted. 2402 */ 2403 vm_map_unlock(map); 2404 return (KERN_INVALID_ADDRESS); 2405 } 2406 end = saved_start; 2407 rv = KERN_INVALID_ADDRESS; 2408 goto done; 2409 } 2410 } 2411 if (entry == first_entry) 2412 first_entry = tmp_entry; 2413 else 2414 first_entry = NULL; 2415 entry = tmp_entry; 2416 } 2417 last_timestamp = map->timestamp; 2418 continue; 2419 } 2420 vm_map_clip_start(map, entry, start); 2421 vm_map_clip_end(map, entry, end); 2422 /* 2423 * Mark the entry in case the map lock is released. (See 2424 * above.) 2425 */ 2426 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2427 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2428 || (entry->protection & prot) != prot) { 2429 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2430 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2431 end = entry->end; 2432 rv = KERN_INVALID_ADDRESS; 2433 goto done; 2434 } 2435 goto next_entry; 2436 } 2437 if (entry->wired_count == 0) { 2438 entry->wired_count++; 2439 saved_start = entry->start; 2440 saved_end = entry->end; 2441 fictitious = entry->object.vm_object != NULL && 2442 (entry->object.vm_object->flags & 2443 OBJ_FICTITIOUS) != 0; 2444 /* 2445 * Release the map lock, relying on the in-transition 2446 * mark. Mark the map busy for fork. 2447 */ 2448 vm_map_busy(map); 2449 vm_map_unlock(map); 2450 rv = vm_fault_wire(map, saved_start, saved_end, 2451 fictitious); 2452 vm_map_lock(map); 2453 vm_map_unbusy(map); 2454 if (last_timestamp + 1 != map->timestamp) { 2455 /* 2456 * Look again for the entry because the map was 2457 * modified while it was unlocked. The entry 2458 * may have been clipped, but NOT merged or 2459 * deleted. 2460 */ 2461 result = vm_map_lookup_entry(map, saved_start, 2462 &tmp_entry); 2463 KASSERT(result, ("vm_map_wire: lookup failed")); 2464 if (entry == first_entry) 2465 first_entry = tmp_entry; 2466 else 2467 first_entry = NULL; 2468 entry = tmp_entry; 2469 while (entry->end < saved_end) { 2470 if (rv != KERN_SUCCESS) { 2471 KASSERT(entry->wired_count == 1, 2472 ("vm_map_wire: bad count")); 2473 entry->wired_count = -1; 2474 } 2475 entry = entry->next; 2476 } 2477 } 2478 last_timestamp = map->timestamp; 2479 if (rv != KERN_SUCCESS) { 2480 KASSERT(entry->wired_count == 1, 2481 ("vm_map_wire: bad count")); 2482 /* 2483 * Assign an out-of-range value to represent 2484 * the failure to wire this entry. 2485 */ 2486 entry->wired_count = -1; 2487 end = entry->end; 2488 goto done; 2489 } 2490 } else if (!user_wire || 2491 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2492 entry->wired_count++; 2493 } 2494 /* 2495 * Check the map for holes in the specified region. 2496 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2497 */ 2498 next_entry: 2499 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2500 (entry->end < end && (entry->next == &map->header || 2501 entry->next->start > entry->end))) { 2502 end = entry->end; 2503 rv = KERN_INVALID_ADDRESS; 2504 goto done; 2505 } 2506 entry = entry->next; 2507 } 2508 rv = KERN_SUCCESS; 2509 done: 2510 need_wakeup = FALSE; 2511 if (first_entry == NULL) { 2512 result = vm_map_lookup_entry(map, start, &first_entry); 2513 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2514 first_entry = first_entry->next; 2515 else 2516 KASSERT(result, ("vm_map_wire: lookup failed")); 2517 } 2518 entry = first_entry; 2519 while (entry != &map->header && entry->start < end) { 2520 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2521 goto next_entry_done; 2522 if (rv == KERN_SUCCESS) { 2523 if (user_wire) 2524 entry->eflags |= MAP_ENTRY_USER_WIRED; 2525 } else if (entry->wired_count == -1) { 2526 /* 2527 * Wiring failed on this entry. Thus, unwiring is 2528 * unnecessary. 2529 */ 2530 entry->wired_count = 0; 2531 } else { 2532 if (!user_wire || 2533 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2534 entry->wired_count--; 2535 if (entry->wired_count == 0) { 2536 /* 2537 * Retain the map lock. 2538 */ 2539 vm_fault_unwire(map, entry->start, entry->end, 2540 entry->object.vm_object != NULL && 2541 (entry->object.vm_object->flags & 2542 OBJ_FICTITIOUS) != 0); 2543 } 2544 } 2545 next_entry_done: 2546 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2547 ("vm_map_wire: in-transition flag missing")); 2548 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED); 2549 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2550 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2551 need_wakeup = TRUE; 2552 } 2553 vm_map_simplify_entry(map, entry); 2554 entry = entry->next; 2555 } 2556 vm_map_unlock(map); 2557 if (need_wakeup) 2558 vm_map_wakeup(map); 2559 return (rv); 2560 } 2561 2562 /* 2563 * vm_map_sync 2564 * 2565 * Push any dirty cached pages in the address range to their pager. 2566 * If syncio is TRUE, dirty pages are written synchronously. 2567 * If invalidate is TRUE, any cached pages are freed as well. 2568 * 2569 * If the size of the region from start to end is zero, we are 2570 * supposed to flush all modified pages within the region containing 2571 * start. Unfortunately, a region can be split or coalesced with 2572 * neighboring regions, making it difficult to determine what the 2573 * original region was. Therefore, we approximate this requirement by 2574 * flushing the current region containing start. 2575 * 2576 * Returns an error if any part of the specified range is not mapped. 2577 */ 2578 int 2579 vm_map_sync( 2580 vm_map_t map, 2581 vm_offset_t start, 2582 vm_offset_t end, 2583 boolean_t syncio, 2584 boolean_t invalidate) 2585 { 2586 vm_map_entry_t current; 2587 vm_map_entry_t entry; 2588 vm_size_t size; 2589 vm_object_t object; 2590 vm_ooffset_t offset; 2591 unsigned int last_timestamp; 2592 boolean_t failed; 2593 2594 vm_map_lock_read(map); 2595 VM_MAP_RANGE_CHECK(map, start, end); 2596 if (!vm_map_lookup_entry(map, start, &entry)) { 2597 vm_map_unlock_read(map); 2598 return (KERN_INVALID_ADDRESS); 2599 } else if (start == end) { 2600 start = entry->start; 2601 end = entry->end; 2602 } 2603 /* 2604 * Make a first pass to check for user-wired memory and holes. 2605 */ 2606 for (current = entry; current != &map->header && current->start < end; 2607 current = current->next) { 2608 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2609 vm_map_unlock_read(map); 2610 return (KERN_INVALID_ARGUMENT); 2611 } 2612 if (end > current->end && 2613 (current->next == &map->header || 2614 current->end != current->next->start)) { 2615 vm_map_unlock_read(map); 2616 return (KERN_INVALID_ADDRESS); 2617 } 2618 } 2619 2620 if (invalidate) 2621 pmap_remove(map->pmap, start, end); 2622 failed = FALSE; 2623 2624 /* 2625 * Make a second pass, cleaning/uncaching pages from the indicated 2626 * objects as we go. 2627 */ 2628 for (current = entry; current != &map->header && current->start < end;) { 2629 offset = current->offset + (start - current->start); 2630 size = (end <= current->end ? end : current->end) - start; 2631 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2632 vm_map_t smap; 2633 vm_map_entry_t tentry; 2634 vm_size_t tsize; 2635 2636 smap = current->object.sub_map; 2637 vm_map_lock_read(smap); 2638 (void) vm_map_lookup_entry(smap, offset, &tentry); 2639 tsize = tentry->end - offset; 2640 if (tsize < size) 2641 size = tsize; 2642 object = tentry->object.vm_object; 2643 offset = tentry->offset + (offset - tentry->start); 2644 vm_map_unlock_read(smap); 2645 } else { 2646 object = current->object.vm_object; 2647 } 2648 vm_object_reference(object); 2649 last_timestamp = map->timestamp; 2650 vm_map_unlock_read(map); 2651 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2652 failed = TRUE; 2653 start += size; 2654 vm_object_deallocate(object); 2655 vm_map_lock_read(map); 2656 if (last_timestamp == map->timestamp || 2657 !vm_map_lookup_entry(map, start, ¤t)) 2658 current = current->next; 2659 } 2660 2661 vm_map_unlock_read(map); 2662 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2663 } 2664 2665 /* 2666 * vm_map_entry_unwire: [ internal use only ] 2667 * 2668 * Make the region specified by this entry pageable. 2669 * 2670 * The map in question should be locked. 2671 * [This is the reason for this routine's existence.] 2672 */ 2673 static void 2674 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2675 { 2676 vm_fault_unwire(map, entry->start, entry->end, 2677 entry->object.vm_object != NULL && 2678 (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0); 2679 entry->wired_count = 0; 2680 } 2681 2682 static void 2683 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2684 { 2685 2686 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2687 vm_object_deallocate(entry->object.vm_object); 2688 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2689 } 2690 2691 /* 2692 * vm_map_entry_delete: [ internal use only ] 2693 * 2694 * Deallocate the given entry from the target map. 2695 */ 2696 static void 2697 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2698 { 2699 vm_object_t object; 2700 vm_pindex_t offidxstart, offidxend, count, size1; 2701 vm_ooffset_t size; 2702 2703 vm_map_entry_unlink(map, entry); 2704 object = entry->object.vm_object; 2705 size = entry->end - entry->start; 2706 map->size -= size; 2707 2708 if (entry->cred != NULL) { 2709 swap_release_by_cred(size, entry->cred); 2710 crfree(entry->cred); 2711 } 2712 2713 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2714 (object != NULL)) { 2715 KASSERT(entry->cred == NULL || object->cred == NULL || 2716 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2717 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2718 count = OFF_TO_IDX(size); 2719 offidxstart = OFF_TO_IDX(entry->offset); 2720 offidxend = offidxstart + count; 2721 VM_OBJECT_WLOCK(object); 2722 if (object->ref_count != 1 && 2723 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2724 object == kernel_object || object == kmem_object)) { 2725 vm_object_collapse(object); 2726 2727 /* 2728 * The option OBJPR_NOTMAPPED can be passed here 2729 * because vm_map_delete() already performed 2730 * pmap_remove() on the only mapping to this range 2731 * of pages. 2732 */ 2733 vm_object_page_remove(object, offidxstart, offidxend, 2734 OBJPR_NOTMAPPED); 2735 if (object->type == OBJT_SWAP) 2736 swap_pager_freespace(object, offidxstart, count); 2737 if (offidxend >= object->size && 2738 offidxstart < object->size) { 2739 size1 = object->size; 2740 object->size = offidxstart; 2741 if (object->cred != NULL) { 2742 size1 -= object->size; 2743 KASSERT(object->charge >= ptoa(size1), 2744 ("vm_map_entry_delete: object->charge < 0")); 2745 swap_release_by_cred(ptoa(size1), object->cred); 2746 object->charge -= ptoa(size1); 2747 } 2748 } 2749 } 2750 VM_OBJECT_WUNLOCK(object); 2751 } else 2752 entry->object.vm_object = NULL; 2753 if (map->system_map) 2754 vm_map_entry_deallocate(entry, TRUE); 2755 else { 2756 entry->next = curthread->td_map_def_user; 2757 curthread->td_map_def_user = entry; 2758 } 2759 } 2760 2761 /* 2762 * vm_map_delete: [ internal use only ] 2763 * 2764 * Deallocates the given address range from the target 2765 * map. 2766 */ 2767 int 2768 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2769 { 2770 vm_map_entry_t entry; 2771 vm_map_entry_t first_entry; 2772 2773 VM_MAP_ASSERT_LOCKED(map); 2774 2775 /* 2776 * Find the start of the region, and clip it 2777 */ 2778 if (!vm_map_lookup_entry(map, start, &first_entry)) 2779 entry = first_entry->next; 2780 else { 2781 entry = first_entry; 2782 vm_map_clip_start(map, entry, start); 2783 } 2784 2785 /* 2786 * Step through all entries in this region 2787 */ 2788 while ((entry != &map->header) && (entry->start < end)) { 2789 vm_map_entry_t next; 2790 2791 /* 2792 * Wait for wiring or unwiring of an entry to complete. 2793 * Also wait for any system wirings to disappear on 2794 * user maps. 2795 */ 2796 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2797 (vm_map_pmap(map) != kernel_pmap && 2798 vm_map_entry_system_wired_count(entry) != 0)) { 2799 unsigned int last_timestamp; 2800 vm_offset_t saved_start; 2801 vm_map_entry_t tmp_entry; 2802 2803 saved_start = entry->start; 2804 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2805 last_timestamp = map->timestamp; 2806 (void) vm_map_unlock_and_wait(map, 0); 2807 vm_map_lock(map); 2808 if (last_timestamp + 1 != map->timestamp) { 2809 /* 2810 * Look again for the entry because the map was 2811 * modified while it was unlocked. 2812 * Specifically, the entry may have been 2813 * clipped, merged, or deleted. 2814 */ 2815 if (!vm_map_lookup_entry(map, saved_start, 2816 &tmp_entry)) 2817 entry = tmp_entry->next; 2818 else { 2819 entry = tmp_entry; 2820 vm_map_clip_start(map, entry, 2821 saved_start); 2822 } 2823 } 2824 continue; 2825 } 2826 vm_map_clip_end(map, entry, end); 2827 2828 next = entry->next; 2829 2830 /* 2831 * Unwire before removing addresses from the pmap; otherwise, 2832 * unwiring will put the entries back in the pmap. 2833 */ 2834 if (entry->wired_count != 0) { 2835 vm_map_entry_unwire(map, entry); 2836 } 2837 2838 pmap_remove(map->pmap, entry->start, entry->end); 2839 2840 /* 2841 * Delete the entry only after removing all pmap 2842 * entries pointing to its pages. (Otherwise, its 2843 * page frames may be reallocated, and any modify bits 2844 * will be set in the wrong object!) 2845 */ 2846 vm_map_entry_delete(map, entry); 2847 entry = next; 2848 } 2849 return (KERN_SUCCESS); 2850 } 2851 2852 /* 2853 * vm_map_remove: 2854 * 2855 * Remove the given address range from the target map. 2856 * This is the exported form of vm_map_delete. 2857 */ 2858 int 2859 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2860 { 2861 int result; 2862 2863 vm_map_lock(map); 2864 VM_MAP_RANGE_CHECK(map, start, end); 2865 result = vm_map_delete(map, start, end); 2866 vm_map_unlock(map); 2867 return (result); 2868 } 2869 2870 /* 2871 * vm_map_check_protection: 2872 * 2873 * Assert that the target map allows the specified privilege on the 2874 * entire address region given. The entire region must be allocated. 2875 * 2876 * WARNING! This code does not and should not check whether the 2877 * contents of the region is accessible. For example a smaller file 2878 * might be mapped into a larger address space. 2879 * 2880 * NOTE! This code is also called by munmap(). 2881 * 2882 * The map must be locked. A read lock is sufficient. 2883 */ 2884 boolean_t 2885 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2886 vm_prot_t protection) 2887 { 2888 vm_map_entry_t entry; 2889 vm_map_entry_t tmp_entry; 2890 2891 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2892 return (FALSE); 2893 entry = tmp_entry; 2894 2895 while (start < end) { 2896 if (entry == &map->header) 2897 return (FALSE); 2898 /* 2899 * No holes allowed! 2900 */ 2901 if (start < entry->start) 2902 return (FALSE); 2903 /* 2904 * Check protection associated with entry. 2905 */ 2906 if ((entry->protection & protection) != protection) 2907 return (FALSE); 2908 /* go to next entry */ 2909 start = entry->end; 2910 entry = entry->next; 2911 } 2912 return (TRUE); 2913 } 2914 2915 /* 2916 * vm_map_copy_entry: 2917 * 2918 * Copies the contents of the source entry to the destination 2919 * entry. The entries *must* be aligned properly. 2920 */ 2921 static void 2922 vm_map_copy_entry( 2923 vm_map_t src_map, 2924 vm_map_t dst_map, 2925 vm_map_entry_t src_entry, 2926 vm_map_entry_t dst_entry, 2927 vm_ooffset_t *fork_charge) 2928 { 2929 vm_object_t src_object; 2930 vm_map_entry_t fake_entry; 2931 vm_offset_t size; 2932 struct ucred *cred; 2933 int charged; 2934 2935 VM_MAP_ASSERT_LOCKED(dst_map); 2936 2937 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2938 return; 2939 2940 if (src_entry->wired_count == 0) { 2941 2942 /* 2943 * If the source entry is marked needs_copy, it is already 2944 * write-protected. 2945 */ 2946 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2947 pmap_protect(src_map->pmap, 2948 src_entry->start, 2949 src_entry->end, 2950 src_entry->protection & ~VM_PROT_WRITE); 2951 } 2952 2953 /* 2954 * Make a copy of the object. 2955 */ 2956 size = src_entry->end - src_entry->start; 2957 if ((src_object = src_entry->object.vm_object) != NULL) { 2958 VM_OBJECT_WLOCK(src_object); 2959 charged = ENTRY_CHARGED(src_entry); 2960 if ((src_object->handle == NULL) && 2961 (src_object->type == OBJT_DEFAULT || 2962 src_object->type == OBJT_SWAP)) { 2963 vm_object_collapse(src_object); 2964 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2965 vm_object_split(src_entry); 2966 src_object = src_entry->object.vm_object; 2967 } 2968 } 2969 vm_object_reference_locked(src_object); 2970 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2971 if (src_entry->cred != NULL && 2972 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 2973 KASSERT(src_object->cred == NULL, 2974 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 2975 src_object)); 2976 src_object->cred = src_entry->cred; 2977 src_object->charge = size; 2978 } 2979 VM_OBJECT_WUNLOCK(src_object); 2980 dst_entry->object.vm_object = src_object; 2981 if (charged) { 2982 cred = curthread->td_ucred; 2983 crhold(cred); 2984 dst_entry->cred = cred; 2985 *fork_charge += size; 2986 if (!(src_entry->eflags & 2987 MAP_ENTRY_NEEDS_COPY)) { 2988 crhold(cred); 2989 src_entry->cred = cred; 2990 *fork_charge += size; 2991 } 2992 } 2993 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2994 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2995 dst_entry->offset = src_entry->offset; 2996 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 2997 /* 2998 * MAP_ENTRY_VN_WRITECNT cannot 2999 * indicate write reference from 3000 * src_entry, since the entry is 3001 * marked as needs copy. Allocate a 3002 * fake entry that is used to 3003 * decrement object->un_pager.vnp.writecount 3004 * at the appropriate time. Attach 3005 * fake_entry to the deferred list. 3006 */ 3007 fake_entry = vm_map_entry_create(dst_map); 3008 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3009 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3010 vm_object_reference(src_object); 3011 fake_entry->object.vm_object = src_object; 3012 fake_entry->start = src_entry->start; 3013 fake_entry->end = src_entry->end; 3014 fake_entry->next = curthread->td_map_def_user; 3015 curthread->td_map_def_user = fake_entry; 3016 } 3017 } else { 3018 dst_entry->object.vm_object = NULL; 3019 dst_entry->offset = 0; 3020 if (src_entry->cred != NULL) { 3021 dst_entry->cred = curthread->td_ucred; 3022 crhold(dst_entry->cred); 3023 *fork_charge += size; 3024 } 3025 } 3026 3027 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3028 dst_entry->end - dst_entry->start, src_entry->start); 3029 } else { 3030 /* 3031 * Of course, wired down pages can't be set copy-on-write. 3032 * Cause wired pages to be copied into the new map by 3033 * simulating faults (the new pages are pageable) 3034 */ 3035 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3036 fork_charge); 3037 } 3038 } 3039 3040 /* 3041 * vmspace_map_entry_forked: 3042 * Update the newly-forked vmspace each time a map entry is inherited 3043 * or copied. The values for vm_dsize and vm_tsize are approximate 3044 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3045 */ 3046 static void 3047 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3048 vm_map_entry_t entry) 3049 { 3050 vm_size_t entrysize; 3051 vm_offset_t newend; 3052 3053 entrysize = entry->end - entry->start; 3054 vm2->vm_map.size += entrysize; 3055 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3056 vm2->vm_ssize += btoc(entrysize); 3057 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3058 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3059 newend = MIN(entry->end, 3060 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3061 vm2->vm_dsize += btoc(newend - entry->start); 3062 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3063 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3064 newend = MIN(entry->end, 3065 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3066 vm2->vm_tsize += btoc(newend - entry->start); 3067 } 3068 } 3069 3070 /* 3071 * vmspace_fork: 3072 * Create a new process vmspace structure and vm_map 3073 * based on those of an existing process. The new map 3074 * is based on the old map, according to the inheritance 3075 * values on the regions in that map. 3076 * 3077 * XXX It might be worth coalescing the entries added to the new vmspace. 3078 * 3079 * The source map must not be locked. 3080 */ 3081 struct vmspace * 3082 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3083 { 3084 struct vmspace *vm2; 3085 vm_map_t new_map, old_map; 3086 vm_map_entry_t new_entry, old_entry; 3087 vm_object_t object; 3088 int locked; 3089 3090 old_map = &vm1->vm_map; 3091 /* Copy immutable fields of vm1 to vm2. */ 3092 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3093 if (vm2 == NULL) 3094 return (NULL); 3095 vm2->vm_taddr = vm1->vm_taddr; 3096 vm2->vm_daddr = vm1->vm_daddr; 3097 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3098 vm_map_lock(old_map); 3099 if (old_map->busy) 3100 vm_map_wait_busy(old_map); 3101 new_map = &vm2->vm_map; 3102 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3103 KASSERT(locked, ("vmspace_fork: lock failed")); 3104 3105 old_entry = old_map->header.next; 3106 3107 while (old_entry != &old_map->header) { 3108 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3109 panic("vm_map_fork: encountered a submap"); 3110 3111 switch (old_entry->inheritance) { 3112 case VM_INHERIT_NONE: 3113 break; 3114 3115 case VM_INHERIT_SHARE: 3116 /* 3117 * Clone the entry, creating the shared object if necessary. 3118 */ 3119 object = old_entry->object.vm_object; 3120 if (object == NULL) { 3121 object = vm_object_allocate(OBJT_DEFAULT, 3122 atop(old_entry->end - old_entry->start)); 3123 old_entry->object.vm_object = object; 3124 old_entry->offset = 0; 3125 if (old_entry->cred != NULL) { 3126 object->cred = old_entry->cred; 3127 object->charge = old_entry->end - 3128 old_entry->start; 3129 old_entry->cred = NULL; 3130 } 3131 } 3132 3133 /* 3134 * Add the reference before calling vm_object_shadow 3135 * to insure that a shadow object is created. 3136 */ 3137 vm_object_reference(object); 3138 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3139 vm_object_shadow(&old_entry->object.vm_object, 3140 &old_entry->offset, 3141 old_entry->end - old_entry->start); 3142 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3143 /* Transfer the second reference too. */ 3144 vm_object_reference( 3145 old_entry->object.vm_object); 3146 3147 /* 3148 * As in vm_map_simplify_entry(), the 3149 * vnode lock will not be acquired in 3150 * this call to vm_object_deallocate(). 3151 */ 3152 vm_object_deallocate(object); 3153 object = old_entry->object.vm_object; 3154 } 3155 VM_OBJECT_WLOCK(object); 3156 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3157 if (old_entry->cred != NULL) { 3158 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3159 object->cred = old_entry->cred; 3160 object->charge = old_entry->end - old_entry->start; 3161 old_entry->cred = NULL; 3162 } 3163 3164 /* 3165 * Assert the correct state of the vnode 3166 * v_writecount while the object is locked, to 3167 * not relock it later for the assertion 3168 * correctness. 3169 */ 3170 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3171 object->type == OBJT_VNODE) { 3172 KASSERT(((struct vnode *)object->handle)-> 3173 v_writecount > 0, 3174 ("vmspace_fork: v_writecount %p", object)); 3175 KASSERT(object->un_pager.vnp.writemappings > 0, 3176 ("vmspace_fork: vnp.writecount %p", 3177 object)); 3178 } 3179 VM_OBJECT_WUNLOCK(object); 3180 3181 /* 3182 * Clone the entry, referencing the shared object. 3183 */ 3184 new_entry = vm_map_entry_create(new_map); 3185 *new_entry = *old_entry; 3186 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3187 MAP_ENTRY_IN_TRANSITION); 3188 new_entry->wired_count = 0; 3189 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3190 vnode_pager_update_writecount(object, 3191 new_entry->start, new_entry->end); 3192 } 3193 3194 /* 3195 * Insert the entry into the new map -- we know we're 3196 * inserting at the end of the new map. 3197 */ 3198 vm_map_entry_link(new_map, new_map->header.prev, 3199 new_entry); 3200 vmspace_map_entry_forked(vm1, vm2, new_entry); 3201 3202 /* 3203 * Update the physical map 3204 */ 3205 pmap_copy(new_map->pmap, old_map->pmap, 3206 new_entry->start, 3207 (old_entry->end - old_entry->start), 3208 old_entry->start); 3209 break; 3210 3211 case VM_INHERIT_COPY: 3212 /* 3213 * Clone the entry and link into the map. 3214 */ 3215 new_entry = vm_map_entry_create(new_map); 3216 *new_entry = *old_entry; 3217 /* 3218 * Copied entry is COW over the old object. 3219 */ 3220 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3221 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3222 new_entry->wired_count = 0; 3223 new_entry->object.vm_object = NULL; 3224 new_entry->cred = NULL; 3225 vm_map_entry_link(new_map, new_map->header.prev, 3226 new_entry); 3227 vmspace_map_entry_forked(vm1, vm2, new_entry); 3228 vm_map_copy_entry(old_map, new_map, old_entry, 3229 new_entry, fork_charge); 3230 break; 3231 } 3232 old_entry = old_entry->next; 3233 } 3234 /* 3235 * Use inlined vm_map_unlock() to postpone handling the deferred 3236 * map entries, which cannot be done until both old_map and 3237 * new_map locks are released. 3238 */ 3239 sx_xunlock(&old_map->lock); 3240 sx_xunlock(&new_map->lock); 3241 vm_map_process_deferred(); 3242 3243 return (vm2); 3244 } 3245 3246 int 3247 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3248 vm_prot_t prot, vm_prot_t max, int cow) 3249 { 3250 vm_map_entry_t new_entry, prev_entry; 3251 vm_offset_t bot, top; 3252 vm_size_t growsize, init_ssize; 3253 int orient, rv; 3254 rlim_t lmemlim, vmemlim; 3255 3256 /* 3257 * The stack orientation is piggybacked with the cow argument. 3258 * Extract it into orient and mask the cow argument so that we 3259 * don't pass it around further. 3260 * NOTE: We explicitly allow bi-directional stacks. 3261 */ 3262 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3263 cow &= ~orient; 3264 KASSERT(orient != 0, ("No stack grow direction")); 3265 3266 if (addrbos < vm_map_min(map) || 3267 addrbos > vm_map_max(map) || 3268 addrbos + max_ssize < addrbos) 3269 return (KERN_NO_SPACE); 3270 3271 growsize = sgrowsiz; 3272 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3273 3274 PROC_LOCK(curproc); 3275 lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK); 3276 vmemlim = lim_cur(curproc, RLIMIT_VMEM); 3277 PROC_UNLOCK(curproc); 3278 3279 vm_map_lock(map); 3280 3281 /* If addr is already mapped, no go */ 3282 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3283 vm_map_unlock(map); 3284 return (KERN_NO_SPACE); 3285 } 3286 3287 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3288 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) { 3289 vm_map_unlock(map); 3290 return (KERN_NO_SPACE); 3291 } 3292 } 3293 3294 /* If we would blow our VMEM resource limit, no go */ 3295 if (map->size + init_ssize > vmemlim) { 3296 vm_map_unlock(map); 3297 return (KERN_NO_SPACE); 3298 } 3299 3300 /* 3301 * If we can't accomodate max_ssize in the current mapping, no go. 3302 * However, we need to be aware that subsequent user mappings might 3303 * map into the space we have reserved for stack, and currently this 3304 * space is not protected. 3305 * 3306 * Hopefully we will at least detect this condition when we try to 3307 * grow the stack. 3308 */ 3309 if ((prev_entry->next != &map->header) && 3310 (prev_entry->next->start < addrbos + max_ssize)) { 3311 vm_map_unlock(map); 3312 return (KERN_NO_SPACE); 3313 } 3314 3315 /* 3316 * We initially map a stack of only init_ssize. We will grow as 3317 * needed later. Depending on the orientation of the stack (i.e. 3318 * the grow direction) we either map at the top of the range, the 3319 * bottom of the range or in the middle. 3320 * 3321 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3322 * and cow to be 0. Possibly we should eliminate these as input 3323 * parameters, and just pass these values here in the insert call. 3324 */ 3325 if (orient == MAP_STACK_GROWS_DOWN) 3326 bot = addrbos + max_ssize - init_ssize; 3327 else if (orient == MAP_STACK_GROWS_UP) 3328 bot = addrbos; 3329 else 3330 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3331 top = bot + init_ssize; 3332 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3333 3334 /* Now set the avail_ssize amount. */ 3335 if (rv == KERN_SUCCESS) { 3336 if (prev_entry != &map->header) 3337 vm_map_clip_end(map, prev_entry, bot); 3338 new_entry = prev_entry->next; 3339 if (new_entry->end != top || new_entry->start != bot) 3340 panic("Bad entry start/end for new stack entry"); 3341 3342 new_entry->avail_ssize = max_ssize - init_ssize; 3343 if (orient & MAP_STACK_GROWS_DOWN) 3344 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3345 if (orient & MAP_STACK_GROWS_UP) 3346 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3347 } 3348 3349 vm_map_unlock(map); 3350 return (rv); 3351 } 3352 3353 static int stack_guard_page = 0; 3354 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3355 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3356 &stack_guard_page, 0, 3357 "Insert stack guard page ahead of the growable segments."); 3358 3359 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3360 * desired address is already mapped, or if we successfully grow 3361 * the stack. Also returns KERN_SUCCESS if addr is outside the 3362 * stack range (this is strange, but preserves compatibility with 3363 * the grow function in vm_machdep.c). 3364 */ 3365 int 3366 vm_map_growstack(struct proc *p, vm_offset_t addr) 3367 { 3368 vm_map_entry_t next_entry, prev_entry; 3369 vm_map_entry_t new_entry, stack_entry; 3370 struct vmspace *vm = p->p_vmspace; 3371 vm_map_t map = &vm->vm_map; 3372 vm_offset_t end; 3373 vm_size_t growsize; 3374 size_t grow_amount, max_grow; 3375 rlim_t lmemlim, stacklim, vmemlim; 3376 int is_procstack, rv; 3377 struct ucred *cred; 3378 #ifdef notyet 3379 uint64_t limit; 3380 #endif 3381 #ifdef RACCT 3382 int error; 3383 #endif 3384 3385 Retry: 3386 PROC_LOCK(p); 3387 lmemlim = lim_cur(p, RLIMIT_MEMLOCK); 3388 stacklim = lim_cur(p, RLIMIT_STACK); 3389 vmemlim = lim_cur(p, RLIMIT_VMEM); 3390 PROC_UNLOCK(p); 3391 3392 vm_map_lock_read(map); 3393 3394 /* If addr is already in the entry range, no need to grow.*/ 3395 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3396 vm_map_unlock_read(map); 3397 return (KERN_SUCCESS); 3398 } 3399 3400 next_entry = prev_entry->next; 3401 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3402 /* 3403 * This entry does not grow upwards. Since the address lies 3404 * beyond this entry, the next entry (if one exists) has to 3405 * be a downward growable entry. The entry list header is 3406 * never a growable entry, so it suffices to check the flags. 3407 */ 3408 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3409 vm_map_unlock_read(map); 3410 return (KERN_SUCCESS); 3411 } 3412 stack_entry = next_entry; 3413 } else { 3414 /* 3415 * This entry grows upward. If the next entry does not at 3416 * least grow downwards, this is the entry we need to grow. 3417 * otherwise we have two possible choices and we have to 3418 * select one. 3419 */ 3420 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3421 /* 3422 * We have two choices; grow the entry closest to 3423 * the address to minimize the amount of growth. 3424 */ 3425 if (addr - prev_entry->end <= next_entry->start - addr) 3426 stack_entry = prev_entry; 3427 else 3428 stack_entry = next_entry; 3429 } else 3430 stack_entry = prev_entry; 3431 } 3432 3433 if (stack_entry == next_entry) { 3434 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3435 KASSERT(addr < stack_entry->start, ("foo")); 3436 end = (prev_entry != &map->header) ? prev_entry->end : 3437 stack_entry->start - stack_entry->avail_ssize; 3438 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3439 max_grow = stack_entry->start - end; 3440 } else { 3441 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3442 KASSERT(addr >= stack_entry->end, ("foo")); 3443 end = (next_entry != &map->header) ? next_entry->start : 3444 stack_entry->end + stack_entry->avail_ssize; 3445 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3446 max_grow = end - stack_entry->end; 3447 } 3448 3449 if (grow_amount > stack_entry->avail_ssize) { 3450 vm_map_unlock_read(map); 3451 return (KERN_NO_SPACE); 3452 } 3453 3454 /* 3455 * If there is no longer enough space between the entries nogo, and 3456 * adjust the available space. Note: this should only happen if the 3457 * user has mapped into the stack area after the stack was created, 3458 * and is probably an error. 3459 * 3460 * This also effectively destroys any guard page the user might have 3461 * intended by limiting the stack size. 3462 */ 3463 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3464 if (vm_map_lock_upgrade(map)) 3465 goto Retry; 3466 3467 stack_entry->avail_ssize = max_grow; 3468 3469 vm_map_unlock(map); 3470 return (KERN_NO_SPACE); 3471 } 3472 3473 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3474 3475 /* 3476 * If this is the main process stack, see if we're over the stack 3477 * limit. 3478 */ 3479 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3480 vm_map_unlock_read(map); 3481 return (KERN_NO_SPACE); 3482 } 3483 #ifdef RACCT 3484 PROC_LOCK(p); 3485 if (is_procstack && 3486 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3487 PROC_UNLOCK(p); 3488 vm_map_unlock_read(map); 3489 return (KERN_NO_SPACE); 3490 } 3491 PROC_UNLOCK(p); 3492 #endif 3493 3494 /* Round up the grow amount modulo sgrowsiz */ 3495 growsize = sgrowsiz; 3496 grow_amount = roundup(grow_amount, growsize); 3497 if (grow_amount > stack_entry->avail_ssize) 3498 grow_amount = stack_entry->avail_ssize; 3499 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3500 grow_amount = trunc_page((vm_size_t)stacklim) - 3501 ctob(vm->vm_ssize); 3502 } 3503 #ifdef notyet 3504 PROC_LOCK(p); 3505 limit = racct_get_available(p, RACCT_STACK); 3506 PROC_UNLOCK(p); 3507 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3508 grow_amount = limit - ctob(vm->vm_ssize); 3509 #endif 3510 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3511 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3512 vm_map_unlock_read(map); 3513 rv = KERN_NO_SPACE; 3514 goto out; 3515 } 3516 #ifdef RACCT 3517 PROC_LOCK(p); 3518 if (racct_set(p, RACCT_MEMLOCK, 3519 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3520 PROC_UNLOCK(p); 3521 vm_map_unlock_read(map); 3522 rv = KERN_NO_SPACE; 3523 goto out; 3524 } 3525 PROC_UNLOCK(p); 3526 #endif 3527 } 3528 /* If we would blow our VMEM resource limit, no go */ 3529 if (map->size + grow_amount > vmemlim) { 3530 vm_map_unlock_read(map); 3531 rv = KERN_NO_SPACE; 3532 goto out; 3533 } 3534 #ifdef RACCT 3535 PROC_LOCK(p); 3536 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3537 PROC_UNLOCK(p); 3538 vm_map_unlock_read(map); 3539 rv = KERN_NO_SPACE; 3540 goto out; 3541 } 3542 PROC_UNLOCK(p); 3543 #endif 3544 3545 if (vm_map_lock_upgrade(map)) 3546 goto Retry; 3547 3548 if (stack_entry == next_entry) { 3549 /* 3550 * Growing downward. 3551 */ 3552 /* Get the preliminary new entry start value */ 3553 addr = stack_entry->start - grow_amount; 3554 3555 /* 3556 * If this puts us into the previous entry, cut back our 3557 * growth to the available space. Also, see the note above. 3558 */ 3559 if (addr < end) { 3560 stack_entry->avail_ssize = max_grow; 3561 addr = end; 3562 if (stack_guard_page) 3563 addr += PAGE_SIZE; 3564 } 3565 3566 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3567 next_entry->protection, next_entry->max_protection, 0); 3568 3569 /* Adjust the available stack space by the amount we grew. */ 3570 if (rv == KERN_SUCCESS) { 3571 if (prev_entry != &map->header) 3572 vm_map_clip_end(map, prev_entry, addr); 3573 new_entry = prev_entry->next; 3574 KASSERT(new_entry == stack_entry->prev, ("foo")); 3575 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3576 KASSERT(new_entry->start == addr, ("foo")); 3577 grow_amount = new_entry->end - new_entry->start; 3578 new_entry->avail_ssize = stack_entry->avail_ssize - 3579 grow_amount; 3580 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3581 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3582 } 3583 } else { 3584 /* 3585 * Growing upward. 3586 */ 3587 addr = stack_entry->end + grow_amount; 3588 3589 /* 3590 * If this puts us into the next entry, cut back our growth 3591 * to the available space. Also, see the note above. 3592 */ 3593 if (addr > end) { 3594 stack_entry->avail_ssize = end - stack_entry->end; 3595 addr = end; 3596 if (stack_guard_page) 3597 addr -= PAGE_SIZE; 3598 } 3599 3600 grow_amount = addr - stack_entry->end; 3601 cred = stack_entry->cred; 3602 if (cred == NULL && stack_entry->object.vm_object != NULL) 3603 cred = stack_entry->object.vm_object->cred; 3604 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3605 rv = KERN_NO_SPACE; 3606 /* Grow the underlying object if applicable. */ 3607 else if (stack_entry->object.vm_object == NULL || 3608 vm_object_coalesce(stack_entry->object.vm_object, 3609 stack_entry->offset, 3610 (vm_size_t)(stack_entry->end - stack_entry->start), 3611 (vm_size_t)grow_amount, cred != NULL)) { 3612 map->size += (addr - stack_entry->end); 3613 /* Update the current entry. */ 3614 stack_entry->end = addr; 3615 stack_entry->avail_ssize -= grow_amount; 3616 vm_map_entry_resize_free(map, stack_entry); 3617 rv = KERN_SUCCESS; 3618 3619 if (next_entry != &map->header) 3620 vm_map_clip_start(map, next_entry, addr); 3621 } else 3622 rv = KERN_FAILURE; 3623 } 3624 3625 if (rv == KERN_SUCCESS && is_procstack) 3626 vm->vm_ssize += btoc(grow_amount); 3627 3628 vm_map_unlock(map); 3629 3630 /* 3631 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3632 */ 3633 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3634 vm_map_wire(map, 3635 (stack_entry == next_entry) ? addr : addr - grow_amount, 3636 (stack_entry == next_entry) ? stack_entry->start : addr, 3637 (p->p_flag & P_SYSTEM) 3638 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3639 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3640 } 3641 3642 out: 3643 #ifdef RACCT 3644 if (rv != KERN_SUCCESS) { 3645 PROC_LOCK(p); 3646 error = racct_set(p, RACCT_VMEM, map->size); 3647 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3648 if (!old_mlock) { 3649 error = racct_set(p, RACCT_MEMLOCK, 3650 ptoa(pmap_wired_count(map->pmap))); 3651 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3652 } 3653 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3654 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3655 PROC_UNLOCK(p); 3656 } 3657 #endif 3658 3659 return (rv); 3660 } 3661 3662 /* 3663 * Unshare the specified VM space for exec. If other processes are 3664 * mapped to it, then create a new one. The new vmspace is null. 3665 */ 3666 int 3667 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3668 { 3669 struct vmspace *oldvmspace = p->p_vmspace; 3670 struct vmspace *newvmspace; 3671 3672 newvmspace = vmspace_alloc(minuser, maxuser); 3673 if (newvmspace == NULL) 3674 return (ENOMEM); 3675 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3676 /* 3677 * This code is written like this for prototype purposes. The 3678 * goal is to avoid running down the vmspace here, but let the 3679 * other process's that are still using the vmspace to finally 3680 * run it down. Even though there is little or no chance of blocking 3681 * here, it is a good idea to keep this form for future mods. 3682 */ 3683 PROC_VMSPACE_LOCK(p); 3684 p->p_vmspace = newvmspace; 3685 PROC_VMSPACE_UNLOCK(p); 3686 if (p == curthread->td_proc) 3687 pmap_activate(curthread); 3688 vmspace_free(oldvmspace); 3689 return (0); 3690 } 3691 3692 /* 3693 * Unshare the specified VM space for forcing COW. This 3694 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3695 */ 3696 int 3697 vmspace_unshare(struct proc *p) 3698 { 3699 struct vmspace *oldvmspace = p->p_vmspace; 3700 struct vmspace *newvmspace; 3701 vm_ooffset_t fork_charge; 3702 3703 if (oldvmspace->vm_refcnt == 1) 3704 return (0); 3705 fork_charge = 0; 3706 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3707 if (newvmspace == NULL) 3708 return (ENOMEM); 3709 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3710 vmspace_free(newvmspace); 3711 return (ENOMEM); 3712 } 3713 PROC_VMSPACE_LOCK(p); 3714 p->p_vmspace = newvmspace; 3715 PROC_VMSPACE_UNLOCK(p); 3716 if (p == curthread->td_proc) 3717 pmap_activate(curthread); 3718 vmspace_free(oldvmspace); 3719 return (0); 3720 } 3721 3722 /* 3723 * vm_map_lookup: 3724 * 3725 * Finds the VM object, offset, and 3726 * protection for a given virtual address in the 3727 * specified map, assuming a page fault of the 3728 * type specified. 3729 * 3730 * Leaves the map in question locked for read; return 3731 * values are guaranteed until a vm_map_lookup_done 3732 * call is performed. Note that the map argument 3733 * is in/out; the returned map must be used in 3734 * the call to vm_map_lookup_done. 3735 * 3736 * A handle (out_entry) is returned for use in 3737 * vm_map_lookup_done, to make that fast. 3738 * 3739 * If a lookup is requested with "write protection" 3740 * specified, the map may be changed to perform virtual 3741 * copying operations, although the data referenced will 3742 * remain the same. 3743 */ 3744 int 3745 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3746 vm_offset_t vaddr, 3747 vm_prot_t fault_typea, 3748 vm_map_entry_t *out_entry, /* OUT */ 3749 vm_object_t *object, /* OUT */ 3750 vm_pindex_t *pindex, /* OUT */ 3751 vm_prot_t *out_prot, /* OUT */ 3752 boolean_t *wired) /* OUT */ 3753 { 3754 vm_map_entry_t entry; 3755 vm_map_t map = *var_map; 3756 vm_prot_t prot; 3757 vm_prot_t fault_type = fault_typea; 3758 vm_object_t eobject; 3759 vm_size_t size; 3760 struct ucred *cred; 3761 3762 RetryLookup:; 3763 3764 vm_map_lock_read(map); 3765 3766 /* 3767 * Lookup the faulting address. 3768 */ 3769 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3770 vm_map_unlock_read(map); 3771 return (KERN_INVALID_ADDRESS); 3772 } 3773 3774 entry = *out_entry; 3775 3776 /* 3777 * Handle submaps. 3778 */ 3779 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3780 vm_map_t old_map = map; 3781 3782 *var_map = map = entry->object.sub_map; 3783 vm_map_unlock_read(old_map); 3784 goto RetryLookup; 3785 } 3786 3787 /* 3788 * Check whether this task is allowed to have this page. 3789 */ 3790 prot = entry->protection; 3791 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3792 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3793 vm_map_unlock_read(map); 3794 return (KERN_PROTECTION_FAILURE); 3795 } 3796 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3797 (entry->eflags & MAP_ENTRY_COW) && 3798 (fault_type & VM_PROT_WRITE)) { 3799 vm_map_unlock_read(map); 3800 return (KERN_PROTECTION_FAILURE); 3801 } 3802 3803 /* 3804 * If this page is not pageable, we have to get it for all possible 3805 * accesses. 3806 */ 3807 *wired = (entry->wired_count != 0); 3808 if (*wired) 3809 fault_type = entry->protection; 3810 size = entry->end - entry->start; 3811 /* 3812 * If the entry was copy-on-write, we either ... 3813 */ 3814 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3815 /* 3816 * If we want to write the page, we may as well handle that 3817 * now since we've got the map locked. 3818 * 3819 * If we don't need to write the page, we just demote the 3820 * permissions allowed. 3821 */ 3822 if ((fault_type & VM_PROT_WRITE) != 0 || 3823 (fault_typea & VM_PROT_COPY) != 0) { 3824 /* 3825 * Make a new object, and place it in the object 3826 * chain. Note that no new references have appeared 3827 * -- one just moved from the map to the new 3828 * object. 3829 */ 3830 if (vm_map_lock_upgrade(map)) 3831 goto RetryLookup; 3832 3833 if (entry->cred == NULL) { 3834 /* 3835 * The debugger owner is charged for 3836 * the memory. 3837 */ 3838 cred = curthread->td_ucred; 3839 crhold(cred); 3840 if (!swap_reserve_by_cred(size, cred)) { 3841 crfree(cred); 3842 vm_map_unlock(map); 3843 return (KERN_RESOURCE_SHORTAGE); 3844 } 3845 entry->cred = cred; 3846 } 3847 vm_object_shadow(&entry->object.vm_object, 3848 &entry->offset, size); 3849 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3850 eobject = entry->object.vm_object; 3851 if (eobject->cred != NULL) { 3852 /* 3853 * The object was not shadowed. 3854 */ 3855 swap_release_by_cred(size, entry->cred); 3856 crfree(entry->cred); 3857 entry->cred = NULL; 3858 } else if (entry->cred != NULL) { 3859 VM_OBJECT_WLOCK(eobject); 3860 eobject->cred = entry->cred; 3861 eobject->charge = size; 3862 VM_OBJECT_WUNLOCK(eobject); 3863 entry->cred = NULL; 3864 } 3865 3866 vm_map_lock_downgrade(map); 3867 } else { 3868 /* 3869 * We're attempting to read a copy-on-write page -- 3870 * don't allow writes. 3871 */ 3872 prot &= ~VM_PROT_WRITE; 3873 } 3874 } 3875 3876 /* 3877 * Create an object if necessary. 3878 */ 3879 if (entry->object.vm_object == NULL && 3880 !map->system_map) { 3881 if (vm_map_lock_upgrade(map)) 3882 goto RetryLookup; 3883 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3884 atop(size)); 3885 entry->offset = 0; 3886 if (entry->cred != NULL) { 3887 VM_OBJECT_WLOCK(entry->object.vm_object); 3888 entry->object.vm_object->cred = entry->cred; 3889 entry->object.vm_object->charge = size; 3890 VM_OBJECT_WUNLOCK(entry->object.vm_object); 3891 entry->cred = NULL; 3892 } 3893 vm_map_lock_downgrade(map); 3894 } 3895 3896 /* 3897 * Return the object/offset from this entry. If the entry was 3898 * copy-on-write or empty, it has been fixed up. 3899 */ 3900 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3901 *object = entry->object.vm_object; 3902 3903 *out_prot = prot; 3904 return (KERN_SUCCESS); 3905 } 3906 3907 /* 3908 * vm_map_lookup_locked: 3909 * 3910 * Lookup the faulting address. A version of vm_map_lookup that returns 3911 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3912 */ 3913 int 3914 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3915 vm_offset_t vaddr, 3916 vm_prot_t fault_typea, 3917 vm_map_entry_t *out_entry, /* OUT */ 3918 vm_object_t *object, /* OUT */ 3919 vm_pindex_t *pindex, /* OUT */ 3920 vm_prot_t *out_prot, /* OUT */ 3921 boolean_t *wired) /* OUT */ 3922 { 3923 vm_map_entry_t entry; 3924 vm_map_t map = *var_map; 3925 vm_prot_t prot; 3926 vm_prot_t fault_type = fault_typea; 3927 3928 /* 3929 * Lookup the faulting address. 3930 */ 3931 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 3932 return (KERN_INVALID_ADDRESS); 3933 3934 entry = *out_entry; 3935 3936 /* 3937 * Fail if the entry refers to a submap. 3938 */ 3939 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3940 return (KERN_FAILURE); 3941 3942 /* 3943 * Check whether this task is allowed to have this page. 3944 */ 3945 prot = entry->protection; 3946 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 3947 if ((fault_type & prot) != fault_type) 3948 return (KERN_PROTECTION_FAILURE); 3949 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3950 (entry->eflags & MAP_ENTRY_COW) && 3951 (fault_type & VM_PROT_WRITE)) 3952 return (KERN_PROTECTION_FAILURE); 3953 3954 /* 3955 * If this page is not pageable, we have to get it for all possible 3956 * accesses. 3957 */ 3958 *wired = (entry->wired_count != 0); 3959 if (*wired) 3960 fault_type = entry->protection; 3961 3962 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3963 /* 3964 * Fail if the entry was copy-on-write for a write fault. 3965 */ 3966 if (fault_type & VM_PROT_WRITE) 3967 return (KERN_FAILURE); 3968 /* 3969 * We're attempting to read a copy-on-write page -- 3970 * don't allow writes. 3971 */ 3972 prot &= ~VM_PROT_WRITE; 3973 } 3974 3975 /* 3976 * Fail if an object should be created. 3977 */ 3978 if (entry->object.vm_object == NULL && !map->system_map) 3979 return (KERN_FAILURE); 3980 3981 /* 3982 * Return the object/offset from this entry. If the entry was 3983 * copy-on-write or empty, it has been fixed up. 3984 */ 3985 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3986 *object = entry->object.vm_object; 3987 3988 *out_prot = prot; 3989 return (KERN_SUCCESS); 3990 } 3991 3992 /* 3993 * vm_map_lookup_done: 3994 * 3995 * Releases locks acquired by a vm_map_lookup 3996 * (according to the handle returned by that lookup). 3997 */ 3998 void 3999 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4000 { 4001 /* 4002 * Unlock the main-level map 4003 */ 4004 vm_map_unlock_read(map); 4005 } 4006 4007 #include "opt_ddb.h" 4008 #ifdef DDB 4009 #include <sys/kernel.h> 4010 4011 #include <ddb/ddb.h> 4012 4013 static void 4014 vm_map_print(vm_map_t map) 4015 { 4016 vm_map_entry_t entry; 4017 4018 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4019 (void *)map, 4020 (void *)map->pmap, map->nentries, map->timestamp); 4021 4022 db_indent += 2; 4023 for (entry = map->header.next; entry != &map->header; 4024 entry = entry->next) { 4025 db_iprintf("map entry %p: start=%p, end=%p\n", 4026 (void *)entry, (void *)entry->start, (void *)entry->end); 4027 { 4028 static char *inheritance_name[4] = 4029 {"share", "copy", "none", "donate_copy"}; 4030 4031 db_iprintf(" prot=%x/%x/%s", 4032 entry->protection, 4033 entry->max_protection, 4034 inheritance_name[(int)(unsigned char)entry->inheritance]); 4035 if (entry->wired_count != 0) 4036 db_printf(", wired"); 4037 } 4038 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4039 db_printf(", share=%p, offset=0x%jx\n", 4040 (void *)entry->object.sub_map, 4041 (uintmax_t)entry->offset); 4042 if ((entry->prev == &map->header) || 4043 (entry->prev->object.sub_map != 4044 entry->object.sub_map)) { 4045 db_indent += 2; 4046 vm_map_print((vm_map_t)entry->object.sub_map); 4047 db_indent -= 2; 4048 } 4049 } else { 4050 if (entry->cred != NULL) 4051 db_printf(", ruid %d", entry->cred->cr_ruid); 4052 db_printf(", object=%p, offset=0x%jx", 4053 (void *)entry->object.vm_object, 4054 (uintmax_t)entry->offset); 4055 if (entry->object.vm_object && entry->object.vm_object->cred) 4056 db_printf(", obj ruid %d charge %jx", 4057 entry->object.vm_object->cred->cr_ruid, 4058 (uintmax_t)entry->object.vm_object->charge); 4059 if (entry->eflags & MAP_ENTRY_COW) 4060 db_printf(", copy (%s)", 4061 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4062 db_printf("\n"); 4063 4064 if ((entry->prev == &map->header) || 4065 (entry->prev->object.vm_object != 4066 entry->object.vm_object)) { 4067 db_indent += 2; 4068 vm_object_print((db_expr_t)(intptr_t) 4069 entry->object.vm_object, 4070 1, 0, (char *)0); 4071 db_indent -= 2; 4072 } 4073 } 4074 } 4075 db_indent -= 2; 4076 } 4077 4078 DB_SHOW_COMMAND(map, map) 4079 { 4080 4081 if (!have_addr) { 4082 db_printf("usage: show map <addr>\n"); 4083 return; 4084 } 4085 vm_map_print((vm_map_t)addr); 4086 } 4087 4088 DB_SHOW_COMMAND(procvm, procvm) 4089 { 4090 struct proc *p; 4091 4092 if (have_addr) { 4093 p = (struct proc *) addr; 4094 } else { 4095 p = curproc; 4096 } 4097 4098 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4099 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4100 (void *)vmspace_pmap(p->p_vmspace)); 4101 4102 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4103 } 4104 4105 #endif /* DDB */ 4106