1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/rwlock.h> 81 #include <sys/file.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/shm.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_pager.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t mapzone; 128 static uma_zone_t vmspace_zone; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static void vmspace_zfini(void *mem, int size); 131 static int vm_map_zinit(void *mem, int ize, int flags); 132 static void vm_map_zfini(void *mem, int size); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 137 #ifdef INVARIANTS 138 static void vm_map_zdtor(void *mem, int size, void *arg); 139 static void vmspace_zdtor(void *mem, int size, void *arg); 140 #endif 141 142 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 143 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 144 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 145 146 /* 147 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 148 * stable. 149 */ 150 #define PROC_VMSPACE_LOCK(p) do { } while (0) 151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 152 153 /* 154 * VM_MAP_RANGE_CHECK: [ internal use only ] 155 * 156 * Asserts that the starting and ending region 157 * addresses fall within the valid range of the map. 158 */ 159 #define VM_MAP_RANGE_CHECK(map, start, end) \ 160 { \ 161 if (start < vm_map_min(map)) \ 162 start = vm_map_min(map); \ 163 if (end > vm_map_max(map)) \ 164 end = vm_map_max(map); \ 165 if (start > end) \ 166 start = end; \ 167 } 168 169 /* 170 * vm_map_startup: 171 * 172 * Initialize the vm_map module. Must be called before 173 * any other vm_map routines. 174 * 175 * Map and entry structures are allocated from the general 176 * purpose memory pool with some exceptions: 177 * 178 * - The kernel map and kmem submap are allocated statically. 179 * - Kernel map entries are allocated out of a static pool. 180 * 181 * These restrictions are necessary since malloc() uses the 182 * maps and requires map entries. 183 */ 184 185 void 186 vm_map_startup(void) 187 { 188 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 189 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 190 #ifdef INVARIANTS 191 vm_map_zdtor, 192 #else 193 NULL, 194 #endif 195 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 196 uma_prealloc(mapzone, MAX_KMAP); 197 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 198 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 199 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 200 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 201 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 202 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 203 #ifdef INVARIANTS 204 vmspace_zdtor, 205 #else 206 NULL, 207 #endif 208 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 209 } 210 211 static void 212 vmspace_zfini(void *mem, int size) 213 { 214 struct vmspace *vm; 215 216 vm = (struct vmspace *)mem; 217 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 218 } 219 220 static int 221 vmspace_zinit(void *mem, int size, int flags) 222 { 223 struct vmspace *vm; 224 225 vm = (struct vmspace *)mem; 226 227 vm->vm_map.pmap = NULL; 228 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 229 PMAP_LOCK_INIT(vmspace_pmap(vm)); 230 return (0); 231 } 232 233 static void 234 vm_map_zfini(void *mem, int size) 235 { 236 vm_map_t map; 237 238 map = (vm_map_t)mem; 239 mtx_destroy(&map->system_mtx); 240 sx_destroy(&map->lock); 241 } 242 243 static int 244 vm_map_zinit(void *mem, int size, int flags) 245 { 246 vm_map_t map; 247 248 map = (vm_map_t)mem; 249 memset(map, 0, sizeof(*map)); 250 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 251 sx_init(&map->lock, "vm map (user)"); 252 return (0); 253 } 254 255 #ifdef INVARIANTS 256 static void 257 vmspace_zdtor(void *mem, int size, void *arg) 258 { 259 struct vmspace *vm; 260 261 vm = (struct vmspace *)mem; 262 263 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 264 } 265 static void 266 vm_map_zdtor(void *mem, int size, void *arg) 267 { 268 vm_map_t map; 269 270 map = (vm_map_t)mem; 271 KASSERT(map->nentries == 0, 272 ("map %p nentries == %d on free.", 273 map, map->nentries)); 274 KASSERT(map->size == 0, 275 ("map %p size == %lu on free.", 276 map, (unsigned long)map->size)); 277 } 278 #endif /* INVARIANTS */ 279 280 /* 281 * Allocate a vmspace structure, including a vm_map and pmap, 282 * and initialize those structures. The refcnt is set to 1. 283 * 284 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 285 */ 286 struct vmspace * 287 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 288 { 289 struct vmspace *vm; 290 291 vm = uma_zalloc(vmspace_zone, M_WAITOK); 292 293 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 294 295 if (pinit == NULL) 296 pinit = &pmap_pinit; 297 298 if (!pinit(vmspace_pmap(vm))) { 299 uma_zfree(vmspace_zone, vm); 300 return (NULL); 301 } 302 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 303 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 304 vm->vm_refcnt = 1; 305 vm->vm_shm = NULL; 306 vm->vm_swrss = 0; 307 vm->vm_tsize = 0; 308 vm->vm_dsize = 0; 309 vm->vm_ssize = 0; 310 vm->vm_taddr = 0; 311 vm->vm_daddr = 0; 312 vm->vm_maxsaddr = 0; 313 return (vm); 314 } 315 316 static void 317 vmspace_container_reset(struct proc *p) 318 { 319 320 #ifdef RACCT 321 PROC_LOCK(p); 322 racct_set(p, RACCT_DATA, 0); 323 racct_set(p, RACCT_STACK, 0); 324 racct_set(p, RACCT_RSS, 0); 325 racct_set(p, RACCT_MEMLOCK, 0); 326 racct_set(p, RACCT_VMEM, 0); 327 PROC_UNLOCK(p); 328 #endif 329 } 330 331 static inline void 332 vmspace_dofree(struct vmspace *vm) 333 { 334 335 CTR1(KTR_VM, "vmspace_free: %p", vm); 336 337 /* 338 * Make sure any SysV shm is freed, it might not have been in 339 * exit1(). 340 */ 341 shmexit(vm); 342 343 /* 344 * Lock the map, to wait out all other references to it. 345 * Delete all of the mappings and pages they hold, then call 346 * the pmap module to reclaim anything left. 347 */ 348 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 349 vm->vm_map.max_offset); 350 351 pmap_release(vmspace_pmap(vm)); 352 vm->vm_map.pmap = NULL; 353 uma_zfree(vmspace_zone, vm); 354 } 355 356 void 357 vmspace_free(struct vmspace *vm) 358 { 359 360 if (vm->vm_refcnt == 0) 361 panic("vmspace_free: attempt to free already freed vmspace"); 362 363 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 364 vmspace_dofree(vm); 365 } 366 367 void 368 vmspace_exitfree(struct proc *p) 369 { 370 struct vmspace *vm; 371 372 PROC_VMSPACE_LOCK(p); 373 vm = p->p_vmspace; 374 p->p_vmspace = NULL; 375 PROC_VMSPACE_UNLOCK(p); 376 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 377 vmspace_free(vm); 378 } 379 380 void 381 vmspace_exit(struct thread *td) 382 { 383 int refcnt; 384 struct vmspace *vm; 385 struct proc *p; 386 387 /* 388 * Release user portion of address space. 389 * This releases references to vnodes, 390 * which could cause I/O if the file has been unlinked. 391 * Need to do this early enough that we can still sleep. 392 * 393 * The last exiting process to reach this point releases as 394 * much of the environment as it can. vmspace_dofree() is the 395 * slower fallback in case another process had a temporary 396 * reference to the vmspace. 397 */ 398 399 p = td->td_proc; 400 vm = p->p_vmspace; 401 atomic_add_int(&vmspace0.vm_refcnt, 1); 402 do { 403 refcnt = vm->vm_refcnt; 404 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 405 /* Switch now since other proc might free vmspace */ 406 PROC_VMSPACE_LOCK(p); 407 p->p_vmspace = &vmspace0; 408 PROC_VMSPACE_UNLOCK(p); 409 pmap_activate(td); 410 } 411 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 412 if (refcnt == 1) { 413 if (p->p_vmspace != vm) { 414 /* vmspace not yet freed, switch back */ 415 PROC_VMSPACE_LOCK(p); 416 p->p_vmspace = vm; 417 PROC_VMSPACE_UNLOCK(p); 418 pmap_activate(td); 419 } 420 pmap_remove_pages(vmspace_pmap(vm)); 421 /* Switch now since this proc will free vmspace */ 422 PROC_VMSPACE_LOCK(p); 423 p->p_vmspace = &vmspace0; 424 PROC_VMSPACE_UNLOCK(p); 425 pmap_activate(td); 426 vmspace_dofree(vm); 427 } 428 vmspace_container_reset(p); 429 } 430 431 /* Acquire reference to vmspace owned by another process. */ 432 433 struct vmspace * 434 vmspace_acquire_ref(struct proc *p) 435 { 436 struct vmspace *vm; 437 int refcnt; 438 439 PROC_VMSPACE_LOCK(p); 440 vm = p->p_vmspace; 441 if (vm == NULL) { 442 PROC_VMSPACE_UNLOCK(p); 443 return (NULL); 444 } 445 do { 446 refcnt = vm->vm_refcnt; 447 if (refcnt <= 0) { /* Avoid 0->1 transition */ 448 PROC_VMSPACE_UNLOCK(p); 449 return (NULL); 450 } 451 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 452 if (vm != p->p_vmspace) { 453 PROC_VMSPACE_UNLOCK(p); 454 vmspace_free(vm); 455 return (NULL); 456 } 457 PROC_VMSPACE_UNLOCK(p); 458 return (vm); 459 } 460 461 void 462 _vm_map_lock(vm_map_t map, const char *file, int line) 463 { 464 465 if (map->system_map) 466 mtx_lock_flags_(&map->system_mtx, 0, file, line); 467 else 468 sx_xlock_(&map->lock, file, line); 469 map->timestamp++; 470 } 471 472 static void 473 vm_map_process_deferred(void) 474 { 475 struct thread *td; 476 vm_map_entry_t entry, next; 477 vm_object_t object; 478 479 td = curthread; 480 entry = td->td_map_def_user; 481 td->td_map_def_user = NULL; 482 while (entry != NULL) { 483 next = entry->next; 484 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 485 /* 486 * Decrement the object's writemappings and 487 * possibly the vnode's v_writecount. 488 */ 489 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 490 ("Submap with writecount")); 491 object = entry->object.vm_object; 492 KASSERT(object != NULL, ("No object for writecount")); 493 vnode_pager_release_writecount(object, entry->start, 494 entry->end); 495 } 496 vm_map_entry_deallocate(entry, FALSE); 497 entry = next; 498 } 499 } 500 501 void 502 _vm_map_unlock(vm_map_t map, const char *file, int line) 503 { 504 505 if (map->system_map) 506 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 507 else { 508 sx_xunlock_(&map->lock, file, line); 509 vm_map_process_deferred(); 510 } 511 } 512 513 void 514 _vm_map_lock_read(vm_map_t map, const char *file, int line) 515 { 516 517 if (map->system_map) 518 mtx_lock_flags_(&map->system_mtx, 0, file, line); 519 else 520 sx_slock_(&map->lock, file, line); 521 } 522 523 void 524 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 525 { 526 527 if (map->system_map) 528 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 529 else { 530 sx_sunlock_(&map->lock, file, line); 531 vm_map_process_deferred(); 532 } 533 } 534 535 int 536 _vm_map_trylock(vm_map_t map, const char *file, int line) 537 { 538 int error; 539 540 error = map->system_map ? 541 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 542 !sx_try_xlock_(&map->lock, file, line); 543 if (error == 0) 544 map->timestamp++; 545 return (error == 0); 546 } 547 548 int 549 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 550 { 551 int error; 552 553 error = map->system_map ? 554 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 555 !sx_try_slock_(&map->lock, file, line); 556 return (error == 0); 557 } 558 559 /* 560 * _vm_map_lock_upgrade: [ internal use only ] 561 * 562 * Tries to upgrade a read (shared) lock on the specified map to a write 563 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 564 * non-zero value if the upgrade fails. If the upgrade fails, the map is 565 * returned without a read or write lock held. 566 * 567 * Requires that the map be read locked. 568 */ 569 int 570 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 571 { 572 unsigned int last_timestamp; 573 574 if (map->system_map) { 575 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 576 } else { 577 if (!sx_try_upgrade_(&map->lock, file, line)) { 578 last_timestamp = map->timestamp; 579 sx_sunlock_(&map->lock, file, line); 580 vm_map_process_deferred(); 581 /* 582 * If the map's timestamp does not change while the 583 * map is unlocked, then the upgrade succeeds. 584 */ 585 sx_xlock_(&map->lock, file, line); 586 if (last_timestamp != map->timestamp) { 587 sx_xunlock_(&map->lock, file, line); 588 return (1); 589 } 590 } 591 } 592 map->timestamp++; 593 return (0); 594 } 595 596 void 597 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 598 { 599 600 if (map->system_map) { 601 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 602 } else 603 sx_downgrade_(&map->lock, file, line); 604 } 605 606 /* 607 * vm_map_locked: 608 * 609 * Returns a non-zero value if the caller holds a write (exclusive) lock 610 * on the specified map and the value "0" otherwise. 611 */ 612 int 613 vm_map_locked(vm_map_t map) 614 { 615 616 if (map->system_map) 617 return (mtx_owned(&map->system_mtx)); 618 else 619 return (sx_xlocked(&map->lock)); 620 } 621 622 #ifdef INVARIANTS 623 static void 624 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 625 { 626 627 if (map->system_map) 628 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 629 else 630 sx_assert_(&map->lock, SA_XLOCKED, file, line); 631 } 632 633 #define VM_MAP_ASSERT_LOCKED(map) \ 634 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 635 #else 636 #define VM_MAP_ASSERT_LOCKED(map) 637 #endif 638 639 /* 640 * _vm_map_unlock_and_wait: 641 * 642 * Atomically releases the lock on the specified map and puts the calling 643 * thread to sleep. The calling thread will remain asleep until either 644 * vm_map_wakeup() is performed on the map or the specified timeout is 645 * exceeded. 646 * 647 * WARNING! This function does not perform deferred deallocations of 648 * objects and map entries. Therefore, the calling thread is expected to 649 * reacquire the map lock after reawakening and later perform an ordinary 650 * unlock operation, such as vm_map_unlock(), before completing its 651 * operation on the map. 652 */ 653 int 654 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 655 { 656 657 mtx_lock(&map_sleep_mtx); 658 if (map->system_map) 659 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 660 else 661 sx_xunlock_(&map->lock, file, line); 662 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 663 timo)); 664 } 665 666 /* 667 * vm_map_wakeup: 668 * 669 * Awaken any threads that have slept on the map using 670 * vm_map_unlock_and_wait(). 671 */ 672 void 673 vm_map_wakeup(vm_map_t map) 674 { 675 676 /* 677 * Acquire and release map_sleep_mtx to prevent a wakeup() 678 * from being performed (and lost) between the map unlock 679 * and the msleep() in _vm_map_unlock_and_wait(). 680 */ 681 mtx_lock(&map_sleep_mtx); 682 mtx_unlock(&map_sleep_mtx); 683 wakeup(&map->root); 684 } 685 686 void 687 vm_map_busy(vm_map_t map) 688 { 689 690 VM_MAP_ASSERT_LOCKED(map); 691 map->busy++; 692 } 693 694 void 695 vm_map_unbusy(vm_map_t map) 696 { 697 698 VM_MAP_ASSERT_LOCKED(map); 699 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 700 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 701 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 702 wakeup(&map->busy); 703 } 704 } 705 706 void 707 vm_map_wait_busy(vm_map_t map) 708 { 709 710 VM_MAP_ASSERT_LOCKED(map); 711 while (map->busy) { 712 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 713 if (map->system_map) 714 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 715 else 716 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 717 } 718 map->timestamp++; 719 } 720 721 long 722 vmspace_resident_count(struct vmspace *vmspace) 723 { 724 return pmap_resident_count(vmspace_pmap(vmspace)); 725 } 726 727 /* 728 * vm_map_create: 729 * 730 * Creates and returns a new empty VM map with 731 * the given physical map structure, and having 732 * the given lower and upper address bounds. 733 */ 734 vm_map_t 735 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 736 { 737 vm_map_t result; 738 739 result = uma_zalloc(mapzone, M_WAITOK); 740 CTR1(KTR_VM, "vm_map_create: %p", result); 741 _vm_map_init(result, pmap, min, max); 742 return (result); 743 } 744 745 /* 746 * Initialize an existing vm_map structure 747 * such as that in the vmspace structure. 748 */ 749 static void 750 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 751 { 752 753 map->header.next = map->header.prev = &map->header; 754 map->needs_wakeup = FALSE; 755 map->system_map = 0; 756 map->pmap = pmap; 757 map->min_offset = min; 758 map->max_offset = max; 759 map->flags = 0; 760 map->root = NULL; 761 map->timestamp = 0; 762 map->busy = 0; 763 } 764 765 void 766 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 767 { 768 769 _vm_map_init(map, pmap, min, max); 770 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 771 sx_init(&map->lock, "user map"); 772 } 773 774 /* 775 * vm_map_entry_dispose: [ internal use only ] 776 * 777 * Inverse of vm_map_entry_create. 778 */ 779 static void 780 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 781 { 782 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 783 } 784 785 /* 786 * vm_map_entry_create: [ internal use only ] 787 * 788 * Allocates a VM map entry for insertion. 789 * No entry fields are filled in. 790 */ 791 static vm_map_entry_t 792 vm_map_entry_create(vm_map_t map) 793 { 794 vm_map_entry_t new_entry; 795 796 if (map->system_map) 797 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 798 else 799 new_entry = uma_zalloc(mapentzone, M_WAITOK); 800 if (new_entry == NULL) 801 panic("vm_map_entry_create: kernel resources exhausted"); 802 return (new_entry); 803 } 804 805 /* 806 * vm_map_entry_set_behavior: 807 * 808 * Set the expected access behavior, either normal, random, or 809 * sequential. 810 */ 811 static inline void 812 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 813 { 814 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 815 (behavior & MAP_ENTRY_BEHAV_MASK); 816 } 817 818 /* 819 * vm_map_entry_set_max_free: 820 * 821 * Set the max_free field in a vm_map_entry. 822 */ 823 static inline void 824 vm_map_entry_set_max_free(vm_map_entry_t entry) 825 { 826 827 entry->max_free = entry->adj_free; 828 if (entry->left != NULL && entry->left->max_free > entry->max_free) 829 entry->max_free = entry->left->max_free; 830 if (entry->right != NULL && entry->right->max_free > entry->max_free) 831 entry->max_free = entry->right->max_free; 832 } 833 834 /* 835 * vm_map_entry_splay: 836 * 837 * The Sleator and Tarjan top-down splay algorithm with the 838 * following variation. Max_free must be computed bottom-up, so 839 * on the downward pass, maintain the left and right spines in 840 * reverse order. Then, make a second pass up each side to fix 841 * the pointers and compute max_free. The time bound is O(log n) 842 * amortized. 843 * 844 * The new root is the vm_map_entry containing "addr", or else an 845 * adjacent entry (lower or higher) if addr is not in the tree. 846 * 847 * The map must be locked, and leaves it so. 848 * 849 * Returns: the new root. 850 */ 851 static vm_map_entry_t 852 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 853 { 854 vm_map_entry_t llist, rlist; 855 vm_map_entry_t ltree, rtree; 856 vm_map_entry_t y; 857 858 /* Special case of empty tree. */ 859 if (root == NULL) 860 return (root); 861 862 /* 863 * Pass One: Splay down the tree until we find addr or a NULL 864 * pointer where addr would go. llist and rlist are the two 865 * sides in reverse order (bottom-up), with llist linked by 866 * the right pointer and rlist linked by the left pointer in 867 * the vm_map_entry. Wait until Pass Two to set max_free on 868 * the two spines. 869 */ 870 llist = NULL; 871 rlist = NULL; 872 for (;;) { 873 /* root is never NULL in here. */ 874 if (addr < root->start) { 875 y = root->left; 876 if (y == NULL) 877 break; 878 if (addr < y->start && y->left != NULL) { 879 /* Rotate right and put y on rlist. */ 880 root->left = y->right; 881 y->right = root; 882 vm_map_entry_set_max_free(root); 883 root = y->left; 884 y->left = rlist; 885 rlist = y; 886 } else { 887 /* Put root on rlist. */ 888 root->left = rlist; 889 rlist = root; 890 root = y; 891 } 892 } else if (addr >= root->end) { 893 y = root->right; 894 if (y == NULL) 895 break; 896 if (addr >= y->end && y->right != NULL) { 897 /* Rotate left and put y on llist. */ 898 root->right = y->left; 899 y->left = root; 900 vm_map_entry_set_max_free(root); 901 root = y->right; 902 y->right = llist; 903 llist = y; 904 } else { 905 /* Put root on llist. */ 906 root->right = llist; 907 llist = root; 908 root = y; 909 } 910 } else 911 break; 912 } 913 914 /* 915 * Pass Two: Walk back up the two spines, flip the pointers 916 * and set max_free. The subtrees of the root go at the 917 * bottom of llist and rlist. 918 */ 919 ltree = root->left; 920 while (llist != NULL) { 921 y = llist->right; 922 llist->right = ltree; 923 vm_map_entry_set_max_free(llist); 924 ltree = llist; 925 llist = y; 926 } 927 rtree = root->right; 928 while (rlist != NULL) { 929 y = rlist->left; 930 rlist->left = rtree; 931 vm_map_entry_set_max_free(rlist); 932 rtree = rlist; 933 rlist = y; 934 } 935 936 /* 937 * Final assembly: add ltree and rtree as subtrees of root. 938 */ 939 root->left = ltree; 940 root->right = rtree; 941 vm_map_entry_set_max_free(root); 942 943 return (root); 944 } 945 946 /* 947 * vm_map_entry_{un,}link: 948 * 949 * Insert/remove entries from maps. 950 */ 951 static void 952 vm_map_entry_link(vm_map_t map, 953 vm_map_entry_t after_where, 954 vm_map_entry_t entry) 955 { 956 957 CTR4(KTR_VM, 958 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 959 map->nentries, entry, after_where); 960 VM_MAP_ASSERT_LOCKED(map); 961 map->nentries++; 962 entry->prev = after_where; 963 entry->next = after_where->next; 964 entry->next->prev = entry; 965 after_where->next = entry; 966 967 if (after_where != &map->header) { 968 if (after_where != map->root) 969 vm_map_entry_splay(after_where->start, map->root); 970 entry->right = after_where->right; 971 entry->left = after_where; 972 after_where->right = NULL; 973 after_where->adj_free = entry->start - after_where->end; 974 vm_map_entry_set_max_free(after_where); 975 } else { 976 entry->right = map->root; 977 entry->left = NULL; 978 } 979 entry->adj_free = (entry->next == &map->header ? map->max_offset : 980 entry->next->start) - entry->end; 981 vm_map_entry_set_max_free(entry); 982 map->root = entry; 983 } 984 985 static void 986 vm_map_entry_unlink(vm_map_t map, 987 vm_map_entry_t entry) 988 { 989 vm_map_entry_t next, prev, root; 990 991 VM_MAP_ASSERT_LOCKED(map); 992 if (entry != map->root) 993 vm_map_entry_splay(entry->start, map->root); 994 if (entry->left == NULL) 995 root = entry->right; 996 else { 997 root = vm_map_entry_splay(entry->start, entry->left); 998 root->right = entry->right; 999 root->adj_free = (entry->next == &map->header ? map->max_offset : 1000 entry->next->start) - root->end; 1001 vm_map_entry_set_max_free(root); 1002 } 1003 map->root = root; 1004 1005 prev = entry->prev; 1006 next = entry->next; 1007 next->prev = prev; 1008 prev->next = next; 1009 map->nentries--; 1010 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1011 map->nentries, entry); 1012 } 1013 1014 /* 1015 * vm_map_entry_resize_free: 1016 * 1017 * Recompute the amount of free space following a vm_map_entry 1018 * and propagate that value up the tree. Call this function after 1019 * resizing a map entry in-place, that is, without a call to 1020 * vm_map_entry_link() or _unlink(). 1021 * 1022 * The map must be locked, and leaves it so. 1023 */ 1024 static void 1025 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1026 { 1027 1028 /* 1029 * Using splay trees without parent pointers, propagating 1030 * max_free up the tree is done by moving the entry to the 1031 * root and making the change there. 1032 */ 1033 if (entry != map->root) 1034 map->root = vm_map_entry_splay(entry->start, map->root); 1035 1036 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1037 entry->next->start) - entry->end; 1038 vm_map_entry_set_max_free(entry); 1039 } 1040 1041 /* 1042 * vm_map_lookup_entry: [ internal use only ] 1043 * 1044 * Finds the map entry containing (or 1045 * immediately preceding) the specified address 1046 * in the given map; the entry is returned 1047 * in the "entry" parameter. The boolean 1048 * result indicates whether the address is 1049 * actually contained in the map. 1050 */ 1051 boolean_t 1052 vm_map_lookup_entry( 1053 vm_map_t map, 1054 vm_offset_t address, 1055 vm_map_entry_t *entry) /* OUT */ 1056 { 1057 vm_map_entry_t cur; 1058 boolean_t locked; 1059 1060 /* 1061 * If the map is empty, then the map entry immediately preceding 1062 * "address" is the map's header. 1063 */ 1064 cur = map->root; 1065 if (cur == NULL) 1066 *entry = &map->header; 1067 else if (address >= cur->start && cur->end > address) { 1068 *entry = cur; 1069 return (TRUE); 1070 } else if ((locked = vm_map_locked(map)) || 1071 sx_try_upgrade(&map->lock)) { 1072 /* 1073 * Splay requires a write lock on the map. However, it only 1074 * restructures the binary search tree; it does not otherwise 1075 * change the map. Thus, the map's timestamp need not change 1076 * on a temporary upgrade. 1077 */ 1078 map->root = cur = vm_map_entry_splay(address, cur); 1079 if (!locked) 1080 sx_downgrade(&map->lock); 1081 1082 /* 1083 * If "address" is contained within a map entry, the new root 1084 * is that map entry. Otherwise, the new root is a map entry 1085 * immediately before or after "address". 1086 */ 1087 if (address >= cur->start) { 1088 *entry = cur; 1089 if (cur->end > address) 1090 return (TRUE); 1091 } else 1092 *entry = cur->prev; 1093 } else 1094 /* 1095 * Since the map is only locked for read access, perform a 1096 * standard binary search tree lookup for "address". 1097 */ 1098 for (;;) { 1099 if (address < cur->start) { 1100 if (cur->left == NULL) { 1101 *entry = cur->prev; 1102 break; 1103 } 1104 cur = cur->left; 1105 } else if (cur->end > address) { 1106 *entry = cur; 1107 return (TRUE); 1108 } else { 1109 if (cur->right == NULL) { 1110 *entry = cur; 1111 break; 1112 } 1113 cur = cur->right; 1114 } 1115 } 1116 return (FALSE); 1117 } 1118 1119 /* 1120 * vm_map_insert: 1121 * 1122 * Inserts the given whole VM object into the target 1123 * map at the specified address range. The object's 1124 * size should match that of the address range. 1125 * 1126 * Requires that the map be locked, and leaves it so. 1127 * 1128 * If object is non-NULL, ref count must be bumped by caller 1129 * prior to making call to account for the new entry. 1130 */ 1131 int 1132 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1133 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1134 int cow) 1135 { 1136 vm_map_entry_t new_entry; 1137 vm_map_entry_t prev_entry; 1138 vm_map_entry_t temp_entry; 1139 vm_eflags_t protoeflags; 1140 struct ucred *cred; 1141 vm_inherit_t inheritance; 1142 boolean_t charge_prev_obj; 1143 1144 VM_MAP_ASSERT_LOCKED(map); 1145 1146 /* 1147 * Check that the start and end points are not bogus. 1148 */ 1149 if ((start < map->min_offset) || (end > map->max_offset) || 1150 (start >= end)) 1151 return (KERN_INVALID_ADDRESS); 1152 1153 /* 1154 * Find the entry prior to the proposed starting address; if it's part 1155 * of an existing entry, this range is bogus. 1156 */ 1157 if (vm_map_lookup_entry(map, start, &temp_entry)) 1158 return (KERN_NO_SPACE); 1159 1160 prev_entry = temp_entry; 1161 1162 /* 1163 * Assert that the next entry doesn't overlap the end point. 1164 */ 1165 if ((prev_entry->next != &map->header) && 1166 (prev_entry->next->start < end)) 1167 return (KERN_NO_SPACE); 1168 1169 protoeflags = 0; 1170 charge_prev_obj = FALSE; 1171 1172 if (cow & MAP_COPY_ON_WRITE) 1173 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1174 1175 if (cow & MAP_NOFAULT) { 1176 protoeflags |= MAP_ENTRY_NOFAULT; 1177 1178 KASSERT(object == NULL, 1179 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1180 } 1181 if (cow & MAP_DISABLE_SYNCER) 1182 protoeflags |= MAP_ENTRY_NOSYNC; 1183 if (cow & MAP_DISABLE_COREDUMP) 1184 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1185 if (cow & MAP_VN_WRITECOUNT) 1186 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1187 if (cow & MAP_INHERIT_SHARE) 1188 inheritance = VM_INHERIT_SHARE; 1189 else 1190 inheritance = VM_INHERIT_DEFAULT; 1191 1192 cred = NULL; 1193 KASSERT((object != kmem_object && object != kernel_object) || 1194 ((object == kmem_object || object == kernel_object) && 1195 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1196 ("kmem or kernel object and cow")); 1197 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1198 goto charged; 1199 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1200 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1201 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1202 return (KERN_RESOURCE_SHORTAGE); 1203 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1204 object->cred == NULL, 1205 ("OVERCOMMIT: vm_map_insert o %p", object)); 1206 cred = curthread->td_ucred; 1207 crhold(cred); 1208 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1209 charge_prev_obj = TRUE; 1210 } 1211 1212 charged: 1213 /* Expand the kernel pmap, if necessary. */ 1214 if (map == kernel_map && end > kernel_vm_end) 1215 pmap_growkernel(end); 1216 if (object != NULL) { 1217 /* 1218 * OBJ_ONEMAPPING must be cleared unless this mapping 1219 * is trivially proven to be the only mapping for any 1220 * of the object's pages. (Object granularity 1221 * reference counting is insufficient to recognize 1222 * aliases with precision.) 1223 */ 1224 VM_OBJECT_WLOCK(object); 1225 if (object->ref_count > 1 || object->shadow_count != 0) 1226 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1227 VM_OBJECT_WUNLOCK(object); 1228 } 1229 else if ((prev_entry != &map->header) && 1230 (prev_entry->eflags == protoeflags) && 1231 (prev_entry->end == start) && 1232 (prev_entry->wired_count == 0) && 1233 (prev_entry->cred == cred || 1234 (prev_entry->object.vm_object != NULL && 1235 (prev_entry->object.vm_object->cred == cred))) && 1236 vm_object_coalesce(prev_entry->object.vm_object, 1237 prev_entry->offset, 1238 (vm_size_t)(prev_entry->end - prev_entry->start), 1239 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1240 /* 1241 * We were able to extend the object. Determine if we 1242 * can extend the previous map entry to include the 1243 * new range as well. 1244 */ 1245 if ((prev_entry->inheritance == inheritance) && 1246 (prev_entry->protection == prot) && 1247 (prev_entry->max_protection == max)) { 1248 map->size += (end - prev_entry->end); 1249 prev_entry->end = end; 1250 vm_map_entry_resize_free(map, prev_entry); 1251 vm_map_simplify_entry(map, prev_entry); 1252 if (cred != NULL) 1253 crfree(cred); 1254 return (KERN_SUCCESS); 1255 } 1256 1257 /* 1258 * If we can extend the object but cannot extend the 1259 * map entry, we have to create a new map entry. We 1260 * must bump the ref count on the extended object to 1261 * account for it. object may be NULL. 1262 */ 1263 object = prev_entry->object.vm_object; 1264 offset = prev_entry->offset + 1265 (prev_entry->end - prev_entry->start); 1266 vm_object_reference(object); 1267 if (cred != NULL && object != NULL && object->cred != NULL && 1268 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1269 /* Object already accounts for this uid. */ 1270 crfree(cred); 1271 cred = NULL; 1272 } 1273 } 1274 1275 /* 1276 * NOTE: if conditionals fail, object can be NULL here. This occurs 1277 * in things like the buffer map where we manage kva but do not manage 1278 * backing objects. 1279 */ 1280 1281 /* 1282 * Create a new entry 1283 */ 1284 new_entry = vm_map_entry_create(map); 1285 new_entry->start = start; 1286 new_entry->end = end; 1287 new_entry->cred = NULL; 1288 1289 new_entry->eflags = protoeflags; 1290 new_entry->object.vm_object = object; 1291 new_entry->offset = offset; 1292 new_entry->avail_ssize = 0; 1293 1294 new_entry->inheritance = inheritance; 1295 new_entry->protection = prot; 1296 new_entry->max_protection = max; 1297 new_entry->wired_count = 0; 1298 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1299 new_entry->next_read = OFF_TO_IDX(offset); 1300 1301 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1302 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1303 new_entry->cred = cred; 1304 1305 /* 1306 * Insert the new entry into the list 1307 */ 1308 vm_map_entry_link(map, prev_entry, new_entry); 1309 map->size += new_entry->end - new_entry->start; 1310 1311 /* 1312 * It may be possible to merge the new entry with the next and/or 1313 * previous entries. However, due to MAP_STACK_* being a hack, a 1314 * panic can result from merging such entries. 1315 */ 1316 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1317 vm_map_simplify_entry(map, new_entry); 1318 1319 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1320 vm_map_pmap_enter(map, start, prot, 1321 object, OFF_TO_IDX(offset), end - start, 1322 cow & MAP_PREFAULT_PARTIAL); 1323 } 1324 1325 return (KERN_SUCCESS); 1326 } 1327 1328 /* 1329 * vm_map_findspace: 1330 * 1331 * Find the first fit (lowest VM address) for "length" free bytes 1332 * beginning at address >= start in the given map. 1333 * 1334 * In a vm_map_entry, "adj_free" is the amount of free space 1335 * adjacent (higher address) to this entry, and "max_free" is the 1336 * maximum amount of contiguous free space in its subtree. This 1337 * allows finding a free region in one path down the tree, so 1338 * O(log n) amortized with splay trees. 1339 * 1340 * The map must be locked, and leaves it so. 1341 * 1342 * Returns: 0 on success, and starting address in *addr, 1343 * 1 if insufficient space. 1344 */ 1345 int 1346 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1347 vm_offset_t *addr) /* OUT */ 1348 { 1349 vm_map_entry_t entry; 1350 vm_offset_t st; 1351 1352 /* 1353 * Request must fit within min/max VM address and must avoid 1354 * address wrap. 1355 */ 1356 if (start < map->min_offset) 1357 start = map->min_offset; 1358 if (start + length > map->max_offset || start + length < start) 1359 return (1); 1360 1361 /* Empty tree means wide open address space. */ 1362 if (map->root == NULL) { 1363 *addr = start; 1364 return (0); 1365 } 1366 1367 /* 1368 * After splay, if start comes before root node, then there 1369 * must be a gap from start to the root. 1370 */ 1371 map->root = vm_map_entry_splay(start, map->root); 1372 if (start + length <= map->root->start) { 1373 *addr = start; 1374 return (0); 1375 } 1376 1377 /* 1378 * Root is the last node that might begin its gap before 1379 * start, and this is the last comparison where address 1380 * wrap might be a problem. 1381 */ 1382 st = (start > map->root->end) ? start : map->root->end; 1383 if (length <= map->root->end + map->root->adj_free - st) { 1384 *addr = st; 1385 return (0); 1386 } 1387 1388 /* With max_free, can immediately tell if no solution. */ 1389 entry = map->root->right; 1390 if (entry == NULL || length > entry->max_free) 1391 return (1); 1392 1393 /* 1394 * Search the right subtree in the order: left subtree, root, 1395 * right subtree (first fit). The previous splay implies that 1396 * all regions in the right subtree have addresses > start. 1397 */ 1398 while (entry != NULL) { 1399 if (entry->left != NULL && entry->left->max_free >= length) 1400 entry = entry->left; 1401 else if (entry->adj_free >= length) { 1402 *addr = entry->end; 1403 return (0); 1404 } else 1405 entry = entry->right; 1406 } 1407 1408 /* Can't get here, so panic if we do. */ 1409 panic("vm_map_findspace: max_free corrupt"); 1410 } 1411 1412 int 1413 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1414 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1415 vm_prot_t max, int cow) 1416 { 1417 vm_offset_t end; 1418 int result; 1419 1420 end = start + length; 1421 vm_map_lock(map); 1422 VM_MAP_RANGE_CHECK(map, start, end); 1423 (void) vm_map_delete(map, start, end); 1424 result = vm_map_insert(map, object, offset, start, end, prot, 1425 max, cow); 1426 vm_map_unlock(map); 1427 return (result); 1428 } 1429 1430 /* 1431 * vm_map_find finds an unallocated region in the target address 1432 * map with the given length. The search is defined to be 1433 * first-fit from the specified address; the region found is 1434 * returned in the same parameter. 1435 * 1436 * If object is non-NULL, ref count must be bumped by caller 1437 * prior to making call to account for the new entry. 1438 */ 1439 int 1440 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1441 vm_offset_t *addr, /* IN/OUT */ 1442 vm_size_t length, vm_offset_t max_addr, int find_space, 1443 vm_prot_t prot, vm_prot_t max, int cow) 1444 { 1445 vm_offset_t alignment, initial_addr, start; 1446 int result; 1447 1448 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1449 (object->flags & OBJ_COLORED) == 0)) 1450 find_space = VMFS_ANY_SPACE; 1451 if (find_space >> 8 != 0) { 1452 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1453 alignment = (vm_offset_t)1 << (find_space >> 8); 1454 } else 1455 alignment = 0; 1456 initial_addr = *addr; 1457 again: 1458 start = initial_addr; 1459 vm_map_lock(map); 1460 do { 1461 if (find_space != VMFS_NO_SPACE) { 1462 if (vm_map_findspace(map, start, length, addr) || 1463 (max_addr != 0 && *addr + length > max_addr)) { 1464 vm_map_unlock(map); 1465 if (find_space == VMFS_OPTIMAL_SPACE) { 1466 find_space = VMFS_ANY_SPACE; 1467 goto again; 1468 } 1469 return (KERN_NO_SPACE); 1470 } 1471 switch (find_space) { 1472 case VMFS_SUPER_SPACE: 1473 case VMFS_OPTIMAL_SPACE: 1474 pmap_align_superpage(object, offset, addr, 1475 length); 1476 break; 1477 case VMFS_ANY_SPACE: 1478 break; 1479 default: 1480 if ((*addr & (alignment - 1)) != 0) { 1481 *addr &= ~(alignment - 1); 1482 *addr += alignment; 1483 } 1484 break; 1485 } 1486 1487 start = *addr; 1488 } 1489 result = vm_map_insert(map, object, offset, start, start + 1490 length, prot, max, cow); 1491 } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE && 1492 find_space != VMFS_ANY_SPACE); 1493 vm_map_unlock(map); 1494 return (result); 1495 } 1496 1497 /* 1498 * vm_map_simplify_entry: 1499 * 1500 * Simplify the given map entry by merging with either neighbor. This 1501 * routine also has the ability to merge with both neighbors. 1502 * 1503 * The map must be locked. 1504 * 1505 * This routine guarentees that the passed entry remains valid (though 1506 * possibly extended). When merging, this routine may delete one or 1507 * both neighbors. 1508 */ 1509 void 1510 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1511 { 1512 vm_map_entry_t next, prev; 1513 vm_size_t prevsize, esize; 1514 1515 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1516 return; 1517 1518 prev = entry->prev; 1519 if (prev != &map->header) { 1520 prevsize = prev->end - prev->start; 1521 if ( (prev->end == entry->start) && 1522 (prev->object.vm_object == entry->object.vm_object) && 1523 (!prev->object.vm_object || 1524 (prev->offset + prevsize == entry->offset)) && 1525 (prev->eflags == entry->eflags) && 1526 (prev->protection == entry->protection) && 1527 (prev->max_protection == entry->max_protection) && 1528 (prev->inheritance == entry->inheritance) && 1529 (prev->wired_count == entry->wired_count) && 1530 (prev->cred == entry->cred)) { 1531 vm_map_entry_unlink(map, prev); 1532 entry->start = prev->start; 1533 entry->offset = prev->offset; 1534 if (entry->prev != &map->header) 1535 vm_map_entry_resize_free(map, entry->prev); 1536 1537 /* 1538 * If the backing object is a vnode object, 1539 * vm_object_deallocate() calls vrele(). 1540 * However, vrele() does not lock the vnode 1541 * because the vnode has additional 1542 * references. Thus, the map lock can be kept 1543 * without causing a lock-order reversal with 1544 * the vnode lock. 1545 * 1546 * Since we count the number of virtual page 1547 * mappings in object->un_pager.vnp.writemappings, 1548 * the writemappings value should not be adjusted 1549 * when the entry is disposed of. 1550 */ 1551 if (prev->object.vm_object) 1552 vm_object_deallocate(prev->object.vm_object); 1553 if (prev->cred != NULL) 1554 crfree(prev->cred); 1555 vm_map_entry_dispose(map, prev); 1556 } 1557 } 1558 1559 next = entry->next; 1560 if (next != &map->header) { 1561 esize = entry->end - entry->start; 1562 if ((entry->end == next->start) && 1563 (next->object.vm_object == entry->object.vm_object) && 1564 (!entry->object.vm_object || 1565 (entry->offset + esize == next->offset)) && 1566 (next->eflags == entry->eflags) && 1567 (next->protection == entry->protection) && 1568 (next->max_protection == entry->max_protection) && 1569 (next->inheritance == entry->inheritance) && 1570 (next->wired_count == entry->wired_count) && 1571 (next->cred == entry->cred)) { 1572 vm_map_entry_unlink(map, next); 1573 entry->end = next->end; 1574 vm_map_entry_resize_free(map, entry); 1575 1576 /* 1577 * See comment above. 1578 */ 1579 if (next->object.vm_object) 1580 vm_object_deallocate(next->object.vm_object); 1581 if (next->cred != NULL) 1582 crfree(next->cred); 1583 vm_map_entry_dispose(map, next); 1584 } 1585 } 1586 } 1587 /* 1588 * vm_map_clip_start: [ internal use only ] 1589 * 1590 * Asserts that the given entry begins at or after 1591 * the specified address; if necessary, 1592 * it splits the entry into two. 1593 */ 1594 #define vm_map_clip_start(map, entry, startaddr) \ 1595 { \ 1596 if (startaddr > entry->start) \ 1597 _vm_map_clip_start(map, entry, startaddr); \ 1598 } 1599 1600 /* 1601 * This routine is called only when it is known that 1602 * the entry must be split. 1603 */ 1604 static void 1605 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1606 { 1607 vm_map_entry_t new_entry; 1608 1609 VM_MAP_ASSERT_LOCKED(map); 1610 1611 /* 1612 * Split off the front portion -- note that we must insert the new 1613 * entry BEFORE this one, so that this entry has the specified 1614 * starting address. 1615 */ 1616 vm_map_simplify_entry(map, entry); 1617 1618 /* 1619 * If there is no object backing this entry, we might as well create 1620 * one now. If we defer it, an object can get created after the map 1621 * is clipped, and individual objects will be created for the split-up 1622 * map. This is a bit of a hack, but is also about the best place to 1623 * put this improvement. 1624 */ 1625 if (entry->object.vm_object == NULL && !map->system_map) { 1626 vm_object_t object; 1627 object = vm_object_allocate(OBJT_DEFAULT, 1628 atop(entry->end - entry->start)); 1629 entry->object.vm_object = object; 1630 entry->offset = 0; 1631 if (entry->cred != NULL) { 1632 object->cred = entry->cred; 1633 object->charge = entry->end - entry->start; 1634 entry->cred = NULL; 1635 } 1636 } else if (entry->object.vm_object != NULL && 1637 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1638 entry->cred != NULL) { 1639 VM_OBJECT_WLOCK(entry->object.vm_object); 1640 KASSERT(entry->object.vm_object->cred == NULL, 1641 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1642 entry->object.vm_object->cred = entry->cred; 1643 entry->object.vm_object->charge = entry->end - entry->start; 1644 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1645 entry->cred = NULL; 1646 } 1647 1648 new_entry = vm_map_entry_create(map); 1649 *new_entry = *entry; 1650 1651 new_entry->end = start; 1652 entry->offset += (start - entry->start); 1653 entry->start = start; 1654 if (new_entry->cred != NULL) 1655 crhold(entry->cred); 1656 1657 vm_map_entry_link(map, entry->prev, new_entry); 1658 1659 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1660 vm_object_reference(new_entry->object.vm_object); 1661 /* 1662 * The object->un_pager.vnp.writemappings for the 1663 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1664 * kept as is here. The virtual pages are 1665 * re-distributed among the clipped entries, so the sum is 1666 * left the same. 1667 */ 1668 } 1669 } 1670 1671 /* 1672 * vm_map_clip_end: [ internal use only ] 1673 * 1674 * Asserts that the given entry ends at or before 1675 * the specified address; if necessary, 1676 * it splits the entry into two. 1677 */ 1678 #define vm_map_clip_end(map, entry, endaddr) \ 1679 { \ 1680 if ((endaddr) < (entry->end)) \ 1681 _vm_map_clip_end((map), (entry), (endaddr)); \ 1682 } 1683 1684 /* 1685 * This routine is called only when it is known that 1686 * the entry must be split. 1687 */ 1688 static void 1689 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1690 { 1691 vm_map_entry_t new_entry; 1692 1693 VM_MAP_ASSERT_LOCKED(map); 1694 1695 /* 1696 * If there is no object backing this entry, we might as well create 1697 * one now. If we defer it, an object can get created after the map 1698 * is clipped, and individual objects will be created for the split-up 1699 * map. This is a bit of a hack, but is also about the best place to 1700 * put this improvement. 1701 */ 1702 if (entry->object.vm_object == NULL && !map->system_map) { 1703 vm_object_t object; 1704 object = vm_object_allocate(OBJT_DEFAULT, 1705 atop(entry->end - entry->start)); 1706 entry->object.vm_object = object; 1707 entry->offset = 0; 1708 if (entry->cred != NULL) { 1709 object->cred = entry->cred; 1710 object->charge = entry->end - entry->start; 1711 entry->cred = NULL; 1712 } 1713 } else if (entry->object.vm_object != NULL && 1714 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1715 entry->cred != NULL) { 1716 VM_OBJECT_WLOCK(entry->object.vm_object); 1717 KASSERT(entry->object.vm_object->cred == NULL, 1718 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1719 entry->object.vm_object->cred = entry->cred; 1720 entry->object.vm_object->charge = entry->end - entry->start; 1721 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1722 entry->cred = NULL; 1723 } 1724 1725 /* 1726 * Create a new entry and insert it AFTER the specified entry 1727 */ 1728 new_entry = vm_map_entry_create(map); 1729 *new_entry = *entry; 1730 1731 new_entry->start = entry->end = end; 1732 new_entry->offset += (end - entry->start); 1733 if (new_entry->cred != NULL) 1734 crhold(entry->cred); 1735 1736 vm_map_entry_link(map, entry, new_entry); 1737 1738 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1739 vm_object_reference(new_entry->object.vm_object); 1740 } 1741 } 1742 1743 /* 1744 * vm_map_submap: [ kernel use only ] 1745 * 1746 * Mark the given range as handled by a subordinate map. 1747 * 1748 * This range must have been created with vm_map_find, 1749 * and no other operations may have been performed on this 1750 * range prior to calling vm_map_submap. 1751 * 1752 * Only a limited number of operations can be performed 1753 * within this rage after calling vm_map_submap: 1754 * vm_fault 1755 * [Don't try vm_map_copy!] 1756 * 1757 * To remove a submapping, one must first remove the 1758 * range from the superior map, and then destroy the 1759 * submap (if desired). [Better yet, don't try it.] 1760 */ 1761 int 1762 vm_map_submap( 1763 vm_map_t map, 1764 vm_offset_t start, 1765 vm_offset_t end, 1766 vm_map_t submap) 1767 { 1768 vm_map_entry_t entry; 1769 int result = KERN_INVALID_ARGUMENT; 1770 1771 vm_map_lock(map); 1772 1773 VM_MAP_RANGE_CHECK(map, start, end); 1774 1775 if (vm_map_lookup_entry(map, start, &entry)) { 1776 vm_map_clip_start(map, entry, start); 1777 } else 1778 entry = entry->next; 1779 1780 vm_map_clip_end(map, entry, end); 1781 1782 if ((entry->start == start) && (entry->end == end) && 1783 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1784 (entry->object.vm_object == NULL)) { 1785 entry->object.sub_map = submap; 1786 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1787 result = KERN_SUCCESS; 1788 } 1789 vm_map_unlock(map); 1790 1791 return (result); 1792 } 1793 1794 /* 1795 * The maximum number of pages to map 1796 */ 1797 #define MAX_INIT_PT 96 1798 1799 /* 1800 * vm_map_pmap_enter: 1801 * 1802 * Preload read-only mappings for the specified object's resident pages 1803 * into the target map. If "flags" is MAP_PREFAULT_PARTIAL, then only 1804 * the resident pages within the address range [addr, addr + ulmin(size, 1805 * ptoa(MAX_INIT_PT))) are mapped. Otherwise, all resident pages within 1806 * the specified address range are mapped. This eliminates many soft 1807 * faults on process startup and immediately after an mmap(2). Because 1808 * these are speculative mappings, cached pages are not reactivated and 1809 * mapped. 1810 */ 1811 void 1812 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1813 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1814 { 1815 vm_offset_t start; 1816 vm_page_t p, p_start; 1817 vm_pindex_t psize, tmpidx; 1818 1819 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1820 return; 1821 VM_OBJECT_RLOCK(object); 1822 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1823 VM_OBJECT_RUNLOCK(object); 1824 VM_OBJECT_WLOCK(object); 1825 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1826 pmap_object_init_pt(map->pmap, addr, object, pindex, 1827 size); 1828 VM_OBJECT_WUNLOCK(object); 1829 return; 1830 } 1831 VM_OBJECT_LOCK_DOWNGRADE(object); 1832 } 1833 1834 psize = atop(size); 1835 if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0) 1836 psize = MAX_INIT_PT; 1837 if (psize + pindex > object->size) { 1838 if (object->size < pindex) { 1839 VM_OBJECT_RUNLOCK(object); 1840 return; 1841 } 1842 psize = object->size - pindex; 1843 } 1844 1845 start = 0; 1846 p_start = NULL; 1847 1848 p = vm_page_find_least(object, pindex); 1849 /* 1850 * Assert: the variable p is either (1) the page with the 1851 * least pindex greater than or equal to the parameter pindex 1852 * or (2) NULL. 1853 */ 1854 for (; 1855 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1856 p = TAILQ_NEXT(p, listq)) { 1857 /* 1858 * don't allow an madvise to blow away our really 1859 * free pages allocating pv entries. 1860 */ 1861 if ((flags & MAP_PREFAULT_MADVISE) && 1862 cnt.v_free_count < cnt.v_free_reserved) { 1863 psize = tmpidx; 1864 break; 1865 } 1866 if (p->valid == VM_PAGE_BITS_ALL) { 1867 if (p_start == NULL) { 1868 start = addr + ptoa(tmpidx); 1869 p_start = p; 1870 } 1871 } else if (p_start != NULL) { 1872 pmap_enter_object(map->pmap, start, addr + 1873 ptoa(tmpidx), p_start, prot); 1874 p_start = NULL; 1875 } 1876 } 1877 if (p_start != NULL) 1878 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1879 p_start, prot); 1880 VM_OBJECT_RUNLOCK(object); 1881 } 1882 1883 /* 1884 * vm_map_protect: 1885 * 1886 * Sets the protection of the specified address 1887 * region in the target map. If "set_max" is 1888 * specified, the maximum protection is to be set; 1889 * otherwise, only the current protection is affected. 1890 */ 1891 int 1892 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1893 vm_prot_t new_prot, boolean_t set_max) 1894 { 1895 vm_map_entry_t current, entry; 1896 vm_object_t obj; 1897 struct ucred *cred; 1898 vm_prot_t old_prot; 1899 1900 vm_map_lock(map); 1901 1902 VM_MAP_RANGE_CHECK(map, start, end); 1903 1904 if (vm_map_lookup_entry(map, start, &entry)) { 1905 vm_map_clip_start(map, entry, start); 1906 } else { 1907 entry = entry->next; 1908 } 1909 1910 /* 1911 * Make a first pass to check for protection violations. 1912 */ 1913 current = entry; 1914 while ((current != &map->header) && (current->start < end)) { 1915 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1916 vm_map_unlock(map); 1917 return (KERN_INVALID_ARGUMENT); 1918 } 1919 if ((new_prot & current->max_protection) != new_prot) { 1920 vm_map_unlock(map); 1921 return (KERN_PROTECTION_FAILURE); 1922 } 1923 current = current->next; 1924 } 1925 1926 1927 /* 1928 * Do an accounting pass for private read-only mappings that 1929 * now will do cow due to allowed write (e.g. debugger sets 1930 * breakpoint on text segment) 1931 */ 1932 for (current = entry; (current != &map->header) && 1933 (current->start < end); current = current->next) { 1934 1935 vm_map_clip_end(map, current, end); 1936 1937 if (set_max || 1938 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1939 ENTRY_CHARGED(current)) { 1940 continue; 1941 } 1942 1943 cred = curthread->td_ucred; 1944 obj = current->object.vm_object; 1945 1946 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1947 if (!swap_reserve(current->end - current->start)) { 1948 vm_map_unlock(map); 1949 return (KERN_RESOURCE_SHORTAGE); 1950 } 1951 crhold(cred); 1952 current->cred = cred; 1953 continue; 1954 } 1955 1956 VM_OBJECT_WLOCK(obj); 1957 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1958 VM_OBJECT_WUNLOCK(obj); 1959 continue; 1960 } 1961 1962 /* 1963 * Charge for the whole object allocation now, since 1964 * we cannot distinguish between non-charged and 1965 * charged clipped mapping of the same object later. 1966 */ 1967 KASSERT(obj->charge == 0, 1968 ("vm_map_protect: object %p overcharged\n", obj)); 1969 if (!swap_reserve(ptoa(obj->size))) { 1970 VM_OBJECT_WUNLOCK(obj); 1971 vm_map_unlock(map); 1972 return (KERN_RESOURCE_SHORTAGE); 1973 } 1974 1975 crhold(cred); 1976 obj->cred = cred; 1977 obj->charge = ptoa(obj->size); 1978 VM_OBJECT_WUNLOCK(obj); 1979 } 1980 1981 /* 1982 * Go back and fix up protections. [Note that clipping is not 1983 * necessary the second time.] 1984 */ 1985 current = entry; 1986 while ((current != &map->header) && (current->start < end)) { 1987 old_prot = current->protection; 1988 1989 if (set_max) 1990 current->protection = 1991 (current->max_protection = new_prot) & 1992 old_prot; 1993 else 1994 current->protection = new_prot; 1995 1996 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1997 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1998 (current->protection & VM_PROT_WRITE) != 0 && 1999 (old_prot & VM_PROT_WRITE) == 0) { 2000 vm_fault_copy_entry(map, map, current, current, NULL); 2001 } 2002 2003 /* 2004 * When restricting access, update the physical map. Worry 2005 * about copy-on-write here. 2006 */ 2007 if ((old_prot & ~current->protection) != 0) { 2008 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2009 VM_PROT_ALL) 2010 pmap_protect(map->pmap, current->start, 2011 current->end, 2012 current->protection & MASK(current)); 2013 #undef MASK 2014 } 2015 vm_map_simplify_entry(map, current); 2016 current = current->next; 2017 } 2018 vm_map_unlock(map); 2019 return (KERN_SUCCESS); 2020 } 2021 2022 /* 2023 * vm_map_madvise: 2024 * 2025 * This routine traverses a processes map handling the madvise 2026 * system call. Advisories are classified as either those effecting 2027 * the vm_map_entry structure, or those effecting the underlying 2028 * objects. 2029 */ 2030 int 2031 vm_map_madvise( 2032 vm_map_t map, 2033 vm_offset_t start, 2034 vm_offset_t end, 2035 int behav) 2036 { 2037 vm_map_entry_t current, entry; 2038 int modify_map = 0; 2039 2040 /* 2041 * Some madvise calls directly modify the vm_map_entry, in which case 2042 * we need to use an exclusive lock on the map and we need to perform 2043 * various clipping operations. Otherwise we only need a read-lock 2044 * on the map. 2045 */ 2046 switch(behav) { 2047 case MADV_NORMAL: 2048 case MADV_SEQUENTIAL: 2049 case MADV_RANDOM: 2050 case MADV_NOSYNC: 2051 case MADV_AUTOSYNC: 2052 case MADV_NOCORE: 2053 case MADV_CORE: 2054 modify_map = 1; 2055 vm_map_lock(map); 2056 break; 2057 case MADV_WILLNEED: 2058 case MADV_DONTNEED: 2059 case MADV_FREE: 2060 vm_map_lock_read(map); 2061 break; 2062 default: 2063 return (KERN_INVALID_ARGUMENT); 2064 } 2065 2066 /* 2067 * Locate starting entry and clip if necessary. 2068 */ 2069 VM_MAP_RANGE_CHECK(map, start, end); 2070 2071 if (vm_map_lookup_entry(map, start, &entry)) { 2072 if (modify_map) 2073 vm_map_clip_start(map, entry, start); 2074 } else { 2075 entry = entry->next; 2076 } 2077 2078 if (modify_map) { 2079 /* 2080 * madvise behaviors that are implemented in the vm_map_entry. 2081 * 2082 * We clip the vm_map_entry so that behavioral changes are 2083 * limited to the specified address range. 2084 */ 2085 for (current = entry; 2086 (current != &map->header) && (current->start < end); 2087 current = current->next 2088 ) { 2089 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2090 continue; 2091 2092 vm_map_clip_end(map, current, end); 2093 2094 switch (behav) { 2095 case MADV_NORMAL: 2096 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2097 break; 2098 case MADV_SEQUENTIAL: 2099 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2100 break; 2101 case MADV_RANDOM: 2102 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2103 break; 2104 case MADV_NOSYNC: 2105 current->eflags |= MAP_ENTRY_NOSYNC; 2106 break; 2107 case MADV_AUTOSYNC: 2108 current->eflags &= ~MAP_ENTRY_NOSYNC; 2109 break; 2110 case MADV_NOCORE: 2111 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2112 break; 2113 case MADV_CORE: 2114 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2115 break; 2116 default: 2117 break; 2118 } 2119 vm_map_simplify_entry(map, current); 2120 } 2121 vm_map_unlock(map); 2122 } else { 2123 vm_pindex_t pstart, pend; 2124 2125 /* 2126 * madvise behaviors that are implemented in the underlying 2127 * vm_object. 2128 * 2129 * Since we don't clip the vm_map_entry, we have to clip 2130 * the vm_object pindex and count. 2131 */ 2132 for (current = entry; 2133 (current != &map->header) && (current->start < end); 2134 current = current->next 2135 ) { 2136 vm_offset_t useEnd, useStart; 2137 2138 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2139 continue; 2140 2141 pstart = OFF_TO_IDX(current->offset); 2142 pend = pstart + atop(current->end - current->start); 2143 useStart = current->start; 2144 useEnd = current->end; 2145 2146 if (current->start < start) { 2147 pstart += atop(start - current->start); 2148 useStart = start; 2149 } 2150 if (current->end > end) { 2151 pend -= atop(current->end - end); 2152 useEnd = end; 2153 } 2154 2155 if (pstart >= pend) 2156 continue; 2157 2158 /* 2159 * Perform the pmap_advise() before clearing 2160 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2161 * concurrent pmap operation, such as pmap_remove(), 2162 * could clear a reference in the pmap and set 2163 * PGA_REFERENCED on the page before the pmap_advise() 2164 * had completed. Consequently, the page would appear 2165 * referenced based upon an old reference that 2166 * occurred before this pmap_advise() ran. 2167 */ 2168 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2169 pmap_advise(map->pmap, useStart, useEnd, 2170 behav); 2171 2172 vm_object_madvise(current->object.vm_object, pstart, 2173 pend, behav); 2174 if (behav == MADV_WILLNEED) { 2175 vm_map_pmap_enter(map, 2176 useStart, 2177 current->protection, 2178 current->object.vm_object, 2179 pstart, 2180 ptoa(pend - pstart), 2181 MAP_PREFAULT_MADVISE 2182 ); 2183 } 2184 } 2185 vm_map_unlock_read(map); 2186 } 2187 return (0); 2188 } 2189 2190 2191 /* 2192 * vm_map_inherit: 2193 * 2194 * Sets the inheritance of the specified address 2195 * range in the target map. Inheritance 2196 * affects how the map will be shared with 2197 * child maps at the time of vmspace_fork. 2198 */ 2199 int 2200 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2201 vm_inherit_t new_inheritance) 2202 { 2203 vm_map_entry_t entry; 2204 vm_map_entry_t temp_entry; 2205 2206 switch (new_inheritance) { 2207 case VM_INHERIT_NONE: 2208 case VM_INHERIT_COPY: 2209 case VM_INHERIT_SHARE: 2210 break; 2211 default: 2212 return (KERN_INVALID_ARGUMENT); 2213 } 2214 vm_map_lock(map); 2215 VM_MAP_RANGE_CHECK(map, start, end); 2216 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2217 entry = temp_entry; 2218 vm_map_clip_start(map, entry, start); 2219 } else 2220 entry = temp_entry->next; 2221 while ((entry != &map->header) && (entry->start < end)) { 2222 vm_map_clip_end(map, entry, end); 2223 entry->inheritance = new_inheritance; 2224 vm_map_simplify_entry(map, entry); 2225 entry = entry->next; 2226 } 2227 vm_map_unlock(map); 2228 return (KERN_SUCCESS); 2229 } 2230 2231 /* 2232 * vm_map_unwire: 2233 * 2234 * Implements both kernel and user unwiring. 2235 */ 2236 int 2237 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2238 int flags) 2239 { 2240 vm_map_entry_t entry, first_entry, tmp_entry; 2241 vm_offset_t saved_start; 2242 unsigned int last_timestamp; 2243 int rv; 2244 boolean_t need_wakeup, result, user_unwire; 2245 2246 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2247 vm_map_lock(map); 2248 VM_MAP_RANGE_CHECK(map, start, end); 2249 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2250 if (flags & VM_MAP_WIRE_HOLESOK) 2251 first_entry = first_entry->next; 2252 else { 2253 vm_map_unlock(map); 2254 return (KERN_INVALID_ADDRESS); 2255 } 2256 } 2257 last_timestamp = map->timestamp; 2258 entry = first_entry; 2259 while (entry != &map->header && entry->start < end) { 2260 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2261 /* 2262 * We have not yet clipped the entry. 2263 */ 2264 saved_start = (start >= entry->start) ? start : 2265 entry->start; 2266 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2267 if (vm_map_unlock_and_wait(map, 0)) { 2268 /* 2269 * Allow interruption of user unwiring? 2270 */ 2271 } 2272 vm_map_lock(map); 2273 if (last_timestamp+1 != map->timestamp) { 2274 /* 2275 * Look again for the entry because the map was 2276 * modified while it was unlocked. 2277 * Specifically, the entry may have been 2278 * clipped, merged, or deleted. 2279 */ 2280 if (!vm_map_lookup_entry(map, saved_start, 2281 &tmp_entry)) { 2282 if (flags & VM_MAP_WIRE_HOLESOK) 2283 tmp_entry = tmp_entry->next; 2284 else { 2285 if (saved_start == start) { 2286 /* 2287 * First_entry has been deleted. 2288 */ 2289 vm_map_unlock(map); 2290 return (KERN_INVALID_ADDRESS); 2291 } 2292 end = saved_start; 2293 rv = KERN_INVALID_ADDRESS; 2294 goto done; 2295 } 2296 } 2297 if (entry == first_entry) 2298 first_entry = tmp_entry; 2299 else 2300 first_entry = NULL; 2301 entry = tmp_entry; 2302 } 2303 last_timestamp = map->timestamp; 2304 continue; 2305 } 2306 vm_map_clip_start(map, entry, start); 2307 vm_map_clip_end(map, entry, end); 2308 /* 2309 * Mark the entry in case the map lock is released. (See 2310 * above.) 2311 */ 2312 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2313 entry->wiring_thread = curthread; 2314 /* 2315 * Check the map for holes in the specified region. 2316 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2317 */ 2318 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2319 (entry->end < end && (entry->next == &map->header || 2320 entry->next->start > entry->end))) { 2321 end = entry->end; 2322 rv = KERN_INVALID_ADDRESS; 2323 goto done; 2324 } 2325 /* 2326 * If system unwiring, require that the entry is system wired. 2327 */ 2328 if (!user_unwire && 2329 vm_map_entry_system_wired_count(entry) == 0) { 2330 end = entry->end; 2331 rv = KERN_INVALID_ARGUMENT; 2332 goto done; 2333 } 2334 entry = entry->next; 2335 } 2336 rv = KERN_SUCCESS; 2337 done: 2338 need_wakeup = FALSE; 2339 if (first_entry == NULL) { 2340 result = vm_map_lookup_entry(map, start, &first_entry); 2341 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2342 first_entry = first_entry->next; 2343 else 2344 KASSERT(result, ("vm_map_unwire: lookup failed")); 2345 } 2346 for (entry = first_entry; entry != &map->header && entry->start < end; 2347 entry = entry->next) { 2348 /* 2349 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2350 * space in the unwired region could have been mapped 2351 * while the map lock was dropped for draining 2352 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2353 * could be simultaneously wiring this new mapping 2354 * entry. Detect these cases and skip any entries 2355 * marked as in transition by us. 2356 */ 2357 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2358 entry->wiring_thread != curthread) { 2359 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2360 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2361 continue; 2362 } 2363 2364 if (rv == KERN_SUCCESS && (!user_unwire || 2365 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2366 if (user_unwire) 2367 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2368 entry->wired_count--; 2369 if (entry->wired_count == 0) { 2370 /* 2371 * Retain the map lock. 2372 */ 2373 vm_fault_unwire(map, entry->start, entry->end, 2374 entry->object.vm_object != NULL && 2375 (entry->object.vm_object->flags & 2376 OBJ_FICTITIOUS) != 0); 2377 } 2378 } 2379 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2380 ("vm_map_unwire: in-transition flag missing")); 2381 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2382 entry->wiring_thread = NULL; 2383 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2384 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2385 need_wakeup = TRUE; 2386 } 2387 vm_map_simplify_entry(map, entry); 2388 } 2389 vm_map_unlock(map); 2390 if (need_wakeup) 2391 vm_map_wakeup(map); 2392 return (rv); 2393 } 2394 2395 /* 2396 * vm_map_wire: 2397 * 2398 * Implements both kernel and user wiring. 2399 */ 2400 int 2401 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2402 int flags) 2403 { 2404 vm_map_entry_t entry, first_entry, tmp_entry; 2405 vm_offset_t saved_end, saved_start; 2406 unsigned int last_timestamp; 2407 int rv; 2408 boolean_t fictitious, need_wakeup, result, user_wire; 2409 vm_prot_t prot; 2410 2411 prot = 0; 2412 if (flags & VM_MAP_WIRE_WRITE) 2413 prot |= VM_PROT_WRITE; 2414 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2415 vm_map_lock(map); 2416 VM_MAP_RANGE_CHECK(map, start, end); 2417 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2418 if (flags & VM_MAP_WIRE_HOLESOK) 2419 first_entry = first_entry->next; 2420 else { 2421 vm_map_unlock(map); 2422 return (KERN_INVALID_ADDRESS); 2423 } 2424 } 2425 last_timestamp = map->timestamp; 2426 entry = first_entry; 2427 while (entry != &map->header && entry->start < end) { 2428 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2429 /* 2430 * We have not yet clipped the entry. 2431 */ 2432 saved_start = (start >= entry->start) ? start : 2433 entry->start; 2434 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2435 if (vm_map_unlock_and_wait(map, 0)) { 2436 /* 2437 * Allow interruption of user wiring? 2438 */ 2439 } 2440 vm_map_lock(map); 2441 if (last_timestamp + 1 != map->timestamp) { 2442 /* 2443 * Look again for the entry because the map was 2444 * modified while it was unlocked. 2445 * Specifically, the entry may have been 2446 * clipped, merged, or deleted. 2447 */ 2448 if (!vm_map_lookup_entry(map, saved_start, 2449 &tmp_entry)) { 2450 if (flags & VM_MAP_WIRE_HOLESOK) 2451 tmp_entry = tmp_entry->next; 2452 else { 2453 if (saved_start == start) { 2454 /* 2455 * first_entry has been deleted. 2456 */ 2457 vm_map_unlock(map); 2458 return (KERN_INVALID_ADDRESS); 2459 } 2460 end = saved_start; 2461 rv = KERN_INVALID_ADDRESS; 2462 goto done; 2463 } 2464 } 2465 if (entry == first_entry) 2466 first_entry = tmp_entry; 2467 else 2468 first_entry = NULL; 2469 entry = tmp_entry; 2470 } 2471 last_timestamp = map->timestamp; 2472 continue; 2473 } 2474 vm_map_clip_start(map, entry, start); 2475 vm_map_clip_end(map, entry, end); 2476 /* 2477 * Mark the entry in case the map lock is released. (See 2478 * above.) 2479 */ 2480 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2481 entry->wiring_thread = curthread; 2482 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2483 || (entry->protection & prot) != prot) { 2484 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2485 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2486 end = entry->end; 2487 rv = KERN_INVALID_ADDRESS; 2488 goto done; 2489 } 2490 goto next_entry; 2491 } 2492 if (entry->wired_count == 0) { 2493 entry->wired_count++; 2494 saved_start = entry->start; 2495 saved_end = entry->end; 2496 fictitious = entry->object.vm_object != NULL && 2497 (entry->object.vm_object->flags & 2498 OBJ_FICTITIOUS) != 0; 2499 /* 2500 * Release the map lock, relying on the in-transition 2501 * mark. Mark the map busy for fork. 2502 */ 2503 vm_map_busy(map); 2504 vm_map_unlock(map); 2505 rv = vm_fault_wire(map, saved_start, saved_end, 2506 fictitious); 2507 vm_map_lock(map); 2508 vm_map_unbusy(map); 2509 if (last_timestamp + 1 != map->timestamp) { 2510 /* 2511 * Look again for the entry because the map was 2512 * modified while it was unlocked. The entry 2513 * may have been clipped, but NOT merged or 2514 * deleted. 2515 */ 2516 result = vm_map_lookup_entry(map, saved_start, 2517 &tmp_entry); 2518 KASSERT(result, ("vm_map_wire: lookup failed")); 2519 if (entry == first_entry) 2520 first_entry = tmp_entry; 2521 else 2522 first_entry = NULL; 2523 entry = tmp_entry; 2524 while (entry->end < saved_end) { 2525 if (rv != KERN_SUCCESS) { 2526 KASSERT(entry->wired_count == 1, 2527 ("vm_map_wire: bad count")); 2528 entry->wired_count = -1; 2529 } 2530 entry = entry->next; 2531 } 2532 } 2533 last_timestamp = map->timestamp; 2534 if (rv != KERN_SUCCESS) { 2535 KASSERT(entry->wired_count == 1, 2536 ("vm_map_wire: bad count")); 2537 /* 2538 * Assign an out-of-range value to represent 2539 * the failure to wire this entry. 2540 */ 2541 entry->wired_count = -1; 2542 end = entry->end; 2543 goto done; 2544 } 2545 } else if (!user_wire || 2546 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2547 entry->wired_count++; 2548 } 2549 /* 2550 * Check the map for holes in the specified region. 2551 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2552 */ 2553 next_entry: 2554 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2555 (entry->end < end && (entry->next == &map->header || 2556 entry->next->start > entry->end))) { 2557 end = entry->end; 2558 rv = KERN_INVALID_ADDRESS; 2559 goto done; 2560 } 2561 entry = entry->next; 2562 } 2563 rv = KERN_SUCCESS; 2564 done: 2565 need_wakeup = FALSE; 2566 if (first_entry == NULL) { 2567 result = vm_map_lookup_entry(map, start, &first_entry); 2568 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2569 first_entry = first_entry->next; 2570 else 2571 KASSERT(result, ("vm_map_wire: lookup failed")); 2572 } 2573 for (entry = first_entry; entry != &map->header && entry->start < end; 2574 entry = entry->next) { 2575 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2576 goto next_entry_done; 2577 2578 /* 2579 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2580 * space in the unwired region could have been mapped 2581 * while the map lock was dropped for faulting in the 2582 * pages or draining MAP_ENTRY_IN_TRANSITION. 2583 * Moreover, another thread could be simultaneously 2584 * wiring this new mapping entry. Detect these cases 2585 * and skip any entries marked as in transition by us. 2586 */ 2587 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2588 entry->wiring_thread != curthread) { 2589 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2590 ("vm_map_wire: !HOLESOK and new/changed entry")); 2591 continue; 2592 } 2593 2594 if (rv == KERN_SUCCESS) { 2595 if (user_wire) 2596 entry->eflags |= MAP_ENTRY_USER_WIRED; 2597 } else if (entry->wired_count == -1) { 2598 /* 2599 * Wiring failed on this entry. Thus, unwiring is 2600 * unnecessary. 2601 */ 2602 entry->wired_count = 0; 2603 } else { 2604 if (!user_wire || 2605 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2606 entry->wired_count--; 2607 if (entry->wired_count == 0) { 2608 /* 2609 * Retain the map lock. 2610 */ 2611 vm_fault_unwire(map, entry->start, entry->end, 2612 entry->object.vm_object != NULL && 2613 (entry->object.vm_object->flags & 2614 OBJ_FICTITIOUS) != 0); 2615 } 2616 } 2617 next_entry_done: 2618 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2619 ("vm_map_wire: in-transition flag missing %p", entry)); 2620 KASSERT(entry->wiring_thread == curthread, 2621 ("vm_map_wire: alien wire %p", entry)); 2622 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2623 MAP_ENTRY_WIRE_SKIPPED); 2624 entry->wiring_thread = NULL; 2625 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2626 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2627 need_wakeup = TRUE; 2628 } 2629 vm_map_simplify_entry(map, entry); 2630 } 2631 vm_map_unlock(map); 2632 if (need_wakeup) 2633 vm_map_wakeup(map); 2634 return (rv); 2635 } 2636 2637 /* 2638 * vm_map_sync 2639 * 2640 * Push any dirty cached pages in the address range to their pager. 2641 * If syncio is TRUE, dirty pages are written synchronously. 2642 * If invalidate is TRUE, any cached pages are freed as well. 2643 * 2644 * If the size of the region from start to end is zero, we are 2645 * supposed to flush all modified pages within the region containing 2646 * start. Unfortunately, a region can be split or coalesced with 2647 * neighboring regions, making it difficult to determine what the 2648 * original region was. Therefore, we approximate this requirement by 2649 * flushing the current region containing start. 2650 * 2651 * Returns an error if any part of the specified range is not mapped. 2652 */ 2653 int 2654 vm_map_sync( 2655 vm_map_t map, 2656 vm_offset_t start, 2657 vm_offset_t end, 2658 boolean_t syncio, 2659 boolean_t invalidate) 2660 { 2661 vm_map_entry_t current; 2662 vm_map_entry_t entry; 2663 vm_size_t size; 2664 vm_object_t object; 2665 vm_ooffset_t offset; 2666 unsigned int last_timestamp; 2667 boolean_t failed; 2668 2669 vm_map_lock_read(map); 2670 VM_MAP_RANGE_CHECK(map, start, end); 2671 if (!vm_map_lookup_entry(map, start, &entry)) { 2672 vm_map_unlock_read(map); 2673 return (KERN_INVALID_ADDRESS); 2674 } else if (start == end) { 2675 start = entry->start; 2676 end = entry->end; 2677 } 2678 /* 2679 * Make a first pass to check for user-wired memory and holes. 2680 */ 2681 for (current = entry; current != &map->header && current->start < end; 2682 current = current->next) { 2683 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2684 vm_map_unlock_read(map); 2685 return (KERN_INVALID_ARGUMENT); 2686 } 2687 if (end > current->end && 2688 (current->next == &map->header || 2689 current->end != current->next->start)) { 2690 vm_map_unlock_read(map); 2691 return (KERN_INVALID_ADDRESS); 2692 } 2693 } 2694 2695 if (invalidate) 2696 pmap_remove(map->pmap, start, end); 2697 failed = FALSE; 2698 2699 /* 2700 * Make a second pass, cleaning/uncaching pages from the indicated 2701 * objects as we go. 2702 */ 2703 for (current = entry; current != &map->header && current->start < end;) { 2704 offset = current->offset + (start - current->start); 2705 size = (end <= current->end ? end : current->end) - start; 2706 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2707 vm_map_t smap; 2708 vm_map_entry_t tentry; 2709 vm_size_t tsize; 2710 2711 smap = current->object.sub_map; 2712 vm_map_lock_read(smap); 2713 (void) vm_map_lookup_entry(smap, offset, &tentry); 2714 tsize = tentry->end - offset; 2715 if (tsize < size) 2716 size = tsize; 2717 object = tentry->object.vm_object; 2718 offset = tentry->offset + (offset - tentry->start); 2719 vm_map_unlock_read(smap); 2720 } else { 2721 object = current->object.vm_object; 2722 } 2723 vm_object_reference(object); 2724 last_timestamp = map->timestamp; 2725 vm_map_unlock_read(map); 2726 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2727 failed = TRUE; 2728 start += size; 2729 vm_object_deallocate(object); 2730 vm_map_lock_read(map); 2731 if (last_timestamp == map->timestamp || 2732 !vm_map_lookup_entry(map, start, ¤t)) 2733 current = current->next; 2734 } 2735 2736 vm_map_unlock_read(map); 2737 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2738 } 2739 2740 /* 2741 * vm_map_entry_unwire: [ internal use only ] 2742 * 2743 * Make the region specified by this entry pageable. 2744 * 2745 * The map in question should be locked. 2746 * [This is the reason for this routine's existence.] 2747 */ 2748 static void 2749 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2750 { 2751 vm_fault_unwire(map, entry->start, entry->end, 2752 entry->object.vm_object != NULL && 2753 (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0); 2754 entry->wired_count = 0; 2755 } 2756 2757 static void 2758 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2759 { 2760 2761 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2762 vm_object_deallocate(entry->object.vm_object); 2763 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2764 } 2765 2766 /* 2767 * vm_map_entry_delete: [ internal use only ] 2768 * 2769 * Deallocate the given entry from the target map. 2770 */ 2771 static void 2772 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2773 { 2774 vm_object_t object; 2775 vm_pindex_t offidxstart, offidxend, count, size1; 2776 vm_ooffset_t size; 2777 2778 vm_map_entry_unlink(map, entry); 2779 object = entry->object.vm_object; 2780 size = entry->end - entry->start; 2781 map->size -= size; 2782 2783 if (entry->cred != NULL) { 2784 swap_release_by_cred(size, entry->cred); 2785 crfree(entry->cred); 2786 } 2787 2788 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2789 (object != NULL)) { 2790 KASSERT(entry->cred == NULL || object->cred == NULL || 2791 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2792 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2793 count = OFF_TO_IDX(size); 2794 offidxstart = OFF_TO_IDX(entry->offset); 2795 offidxend = offidxstart + count; 2796 VM_OBJECT_WLOCK(object); 2797 if (object->ref_count != 1 && 2798 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2799 object == kernel_object || object == kmem_object)) { 2800 vm_object_collapse(object); 2801 2802 /* 2803 * The option OBJPR_NOTMAPPED can be passed here 2804 * because vm_map_delete() already performed 2805 * pmap_remove() on the only mapping to this range 2806 * of pages. 2807 */ 2808 vm_object_page_remove(object, offidxstart, offidxend, 2809 OBJPR_NOTMAPPED); 2810 if (object->type == OBJT_SWAP) 2811 swap_pager_freespace(object, offidxstart, count); 2812 if (offidxend >= object->size && 2813 offidxstart < object->size) { 2814 size1 = object->size; 2815 object->size = offidxstart; 2816 if (object->cred != NULL) { 2817 size1 -= object->size; 2818 KASSERT(object->charge >= ptoa(size1), 2819 ("vm_map_entry_delete: object->charge < 0")); 2820 swap_release_by_cred(ptoa(size1), object->cred); 2821 object->charge -= ptoa(size1); 2822 } 2823 } 2824 } 2825 VM_OBJECT_WUNLOCK(object); 2826 } else 2827 entry->object.vm_object = NULL; 2828 if (map->system_map) 2829 vm_map_entry_deallocate(entry, TRUE); 2830 else { 2831 entry->next = curthread->td_map_def_user; 2832 curthread->td_map_def_user = entry; 2833 } 2834 } 2835 2836 /* 2837 * vm_map_delete: [ internal use only ] 2838 * 2839 * Deallocates the given address range from the target 2840 * map. 2841 */ 2842 int 2843 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2844 { 2845 vm_map_entry_t entry; 2846 vm_map_entry_t first_entry; 2847 2848 VM_MAP_ASSERT_LOCKED(map); 2849 2850 /* 2851 * Find the start of the region, and clip it 2852 */ 2853 if (!vm_map_lookup_entry(map, start, &first_entry)) 2854 entry = first_entry->next; 2855 else { 2856 entry = first_entry; 2857 vm_map_clip_start(map, entry, start); 2858 } 2859 2860 /* 2861 * Step through all entries in this region 2862 */ 2863 while ((entry != &map->header) && (entry->start < end)) { 2864 vm_map_entry_t next; 2865 2866 /* 2867 * Wait for wiring or unwiring of an entry to complete. 2868 * Also wait for any system wirings to disappear on 2869 * user maps. 2870 */ 2871 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2872 (vm_map_pmap(map) != kernel_pmap && 2873 vm_map_entry_system_wired_count(entry) != 0)) { 2874 unsigned int last_timestamp; 2875 vm_offset_t saved_start; 2876 vm_map_entry_t tmp_entry; 2877 2878 saved_start = entry->start; 2879 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2880 last_timestamp = map->timestamp; 2881 (void) vm_map_unlock_and_wait(map, 0); 2882 vm_map_lock(map); 2883 if (last_timestamp + 1 != map->timestamp) { 2884 /* 2885 * Look again for the entry because the map was 2886 * modified while it was unlocked. 2887 * Specifically, the entry may have been 2888 * clipped, merged, or deleted. 2889 */ 2890 if (!vm_map_lookup_entry(map, saved_start, 2891 &tmp_entry)) 2892 entry = tmp_entry->next; 2893 else { 2894 entry = tmp_entry; 2895 vm_map_clip_start(map, entry, 2896 saved_start); 2897 } 2898 } 2899 continue; 2900 } 2901 vm_map_clip_end(map, entry, end); 2902 2903 next = entry->next; 2904 2905 /* 2906 * Unwire before removing addresses from the pmap; otherwise, 2907 * unwiring will put the entries back in the pmap. 2908 */ 2909 if (entry->wired_count != 0) { 2910 vm_map_entry_unwire(map, entry); 2911 } 2912 2913 pmap_remove(map->pmap, entry->start, entry->end); 2914 2915 /* 2916 * Delete the entry only after removing all pmap 2917 * entries pointing to its pages. (Otherwise, its 2918 * page frames may be reallocated, and any modify bits 2919 * will be set in the wrong object!) 2920 */ 2921 vm_map_entry_delete(map, entry); 2922 entry = next; 2923 } 2924 return (KERN_SUCCESS); 2925 } 2926 2927 /* 2928 * vm_map_remove: 2929 * 2930 * Remove the given address range from the target map. 2931 * This is the exported form of vm_map_delete. 2932 */ 2933 int 2934 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2935 { 2936 int result; 2937 2938 vm_map_lock(map); 2939 VM_MAP_RANGE_CHECK(map, start, end); 2940 result = vm_map_delete(map, start, end); 2941 vm_map_unlock(map); 2942 return (result); 2943 } 2944 2945 /* 2946 * vm_map_check_protection: 2947 * 2948 * Assert that the target map allows the specified privilege on the 2949 * entire address region given. The entire region must be allocated. 2950 * 2951 * WARNING! This code does not and should not check whether the 2952 * contents of the region is accessible. For example a smaller file 2953 * might be mapped into a larger address space. 2954 * 2955 * NOTE! This code is also called by munmap(). 2956 * 2957 * The map must be locked. A read lock is sufficient. 2958 */ 2959 boolean_t 2960 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2961 vm_prot_t protection) 2962 { 2963 vm_map_entry_t entry; 2964 vm_map_entry_t tmp_entry; 2965 2966 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2967 return (FALSE); 2968 entry = tmp_entry; 2969 2970 while (start < end) { 2971 if (entry == &map->header) 2972 return (FALSE); 2973 /* 2974 * No holes allowed! 2975 */ 2976 if (start < entry->start) 2977 return (FALSE); 2978 /* 2979 * Check protection associated with entry. 2980 */ 2981 if ((entry->protection & protection) != protection) 2982 return (FALSE); 2983 /* go to next entry */ 2984 start = entry->end; 2985 entry = entry->next; 2986 } 2987 return (TRUE); 2988 } 2989 2990 /* 2991 * vm_map_copy_entry: 2992 * 2993 * Copies the contents of the source entry to the destination 2994 * entry. The entries *must* be aligned properly. 2995 */ 2996 static void 2997 vm_map_copy_entry( 2998 vm_map_t src_map, 2999 vm_map_t dst_map, 3000 vm_map_entry_t src_entry, 3001 vm_map_entry_t dst_entry, 3002 vm_ooffset_t *fork_charge) 3003 { 3004 vm_object_t src_object; 3005 vm_map_entry_t fake_entry; 3006 vm_offset_t size; 3007 struct ucred *cred; 3008 int charged; 3009 3010 VM_MAP_ASSERT_LOCKED(dst_map); 3011 3012 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3013 return; 3014 3015 if (src_entry->wired_count == 0) { 3016 3017 /* 3018 * If the source entry is marked needs_copy, it is already 3019 * write-protected. 3020 */ 3021 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 3022 pmap_protect(src_map->pmap, 3023 src_entry->start, 3024 src_entry->end, 3025 src_entry->protection & ~VM_PROT_WRITE); 3026 } 3027 3028 /* 3029 * Make a copy of the object. 3030 */ 3031 size = src_entry->end - src_entry->start; 3032 if ((src_object = src_entry->object.vm_object) != NULL) { 3033 VM_OBJECT_WLOCK(src_object); 3034 charged = ENTRY_CHARGED(src_entry); 3035 if ((src_object->handle == NULL) && 3036 (src_object->type == OBJT_DEFAULT || 3037 src_object->type == OBJT_SWAP)) { 3038 vm_object_collapse(src_object); 3039 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3040 vm_object_split(src_entry); 3041 src_object = src_entry->object.vm_object; 3042 } 3043 } 3044 vm_object_reference_locked(src_object); 3045 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3046 if (src_entry->cred != NULL && 3047 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3048 KASSERT(src_object->cred == NULL, 3049 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3050 src_object)); 3051 src_object->cred = src_entry->cred; 3052 src_object->charge = size; 3053 } 3054 VM_OBJECT_WUNLOCK(src_object); 3055 dst_entry->object.vm_object = src_object; 3056 if (charged) { 3057 cred = curthread->td_ucred; 3058 crhold(cred); 3059 dst_entry->cred = cred; 3060 *fork_charge += size; 3061 if (!(src_entry->eflags & 3062 MAP_ENTRY_NEEDS_COPY)) { 3063 crhold(cred); 3064 src_entry->cred = cred; 3065 *fork_charge += size; 3066 } 3067 } 3068 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3069 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3070 dst_entry->offset = src_entry->offset; 3071 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3072 /* 3073 * MAP_ENTRY_VN_WRITECNT cannot 3074 * indicate write reference from 3075 * src_entry, since the entry is 3076 * marked as needs copy. Allocate a 3077 * fake entry that is used to 3078 * decrement object->un_pager.vnp.writecount 3079 * at the appropriate time. Attach 3080 * fake_entry to the deferred list. 3081 */ 3082 fake_entry = vm_map_entry_create(dst_map); 3083 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3084 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3085 vm_object_reference(src_object); 3086 fake_entry->object.vm_object = src_object; 3087 fake_entry->start = src_entry->start; 3088 fake_entry->end = src_entry->end; 3089 fake_entry->next = curthread->td_map_def_user; 3090 curthread->td_map_def_user = fake_entry; 3091 } 3092 } else { 3093 dst_entry->object.vm_object = NULL; 3094 dst_entry->offset = 0; 3095 if (src_entry->cred != NULL) { 3096 dst_entry->cred = curthread->td_ucred; 3097 crhold(dst_entry->cred); 3098 *fork_charge += size; 3099 } 3100 } 3101 3102 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3103 dst_entry->end - dst_entry->start, src_entry->start); 3104 } else { 3105 /* 3106 * Of course, wired down pages can't be set copy-on-write. 3107 * Cause wired pages to be copied into the new map by 3108 * simulating faults (the new pages are pageable) 3109 */ 3110 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3111 fork_charge); 3112 } 3113 } 3114 3115 /* 3116 * vmspace_map_entry_forked: 3117 * Update the newly-forked vmspace each time a map entry is inherited 3118 * or copied. The values for vm_dsize and vm_tsize are approximate 3119 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3120 */ 3121 static void 3122 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3123 vm_map_entry_t entry) 3124 { 3125 vm_size_t entrysize; 3126 vm_offset_t newend; 3127 3128 entrysize = entry->end - entry->start; 3129 vm2->vm_map.size += entrysize; 3130 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3131 vm2->vm_ssize += btoc(entrysize); 3132 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3133 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3134 newend = MIN(entry->end, 3135 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3136 vm2->vm_dsize += btoc(newend - entry->start); 3137 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3138 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3139 newend = MIN(entry->end, 3140 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3141 vm2->vm_tsize += btoc(newend - entry->start); 3142 } 3143 } 3144 3145 /* 3146 * vmspace_fork: 3147 * Create a new process vmspace structure and vm_map 3148 * based on those of an existing process. The new map 3149 * is based on the old map, according to the inheritance 3150 * values on the regions in that map. 3151 * 3152 * XXX It might be worth coalescing the entries added to the new vmspace. 3153 * 3154 * The source map must not be locked. 3155 */ 3156 struct vmspace * 3157 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3158 { 3159 struct vmspace *vm2; 3160 vm_map_t new_map, old_map; 3161 vm_map_entry_t new_entry, old_entry; 3162 vm_object_t object; 3163 int locked; 3164 3165 old_map = &vm1->vm_map; 3166 /* Copy immutable fields of vm1 to vm2. */ 3167 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL); 3168 if (vm2 == NULL) 3169 return (NULL); 3170 vm2->vm_taddr = vm1->vm_taddr; 3171 vm2->vm_daddr = vm1->vm_daddr; 3172 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3173 vm_map_lock(old_map); 3174 if (old_map->busy) 3175 vm_map_wait_busy(old_map); 3176 new_map = &vm2->vm_map; 3177 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3178 KASSERT(locked, ("vmspace_fork: lock failed")); 3179 3180 old_entry = old_map->header.next; 3181 3182 while (old_entry != &old_map->header) { 3183 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3184 panic("vm_map_fork: encountered a submap"); 3185 3186 switch (old_entry->inheritance) { 3187 case VM_INHERIT_NONE: 3188 break; 3189 3190 case VM_INHERIT_SHARE: 3191 /* 3192 * Clone the entry, creating the shared object if necessary. 3193 */ 3194 object = old_entry->object.vm_object; 3195 if (object == NULL) { 3196 object = vm_object_allocate(OBJT_DEFAULT, 3197 atop(old_entry->end - old_entry->start)); 3198 old_entry->object.vm_object = object; 3199 old_entry->offset = 0; 3200 if (old_entry->cred != NULL) { 3201 object->cred = old_entry->cred; 3202 object->charge = old_entry->end - 3203 old_entry->start; 3204 old_entry->cred = NULL; 3205 } 3206 } 3207 3208 /* 3209 * Add the reference before calling vm_object_shadow 3210 * to insure that a shadow object is created. 3211 */ 3212 vm_object_reference(object); 3213 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3214 vm_object_shadow(&old_entry->object.vm_object, 3215 &old_entry->offset, 3216 old_entry->end - old_entry->start); 3217 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3218 /* Transfer the second reference too. */ 3219 vm_object_reference( 3220 old_entry->object.vm_object); 3221 3222 /* 3223 * As in vm_map_simplify_entry(), the 3224 * vnode lock will not be acquired in 3225 * this call to vm_object_deallocate(). 3226 */ 3227 vm_object_deallocate(object); 3228 object = old_entry->object.vm_object; 3229 } 3230 VM_OBJECT_WLOCK(object); 3231 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3232 if (old_entry->cred != NULL) { 3233 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3234 object->cred = old_entry->cred; 3235 object->charge = old_entry->end - old_entry->start; 3236 old_entry->cred = NULL; 3237 } 3238 3239 /* 3240 * Assert the correct state of the vnode 3241 * v_writecount while the object is locked, to 3242 * not relock it later for the assertion 3243 * correctness. 3244 */ 3245 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3246 object->type == OBJT_VNODE) { 3247 KASSERT(((struct vnode *)object->handle)-> 3248 v_writecount > 0, 3249 ("vmspace_fork: v_writecount %p", object)); 3250 KASSERT(object->un_pager.vnp.writemappings > 0, 3251 ("vmspace_fork: vnp.writecount %p", 3252 object)); 3253 } 3254 VM_OBJECT_WUNLOCK(object); 3255 3256 /* 3257 * Clone the entry, referencing the shared object. 3258 */ 3259 new_entry = vm_map_entry_create(new_map); 3260 *new_entry = *old_entry; 3261 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3262 MAP_ENTRY_IN_TRANSITION); 3263 new_entry->wiring_thread = NULL; 3264 new_entry->wired_count = 0; 3265 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3266 vnode_pager_update_writecount(object, 3267 new_entry->start, new_entry->end); 3268 } 3269 3270 /* 3271 * Insert the entry into the new map -- we know we're 3272 * inserting at the end of the new map. 3273 */ 3274 vm_map_entry_link(new_map, new_map->header.prev, 3275 new_entry); 3276 vmspace_map_entry_forked(vm1, vm2, new_entry); 3277 3278 /* 3279 * Update the physical map 3280 */ 3281 pmap_copy(new_map->pmap, old_map->pmap, 3282 new_entry->start, 3283 (old_entry->end - old_entry->start), 3284 old_entry->start); 3285 break; 3286 3287 case VM_INHERIT_COPY: 3288 /* 3289 * Clone the entry and link into the map. 3290 */ 3291 new_entry = vm_map_entry_create(new_map); 3292 *new_entry = *old_entry; 3293 /* 3294 * Copied entry is COW over the old object. 3295 */ 3296 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3297 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3298 new_entry->wiring_thread = NULL; 3299 new_entry->wired_count = 0; 3300 new_entry->object.vm_object = NULL; 3301 new_entry->cred = NULL; 3302 vm_map_entry_link(new_map, new_map->header.prev, 3303 new_entry); 3304 vmspace_map_entry_forked(vm1, vm2, new_entry); 3305 vm_map_copy_entry(old_map, new_map, old_entry, 3306 new_entry, fork_charge); 3307 break; 3308 } 3309 old_entry = old_entry->next; 3310 } 3311 /* 3312 * Use inlined vm_map_unlock() to postpone handling the deferred 3313 * map entries, which cannot be done until both old_map and 3314 * new_map locks are released. 3315 */ 3316 sx_xunlock(&old_map->lock); 3317 sx_xunlock(&new_map->lock); 3318 vm_map_process_deferred(); 3319 3320 return (vm2); 3321 } 3322 3323 int 3324 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3325 vm_prot_t prot, vm_prot_t max, int cow) 3326 { 3327 vm_map_entry_t new_entry, prev_entry; 3328 vm_offset_t bot, top; 3329 vm_size_t growsize, init_ssize; 3330 int orient, rv; 3331 rlim_t lmemlim, vmemlim; 3332 3333 /* 3334 * The stack orientation is piggybacked with the cow argument. 3335 * Extract it into orient and mask the cow argument so that we 3336 * don't pass it around further. 3337 * NOTE: We explicitly allow bi-directional stacks. 3338 */ 3339 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3340 cow &= ~orient; 3341 KASSERT(orient != 0, ("No stack grow direction")); 3342 3343 if (addrbos < vm_map_min(map) || 3344 addrbos > vm_map_max(map) || 3345 addrbos + max_ssize < addrbos) 3346 return (KERN_NO_SPACE); 3347 3348 growsize = sgrowsiz; 3349 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3350 3351 PROC_LOCK(curproc); 3352 lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK); 3353 vmemlim = lim_cur(curproc, RLIMIT_VMEM); 3354 PROC_UNLOCK(curproc); 3355 3356 vm_map_lock(map); 3357 3358 /* If addr is already mapped, no go */ 3359 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3360 vm_map_unlock(map); 3361 return (KERN_NO_SPACE); 3362 } 3363 3364 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3365 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) { 3366 vm_map_unlock(map); 3367 return (KERN_NO_SPACE); 3368 } 3369 } 3370 3371 /* If we would blow our VMEM resource limit, no go */ 3372 if (map->size + init_ssize > vmemlim) { 3373 vm_map_unlock(map); 3374 return (KERN_NO_SPACE); 3375 } 3376 3377 /* 3378 * If we can't accomodate max_ssize in the current mapping, no go. 3379 * However, we need to be aware that subsequent user mappings might 3380 * map into the space we have reserved for stack, and currently this 3381 * space is not protected. 3382 * 3383 * Hopefully we will at least detect this condition when we try to 3384 * grow the stack. 3385 */ 3386 if ((prev_entry->next != &map->header) && 3387 (prev_entry->next->start < addrbos + max_ssize)) { 3388 vm_map_unlock(map); 3389 return (KERN_NO_SPACE); 3390 } 3391 3392 /* 3393 * We initially map a stack of only init_ssize. We will grow as 3394 * needed later. Depending on the orientation of the stack (i.e. 3395 * the grow direction) we either map at the top of the range, the 3396 * bottom of the range or in the middle. 3397 * 3398 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3399 * and cow to be 0. Possibly we should eliminate these as input 3400 * parameters, and just pass these values here in the insert call. 3401 */ 3402 if (orient == MAP_STACK_GROWS_DOWN) 3403 bot = addrbos + max_ssize - init_ssize; 3404 else if (orient == MAP_STACK_GROWS_UP) 3405 bot = addrbos; 3406 else 3407 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3408 top = bot + init_ssize; 3409 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3410 3411 /* Now set the avail_ssize amount. */ 3412 if (rv == KERN_SUCCESS) { 3413 if (prev_entry != &map->header) 3414 vm_map_clip_end(map, prev_entry, bot); 3415 new_entry = prev_entry->next; 3416 if (new_entry->end != top || new_entry->start != bot) 3417 panic("Bad entry start/end for new stack entry"); 3418 3419 new_entry->avail_ssize = max_ssize - init_ssize; 3420 if (orient & MAP_STACK_GROWS_DOWN) 3421 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3422 if (orient & MAP_STACK_GROWS_UP) 3423 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3424 } 3425 3426 vm_map_unlock(map); 3427 return (rv); 3428 } 3429 3430 static int stack_guard_page = 0; 3431 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3432 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3433 &stack_guard_page, 0, 3434 "Insert stack guard page ahead of the growable segments."); 3435 3436 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3437 * desired address is already mapped, or if we successfully grow 3438 * the stack. Also returns KERN_SUCCESS if addr is outside the 3439 * stack range (this is strange, but preserves compatibility with 3440 * the grow function in vm_machdep.c). 3441 */ 3442 int 3443 vm_map_growstack(struct proc *p, vm_offset_t addr) 3444 { 3445 vm_map_entry_t next_entry, prev_entry; 3446 vm_map_entry_t new_entry, stack_entry; 3447 struct vmspace *vm = p->p_vmspace; 3448 vm_map_t map = &vm->vm_map; 3449 vm_offset_t end; 3450 vm_size_t growsize; 3451 size_t grow_amount, max_grow; 3452 rlim_t lmemlim, stacklim, vmemlim; 3453 int is_procstack, rv; 3454 struct ucred *cred; 3455 #ifdef notyet 3456 uint64_t limit; 3457 #endif 3458 #ifdef RACCT 3459 int error; 3460 #endif 3461 3462 Retry: 3463 PROC_LOCK(p); 3464 lmemlim = lim_cur(p, RLIMIT_MEMLOCK); 3465 stacklim = lim_cur(p, RLIMIT_STACK); 3466 vmemlim = lim_cur(p, RLIMIT_VMEM); 3467 PROC_UNLOCK(p); 3468 3469 vm_map_lock_read(map); 3470 3471 /* If addr is already in the entry range, no need to grow.*/ 3472 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3473 vm_map_unlock_read(map); 3474 return (KERN_SUCCESS); 3475 } 3476 3477 next_entry = prev_entry->next; 3478 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3479 /* 3480 * This entry does not grow upwards. Since the address lies 3481 * beyond this entry, the next entry (if one exists) has to 3482 * be a downward growable entry. The entry list header is 3483 * never a growable entry, so it suffices to check the flags. 3484 */ 3485 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3486 vm_map_unlock_read(map); 3487 return (KERN_SUCCESS); 3488 } 3489 stack_entry = next_entry; 3490 } else { 3491 /* 3492 * This entry grows upward. If the next entry does not at 3493 * least grow downwards, this is the entry we need to grow. 3494 * otherwise we have two possible choices and we have to 3495 * select one. 3496 */ 3497 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3498 /* 3499 * We have two choices; grow the entry closest to 3500 * the address to minimize the amount of growth. 3501 */ 3502 if (addr - prev_entry->end <= next_entry->start - addr) 3503 stack_entry = prev_entry; 3504 else 3505 stack_entry = next_entry; 3506 } else 3507 stack_entry = prev_entry; 3508 } 3509 3510 if (stack_entry == next_entry) { 3511 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3512 KASSERT(addr < stack_entry->start, ("foo")); 3513 end = (prev_entry != &map->header) ? prev_entry->end : 3514 stack_entry->start - stack_entry->avail_ssize; 3515 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3516 max_grow = stack_entry->start - end; 3517 } else { 3518 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3519 KASSERT(addr >= stack_entry->end, ("foo")); 3520 end = (next_entry != &map->header) ? next_entry->start : 3521 stack_entry->end + stack_entry->avail_ssize; 3522 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3523 max_grow = end - stack_entry->end; 3524 } 3525 3526 if (grow_amount > stack_entry->avail_ssize) { 3527 vm_map_unlock_read(map); 3528 return (KERN_NO_SPACE); 3529 } 3530 3531 /* 3532 * If there is no longer enough space between the entries nogo, and 3533 * adjust the available space. Note: this should only happen if the 3534 * user has mapped into the stack area after the stack was created, 3535 * and is probably an error. 3536 * 3537 * This also effectively destroys any guard page the user might have 3538 * intended by limiting the stack size. 3539 */ 3540 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3541 if (vm_map_lock_upgrade(map)) 3542 goto Retry; 3543 3544 stack_entry->avail_ssize = max_grow; 3545 3546 vm_map_unlock(map); 3547 return (KERN_NO_SPACE); 3548 } 3549 3550 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3551 3552 /* 3553 * If this is the main process stack, see if we're over the stack 3554 * limit. 3555 */ 3556 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3557 vm_map_unlock_read(map); 3558 return (KERN_NO_SPACE); 3559 } 3560 #ifdef RACCT 3561 PROC_LOCK(p); 3562 if (is_procstack && 3563 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3564 PROC_UNLOCK(p); 3565 vm_map_unlock_read(map); 3566 return (KERN_NO_SPACE); 3567 } 3568 PROC_UNLOCK(p); 3569 #endif 3570 3571 /* Round up the grow amount modulo sgrowsiz */ 3572 growsize = sgrowsiz; 3573 grow_amount = roundup(grow_amount, growsize); 3574 if (grow_amount > stack_entry->avail_ssize) 3575 grow_amount = stack_entry->avail_ssize; 3576 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3577 grow_amount = trunc_page((vm_size_t)stacklim) - 3578 ctob(vm->vm_ssize); 3579 } 3580 #ifdef notyet 3581 PROC_LOCK(p); 3582 limit = racct_get_available(p, RACCT_STACK); 3583 PROC_UNLOCK(p); 3584 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3585 grow_amount = limit - ctob(vm->vm_ssize); 3586 #endif 3587 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3588 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3589 vm_map_unlock_read(map); 3590 rv = KERN_NO_SPACE; 3591 goto out; 3592 } 3593 #ifdef RACCT 3594 PROC_LOCK(p); 3595 if (racct_set(p, RACCT_MEMLOCK, 3596 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3597 PROC_UNLOCK(p); 3598 vm_map_unlock_read(map); 3599 rv = KERN_NO_SPACE; 3600 goto out; 3601 } 3602 PROC_UNLOCK(p); 3603 #endif 3604 } 3605 /* If we would blow our VMEM resource limit, no go */ 3606 if (map->size + grow_amount > vmemlim) { 3607 vm_map_unlock_read(map); 3608 rv = KERN_NO_SPACE; 3609 goto out; 3610 } 3611 #ifdef RACCT 3612 PROC_LOCK(p); 3613 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3614 PROC_UNLOCK(p); 3615 vm_map_unlock_read(map); 3616 rv = KERN_NO_SPACE; 3617 goto out; 3618 } 3619 PROC_UNLOCK(p); 3620 #endif 3621 3622 if (vm_map_lock_upgrade(map)) 3623 goto Retry; 3624 3625 if (stack_entry == next_entry) { 3626 /* 3627 * Growing downward. 3628 */ 3629 /* Get the preliminary new entry start value */ 3630 addr = stack_entry->start - grow_amount; 3631 3632 /* 3633 * If this puts us into the previous entry, cut back our 3634 * growth to the available space. Also, see the note above. 3635 */ 3636 if (addr < end) { 3637 stack_entry->avail_ssize = max_grow; 3638 addr = end; 3639 if (stack_guard_page) 3640 addr += PAGE_SIZE; 3641 } 3642 3643 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3644 next_entry->protection, next_entry->max_protection, 0); 3645 3646 /* Adjust the available stack space by the amount we grew. */ 3647 if (rv == KERN_SUCCESS) { 3648 if (prev_entry != &map->header) 3649 vm_map_clip_end(map, prev_entry, addr); 3650 new_entry = prev_entry->next; 3651 KASSERT(new_entry == stack_entry->prev, ("foo")); 3652 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3653 KASSERT(new_entry->start == addr, ("foo")); 3654 grow_amount = new_entry->end - new_entry->start; 3655 new_entry->avail_ssize = stack_entry->avail_ssize - 3656 grow_amount; 3657 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3658 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3659 } 3660 } else { 3661 /* 3662 * Growing upward. 3663 */ 3664 addr = stack_entry->end + grow_amount; 3665 3666 /* 3667 * If this puts us into the next entry, cut back our growth 3668 * to the available space. Also, see the note above. 3669 */ 3670 if (addr > end) { 3671 stack_entry->avail_ssize = end - stack_entry->end; 3672 addr = end; 3673 if (stack_guard_page) 3674 addr -= PAGE_SIZE; 3675 } 3676 3677 grow_amount = addr - stack_entry->end; 3678 cred = stack_entry->cred; 3679 if (cred == NULL && stack_entry->object.vm_object != NULL) 3680 cred = stack_entry->object.vm_object->cred; 3681 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3682 rv = KERN_NO_SPACE; 3683 /* Grow the underlying object if applicable. */ 3684 else if (stack_entry->object.vm_object == NULL || 3685 vm_object_coalesce(stack_entry->object.vm_object, 3686 stack_entry->offset, 3687 (vm_size_t)(stack_entry->end - stack_entry->start), 3688 (vm_size_t)grow_amount, cred != NULL)) { 3689 map->size += (addr - stack_entry->end); 3690 /* Update the current entry. */ 3691 stack_entry->end = addr; 3692 stack_entry->avail_ssize -= grow_amount; 3693 vm_map_entry_resize_free(map, stack_entry); 3694 rv = KERN_SUCCESS; 3695 3696 if (next_entry != &map->header) 3697 vm_map_clip_start(map, next_entry, addr); 3698 } else 3699 rv = KERN_FAILURE; 3700 } 3701 3702 if (rv == KERN_SUCCESS && is_procstack) 3703 vm->vm_ssize += btoc(grow_amount); 3704 3705 vm_map_unlock(map); 3706 3707 /* 3708 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3709 */ 3710 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3711 vm_map_wire(map, 3712 (stack_entry == next_entry) ? addr : addr - grow_amount, 3713 (stack_entry == next_entry) ? stack_entry->start : addr, 3714 (p->p_flag & P_SYSTEM) 3715 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3716 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3717 } 3718 3719 out: 3720 #ifdef RACCT 3721 if (rv != KERN_SUCCESS) { 3722 PROC_LOCK(p); 3723 error = racct_set(p, RACCT_VMEM, map->size); 3724 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3725 if (!old_mlock) { 3726 error = racct_set(p, RACCT_MEMLOCK, 3727 ptoa(pmap_wired_count(map->pmap))); 3728 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3729 } 3730 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3731 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3732 PROC_UNLOCK(p); 3733 } 3734 #endif 3735 3736 return (rv); 3737 } 3738 3739 /* 3740 * Unshare the specified VM space for exec. If other processes are 3741 * mapped to it, then create a new one. The new vmspace is null. 3742 */ 3743 int 3744 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3745 { 3746 struct vmspace *oldvmspace = p->p_vmspace; 3747 struct vmspace *newvmspace; 3748 3749 newvmspace = vmspace_alloc(minuser, maxuser, NULL); 3750 if (newvmspace == NULL) 3751 return (ENOMEM); 3752 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3753 /* 3754 * This code is written like this for prototype purposes. The 3755 * goal is to avoid running down the vmspace here, but let the 3756 * other process's that are still using the vmspace to finally 3757 * run it down. Even though there is little or no chance of blocking 3758 * here, it is a good idea to keep this form for future mods. 3759 */ 3760 PROC_VMSPACE_LOCK(p); 3761 p->p_vmspace = newvmspace; 3762 PROC_VMSPACE_UNLOCK(p); 3763 if (p == curthread->td_proc) 3764 pmap_activate(curthread); 3765 vmspace_free(oldvmspace); 3766 return (0); 3767 } 3768 3769 /* 3770 * Unshare the specified VM space for forcing COW. This 3771 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3772 */ 3773 int 3774 vmspace_unshare(struct proc *p) 3775 { 3776 struct vmspace *oldvmspace = p->p_vmspace; 3777 struct vmspace *newvmspace; 3778 vm_ooffset_t fork_charge; 3779 3780 if (oldvmspace->vm_refcnt == 1) 3781 return (0); 3782 fork_charge = 0; 3783 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3784 if (newvmspace == NULL) 3785 return (ENOMEM); 3786 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3787 vmspace_free(newvmspace); 3788 return (ENOMEM); 3789 } 3790 PROC_VMSPACE_LOCK(p); 3791 p->p_vmspace = newvmspace; 3792 PROC_VMSPACE_UNLOCK(p); 3793 if (p == curthread->td_proc) 3794 pmap_activate(curthread); 3795 vmspace_free(oldvmspace); 3796 return (0); 3797 } 3798 3799 /* 3800 * vm_map_lookup: 3801 * 3802 * Finds the VM object, offset, and 3803 * protection for a given virtual address in the 3804 * specified map, assuming a page fault of the 3805 * type specified. 3806 * 3807 * Leaves the map in question locked for read; return 3808 * values are guaranteed until a vm_map_lookup_done 3809 * call is performed. Note that the map argument 3810 * is in/out; the returned map must be used in 3811 * the call to vm_map_lookup_done. 3812 * 3813 * A handle (out_entry) is returned for use in 3814 * vm_map_lookup_done, to make that fast. 3815 * 3816 * If a lookup is requested with "write protection" 3817 * specified, the map may be changed to perform virtual 3818 * copying operations, although the data referenced will 3819 * remain the same. 3820 */ 3821 int 3822 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3823 vm_offset_t vaddr, 3824 vm_prot_t fault_typea, 3825 vm_map_entry_t *out_entry, /* OUT */ 3826 vm_object_t *object, /* OUT */ 3827 vm_pindex_t *pindex, /* OUT */ 3828 vm_prot_t *out_prot, /* OUT */ 3829 boolean_t *wired) /* OUT */ 3830 { 3831 vm_map_entry_t entry; 3832 vm_map_t map = *var_map; 3833 vm_prot_t prot; 3834 vm_prot_t fault_type = fault_typea; 3835 vm_object_t eobject; 3836 vm_size_t size; 3837 struct ucred *cred; 3838 3839 RetryLookup:; 3840 3841 vm_map_lock_read(map); 3842 3843 /* 3844 * Lookup the faulting address. 3845 */ 3846 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3847 vm_map_unlock_read(map); 3848 return (KERN_INVALID_ADDRESS); 3849 } 3850 3851 entry = *out_entry; 3852 3853 /* 3854 * Handle submaps. 3855 */ 3856 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3857 vm_map_t old_map = map; 3858 3859 *var_map = map = entry->object.sub_map; 3860 vm_map_unlock_read(old_map); 3861 goto RetryLookup; 3862 } 3863 3864 /* 3865 * Check whether this task is allowed to have this page. 3866 */ 3867 prot = entry->protection; 3868 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3869 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3870 vm_map_unlock_read(map); 3871 return (KERN_PROTECTION_FAILURE); 3872 } 3873 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3874 (entry->eflags & MAP_ENTRY_COW) && 3875 (fault_type & VM_PROT_WRITE)) { 3876 vm_map_unlock_read(map); 3877 return (KERN_PROTECTION_FAILURE); 3878 } 3879 if ((fault_typea & VM_PROT_COPY) != 0 && 3880 (entry->max_protection & VM_PROT_WRITE) == 0 && 3881 (entry->eflags & MAP_ENTRY_COW) == 0) { 3882 vm_map_unlock_read(map); 3883 return (KERN_PROTECTION_FAILURE); 3884 } 3885 3886 /* 3887 * If this page is not pageable, we have to get it for all possible 3888 * accesses. 3889 */ 3890 *wired = (entry->wired_count != 0); 3891 if (*wired) 3892 fault_type = entry->protection; 3893 size = entry->end - entry->start; 3894 /* 3895 * If the entry was copy-on-write, we either ... 3896 */ 3897 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3898 /* 3899 * If we want to write the page, we may as well handle that 3900 * now since we've got the map locked. 3901 * 3902 * If we don't need to write the page, we just demote the 3903 * permissions allowed. 3904 */ 3905 if ((fault_type & VM_PROT_WRITE) != 0 || 3906 (fault_typea & VM_PROT_COPY) != 0) { 3907 /* 3908 * Make a new object, and place it in the object 3909 * chain. Note that no new references have appeared 3910 * -- one just moved from the map to the new 3911 * object. 3912 */ 3913 if (vm_map_lock_upgrade(map)) 3914 goto RetryLookup; 3915 3916 if (entry->cred == NULL) { 3917 /* 3918 * The debugger owner is charged for 3919 * the memory. 3920 */ 3921 cred = curthread->td_ucred; 3922 crhold(cred); 3923 if (!swap_reserve_by_cred(size, cred)) { 3924 crfree(cred); 3925 vm_map_unlock(map); 3926 return (KERN_RESOURCE_SHORTAGE); 3927 } 3928 entry->cred = cred; 3929 } 3930 vm_object_shadow(&entry->object.vm_object, 3931 &entry->offset, size); 3932 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3933 eobject = entry->object.vm_object; 3934 if (eobject->cred != NULL) { 3935 /* 3936 * The object was not shadowed. 3937 */ 3938 swap_release_by_cred(size, entry->cred); 3939 crfree(entry->cred); 3940 entry->cred = NULL; 3941 } else if (entry->cred != NULL) { 3942 VM_OBJECT_WLOCK(eobject); 3943 eobject->cred = entry->cred; 3944 eobject->charge = size; 3945 VM_OBJECT_WUNLOCK(eobject); 3946 entry->cred = NULL; 3947 } 3948 3949 vm_map_lock_downgrade(map); 3950 } else { 3951 /* 3952 * We're attempting to read a copy-on-write page -- 3953 * don't allow writes. 3954 */ 3955 prot &= ~VM_PROT_WRITE; 3956 } 3957 } 3958 3959 /* 3960 * Create an object if necessary. 3961 */ 3962 if (entry->object.vm_object == NULL && 3963 !map->system_map) { 3964 if (vm_map_lock_upgrade(map)) 3965 goto RetryLookup; 3966 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3967 atop(size)); 3968 entry->offset = 0; 3969 if (entry->cred != NULL) { 3970 VM_OBJECT_WLOCK(entry->object.vm_object); 3971 entry->object.vm_object->cred = entry->cred; 3972 entry->object.vm_object->charge = size; 3973 VM_OBJECT_WUNLOCK(entry->object.vm_object); 3974 entry->cred = NULL; 3975 } 3976 vm_map_lock_downgrade(map); 3977 } 3978 3979 /* 3980 * Return the object/offset from this entry. If the entry was 3981 * copy-on-write or empty, it has been fixed up. 3982 */ 3983 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3984 *object = entry->object.vm_object; 3985 3986 *out_prot = prot; 3987 return (KERN_SUCCESS); 3988 } 3989 3990 /* 3991 * vm_map_lookup_locked: 3992 * 3993 * Lookup the faulting address. A version of vm_map_lookup that returns 3994 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3995 */ 3996 int 3997 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3998 vm_offset_t vaddr, 3999 vm_prot_t fault_typea, 4000 vm_map_entry_t *out_entry, /* OUT */ 4001 vm_object_t *object, /* OUT */ 4002 vm_pindex_t *pindex, /* OUT */ 4003 vm_prot_t *out_prot, /* OUT */ 4004 boolean_t *wired) /* OUT */ 4005 { 4006 vm_map_entry_t entry; 4007 vm_map_t map = *var_map; 4008 vm_prot_t prot; 4009 vm_prot_t fault_type = fault_typea; 4010 4011 /* 4012 * Lookup the faulting address. 4013 */ 4014 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4015 return (KERN_INVALID_ADDRESS); 4016 4017 entry = *out_entry; 4018 4019 /* 4020 * Fail if the entry refers to a submap. 4021 */ 4022 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4023 return (KERN_FAILURE); 4024 4025 /* 4026 * Check whether this task is allowed to have this page. 4027 */ 4028 prot = entry->protection; 4029 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4030 if ((fault_type & prot) != fault_type) 4031 return (KERN_PROTECTION_FAILURE); 4032 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 4033 (entry->eflags & MAP_ENTRY_COW) && 4034 (fault_type & VM_PROT_WRITE)) 4035 return (KERN_PROTECTION_FAILURE); 4036 4037 /* 4038 * If this page is not pageable, we have to get it for all possible 4039 * accesses. 4040 */ 4041 *wired = (entry->wired_count != 0); 4042 if (*wired) 4043 fault_type = entry->protection; 4044 4045 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4046 /* 4047 * Fail if the entry was copy-on-write for a write fault. 4048 */ 4049 if (fault_type & VM_PROT_WRITE) 4050 return (KERN_FAILURE); 4051 /* 4052 * We're attempting to read a copy-on-write page -- 4053 * don't allow writes. 4054 */ 4055 prot &= ~VM_PROT_WRITE; 4056 } 4057 4058 /* 4059 * Fail if an object should be created. 4060 */ 4061 if (entry->object.vm_object == NULL && !map->system_map) 4062 return (KERN_FAILURE); 4063 4064 /* 4065 * Return the object/offset from this entry. If the entry was 4066 * copy-on-write or empty, it has been fixed up. 4067 */ 4068 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4069 *object = entry->object.vm_object; 4070 4071 *out_prot = prot; 4072 return (KERN_SUCCESS); 4073 } 4074 4075 /* 4076 * vm_map_lookup_done: 4077 * 4078 * Releases locks acquired by a vm_map_lookup 4079 * (according to the handle returned by that lookup). 4080 */ 4081 void 4082 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4083 { 4084 /* 4085 * Unlock the main-level map 4086 */ 4087 vm_map_unlock_read(map); 4088 } 4089 4090 #include "opt_ddb.h" 4091 #ifdef DDB 4092 #include <sys/kernel.h> 4093 4094 #include <ddb/ddb.h> 4095 4096 static void 4097 vm_map_print(vm_map_t map) 4098 { 4099 vm_map_entry_t entry; 4100 4101 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4102 (void *)map, 4103 (void *)map->pmap, map->nentries, map->timestamp); 4104 4105 db_indent += 2; 4106 for (entry = map->header.next; entry != &map->header; 4107 entry = entry->next) { 4108 db_iprintf("map entry %p: start=%p, end=%p\n", 4109 (void *)entry, (void *)entry->start, (void *)entry->end); 4110 { 4111 static char *inheritance_name[4] = 4112 {"share", "copy", "none", "donate_copy"}; 4113 4114 db_iprintf(" prot=%x/%x/%s", 4115 entry->protection, 4116 entry->max_protection, 4117 inheritance_name[(int)(unsigned char)entry->inheritance]); 4118 if (entry->wired_count != 0) 4119 db_printf(", wired"); 4120 } 4121 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4122 db_printf(", share=%p, offset=0x%jx\n", 4123 (void *)entry->object.sub_map, 4124 (uintmax_t)entry->offset); 4125 if ((entry->prev == &map->header) || 4126 (entry->prev->object.sub_map != 4127 entry->object.sub_map)) { 4128 db_indent += 2; 4129 vm_map_print((vm_map_t)entry->object.sub_map); 4130 db_indent -= 2; 4131 } 4132 } else { 4133 if (entry->cred != NULL) 4134 db_printf(", ruid %d", entry->cred->cr_ruid); 4135 db_printf(", object=%p, offset=0x%jx", 4136 (void *)entry->object.vm_object, 4137 (uintmax_t)entry->offset); 4138 if (entry->object.vm_object && entry->object.vm_object->cred) 4139 db_printf(", obj ruid %d charge %jx", 4140 entry->object.vm_object->cred->cr_ruid, 4141 (uintmax_t)entry->object.vm_object->charge); 4142 if (entry->eflags & MAP_ENTRY_COW) 4143 db_printf(", copy (%s)", 4144 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4145 db_printf("\n"); 4146 4147 if ((entry->prev == &map->header) || 4148 (entry->prev->object.vm_object != 4149 entry->object.vm_object)) { 4150 db_indent += 2; 4151 vm_object_print((db_expr_t)(intptr_t) 4152 entry->object.vm_object, 4153 1, 0, (char *)0); 4154 db_indent -= 2; 4155 } 4156 } 4157 } 4158 db_indent -= 2; 4159 } 4160 4161 DB_SHOW_COMMAND(map, map) 4162 { 4163 4164 if (!have_addr) { 4165 db_printf("usage: show map <addr>\n"); 4166 return; 4167 } 4168 vm_map_print((vm_map_t)addr); 4169 } 4170 4171 DB_SHOW_COMMAND(procvm, procvm) 4172 { 4173 struct proc *p; 4174 4175 if (have_addr) { 4176 p = (struct proc *) addr; 4177 } else { 4178 p = curproc; 4179 } 4180 4181 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4182 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4183 (void *)vmspace_pmap(p->p_vmspace)); 4184 4185 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4186 } 4187 4188 #endif /* DDB */ 4189