xref: /freebsd/sys/vm/vm_map.c (revision ce3adf4362fcca6a43e500b2531f0038adbfbd21)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static void vmspace_zfini(void *mem, int size);
131 static int vm_map_zinit(void *mem, int ize, int flags);
132 static void vm_map_zfini(void *mem, int size);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 #ifdef INVARIANTS
138 static void vm_map_zdtor(void *mem, int size, void *arg);
139 static void vmspace_zdtor(void *mem, int size, void *arg);
140 #endif
141 
142 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
143     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
144      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
145 
146 /*
147  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
148  * stable.
149  */
150 #define PROC_VMSPACE_LOCK(p) do { } while (0)
151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
152 
153 /*
154  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
155  *
156  *	Asserts that the starting and ending region
157  *	addresses fall within the valid range of the map.
158  */
159 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
160 		{					\
161 		if (start < vm_map_min(map))		\
162 			start = vm_map_min(map);	\
163 		if (end > vm_map_max(map))		\
164 			end = vm_map_max(map);		\
165 		if (start > end)			\
166 			start = end;			\
167 		}
168 
169 /*
170  *	vm_map_startup:
171  *
172  *	Initialize the vm_map module.  Must be called before
173  *	any other vm_map routines.
174  *
175  *	Map and entry structures are allocated from the general
176  *	purpose memory pool with some exceptions:
177  *
178  *	- The kernel map and kmem submap are allocated statically.
179  *	- Kernel map entries are allocated out of a static pool.
180  *
181  *	These restrictions are necessary since malloc() uses the
182  *	maps and requires map entries.
183  */
184 
185 void
186 vm_map_startup(void)
187 {
188 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
189 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
190 #ifdef INVARIANTS
191 	    vm_map_zdtor,
192 #else
193 	    NULL,
194 #endif
195 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
196 	uma_prealloc(mapzone, MAX_KMAP);
197 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
198 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
199 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
200 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
201 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
202 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
203 #ifdef INVARIANTS
204 	    vmspace_zdtor,
205 #else
206 	    NULL,
207 #endif
208 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
209 }
210 
211 static void
212 vmspace_zfini(void *mem, int size)
213 {
214 	struct vmspace *vm;
215 
216 	vm = (struct vmspace *)mem;
217 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
218 }
219 
220 static int
221 vmspace_zinit(void *mem, int size, int flags)
222 {
223 	struct vmspace *vm;
224 
225 	vm = (struct vmspace *)mem;
226 
227 	vm->vm_map.pmap = NULL;
228 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
229 	PMAP_LOCK_INIT(vmspace_pmap(vm));
230 	return (0);
231 }
232 
233 static void
234 vm_map_zfini(void *mem, int size)
235 {
236 	vm_map_t map;
237 
238 	map = (vm_map_t)mem;
239 	mtx_destroy(&map->system_mtx);
240 	sx_destroy(&map->lock);
241 }
242 
243 static int
244 vm_map_zinit(void *mem, int size, int flags)
245 {
246 	vm_map_t map;
247 
248 	map = (vm_map_t)mem;
249 	memset(map, 0, sizeof(*map));
250 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
251 	sx_init(&map->lock, "vm map (user)");
252 	return (0);
253 }
254 
255 #ifdef INVARIANTS
256 static void
257 vmspace_zdtor(void *mem, int size, void *arg)
258 {
259 	struct vmspace *vm;
260 
261 	vm = (struct vmspace *)mem;
262 
263 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
264 }
265 static void
266 vm_map_zdtor(void *mem, int size, void *arg)
267 {
268 	vm_map_t map;
269 
270 	map = (vm_map_t)mem;
271 	KASSERT(map->nentries == 0,
272 	    ("map %p nentries == %d on free.",
273 	    map, map->nentries));
274 	KASSERT(map->size == 0,
275 	    ("map %p size == %lu on free.",
276 	    map, (unsigned long)map->size));
277 }
278 #endif	/* INVARIANTS */
279 
280 /*
281  * Allocate a vmspace structure, including a vm_map and pmap,
282  * and initialize those structures.  The refcnt is set to 1.
283  *
284  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
285  */
286 struct vmspace *
287 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
288 {
289 	struct vmspace *vm;
290 
291 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
292 
293 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
294 
295 	if (pinit == NULL)
296 		pinit = &pmap_pinit;
297 
298 	if (!pinit(vmspace_pmap(vm))) {
299 		uma_zfree(vmspace_zone, vm);
300 		return (NULL);
301 	}
302 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
303 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
304 	vm->vm_refcnt = 1;
305 	vm->vm_shm = NULL;
306 	vm->vm_swrss = 0;
307 	vm->vm_tsize = 0;
308 	vm->vm_dsize = 0;
309 	vm->vm_ssize = 0;
310 	vm->vm_taddr = 0;
311 	vm->vm_daddr = 0;
312 	vm->vm_maxsaddr = 0;
313 	return (vm);
314 }
315 
316 static void
317 vmspace_container_reset(struct proc *p)
318 {
319 
320 #ifdef RACCT
321 	PROC_LOCK(p);
322 	racct_set(p, RACCT_DATA, 0);
323 	racct_set(p, RACCT_STACK, 0);
324 	racct_set(p, RACCT_RSS, 0);
325 	racct_set(p, RACCT_MEMLOCK, 0);
326 	racct_set(p, RACCT_VMEM, 0);
327 	PROC_UNLOCK(p);
328 #endif
329 }
330 
331 static inline void
332 vmspace_dofree(struct vmspace *vm)
333 {
334 
335 	CTR1(KTR_VM, "vmspace_free: %p", vm);
336 
337 	/*
338 	 * Make sure any SysV shm is freed, it might not have been in
339 	 * exit1().
340 	 */
341 	shmexit(vm);
342 
343 	/*
344 	 * Lock the map, to wait out all other references to it.
345 	 * Delete all of the mappings and pages they hold, then call
346 	 * the pmap module to reclaim anything left.
347 	 */
348 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
349 	    vm->vm_map.max_offset);
350 
351 	pmap_release(vmspace_pmap(vm));
352 	vm->vm_map.pmap = NULL;
353 	uma_zfree(vmspace_zone, vm);
354 }
355 
356 void
357 vmspace_free(struct vmspace *vm)
358 {
359 
360 	if (vm->vm_refcnt == 0)
361 		panic("vmspace_free: attempt to free already freed vmspace");
362 
363 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
364 		vmspace_dofree(vm);
365 }
366 
367 void
368 vmspace_exitfree(struct proc *p)
369 {
370 	struct vmspace *vm;
371 
372 	PROC_VMSPACE_LOCK(p);
373 	vm = p->p_vmspace;
374 	p->p_vmspace = NULL;
375 	PROC_VMSPACE_UNLOCK(p);
376 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
377 	vmspace_free(vm);
378 }
379 
380 void
381 vmspace_exit(struct thread *td)
382 {
383 	int refcnt;
384 	struct vmspace *vm;
385 	struct proc *p;
386 
387 	/*
388 	 * Release user portion of address space.
389 	 * This releases references to vnodes,
390 	 * which could cause I/O if the file has been unlinked.
391 	 * Need to do this early enough that we can still sleep.
392 	 *
393 	 * The last exiting process to reach this point releases as
394 	 * much of the environment as it can. vmspace_dofree() is the
395 	 * slower fallback in case another process had a temporary
396 	 * reference to the vmspace.
397 	 */
398 
399 	p = td->td_proc;
400 	vm = p->p_vmspace;
401 	atomic_add_int(&vmspace0.vm_refcnt, 1);
402 	do {
403 		refcnt = vm->vm_refcnt;
404 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
405 			/* Switch now since other proc might free vmspace */
406 			PROC_VMSPACE_LOCK(p);
407 			p->p_vmspace = &vmspace0;
408 			PROC_VMSPACE_UNLOCK(p);
409 			pmap_activate(td);
410 		}
411 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
412 	if (refcnt == 1) {
413 		if (p->p_vmspace != vm) {
414 			/* vmspace not yet freed, switch back */
415 			PROC_VMSPACE_LOCK(p);
416 			p->p_vmspace = vm;
417 			PROC_VMSPACE_UNLOCK(p);
418 			pmap_activate(td);
419 		}
420 		pmap_remove_pages(vmspace_pmap(vm));
421 		/* Switch now since this proc will free vmspace */
422 		PROC_VMSPACE_LOCK(p);
423 		p->p_vmspace = &vmspace0;
424 		PROC_VMSPACE_UNLOCK(p);
425 		pmap_activate(td);
426 		vmspace_dofree(vm);
427 	}
428 	vmspace_container_reset(p);
429 }
430 
431 /* Acquire reference to vmspace owned by another process. */
432 
433 struct vmspace *
434 vmspace_acquire_ref(struct proc *p)
435 {
436 	struct vmspace *vm;
437 	int refcnt;
438 
439 	PROC_VMSPACE_LOCK(p);
440 	vm = p->p_vmspace;
441 	if (vm == NULL) {
442 		PROC_VMSPACE_UNLOCK(p);
443 		return (NULL);
444 	}
445 	do {
446 		refcnt = vm->vm_refcnt;
447 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
448 			PROC_VMSPACE_UNLOCK(p);
449 			return (NULL);
450 		}
451 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
452 	if (vm != p->p_vmspace) {
453 		PROC_VMSPACE_UNLOCK(p);
454 		vmspace_free(vm);
455 		return (NULL);
456 	}
457 	PROC_VMSPACE_UNLOCK(p);
458 	return (vm);
459 }
460 
461 void
462 _vm_map_lock(vm_map_t map, const char *file, int line)
463 {
464 
465 	if (map->system_map)
466 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
467 	else
468 		sx_xlock_(&map->lock, file, line);
469 	map->timestamp++;
470 }
471 
472 static void
473 vm_map_process_deferred(void)
474 {
475 	struct thread *td;
476 	vm_map_entry_t entry, next;
477 	vm_object_t object;
478 
479 	td = curthread;
480 	entry = td->td_map_def_user;
481 	td->td_map_def_user = NULL;
482 	while (entry != NULL) {
483 		next = entry->next;
484 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
485 			/*
486 			 * Decrement the object's writemappings and
487 			 * possibly the vnode's v_writecount.
488 			 */
489 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
490 			    ("Submap with writecount"));
491 			object = entry->object.vm_object;
492 			KASSERT(object != NULL, ("No object for writecount"));
493 			vnode_pager_release_writecount(object, entry->start,
494 			    entry->end);
495 		}
496 		vm_map_entry_deallocate(entry, FALSE);
497 		entry = next;
498 	}
499 }
500 
501 void
502 _vm_map_unlock(vm_map_t map, const char *file, int line)
503 {
504 
505 	if (map->system_map)
506 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
507 	else {
508 		sx_xunlock_(&map->lock, file, line);
509 		vm_map_process_deferred();
510 	}
511 }
512 
513 void
514 _vm_map_lock_read(vm_map_t map, const char *file, int line)
515 {
516 
517 	if (map->system_map)
518 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
519 	else
520 		sx_slock_(&map->lock, file, line);
521 }
522 
523 void
524 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
525 {
526 
527 	if (map->system_map)
528 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
529 	else {
530 		sx_sunlock_(&map->lock, file, line);
531 		vm_map_process_deferred();
532 	}
533 }
534 
535 int
536 _vm_map_trylock(vm_map_t map, const char *file, int line)
537 {
538 	int error;
539 
540 	error = map->system_map ?
541 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
542 	    !sx_try_xlock_(&map->lock, file, line);
543 	if (error == 0)
544 		map->timestamp++;
545 	return (error == 0);
546 }
547 
548 int
549 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
550 {
551 	int error;
552 
553 	error = map->system_map ?
554 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
555 	    !sx_try_slock_(&map->lock, file, line);
556 	return (error == 0);
557 }
558 
559 /*
560  *	_vm_map_lock_upgrade:	[ internal use only ]
561  *
562  *	Tries to upgrade a read (shared) lock on the specified map to a write
563  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
564  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
565  *	returned without a read or write lock held.
566  *
567  *	Requires that the map be read locked.
568  */
569 int
570 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
571 {
572 	unsigned int last_timestamp;
573 
574 	if (map->system_map) {
575 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
576 	} else {
577 		if (!sx_try_upgrade_(&map->lock, file, line)) {
578 			last_timestamp = map->timestamp;
579 			sx_sunlock_(&map->lock, file, line);
580 			vm_map_process_deferred();
581 			/*
582 			 * If the map's timestamp does not change while the
583 			 * map is unlocked, then the upgrade succeeds.
584 			 */
585 			sx_xlock_(&map->lock, file, line);
586 			if (last_timestamp != map->timestamp) {
587 				sx_xunlock_(&map->lock, file, line);
588 				return (1);
589 			}
590 		}
591 	}
592 	map->timestamp++;
593 	return (0);
594 }
595 
596 void
597 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
598 {
599 
600 	if (map->system_map) {
601 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
602 	} else
603 		sx_downgrade_(&map->lock, file, line);
604 }
605 
606 /*
607  *	vm_map_locked:
608  *
609  *	Returns a non-zero value if the caller holds a write (exclusive) lock
610  *	on the specified map and the value "0" otherwise.
611  */
612 int
613 vm_map_locked(vm_map_t map)
614 {
615 
616 	if (map->system_map)
617 		return (mtx_owned(&map->system_mtx));
618 	else
619 		return (sx_xlocked(&map->lock));
620 }
621 
622 #ifdef INVARIANTS
623 static void
624 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
625 {
626 
627 	if (map->system_map)
628 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
629 	else
630 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
631 }
632 
633 #define	VM_MAP_ASSERT_LOCKED(map) \
634     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
635 #else
636 #define	VM_MAP_ASSERT_LOCKED(map)
637 #endif
638 
639 /*
640  *	_vm_map_unlock_and_wait:
641  *
642  *	Atomically releases the lock on the specified map and puts the calling
643  *	thread to sleep.  The calling thread will remain asleep until either
644  *	vm_map_wakeup() is performed on the map or the specified timeout is
645  *	exceeded.
646  *
647  *	WARNING!  This function does not perform deferred deallocations of
648  *	objects and map	entries.  Therefore, the calling thread is expected to
649  *	reacquire the map lock after reawakening and later perform an ordinary
650  *	unlock operation, such as vm_map_unlock(), before completing its
651  *	operation on the map.
652  */
653 int
654 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
655 {
656 
657 	mtx_lock(&map_sleep_mtx);
658 	if (map->system_map)
659 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
660 	else
661 		sx_xunlock_(&map->lock, file, line);
662 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
663 	    timo));
664 }
665 
666 /*
667  *	vm_map_wakeup:
668  *
669  *	Awaken any threads that have slept on the map using
670  *	vm_map_unlock_and_wait().
671  */
672 void
673 vm_map_wakeup(vm_map_t map)
674 {
675 
676 	/*
677 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
678 	 * from being performed (and lost) between the map unlock
679 	 * and the msleep() in _vm_map_unlock_and_wait().
680 	 */
681 	mtx_lock(&map_sleep_mtx);
682 	mtx_unlock(&map_sleep_mtx);
683 	wakeup(&map->root);
684 }
685 
686 void
687 vm_map_busy(vm_map_t map)
688 {
689 
690 	VM_MAP_ASSERT_LOCKED(map);
691 	map->busy++;
692 }
693 
694 void
695 vm_map_unbusy(vm_map_t map)
696 {
697 
698 	VM_MAP_ASSERT_LOCKED(map);
699 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
700 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
701 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
702 		wakeup(&map->busy);
703 	}
704 }
705 
706 void
707 vm_map_wait_busy(vm_map_t map)
708 {
709 
710 	VM_MAP_ASSERT_LOCKED(map);
711 	while (map->busy) {
712 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
713 		if (map->system_map)
714 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
715 		else
716 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
717 	}
718 	map->timestamp++;
719 }
720 
721 long
722 vmspace_resident_count(struct vmspace *vmspace)
723 {
724 	return pmap_resident_count(vmspace_pmap(vmspace));
725 }
726 
727 /*
728  *	vm_map_create:
729  *
730  *	Creates and returns a new empty VM map with
731  *	the given physical map structure, and having
732  *	the given lower and upper address bounds.
733  */
734 vm_map_t
735 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
736 {
737 	vm_map_t result;
738 
739 	result = uma_zalloc(mapzone, M_WAITOK);
740 	CTR1(KTR_VM, "vm_map_create: %p", result);
741 	_vm_map_init(result, pmap, min, max);
742 	return (result);
743 }
744 
745 /*
746  * Initialize an existing vm_map structure
747  * such as that in the vmspace structure.
748  */
749 static void
750 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
751 {
752 
753 	map->header.next = map->header.prev = &map->header;
754 	map->needs_wakeup = FALSE;
755 	map->system_map = 0;
756 	map->pmap = pmap;
757 	map->min_offset = min;
758 	map->max_offset = max;
759 	map->flags = 0;
760 	map->root = NULL;
761 	map->timestamp = 0;
762 	map->busy = 0;
763 }
764 
765 void
766 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
767 {
768 
769 	_vm_map_init(map, pmap, min, max);
770 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
771 	sx_init(&map->lock, "user map");
772 }
773 
774 /*
775  *	vm_map_entry_dispose:	[ internal use only ]
776  *
777  *	Inverse of vm_map_entry_create.
778  */
779 static void
780 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
781 {
782 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
783 }
784 
785 /*
786  *	vm_map_entry_create:	[ internal use only ]
787  *
788  *	Allocates a VM map entry for insertion.
789  *	No entry fields are filled in.
790  */
791 static vm_map_entry_t
792 vm_map_entry_create(vm_map_t map)
793 {
794 	vm_map_entry_t new_entry;
795 
796 	if (map->system_map)
797 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
798 	else
799 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
800 	if (new_entry == NULL)
801 		panic("vm_map_entry_create: kernel resources exhausted");
802 	return (new_entry);
803 }
804 
805 /*
806  *	vm_map_entry_set_behavior:
807  *
808  *	Set the expected access behavior, either normal, random, or
809  *	sequential.
810  */
811 static inline void
812 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
813 {
814 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
815 	    (behavior & MAP_ENTRY_BEHAV_MASK);
816 }
817 
818 /*
819  *	vm_map_entry_set_max_free:
820  *
821  *	Set the max_free field in a vm_map_entry.
822  */
823 static inline void
824 vm_map_entry_set_max_free(vm_map_entry_t entry)
825 {
826 
827 	entry->max_free = entry->adj_free;
828 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
829 		entry->max_free = entry->left->max_free;
830 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
831 		entry->max_free = entry->right->max_free;
832 }
833 
834 /*
835  *	vm_map_entry_splay:
836  *
837  *	The Sleator and Tarjan top-down splay algorithm with the
838  *	following variation.  Max_free must be computed bottom-up, so
839  *	on the downward pass, maintain the left and right spines in
840  *	reverse order.  Then, make a second pass up each side to fix
841  *	the pointers and compute max_free.  The time bound is O(log n)
842  *	amortized.
843  *
844  *	The new root is the vm_map_entry containing "addr", or else an
845  *	adjacent entry (lower or higher) if addr is not in the tree.
846  *
847  *	The map must be locked, and leaves it so.
848  *
849  *	Returns: the new root.
850  */
851 static vm_map_entry_t
852 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
853 {
854 	vm_map_entry_t llist, rlist;
855 	vm_map_entry_t ltree, rtree;
856 	vm_map_entry_t y;
857 
858 	/* Special case of empty tree. */
859 	if (root == NULL)
860 		return (root);
861 
862 	/*
863 	 * Pass One: Splay down the tree until we find addr or a NULL
864 	 * pointer where addr would go.  llist and rlist are the two
865 	 * sides in reverse order (bottom-up), with llist linked by
866 	 * the right pointer and rlist linked by the left pointer in
867 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
868 	 * the two spines.
869 	 */
870 	llist = NULL;
871 	rlist = NULL;
872 	for (;;) {
873 		/* root is never NULL in here. */
874 		if (addr < root->start) {
875 			y = root->left;
876 			if (y == NULL)
877 				break;
878 			if (addr < y->start && y->left != NULL) {
879 				/* Rotate right and put y on rlist. */
880 				root->left = y->right;
881 				y->right = root;
882 				vm_map_entry_set_max_free(root);
883 				root = y->left;
884 				y->left = rlist;
885 				rlist = y;
886 			} else {
887 				/* Put root on rlist. */
888 				root->left = rlist;
889 				rlist = root;
890 				root = y;
891 			}
892 		} else if (addr >= root->end) {
893 			y = root->right;
894 			if (y == NULL)
895 				break;
896 			if (addr >= y->end && y->right != NULL) {
897 				/* Rotate left and put y on llist. */
898 				root->right = y->left;
899 				y->left = root;
900 				vm_map_entry_set_max_free(root);
901 				root = y->right;
902 				y->right = llist;
903 				llist = y;
904 			} else {
905 				/* Put root on llist. */
906 				root->right = llist;
907 				llist = root;
908 				root = y;
909 			}
910 		} else
911 			break;
912 	}
913 
914 	/*
915 	 * Pass Two: Walk back up the two spines, flip the pointers
916 	 * and set max_free.  The subtrees of the root go at the
917 	 * bottom of llist and rlist.
918 	 */
919 	ltree = root->left;
920 	while (llist != NULL) {
921 		y = llist->right;
922 		llist->right = ltree;
923 		vm_map_entry_set_max_free(llist);
924 		ltree = llist;
925 		llist = y;
926 	}
927 	rtree = root->right;
928 	while (rlist != NULL) {
929 		y = rlist->left;
930 		rlist->left = rtree;
931 		vm_map_entry_set_max_free(rlist);
932 		rtree = rlist;
933 		rlist = y;
934 	}
935 
936 	/*
937 	 * Final assembly: add ltree and rtree as subtrees of root.
938 	 */
939 	root->left = ltree;
940 	root->right = rtree;
941 	vm_map_entry_set_max_free(root);
942 
943 	return (root);
944 }
945 
946 /*
947  *	vm_map_entry_{un,}link:
948  *
949  *	Insert/remove entries from maps.
950  */
951 static void
952 vm_map_entry_link(vm_map_t map,
953 		  vm_map_entry_t after_where,
954 		  vm_map_entry_t entry)
955 {
956 
957 	CTR4(KTR_VM,
958 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
959 	    map->nentries, entry, after_where);
960 	VM_MAP_ASSERT_LOCKED(map);
961 	map->nentries++;
962 	entry->prev = after_where;
963 	entry->next = after_where->next;
964 	entry->next->prev = entry;
965 	after_where->next = entry;
966 
967 	if (after_where != &map->header) {
968 		if (after_where != map->root)
969 			vm_map_entry_splay(after_where->start, map->root);
970 		entry->right = after_where->right;
971 		entry->left = after_where;
972 		after_where->right = NULL;
973 		after_where->adj_free = entry->start - after_where->end;
974 		vm_map_entry_set_max_free(after_where);
975 	} else {
976 		entry->right = map->root;
977 		entry->left = NULL;
978 	}
979 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
980 	    entry->next->start) - entry->end;
981 	vm_map_entry_set_max_free(entry);
982 	map->root = entry;
983 }
984 
985 static void
986 vm_map_entry_unlink(vm_map_t map,
987 		    vm_map_entry_t entry)
988 {
989 	vm_map_entry_t next, prev, root;
990 
991 	VM_MAP_ASSERT_LOCKED(map);
992 	if (entry != map->root)
993 		vm_map_entry_splay(entry->start, map->root);
994 	if (entry->left == NULL)
995 		root = entry->right;
996 	else {
997 		root = vm_map_entry_splay(entry->start, entry->left);
998 		root->right = entry->right;
999 		root->adj_free = (entry->next == &map->header ? map->max_offset :
1000 		    entry->next->start) - root->end;
1001 		vm_map_entry_set_max_free(root);
1002 	}
1003 	map->root = root;
1004 
1005 	prev = entry->prev;
1006 	next = entry->next;
1007 	next->prev = prev;
1008 	prev->next = next;
1009 	map->nentries--;
1010 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1011 	    map->nentries, entry);
1012 }
1013 
1014 /*
1015  *	vm_map_entry_resize_free:
1016  *
1017  *	Recompute the amount of free space following a vm_map_entry
1018  *	and propagate that value up the tree.  Call this function after
1019  *	resizing a map entry in-place, that is, without a call to
1020  *	vm_map_entry_link() or _unlink().
1021  *
1022  *	The map must be locked, and leaves it so.
1023  */
1024 static void
1025 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1026 {
1027 
1028 	/*
1029 	 * Using splay trees without parent pointers, propagating
1030 	 * max_free up the tree is done by moving the entry to the
1031 	 * root and making the change there.
1032 	 */
1033 	if (entry != map->root)
1034 		map->root = vm_map_entry_splay(entry->start, map->root);
1035 
1036 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1037 	    entry->next->start) - entry->end;
1038 	vm_map_entry_set_max_free(entry);
1039 }
1040 
1041 /*
1042  *	vm_map_lookup_entry:	[ internal use only ]
1043  *
1044  *	Finds the map entry containing (or
1045  *	immediately preceding) the specified address
1046  *	in the given map; the entry is returned
1047  *	in the "entry" parameter.  The boolean
1048  *	result indicates whether the address is
1049  *	actually contained in the map.
1050  */
1051 boolean_t
1052 vm_map_lookup_entry(
1053 	vm_map_t map,
1054 	vm_offset_t address,
1055 	vm_map_entry_t *entry)	/* OUT */
1056 {
1057 	vm_map_entry_t cur;
1058 	boolean_t locked;
1059 
1060 	/*
1061 	 * If the map is empty, then the map entry immediately preceding
1062 	 * "address" is the map's header.
1063 	 */
1064 	cur = map->root;
1065 	if (cur == NULL)
1066 		*entry = &map->header;
1067 	else if (address >= cur->start && cur->end > address) {
1068 		*entry = cur;
1069 		return (TRUE);
1070 	} else if ((locked = vm_map_locked(map)) ||
1071 	    sx_try_upgrade(&map->lock)) {
1072 		/*
1073 		 * Splay requires a write lock on the map.  However, it only
1074 		 * restructures the binary search tree; it does not otherwise
1075 		 * change the map.  Thus, the map's timestamp need not change
1076 		 * on a temporary upgrade.
1077 		 */
1078 		map->root = cur = vm_map_entry_splay(address, cur);
1079 		if (!locked)
1080 			sx_downgrade(&map->lock);
1081 
1082 		/*
1083 		 * If "address" is contained within a map entry, the new root
1084 		 * is that map entry.  Otherwise, the new root is a map entry
1085 		 * immediately before or after "address".
1086 		 */
1087 		if (address >= cur->start) {
1088 			*entry = cur;
1089 			if (cur->end > address)
1090 				return (TRUE);
1091 		} else
1092 			*entry = cur->prev;
1093 	} else
1094 		/*
1095 		 * Since the map is only locked for read access, perform a
1096 		 * standard binary search tree lookup for "address".
1097 		 */
1098 		for (;;) {
1099 			if (address < cur->start) {
1100 				if (cur->left == NULL) {
1101 					*entry = cur->prev;
1102 					break;
1103 				}
1104 				cur = cur->left;
1105 			} else if (cur->end > address) {
1106 				*entry = cur;
1107 				return (TRUE);
1108 			} else {
1109 				if (cur->right == NULL) {
1110 					*entry = cur;
1111 					break;
1112 				}
1113 				cur = cur->right;
1114 			}
1115 		}
1116 	return (FALSE);
1117 }
1118 
1119 /*
1120  *	vm_map_insert:
1121  *
1122  *	Inserts the given whole VM object into the target
1123  *	map at the specified address range.  The object's
1124  *	size should match that of the address range.
1125  *
1126  *	Requires that the map be locked, and leaves it so.
1127  *
1128  *	If object is non-NULL, ref count must be bumped by caller
1129  *	prior to making call to account for the new entry.
1130  */
1131 int
1132 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1133 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1134 	      int cow)
1135 {
1136 	vm_map_entry_t new_entry;
1137 	vm_map_entry_t prev_entry;
1138 	vm_map_entry_t temp_entry;
1139 	vm_eflags_t protoeflags;
1140 	struct ucred *cred;
1141 	vm_inherit_t inheritance;
1142 	boolean_t charge_prev_obj;
1143 
1144 	VM_MAP_ASSERT_LOCKED(map);
1145 
1146 	/*
1147 	 * Check that the start and end points are not bogus.
1148 	 */
1149 	if ((start < map->min_offset) || (end > map->max_offset) ||
1150 	    (start >= end))
1151 		return (KERN_INVALID_ADDRESS);
1152 
1153 	/*
1154 	 * Find the entry prior to the proposed starting address; if it's part
1155 	 * of an existing entry, this range is bogus.
1156 	 */
1157 	if (vm_map_lookup_entry(map, start, &temp_entry))
1158 		return (KERN_NO_SPACE);
1159 
1160 	prev_entry = temp_entry;
1161 
1162 	/*
1163 	 * Assert that the next entry doesn't overlap the end point.
1164 	 */
1165 	if ((prev_entry->next != &map->header) &&
1166 	    (prev_entry->next->start < end))
1167 		return (KERN_NO_SPACE);
1168 
1169 	protoeflags = 0;
1170 	charge_prev_obj = FALSE;
1171 
1172 	if (cow & MAP_COPY_ON_WRITE)
1173 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1174 
1175 	if (cow & MAP_NOFAULT) {
1176 		protoeflags |= MAP_ENTRY_NOFAULT;
1177 
1178 		KASSERT(object == NULL,
1179 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1180 	}
1181 	if (cow & MAP_DISABLE_SYNCER)
1182 		protoeflags |= MAP_ENTRY_NOSYNC;
1183 	if (cow & MAP_DISABLE_COREDUMP)
1184 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1185 	if (cow & MAP_VN_WRITECOUNT)
1186 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1187 	if (cow & MAP_INHERIT_SHARE)
1188 		inheritance = VM_INHERIT_SHARE;
1189 	else
1190 		inheritance = VM_INHERIT_DEFAULT;
1191 
1192 	cred = NULL;
1193 	KASSERT((object != kmem_object && object != kernel_object) ||
1194 	    ((object == kmem_object || object == kernel_object) &&
1195 		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1196 	    ("kmem or kernel object and cow"));
1197 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1198 		goto charged;
1199 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1200 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1201 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1202 			return (KERN_RESOURCE_SHORTAGE);
1203 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1204 		    object->cred == NULL,
1205 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1206 		cred = curthread->td_ucred;
1207 		crhold(cred);
1208 		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1209 			charge_prev_obj = TRUE;
1210 	}
1211 
1212 charged:
1213 	/* Expand the kernel pmap, if necessary. */
1214 	if (map == kernel_map && end > kernel_vm_end)
1215 		pmap_growkernel(end);
1216 	if (object != NULL) {
1217 		/*
1218 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1219 		 * is trivially proven to be the only mapping for any
1220 		 * of the object's pages.  (Object granularity
1221 		 * reference counting is insufficient to recognize
1222 		 * aliases with precision.)
1223 		 */
1224 		VM_OBJECT_WLOCK(object);
1225 		if (object->ref_count > 1 || object->shadow_count != 0)
1226 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1227 		VM_OBJECT_WUNLOCK(object);
1228 	}
1229 	else if ((prev_entry != &map->header) &&
1230 		 (prev_entry->eflags == protoeflags) &&
1231 		 (prev_entry->end == start) &&
1232 		 (prev_entry->wired_count == 0) &&
1233 		 (prev_entry->cred == cred ||
1234 		  (prev_entry->object.vm_object != NULL &&
1235 		   (prev_entry->object.vm_object->cred == cred))) &&
1236 		   vm_object_coalesce(prev_entry->object.vm_object,
1237 		       prev_entry->offset,
1238 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1239 		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1240 		/*
1241 		 * We were able to extend the object.  Determine if we
1242 		 * can extend the previous map entry to include the
1243 		 * new range as well.
1244 		 */
1245 		if ((prev_entry->inheritance == inheritance) &&
1246 		    (prev_entry->protection == prot) &&
1247 		    (prev_entry->max_protection == max)) {
1248 			map->size += (end - prev_entry->end);
1249 			prev_entry->end = end;
1250 			vm_map_entry_resize_free(map, prev_entry);
1251 			vm_map_simplify_entry(map, prev_entry);
1252 			if (cred != NULL)
1253 				crfree(cred);
1254 			return (KERN_SUCCESS);
1255 		}
1256 
1257 		/*
1258 		 * If we can extend the object but cannot extend the
1259 		 * map entry, we have to create a new map entry.  We
1260 		 * must bump the ref count on the extended object to
1261 		 * account for it.  object may be NULL.
1262 		 */
1263 		object = prev_entry->object.vm_object;
1264 		offset = prev_entry->offset +
1265 			(prev_entry->end - prev_entry->start);
1266 		vm_object_reference(object);
1267 		if (cred != NULL && object != NULL && object->cred != NULL &&
1268 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1269 			/* Object already accounts for this uid. */
1270 			crfree(cred);
1271 			cred = NULL;
1272 		}
1273 	}
1274 
1275 	/*
1276 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1277 	 * in things like the buffer map where we manage kva but do not manage
1278 	 * backing objects.
1279 	 */
1280 
1281 	/*
1282 	 * Create a new entry
1283 	 */
1284 	new_entry = vm_map_entry_create(map);
1285 	new_entry->start = start;
1286 	new_entry->end = end;
1287 	new_entry->cred = NULL;
1288 
1289 	new_entry->eflags = protoeflags;
1290 	new_entry->object.vm_object = object;
1291 	new_entry->offset = offset;
1292 	new_entry->avail_ssize = 0;
1293 
1294 	new_entry->inheritance = inheritance;
1295 	new_entry->protection = prot;
1296 	new_entry->max_protection = max;
1297 	new_entry->wired_count = 0;
1298 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1299 	new_entry->next_read = OFF_TO_IDX(offset);
1300 
1301 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1302 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1303 	new_entry->cred = cred;
1304 
1305 	/*
1306 	 * Insert the new entry into the list
1307 	 */
1308 	vm_map_entry_link(map, prev_entry, new_entry);
1309 	map->size += new_entry->end - new_entry->start;
1310 
1311 	/*
1312 	 * It may be possible to merge the new entry with the next and/or
1313 	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1314 	 * panic can result from merging such entries.
1315 	 */
1316 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1317 		vm_map_simplify_entry(map, new_entry);
1318 
1319 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1320 		vm_map_pmap_enter(map, start, prot,
1321 				    object, OFF_TO_IDX(offset), end - start,
1322 				    cow & MAP_PREFAULT_PARTIAL);
1323 	}
1324 
1325 	return (KERN_SUCCESS);
1326 }
1327 
1328 /*
1329  *	vm_map_findspace:
1330  *
1331  *	Find the first fit (lowest VM address) for "length" free bytes
1332  *	beginning at address >= start in the given map.
1333  *
1334  *	In a vm_map_entry, "adj_free" is the amount of free space
1335  *	adjacent (higher address) to this entry, and "max_free" is the
1336  *	maximum amount of contiguous free space in its subtree.  This
1337  *	allows finding a free region in one path down the tree, so
1338  *	O(log n) amortized with splay trees.
1339  *
1340  *	The map must be locked, and leaves it so.
1341  *
1342  *	Returns: 0 on success, and starting address in *addr,
1343  *		 1 if insufficient space.
1344  */
1345 int
1346 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1347     vm_offset_t *addr)	/* OUT */
1348 {
1349 	vm_map_entry_t entry;
1350 	vm_offset_t st;
1351 
1352 	/*
1353 	 * Request must fit within min/max VM address and must avoid
1354 	 * address wrap.
1355 	 */
1356 	if (start < map->min_offset)
1357 		start = map->min_offset;
1358 	if (start + length > map->max_offset || start + length < start)
1359 		return (1);
1360 
1361 	/* Empty tree means wide open address space. */
1362 	if (map->root == NULL) {
1363 		*addr = start;
1364 		return (0);
1365 	}
1366 
1367 	/*
1368 	 * After splay, if start comes before root node, then there
1369 	 * must be a gap from start to the root.
1370 	 */
1371 	map->root = vm_map_entry_splay(start, map->root);
1372 	if (start + length <= map->root->start) {
1373 		*addr = start;
1374 		return (0);
1375 	}
1376 
1377 	/*
1378 	 * Root is the last node that might begin its gap before
1379 	 * start, and this is the last comparison where address
1380 	 * wrap might be a problem.
1381 	 */
1382 	st = (start > map->root->end) ? start : map->root->end;
1383 	if (length <= map->root->end + map->root->adj_free - st) {
1384 		*addr = st;
1385 		return (0);
1386 	}
1387 
1388 	/* With max_free, can immediately tell if no solution. */
1389 	entry = map->root->right;
1390 	if (entry == NULL || length > entry->max_free)
1391 		return (1);
1392 
1393 	/*
1394 	 * Search the right subtree in the order: left subtree, root,
1395 	 * right subtree (first fit).  The previous splay implies that
1396 	 * all regions in the right subtree have addresses > start.
1397 	 */
1398 	while (entry != NULL) {
1399 		if (entry->left != NULL && entry->left->max_free >= length)
1400 			entry = entry->left;
1401 		else if (entry->adj_free >= length) {
1402 			*addr = entry->end;
1403 			return (0);
1404 		} else
1405 			entry = entry->right;
1406 	}
1407 
1408 	/* Can't get here, so panic if we do. */
1409 	panic("vm_map_findspace: max_free corrupt");
1410 }
1411 
1412 int
1413 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1414     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1415     vm_prot_t max, int cow)
1416 {
1417 	vm_offset_t end;
1418 	int result;
1419 
1420 	end = start + length;
1421 	vm_map_lock(map);
1422 	VM_MAP_RANGE_CHECK(map, start, end);
1423 	(void) vm_map_delete(map, start, end);
1424 	result = vm_map_insert(map, object, offset, start, end, prot,
1425 	    max, cow);
1426 	vm_map_unlock(map);
1427 	return (result);
1428 }
1429 
1430 /*
1431  *	vm_map_find finds an unallocated region in the target address
1432  *	map with the given length.  The search is defined to be
1433  *	first-fit from the specified address; the region found is
1434  *	returned in the same parameter.
1435  *
1436  *	If object is non-NULL, ref count must be bumped by caller
1437  *	prior to making call to account for the new entry.
1438  */
1439 int
1440 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1441 	    vm_offset_t *addr,	/* IN/OUT */
1442 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1443 	    vm_prot_t prot, vm_prot_t max, int cow)
1444 {
1445 	vm_offset_t alignment, initial_addr, start;
1446 	int result;
1447 
1448 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1449 	    (object->flags & OBJ_COLORED) == 0))
1450 		find_space = VMFS_ANY_SPACE;
1451 	if (find_space >> 8 != 0) {
1452 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1453 		alignment = (vm_offset_t)1 << (find_space >> 8);
1454 	} else
1455 		alignment = 0;
1456 	initial_addr = *addr;
1457 again:
1458 	start = initial_addr;
1459 	vm_map_lock(map);
1460 	do {
1461 		if (find_space != VMFS_NO_SPACE) {
1462 			if (vm_map_findspace(map, start, length, addr) ||
1463 			    (max_addr != 0 && *addr + length > max_addr)) {
1464 				vm_map_unlock(map);
1465 				if (find_space == VMFS_OPTIMAL_SPACE) {
1466 					find_space = VMFS_ANY_SPACE;
1467 					goto again;
1468 				}
1469 				return (KERN_NO_SPACE);
1470 			}
1471 			switch (find_space) {
1472 			case VMFS_SUPER_SPACE:
1473 			case VMFS_OPTIMAL_SPACE:
1474 				pmap_align_superpage(object, offset, addr,
1475 				    length);
1476 				break;
1477 			case VMFS_ANY_SPACE:
1478 				break;
1479 			default:
1480 				if ((*addr & (alignment - 1)) != 0) {
1481 					*addr &= ~(alignment - 1);
1482 					*addr += alignment;
1483 				}
1484 				break;
1485 			}
1486 
1487 			start = *addr;
1488 		}
1489 		result = vm_map_insert(map, object, offset, start, start +
1490 		    length, prot, max, cow);
1491 	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1492 	    find_space != VMFS_ANY_SPACE);
1493 	vm_map_unlock(map);
1494 	return (result);
1495 }
1496 
1497 /*
1498  *	vm_map_simplify_entry:
1499  *
1500  *	Simplify the given map entry by merging with either neighbor.  This
1501  *	routine also has the ability to merge with both neighbors.
1502  *
1503  *	The map must be locked.
1504  *
1505  *	This routine guarentees that the passed entry remains valid (though
1506  *	possibly extended).  When merging, this routine may delete one or
1507  *	both neighbors.
1508  */
1509 void
1510 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1511 {
1512 	vm_map_entry_t next, prev;
1513 	vm_size_t prevsize, esize;
1514 
1515 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1516 		return;
1517 
1518 	prev = entry->prev;
1519 	if (prev != &map->header) {
1520 		prevsize = prev->end - prev->start;
1521 		if ( (prev->end == entry->start) &&
1522 		     (prev->object.vm_object == entry->object.vm_object) &&
1523 		     (!prev->object.vm_object ||
1524 			(prev->offset + prevsize == entry->offset)) &&
1525 		     (prev->eflags == entry->eflags) &&
1526 		     (prev->protection == entry->protection) &&
1527 		     (prev->max_protection == entry->max_protection) &&
1528 		     (prev->inheritance == entry->inheritance) &&
1529 		     (prev->wired_count == entry->wired_count) &&
1530 		     (prev->cred == entry->cred)) {
1531 			vm_map_entry_unlink(map, prev);
1532 			entry->start = prev->start;
1533 			entry->offset = prev->offset;
1534 			if (entry->prev != &map->header)
1535 				vm_map_entry_resize_free(map, entry->prev);
1536 
1537 			/*
1538 			 * If the backing object is a vnode object,
1539 			 * vm_object_deallocate() calls vrele().
1540 			 * However, vrele() does not lock the vnode
1541 			 * because the vnode has additional
1542 			 * references.  Thus, the map lock can be kept
1543 			 * without causing a lock-order reversal with
1544 			 * the vnode lock.
1545 			 *
1546 			 * Since we count the number of virtual page
1547 			 * mappings in object->un_pager.vnp.writemappings,
1548 			 * the writemappings value should not be adjusted
1549 			 * when the entry is disposed of.
1550 			 */
1551 			if (prev->object.vm_object)
1552 				vm_object_deallocate(prev->object.vm_object);
1553 			if (prev->cred != NULL)
1554 				crfree(prev->cred);
1555 			vm_map_entry_dispose(map, prev);
1556 		}
1557 	}
1558 
1559 	next = entry->next;
1560 	if (next != &map->header) {
1561 		esize = entry->end - entry->start;
1562 		if ((entry->end == next->start) &&
1563 		    (next->object.vm_object == entry->object.vm_object) &&
1564 		     (!entry->object.vm_object ||
1565 			(entry->offset + esize == next->offset)) &&
1566 		    (next->eflags == entry->eflags) &&
1567 		    (next->protection == entry->protection) &&
1568 		    (next->max_protection == entry->max_protection) &&
1569 		    (next->inheritance == entry->inheritance) &&
1570 		    (next->wired_count == entry->wired_count) &&
1571 		    (next->cred == entry->cred)) {
1572 			vm_map_entry_unlink(map, next);
1573 			entry->end = next->end;
1574 			vm_map_entry_resize_free(map, entry);
1575 
1576 			/*
1577 			 * See comment above.
1578 			 */
1579 			if (next->object.vm_object)
1580 				vm_object_deallocate(next->object.vm_object);
1581 			if (next->cred != NULL)
1582 				crfree(next->cred);
1583 			vm_map_entry_dispose(map, next);
1584 		}
1585 	}
1586 }
1587 /*
1588  *	vm_map_clip_start:	[ internal use only ]
1589  *
1590  *	Asserts that the given entry begins at or after
1591  *	the specified address; if necessary,
1592  *	it splits the entry into two.
1593  */
1594 #define vm_map_clip_start(map, entry, startaddr) \
1595 { \
1596 	if (startaddr > entry->start) \
1597 		_vm_map_clip_start(map, entry, startaddr); \
1598 }
1599 
1600 /*
1601  *	This routine is called only when it is known that
1602  *	the entry must be split.
1603  */
1604 static void
1605 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1606 {
1607 	vm_map_entry_t new_entry;
1608 
1609 	VM_MAP_ASSERT_LOCKED(map);
1610 
1611 	/*
1612 	 * Split off the front portion -- note that we must insert the new
1613 	 * entry BEFORE this one, so that this entry has the specified
1614 	 * starting address.
1615 	 */
1616 	vm_map_simplify_entry(map, entry);
1617 
1618 	/*
1619 	 * If there is no object backing this entry, we might as well create
1620 	 * one now.  If we defer it, an object can get created after the map
1621 	 * is clipped, and individual objects will be created for the split-up
1622 	 * map.  This is a bit of a hack, but is also about the best place to
1623 	 * put this improvement.
1624 	 */
1625 	if (entry->object.vm_object == NULL && !map->system_map) {
1626 		vm_object_t object;
1627 		object = vm_object_allocate(OBJT_DEFAULT,
1628 				atop(entry->end - entry->start));
1629 		entry->object.vm_object = object;
1630 		entry->offset = 0;
1631 		if (entry->cred != NULL) {
1632 			object->cred = entry->cred;
1633 			object->charge = entry->end - entry->start;
1634 			entry->cred = NULL;
1635 		}
1636 	} else if (entry->object.vm_object != NULL &&
1637 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1638 		   entry->cred != NULL) {
1639 		VM_OBJECT_WLOCK(entry->object.vm_object);
1640 		KASSERT(entry->object.vm_object->cred == NULL,
1641 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1642 		entry->object.vm_object->cred = entry->cred;
1643 		entry->object.vm_object->charge = entry->end - entry->start;
1644 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1645 		entry->cred = NULL;
1646 	}
1647 
1648 	new_entry = vm_map_entry_create(map);
1649 	*new_entry = *entry;
1650 
1651 	new_entry->end = start;
1652 	entry->offset += (start - entry->start);
1653 	entry->start = start;
1654 	if (new_entry->cred != NULL)
1655 		crhold(entry->cred);
1656 
1657 	vm_map_entry_link(map, entry->prev, new_entry);
1658 
1659 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1660 		vm_object_reference(new_entry->object.vm_object);
1661 		/*
1662 		 * The object->un_pager.vnp.writemappings for the
1663 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1664 		 * kept as is here.  The virtual pages are
1665 		 * re-distributed among the clipped entries, so the sum is
1666 		 * left the same.
1667 		 */
1668 	}
1669 }
1670 
1671 /*
1672  *	vm_map_clip_end:	[ internal use only ]
1673  *
1674  *	Asserts that the given entry ends at or before
1675  *	the specified address; if necessary,
1676  *	it splits the entry into two.
1677  */
1678 #define vm_map_clip_end(map, entry, endaddr) \
1679 { \
1680 	if ((endaddr) < (entry->end)) \
1681 		_vm_map_clip_end((map), (entry), (endaddr)); \
1682 }
1683 
1684 /*
1685  *	This routine is called only when it is known that
1686  *	the entry must be split.
1687  */
1688 static void
1689 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1690 {
1691 	vm_map_entry_t new_entry;
1692 
1693 	VM_MAP_ASSERT_LOCKED(map);
1694 
1695 	/*
1696 	 * If there is no object backing this entry, we might as well create
1697 	 * one now.  If we defer it, an object can get created after the map
1698 	 * is clipped, and individual objects will be created for the split-up
1699 	 * map.  This is a bit of a hack, but is also about the best place to
1700 	 * put this improvement.
1701 	 */
1702 	if (entry->object.vm_object == NULL && !map->system_map) {
1703 		vm_object_t object;
1704 		object = vm_object_allocate(OBJT_DEFAULT,
1705 				atop(entry->end - entry->start));
1706 		entry->object.vm_object = object;
1707 		entry->offset = 0;
1708 		if (entry->cred != NULL) {
1709 			object->cred = entry->cred;
1710 			object->charge = entry->end - entry->start;
1711 			entry->cred = NULL;
1712 		}
1713 	} else if (entry->object.vm_object != NULL &&
1714 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1715 		   entry->cred != NULL) {
1716 		VM_OBJECT_WLOCK(entry->object.vm_object);
1717 		KASSERT(entry->object.vm_object->cred == NULL,
1718 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1719 		entry->object.vm_object->cred = entry->cred;
1720 		entry->object.vm_object->charge = entry->end - entry->start;
1721 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1722 		entry->cred = NULL;
1723 	}
1724 
1725 	/*
1726 	 * Create a new entry and insert it AFTER the specified entry
1727 	 */
1728 	new_entry = vm_map_entry_create(map);
1729 	*new_entry = *entry;
1730 
1731 	new_entry->start = entry->end = end;
1732 	new_entry->offset += (end - entry->start);
1733 	if (new_entry->cred != NULL)
1734 		crhold(entry->cred);
1735 
1736 	vm_map_entry_link(map, entry, new_entry);
1737 
1738 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1739 		vm_object_reference(new_entry->object.vm_object);
1740 	}
1741 }
1742 
1743 /*
1744  *	vm_map_submap:		[ kernel use only ]
1745  *
1746  *	Mark the given range as handled by a subordinate map.
1747  *
1748  *	This range must have been created with vm_map_find,
1749  *	and no other operations may have been performed on this
1750  *	range prior to calling vm_map_submap.
1751  *
1752  *	Only a limited number of operations can be performed
1753  *	within this rage after calling vm_map_submap:
1754  *		vm_fault
1755  *	[Don't try vm_map_copy!]
1756  *
1757  *	To remove a submapping, one must first remove the
1758  *	range from the superior map, and then destroy the
1759  *	submap (if desired).  [Better yet, don't try it.]
1760  */
1761 int
1762 vm_map_submap(
1763 	vm_map_t map,
1764 	vm_offset_t start,
1765 	vm_offset_t end,
1766 	vm_map_t submap)
1767 {
1768 	vm_map_entry_t entry;
1769 	int result = KERN_INVALID_ARGUMENT;
1770 
1771 	vm_map_lock(map);
1772 
1773 	VM_MAP_RANGE_CHECK(map, start, end);
1774 
1775 	if (vm_map_lookup_entry(map, start, &entry)) {
1776 		vm_map_clip_start(map, entry, start);
1777 	} else
1778 		entry = entry->next;
1779 
1780 	vm_map_clip_end(map, entry, end);
1781 
1782 	if ((entry->start == start) && (entry->end == end) &&
1783 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1784 	    (entry->object.vm_object == NULL)) {
1785 		entry->object.sub_map = submap;
1786 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1787 		result = KERN_SUCCESS;
1788 	}
1789 	vm_map_unlock(map);
1790 
1791 	return (result);
1792 }
1793 
1794 /*
1795  * The maximum number of pages to map
1796  */
1797 #define	MAX_INIT_PT	96
1798 
1799 /*
1800  *	vm_map_pmap_enter:
1801  *
1802  *	Preload read-only mappings for the specified object's resident pages
1803  *	into the target map.  If "flags" is MAP_PREFAULT_PARTIAL, then only
1804  *	the resident pages within the address range [addr, addr + ulmin(size,
1805  *	ptoa(MAX_INIT_PT))) are mapped.  Otherwise, all resident pages within
1806  *	the specified address range are mapped.  This eliminates many soft
1807  *	faults on process startup and immediately after an mmap(2).  Because
1808  *	these are speculative mappings, cached pages are not reactivated and
1809  *	mapped.
1810  */
1811 void
1812 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1813     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1814 {
1815 	vm_offset_t start;
1816 	vm_page_t p, p_start;
1817 	vm_pindex_t psize, tmpidx;
1818 
1819 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1820 		return;
1821 	VM_OBJECT_RLOCK(object);
1822 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1823 		VM_OBJECT_RUNLOCK(object);
1824 		VM_OBJECT_WLOCK(object);
1825 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1826 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1827 			    size);
1828 			VM_OBJECT_WUNLOCK(object);
1829 			return;
1830 		}
1831 		VM_OBJECT_LOCK_DOWNGRADE(object);
1832 	}
1833 
1834 	psize = atop(size);
1835 	if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1836 		psize = MAX_INIT_PT;
1837 	if (psize + pindex > object->size) {
1838 		if (object->size < pindex) {
1839 			VM_OBJECT_RUNLOCK(object);
1840 			return;
1841 		}
1842 		psize = object->size - pindex;
1843 	}
1844 
1845 	start = 0;
1846 	p_start = NULL;
1847 
1848 	p = vm_page_find_least(object, pindex);
1849 	/*
1850 	 * Assert: the variable p is either (1) the page with the
1851 	 * least pindex greater than or equal to the parameter pindex
1852 	 * or (2) NULL.
1853 	 */
1854 	for (;
1855 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1856 	     p = TAILQ_NEXT(p, listq)) {
1857 		/*
1858 		 * don't allow an madvise to blow away our really
1859 		 * free pages allocating pv entries.
1860 		 */
1861 		if ((flags & MAP_PREFAULT_MADVISE) &&
1862 		    cnt.v_free_count < cnt.v_free_reserved) {
1863 			psize = tmpidx;
1864 			break;
1865 		}
1866 		if (p->valid == VM_PAGE_BITS_ALL) {
1867 			if (p_start == NULL) {
1868 				start = addr + ptoa(tmpidx);
1869 				p_start = p;
1870 			}
1871 		} else if (p_start != NULL) {
1872 			pmap_enter_object(map->pmap, start, addr +
1873 			    ptoa(tmpidx), p_start, prot);
1874 			p_start = NULL;
1875 		}
1876 	}
1877 	if (p_start != NULL)
1878 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1879 		    p_start, prot);
1880 	VM_OBJECT_RUNLOCK(object);
1881 }
1882 
1883 /*
1884  *	vm_map_protect:
1885  *
1886  *	Sets the protection of the specified address
1887  *	region in the target map.  If "set_max" is
1888  *	specified, the maximum protection is to be set;
1889  *	otherwise, only the current protection is affected.
1890  */
1891 int
1892 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1893 	       vm_prot_t new_prot, boolean_t set_max)
1894 {
1895 	vm_map_entry_t current, entry;
1896 	vm_object_t obj;
1897 	struct ucred *cred;
1898 	vm_prot_t old_prot;
1899 
1900 	vm_map_lock(map);
1901 
1902 	VM_MAP_RANGE_CHECK(map, start, end);
1903 
1904 	if (vm_map_lookup_entry(map, start, &entry)) {
1905 		vm_map_clip_start(map, entry, start);
1906 	} else {
1907 		entry = entry->next;
1908 	}
1909 
1910 	/*
1911 	 * Make a first pass to check for protection violations.
1912 	 */
1913 	current = entry;
1914 	while ((current != &map->header) && (current->start < end)) {
1915 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1916 			vm_map_unlock(map);
1917 			return (KERN_INVALID_ARGUMENT);
1918 		}
1919 		if ((new_prot & current->max_protection) != new_prot) {
1920 			vm_map_unlock(map);
1921 			return (KERN_PROTECTION_FAILURE);
1922 		}
1923 		current = current->next;
1924 	}
1925 
1926 
1927 	/*
1928 	 * Do an accounting pass for private read-only mappings that
1929 	 * now will do cow due to allowed write (e.g. debugger sets
1930 	 * breakpoint on text segment)
1931 	 */
1932 	for (current = entry; (current != &map->header) &&
1933 	     (current->start < end); current = current->next) {
1934 
1935 		vm_map_clip_end(map, current, end);
1936 
1937 		if (set_max ||
1938 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1939 		    ENTRY_CHARGED(current)) {
1940 			continue;
1941 		}
1942 
1943 		cred = curthread->td_ucred;
1944 		obj = current->object.vm_object;
1945 
1946 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1947 			if (!swap_reserve(current->end - current->start)) {
1948 				vm_map_unlock(map);
1949 				return (KERN_RESOURCE_SHORTAGE);
1950 			}
1951 			crhold(cred);
1952 			current->cred = cred;
1953 			continue;
1954 		}
1955 
1956 		VM_OBJECT_WLOCK(obj);
1957 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1958 			VM_OBJECT_WUNLOCK(obj);
1959 			continue;
1960 		}
1961 
1962 		/*
1963 		 * Charge for the whole object allocation now, since
1964 		 * we cannot distinguish between non-charged and
1965 		 * charged clipped mapping of the same object later.
1966 		 */
1967 		KASSERT(obj->charge == 0,
1968 		    ("vm_map_protect: object %p overcharged\n", obj));
1969 		if (!swap_reserve(ptoa(obj->size))) {
1970 			VM_OBJECT_WUNLOCK(obj);
1971 			vm_map_unlock(map);
1972 			return (KERN_RESOURCE_SHORTAGE);
1973 		}
1974 
1975 		crhold(cred);
1976 		obj->cred = cred;
1977 		obj->charge = ptoa(obj->size);
1978 		VM_OBJECT_WUNLOCK(obj);
1979 	}
1980 
1981 	/*
1982 	 * Go back and fix up protections. [Note that clipping is not
1983 	 * necessary the second time.]
1984 	 */
1985 	current = entry;
1986 	while ((current != &map->header) && (current->start < end)) {
1987 		old_prot = current->protection;
1988 
1989 		if (set_max)
1990 			current->protection =
1991 			    (current->max_protection = new_prot) &
1992 			    old_prot;
1993 		else
1994 			current->protection = new_prot;
1995 
1996 		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1997 		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1998 		    (current->protection & VM_PROT_WRITE) != 0 &&
1999 		    (old_prot & VM_PROT_WRITE) == 0) {
2000 			vm_fault_copy_entry(map, map, current, current, NULL);
2001 		}
2002 
2003 		/*
2004 		 * When restricting access, update the physical map.  Worry
2005 		 * about copy-on-write here.
2006 		 */
2007 		if ((old_prot & ~current->protection) != 0) {
2008 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2009 							VM_PROT_ALL)
2010 			pmap_protect(map->pmap, current->start,
2011 			    current->end,
2012 			    current->protection & MASK(current));
2013 #undef	MASK
2014 		}
2015 		vm_map_simplify_entry(map, current);
2016 		current = current->next;
2017 	}
2018 	vm_map_unlock(map);
2019 	return (KERN_SUCCESS);
2020 }
2021 
2022 /*
2023  *	vm_map_madvise:
2024  *
2025  *	This routine traverses a processes map handling the madvise
2026  *	system call.  Advisories are classified as either those effecting
2027  *	the vm_map_entry structure, or those effecting the underlying
2028  *	objects.
2029  */
2030 int
2031 vm_map_madvise(
2032 	vm_map_t map,
2033 	vm_offset_t start,
2034 	vm_offset_t end,
2035 	int behav)
2036 {
2037 	vm_map_entry_t current, entry;
2038 	int modify_map = 0;
2039 
2040 	/*
2041 	 * Some madvise calls directly modify the vm_map_entry, in which case
2042 	 * we need to use an exclusive lock on the map and we need to perform
2043 	 * various clipping operations.  Otherwise we only need a read-lock
2044 	 * on the map.
2045 	 */
2046 	switch(behav) {
2047 	case MADV_NORMAL:
2048 	case MADV_SEQUENTIAL:
2049 	case MADV_RANDOM:
2050 	case MADV_NOSYNC:
2051 	case MADV_AUTOSYNC:
2052 	case MADV_NOCORE:
2053 	case MADV_CORE:
2054 		modify_map = 1;
2055 		vm_map_lock(map);
2056 		break;
2057 	case MADV_WILLNEED:
2058 	case MADV_DONTNEED:
2059 	case MADV_FREE:
2060 		vm_map_lock_read(map);
2061 		break;
2062 	default:
2063 		return (KERN_INVALID_ARGUMENT);
2064 	}
2065 
2066 	/*
2067 	 * Locate starting entry and clip if necessary.
2068 	 */
2069 	VM_MAP_RANGE_CHECK(map, start, end);
2070 
2071 	if (vm_map_lookup_entry(map, start, &entry)) {
2072 		if (modify_map)
2073 			vm_map_clip_start(map, entry, start);
2074 	} else {
2075 		entry = entry->next;
2076 	}
2077 
2078 	if (modify_map) {
2079 		/*
2080 		 * madvise behaviors that are implemented in the vm_map_entry.
2081 		 *
2082 		 * We clip the vm_map_entry so that behavioral changes are
2083 		 * limited to the specified address range.
2084 		 */
2085 		for (current = entry;
2086 		     (current != &map->header) && (current->start < end);
2087 		     current = current->next
2088 		) {
2089 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2090 				continue;
2091 
2092 			vm_map_clip_end(map, current, end);
2093 
2094 			switch (behav) {
2095 			case MADV_NORMAL:
2096 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2097 				break;
2098 			case MADV_SEQUENTIAL:
2099 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2100 				break;
2101 			case MADV_RANDOM:
2102 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2103 				break;
2104 			case MADV_NOSYNC:
2105 				current->eflags |= MAP_ENTRY_NOSYNC;
2106 				break;
2107 			case MADV_AUTOSYNC:
2108 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2109 				break;
2110 			case MADV_NOCORE:
2111 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2112 				break;
2113 			case MADV_CORE:
2114 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2115 				break;
2116 			default:
2117 				break;
2118 			}
2119 			vm_map_simplify_entry(map, current);
2120 		}
2121 		vm_map_unlock(map);
2122 	} else {
2123 		vm_pindex_t pstart, pend;
2124 
2125 		/*
2126 		 * madvise behaviors that are implemented in the underlying
2127 		 * vm_object.
2128 		 *
2129 		 * Since we don't clip the vm_map_entry, we have to clip
2130 		 * the vm_object pindex and count.
2131 		 */
2132 		for (current = entry;
2133 		     (current != &map->header) && (current->start < end);
2134 		     current = current->next
2135 		) {
2136 			vm_offset_t useEnd, useStart;
2137 
2138 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2139 				continue;
2140 
2141 			pstart = OFF_TO_IDX(current->offset);
2142 			pend = pstart + atop(current->end - current->start);
2143 			useStart = current->start;
2144 			useEnd = current->end;
2145 
2146 			if (current->start < start) {
2147 				pstart += atop(start - current->start);
2148 				useStart = start;
2149 			}
2150 			if (current->end > end) {
2151 				pend -= atop(current->end - end);
2152 				useEnd = end;
2153 			}
2154 
2155 			if (pstart >= pend)
2156 				continue;
2157 
2158 			/*
2159 			 * Perform the pmap_advise() before clearing
2160 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2161 			 * concurrent pmap operation, such as pmap_remove(),
2162 			 * could clear a reference in the pmap and set
2163 			 * PGA_REFERENCED on the page before the pmap_advise()
2164 			 * had completed.  Consequently, the page would appear
2165 			 * referenced based upon an old reference that
2166 			 * occurred before this pmap_advise() ran.
2167 			 */
2168 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2169 				pmap_advise(map->pmap, useStart, useEnd,
2170 				    behav);
2171 
2172 			vm_object_madvise(current->object.vm_object, pstart,
2173 			    pend, behav);
2174 			if (behav == MADV_WILLNEED) {
2175 				vm_map_pmap_enter(map,
2176 				    useStart,
2177 				    current->protection,
2178 				    current->object.vm_object,
2179 				    pstart,
2180 				    ptoa(pend - pstart),
2181 				    MAP_PREFAULT_MADVISE
2182 				);
2183 			}
2184 		}
2185 		vm_map_unlock_read(map);
2186 	}
2187 	return (0);
2188 }
2189 
2190 
2191 /*
2192  *	vm_map_inherit:
2193  *
2194  *	Sets the inheritance of the specified address
2195  *	range in the target map.  Inheritance
2196  *	affects how the map will be shared with
2197  *	child maps at the time of vmspace_fork.
2198  */
2199 int
2200 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2201 	       vm_inherit_t new_inheritance)
2202 {
2203 	vm_map_entry_t entry;
2204 	vm_map_entry_t temp_entry;
2205 
2206 	switch (new_inheritance) {
2207 	case VM_INHERIT_NONE:
2208 	case VM_INHERIT_COPY:
2209 	case VM_INHERIT_SHARE:
2210 		break;
2211 	default:
2212 		return (KERN_INVALID_ARGUMENT);
2213 	}
2214 	vm_map_lock(map);
2215 	VM_MAP_RANGE_CHECK(map, start, end);
2216 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2217 		entry = temp_entry;
2218 		vm_map_clip_start(map, entry, start);
2219 	} else
2220 		entry = temp_entry->next;
2221 	while ((entry != &map->header) && (entry->start < end)) {
2222 		vm_map_clip_end(map, entry, end);
2223 		entry->inheritance = new_inheritance;
2224 		vm_map_simplify_entry(map, entry);
2225 		entry = entry->next;
2226 	}
2227 	vm_map_unlock(map);
2228 	return (KERN_SUCCESS);
2229 }
2230 
2231 /*
2232  *	vm_map_unwire:
2233  *
2234  *	Implements both kernel and user unwiring.
2235  */
2236 int
2237 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2238     int flags)
2239 {
2240 	vm_map_entry_t entry, first_entry, tmp_entry;
2241 	vm_offset_t saved_start;
2242 	unsigned int last_timestamp;
2243 	int rv;
2244 	boolean_t need_wakeup, result, user_unwire;
2245 
2246 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2247 	vm_map_lock(map);
2248 	VM_MAP_RANGE_CHECK(map, start, end);
2249 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2250 		if (flags & VM_MAP_WIRE_HOLESOK)
2251 			first_entry = first_entry->next;
2252 		else {
2253 			vm_map_unlock(map);
2254 			return (KERN_INVALID_ADDRESS);
2255 		}
2256 	}
2257 	last_timestamp = map->timestamp;
2258 	entry = first_entry;
2259 	while (entry != &map->header && entry->start < end) {
2260 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2261 			/*
2262 			 * We have not yet clipped the entry.
2263 			 */
2264 			saved_start = (start >= entry->start) ? start :
2265 			    entry->start;
2266 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2267 			if (vm_map_unlock_and_wait(map, 0)) {
2268 				/*
2269 				 * Allow interruption of user unwiring?
2270 				 */
2271 			}
2272 			vm_map_lock(map);
2273 			if (last_timestamp+1 != map->timestamp) {
2274 				/*
2275 				 * Look again for the entry because the map was
2276 				 * modified while it was unlocked.
2277 				 * Specifically, the entry may have been
2278 				 * clipped, merged, or deleted.
2279 				 */
2280 				if (!vm_map_lookup_entry(map, saved_start,
2281 				    &tmp_entry)) {
2282 					if (flags & VM_MAP_WIRE_HOLESOK)
2283 						tmp_entry = tmp_entry->next;
2284 					else {
2285 						if (saved_start == start) {
2286 							/*
2287 							 * First_entry has been deleted.
2288 							 */
2289 							vm_map_unlock(map);
2290 							return (KERN_INVALID_ADDRESS);
2291 						}
2292 						end = saved_start;
2293 						rv = KERN_INVALID_ADDRESS;
2294 						goto done;
2295 					}
2296 				}
2297 				if (entry == first_entry)
2298 					first_entry = tmp_entry;
2299 				else
2300 					first_entry = NULL;
2301 				entry = tmp_entry;
2302 			}
2303 			last_timestamp = map->timestamp;
2304 			continue;
2305 		}
2306 		vm_map_clip_start(map, entry, start);
2307 		vm_map_clip_end(map, entry, end);
2308 		/*
2309 		 * Mark the entry in case the map lock is released.  (See
2310 		 * above.)
2311 		 */
2312 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2313 		entry->wiring_thread = curthread;
2314 		/*
2315 		 * Check the map for holes in the specified region.
2316 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2317 		 */
2318 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2319 		    (entry->end < end && (entry->next == &map->header ||
2320 		    entry->next->start > entry->end))) {
2321 			end = entry->end;
2322 			rv = KERN_INVALID_ADDRESS;
2323 			goto done;
2324 		}
2325 		/*
2326 		 * If system unwiring, require that the entry is system wired.
2327 		 */
2328 		if (!user_unwire &&
2329 		    vm_map_entry_system_wired_count(entry) == 0) {
2330 			end = entry->end;
2331 			rv = KERN_INVALID_ARGUMENT;
2332 			goto done;
2333 		}
2334 		entry = entry->next;
2335 	}
2336 	rv = KERN_SUCCESS;
2337 done:
2338 	need_wakeup = FALSE;
2339 	if (first_entry == NULL) {
2340 		result = vm_map_lookup_entry(map, start, &first_entry);
2341 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2342 			first_entry = first_entry->next;
2343 		else
2344 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2345 	}
2346 	for (entry = first_entry; entry != &map->header && entry->start < end;
2347 	    entry = entry->next) {
2348 		/*
2349 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2350 		 * space in the unwired region could have been mapped
2351 		 * while the map lock was dropped for draining
2352 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2353 		 * could be simultaneously wiring this new mapping
2354 		 * entry.  Detect these cases and skip any entries
2355 		 * marked as in transition by us.
2356 		 */
2357 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2358 		    entry->wiring_thread != curthread) {
2359 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2360 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2361 			continue;
2362 		}
2363 
2364 		if (rv == KERN_SUCCESS && (!user_unwire ||
2365 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2366 			if (user_unwire)
2367 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2368 			entry->wired_count--;
2369 			if (entry->wired_count == 0) {
2370 				/*
2371 				 * Retain the map lock.
2372 				 */
2373 				vm_fault_unwire(map, entry->start, entry->end,
2374 				    entry->object.vm_object != NULL &&
2375 				    (entry->object.vm_object->flags &
2376 				    OBJ_FICTITIOUS) != 0);
2377 			}
2378 		}
2379 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2380 		    ("vm_map_unwire: in-transition flag missing"));
2381 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2382 		entry->wiring_thread = NULL;
2383 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2384 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2385 			need_wakeup = TRUE;
2386 		}
2387 		vm_map_simplify_entry(map, entry);
2388 	}
2389 	vm_map_unlock(map);
2390 	if (need_wakeup)
2391 		vm_map_wakeup(map);
2392 	return (rv);
2393 }
2394 
2395 /*
2396  *	vm_map_wire:
2397  *
2398  *	Implements both kernel and user wiring.
2399  */
2400 int
2401 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2402     int flags)
2403 {
2404 	vm_map_entry_t entry, first_entry, tmp_entry;
2405 	vm_offset_t saved_end, saved_start;
2406 	unsigned int last_timestamp;
2407 	int rv;
2408 	boolean_t fictitious, need_wakeup, result, user_wire;
2409 	vm_prot_t prot;
2410 
2411 	prot = 0;
2412 	if (flags & VM_MAP_WIRE_WRITE)
2413 		prot |= VM_PROT_WRITE;
2414 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2415 	vm_map_lock(map);
2416 	VM_MAP_RANGE_CHECK(map, start, end);
2417 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2418 		if (flags & VM_MAP_WIRE_HOLESOK)
2419 			first_entry = first_entry->next;
2420 		else {
2421 			vm_map_unlock(map);
2422 			return (KERN_INVALID_ADDRESS);
2423 		}
2424 	}
2425 	last_timestamp = map->timestamp;
2426 	entry = first_entry;
2427 	while (entry != &map->header && entry->start < end) {
2428 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2429 			/*
2430 			 * We have not yet clipped the entry.
2431 			 */
2432 			saved_start = (start >= entry->start) ? start :
2433 			    entry->start;
2434 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2435 			if (vm_map_unlock_and_wait(map, 0)) {
2436 				/*
2437 				 * Allow interruption of user wiring?
2438 				 */
2439 			}
2440 			vm_map_lock(map);
2441 			if (last_timestamp + 1 != map->timestamp) {
2442 				/*
2443 				 * Look again for the entry because the map was
2444 				 * modified while it was unlocked.
2445 				 * Specifically, the entry may have been
2446 				 * clipped, merged, or deleted.
2447 				 */
2448 				if (!vm_map_lookup_entry(map, saved_start,
2449 				    &tmp_entry)) {
2450 					if (flags & VM_MAP_WIRE_HOLESOK)
2451 						tmp_entry = tmp_entry->next;
2452 					else {
2453 						if (saved_start == start) {
2454 							/*
2455 							 * first_entry has been deleted.
2456 							 */
2457 							vm_map_unlock(map);
2458 							return (KERN_INVALID_ADDRESS);
2459 						}
2460 						end = saved_start;
2461 						rv = KERN_INVALID_ADDRESS;
2462 						goto done;
2463 					}
2464 				}
2465 				if (entry == first_entry)
2466 					first_entry = tmp_entry;
2467 				else
2468 					first_entry = NULL;
2469 				entry = tmp_entry;
2470 			}
2471 			last_timestamp = map->timestamp;
2472 			continue;
2473 		}
2474 		vm_map_clip_start(map, entry, start);
2475 		vm_map_clip_end(map, entry, end);
2476 		/*
2477 		 * Mark the entry in case the map lock is released.  (See
2478 		 * above.)
2479 		 */
2480 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2481 		entry->wiring_thread = curthread;
2482 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2483 		    || (entry->protection & prot) != prot) {
2484 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2485 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2486 				end = entry->end;
2487 				rv = KERN_INVALID_ADDRESS;
2488 				goto done;
2489 			}
2490 			goto next_entry;
2491 		}
2492 		if (entry->wired_count == 0) {
2493 			entry->wired_count++;
2494 			saved_start = entry->start;
2495 			saved_end = entry->end;
2496 			fictitious = entry->object.vm_object != NULL &&
2497 			    (entry->object.vm_object->flags &
2498 			    OBJ_FICTITIOUS) != 0;
2499 			/*
2500 			 * Release the map lock, relying on the in-transition
2501 			 * mark.  Mark the map busy for fork.
2502 			 */
2503 			vm_map_busy(map);
2504 			vm_map_unlock(map);
2505 			rv = vm_fault_wire(map, saved_start, saved_end,
2506 			    fictitious);
2507 			vm_map_lock(map);
2508 			vm_map_unbusy(map);
2509 			if (last_timestamp + 1 != map->timestamp) {
2510 				/*
2511 				 * Look again for the entry because the map was
2512 				 * modified while it was unlocked.  The entry
2513 				 * may have been clipped, but NOT merged or
2514 				 * deleted.
2515 				 */
2516 				result = vm_map_lookup_entry(map, saved_start,
2517 				    &tmp_entry);
2518 				KASSERT(result, ("vm_map_wire: lookup failed"));
2519 				if (entry == first_entry)
2520 					first_entry = tmp_entry;
2521 				else
2522 					first_entry = NULL;
2523 				entry = tmp_entry;
2524 				while (entry->end < saved_end) {
2525 					if (rv != KERN_SUCCESS) {
2526 						KASSERT(entry->wired_count == 1,
2527 						    ("vm_map_wire: bad count"));
2528 						entry->wired_count = -1;
2529 					}
2530 					entry = entry->next;
2531 				}
2532 			}
2533 			last_timestamp = map->timestamp;
2534 			if (rv != KERN_SUCCESS) {
2535 				KASSERT(entry->wired_count == 1,
2536 				    ("vm_map_wire: bad count"));
2537 				/*
2538 				 * Assign an out-of-range value to represent
2539 				 * the failure to wire this entry.
2540 				 */
2541 				entry->wired_count = -1;
2542 				end = entry->end;
2543 				goto done;
2544 			}
2545 		} else if (!user_wire ||
2546 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2547 			entry->wired_count++;
2548 		}
2549 		/*
2550 		 * Check the map for holes in the specified region.
2551 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2552 		 */
2553 	next_entry:
2554 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2555 		    (entry->end < end && (entry->next == &map->header ||
2556 		    entry->next->start > entry->end))) {
2557 			end = entry->end;
2558 			rv = KERN_INVALID_ADDRESS;
2559 			goto done;
2560 		}
2561 		entry = entry->next;
2562 	}
2563 	rv = KERN_SUCCESS;
2564 done:
2565 	need_wakeup = FALSE;
2566 	if (first_entry == NULL) {
2567 		result = vm_map_lookup_entry(map, start, &first_entry);
2568 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2569 			first_entry = first_entry->next;
2570 		else
2571 			KASSERT(result, ("vm_map_wire: lookup failed"));
2572 	}
2573 	for (entry = first_entry; entry != &map->header && entry->start < end;
2574 	    entry = entry->next) {
2575 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2576 			goto next_entry_done;
2577 
2578 		/*
2579 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2580 		 * space in the unwired region could have been mapped
2581 		 * while the map lock was dropped for faulting in the
2582 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2583 		 * Moreover, another thread could be simultaneously
2584 		 * wiring this new mapping entry.  Detect these cases
2585 		 * and skip any entries marked as in transition by us.
2586 		 */
2587 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2588 		    entry->wiring_thread != curthread) {
2589 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2590 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2591 			continue;
2592 		}
2593 
2594 		if (rv == KERN_SUCCESS) {
2595 			if (user_wire)
2596 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2597 		} else if (entry->wired_count == -1) {
2598 			/*
2599 			 * Wiring failed on this entry.  Thus, unwiring is
2600 			 * unnecessary.
2601 			 */
2602 			entry->wired_count = 0;
2603 		} else {
2604 			if (!user_wire ||
2605 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2606 				entry->wired_count--;
2607 			if (entry->wired_count == 0) {
2608 				/*
2609 				 * Retain the map lock.
2610 				 */
2611 				vm_fault_unwire(map, entry->start, entry->end,
2612 				    entry->object.vm_object != NULL &&
2613 				    (entry->object.vm_object->flags &
2614 				    OBJ_FICTITIOUS) != 0);
2615 			}
2616 		}
2617 	next_entry_done:
2618 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2619 		    ("vm_map_wire: in-transition flag missing %p", entry));
2620 		KASSERT(entry->wiring_thread == curthread,
2621 		    ("vm_map_wire: alien wire %p", entry));
2622 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2623 		    MAP_ENTRY_WIRE_SKIPPED);
2624 		entry->wiring_thread = NULL;
2625 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2626 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2627 			need_wakeup = TRUE;
2628 		}
2629 		vm_map_simplify_entry(map, entry);
2630 	}
2631 	vm_map_unlock(map);
2632 	if (need_wakeup)
2633 		vm_map_wakeup(map);
2634 	return (rv);
2635 }
2636 
2637 /*
2638  * vm_map_sync
2639  *
2640  * Push any dirty cached pages in the address range to their pager.
2641  * If syncio is TRUE, dirty pages are written synchronously.
2642  * If invalidate is TRUE, any cached pages are freed as well.
2643  *
2644  * If the size of the region from start to end is zero, we are
2645  * supposed to flush all modified pages within the region containing
2646  * start.  Unfortunately, a region can be split or coalesced with
2647  * neighboring regions, making it difficult to determine what the
2648  * original region was.  Therefore, we approximate this requirement by
2649  * flushing the current region containing start.
2650  *
2651  * Returns an error if any part of the specified range is not mapped.
2652  */
2653 int
2654 vm_map_sync(
2655 	vm_map_t map,
2656 	vm_offset_t start,
2657 	vm_offset_t end,
2658 	boolean_t syncio,
2659 	boolean_t invalidate)
2660 {
2661 	vm_map_entry_t current;
2662 	vm_map_entry_t entry;
2663 	vm_size_t size;
2664 	vm_object_t object;
2665 	vm_ooffset_t offset;
2666 	unsigned int last_timestamp;
2667 	boolean_t failed;
2668 
2669 	vm_map_lock_read(map);
2670 	VM_MAP_RANGE_CHECK(map, start, end);
2671 	if (!vm_map_lookup_entry(map, start, &entry)) {
2672 		vm_map_unlock_read(map);
2673 		return (KERN_INVALID_ADDRESS);
2674 	} else if (start == end) {
2675 		start = entry->start;
2676 		end = entry->end;
2677 	}
2678 	/*
2679 	 * Make a first pass to check for user-wired memory and holes.
2680 	 */
2681 	for (current = entry; current != &map->header && current->start < end;
2682 	    current = current->next) {
2683 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2684 			vm_map_unlock_read(map);
2685 			return (KERN_INVALID_ARGUMENT);
2686 		}
2687 		if (end > current->end &&
2688 		    (current->next == &map->header ||
2689 			current->end != current->next->start)) {
2690 			vm_map_unlock_read(map);
2691 			return (KERN_INVALID_ADDRESS);
2692 		}
2693 	}
2694 
2695 	if (invalidate)
2696 		pmap_remove(map->pmap, start, end);
2697 	failed = FALSE;
2698 
2699 	/*
2700 	 * Make a second pass, cleaning/uncaching pages from the indicated
2701 	 * objects as we go.
2702 	 */
2703 	for (current = entry; current != &map->header && current->start < end;) {
2704 		offset = current->offset + (start - current->start);
2705 		size = (end <= current->end ? end : current->end) - start;
2706 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2707 			vm_map_t smap;
2708 			vm_map_entry_t tentry;
2709 			vm_size_t tsize;
2710 
2711 			smap = current->object.sub_map;
2712 			vm_map_lock_read(smap);
2713 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2714 			tsize = tentry->end - offset;
2715 			if (tsize < size)
2716 				size = tsize;
2717 			object = tentry->object.vm_object;
2718 			offset = tentry->offset + (offset - tentry->start);
2719 			vm_map_unlock_read(smap);
2720 		} else {
2721 			object = current->object.vm_object;
2722 		}
2723 		vm_object_reference(object);
2724 		last_timestamp = map->timestamp;
2725 		vm_map_unlock_read(map);
2726 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2727 			failed = TRUE;
2728 		start += size;
2729 		vm_object_deallocate(object);
2730 		vm_map_lock_read(map);
2731 		if (last_timestamp == map->timestamp ||
2732 		    !vm_map_lookup_entry(map, start, &current))
2733 			current = current->next;
2734 	}
2735 
2736 	vm_map_unlock_read(map);
2737 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2738 }
2739 
2740 /*
2741  *	vm_map_entry_unwire:	[ internal use only ]
2742  *
2743  *	Make the region specified by this entry pageable.
2744  *
2745  *	The map in question should be locked.
2746  *	[This is the reason for this routine's existence.]
2747  */
2748 static void
2749 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2750 {
2751 	vm_fault_unwire(map, entry->start, entry->end,
2752 	    entry->object.vm_object != NULL &&
2753 	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2754 	entry->wired_count = 0;
2755 }
2756 
2757 static void
2758 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2759 {
2760 
2761 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2762 		vm_object_deallocate(entry->object.vm_object);
2763 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2764 }
2765 
2766 /*
2767  *	vm_map_entry_delete:	[ internal use only ]
2768  *
2769  *	Deallocate the given entry from the target map.
2770  */
2771 static void
2772 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2773 {
2774 	vm_object_t object;
2775 	vm_pindex_t offidxstart, offidxend, count, size1;
2776 	vm_ooffset_t size;
2777 
2778 	vm_map_entry_unlink(map, entry);
2779 	object = entry->object.vm_object;
2780 	size = entry->end - entry->start;
2781 	map->size -= size;
2782 
2783 	if (entry->cred != NULL) {
2784 		swap_release_by_cred(size, entry->cred);
2785 		crfree(entry->cred);
2786 	}
2787 
2788 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2789 	    (object != NULL)) {
2790 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2791 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2792 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2793 		count = OFF_TO_IDX(size);
2794 		offidxstart = OFF_TO_IDX(entry->offset);
2795 		offidxend = offidxstart + count;
2796 		VM_OBJECT_WLOCK(object);
2797 		if (object->ref_count != 1 &&
2798 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2799 		    object == kernel_object || object == kmem_object)) {
2800 			vm_object_collapse(object);
2801 
2802 			/*
2803 			 * The option OBJPR_NOTMAPPED can be passed here
2804 			 * because vm_map_delete() already performed
2805 			 * pmap_remove() on the only mapping to this range
2806 			 * of pages.
2807 			 */
2808 			vm_object_page_remove(object, offidxstart, offidxend,
2809 			    OBJPR_NOTMAPPED);
2810 			if (object->type == OBJT_SWAP)
2811 				swap_pager_freespace(object, offidxstart, count);
2812 			if (offidxend >= object->size &&
2813 			    offidxstart < object->size) {
2814 				size1 = object->size;
2815 				object->size = offidxstart;
2816 				if (object->cred != NULL) {
2817 					size1 -= object->size;
2818 					KASSERT(object->charge >= ptoa(size1),
2819 					    ("vm_map_entry_delete: object->charge < 0"));
2820 					swap_release_by_cred(ptoa(size1), object->cred);
2821 					object->charge -= ptoa(size1);
2822 				}
2823 			}
2824 		}
2825 		VM_OBJECT_WUNLOCK(object);
2826 	} else
2827 		entry->object.vm_object = NULL;
2828 	if (map->system_map)
2829 		vm_map_entry_deallocate(entry, TRUE);
2830 	else {
2831 		entry->next = curthread->td_map_def_user;
2832 		curthread->td_map_def_user = entry;
2833 	}
2834 }
2835 
2836 /*
2837  *	vm_map_delete:	[ internal use only ]
2838  *
2839  *	Deallocates the given address range from the target
2840  *	map.
2841  */
2842 int
2843 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2844 {
2845 	vm_map_entry_t entry;
2846 	vm_map_entry_t first_entry;
2847 
2848 	VM_MAP_ASSERT_LOCKED(map);
2849 
2850 	/*
2851 	 * Find the start of the region, and clip it
2852 	 */
2853 	if (!vm_map_lookup_entry(map, start, &first_entry))
2854 		entry = first_entry->next;
2855 	else {
2856 		entry = first_entry;
2857 		vm_map_clip_start(map, entry, start);
2858 	}
2859 
2860 	/*
2861 	 * Step through all entries in this region
2862 	 */
2863 	while ((entry != &map->header) && (entry->start < end)) {
2864 		vm_map_entry_t next;
2865 
2866 		/*
2867 		 * Wait for wiring or unwiring of an entry to complete.
2868 		 * Also wait for any system wirings to disappear on
2869 		 * user maps.
2870 		 */
2871 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2872 		    (vm_map_pmap(map) != kernel_pmap &&
2873 		    vm_map_entry_system_wired_count(entry) != 0)) {
2874 			unsigned int last_timestamp;
2875 			vm_offset_t saved_start;
2876 			vm_map_entry_t tmp_entry;
2877 
2878 			saved_start = entry->start;
2879 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2880 			last_timestamp = map->timestamp;
2881 			(void) vm_map_unlock_and_wait(map, 0);
2882 			vm_map_lock(map);
2883 			if (last_timestamp + 1 != map->timestamp) {
2884 				/*
2885 				 * Look again for the entry because the map was
2886 				 * modified while it was unlocked.
2887 				 * Specifically, the entry may have been
2888 				 * clipped, merged, or deleted.
2889 				 */
2890 				if (!vm_map_lookup_entry(map, saved_start,
2891 							 &tmp_entry))
2892 					entry = tmp_entry->next;
2893 				else {
2894 					entry = tmp_entry;
2895 					vm_map_clip_start(map, entry,
2896 							  saved_start);
2897 				}
2898 			}
2899 			continue;
2900 		}
2901 		vm_map_clip_end(map, entry, end);
2902 
2903 		next = entry->next;
2904 
2905 		/*
2906 		 * Unwire before removing addresses from the pmap; otherwise,
2907 		 * unwiring will put the entries back in the pmap.
2908 		 */
2909 		if (entry->wired_count != 0) {
2910 			vm_map_entry_unwire(map, entry);
2911 		}
2912 
2913 		pmap_remove(map->pmap, entry->start, entry->end);
2914 
2915 		/*
2916 		 * Delete the entry only after removing all pmap
2917 		 * entries pointing to its pages.  (Otherwise, its
2918 		 * page frames may be reallocated, and any modify bits
2919 		 * will be set in the wrong object!)
2920 		 */
2921 		vm_map_entry_delete(map, entry);
2922 		entry = next;
2923 	}
2924 	return (KERN_SUCCESS);
2925 }
2926 
2927 /*
2928  *	vm_map_remove:
2929  *
2930  *	Remove the given address range from the target map.
2931  *	This is the exported form of vm_map_delete.
2932  */
2933 int
2934 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2935 {
2936 	int result;
2937 
2938 	vm_map_lock(map);
2939 	VM_MAP_RANGE_CHECK(map, start, end);
2940 	result = vm_map_delete(map, start, end);
2941 	vm_map_unlock(map);
2942 	return (result);
2943 }
2944 
2945 /*
2946  *	vm_map_check_protection:
2947  *
2948  *	Assert that the target map allows the specified privilege on the
2949  *	entire address region given.  The entire region must be allocated.
2950  *
2951  *	WARNING!  This code does not and should not check whether the
2952  *	contents of the region is accessible.  For example a smaller file
2953  *	might be mapped into a larger address space.
2954  *
2955  *	NOTE!  This code is also called by munmap().
2956  *
2957  *	The map must be locked.  A read lock is sufficient.
2958  */
2959 boolean_t
2960 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2961 			vm_prot_t protection)
2962 {
2963 	vm_map_entry_t entry;
2964 	vm_map_entry_t tmp_entry;
2965 
2966 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2967 		return (FALSE);
2968 	entry = tmp_entry;
2969 
2970 	while (start < end) {
2971 		if (entry == &map->header)
2972 			return (FALSE);
2973 		/*
2974 		 * No holes allowed!
2975 		 */
2976 		if (start < entry->start)
2977 			return (FALSE);
2978 		/*
2979 		 * Check protection associated with entry.
2980 		 */
2981 		if ((entry->protection & protection) != protection)
2982 			return (FALSE);
2983 		/* go to next entry */
2984 		start = entry->end;
2985 		entry = entry->next;
2986 	}
2987 	return (TRUE);
2988 }
2989 
2990 /*
2991  *	vm_map_copy_entry:
2992  *
2993  *	Copies the contents of the source entry to the destination
2994  *	entry.  The entries *must* be aligned properly.
2995  */
2996 static void
2997 vm_map_copy_entry(
2998 	vm_map_t src_map,
2999 	vm_map_t dst_map,
3000 	vm_map_entry_t src_entry,
3001 	vm_map_entry_t dst_entry,
3002 	vm_ooffset_t *fork_charge)
3003 {
3004 	vm_object_t src_object;
3005 	vm_map_entry_t fake_entry;
3006 	vm_offset_t size;
3007 	struct ucred *cred;
3008 	int charged;
3009 
3010 	VM_MAP_ASSERT_LOCKED(dst_map);
3011 
3012 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3013 		return;
3014 
3015 	if (src_entry->wired_count == 0) {
3016 
3017 		/*
3018 		 * If the source entry is marked needs_copy, it is already
3019 		 * write-protected.
3020 		 */
3021 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3022 			pmap_protect(src_map->pmap,
3023 			    src_entry->start,
3024 			    src_entry->end,
3025 			    src_entry->protection & ~VM_PROT_WRITE);
3026 		}
3027 
3028 		/*
3029 		 * Make a copy of the object.
3030 		 */
3031 		size = src_entry->end - src_entry->start;
3032 		if ((src_object = src_entry->object.vm_object) != NULL) {
3033 			VM_OBJECT_WLOCK(src_object);
3034 			charged = ENTRY_CHARGED(src_entry);
3035 			if ((src_object->handle == NULL) &&
3036 				(src_object->type == OBJT_DEFAULT ||
3037 				 src_object->type == OBJT_SWAP)) {
3038 				vm_object_collapse(src_object);
3039 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3040 					vm_object_split(src_entry);
3041 					src_object = src_entry->object.vm_object;
3042 				}
3043 			}
3044 			vm_object_reference_locked(src_object);
3045 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3046 			if (src_entry->cred != NULL &&
3047 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3048 				KASSERT(src_object->cred == NULL,
3049 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3050 				     src_object));
3051 				src_object->cred = src_entry->cred;
3052 				src_object->charge = size;
3053 			}
3054 			VM_OBJECT_WUNLOCK(src_object);
3055 			dst_entry->object.vm_object = src_object;
3056 			if (charged) {
3057 				cred = curthread->td_ucred;
3058 				crhold(cred);
3059 				dst_entry->cred = cred;
3060 				*fork_charge += size;
3061 				if (!(src_entry->eflags &
3062 				      MAP_ENTRY_NEEDS_COPY)) {
3063 					crhold(cred);
3064 					src_entry->cred = cred;
3065 					*fork_charge += size;
3066 				}
3067 			}
3068 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3069 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3070 			dst_entry->offset = src_entry->offset;
3071 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3072 				/*
3073 				 * MAP_ENTRY_VN_WRITECNT cannot
3074 				 * indicate write reference from
3075 				 * src_entry, since the entry is
3076 				 * marked as needs copy.  Allocate a
3077 				 * fake entry that is used to
3078 				 * decrement object->un_pager.vnp.writecount
3079 				 * at the appropriate time.  Attach
3080 				 * fake_entry to the deferred list.
3081 				 */
3082 				fake_entry = vm_map_entry_create(dst_map);
3083 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3084 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3085 				vm_object_reference(src_object);
3086 				fake_entry->object.vm_object = src_object;
3087 				fake_entry->start = src_entry->start;
3088 				fake_entry->end = src_entry->end;
3089 				fake_entry->next = curthread->td_map_def_user;
3090 				curthread->td_map_def_user = fake_entry;
3091 			}
3092 		} else {
3093 			dst_entry->object.vm_object = NULL;
3094 			dst_entry->offset = 0;
3095 			if (src_entry->cred != NULL) {
3096 				dst_entry->cred = curthread->td_ucred;
3097 				crhold(dst_entry->cred);
3098 				*fork_charge += size;
3099 			}
3100 		}
3101 
3102 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3103 		    dst_entry->end - dst_entry->start, src_entry->start);
3104 	} else {
3105 		/*
3106 		 * Of course, wired down pages can't be set copy-on-write.
3107 		 * Cause wired pages to be copied into the new map by
3108 		 * simulating faults (the new pages are pageable)
3109 		 */
3110 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3111 		    fork_charge);
3112 	}
3113 }
3114 
3115 /*
3116  * vmspace_map_entry_forked:
3117  * Update the newly-forked vmspace each time a map entry is inherited
3118  * or copied.  The values for vm_dsize and vm_tsize are approximate
3119  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3120  */
3121 static void
3122 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3123     vm_map_entry_t entry)
3124 {
3125 	vm_size_t entrysize;
3126 	vm_offset_t newend;
3127 
3128 	entrysize = entry->end - entry->start;
3129 	vm2->vm_map.size += entrysize;
3130 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3131 		vm2->vm_ssize += btoc(entrysize);
3132 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3133 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3134 		newend = MIN(entry->end,
3135 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3136 		vm2->vm_dsize += btoc(newend - entry->start);
3137 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3138 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3139 		newend = MIN(entry->end,
3140 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3141 		vm2->vm_tsize += btoc(newend - entry->start);
3142 	}
3143 }
3144 
3145 /*
3146  * vmspace_fork:
3147  * Create a new process vmspace structure and vm_map
3148  * based on those of an existing process.  The new map
3149  * is based on the old map, according to the inheritance
3150  * values on the regions in that map.
3151  *
3152  * XXX It might be worth coalescing the entries added to the new vmspace.
3153  *
3154  * The source map must not be locked.
3155  */
3156 struct vmspace *
3157 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3158 {
3159 	struct vmspace *vm2;
3160 	vm_map_t new_map, old_map;
3161 	vm_map_entry_t new_entry, old_entry;
3162 	vm_object_t object;
3163 	int locked;
3164 
3165 	old_map = &vm1->vm_map;
3166 	/* Copy immutable fields of vm1 to vm2. */
3167 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3168 	if (vm2 == NULL)
3169 		return (NULL);
3170 	vm2->vm_taddr = vm1->vm_taddr;
3171 	vm2->vm_daddr = vm1->vm_daddr;
3172 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3173 	vm_map_lock(old_map);
3174 	if (old_map->busy)
3175 		vm_map_wait_busy(old_map);
3176 	new_map = &vm2->vm_map;
3177 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3178 	KASSERT(locked, ("vmspace_fork: lock failed"));
3179 
3180 	old_entry = old_map->header.next;
3181 
3182 	while (old_entry != &old_map->header) {
3183 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3184 			panic("vm_map_fork: encountered a submap");
3185 
3186 		switch (old_entry->inheritance) {
3187 		case VM_INHERIT_NONE:
3188 			break;
3189 
3190 		case VM_INHERIT_SHARE:
3191 			/*
3192 			 * Clone the entry, creating the shared object if necessary.
3193 			 */
3194 			object = old_entry->object.vm_object;
3195 			if (object == NULL) {
3196 				object = vm_object_allocate(OBJT_DEFAULT,
3197 					atop(old_entry->end - old_entry->start));
3198 				old_entry->object.vm_object = object;
3199 				old_entry->offset = 0;
3200 				if (old_entry->cred != NULL) {
3201 					object->cred = old_entry->cred;
3202 					object->charge = old_entry->end -
3203 					    old_entry->start;
3204 					old_entry->cred = NULL;
3205 				}
3206 			}
3207 
3208 			/*
3209 			 * Add the reference before calling vm_object_shadow
3210 			 * to insure that a shadow object is created.
3211 			 */
3212 			vm_object_reference(object);
3213 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3214 				vm_object_shadow(&old_entry->object.vm_object,
3215 				    &old_entry->offset,
3216 				    old_entry->end - old_entry->start);
3217 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3218 				/* Transfer the second reference too. */
3219 				vm_object_reference(
3220 				    old_entry->object.vm_object);
3221 
3222 				/*
3223 				 * As in vm_map_simplify_entry(), the
3224 				 * vnode lock will not be acquired in
3225 				 * this call to vm_object_deallocate().
3226 				 */
3227 				vm_object_deallocate(object);
3228 				object = old_entry->object.vm_object;
3229 			}
3230 			VM_OBJECT_WLOCK(object);
3231 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3232 			if (old_entry->cred != NULL) {
3233 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3234 				object->cred = old_entry->cred;
3235 				object->charge = old_entry->end - old_entry->start;
3236 				old_entry->cred = NULL;
3237 			}
3238 
3239 			/*
3240 			 * Assert the correct state of the vnode
3241 			 * v_writecount while the object is locked, to
3242 			 * not relock it later for the assertion
3243 			 * correctness.
3244 			 */
3245 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3246 			    object->type == OBJT_VNODE) {
3247 				KASSERT(((struct vnode *)object->handle)->
3248 				    v_writecount > 0,
3249 				    ("vmspace_fork: v_writecount %p", object));
3250 				KASSERT(object->un_pager.vnp.writemappings > 0,
3251 				    ("vmspace_fork: vnp.writecount %p",
3252 				    object));
3253 			}
3254 			VM_OBJECT_WUNLOCK(object);
3255 
3256 			/*
3257 			 * Clone the entry, referencing the shared object.
3258 			 */
3259 			new_entry = vm_map_entry_create(new_map);
3260 			*new_entry = *old_entry;
3261 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3262 			    MAP_ENTRY_IN_TRANSITION);
3263 			new_entry->wiring_thread = NULL;
3264 			new_entry->wired_count = 0;
3265 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3266 				vnode_pager_update_writecount(object,
3267 				    new_entry->start, new_entry->end);
3268 			}
3269 
3270 			/*
3271 			 * Insert the entry into the new map -- we know we're
3272 			 * inserting at the end of the new map.
3273 			 */
3274 			vm_map_entry_link(new_map, new_map->header.prev,
3275 			    new_entry);
3276 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3277 
3278 			/*
3279 			 * Update the physical map
3280 			 */
3281 			pmap_copy(new_map->pmap, old_map->pmap,
3282 			    new_entry->start,
3283 			    (old_entry->end - old_entry->start),
3284 			    old_entry->start);
3285 			break;
3286 
3287 		case VM_INHERIT_COPY:
3288 			/*
3289 			 * Clone the entry and link into the map.
3290 			 */
3291 			new_entry = vm_map_entry_create(new_map);
3292 			*new_entry = *old_entry;
3293 			/*
3294 			 * Copied entry is COW over the old object.
3295 			 */
3296 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3297 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3298 			new_entry->wiring_thread = NULL;
3299 			new_entry->wired_count = 0;
3300 			new_entry->object.vm_object = NULL;
3301 			new_entry->cred = NULL;
3302 			vm_map_entry_link(new_map, new_map->header.prev,
3303 			    new_entry);
3304 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3305 			vm_map_copy_entry(old_map, new_map, old_entry,
3306 			    new_entry, fork_charge);
3307 			break;
3308 		}
3309 		old_entry = old_entry->next;
3310 	}
3311 	/*
3312 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3313 	 * map entries, which cannot be done until both old_map and
3314 	 * new_map locks are released.
3315 	 */
3316 	sx_xunlock(&old_map->lock);
3317 	sx_xunlock(&new_map->lock);
3318 	vm_map_process_deferred();
3319 
3320 	return (vm2);
3321 }
3322 
3323 int
3324 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3325     vm_prot_t prot, vm_prot_t max, int cow)
3326 {
3327 	vm_map_entry_t new_entry, prev_entry;
3328 	vm_offset_t bot, top;
3329 	vm_size_t growsize, init_ssize;
3330 	int orient, rv;
3331 	rlim_t lmemlim, vmemlim;
3332 
3333 	/*
3334 	 * The stack orientation is piggybacked with the cow argument.
3335 	 * Extract it into orient and mask the cow argument so that we
3336 	 * don't pass it around further.
3337 	 * NOTE: We explicitly allow bi-directional stacks.
3338 	 */
3339 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3340 	cow &= ~orient;
3341 	KASSERT(orient != 0, ("No stack grow direction"));
3342 
3343 	if (addrbos < vm_map_min(map) ||
3344 	    addrbos > vm_map_max(map) ||
3345 	    addrbos + max_ssize < addrbos)
3346 		return (KERN_NO_SPACE);
3347 
3348 	growsize = sgrowsiz;
3349 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3350 
3351 	PROC_LOCK(curproc);
3352 	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3353 	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3354 	PROC_UNLOCK(curproc);
3355 
3356 	vm_map_lock(map);
3357 
3358 	/* If addr is already mapped, no go */
3359 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3360 		vm_map_unlock(map);
3361 		return (KERN_NO_SPACE);
3362 	}
3363 
3364 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3365 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3366 			vm_map_unlock(map);
3367 			return (KERN_NO_SPACE);
3368 		}
3369 	}
3370 
3371 	/* If we would blow our VMEM resource limit, no go */
3372 	if (map->size + init_ssize > vmemlim) {
3373 		vm_map_unlock(map);
3374 		return (KERN_NO_SPACE);
3375 	}
3376 
3377 	/*
3378 	 * If we can't accomodate max_ssize in the current mapping, no go.
3379 	 * However, we need to be aware that subsequent user mappings might
3380 	 * map into the space we have reserved for stack, and currently this
3381 	 * space is not protected.
3382 	 *
3383 	 * Hopefully we will at least detect this condition when we try to
3384 	 * grow the stack.
3385 	 */
3386 	if ((prev_entry->next != &map->header) &&
3387 	    (prev_entry->next->start < addrbos + max_ssize)) {
3388 		vm_map_unlock(map);
3389 		return (KERN_NO_SPACE);
3390 	}
3391 
3392 	/*
3393 	 * We initially map a stack of only init_ssize.  We will grow as
3394 	 * needed later.  Depending on the orientation of the stack (i.e.
3395 	 * the grow direction) we either map at the top of the range, the
3396 	 * bottom of the range or in the middle.
3397 	 *
3398 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3399 	 * and cow to be 0.  Possibly we should eliminate these as input
3400 	 * parameters, and just pass these values here in the insert call.
3401 	 */
3402 	if (orient == MAP_STACK_GROWS_DOWN)
3403 		bot = addrbos + max_ssize - init_ssize;
3404 	else if (orient == MAP_STACK_GROWS_UP)
3405 		bot = addrbos;
3406 	else
3407 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3408 	top = bot + init_ssize;
3409 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3410 
3411 	/* Now set the avail_ssize amount. */
3412 	if (rv == KERN_SUCCESS) {
3413 		if (prev_entry != &map->header)
3414 			vm_map_clip_end(map, prev_entry, bot);
3415 		new_entry = prev_entry->next;
3416 		if (new_entry->end != top || new_entry->start != bot)
3417 			panic("Bad entry start/end for new stack entry");
3418 
3419 		new_entry->avail_ssize = max_ssize - init_ssize;
3420 		if (orient & MAP_STACK_GROWS_DOWN)
3421 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3422 		if (orient & MAP_STACK_GROWS_UP)
3423 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3424 	}
3425 
3426 	vm_map_unlock(map);
3427 	return (rv);
3428 }
3429 
3430 static int stack_guard_page = 0;
3431 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3432 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3433     &stack_guard_page, 0,
3434     "Insert stack guard page ahead of the growable segments.");
3435 
3436 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3437  * desired address is already mapped, or if we successfully grow
3438  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3439  * stack range (this is strange, but preserves compatibility with
3440  * the grow function in vm_machdep.c).
3441  */
3442 int
3443 vm_map_growstack(struct proc *p, vm_offset_t addr)
3444 {
3445 	vm_map_entry_t next_entry, prev_entry;
3446 	vm_map_entry_t new_entry, stack_entry;
3447 	struct vmspace *vm = p->p_vmspace;
3448 	vm_map_t map = &vm->vm_map;
3449 	vm_offset_t end;
3450 	vm_size_t growsize;
3451 	size_t grow_amount, max_grow;
3452 	rlim_t lmemlim, stacklim, vmemlim;
3453 	int is_procstack, rv;
3454 	struct ucred *cred;
3455 #ifdef notyet
3456 	uint64_t limit;
3457 #endif
3458 #ifdef RACCT
3459 	int error;
3460 #endif
3461 
3462 Retry:
3463 	PROC_LOCK(p);
3464 	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3465 	stacklim = lim_cur(p, RLIMIT_STACK);
3466 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3467 	PROC_UNLOCK(p);
3468 
3469 	vm_map_lock_read(map);
3470 
3471 	/* If addr is already in the entry range, no need to grow.*/
3472 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3473 		vm_map_unlock_read(map);
3474 		return (KERN_SUCCESS);
3475 	}
3476 
3477 	next_entry = prev_entry->next;
3478 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3479 		/*
3480 		 * This entry does not grow upwards. Since the address lies
3481 		 * beyond this entry, the next entry (if one exists) has to
3482 		 * be a downward growable entry. The entry list header is
3483 		 * never a growable entry, so it suffices to check the flags.
3484 		 */
3485 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3486 			vm_map_unlock_read(map);
3487 			return (KERN_SUCCESS);
3488 		}
3489 		stack_entry = next_entry;
3490 	} else {
3491 		/*
3492 		 * This entry grows upward. If the next entry does not at
3493 		 * least grow downwards, this is the entry we need to grow.
3494 		 * otherwise we have two possible choices and we have to
3495 		 * select one.
3496 		 */
3497 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3498 			/*
3499 			 * We have two choices; grow the entry closest to
3500 			 * the address to minimize the amount of growth.
3501 			 */
3502 			if (addr - prev_entry->end <= next_entry->start - addr)
3503 				stack_entry = prev_entry;
3504 			else
3505 				stack_entry = next_entry;
3506 		} else
3507 			stack_entry = prev_entry;
3508 	}
3509 
3510 	if (stack_entry == next_entry) {
3511 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3512 		KASSERT(addr < stack_entry->start, ("foo"));
3513 		end = (prev_entry != &map->header) ? prev_entry->end :
3514 		    stack_entry->start - stack_entry->avail_ssize;
3515 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3516 		max_grow = stack_entry->start - end;
3517 	} else {
3518 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3519 		KASSERT(addr >= stack_entry->end, ("foo"));
3520 		end = (next_entry != &map->header) ? next_entry->start :
3521 		    stack_entry->end + stack_entry->avail_ssize;
3522 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3523 		max_grow = end - stack_entry->end;
3524 	}
3525 
3526 	if (grow_amount > stack_entry->avail_ssize) {
3527 		vm_map_unlock_read(map);
3528 		return (KERN_NO_SPACE);
3529 	}
3530 
3531 	/*
3532 	 * If there is no longer enough space between the entries nogo, and
3533 	 * adjust the available space.  Note: this  should only happen if the
3534 	 * user has mapped into the stack area after the stack was created,
3535 	 * and is probably an error.
3536 	 *
3537 	 * This also effectively destroys any guard page the user might have
3538 	 * intended by limiting the stack size.
3539 	 */
3540 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3541 		if (vm_map_lock_upgrade(map))
3542 			goto Retry;
3543 
3544 		stack_entry->avail_ssize = max_grow;
3545 
3546 		vm_map_unlock(map);
3547 		return (KERN_NO_SPACE);
3548 	}
3549 
3550 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3551 
3552 	/*
3553 	 * If this is the main process stack, see if we're over the stack
3554 	 * limit.
3555 	 */
3556 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3557 		vm_map_unlock_read(map);
3558 		return (KERN_NO_SPACE);
3559 	}
3560 #ifdef RACCT
3561 	PROC_LOCK(p);
3562 	if (is_procstack &&
3563 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3564 		PROC_UNLOCK(p);
3565 		vm_map_unlock_read(map);
3566 		return (KERN_NO_SPACE);
3567 	}
3568 	PROC_UNLOCK(p);
3569 #endif
3570 
3571 	/* Round up the grow amount modulo sgrowsiz */
3572 	growsize = sgrowsiz;
3573 	grow_amount = roundup(grow_amount, growsize);
3574 	if (grow_amount > stack_entry->avail_ssize)
3575 		grow_amount = stack_entry->avail_ssize;
3576 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3577 		grow_amount = trunc_page((vm_size_t)stacklim) -
3578 		    ctob(vm->vm_ssize);
3579 	}
3580 #ifdef notyet
3581 	PROC_LOCK(p);
3582 	limit = racct_get_available(p, RACCT_STACK);
3583 	PROC_UNLOCK(p);
3584 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3585 		grow_amount = limit - ctob(vm->vm_ssize);
3586 #endif
3587 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3588 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3589 			vm_map_unlock_read(map);
3590 			rv = KERN_NO_SPACE;
3591 			goto out;
3592 		}
3593 #ifdef RACCT
3594 		PROC_LOCK(p);
3595 		if (racct_set(p, RACCT_MEMLOCK,
3596 		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3597 			PROC_UNLOCK(p);
3598 			vm_map_unlock_read(map);
3599 			rv = KERN_NO_SPACE;
3600 			goto out;
3601 		}
3602 		PROC_UNLOCK(p);
3603 #endif
3604 	}
3605 	/* If we would blow our VMEM resource limit, no go */
3606 	if (map->size + grow_amount > vmemlim) {
3607 		vm_map_unlock_read(map);
3608 		rv = KERN_NO_SPACE;
3609 		goto out;
3610 	}
3611 #ifdef RACCT
3612 	PROC_LOCK(p);
3613 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3614 		PROC_UNLOCK(p);
3615 		vm_map_unlock_read(map);
3616 		rv = KERN_NO_SPACE;
3617 		goto out;
3618 	}
3619 	PROC_UNLOCK(p);
3620 #endif
3621 
3622 	if (vm_map_lock_upgrade(map))
3623 		goto Retry;
3624 
3625 	if (stack_entry == next_entry) {
3626 		/*
3627 		 * Growing downward.
3628 		 */
3629 		/* Get the preliminary new entry start value */
3630 		addr = stack_entry->start - grow_amount;
3631 
3632 		/*
3633 		 * If this puts us into the previous entry, cut back our
3634 		 * growth to the available space. Also, see the note above.
3635 		 */
3636 		if (addr < end) {
3637 			stack_entry->avail_ssize = max_grow;
3638 			addr = end;
3639 			if (stack_guard_page)
3640 				addr += PAGE_SIZE;
3641 		}
3642 
3643 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3644 		    next_entry->protection, next_entry->max_protection, 0);
3645 
3646 		/* Adjust the available stack space by the amount we grew. */
3647 		if (rv == KERN_SUCCESS) {
3648 			if (prev_entry != &map->header)
3649 				vm_map_clip_end(map, prev_entry, addr);
3650 			new_entry = prev_entry->next;
3651 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3652 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3653 			KASSERT(new_entry->start == addr, ("foo"));
3654 			grow_amount = new_entry->end - new_entry->start;
3655 			new_entry->avail_ssize = stack_entry->avail_ssize -
3656 			    grow_amount;
3657 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3658 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3659 		}
3660 	} else {
3661 		/*
3662 		 * Growing upward.
3663 		 */
3664 		addr = stack_entry->end + grow_amount;
3665 
3666 		/*
3667 		 * If this puts us into the next entry, cut back our growth
3668 		 * to the available space. Also, see the note above.
3669 		 */
3670 		if (addr > end) {
3671 			stack_entry->avail_ssize = end - stack_entry->end;
3672 			addr = end;
3673 			if (stack_guard_page)
3674 				addr -= PAGE_SIZE;
3675 		}
3676 
3677 		grow_amount = addr - stack_entry->end;
3678 		cred = stack_entry->cred;
3679 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3680 			cred = stack_entry->object.vm_object->cred;
3681 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3682 			rv = KERN_NO_SPACE;
3683 		/* Grow the underlying object if applicable. */
3684 		else if (stack_entry->object.vm_object == NULL ||
3685 			 vm_object_coalesce(stack_entry->object.vm_object,
3686 			 stack_entry->offset,
3687 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3688 			 (vm_size_t)grow_amount, cred != NULL)) {
3689 			map->size += (addr - stack_entry->end);
3690 			/* Update the current entry. */
3691 			stack_entry->end = addr;
3692 			stack_entry->avail_ssize -= grow_amount;
3693 			vm_map_entry_resize_free(map, stack_entry);
3694 			rv = KERN_SUCCESS;
3695 
3696 			if (next_entry != &map->header)
3697 				vm_map_clip_start(map, next_entry, addr);
3698 		} else
3699 			rv = KERN_FAILURE;
3700 	}
3701 
3702 	if (rv == KERN_SUCCESS && is_procstack)
3703 		vm->vm_ssize += btoc(grow_amount);
3704 
3705 	vm_map_unlock(map);
3706 
3707 	/*
3708 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3709 	 */
3710 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3711 		vm_map_wire(map,
3712 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3713 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3714 		    (p->p_flag & P_SYSTEM)
3715 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3716 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3717 	}
3718 
3719 out:
3720 #ifdef RACCT
3721 	if (rv != KERN_SUCCESS) {
3722 		PROC_LOCK(p);
3723 		error = racct_set(p, RACCT_VMEM, map->size);
3724 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3725 		if (!old_mlock) {
3726 			error = racct_set(p, RACCT_MEMLOCK,
3727 			    ptoa(pmap_wired_count(map->pmap)));
3728 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3729 		}
3730 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3731 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3732 		PROC_UNLOCK(p);
3733 	}
3734 #endif
3735 
3736 	return (rv);
3737 }
3738 
3739 /*
3740  * Unshare the specified VM space for exec.  If other processes are
3741  * mapped to it, then create a new one.  The new vmspace is null.
3742  */
3743 int
3744 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3745 {
3746 	struct vmspace *oldvmspace = p->p_vmspace;
3747 	struct vmspace *newvmspace;
3748 
3749 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3750 	if (newvmspace == NULL)
3751 		return (ENOMEM);
3752 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3753 	/*
3754 	 * This code is written like this for prototype purposes.  The
3755 	 * goal is to avoid running down the vmspace here, but let the
3756 	 * other process's that are still using the vmspace to finally
3757 	 * run it down.  Even though there is little or no chance of blocking
3758 	 * here, it is a good idea to keep this form for future mods.
3759 	 */
3760 	PROC_VMSPACE_LOCK(p);
3761 	p->p_vmspace = newvmspace;
3762 	PROC_VMSPACE_UNLOCK(p);
3763 	if (p == curthread->td_proc)
3764 		pmap_activate(curthread);
3765 	vmspace_free(oldvmspace);
3766 	return (0);
3767 }
3768 
3769 /*
3770  * Unshare the specified VM space for forcing COW.  This
3771  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3772  */
3773 int
3774 vmspace_unshare(struct proc *p)
3775 {
3776 	struct vmspace *oldvmspace = p->p_vmspace;
3777 	struct vmspace *newvmspace;
3778 	vm_ooffset_t fork_charge;
3779 
3780 	if (oldvmspace->vm_refcnt == 1)
3781 		return (0);
3782 	fork_charge = 0;
3783 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3784 	if (newvmspace == NULL)
3785 		return (ENOMEM);
3786 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3787 		vmspace_free(newvmspace);
3788 		return (ENOMEM);
3789 	}
3790 	PROC_VMSPACE_LOCK(p);
3791 	p->p_vmspace = newvmspace;
3792 	PROC_VMSPACE_UNLOCK(p);
3793 	if (p == curthread->td_proc)
3794 		pmap_activate(curthread);
3795 	vmspace_free(oldvmspace);
3796 	return (0);
3797 }
3798 
3799 /*
3800  *	vm_map_lookup:
3801  *
3802  *	Finds the VM object, offset, and
3803  *	protection for a given virtual address in the
3804  *	specified map, assuming a page fault of the
3805  *	type specified.
3806  *
3807  *	Leaves the map in question locked for read; return
3808  *	values are guaranteed until a vm_map_lookup_done
3809  *	call is performed.  Note that the map argument
3810  *	is in/out; the returned map must be used in
3811  *	the call to vm_map_lookup_done.
3812  *
3813  *	A handle (out_entry) is returned for use in
3814  *	vm_map_lookup_done, to make that fast.
3815  *
3816  *	If a lookup is requested with "write protection"
3817  *	specified, the map may be changed to perform virtual
3818  *	copying operations, although the data referenced will
3819  *	remain the same.
3820  */
3821 int
3822 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3823 	      vm_offset_t vaddr,
3824 	      vm_prot_t fault_typea,
3825 	      vm_map_entry_t *out_entry,	/* OUT */
3826 	      vm_object_t *object,		/* OUT */
3827 	      vm_pindex_t *pindex,		/* OUT */
3828 	      vm_prot_t *out_prot,		/* OUT */
3829 	      boolean_t *wired)			/* OUT */
3830 {
3831 	vm_map_entry_t entry;
3832 	vm_map_t map = *var_map;
3833 	vm_prot_t prot;
3834 	vm_prot_t fault_type = fault_typea;
3835 	vm_object_t eobject;
3836 	vm_size_t size;
3837 	struct ucred *cred;
3838 
3839 RetryLookup:;
3840 
3841 	vm_map_lock_read(map);
3842 
3843 	/*
3844 	 * Lookup the faulting address.
3845 	 */
3846 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3847 		vm_map_unlock_read(map);
3848 		return (KERN_INVALID_ADDRESS);
3849 	}
3850 
3851 	entry = *out_entry;
3852 
3853 	/*
3854 	 * Handle submaps.
3855 	 */
3856 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3857 		vm_map_t old_map = map;
3858 
3859 		*var_map = map = entry->object.sub_map;
3860 		vm_map_unlock_read(old_map);
3861 		goto RetryLookup;
3862 	}
3863 
3864 	/*
3865 	 * Check whether this task is allowed to have this page.
3866 	 */
3867 	prot = entry->protection;
3868 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3869 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3870 		vm_map_unlock_read(map);
3871 		return (KERN_PROTECTION_FAILURE);
3872 	}
3873 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3874 	    (entry->eflags & MAP_ENTRY_COW) &&
3875 	    (fault_type & VM_PROT_WRITE)) {
3876 		vm_map_unlock_read(map);
3877 		return (KERN_PROTECTION_FAILURE);
3878 	}
3879 	if ((fault_typea & VM_PROT_COPY) != 0 &&
3880 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3881 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3882 		vm_map_unlock_read(map);
3883 		return (KERN_PROTECTION_FAILURE);
3884 	}
3885 
3886 	/*
3887 	 * If this page is not pageable, we have to get it for all possible
3888 	 * accesses.
3889 	 */
3890 	*wired = (entry->wired_count != 0);
3891 	if (*wired)
3892 		fault_type = entry->protection;
3893 	size = entry->end - entry->start;
3894 	/*
3895 	 * If the entry was copy-on-write, we either ...
3896 	 */
3897 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3898 		/*
3899 		 * If we want to write the page, we may as well handle that
3900 		 * now since we've got the map locked.
3901 		 *
3902 		 * If we don't need to write the page, we just demote the
3903 		 * permissions allowed.
3904 		 */
3905 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3906 		    (fault_typea & VM_PROT_COPY) != 0) {
3907 			/*
3908 			 * Make a new object, and place it in the object
3909 			 * chain.  Note that no new references have appeared
3910 			 * -- one just moved from the map to the new
3911 			 * object.
3912 			 */
3913 			if (vm_map_lock_upgrade(map))
3914 				goto RetryLookup;
3915 
3916 			if (entry->cred == NULL) {
3917 				/*
3918 				 * The debugger owner is charged for
3919 				 * the memory.
3920 				 */
3921 				cred = curthread->td_ucred;
3922 				crhold(cred);
3923 				if (!swap_reserve_by_cred(size, cred)) {
3924 					crfree(cred);
3925 					vm_map_unlock(map);
3926 					return (KERN_RESOURCE_SHORTAGE);
3927 				}
3928 				entry->cred = cred;
3929 			}
3930 			vm_object_shadow(&entry->object.vm_object,
3931 			    &entry->offset, size);
3932 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3933 			eobject = entry->object.vm_object;
3934 			if (eobject->cred != NULL) {
3935 				/*
3936 				 * The object was not shadowed.
3937 				 */
3938 				swap_release_by_cred(size, entry->cred);
3939 				crfree(entry->cred);
3940 				entry->cred = NULL;
3941 			} else if (entry->cred != NULL) {
3942 				VM_OBJECT_WLOCK(eobject);
3943 				eobject->cred = entry->cred;
3944 				eobject->charge = size;
3945 				VM_OBJECT_WUNLOCK(eobject);
3946 				entry->cred = NULL;
3947 			}
3948 
3949 			vm_map_lock_downgrade(map);
3950 		} else {
3951 			/*
3952 			 * We're attempting to read a copy-on-write page --
3953 			 * don't allow writes.
3954 			 */
3955 			prot &= ~VM_PROT_WRITE;
3956 		}
3957 	}
3958 
3959 	/*
3960 	 * Create an object if necessary.
3961 	 */
3962 	if (entry->object.vm_object == NULL &&
3963 	    !map->system_map) {
3964 		if (vm_map_lock_upgrade(map))
3965 			goto RetryLookup;
3966 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3967 		    atop(size));
3968 		entry->offset = 0;
3969 		if (entry->cred != NULL) {
3970 			VM_OBJECT_WLOCK(entry->object.vm_object);
3971 			entry->object.vm_object->cred = entry->cred;
3972 			entry->object.vm_object->charge = size;
3973 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
3974 			entry->cred = NULL;
3975 		}
3976 		vm_map_lock_downgrade(map);
3977 	}
3978 
3979 	/*
3980 	 * Return the object/offset from this entry.  If the entry was
3981 	 * copy-on-write or empty, it has been fixed up.
3982 	 */
3983 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3984 	*object = entry->object.vm_object;
3985 
3986 	*out_prot = prot;
3987 	return (KERN_SUCCESS);
3988 }
3989 
3990 /*
3991  *	vm_map_lookup_locked:
3992  *
3993  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3994  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3995  */
3996 int
3997 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3998 		     vm_offset_t vaddr,
3999 		     vm_prot_t fault_typea,
4000 		     vm_map_entry_t *out_entry,	/* OUT */
4001 		     vm_object_t *object,	/* OUT */
4002 		     vm_pindex_t *pindex,	/* OUT */
4003 		     vm_prot_t *out_prot,	/* OUT */
4004 		     boolean_t *wired)		/* OUT */
4005 {
4006 	vm_map_entry_t entry;
4007 	vm_map_t map = *var_map;
4008 	vm_prot_t prot;
4009 	vm_prot_t fault_type = fault_typea;
4010 
4011 	/*
4012 	 * Lookup the faulting address.
4013 	 */
4014 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4015 		return (KERN_INVALID_ADDRESS);
4016 
4017 	entry = *out_entry;
4018 
4019 	/*
4020 	 * Fail if the entry refers to a submap.
4021 	 */
4022 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4023 		return (KERN_FAILURE);
4024 
4025 	/*
4026 	 * Check whether this task is allowed to have this page.
4027 	 */
4028 	prot = entry->protection;
4029 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4030 	if ((fault_type & prot) != fault_type)
4031 		return (KERN_PROTECTION_FAILURE);
4032 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4033 	    (entry->eflags & MAP_ENTRY_COW) &&
4034 	    (fault_type & VM_PROT_WRITE))
4035 		return (KERN_PROTECTION_FAILURE);
4036 
4037 	/*
4038 	 * If this page is not pageable, we have to get it for all possible
4039 	 * accesses.
4040 	 */
4041 	*wired = (entry->wired_count != 0);
4042 	if (*wired)
4043 		fault_type = entry->protection;
4044 
4045 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4046 		/*
4047 		 * Fail if the entry was copy-on-write for a write fault.
4048 		 */
4049 		if (fault_type & VM_PROT_WRITE)
4050 			return (KERN_FAILURE);
4051 		/*
4052 		 * We're attempting to read a copy-on-write page --
4053 		 * don't allow writes.
4054 		 */
4055 		prot &= ~VM_PROT_WRITE;
4056 	}
4057 
4058 	/*
4059 	 * Fail if an object should be created.
4060 	 */
4061 	if (entry->object.vm_object == NULL && !map->system_map)
4062 		return (KERN_FAILURE);
4063 
4064 	/*
4065 	 * Return the object/offset from this entry.  If the entry was
4066 	 * copy-on-write or empty, it has been fixed up.
4067 	 */
4068 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4069 	*object = entry->object.vm_object;
4070 
4071 	*out_prot = prot;
4072 	return (KERN_SUCCESS);
4073 }
4074 
4075 /*
4076  *	vm_map_lookup_done:
4077  *
4078  *	Releases locks acquired by a vm_map_lookup
4079  *	(according to the handle returned by that lookup).
4080  */
4081 void
4082 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4083 {
4084 	/*
4085 	 * Unlock the main-level map
4086 	 */
4087 	vm_map_unlock_read(map);
4088 }
4089 
4090 #include "opt_ddb.h"
4091 #ifdef DDB
4092 #include <sys/kernel.h>
4093 
4094 #include <ddb/ddb.h>
4095 
4096 static void
4097 vm_map_print(vm_map_t map)
4098 {
4099 	vm_map_entry_t entry;
4100 
4101 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4102 	    (void *)map,
4103 	    (void *)map->pmap, map->nentries, map->timestamp);
4104 
4105 	db_indent += 2;
4106 	for (entry = map->header.next; entry != &map->header;
4107 	    entry = entry->next) {
4108 		db_iprintf("map entry %p: start=%p, end=%p\n",
4109 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4110 		{
4111 			static char *inheritance_name[4] =
4112 			{"share", "copy", "none", "donate_copy"};
4113 
4114 			db_iprintf(" prot=%x/%x/%s",
4115 			    entry->protection,
4116 			    entry->max_protection,
4117 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4118 			if (entry->wired_count != 0)
4119 				db_printf(", wired");
4120 		}
4121 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4122 			db_printf(", share=%p, offset=0x%jx\n",
4123 			    (void *)entry->object.sub_map,
4124 			    (uintmax_t)entry->offset);
4125 			if ((entry->prev == &map->header) ||
4126 			    (entry->prev->object.sub_map !=
4127 				entry->object.sub_map)) {
4128 				db_indent += 2;
4129 				vm_map_print((vm_map_t)entry->object.sub_map);
4130 				db_indent -= 2;
4131 			}
4132 		} else {
4133 			if (entry->cred != NULL)
4134 				db_printf(", ruid %d", entry->cred->cr_ruid);
4135 			db_printf(", object=%p, offset=0x%jx",
4136 			    (void *)entry->object.vm_object,
4137 			    (uintmax_t)entry->offset);
4138 			if (entry->object.vm_object && entry->object.vm_object->cred)
4139 				db_printf(", obj ruid %d charge %jx",
4140 				    entry->object.vm_object->cred->cr_ruid,
4141 				    (uintmax_t)entry->object.vm_object->charge);
4142 			if (entry->eflags & MAP_ENTRY_COW)
4143 				db_printf(", copy (%s)",
4144 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4145 			db_printf("\n");
4146 
4147 			if ((entry->prev == &map->header) ||
4148 			    (entry->prev->object.vm_object !=
4149 				entry->object.vm_object)) {
4150 				db_indent += 2;
4151 				vm_object_print((db_expr_t)(intptr_t)
4152 						entry->object.vm_object,
4153 						1, 0, (char *)0);
4154 				db_indent -= 2;
4155 			}
4156 		}
4157 	}
4158 	db_indent -= 2;
4159 }
4160 
4161 DB_SHOW_COMMAND(map, map)
4162 {
4163 
4164 	if (!have_addr) {
4165 		db_printf("usage: show map <addr>\n");
4166 		return;
4167 	}
4168 	vm_map_print((vm_map_t)addr);
4169 }
4170 
4171 DB_SHOW_COMMAND(procvm, procvm)
4172 {
4173 	struct proc *p;
4174 
4175 	if (have_addr) {
4176 		p = (struct proc *) addr;
4177 	} else {
4178 		p = curproc;
4179 	}
4180 
4181 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4182 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4183 	    (void *)vmspace_pmap(p->p_vmspace));
4184 
4185 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4186 }
4187 
4188 #endif /* DDB */
4189