1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/rwlock.h> 81 #include <sys/file.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/shm.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_pager.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t mapzone; 128 static uma_zone_t vmspace_zone; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static void vmspace_zfini(void *mem, int size); 131 static int vm_map_zinit(void *mem, int ize, int flags); 132 static void vm_map_zfini(void *mem, int size); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 137 #ifdef INVARIANTS 138 static void vm_map_zdtor(void *mem, int size, void *arg); 139 static void vmspace_zdtor(void *mem, int size, void *arg); 140 #endif 141 142 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 143 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 144 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 145 146 /* 147 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 148 * stable. 149 */ 150 #define PROC_VMSPACE_LOCK(p) do { } while (0) 151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 152 153 /* 154 * VM_MAP_RANGE_CHECK: [ internal use only ] 155 * 156 * Asserts that the starting and ending region 157 * addresses fall within the valid range of the map. 158 */ 159 #define VM_MAP_RANGE_CHECK(map, start, end) \ 160 { \ 161 if (start < vm_map_min(map)) \ 162 start = vm_map_min(map); \ 163 if (end > vm_map_max(map)) \ 164 end = vm_map_max(map); \ 165 if (start > end) \ 166 start = end; \ 167 } 168 169 /* 170 * vm_map_startup: 171 * 172 * Initialize the vm_map module. Must be called before 173 * any other vm_map routines. 174 * 175 * Map and entry structures are allocated from the general 176 * purpose memory pool with some exceptions: 177 * 178 * - The kernel map and kmem submap are allocated statically. 179 * - Kernel map entries are allocated out of a static pool. 180 * 181 * These restrictions are necessary since malloc() uses the 182 * maps and requires map entries. 183 */ 184 185 void 186 vm_map_startup(void) 187 { 188 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 189 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 190 #ifdef INVARIANTS 191 vm_map_zdtor, 192 #else 193 NULL, 194 #endif 195 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 196 uma_prealloc(mapzone, MAX_KMAP); 197 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 198 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 199 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 200 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 201 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 202 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 203 #ifdef INVARIANTS 204 vmspace_zdtor, 205 #else 206 NULL, 207 #endif 208 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 209 } 210 211 static void 212 vmspace_zfini(void *mem, int size) 213 { 214 struct vmspace *vm; 215 216 vm = (struct vmspace *)mem; 217 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 218 } 219 220 static int 221 vmspace_zinit(void *mem, int size, int flags) 222 { 223 struct vmspace *vm; 224 225 vm = (struct vmspace *)mem; 226 227 vm->vm_map.pmap = NULL; 228 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 229 PMAP_LOCK_INIT(vmspace_pmap(vm)); 230 return (0); 231 } 232 233 static void 234 vm_map_zfini(void *mem, int size) 235 { 236 vm_map_t map; 237 238 map = (vm_map_t)mem; 239 mtx_destroy(&map->system_mtx); 240 sx_destroy(&map->lock); 241 } 242 243 static int 244 vm_map_zinit(void *mem, int size, int flags) 245 { 246 vm_map_t map; 247 248 map = (vm_map_t)mem; 249 memset(map, 0, sizeof(*map)); 250 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 251 sx_init(&map->lock, "vm map (user)"); 252 return (0); 253 } 254 255 #ifdef INVARIANTS 256 static void 257 vmspace_zdtor(void *mem, int size, void *arg) 258 { 259 struct vmspace *vm; 260 261 vm = (struct vmspace *)mem; 262 263 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 264 } 265 static void 266 vm_map_zdtor(void *mem, int size, void *arg) 267 { 268 vm_map_t map; 269 270 map = (vm_map_t)mem; 271 KASSERT(map->nentries == 0, 272 ("map %p nentries == %d on free.", 273 map, map->nentries)); 274 KASSERT(map->size == 0, 275 ("map %p size == %lu on free.", 276 map, (unsigned long)map->size)); 277 } 278 #endif /* INVARIANTS */ 279 280 /* 281 * Allocate a vmspace structure, including a vm_map and pmap, 282 * and initialize those structures. The refcnt is set to 1. 283 */ 284 struct vmspace * 285 vmspace_alloc(min, max) 286 vm_offset_t min, max; 287 { 288 struct vmspace *vm; 289 290 vm = uma_zalloc(vmspace_zone, M_WAITOK); 291 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) { 292 uma_zfree(vmspace_zone, vm); 293 return (NULL); 294 } 295 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 296 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 297 vm->vm_refcnt = 1; 298 vm->vm_shm = NULL; 299 vm->vm_swrss = 0; 300 vm->vm_tsize = 0; 301 vm->vm_dsize = 0; 302 vm->vm_ssize = 0; 303 vm->vm_taddr = 0; 304 vm->vm_daddr = 0; 305 vm->vm_maxsaddr = 0; 306 return (vm); 307 } 308 309 static void 310 vmspace_container_reset(struct proc *p) 311 { 312 313 #ifdef RACCT 314 PROC_LOCK(p); 315 racct_set(p, RACCT_DATA, 0); 316 racct_set(p, RACCT_STACK, 0); 317 racct_set(p, RACCT_RSS, 0); 318 racct_set(p, RACCT_MEMLOCK, 0); 319 racct_set(p, RACCT_VMEM, 0); 320 PROC_UNLOCK(p); 321 #endif 322 } 323 324 static inline void 325 vmspace_dofree(struct vmspace *vm) 326 { 327 328 CTR1(KTR_VM, "vmspace_free: %p", vm); 329 330 /* 331 * Make sure any SysV shm is freed, it might not have been in 332 * exit1(). 333 */ 334 shmexit(vm); 335 336 /* 337 * Lock the map, to wait out all other references to it. 338 * Delete all of the mappings and pages they hold, then call 339 * the pmap module to reclaim anything left. 340 */ 341 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 342 vm->vm_map.max_offset); 343 344 pmap_release(vmspace_pmap(vm)); 345 vm->vm_map.pmap = NULL; 346 uma_zfree(vmspace_zone, vm); 347 } 348 349 void 350 vmspace_free(struct vmspace *vm) 351 { 352 353 if (vm->vm_refcnt == 0) 354 panic("vmspace_free: attempt to free already freed vmspace"); 355 356 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 357 vmspace_dofree(vm); 358 } 359 360 void 361 vmspace_exitfree(struct proc *p) 362 { 363 struct vmspace *vm; 364 365 PROC_VMSPACE_LOCK(p); 366 vm = p->p_vmspace; 367 p->p_vmspace = NULL; 368 PROC_VMSPACE_UNLOCK(p); 369 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 370 vmspace_free(vm); 371 } 372 373 void 374 vmspace_exit(struct thread *td) 375 { 376 int refcnt; 377 struct vmspace *vm; 378 struct proc *p; 379 380 /* 381 * Release user portion of address space. 382 * This releases references to vnodes, 383 * which could cause I/O if the file has been unlinked. 384 * Need to do this early enough that we can still sleep. 385 * 386 * The last exiting process to reach this point releases as 387 * much of the environment as it can. vmspace_dofree() is the 388 * slower fallback in case another process had a temporary 389 * reference to the vmspace. 390 */ 391 392 p = td->td_proc; 393 vm = p->p_vmspace; 394 atomic_add_int(&vmspace0.vm_refcnt, 1); 395 do { 396 refcnt = vm->vm_refcnt; 397 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 398 /* Switch now since other proc might free vmspace */ 399 PROC_VMSPACE_LOCK(p); 400 p->p_vmspace = &vmspace0; 401 PROC_VMSPACE_UNLOCK(p); 402 pmap_activate(td); 403 } 404 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 405 if (refcnt == 1) { 406 if (p->p_vmspace != vm) { 407 /* vmspace not yet freed, switch back */ 408 PROC_VMSPACE_LOCK(p); 409 p->p_vmspace = vm; 410 PROC_VMSPACE_UNLOCK(p); 411 pmap_activate(td); 412 } 413 pmap_remove_pages(vmspace_pmap(vm)); 414 /* Switch now since this proc will free vmspace */ 415 PROC_VMSPACE_LOCK(p); 416 p->p_vmspace = &vmspace0; 417 PROC_VMSPACE_UNLOCK(p); 418 pmap_activate(td); 419 vmspace_dofree(vm); 420 } 421 vmspace_container_reset(p); 422 } 423 424 /* Acquire reference to vmspace owned by another process. */ 425 426 struct vmspace * 427 vmspace_acquire_ref(struct proc *p) 428 { 429 struct vmspace *vm; 430 int refcnt; 431 432 PROC_VMSPACE_LOCK(p); 433 vm = p->p_vmspace; 434 if (vm == NULL) { 435 PROC_VMSPACE_UNLOCK(p); 436 return (NULL); 437 } 438 do { 439 refcnt = vm->vm_refcnt; 440 if (refcnt <= 0) { /* Avoid 0->1 transition */ 441 PROC_VMSPACE_UNLOCK(p); 442 return (NULL); 443 } 444 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 445 if (vm != p->p_vmspace) { 446 PROC_VMSPACE_UNLOCK(p); 447 vmspace_free(vm); 448 return (NULL); 449 } 450 PROC_VMSPACE_UNLOCK(p); 451 return (vm); 452 } 453 454 void 455 _vm_map_lock(vm_map_t map, const char *file, int line) 456 { 457 458 if (map->system_map) 459 mtx_lock_flags_(&map->system_mtx, 0, file, line); 460 else 461 sx_xlock_(&map->lock, file, line); 462 map->timestamp++; 463 } 464 465 static void 466 vm_map_process_deferred(void) 467 { 468 struct thread *td; 469 vm_map_entry_t entry, next; 470 vm_object_t object; 471 472 td = curthread; 473 entry = td->td_map_def_user; 474 td->td_map_def_user = NULL; 475 while (entry != NULL) { 476 next = entry->next; 477 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 478 /* 479 * Decrement the object's writemappings and 480 * possibly the vnode's v_writecount. 481 */ 482 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 483 ("Submap with writecount")); 484 object = entry->object.vm_object; 485 KASSERT(object != NULL, ("No object for writecount")); 486 vnode_pager_release_writecount(object, entry->start, 487 entry->end); 488 } 489 vm_map_entry_deallocate(entry, FALSE); 490 entry = next; 491 } 492 } 493 494 void 495 _vm_map_unlock(vm_map_t map, const char *file, int line) 496 { 497 498 if (map->system_map) 499 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 500 else { 501 sx_xunlock_(&map->lock, file, line); 502 vm_map_process_deferred(); 503 } 504 } 505 506 void 507 _vm_map_lock_read(vm_map_t map, const char *file, int line) 508 { 509 510 if (map->system_map) 511 mtx_lock_flags_(&map->system_mtx, 0, file, line); 512 else 513 sx_slock_(&map->lock, file, line); 514 } 515 516 void 517 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 518 { 519 520 if (map->system_map) 521 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 522 else { 523 sx_sunlock_(&map->lock, file, line); 524 vm_map_process_deferred(); 525 } 526 } 527 528 int 529 _vm_map_trylock(vm_map_t map, const char *file, int line) 530 { 531 int error; 532 533 error = map->system_map ? 534 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 535 !sx_try_xlock_(&map->lock, file, line); 536 if (error == 0) 537 map->timestamp++; 538 return (error == 0); 539 } 540 541 int 542 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 543 { 544 int error; 545 546 error = map->system_map ? 547 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 548 !sx_try_slock_(&map->lock, file, line); 549 return (error == 0); 550 } 551 552 /* 553 * _vm_map_lock_upgrade: [ internal use only ] 554 * 555 * Tries to upgrade a read (shared) lock on the specified map to a write 556 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 557 * non-zero value if the upgrade fails. If the upgrade fails, the map is 558 * returned without a read or write lock held. 559 * 560 * Requires that the map be read locked. 561 */ 562 int 563 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 564 { 565 unsigned int last_timestamp; 566 567 if (map->system_map) { 568 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 569 } else { 570 if (!sx_try_upgrade_(&map->lock, file, line)) { 571 last_timestamp = map->timestamp; 572 sx_sunlock_(&map->lock, file, line); 573 vm_map_process_deferred(); 574 /* 575 * If the map's timestamp does not change while the 576 * map is unlocked, then the upgrade succeeds. 577 */ 578 sx_xlock_(&map->lock, file, line); 579 if (last_timestamp != map->timestamp) { 580 sx_xunlock_(&map->lock, file, line); 581 return (1); 582 } 583 } 584 } 585 map->timestamp++; 586 return (0); 587 } 588 589 void 590 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 591 { 592 593 if (map->system_map) { 594 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 595 } else 596 sx_downgrade_(&map->lock, file, line); 597 } 598 599 /* 600 * vm_map_locked: 601 * 602 * Returns a non-zero value if the caller holds a write (exclusive) lock 603 * on the specified map and the value "0" otherwise. 604 */ 605 int 606 vm_map_locked(vm_map_t map) 607 { 608 609 if (map->system_map) 610 return (mtx_owned(&map->system_mtx)); 611 else 612 return (sx_xlocked(&map->lock)); 613 } 614 615 #ifdef INVARIANTS 616 static void 617 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 618 { 619 620 if (map->system_map) 621 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 622 else 623 sx_assert_(&map->lock, SA_XLOCKED, file, line); 624 } 625 626 #define VM_MAP_ASSERT_LOCKED(map) \ 627 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 628 #else 629 #define VM_MAP_ASSERT_LOCKED(map) 630 #endif 631 632 /* 633 * _vm_map_unlock_and_wait: 634 * 635 * Atomically releases the lock on the specified map and puts the calling 636 * thread to sleep. The calling thread will remain asleep until either 637 * vm_map_wakeup() is performed on the map or the specified timeout is 638 * exceeded. 639 * 640 * WARNING! This function does not perform deferred deallocations of 641 * objects and map entries. Therefore, the calling thread is expected to 642 * reacquire the map lock after reawakening and later perform an ordinary 643 * unlock operation, such as vm_map_unlock(), before completing its 644 * operation on the map. 645 */ 646 int 647 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 648 { 649 650 mtx_lock(&map_sleep_mtx); 651 if (map->system_map) 652 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 653 else 654 sx_xunlock_(&map->lock, file, line); 655 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 656 timo)); 657 } 658 659 /* 660 * vm_map_wakeup: 661 * 662 * Awaken any threads that have slept on the map using 663 * vm_map_unlock_and_wait(). 664 */ 665 void 666 vm_map_wakeup(vm_map_t map) 667 { 668 669 /* 670 * Acquire and release map_sleep_mtx to prevent a wakeup() 671 * from being performed (and lost) between the map unlock 672 * and the msleep() in _vm_map_unlock_and_wait(). 673 */ 674 mtx_lock(&map_sleep_mtx); 675 mtx_unlock(&map_sleep_mtx); 676 wakeup(&map->root); 677 } 678 679 void 680 vm_map_busy(vm_map_t map) 681 { 682 683 VM_MAP_ASSERT_LOCKED(map); 684 map->busy++; 685 } 686 687 void 688 vm_map_unbusy(vm_map_t map) 689 { 690 691 VM_MAP_ASSERT_LOCKED(map); 692 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 693 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 694 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 695 wakeup(&map->busy); 696 } 697 } 698 699 void 700 vm_map_wait_busy(vm_map_t map) 701 { 702 703 VM_MAP_ASSERT_LOCKED(map); 704 while (map->busy) { 705 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 706 if (map->system_map) 707 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 708 else 709 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 710 } 711 map->timestamp++; 712 } 713 714 long 715 vmspace_resident_count(struct vmspace *vmspace) 716 { 717 return pmap_resident_count(vmspace_pmap(vmspace)); 718 } 719 720 /* 721 * vm_map_create: 722 * 723 * Creates and returns a new empty VM map with 724 * the given physical map structure, and having 725 * the given lower and upper address bounds. 726 */ 727 vm_map_t 728 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 729 { 730 vm_map_t result; 731 732 result = uma_zalloc(mapzone, M_WAITOK); 733 CTR1(KTR_VM, "vm_map_create: %p", result); 734 _vm_map_init(result, pmap, min, max); 735 return (result); 736 } 737 738 /* 739 * Initialize an existing vm_map structure 740 * such as that in the vmspace structure. 741 */ 742 static void 743 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 744 { 745 746 map->header.next = map->header.prev = &map->header; 747 map->needs_wakeup = FALSE; 748 map->system_map = 0; 749 map->pmap = pmap; 750 map->min_offset = min; 751 map->max_offset = max; 752 map->flags = 0; 753 map->root = NULL; 754 map->timestamp = 0; 755 map->busy = 0; 756 } 757 758 void 759 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 760 { 761 762 _vm_map_init(map, pmap, min, max); 763 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 764 sx_init(&map->lock, "user map"); 765 } 766 767 /* 768 * vm_map_entry_dispose: [ internal use only ] 769 * 770 * Inverse of vm_map_entry_create. 771 */ 772 static void 773 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 774 { 775 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 776 } 777 778 /* 779 * vm_map_entry_create: [ internal use only ] 780 * 781 * Allocates a VM map entry for insertion. 782 * No entry fields are filled in. 783 */ 784 static vm_map_entry_t 785 vm_map_entry_create(vm_map_t map) 786 { 787 vm_map_entry_t new_entry; 788 789 if (map->system_map) 790 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 791 else 792 new_entry = uma_zalloc(mapentzone, M_WAITOK); 793 if (new_entry == NULL) 794 panic("vm_map_entry_create: kernel resources exhausted"); 795 return (new_entry); 796 } 797 798 /* 799 * vm_map_entry_set_behavior: 800 * 801 * Set the expected access behavior, either normal, random, or 802 * sequential. 803 */ 804 static inline void 805 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 806 { 807 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 808 (behavior & MAP_ENTRY_BEHAV_MASK); 809 } 810 811 /* 812 * vm_map_entry_set_max_free: 813 * 814 * Set the max_free field in a vm_map_entry. 815 */ 816 static inline void 817 vm_map_entry_set_max_free(vm_map_entry_t entry) 818 { 819 820 entry->max_free = entry->adj_free; 821 if (entry->left != NULL && entry->left->max_free > entry->max_free) 822 entry->max_free = entry->left->max_free; 823 if (entry->right != NULL && entry->right->max_free > entry->max_free) 824 entry->max_free = entry->right->max_free; 825 } 826 827 /* 828 * vm_map_entry_splay: 829 * 830 * The Sleator and Tarjan top-down splay algorithm with the 831 * following variation. Max_free must be computed bottom-up, so 832 * on the downward pass, maintain the left and right spines in 833 * reverse order. Then, make a second pass up each side to fix 834 * the pointers and compute max_free. The time bound is O(log n) 835 * amortized. 836 * 837 * The new root is the vm_map_entry containing "addr", or else an 838 * adjacent entry (lower or higher) if addr is not in the tree. 839 * 840 * The map must be locked, and leaves it so. 841 * 842 * Returns: the new root. 843 */ 844 static vm_map_entry_t 845 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 846 { 847 vm_map_entry_t llist, rlist; 848 vm_map_entry_t ltree, rtree; 849 vm_map_entry_t y; 850 851 /* Special case of empty tree. */ 852 if (root == NULL) 853 return (root); 854 855 /* 856 * Pass One: Splay down the tree until we find addr or a NULL 857 * pointer where addr would go. llist and rlist are the two 858 * sides in reverse order (bottom-up), with llist linked by 859 * the right pointer and rlist linked by the left pointer in 860 * the vm_map_entry. Wait until Pass Two to set max_free on 861 * the two spines. 862 */ 863 llist = NULL; 864 rlist = NULL; 865 for (;;) { 866 /* root is never NULL in here. */ 867 if (addr < root->start) { 868 y = root->left; 869 if (y == NULL) 870 break; 871 if (addr < y->start && y->left != NULL) { 872 /* Rotate right and put y on rlist. */ 873 root->left = y->right; 874 y->right = root; 875 vm_map_entry_set_max_free(root); 876 root = y->left; 877 y->left = rlist; 878 rlist = y; 879 } else { 880 /* Put root on rlist. */ 881 root->left = rlist; 882 rlist = root; 883 root = y; 884 } 885 } else if (addr >= root->end) { 886 y = root->right; 887 if (y == NULL) 888 break; 889 if (addr >= y->end && y->right != NULL) { 890 /* Rotate left and put y on llist. */ 891 root->right = y->left; 892 y->left = root; 893 vm_map_entry_set_max_free(root); 894 root = y->right; 895 y->right = llist; 896 llist = y; 897 } else { 898 /* Put root on llist. */ 899 root->right = llist; 900 llist = root; 901 root = y; 902 } 903 } else 904 break; 905 } 906 907 /* 908 * Pass Two: Walk back up the two spines, flip the pointers 909 * and set max_free. The subtrees of the root go at the 910 * bottom of llist and rlist. 911 */ 912 ltree = root->left; 913 while (llist != NULL) { 914 y = llist->right; 915 llist->right = ltree; 916 vm_map_entry_set_max_free(llist); 917 ltree = llist; 918 llist = y; 919 } 920 rtree = root->right; 921 while (rlist != NULL) { 922 y = rlist->left; 923 rlist->left = rtree; 924 vm_map_entry_set_max_free(rlist); 925 rtree = rlist; 926 rlist = y; 927 } 928 929 /* 930 * Final assembly: add ltree and rtree as subtrees of root. 931 */ 932 root->left = ltree; 933 root->right = rtree; 934 vm_map_entry_set_max_free(root); 935 936 return (root); 937 } 938 939 /* 940 * vm_map_entry_{un,}link: 941 * 942 * Insert/remove entries from maps. 943 */ 944 static void 945 vm_map_entry_link(vm_map_t map, 946 vm_map_entry_t after_where, 947 vm_map_entry_t entry) 948 { 949 950 CTR4(KTR_VM, 951 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 952 map->nentries, entry, after_where); 953 VM_MAP_ASSERT_LOCKED(map); 954 map->nentries++; 955 entry->prev = after_where; 956 entry->next = after_where->next; 957 entry->next->prev = entry; 958 after_where->next = entry; 959 960 if (after_where != &map->header) { 961 if (after_where != map->root) 962 vm_map_entry_splay(after_where->start, map->root); 963 entry->right = after_where->right; 964 entry->left = after_where; 965 after_where->right = NULL; 966 after_where->adj_free = entry->start - after_where->end; 967 vm_map_entry_set_max_free(after_where); 968 } else { 969 entry->right = map->root; 970 entry->left = NULL; 971 } 972 entry->adj_free = (entry->next == &map->header ? map->max_offset : 973 entry->next->start) - entry->end; 974 vm_map_entry_set_max_free(entry); 975 map->root = entry; 976 } 977 978 static void 979 vm_map_entry_unlink(vm_map_t map, 980 vm_map_entry_t entry) 981 { 982 vm_map_entry_t next, prev, root; 983 984 VM_MAP_ASSERT_LOCKED(map); 985 if (entry != map->root) 986 vm_map_entry_splay(entry->start, map->root); 987 if (entry->left == NULL) 988 root = entry->right; 989 else { 990 root = vm_map_entry_splay(entry->start, entry->left); 991 root->right = entry->right; 992 root->adj_free = (entry->next == &map->header ? map->max_offset : 993 entry->next->start) - root->end; 994 vm_map_entry_set_max_free(root); 995 } 996 map->root = root; 997 998 prev = entry->prev; 999 next = entry->next; 1000 next->prev = prev; 1001 prev->next = next; 1002 map->nentries--; 1003 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1004 map->nentries, entry); 1005 } 1006 1007 /* 1008 * vm_map_entry_resize_free: 1009 * 1010 * Recompute the amount of free space following a vm_map_entry 1011 * and propagate that value up the tree. Call this function after 1012 * resizing a map entry in-place, that is, without a call to 1013 * vm_map_entry_link() or _unlink(). 1014 * 1015 * The map must be locked, and leaves it so. 1016 */ 1017 static void 1018 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1019 { 1020 1021 /* 1022 * Using splay trees without parent pointers, propagating 1023 * max_free up the tree is done by moving the entry to the 1024 * root and making the change there. 1025 */ 1026 if (entry != map->root) 1027 map->root = vm_map_entry_splay(entry->start, map->root); 1028 1029 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1030 entry->next->start) - entry->end; 1031 vm_map_entry_set_max_free(entry); 1032 } 1033 1034 /* 1035 * vm_map_lookup_entry: [ internal use only ] 1036 * 1037 * Finds the map entry containing (or 1038 * immediately preceding) the specified address 1039 * in the given map; the entry is returned 1040 * in the "entry" parameter. The boolean 1041 * result indicates whether the address is 1042 * actually contained in the map. 1043 */ 1044 boolean_t 1045 vm_map_lookup_entry( 1046 vm_map_t map, 1047 vm_offset_t address, 1048 vm_map_entry_t *entry) /* OUT */ 1049 { 1050 vm_map_entry_t cur; 1051 boolean_t locked; 1052 1053 /* 1054 * If the map is empty, then the map entry immediately preceding 1055 * "address" is the map's header. 1056 */ 1057 cur = map->root; 1058 if (cur == NULL) 1059 *entry = &map->header; 1060 else if (address >= cur->start && cur->end > address) { 1061 *entry = cur; 1062 return (TRUE); 1063 } else if ((locked = vm_map_locked(map)) || 1064 sx_try_upgrade(&map->lock)) { 1065 /* 1066 * Splay requires a write lock on the map. However, it only 1067 * restructures the binary search tree; it does not otherwise 1068 * change the map. Thus, the map's timestamp need not change 1069 * on a temporary upgrade. 1070 */ 1071 map->root = cur = vm_map_entry_splay(address, cur); 1072 if (!locked) 1073 sx_downgrade(&map->lock); 1074 1075 /* 1076 * If "address" is contained within a map entry, the new root 1077 * is that map entry. Otherwise, the new root is a map entry 1078 * immediately before or after "address". 1079 */ 1080 if (address >= cur->start) { 1081 *entry = cur; 1082 if (cur->end > address) 1083 return (TRUE); 1084 } else 1085 *entry = cur->prev; 1086 } else 1087 /* 1088 * Since the map is only locked for read access, perform a 1089 * standard binary search tree lookup for "address". 1090 */ 1091 for (;;) { 1092 if (address < cur->start) { 1093 if (cur->left == NULL) { 1094 *entry = cur->prev; 1095 break; 1096 } 1097 cur = cur->left; 1098 } else if (cur->end > address) { 1099 *entry = cur; 1100 return (TRUE); 1101 } else { 1102 if (cur->right == NULL) { 1103 *entry = cur; 1104 break; 1105 } 1106 cur = cur->right; 1107 } 1108 } 1109 return (FALSE); 1110 } 1111 1112 /* 1113 * vm_map_insert: 1114 * 1115 * Inserts the given whole VM object into the target 1116 * map at the specified address range. The object's 1117 * size should match that of the address range. 1118 * 1119 * Requires that the map be locked, and leaves it so. 1120 * 1121 * If object is non-NULL, ref count must be bumped by caller 1122 * prior to making call to account for the new entry. 1123 */ 1124 int 1125 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1126 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1127 int cow) 1128 { 1129 vm_map_entry_t new_entry; 1130 vm_map_entry_t prev_entry; 1131 vm_map_entry_t temp_entry; 1132 vm_eflags_t protoeflags; 1133 struct ucred *cred; 1134 vm_inherit_t inheritance; 1135 boolean_t charge_prev_obj; 1136 1137 VM_MAP_ASSERT_LOCKED(map); 1138 1139 /* 1140 * Check that the start and end points are not bogus. 1141 */ 1142 if ((start < map->min_offset) || (end > map->max_offset) || 1143 (start >= end)) 1144 return (KERN_INVALID_ADDRESS); 1145 1146 /* 1147 * Find the entry prior to the proposed starting address; if it's part 1148 * of an existing entry, this range is bogus. 1149 */ 1150 if (vm_map_lookup_entry(map, start, &temp_entry)) 1151 return (KERN_NO_SPACE); 1152 1153 prev_entry = temp_entry; 1154 1155 /* 1156 * Assert that the next entry doesn't overlap the end point. 1157 */ 1158 if ((prev_entry->next != &map->header) && 1159 (prev_entry->next->start < end)) 1160 return (KERN_NO_SPACE); 1161 1162 protoeflags = 0; 1163 charge_prev_obj = FALSE; 1164 1165 if (cow & MAP_COPY_ON_WRITE) 1166 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1167 1168 if (cow & MAP_NOFAULT) { 1169 protoeflags |= MAP_ENTRY_NOFAULT; 1170 1171 KASSERT(object == NULL, 1172 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1173 } 1174 if (cow & MAP_DISABLE_SYNCER) 1175 protoeflags |= MAP_ENTRY_NOSYNC; 1176 if (cow & MAP_DISABLE_COREDUMP) 1177 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1178 if (cow & MAP_VN_WRITECOUNT) 1179 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1180 if (cow & MAP_INHERIT_SHARE) 1181 inheritance = VM_INHERIT_SHARE; 1182 else 1183 inheritance = VM_INHERIT_DEFAULT; 1184 1185 cred = NULL; 1186 KASSERT((object != kmem_object && object != kernel_object) || 1187 ((object == kmem_object || object == kernel_object) && 1188 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1189 ("kmem or kernel object and cow")); 1190 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1191 goto charged; 1192 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1193 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1194 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1195 return (KERN_RESOURCE_SHORTAGE); 1196 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1197 object->cred == NULL, 1198 ("OVERCOMMIT: vm_map_insert o %p", object)); 1199 cred = curthread->td_ucred; 1200 crhold(cred); 1201 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1202 charge_prev_obj = TRUE; 1203 } 1204 1205 charged: 1206 /* Expand the kernel pmap, if necessary. */ 1207 if (map == kernel_map && end > kernel_vm_end) 1208 pmap_growkernel(end); 1209 if (object != NULL) { 1210 /* 1211 * OBJ_ONEMAPPING must be cleared unless this mapping 1212 * is trivially proven to be the only mapping for any 1213 * of the object's pages. (Object granularity 1214 * reference counting is insufficient to recognize 1215 * aliases with precision.) 1216 */ 1217 VM_OBJECT_WLOCK(object); 1218 if (object->ref_count > 1 || object->shadow_count != 0) 1219 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1220 VM_OBJECT_WUNLOCK(object); 1221 } 1222 else if ((prev_entry != &map->header) && 1223 (prev_entry->eflags == protoeflags) && 1224 (prev_entry->end == start) && 1225 (prev_entry->wired_count == 0) && 1226 (prev_entry->cred == cred || 1227 (prev_entry->object.vm_object != NULL && 1228 (prev_entry->object.vm_object->cred == cred))) && 1229 vm_object_coalesce(prev_entry->object.vm_object, 1230 prev_entry->offset, 1231 (vm_size_t)(prev_entry->end - prev_entry->start), 1232 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1233 /* 1234 * We were able to extend the object. Determine if we 1235 * can extend the previous map entry to include the 1236 * new range as well. 1237 */ 1238 if ((prev_entry->inheritance == inheritance) && 1239 (prev_entry->protection == prot) && 1240 (prev_entry->max_protection == max)) { 1241 map->size += (end - prev_entry->end); 1242 prev_entry->end = end; 1243 vm_map_entry_resize_free(map, prev_entry); 1244 vm_map_simplify_entry(map, prev_entry); 1245 if (cred != NULL) 1246 crfree(cred); 1247 return (KERN_SUCCESS); 1248 } 1249 1250 /* 1251 * If we can extend the object but cannot extend the 1252 * map entry, we have to create a new map entry. We 1253 * must bump the ref count on the extended object to 1254 * account for it. object may be NULL. 1255 */ 1256 object = prev_entry->object.vm_object; 1257 offset = prev_entry->offset + 1258 (prev_entry->end - prev_entry->start); 1259 vm_object_reference(object); 1260 if (cred != NULL && object != NULL && object->cred != NULL && 1261 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1262 /* Object already accounts for this uid. */ 1263 crfree(cred); 1264 cred = NULL; 1265 } 1266 } 1267 1268 /* 1269 * NOTE: if conditionals fail, object can be NULL here. This occurs 1270 * in things like the buffer map where we manage kva but do not manage 1271 * backing objects. 1272 */ 1273 1274 /* 1275 * Create a new entry 1276 */ 1277 new_entry = vm_map_entry_create(map); 1278 new_entry->start = start; 1279 new_entry->end = end; 1280 new_entry->cred = NULL; 1281 1282 new_entry->eflags = protoeflags; 1283 new_entry->object.vm_object = object; 1284 new_entry->offset = offset; 1285 new_entry->avail_ssize = 0; 1286 1287 new_entry->inheritance = inheritance; 1288 new_entry->protection = prot; 1289 new_entry->max_protection = max; 1290 new_entry->wired_count = 0; 1291 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1292 new_entry->next_read = OFF_TO_IDX(offset); 1293 1294 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1295 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1296 new_entry->cred = cred; 1297 1298 /* 1299 * Insert the new entry into the list 1300 */ 1301 vm_map_entry_link(map, prev_entry, new_entry); 1302 map->size += new_entry->end - new_entry->start; 1303 1304 /* 1305 * It may be possible to merge the new entry with the next and/or 1306 * previous entries. However, due to MAP_STACK_* being a hack, a 1307 * panic can result from merging such entries. 1308 */ 1309 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1310 vm_map_simplify_entry(map, new_entry); 1311 1312 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1313 vm_map_pmap_enter(map, start, prot, 1314 object, OFF_TO_IDX(offset), end - start, 1315 cow & MAP_PREFAULT_PARTIAL); 1316 } 1317 1318 return (KERN_SUCCESS); 1319 } 1320 1321 /* 1322 * vm_map_findspace: 1323 * 1324 * Find the first fit (lowest VM address) for "length" free bytes 1325 * beginning at address >= start in the given map. 1326 * 1327 * In a vm_map_entry, "adj_free" is the amount of free space 1328 * adjacent (higher address) to this entry, and "max_free" is the 1329 * maximum amount of contiguous free space in its subtree. This 1330 * allows finding a free region in one path down the tree, so 1331 * O(log n) amortized with splay trees. 1332 * 1333 * The map must be locked, and leaves it so. 1334 * 1335 * Returns: 0 on success, and starting address in *addr, 1336 * 1 if insufficient space. 1337 */ 1338 int 1339 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1340 vm_offset_t *addr) /* OUT */ 1341 { 1342 vm_map_entry_t entry; 1343 vm_offset_t st; 1344 1345 /* 1346 * Request must fit within min/max VM address and must avoid 1347 * address wrap. 1348 */ 1349 if (start < map->min_offset) 1350 start = map->min_offset; 1351 if (start + length > map->max_offset || start + length < start) 1352 return (1); 1353 1354 /* Empty tree means wide open address space. */ 1355 if (map->root == NULL) { 1356 *addr = start; 1357 return (0); 1358 } 1359 1360 /* 1361 * After splay, if start comes before root node, then there 1362 * must be a gap from start to the root. 1363 */ 1364 map->root = vm_map_entry_splay(start, map->root); 1365 if (start + length <= map->root->start) { 1366 *addr = start; 1367 return (0); 1368 } 1369 1370 /* 1371 * Root is the last node that might begin its gap before 1372 * start, and this is the last comparison where address 1373 * wrap might be a problem. 1374 */ 1375 st = (start > map->root->end) ? start : map->root->end; 1376 if (length <= map->root->end + map->root->adj_free - st) { 1377 *addr = st; 1378 return (0); 1379 } 1380 1381 /* With max_free, can immediately tell if no solution. */ 1382 entry = map->root->right; 1383 if (entry == NULL || length > entry->max_free) 1384 return (1); 1385 1386 /* 1387 * Search the right subtree in the order: left subtree, root, 1388 * right subtree (first fit). The previous splay implies that 1389 * all regions in the right subtree have addresses > start. 1390 */ 1391 while (entry != NULL) { 1392 if (entry->left != NULL && entry->left->max_free >= length) 1393 entry = entry->left; 1394 else if (entry->adj_free >= length) { 1395 *addr = entry->end; 1396 return (0); 1397 } else 1398 entry = entry->right; 1399 } 1400 1401 /* Can't get here, so panic if we do. */ 1402 panic("vm_map_findspace: max_free corrupt"); 1403 } 1404 1405 int 1406 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1407 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1408 vm_prot_t max, int cow) 1409 { 1410 vm_offset_t end; 1411 int result; 1412 1413 end = start + length; 1414 vm_map_lock(map); 1415 VM_MAP_RANGE_CHECK(map, start, end); 1416 (void) vm_map_delete(map, start, end); 1417 result = vm_map_insert(map, object, offset, start, end, prot, 1418 max, cow); 1419 vm_map_unlock(map); 1420 return (result); 1421 } 1422 1423 /* 1424 * vm_map_find finds an unallocated region in the target address 1425 * map with the given length. The search is defined to be 1426 * first-fit from the specified address; the region found is 1427 * returned in the same parameter. 1428 * 1429 * If object is non-NULL, ref count must be bumped by caller 1430 * prior to making call to account for the new entry. 1431 */ 1432 int 1433 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1434 vm_offset_t *addr, /* IN/OUT */ 1435 vm_size_t length, int find_space, vm_prot_t prot, 1436 vm_prot_t max, int cow) 1437 { 1438 vm_offset_t alignment, initial_addr, start; 1439 int result; 1440 1441 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1442 (object->flags & OBJ_COLORED) == 0)) 1443 find_space = VMFS_ANY_SPACE; 1444 if (find_space >> 8 != 0) { 1445 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1446 alignment = (vm_offset_t)1 << (find_space >> 8); 1447 } else 1448 alignment = 0; 1449 initial_addr = *addr; 1450 again: 1451 start = initial_addr; 1452 vm_map_lock(map); 1453 do { 1454 if (find_space != VMFS_NO_SPACE) { 1455 if (vm_map_findspace(map, start, length, addr)) { 1456 vm_map_unlock(map); 1457 if (find_space == VMFS_OPTIMAL_SPACE) { 1458 find_space = VMFS_ANY_SPACE; 1459 goto again; 1460 } 1461 return (KERN_NO_SPACE); 1462 } 1463 switch (find_space) { 1464 case VMFS_SUPER_SPACE: 1465 case VMFS_OPTIMAL_SPACE: 1466 pmap_align_superpage(object, offset, addr, 1467 length); 1468 break; 1469 case VMFS_ANY_SPACE: 1470 break; 1471 default: 1472 if ((*addr & (alignment - 1)) != 0) { 1473 *addr &= ~(alignment - 1); 1474 *addr += alignment; 1475 } 1476 break; 1477 } 1478 1479 start = *addr; 1480 } 1481 result = vm_map_insert(map, object, offset, start, start + 1482 length, prot, max, cow); 1483 } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE && 1484 find_space != VMFS_ANY_SPACE); 1485 vm_map_unlock(map); 1486 return (result); 1487 } 1488 1489 /* 1490 * vm_map_simplify_entry: 1491 * 1492 * Simplify the given map entry by merging with either neighbor. This 1493 * routine also has the ability to merge with both neighbors. 1494 * 1495 * The map must be locked. 1496 * 1497 * This routine guarentees that the passed entry remains valid (though 1498 * possibly extended). When merging, this routine may delete one or 1499 * both neighbors. 1500 */ 1501 void 1502 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1503 { 1504 vm_map_entry_t next, prev; 1505 vm_size_t prevsize, esize; 1506 1507 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1508 return; 1509 1510 prev = entry->prev; 1511 if (prev != &map->header) { 1512 prevsize = prev->end - prev->start; 1513 if ( (prev->end == entry->start) && 1514 (prev->object.vm_object == entry->object.vm_object) && 1515 (!prev->object.vm_object || 1516 (prev->offset + prevsize == entry->offset)) && 1517 (prev->eflags == entry->eflags) && 1518 (prev->protection == entry->protection) && 1519 (prev->max_protection == entry->max_protection) && 1520 (prev->inheritance == entry->inheritance) && 1521 (prev->wired_count == entry->wired_count) && 1522 (prev->cred == entry->cred)) { 1523 vm_map_entry_unlink(map, prev); 1524 entry->start = prev->start; 1525 entry->offset = prev->offset; 1526 if (entry->prev != &map->header) 1527 vm_map_entry_resize_free(map, entry->prev); 1528 1529 /* 1530 * If the backing object is a vnode object, 1531 * vm_object_deallocate() calls vrele(). 1532 * However, vrele() does not lock the vnode 1533 * because the vnode has additional 1534 * references. Thus, the map lock can be kept 1535 * without causing a lock-order reversal with 1536 * the vnode lock. 1537 * 1538 * Since we count the number of virtual page 1539 * mappings in object->un_pager.vnp.writemappings, 1540 * the writemappings value should not be adjusted 1541 * when the entry is disposed of. 1542 */ 1543 if (prev->object.vm_object) 1544 vm_object_deallocate(prev->object.vm_object); 1545 if (prev->cred != NULL) 1546 crfree(prev->cred); 1547 vm_map_entry_dispose(map, prev); 1548 } 1549 } 1550 1551 next = entry->next; 1552 if (next != &map->header) { 1553 esize = entry->end - entry->start; 1554 if ((entry->end == next->start) && 1555 (next->object.vm_object == entry->object.vm_object) && 1556 (!entry->object.vm_object || 1557 (entry->offset + esize == next->offset)) && 1558 (next->eflags == entry->eflags) && 1559 (next->protection == entry->protection) && 1560 (next->max_protection == entry->max_protection) && 1561 (next->inheritance == entry->inheritance) && 1562 (next->wired_count == entry->wired_count) && 1563 (next->cred == entry->cred)) { 1564 vm_map_entry_unlink(map, next); 1565 entry->end = next->end; 1566 vm_map_entry_resize_free(map, entry); 1567 1568 /* 1569 * See comment above. 1570 */ 1571 if (next->object.vm_object) 1572 vm_object_deallocate(next->object.vm_object); 1573 if (next->cred != NULL) 1574 crfree(next->cred); 1575 vm_map_entry_dispose(map, next); 1576 } 1577 } 1578 } 1579 /* 1580 * vm_map_clip_start: [ internal use only ] 1581 * 1582 * Asserts that the given entry begins at or after 1583 * the specified address; if necessary, 1584 * it splits the entry into two. 1585 */ 1586 #define vm_map_clip_start(map, entry, startaddr) \ 1587 { \ 1588 if (startaddr > entry->start) \ 1589 _vm_map_clip_start(map, entry, startaddr); \ 1590 } 1591 1592 /* 1593 * This routine is called only when it is known that 1594 * the entry must be split. 1595 */ 1596 static void 1597 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1598 { 1599 vm_map_entry_t new_entry; 1600 1601 VM_MAP_ASSERT_LOCKED(map); 1602 1603 /* 1604 * Split off the front portion -- note that we must insert the new 1605 * entry BEFORE this one, so that this entry has the specified 1606 * starting address. 1607 */ 1608 vm_map_simplify_entry(map, entry); 1609 1610 /* 1611 * If there is no object backing this entry, we might as well create 1612 * one now. If we defer it, an object can get created after the map 1613 * is clipped, and individual objects will be created for the split-up 1614 * map. This is a bit of a hack, but is also about the best place to 1615 * put this improvement. 1616 */ 1617 if (entry->object.vm_object == NULL && !map->system_map) { 1618 vm_object_t object; 1619 object = vm_object_allocate(OBJT_DEFAULT, 1620 atop(entry->end - entry->start)); 1621 entry->object.vm_object = object; 1622 entry->offset = 0; 1623 if (entry->cred != NULL) { 1624 object->cred = entry->cred; 1625 object->charge = entry->end - entry->start; 1626 entry->cred = NULL; 1627 } 1628 } else if (entry->object.vm_object != NULL && 1629 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1630 entry->cred != NULL) { 1631 VM_OBJECT_WLOCK(entry->object.vm_object); 1632 KASSERT(entry->object.vm_object->cred == NULL, 1633 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1634 entry->object.vm_object->cred = entry->cred; 1635 entry->object.vm_object->charge = entry->end - entry->start; 1636 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1637 entry->cred = NULL; 1638 } 1639 1640 new_entry = vm_map_entry_create(map); 1641 *new_entry = *entry; 1642 1643 new_entry->end = start; 1644 entry->offset += (start - entry->start); 1645 entry->start = start; 1646 if (new_entry->cred != NULL) 1647 crhold(entry->cred); 1648 1649 vm_map_entry_link(map, entry->prev, new_entry); 1650 1651 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1652 vm_object_reference(new_entry->object.vm_object); 1653 /* 1654 * The object->un_pager.vnp.writemappings for the 1655 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1656 * kept as is here. The virtual pages are 1657 * re-distributed among the clipped entries, so the sum is 1658 * left the same. 1659 */ 1660 } 1661 } 1662 1663 /* 1664 * vm_map_clip_end: [ internal use only ] 1665 * 1666 * Asserts that the given entry ends at or before 1667 * the specified address; if necessary, 1668 * it splits the entry into two. 1669 */ 1670 #define vm_map_clip_end(map, entry, endaddr) \ 1671 { \ 1672 if ((endaddr) < (entry->end)) \ 1673 _vm_map_clip_end((map), (entry), (endaddr)); \ 1674 } 1675 1676 /* 1677 * This routine is called only when it is known that 1678 * the entry must be split. 1679 */ 1680 static void 1681 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1682 { 1683 vm_map_entry_t new_entry; 1684 1685 VM_MAP_ASSERT_LOCKED(map); 1686 1687 /* 1688 * If there is no object backing this entry, we might as well create 1689 * one now. If we defer it, an object can get created after the map 1690 * is clipped, and individual objects will be created for the split-up 1691 * map. This is a bit of a hack, but is also about the best place to 1692 * put this improvement. 1693 */ 1694 if (entry->object.vm_object == NULL && !map->system_map) { 1695 vm_object_t object; 1696 object = vm_object_allocate(OBJT_DEFAULT, 1697 atop(entry->end - entry->start)); 1698 entry->object.vm_object = object; 1699 entry->offset = 0; 1700 if (entry->cred != NULL) { 1701 object->cred = entry->cred; 1702 object->charge = entry->end - entry->start; 1703 entry->cred = NULL; 1704 } 1705 } else if (entry->object.vm_object != NULL && 1706 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1707 entry->cred != NULL) { 1708 VM_OBJECT_WLOCK(entry->object.vm_object); 1709 KASSERT(entry->object.vm_object->cred == NULL, 1710 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1711 entry->object.vm_object->cred = entry->cred; 1712 entry->object.vm_object->charge = entry->end - entry->start; 1713 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1714 entry->cred = NULL; 1715 } 1716 1717 /* 1718 * Create a new entry and insert it AFTER the specified entry 1719 */ 1720 new_entry = vm_map_entry_create(map); 1721 *new_entry = *entry; 1722 1723 new_entry->start = entry->end = end; 1724 new_entry->offset += (end - entry->start); 1725 if (new_entry->cred != NULL) 1726 crhold(entry->cred); 1727 1728 vm_map_entry_link(map, entry, new_entry); 1729 1730 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1731 vm_object_reference(new_entry->object.vm_object); 1732 } 1733 } 1734 1735 /* 1736 * vm_map_submap: [ kernel use only ] 1737 * 1738 * Mark the given range as handled by a subordinate map. 1739 * 1740 * This range must have been created with vm_map_find, 1741 * and no other operations may have been performed on this 1742 * range prior to calling vm_map_submap. 1743 * 1744 * Only a limited number of operations can be performed 1745 * within this rage after calling vm_map_submap: 1746 * vm_fault 1747 * [Don't try vm_map_copy!] 1748 * 1749 * To remove a submapping, one must first remove the 1750 * range from the superior map, and then destroy the 1751 * submap (if desired). [Better yet, don't try it.] 1752 */ 1753 int 1754 vm_map_submap( 1755 vm_map_t map, 1756 vm_offset_t start, 1757 vm_offset_t end, 1758 vm_map_t submap) 1759 { 1760 vm_map_entry_t entry; 1761 int result = KERN_INVALID_ARGUMENT; 1762 1763 vm_map_lock(map); 1764 1765 VM_MAP_RANGE_CHECK(map, start, end); 1766 1767 if (vm_map_lookup_entry(map, start, &entry)) { 1768 vm_map_clip_start(map, entry, start); 1769 } else 1770 entry = entry->next; 1771 1772 vm_map_clip_end(map, entry, end); 1773 1774 if ((entry->start == start) && (entry->end == end) && 1775 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1776 (entry->object.vm_object == NULL)) { 1777 entry->object.sub_map = submap; 1778 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1779 result = KERN_SUCCESS; 1780 } 1781 vm_map_unlock(map); 1782 1783 return (result); 1784 } 1785 1786 /* 1787 * The maximum number of pages to map 1788 */ 1789 #define MAX_INIT_PT 96 1790 1791 /* 1792 * vm_map_pmap_enter: 1793 * 1794 * Preload read-only mappings for the specified object's resident pages 1795 * into the target map. If "flags" is MAP_PREFAULT_PARTIAL, then only 1796 * the resident pages within the address range [addr, addr + ulmin(size, 1797 * ptoa(MAX_INIT_PT))) are mapped. Otherwise, all resident pages within 1798 * the specified address range are mapped. This eliminates many soft 1799 * faults on process startup and immediately after an mmap(2). Because 1800 * these are speculative mappings, cached pages are not reactivated and 1801 * mapped. 1802 */ 1803 void 1804 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1805 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1806 { 1807 vm_offset_t start; 1808 vm_page_t p, p_start; 1809 vm_pindex_t psize, tmpidx; 1810 1811 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1812 return; 1813 VM_OBJECT_RLOCK(object); 1814 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1815 VM_OBJECT_RUNLOCK(object); 1816 VM_OBJECT_WLOCK(object); 1817 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1818 pmap_object_init_pt(map->pmap, addr, object, pindex, 1819 size); 1820 VM_OBJECT_WUNLOCK(object); 1821 return; 1822 } 1823 VM_OBJECT_LOCK_DOWNGRADE(object); 1824 } 1825 1826 psize = atop(size); 1827 if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0) 1828 psize = MAX_INIT_PT; 1829 if (psize + pindex > object->size) { 1830 if (object->size < pindex) { 1831 VM_OBJECT_RUNLOCK(object); 1832 return; 1833 } 1834 psize = object->size - pindex; 1835 } 1836 1837 start = 0; 1838 p_start = NULL; 1839 1840 p = vm_page_find_least(object, pindex); 1841 /* 1842 * Assert: the variable p is either (1) the page with the 1843 * least pindex greater than or equal to the parameter pindex 1844 * or (2) NULL. 1845 */ 1846 for (; 1847 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1848 p = TAILQ_NEXT(p, listq)) { 1849 /* 1850 * don't allow an madvise to blow away our really 1851 * free pages allocating pv entries. 1852 */ 1853 if ((flags & MAP_PREFAULT_MADVISE) && 1854 cnt.v_free_count < cnt.v_free_reserved) { 1855 psize = tmpidx; 1856 break; 1857 } 1858 if (p->valid == VM_PAGE_BITS_ALL) { 1859 if (p_start == NULL) { 1860 start = addr + ptoa(tmpidx); 1861 p_start = p; 1862 } 1863 } else if (p_start != NULL) { 1864 pmap_enter_object(map->pmap, start, addr + 1865 ptoa(tmpidx), p_start, prot); 1866 p_start = NULL; 1867 } 1868 } 1869 if (p_start != NULL) 1870 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1871 p_start, prot); 1872 VM_OBJECT_RUNLOCK(object); 1873 } 1874 1875 /* 1876 * vm_map_protect: 1877 * 1878 * Sets the protection of the specified address 1879 * region in the target map. If "set_max" is 1880 * specified, the maximum protection is to be set; 1881 * otherwise, only the current protection is affected. 1882 */ 1883 int 1884 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1885 vm_prot_t new_prot, boolean_t set_max) 1886 { 1887 vm_map_entry_t current, entry; 1888 vm_object_t obj; 1889 struct ucred *cred; 1890 vm_prot_t old_prot; 1891 1892 vm_map_lock(map); 1893 1894 VM_MAP_RANGE_CHECK(map, start, end); 1895 1896 if (vm_map_lookup_entry(map, start, &entry)) { 1897 vm_map_clip_start(map, entry, start); 1898 } else { 1899 entry = entry->next; 1900 } 1901 1902 /* 1903 * Make a first pass to check for protection violations. 1904 */ 1905 current = entry; 1906 while ((current != &map->header) && (current->start < end)) { 1907 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1908 vm_map_unlock(map); 1909 return (KERN_INVALID_ARGUMENT); 1910 } 1911 if ((new_prot & current->max_protection) != new_prot) { 1912 vm_map_unlock(map); 1913 return (KERN_PROTECTION_FAILURE); 1914 } 1915 current = current->next; 1916 } 1917 1918 1919 /* 1920 * Do an accounting pass for private read-only mappings that 1921 * now will do cow due to allowed write (e.g. debugger sets 1922 * breakpoint on text segment) 1923 */ 1924 for (current = entry; (current != &map->header) && 1925 (current->start < end); current = current->next) { 1926 1927 vm_map_clip_end(map, current, end); 1928 1929 if (set_max || 1930 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1931 ENTRY_CHARGED(current)) { 1932 continue; 1933 } 1934 1935 cred = curthread->td_ucred; 1936 obj = current->object.vm_object; 1937 1938 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1939 if (!swap_reserve(current->end - current->start)) { 1940 vm_map_unlock(map); 1941 return (KERN_RESOURCE_SHORTAGE); 1942 } 1943 crhold(cred); 1944 current->cred = cred; 1945 continue; 1946 } 1947 1948 VM_OBJECT_WLOCK(obj); 1949 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1950 VM_OBJECT_WUNLOCK(obj); 1951 continue; 1952 } 1953 1954 /* 1955 * Charge for the whole object allocation now, since 1956 * we cannot distinguish between non-charged and 1957 * charged clipped mapping of the same object later. 1958 */ 1959 KASSERT(obj->charge == 0, 1960 ("vm_map_protect: object %p overcharged\n", obj)); 1961 if (!swap_reserve(ptoa(obj->size))) { 1962 VM_OBJECT_WUNLOCK(obj); 1963 vm_map_unlock(map); 1964 return (KERN_RESOURCE_SHORTAGE); 1965 } 1966 1967 crhold(cred); 1968 obj->cred = cred; 1969 obj->charge = ptoa(obj->size); 1970 VM_OBJECT_WUNLOCK(obj); 1971 } 1972 1973 /* 1974 * Go back and fix up protections. [Note that clipping is not 1975 * necessary the second time.] 1976 */ 1977 current = entry; 1978 while ((current != &map->header) && (current->start < end)) { 1979 old_prot = current->protection; 1980 1981 if (set_max) 1982 current->protection = 1983 (current->max_protection = new_prot) & 1984 old_prot; 1985 else 1986 current->protection = new_prot; 1987 1988 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1989 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1990 (current->protection & VM_PROT_WRITE) != 0 && 1991 (old_prot & VM_PROT_WRITE) == 0) { 1992 vm_fault_copy_entry(map, map, current, current, NULL); 1993 } 1994 1995 /* 1996 * When restricting access, update the physical map. Worry 1997 * about copy-on-write here. 1998 */ 1999 if ((old_prot & ~current->protection) != 0) { 2000 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2001 VM_PROT_ALL) 2002 pmap_protect(map->pmap, current->start, 2003 current->end, 2004 current->protection & MASK(current)); 2005 #undef MASK 2006 } 2007 vm_map_simplify_entry(map, current); 2008 current = current->next; 2009 } 2010 vm_map_unlock(map); 2011 return (KERN_SUCCESS); 2012 } 2013 2014 /* 2015 * vm_map_madvise: 2016 * 2017 * This routine traverses a processes map handling the madvise 2018 * system call. Advisories are classified as either those effecting 2019 * the vm_map_entry structure, or those effecting the underlying 2020 * objects. 2021 */ 2022 int 2023 vm_map_madvise( 2024 vm_map_t map, 2025 vm_offset_t start, 2026 vm_offset_t end, 2027 int behav) 2028 { 2029 vm_map_entry_t current, entry; 2030 int modify_map = 0; 2031 2032 /* 2033 * Some madvise calls directly modify the vm_map_entry, in which case 2034 * we need to use an exclusive lock on the map and we need to perform 2035 * various clipping operations. Otherwise we only need a read-lock 2036 * on the map. 2037 */ 2038 switch(behav) { 2039 case MADV_NORMAL: 2040 case MADV_SEQUENTIAL: 2041 case MADV_RANDOM: 2042 case MADV_NOSYNC: 2043 case MADV_AUTOSYNC: 2044 case MADV_NOCORE: 2045 case MADV_CORE: 2046 modify_map = 1; 2047 vm_map_lock(map); 2048 break; 2049 case MADV_WILLNEED: 2050 case MADV_DONTNEED: 2051 case MADV_FREE: 2052 vm_map_lock_read(map); 2053 break; 2054 default: 2055 return (KERN_INVALID_ARGUMENT); 2056 } 2057 2058 /* 2059 * Locate starting entry and clip if necessary. 2060 */ 2061 VM_MAP_RANGE_CHECK(map, start, end); 2062 2063 if (vm_map_lookup_entry(map, start, &entry)) { 2064 if (modify_map) 2065 vm_map_clip_start(map, entry, start); 2066 } else { 2067 entry = entry->next; 2068 } 2069 2070 if (modify_map) { 2071 /* 2072 * madvise behaviors that are implemented in the vm_map_entry. 2073 * 2074 * We clip the vm_map_entry so that behavioral changes are 2075 * limited to the specified address range. 2076 */ 2077 for (current = entry; 2078 (current != &map->header) && (current->start < end); 2079 current = current->next 2080 ) { 2081 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2082 continue; 2083 2084 vm_map_clip_end(map, current, end); 2085 2086 switch (behav) { 2087 case MADV_NORMAL: 2088 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2089 break; 2090 case MADV_SEQUENTIAL: 2091 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2092 break; 2093 case MADV_RANDOM: 2094 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2095 break; 2096 case MADV_NOSYNC: 2097 current->eflags |= MAP_ENTRY_NOSYNC; 2098 break; 2099 case MADV_AUTOSYNC: 2100 current->eflags &= ~MAP_ENTRY_NOSYNC; 2101 break; 2102 case MADV_NOCORE: 2103 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2104 break; 2105 case MADV_CORE: 2106 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2107 break; 2108 default: 2109 break; 2110 } 2111 vm_map_simplify_entry(map, current); 2112 } 2113 vm_map_unlock(map); 2114 } else { 2115 vm_pindex_t pstart, pend; 2116 2117 /* 2118 * madvise behaviors that are implemented in the underlying 2119 * vm_object. 2120 * 2121 * Since we don't clip the vm_map_entry, we have to clip 2122 * the vm_object pindex and count. 2123 */ 2124 for (current = entry; 2125 (current != &map->header) && (current->start < end); 2126 current = current->next 2127 ) { 2128 vm_offset_t useStart; 2129 2130 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2131 continue; 2132 2133 pstart = OFF_TO_IDX(current->offset); 2134 pend = pstart + atop(current->end - current->start); 2135 useStart = current->start; 2136 2137 if (current->start < start) { 2138 pstart += atop(start - current->start); 2139 useStart = start; 2140 } 2141 if (current->end > end) 2142 pend -= atop(current->end - end); 2143 2144 if (pstart >= pend) 2145 continue; 2146 2147 vm_object_madvise(current->object.vm_object, pstart, 2148 pend, behav); 2149 if (behav == MADV_WILLNEED) { 2150 vm_map_pmap_enter(map, 2151 useStart, 2152 current->protection, 2153 current->object.vm_object, 2154 pstart, 2155 ptoa(pend - pstart), 2156 MAP_PREFAULT_MADVISE 2157 ); 2158 } 2159 } 2160 vm_map_unlock_read(map); 2161 } 2162 return (0); 2163 } 2164 2165 2166 /* 2167 * vm_map_inherit: 2168 * 2169 * Sets the inheritance of the specified address 2170 * range in the target map. Inheritance 2171 * affects how the map will be shared with 2172 * child maps at the time of vmspace_fork. 2173 */ 2174 int 2175 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2176 vm_inherit_t new_inheritance) 2177 { 2178 vm_map_entry_t entry; 2179 vm_map_entry_t temp_entry; 2180 2181 switch (new_inheritance) { 2182 case VM_INHERIT_NONE: 2183 case VM_INHERIT_COPY: 2184 case VM_INHERIT_SHARE: 2185 break; 2186 default: 2187 return (KERN_INVALID_ARGUMENT); 2188 } 2189 vm_map_lock(map); 2190 VM_MAP_RANGE_CHECK(map, start, end); 2191 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2192 entry = temp_entry; 2193 vm_map_clip_start(map, entry, start); 2194 } else 2195 entry = temp_entry->next; 2196 while ((entry != &map->header) && (entry->start < end)) { 2197 vm_map_clip_end(map, entry, end); 2198 entry->inheritance = new_inheritance; 2199 vm_map_simplify_entry(map, entry); 2200 entry = entry->next; 2201 } 2202 vm_map_unlock(map); 2203 return (KERN_SUCCESS); 2204 } 2205 2206 /* 2207 * vm_map_unwire: 2208 * 2209 * Implements both kernel and user unwiring. 2210 */ 2211 int 2212 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2213 int flags) 2214 { 2215 vm_map_entry_t entry, first_entry, tmp_entry; 2216 vm_offset_t saved_start; 2217 unsigned int last_timestamp; 2218 int rv; 2219 boolean_t need_wakeup, result, user_unwire; 2220 2221 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2222 vm_map_lock(map); 2223 VM_MAP_RANGE_CHECK(map, start, end); 2224 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2225 if (flags & VM_MAP_WIRE_HOLESOK) 2226 first_entry = first_entry->next; 2227 else { 2228 vm_map_unlock(map); 2229 return (KERN_INVALID_ADDRESS); 2230 } 2231 } 2232 last_timestamp = map->timestamp; 2233 entry = first_entry; 2234 while (entry != &map->header && entry->start < end) { 2235 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2236 /* 2237 * We have not yet clipped the entry. 2238 */ 2239 saved_start = (start >= entry->start) ? start : 2240 entry->start; 2241 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2242 if (vm_map_unlock_and_wait(map, 0)) { 2243 /* 2244 * Allow interruption of user unwiring? 2245 */ 2246 } 2247 vm_map_lock(map); 2248 if (last_timestamp+1 != map->timestamp) { 2249 /* 2250 * Look again for the entry because the map was 2251 * modified while it was unlocked. 2252 * Specifically, the entry may have been 2253 * clipped, merged, or deleted. 2254 */ 2255 if (!vm_map_lookup_entry(map, saved_start, 2256 &tmp_entry)) { 2257 if (flags & VM_MAP_WIRE_HOLESOK) 2258 tmp_entry = tmp_entry->next; 2259 else { 2260 if (saved_start == start) { 2261 /* 2262 * First_entry has been deleted. 2263 */ 2264 vm_map_unlock(map); 2265 return (KERN_INVALID_ADDRESS); 2266 } 2267 end = saved_start; 2268 rv = KERN_INVALID_ADDRESS; 2269 goto done; 2270 } 2271 } 2272 if (entry == first_entry) 2273 first_entry = tmp_entry; 2274 else 2275 first_entry = NULL; 2276 entry = tmp_entry; 2277 } 2278 last_timestamp = map->timestamp; 2279 continue; 2280 } 2281 vm_map_clip_start(map, entry, start); 2282 vm_map_clip_end(map, entry, end); 2283 /* 2284 * Mark the entry in case the map lock is released. (See 2285 * above.) 2286 */ 2287 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2288 entry->wiring_thread = curthread; 2289 /* 2290 * Check the map for holes in the specified region. 2291 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2292 */ 2293 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2294 (entry->end < end && (entry->next == &map->header || 2295 entry->next->start > entry->end))) { 2296 end = entry->end; 2297 rv = KERN_INVALID_ADDRESS; 2298 goto done; 2299 } 2300 /* 2301 * If system unwiring, require that the entry is system wired. 2302 */ 2303 if (!user_unwire && 2304 vm_map_entry_system_wired_count(entry) == 0) { 2305 end = entry->end; 2306 rv = KERN_INVALID_ARGUMENT; 2307 goto done; 2308 } 2309 entry = entry->next; 2310 } 2311 rv = KERN_SUCCESS; 2312 done: 2313 need_wakeup = FALSE; 2314 if (first_entry == NULL) { 2315 result = vm_map_lookup_entry(map, start, &first_entry); 2316 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2317 first_entry = first_entry->next; 2318 else 2319 KASSERT(result, ("vm_map_unwire: lookup failed")); 2320 } 2321 for (entry = first_entry; entry != &map->header && entry->start < end; 2322 entry = entry->next) { 2323 /* 2324 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2325 * space in the unwired region could have been mapped 2326 * while the map lock was dropped for draining 2327 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2328 * could be simultaneously wiring this new mapping 2329 * entry. Detect these cases and skip any entries 2330 * marked as in transition by us. 2331 */ 2332 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2333 entry->wiring_thread != curthread) { 2334 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2335 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2336 continue; 2337 } 2338 2339 if (rv == KERN_SUCCESS && (!user_unwire || 2340 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2341 if (user_unwire) 2342 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2343 entry->wired_count--; 2344 if (entry->wired_count == 0) { 2345 /* 2346 * Retain the map lock. 2347 */ 2348 vm_fault_unwire(map, entry->start, entry->end, 2349 entry->object.vm_object != NULL && 2350 (entry->object.vm_object->flags & 2351 OBJ_FICTITIOUS) != 0); 2352 } 2353 } 2354 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2355 ("vm_map_unwire: in-transition flag missing")); 2356 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2357 entry->wiring_thread = NULL; 2358 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2359 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2360 need_wakeup = TRUE; 2361 } 2362 vm_map_simplify_entry(map, entry); 2363 } 2364 vm_map_unlock(map); 2365 if (need_wakeup) 2366 vm_map_wakeup(map); 2367 return (rv); 2368 } 2369 2370 /* 2371 * vm_map_wire: 2372 * 2373 * Implements both kernel and user wiring. 2374 */ 2375 int 2376 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2377 int flags) 2378 { 2379 vm_map_entry_t entry, first_entry, tmp_entry; 2380 vm_offset_t saved_end, saved_start; 2381 unsigned int last_timestamp; 2382 int rv; 2383 boolean_t fictitious, need_wakeup, result, user_wire; 2384 vm_prot_t prot; 2385 2386 prot = 0; 2387 if (flags & VM_MAP_WIRE_WRITE) 2388 prot |= VM_PROT_WRITE; 2389 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2390 vm_map_lock(map); 2391 VM_MAP_RANGE_CHECK(map, start, end); 2392 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2393 if (flags & VM_MAP_WIRE_HOLESOK) 2394 first_entry = first_entry->next; 2395 else { 2396 vm_map_unlock(map); 2397 return (KERN_INVALID_ADDRESS); 2398 } 2399 } 2400 last_timestamp = map->timestamp; 2401 entry = first_entry; 2402 while (entry != &map->header && entry->start < end) { 2403 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2404 /* 2405 * We have not yet clipped the entry. 2406 */ 2407 saved_start = (start >= entry->start) ? start : 2408 entry->start; 2409 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2410 if (vm_map_unlock_and_wait(map, 0)) { 2411 /* 2412 * Allow interruption of user wiring? 2413 */ 2414 } 2415 vm_map_lock(map); 2416 if (last_timestamp + 1 != map->timestamp) { 2417 /* 2418 * Look again for the entry because the map was 2419 * modified while it was unlocked. 2420 * Specifically, the entry may have been 2421 * clipped, merged, or deleted. 2422 */ 2423 if (!vm_map_lookup_entry(map, saved_start, 2424 &tmp_entry)) { 2425 if (flags & VM_MAP_WIRE_HOLESOK) 2426 tmp_entry = tmp_entry->next; 2427 else { 2428 if (saved_start == start) { 2429 /* 2430 * first_entry has been deleted. 2431 */ 2432 vm_map_unlock(map); 2433 return (KERN_INVALID_ADDRESS); 2434 } 2435 end = saved_start; 2436 rv = KERN_INVALID_ADDRESS; 2437 goto done; 2438 } 2439 } 2440 if (entry == first_entry) 2441 first_entry = tmp_entry; 2442 else 2443 first_entry = NULL; 2444 entry = tmp_entry; 2445 } 2446 last_timestamp = map->timestamp; 2447 continue; 2448 } 2449 vm_map_clip_start(map, entry, start); 2450 vm_map_clip_end(map, entry, end); 2451 /* 2452 * Mark the entry in case the map lock is released. (See 2453 * above.) 2454 */ 2455 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2456 entry->wiring_thread = curthread; 2457 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2458 || (entry->protection & prot) != prot) { 2459 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2460 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2461 end = entry->end; 2462 rv = KERN_INVALID_ADDRESS; 2463 goto done; 2464 } 2465 goto next_entry; 2466 } 2467 if (entry->wired_count == 0) { 2468 entry->wired_count++; 2469 saved_start = entry->start; 2470 saved_end = entry->end; 2471 fictitious = entry->object.vm_object != NULL && 2472 (entry->object.vm_object->flags & 2473 OBJ_FICTITIOUS) != 0; 2474 /* 2475 * Release the map lock, relying on the in-transition 2476 * mark. Mark the map busy for fork. 2477 */ 2478 vm_map_busy(map); 2479 vm_map_unlock(map); 2480 rv = vm_fault_wire(map, saved_start, saved_end, 2481 fictitious); 2482 vm_map_lock(map); 2483 vm_map_unbusy(map); 2484 if (last_timestamp + 1 != map->timestamp) { 2485 /* 2486 * Look again for the entry because the map was 2487 * modified while it was unlocked. The entry 2488 * may have been clipped, but NOT merged or 2489 * deleted. 2490 */ 2491 result = vm_map_lookup_entry(map, saved_start, 2492 &tmp_entry); 2493 KASSERT(result, ("vm_map_wire: lookup failed")); 2494 if (entry == first_entry) 2495 first_entry = tmp_entry; 2496 else 2497 first_entry = NULL; 2498 entry = tmp_entry; 2499 while (entry->end < saved_end) { 2500 if (rv != KERN_SUCCESS) { 2501 KASSERT(entry->wired_count == 1, 2502 ("vm_map_wire: bad count")); 2503 entry->wired_count = -1; 2504 } 2505 entry = entry->next; 2506 } 2507 } 2508 last_timestamp = map->timestamp; 2509 if (rv != KERN_SUCCESS) { 2510 KASSERT(entry->wired_count == 1, 2511 ("vm_map_wire: bad count")); 2512 /* 2513 * Assign an out-of-range value to represent 2514 * the failure to wire this entry. 2515 */ 2516 entry->wired_count = -1; 2517 end = entry->end; 2518 goto done; 2519 } 2520 } else if (!user_wire || 2521 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2522 entry->wired_count++; 2523 } 2524 /* 2525 * Check the map for holes in the specified region. 2526 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2527 */ 2528 next_entry: 2529 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2530 (entry->end < end && (entry->next == &map->header || 2531 entry->next->start > entry->end))) { 2532 end = entry->end; 2533 rv = KERN_INVALID_ADDRESS; 2534 goto done; 2535 } 2536 entry = entry->next; 2537 } 2538 rv = KERN_SUCCESS; 2539 done: 2540 need_wakeup = FALSE; 2541 if (first_entry == NULL) { 2542 result = vm_map_lookup_entry(map, start, &first_entry); 2543 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2544 first_entry = first_entry->next; 2545 else 2546 KASSERT(result, ("vm_map_wire: lookup failed")); 2547 } 2548 for (entry = first_entry; entry != &map->header && entry->start < end; 2549 entry = entry->next) { 2550 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2551 goto next_entry_done; 2552 2553 /* 2554 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2555 * space in the unwired region could have been mapped 2556 * while the map lock was dropped for faulting in the 2557 * pages or draining MAP_ENTRY_IN_TRANSITION. 2558 * Moreover, another thread could be simultaneously 2559 * wiring this new mapping entry. Detect these cases 2560 * and skip any entries marked as in transition by us. 2561 */ 2562 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2563 entry->wiring_thread != curthread) { 2564 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2565 ("vm_map_wire: !HOLESOK and new/changed entry")); 2566 continue; 2567 } 2568 2569 if (rv == KERN_SUCCESS) { 2570 if (user_wire) 2571 entry->eflags |= MAP_ENTRY_USER_WIRED; 2572 } else if (entry->wired_count == -1) { 2573 /* 2574 * Wiring failed on this entry. Thus, unwiring is 2575 * unnecessary. 2576 */ 2577 entry->wired_count = 0; 2578 } else { 2579 if (!user_wire || 2580 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2581 entry->wired_count--; 2582 if (entry->wired_count == 0) { 2583 /* 2584 * Retain the map lock. 2585 */ 2586 vm_fault_unwire(map, entry->start, entry->end, 2587 entry->object.vm_object != NULL && 2588 (entry->object.vm_object->flags & 2589 OBJ_FICTITIOUS) != 0); 2590 } 2591 } 2592 next_entry_done: 2593 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2594 ("vm_map_wire: in-transition flag missing %p", entry)); 2595 KASSERT(entry->wiring_thread == curthread, 2596 ("vm_map_wire: alien wire %p", entry)); 2597 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2598 MAP_ENTRY_WIRE_SKIPPED); 2599 entry->wiring_thread = NULL; 2600 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2601 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2602 need_wakeup = TRUE; 2603 } 2604 vm_map_simplify_entry(map, entry); 2605 } 2606 vm_map_unlock(map); 2607 if (need_wakeup) 2608 vm_map_wakeup(map); 2609 return (rv); 2610 } 2611 2612 /* 2613 * vm_map_sync 2614 * 2615 * Push any dirty cached pages in the address range to their pager. 2616 * If syncio is TRUE, dirty pages are written synchronously. 2617 * If invalidate is TRUE, any cached pages are freed as well. 2618 * 2619 * If the size of the region from start to end is zero, we are 2620 * supposed to flush all modified pages within the region containing 2621 * start. Unfortunately, a region can be split or coalesced with 2622 * neighboring regions, making it difficult to determine what the 2623 * original region was. Therefore, we approximate this requirement by 2624 * flushing the current region containing start. 2625 * 2626 * Returns an error if any part of the specified range is not mapped. 2627 */ 2628 int 2629 vm_map_sync( 2630 vm_map_t map, 2631 vm_offset_t start, 2632 vm_offset_t end, 2633 boolean_t syncio, 2634 boolean_t invalidate) 2635 { 2636 vm_map_entry_t current; 2637 vm_map_entry_t entry; 2638 vm_size_t size; 2639 vm_object_t object; 2640 vm_ooffset_t offset; 2641 unsigned int last_timestamp; 2642 boolean_t failed; 2643 2644 vm_map_lock_read(map); 2645 VM_MAP_RANGE_CHECK(map, start, end); 2646 if (!vm_map_lookup_entry(map, start, &entry)) { 2647 vm_map_unlock_read(map); 2648 return (KERN_INVALID_ADDRESS); 2649 } else if (start == end) { 2650 start = entry->start; 2651 end = entry->end; 2652 } 2653 /* 2654 * Make a first pass to check for user-wired memory and holes. 2655 */ 2656 for (current = entry; current != &map->header && current->start < end; 2657 current = current->next) { 2658 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2659 vm_map_unlock_read(map); 2660 return (KERN_INVALID_ARGUMENT); 2661 } 2662 if (end > current->end && 2663 (current->next == &map->header || 2664 current->end != current->next->start)) { 2665 vm_map_unlock_read(map); 2666 return (KERN_INVALID_ADDRESS); 2667 } 2668 } 2669 2670 if (invalidate) 2671 pmap_remove(map->pmap, start, end); 2672 failed = FALSE; 2673 2674 /* 2675 * Make a second pass, cleaning/uncaching pages from the indicated 2676 * objects as we go. 2677 */ 2678 for (current = entry; current != &map->header && current->start < end;) { 2679 offset = current->offset + (start - current->start); 2680 size = (end <= current->end ? end : current->end) - start; 2681 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2682 vm_map_t smap; 2683 vm_map_entry_t tentry; 2684 vm_size_t tsize; 2685 2686 smap = current->object.sub_map; 2687 vm_map_lock_read(smap); 2688 (void) vm_map_lookup_entry(smap, offset, &tentry); 2689 tsize = tentry->end - offset; 2690 if (tsize < size) 2691 size = tsize; 2692 object = tentry->object.vm_object; 2693 offset = tentry->offset + (offset - tentry->start); 2694 vm_map_unlock_read(smap); 2695 } else { 2696 object = current->object.vm_object; 2697 } 2698 vm_object_reference(object); 2699 last_timestamp = map->timestamp; 2700 vm_map_unlock_read(map); 2701 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2702 failed = TRUE; 2703 start += size; 2704 vm_object_deallocate(object); 2705 vm_map_lock_read(map); 2706 if (last_timestamp == map->timestamp || 2707 !vm_map_lookup_entry(map, start, ¤t)) 2708 current = current->next; 2709 } 2710 2711 vm_map_unlock_read(map); 2712 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2713 } 2714 2715 /* 2716 * vm_map_entry_unwire: [ internal use only ] 2717 * 2718 * Make the region specified by this entry pageable. 2719 * 2720 * The map in question should be locked. 2721 * [This is the reason for this routine's existence.] 2722 */ 2723 static void 2724 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2725 { 2726 vm_fault_unwire(map, entry->start, entry->end, 2727 entry->object.vm_object != NULL && 2728 (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0); 2729 entry->wired_count = 0; 2730 } 2731 2732 static void 2733 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2734 { 2735 2736 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2737 vm_object_deallocate(entry->object.vm_object); 2738 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2739 } 2740 2741 /* 2742 * vm_map_entry_delete: [ internal use only ] 2743 * 2744 * Deallocate the given entry from the target map. 2745 */ 2746 static void 2747 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2748 { 2749 vm_object_t object; 2750 vm_pindex_t offidxstart, offidxend, count, size1; 2751 vm_ooffset_t size; 2752 2753 vm_map_entry_unlink(map, entry); 2754 object = entry->object.vm_object; 2755 size = entry->end - entry->start; 2756 map->size -= size; 2757 2758 if (entry->cred != NULL) { 2759 swap_release_by_cred(size, entry->cred); 2760 crfree(entry->cred); 2761 } 2762 2763 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2764 (object != NULL)) { 2765 KASSERT(entry->cred == NULL || object->cred == NULL || 2766 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2767 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2768 count = OFF_TO_IDX(size); 2769 offidxstart = OFF_TO_IDX(entry->offset); 2770 offidxend = offidxstart + count; 2771 VM_OBJECT_WLOCK(object); 2772 if (object->ref_count != 1 && 2773 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2774 object == kernel_object || object == kmem_object)) { 2775 vm_object_collapse(object); 2776 2777 /* 2778 * The option OBJPR_NOTMAPPED can be passed here 2779 * because vm_map_delete() already performed 2780 * pmap_remove() on the only mapping to this range 2781 * of pages. 2782 */ 2783 vm_object_page_remove(object, offidxstart, offidxend, 2784 OBJPR_NOTMAPPED); 2785 if (object->type == OBJT_SWAP) 2786 swap_pager_freespace(object, offidxstart, count); 2787 if (offidxend >= object->size && 2788 offidxstart < object->size) { 2789 size1 = object->size; 2790 object->size = offidxstart; 2791 if (object->cred != NULL) { 2792 size1 -= object->size; 2793 KASSERT(object->charge >= ptoa(size1), 2794 ("vm_map_entry_delete: object->charge < 0")); 2795 swap_release_by_cred(ptoa(size1), object->cred); 2796 object->charge -= ptoa(size1); 2797 } 2798 } 2799 } 2800 VM_OBJECT_WUNLOCK(object); 2801 } else 2802 entry->object.vm_object = NULL; 2803 if (map->system_map) 2804 vm_map_entry_deallocate(entry, TRUE); 2805 else { 2806 entry->next = curthread->td_map_def_user; 2807 curthread->td_map_def_user = entry; 2808 } 2809 } 2810 2811 /* 2812 * vm_map_delete: [ internal use only ] 2813 * 2814 * Deallocates the given address range from the target 2815 * map. 2816 */ 2817 int 2818 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2819 { 2820 vm_map_entry_t entry; 2821 vm_map_entry_t first_entry; 2822 2823 VM_MAP_ASSERT_LOCKED(map); 2824 2825 /* 2826 * Find the start of the region, and clip it 2827 */ 2828 if (!vm_map_lookup_entry(map, start, &first_entry)) 2829 entry = first_entry->next; 2830 else { 2831 entry = first_entry; 2832 vm_map_clip_start(map, entry, start); 2833 } 2834 2835 /* 2836 * Step through all entries in this region 2837 */ 2838 while ((entry != &map->header) && (entry->start < end)) { 2839 vm_map_entry_t next; 2840 2841 /* 2842 * Wait for wiring or unwiring of an entry to complete. 2843 * Also wait for any system wirings to disappear on 2844 * user maps. 2845 */ 2846 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2847 (vm_map_pmap(map) != kernel_pmap && 2848 vm_map_entry_system_wired_count(entry) != 0)) { 2849 unsigned int last_timestamp; 2850 vm_offset_t saved_start; 2851 vm_map_entry_t tmp_entry; 2852 2853 saved_start = entry->start; 2854 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2855 last_timestamp = map->timestamp; 2856 (void) vm_map_unlock_and_wait(map, 0); 2857 vm_map_lock(map); 2858 if (last_timestamp + 1 != map->timestamp) { 2859 /* 2860 * Look again for the entry because the map was 2861 * modified while it was unlocked. 2862 * Specifically, the entry may have been 2863 * clipped, merged, or deleted. 2864 */ 2865 if (!vm_map_lookup_entry(map, saved_start, 2866 &tmp_entry)) 2867 entry = tmp_entry->next; 2868 else { 2869 entry = tmp_entry; 2870 vm_map_clip_start(map, entry, 2871 saved_start); 2872 } 2873 } 2874 continue; 2875 } 2876 vm_map_clip_end(map, entry, end); 2877 2878 next = entry->next; 2879 2880 /* 2881 * Unwire before removing addresses from the pmap; otherwise, 2882 * unwiring will put the entries back in the pmap. 2883 */ 2884 if (entry->wired_count != 0) { 2885 vm_map_entry_unwire(map, entry); 2886 } 2887 2888 pmap_remove(map->pmap, entry->start, entry->end); 2889 2890 /* 2891 * Delete the entry only after removing all pmap 2892 * entries pointing to its pages. (Otherwise, its 2893 * page frames may be reallocated, and any modify bits 2894 * will be set in the wrong object!) 2895 */ 2896 vm_map_entry_delete(map, entry); 2897 entry = next; 2898 } 2899 return (KERN_SUCCESS); 2900 } 2901 2902 /* 2903 * vm_map_remove: 2904 * 2905 * Remove the given address range from the target map. 2906 * This is the exported form of vm_map_delete. 2907 */ 2908 int 2909 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2910 { 2911 int result; 2912 2913 vm_map_lock(map); 2914 VM_MAP_RANGE_CHECK(map, start, end); 2915 result = vm_map_delete(map, start, end); 2916 vm_map_unlock(map); 2917 return (result); 2918 } 2919 2920 /* 2921 * vm_map_check_protection: 2922 * 2923 * Assert that the target map allows the specified privilege on the 2924 * entire address region given. The entire region must be allocated. 2925 * 2926 * WARNING! This code does not and should not check whether the 2927 * contents of the region is accessible. For example a smaller file 2928 * might be mapped into a larger address space. 2929 * 2930 * NOTE! This code is also called by munmap(). 2931 * 2932 * The map must be locked. A read lock is sufficient. 2933 */ 2934 boolean_t 2935 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2936 vm_prot_t protection) 2937 { 2938 vm_map_entry_t entry; 2939 vm_map_entry_t tmp_entry; 2940 2941 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2942 return (FALSE); 2943 entry = tmp_entry; 2944 2945 while (start < end) { 2946 if (entry == &map->header) 2947 return (FALSE); 2948 /* 2949 * No holes allowed! 2950 */ 2951 if (start < entry->start) 2952 return (FALSE); 2953 /* 2954 * Check protection associated with entry. 2955 */ 2956 if ((entry->protection & protection) != protection) 2957 return (FALSE); 2958 /* go to next entry */ 2959 start = entry->end; 2960 entry = entry->next; 2961 } 2962 return (TRUE); 2963 } 2964 2965 /* 2966 * vm_map_copy_entry: 2967 * 2968 * Copies the contents of the source entry to the destination 2969 * entry. The entries *must* be aligned properly. 2970 */ 2971 static void 2972 vm_map_copy_entry( 2973 vm_map_t src_map, 2974 vm_map_t dst_map, 2975 vm_map_entry_t src_entry, 2976 vm_map_entry_t dst_entry, 2977 vm_ooffset_t *fork_charge) 2978 { 2979 vm_object_t src_object; 2980 vm_map_entry_t fake_entry; 2981 vm_offset_t size; 2982 struct ucred *cred; 2983 int charged; 2984 2985 VM_MAP_ASSERT_LOCKED(dst_map); 2986 2987 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2988 return; 2989 2990 if (src_entry->wired_count == 0) { 2991 2992 /* 2993 * If the source entry is marked needs_copy, it is already 2994 * write-protected. 2995 */ 2996 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2997 pmap_protect(src_map->pmap, 2998 src_entry->start, 2999 src_entry->end, 3000 src_entry->protection & ~VM_PROT_WRITE); 3001 } 3002 3003 /* 3004 * Make a copy of the object. 3005 */ 3006 size = src_entry->end - src_entry->start; 3007 if ((src_object = src_entry->object.vm_object) != NULL) { 3008 VM_OBJECT_WLOCK(src_object); 3009 charged = ENTRY_CHARGED(src_entry); 3010 if ((src_object->handle == NULL) && 3011 (src_object->type == OBJT_DEFAULT || 3012 src_object->type == OBJT_SWAP)) { 3013 vm_object_collapse(src_object); 3014 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3015 vm_object_split(src_entry); 3016 src_object = src_entry->object.vm_object; 3017 } 3018 } 3019 vm_object_reference_locked(src_object); 3020 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3021 if (src_entry->cred != NULL && 3022 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3023 KASSERT(src_object->cred == NULL, 3024 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3025 src_object)); 3026 src_object->cred = src_entry->cred; 3027 src_object->charge = size; 3028 } 3029 VM_OBJECT_WUNLOCK(src_object); 3030 dst_entry->object.vm_object = src_object; 3031 if (charged) { 3032 cred = curthread->td_ucred; 3033 crhold(cred); 3034 dst_entry->cred = cred; 3035 *fork_charge += size; 3036 if (!(src_entry->eflags & 3037 MAP_ENTRY_NEEDS_COPY)) { 3038 crhold(cred); 3039 src_entry->cred = cred; 3040 *fork_charge += size; 3041 } 3042 } 3043 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3044 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3045 dst_entry->offset = src_entry->offset; 3046 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3047 /* 3048 * MAP_ENTRY_VN_WRITECNT cannot 3049 * indicate write reference from 3050 * src_entry, since the entry is 3051 * marked as needs copy. Allocate a 3052 * fake entry that is used to 3053 * decrement object->un_pager.vnp.writecount 3054 * at the appropriate time. Attach 3055 * fake_entry to the deferred list. 3056 */ 3057 fake_entry = vm_map_entry_create(dst_map); 3058 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3059 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3060 vm_object_reference(src_object); 3061 fake_entry->object.vm_object = src_object; 3062 fake_entry->start = src_entry->start; 3063 fake_entry->end = src_entry->end; 3064 fake_entry->next = curthread->td_map_def_user; 3065 curthread->td_map_def_user = fake_entry; 3066 } 3067 } else { 3068 dst_entry->object.vm_object = NULL; 3069 dst_entry->offset = 0; 3070 if (src_entry->cred != NULL) { 3071 dst_entry->cred = curthread->td_ucred; 3072 crhold(dst_entry->cred); 3073 *fork_charge += size; 3074 } 3075 } 3076 3077 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3078 dst_entry->end - dst_entry->start, src_entry->start); 3079 } else { 3080 /* 3081 * Of course, wired down pages can't be set copy-on-write. 3082 * Cause wired pages to be copied into the new map by 3083 * simulating faults (the new pages are pageable) 3084 */ 3085 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3086 fork_charge); 3087 } 3088 } 3089 3090 /* 3091 * vmspace_map_entry_forked: 3092 * Update the newly-forked vmspace each time a map entry is inherited 3093 * or copied. The values for vm_dsize and vm_tsize are approximate 3094 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3095 */ 3096 static void 3097 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3098 vm_map_entry_t entry) 3099 { 3100 vm_size_t entrysize; 3101 vm_offset_t newend; 3102 3103 entrysize = entry->end - entry->start; 3104 vm2->vm_map.size += entrysize; 3105 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3106 vm2->vm_ssize += btoc(entrysize); 3107 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3108 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3109 newend = MIN(entry->end, 3110 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3111 vm2->vm_dsize += btoc(newend - entry->start); 3112 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3113 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3114 newend = MIN(entry->end, 3115 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3116 vm2->vm_tsize += btoc(newend - entry->start); 3117 } 3118 } 3119 3120 /* 3121 * vmspace_fork: 3122 * Create a new process vmspace structure and vm_map 3123 * based on those of an existing process. The new map 3124 * is based on the old map, according to the inheritance 3125 * values on the regions in that map. 3126 * 3127 * XXX It might be worth coalescing the entries added to the new vmspace. 3128 * 3129 * The source map must not be locked. 3130 */ 3131 struct vmspace * 3132 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3133 { 3134 struct vmspace *vm2; 3135 vm_map_t new_map, old_map; 3136 vm_map_entry_t new_entry, old_entry; 3137 vm_object_t object; 3138 int locked; 3139 3140 old_map = &vm1->vm_map; 3141 /* Copy immutable fields of vm1 to vm2. */ 3142 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3143 if (vm2 == NULL) 3144 return (NULL); 3145 vm2->vm_taddr = vm1->vm_taddr; 3146 vm2->vm_daddr = vm1->vm_daddr; 3147 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3148 vm_map_lock(old_map); 3149 if (old_map->busy) 3150 vm_map_wait_busy(old_map); 3151 new_map = &vm2->vm_map; 3152 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3153 KASSERT(locked, ("vmspace_fork: lock failed")); 3154 3155 old_entry = old_map->header.next; 3156 3157 while (old_entry != &old_map->header) { 3158 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3159 panic("vm_map_fork: encountered a submap"); 3160 3161 switch (old_entry->inheritance) { 3162 case VM_INHERIT_NONE: 3163 break; 3164 3165 case VM_INHERIT_SHARE: 3166 /* 3167 * Clone the entry, creating the shared object if necessary. 3168 */ 3169 object = old_entry->object.vm_object; 3170 if (object == NULL) { 3171 object = vm_object_allocate(OBJT_DEFAULT, 3172 atop(old_entry->end - old_entry->start)); 3173 old_entry->object.vm_object = object; 3174 old_entry->offset = 0; 3175 if (old_entry->cred != NULL) { 3176 object->cred = old_entry->cred; 3177 object->charge = old_entry->end - 3178 old_entry->start; 3179 old_entry->cred = NULL; 3180 } 3181 } 3182 3183 /* 3184 * Add the reference before calling vm_object_shadow 3185 * to insure that a shadow object is created. 3186 */ 3187 vm_object_reference(object); 3188 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3189 vm_object_shadow(&old_entry->object.vm_object, 3190 &old_entry->offset, 3191 old_entry->end - old_entry->start); 3192 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3193 /* Transfer the second reference too. */ 3194 vm_object_reference( 3195 old_entry->object.vm_object); 3196 3197 /* 3198 * As in vm_map_simplify_entry(), the 3199 * vnode lock will not be acquired in 3200 * this call to vm_object_deallocate(). 3201 */ 3202 vm_object_deallocate(object); 3203 object = old_entry->object.vm_object; 3204 } 3205 VM_OBJECT_WLOCK(object); 3206 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3207 if (old_entry->cred != NULL) { 3208 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3209 object->cred = old_entry->cred; 3210 object->charge = old_entry->end - old_entry->start; 3211 old_entry->cred = NULL; 3212 } 3213 3214 /* 3215 * Assert the correct state of the vnode 3216 * v_writecount while the object is locked, to 3217 * not relock it later for the assertion 3218 * correctness. 3219 */ 3220 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3221 object->type == OBJT_VNODE) { 3222 KASSERT(((struct vnode *)object->handle)-> 3223 v_writecount > 0, 3224 ("vmspace_fork: v_writecount %p", object)); 3225 KASSERT(object->un_pager.vnp.writemappings > 0, 3226 ("vmspace_fork: vnp.writecount %p", 3227 object)); 3228 } 3229 VM_OBJECT_WUNLOCK(object); 3230 3231 /* 3232 * Clone the entry, referencing the shared object. 3233 */ 3234 new_entry = vm_map_entry_create(new_map); 3235 *new_entry = *old_entry; 3236 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3237 MAP_ENTRY_IN_TRANSITION); 3238 new_entry->wiring_thread = NULL; 3239 new_entry->wired_count = 0; 3240 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3241 vnode_pager_update_writecount(object, 3242 new_entry->start, new_entry->end); 3243 } 3244 3245 /* 3246 * Insert the entry into the new map -- we know we're 3247 * inserting at the end of the new map. 3248 */ 3249 vm_map_entry_link(new_map, new_map->header.prev, 3250 new_entry); 3251 vmspace_map_entry_forked(vm1, vm2, new_entry); 3252 3253 /* 3254 * Update the physical map 3255 */ 3256 pmap_copy(new_map->pmap, old_map->pmap, 3257 new_entry->start, 3258 (old_entry->end - old_entry->start), 3259 old_entry->start); 3260 break; 3261 3262 case VM_INHERIT_COPY: 3263 /* 3264 * Clone the entry and link into the map. 3265 */ 3266 new_entry = vm_map_entry_create(new_map); 3267 *new_entry = *old_entry; 3268 /* 3269 * Copied entry is COW over the old object. 3270 */ 3271 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3272 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3273 new_entry->wiring_thread = NULL; 3274 new_entry->wired_count = 0; 3275 new_entry->object.vm_object = NULL; 3276 new_entry->cred = NULL; 3277 vm_map_entry_link(new_map, new_map->header.prev, 3278 new_entry); 3279 vmspace_map_entry_forked(vm1, vm2, new_entry); 3280 vm_map_copy_entry(old_map, new_map, old_entry, 3281 new_entry, fork_charge); 3282 break; 3283 } 3284 old_entry = old_entry->next; 3285 } 3286 /* 3287 * Use inlined vm_map_unlock() to postpone handling the deferred 3288 * map entries, which cannot be done until both old_map and 3289 * new_map locks are released. 3290 */ 3291 sx_xunlock(&old_map->lock); 3292 sx_xunlock(&new_map->lock); 3293 vm_map_process_deferred(); 3294 3295 return (vm2); 3296 } 3297 3298 int 3299 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3300 vm_prot_t prot, vm_prot_t max, int cow) 3301 { 3302 vm_map_entry_t new_entry, prev_entry; 3303 vm_offset_t bot, top; 3304 vm_size_t growsize, init_ssize; 3305 int orient, rv; 3306 rlim_t lmemlim, vmemlim; 3307 3308 /* 3309 * The stack orientation is piggybacked with the cow argument. 3310 * Extract it into orient and mask the cow argument so that we 3311 * don't pass it around further. 3312 * NOTE: We explicitly allow bi-directional stacks. 3313 */ 3314 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3315 cow &= ~orient; 3316 KASSERT(orient != 0, ("No stack grow direction")); 3317 3318 if (addrbos < vm_map_min(map) || 3319 addrbos > vm_map_max(map) || 3320 addrbos + max_ssize < addrbos) 3321 return (KERN_NO_SPACE); 3322 3323 growsize = sgrowsiz; 3324 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3325 3326 PROC_LOCK(curproc); 3327 lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK); 3328 vmemlim = lim_cur(curproc, RLIMIT_VMEM); 3329 PROC_UNLOCK(curproc); 3330 3331 vm_map_lock(map); 3332 3333 /* If addr is already mapped, no go */ 3334 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3335 vm_map_unlock(map); 3336 return (KERN_NO_SPACE); 3337 } 3338 3339 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3340 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) { 3341 vm_map_unlock(map); 3342 return (KERN_NO_SPACE); 3343 } 3344 } 3345 3346 /* If we would blow our VMEM resource limit, no go */ 3347 if (map->size + init_ssize > vmemlim) { 3348 vm_map_unlock(map); 3349 return (KERN_NO_SPACE); 3350 } 3351 3352 /* 3353 * If we can't accomodate max_ssize in the current mapping, no go. 3354 * However, we need to be aware that subsequent user mappings might 3355 * map into the space we have reserved for stack, and currently this 3356 * space is not protected. 3357 * 3358 * Hopefully we will at least detect this condition when we try to 3359 * grow the stack. 3360 */ 3361 if ((prev_entry->next != &map->header) && 3362 (prev_entry->next->start < addrbos + max_ssize)) { 3363 vm_map_unlock(map); 3364 return (KERN_NO_SPACE); 3365 } 3366 3367 /* 3368 * We initially map a stack of only init_ssize. We will grow as 3369 * needed later. Depending on the orientation of the stack (i.e. 3370 * the grow direction) we either map at the top of the range, the 3371 * bottom of the range or in the middle. 3372 * 3373 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3374 * and cow to be 0. Possibly we should eliminate these as input 3375 * parameters, and just pass these values here in the insert call. 3376 */ 3377 if (orient == MAP_STACK_GROWS_DOWN) 3378 bot = addrbos + max_ssize - init_ssize; 3379 else if (orient == MAP_STACK_GROWS_UP) 3380 bot = addrbos; 3381 else 3382 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3383 top = bot + init_ssize; 3384 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3385 3386 /* Now set the avail_ssize amount. */ 3387 if (rv == KERN_SUCCESS) { 3388 if (prev_entry != &map->header) 3389 vm_map_clip_end(map, prev_entry, bot); 3390 new_entry = prev_entry->next; 3391 if (new_entry->end != top || new_entry->start != bot) 3392 panic("Bad entry start/end for new stack entry"); 3393 3394 new_entry->avail_ssize = max_ssize - init_ssize; 3395 if (orient & MAP_STACK_GROWS_DOWN) 3396 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3397 if (orient & MAP_STACK_GROWS_UP) 3398 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3399 } 3400 3401 vm_map_unlock(map); 3402 return (rv); 3403 } 3404 3405 static int stack_guard_page = 0; 3406 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3407 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3408 &stack_guard_page, 0, 3409 "Insert stack guard page ahead of the growable segments."); 3410 3411 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3412 * desired address is already mapped, or if we successfully grow 3413 * the stack. Also returns KERN_SUCCESS if addr is outside the 3414 * stack range (this is strange, but preserves compatibility with 3415 * the grow function in vm_machdep.c). 3416 */ 3417 int 3418 vm_map_growstack(struct proc *p, vm_offset_t addr) 3419 { 3420 vm_map_entry_t next_entry, prev_entry; 3421 vm_map_entry_t new_entry, stack_entry; 3422 struct vmspace *vm = p->p_vmspace; 3423 vm_map_t map = &vm->vm_map; 3424 vm_offset_t end; 3425 vm_size_t growsize; 3426 size_t grow_amount, max_grow; 3427 rlim_t lmemlim, stacklim, vmemlim; 3428 int is_procstack, rv; 3429 struct ucred *cred; 3430 #ifdef notyet 3431 uint64_t limit; 3432 #endif 3433 #ifdef RACCT 3434 int error; 3435 #endif 3436 3437 Retry: 3438 PROC_LOCK(p); 3439 lmemlim = lim_cur(p, RLIMIT_MEMLOCK); 3440 stacklim = lim_cur(p, RLIMIT_STACK); 3441 vmemlim = lim_cur(p, RLIMIT_VMEM); 3442 PROC_UNLOCK(p); 3443 3444 vm_map_lock_read(map); 3445 3446 /* If addr is already in the entry range, no need to grow.*/ 3447 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3448 vm_map_unlock_read(map); 3449 return (KERN_SUCCESS); 3450 } 3451 3452 next_entry = prev_entry->next; 3453 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3454 /* 3455 * This entry does not grow upwards. Since the address lies 3456 * beyond this entry, the next entry (if one exists) has to 3457 * be a downward growable entry. The entry list header is 3458 * never a growable entry, so it suffices to check the flags. 3459 */ 3460 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3461 vm_map_unlock_read(map); 3462 return (KERN_SUCCESS); 3463 } 3464 stack_entry = next_entry; 3465 } else { 3466 /* 3467 * This entry grows upward. If the next entry does not at 3468 * least grow downwards, this is the entry we need to grow. 3469 * otherwise we have two possible choices and we have to 3470 * select one. 3471 */ 3472 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3473 /* 3474 * We have two choices; grow the entry closest to 3475 * the address to minimize the amount of growth. 3476 */ 3477 if (addr - prev_entry->end <= next_entry->start - addr) 3478 stack_entry = prev_entry; 3479 else 3480 stack_entry = next_entry; 3481 } else 3482 stack_entry = prev_entry; 3483 } 3484 3485 if (stack_entry == next_entry) { 3486 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3487 KASSERT(addr < stack_entry->start, ("foo")); 3488 end = (prev_entry != &map->header) ? prev_entry->end : 3489 stack_entry->start - stack_entry->avail_ssize; 3490 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3491 max_grow = stack_entry->start - end; 3492 } else { 3493 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3494 KASSERT(addr >= stack_entry->end, ("foo")); 3495 end = (next_entry != &map->header) ? next_entry->start : 3496 stack_entry->end + stack_entry->avail_ssize; 3497 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3498 max_grow = end - stack_entry->end; 3499 } 3500 3501 if (grow_amount > stack_entry->avail_ssize) { 3502 vm_map_unlock_read(map); 3503 return (KERN_NO_SPACE); 3504 } 3505 3506 /* 3507 * If there is no longer enough space between the entries nogo, and 3508 * adjust the available space. Note: this should only happen if the 3509 * user has mapped into the stack area after the stack was created, 3510 * and is probably an error. 3511 * 3512 * This also effectively destroys any guard page the user might have 3513 * intended by limiting the stack size. 3514 */ 3515 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3516 if (vm_map_lock_upgrade(map)) 3517 goto Retry; 3518 3519 stack_entry->avail_ssize = max_grow; 3520 3521 vm_map_unlock(map); 3522 return (KERN_NO_SPACE); 3523 } 3524 3525 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3526 3527 /* 3528 * If this is the main process stack, see if we're over the stack 3529 * limit. 3530 */ 3531 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3532 vm_map_unlock_read(map); 3533 return (KERN_NO_SPACE); 3534 } 3535 #ifdef RACCT 3536 PROC_LOCK(p); 3537 if (is_procstack && 3538 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3539 PROC_UNLOCK(p); 3540 vm_map_unlock_read(map); 3541 return (KERN_NO_SPACE); 3542 } 3543 PROC_UNLOCK(p); 3544 #endif 3545 3546 /* Round up the grow amount modulo sgrowsiz */ 3547 growsize = sgrowsiz; 3548 grow_amount = roundup(grow_amount, growsize); 3549 if (grow_amount > stack_entry->avail_ssize) 3550 grow_amount = stack_entry->avail_ssize; 3551 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3552 grow_amount = trunc_page((vm_size_t)stacklim) - 3553 ctob(vm->vm_ssize); 3554 } 3555 #ifdef notyet 3556 PROC_LOCK(p); 3557 limit = racct_get_available(p, RACCT_STACK); 3558 PROC_UNLOCK(p); 3559 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3560 grow_amount = limit - ctob(vm->vm_ssize); 3561 #endif 3562 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3563 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3564 vm_map_unlock_read(map); 3565 rv = KERN_NO_SPACE; 3566 goto out; 3567 } 3568 #ifdef RACCT 3569 PROC_LOCK(p); 3570 if (racct_set(p, RACCT_MEMLOCK, 3571 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3572 PROC_UNLOCK(p); 3573 vm_map_unlock_read(map); 3574 rv = KERN_NO_SPACE; 3575 goto out; 3576 } 3577 PROC_UNLOCK(p); 3578 #endif 3579 } 3580 /* If we would blow our VMEM resource limit, no go */ 3581 if (map->size + grow_amount > vmemlim) { 3582 vm_map_unlock_read(map); 3583 rv = KERN_NO_SPACE; 3584 goto out; 3585 } 3586 #ifdef RACCT 3587 PROC_LOCK(p); 3588 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3589 PROC_UNLOCK(p); 3590 vm_map_unlock_read(map); 3591 rv = KERN_NO_SPACE; 3592 goto out; 3593 } 3594 PROC_UNLOCK(p); 3595 #endif 3596 3597 if (vm_map_lock_upgrade(map)) 3598 goto Retry; 3599 3600 if (stack_entry == next_entry) { 3601 /* 3602 * Growing downward. 3603 */ 3604 /* Get the preliminary new entry start value */ 3605 addr = stack_entry->start - grow_amount; 3606 3607 /* 3608 * If this puts us into the previous entry, cut back our 3609 * growth to the available space. Also, see the note above. 3610 */ 3611 if (addr < end) { 3612 stack_entry->avail_ssize = max_grow; 3613 addr = end; 3614 if (stack_guard_page) 3615 addr += PAGE_SIZE; 3616 } 3617 3618 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3619 next_entry->protection, next_entry->max_protection, 0); 3620 3621 /* Adjust the available stack space by the amount we grew. */ 3622 if (rv == KERN_SUCCESS) { 3623 if (prev_entry != &map->header) 3624 vm_map_clip_end(map, prev_entry, addr); 3625 new_entry = prev_entry->next; 3626 KASSERT(new_entry == stack_entry->prev, ("foo")); 3627 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3628 KASSERT(new_entry->start == addr, ("foo")); 3629 grow_amount = new_entry->end - new_entry->start; 3630 new_entry->avail_ssize = stack_entry->avail_ssize - 3631 grow_amount; 3632 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3633 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3634 } 3635 } else { 3636 /* 3637 * Growing upward. 3638 */ 3639 addr = stack_entry->end + grow_amount; 3640 3641 /* 3642 * If this puts us into the next entry, cut back our growth 3643 * to the available space. Also, see the note above. 3644 */ 3645 if (addr > end) { 3646 stack_entry->avail_ssize = end - stack_entry->end; 3647 addr = end; 3648 if (stack_guard_page) 3649 addr -= PAGE_SIZE; 3650 } 3651 3652 grow_amount = addr - stack_entry->end; 3653 cred = stack_entry->cred; 3654 if (cred == NULL && stack_entry->object.vm_object != NULL) 3655 cred = stack_entry->object.vm_object->cred; 3656 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3657 rv = KERN_NO_SPACE; 3658 /* Grow the underlying object if applicable. */ 3659 else if (stack_entry->object.vm_object == NULL || 3660 vm_object_coalesce(stack_entry->object.vm_object, 3661 stack_entry->offset, 3662 (vm_size_t)(stack_entry->end - stack_entry->start), 3663 (vm_size_t)grow_amount, cred != NULL)) { 3664 map->size += (addr - stack_entry->end); 3665 /* Update the current entry. */ 3666 stack_entry->end = addr; 3667 stack_entry->avail_ssize -= grow_amount; 3668 vm_map_entry_resize_free(map, stack_entry); 3669 rv = KERN_SUCCESS; 3670 3671 if (next_entry != &map->header) 3672 vm_map_clip_start(map, next_entry, addr); 3673 } else 3674 rv = KERN_FAILURE; 3675 } 3676 3677 if (rv == KERN_SUCCESS && is_procstack) 3678 vm->vm_ssize += btoc(grow_amount); 3679 3680 vm_map_unlock(map); 3681 3682 /* 3683 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3684 */ 3685 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3686 vm_map_wire(map, 3687 (stack_entry == next_entry) ? addr : addr - grow_amount, 3688 (stack_entry == next_entry) ? stack_entry->start : addr, 3689 (p->p_flag & P_SYSTEM) 3690 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3691 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3692 } 3693 3694 out: 3695 #ifdef RACCT 3696 if (rv != KERN_SUCCESS) { 3697 PROC_LOCK(p); 3698 error = racct_set(p, RACCT_VMEM, map->size); 3699 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3700 if (!old_mlock) { 3701 error = racct_set(p, RACCT_MEMLOCK, 3702 ptoa(pmap_wired_count(map->pmap))); 3703 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3704 } 3705 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3706 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3707 PROC_UNLOCK(p); 3708 } 3709 #endif 3710 3711 return (rv); 3712 } 3713 3714 /* 3715 * Unshare the specified VM space for exec. If other processes are 3716 * mapped to it, then create a new one. The new vmspace is null. 3717 */ 3718 int 3719 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3720 { 3721 struct vmspace *oldvmspace = p->p_vmspace; 3722 struct vmspace *newvmspace; 3723 3724 newvmspace = vmspace_alloc(minuser, maxuser); 3725 if (newvmspace == NULL) 3726 return (ENOMEM); 3727 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3728 /* 3729 * This code is written like this for prototype purposes. The 3730 * goal is to avoid running down the vmspace here, but let the 3731 * other process's that are still using the vmspace to finally 3732 * run it down. Even though there is little or no chance of blocking 3733 * here, it is a good idea to keep this form for future mods. 3734 */ 3735 PROC_VMSPACE_LOCK(p); 3736 p->p_vmspace = newvmspace; 3737 PROC_VMSPACE_UNLOCK(p); 3738 if (p == curthread->td_proc) 3739 pmap_activate(curthread); 3740 vmspace_free(oldvmspace); 3741 return (0); 3742 } 3743 3744 /* 3745 * Unshare the specified VM space for forcing COW. This 3746 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3747 */ 3748 int 3749 vmspace_unshare(struct proc *p) 3750 { 3751 struct vmspace *oldvmspace = p->p_vmspace; 3752 struct vmspace *newvmspace; 3753 vm_ooffset_t fork_charge; 3754 3755 if (oldvmspace->vm_refcnt == 1) 3756 return (0); 3757 fork_charge = 0; 3758 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3759 if (newvmspace == NULL) 3760 return (ENOMEM); 3761 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3762 vmspace_free(newvmspace); 3763 return (ENOMEM); 3764 } 3765 PROC_VMSPACE_LOCK(p); 3766 p->p_vmspace = newvmspace; 3767 PROC_VMSPACE_UNLOCK(p); 3768 if (p == curthread->td_proc) 3769 pmap_activate(curthread); 3770 vmspace_free(oldvmspace); 3771 return (0); 3772 } 3773 3774 /* 3775 * vm_map_lookup: 3776 * 3777 * Finds the VM object, offset, and 3778 * protection for a given virtual address in the 3779 * specified map, assuming a page fault of the 3780 * type specified. 3781 * 3782 * Leaves the map in question locked for read; return 3783 * values are guaranteed until a vm_map_lookup_done 3784 * call is performed. Note that the map argument 3785 * is in/out; the returned map must be used in 3786 * the call to vm_map_lookup_done. 3787 * 3788 * A handle (out_entry) is returned for use in 3789 * vm_map_lookup_done, to make that fast. 3790 * 3791 * If a lookup is requested with "write protection" 3792 * specified, the map may be changed to perform virtual 3793 * copying operations, although the data referenced will 3794 * remain the same. 3795 */ 3796 int 3797 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3798 vm_offset_t vaddr, 3799 vm_prot_t fault_typea, 3800 vm_map_entry_t *out_entry, /* OUT */ 3801 vm_object_t *object, /* OUT */ 3802 vm_pindex_t *pindex, /* OUT */ 3803 vm_prot_t *out_prot, /* OUT */ 3804 boolean_t *wired) /* OUT */ 3805 { 3806 vm_map_entry_t entry; 3807 vm_map_t map = *var_map; 3808 vm_prot_t prot; 3809 vm_prot_t fault_type = fault_typea; 3810 vm_object_t eobject; 3811 vm_size_t size; 3812 struct ucred *cred; 3813 3814 RetryLookup:; 3815 3816 vm_map_lock_read(map); 3817 3818 /* 3819 * Lookup the faulting address. 3820 */ 3821 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3822 vm_map_unlock_read(map); 3823 return (KERN_INVALID_ADDRESS); 3824 } 3825 3826 entry = *out_entry; 3827 3828 /* 3829 * Handle submaps. 3830 */ 3831 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3832 vm_map_t old_map = map; 3833 3834 *var_map = map = entry->object.sub_map; 3835 vm_map_unlock_read(old_map); 3836 goto RetryLookup; 3837 } 3838 3839 /* 3840 * Check whether this task is allowed to have this page. 3841 */ 3842 prot = entry->protection; 3843 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3844 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3845 vm_map_unlock_read(map); 3846 return (KERN_PROTECTION_FAILURE); 3847 } 3848 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3849 (entry->eflags & MAP_ENTRY_COW) && 3850 (fault_type & VM_PROT_WRITE)) { 3851 vm_map_unlock_read(map); 3852 return (KERN_PROTECTION_FAILURE); 3853 } 3854 if ((fault_typea & VM_PROT_COPY) != 0 && 3855 (entry->max_protection & VM_PROT_WRITE) == 0 && 3856 (entry->eflags & MAP_ENTRY_COW) == 0) { 3857 vm_map_unlock_read(map); 3858 return (KERN_PROTECTION_FAILURE); 3859 } 3860 3861 /* 3862 * If this page is not pageable, we have to get it for all possible 3863 * accesses. 3864 */ 3865 *wired = (entry->wired_count != 0); 3866 if (*wired) 3867 fault_type = entry->protection; 3868 size = entry->end - entry->start; 3869 /* 3870 * If the entry was copy-on-write, we either ... 3871 */ 3872 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3873 /* 3874 * If we want to write the page, we may as well handle that 3875 * now since we've got the map locked. 3876 * 3877 * If we don't need to write the page, we just demote the 3878 * permissions allowed. 3879 */ 3880 if ((fault_type & VM_PROT_WRITE) != 0 || 3881 (fault_typea & VM_PROT_COPY) != 0) { 3882 /* 3883 * Make a new object, and place it in the object 3884 * chain. Note that no new references have appeared 3885 * -- one just moved from the map to the new 3886 * object. 3887 */ 3888 if (vm_map_lock_upgrade(map)) 3889 goto RetryLookup; 3890 3891 if (entry->cred == NULL) { 3892 /* 3893 * The debugger owner is charged for 3894 * the memory. 3895 */ 3896 cred = curthread->td_ucred; 3897 crhold(cred); 3898 if (!swap_reserve_by_cred(size, cred)) { 3899 crfree(cred); 3900 vm_map_unlock(map); 3901 return (KERN_RESOURCE_SHORTAGE); 3902 } 3903 entry->cred = cred; 3904 } 3905 vm_object_shadow(&entry->object.vm_object, 3906 &entry->offset, size); 3907 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3908 eobject = entry->object.vm_object; 3909 if (eobject->cred != NULL) { 3910 /* 3911 * The object was not shadowed. 3912 */ 3913 swap_release_by_cred(size, entry->cred); 3914 crfree(entry->cred); 3915 entry->cred = NULL; 3916 } else if (entry->cred != NULL) { 3917 VM_OBJECT_WLOCK(eobject); 3918 eobject->cred = entry->cred; 3919 eobject->charge = size; 3920 VM_OBJECT_WUNLOCK(eobject); 3921 entry->cred = NULL; 3922 } 3923 3924 vm_map_lock_downgrade(map); 3925 } else { 3926 /* 3927 * We're attempting to read a copy-on-write page -- 3928 * don't allow writes. 3929 */ 3930 prot &= ~VM_PROT_WRITE; 3931 } 3932 } 3933 3934 /* 3935 * Create an object if necessary. 3936 */ 3937 if (entry->object.vm_object == NULL && 3938 !map->system_map) { 3939 if (vm_map_lock_upgrade(map)) 3940 goto RetryLookup; 3941 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3942 atop(size)); 3943 entry->offset = 0; 3944 if (entry->cred != NULL) { 3945 VM_OBJECT_WLOCK(entry->object.vm_object); 3946 entry->object.vm_object->cred = entry->cred; 3947 entry->object.vm_object->charge = size; 3948 VM_OBJECT_WUNLOCK(entry->object.vm_object); 3949 entry->cred = NULL; 3950 } 3951 vm_map_lock_downgrade(map); 3952 } 3953 3954 /* 3955 * Return the object/offset from this entry. If the entry was 3956 * copy-on-write or empty, it has been fixed up. 3957 */ 3958 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3959 *object = entry->object.vm_object; 3960 3961 *out_prot = prot; 3962 return (KERN_SUCCESS); 3963 } 3964 3965 /* 3966 * vm_map_lookup_locked: 3967 * 3968 * Lookup the faulting address. A version of vm_map_lookup that returns 3969 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3970 */ 3971 int 3972 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3973 vm_offset_t vaddr, 3974 vm_prot_t fault_typea, 3975 vm_map_entry_t *out_entry, /* OUT */ 3976 vm_object_t *object, /* OUT */ 3977 vm_pindex_t *pindex, /* OUT */ 3978 vm_prot_t *out_prot, /* OUT */ 3979 boolean_t *wired) /* OUT */ 3980 { 3981 vm_map_entry_t entry; 3982 vm_map_t map = *var_map; 3983 vm_prot_t prot; 3984 vm_prot_t fault_type = fault_typea; 3985 3986 /* 3987 * Lookup the faulting address. 3988 */ 3989 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 3990 return (KERN_INVALID_ADDRESS); 3991 3992 entry = *out_entry; 3993 3994 /* 3995 * Fail if the entry refers to a submap. 3996 */ 3997 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3998 return (KERN_FAILURE); 3999 4000 /* 4001 * Check whether this task is allowed to have this page. 4002 */ 4003 prot = entry->protection; 4004 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4005 if ((fault_type & prot) != fault_type) 4006 return (KERN_PROTECTION_FAILURE); 4007 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 4008 (entry->eflags & MAP_ENTRY_COW) && 4009 (fault_type & VM_PROT_WRITE)) 4010 return (KERN_PROTECTION_FAILURE); 4011 4012 /* 4013 * If this page is not pageable, we have to get it for all possible 4014 * accesses. 4015 */ 4016 *wired = (entry->wired_count != 0); 4017 if (*wired) 4018 fault_type = entry->protection; 4019 4020 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4021 /* 4022 * Fail if the entry was copy-on-write for a write fault. 4023 */ 4024 if (fault_type & VM_PROT_WRITE) 4025 return (KERN_FAILURE); 4026 /* 4027 * We're attempting to read a copy-on-write page -- 4028 * don't allow writes. 4029 */ 4030 prot &= ~VM_PROT_WRITE; 4031 } 4032 4033 /* 4034 * Fail if an object should be created. 4035 */ 4036 if (entry->object.vm_object == NULL && !map->system_map) 4037 return (KERN_FAILURE); 4038 4039 /* 4040 * Return the object/offset from this entry. If the entry was 4041 * copy-on-write or empty, it has been fixed up. 4042 */ 4043 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4044 *object = entry->object.vm_object; 4045 4046 *out_prot = prot; 4047 return (KERN_SUCCESS); 4048 } 4049 4050 /* 4051 * vm_map_lookup_done: 4052 * 4053 * Releases locks acquired by a vm_map_lookup 4054 * (according to the handle returned by that lookup). 4055 */ 4056 void 4057 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4058 { 4059 /* 4060 * Unlock the main-level map 4061 */ 4062 vm_map_unlock_read(map); 4063 } 4064 4065 #include "opt_ddb.h" 4066 #ifdef DDB 4067 #include <sys/kernel.h> 4068 4069 #include <ddb/ddb.h> 4070 4071 static void 4072 vm_map_print(vm_map_t map) 4073 { 4074 vm_map_entry_t entry; 4075 4076 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4077 (void *)map, 4078 (void *)map->pmap, map->nentries, map->timestamp); 4079 4080 db_indent += 2; 4081 for (entry = map->header.next; entry != &map->header; 4082 entry = entry->next) { 4083 db_iprintf("map entry %p: start=%p, end=%p\n", 4084 (void *)entry, (void *)entry->start, (void *)entry->end); 4085 { 4086 static char *inheritance_name[4] = 4087 {"share", "copy", "none", "donate_copy"}; 4088 4089 db_iprintf(" prot=%x/%x/%s", 4090 entry->protection, 4091 entry->max_protection, 4092 inheritance_name[(int)(unsigned char)entry->inheritance]); 4093 if (entry->wired_count != 0) 4094 db_printf(", wired"); 4095 } 4096 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4097 db_printf(", share=%p, offset=0x%jx\n", 4098 (void *)entry->object.sub_map, 4099 (uintmax_t)entry->offset); 4100 if ((entry->prev == &map->header) || 4101 (entry->prev->object.sub_map != 4102 entry->object.sub_map)) { 4103 db_indent += 2; 4104 vm_map_print((vm_map_t)entry->object.sub_map); 4105 db_indent -= 2; 4106 } 4107 } else { 4108 if (entry->cred != NULL) 4109 db_printf(", ruid %d", entry->cred->cr_ruid); 4110 db_printf(", object=%p, offset=0x%jx", 4111 (void *)entry->object.vm_object, 4112 (uintmax_t)entry->offset); 4113 if (entry->object.vm_object && entry->object.vm_object->cred) 4114 db_printf(", obj ruid %d charge %jx", 4115 entry->object.vm_object->cred->cr_ruid, 4116 (uintmax_t)entry->object.vm_object->charge); 4117 if (entry->eflags & MAP_ENTRY_COW) 4118 db_printf(", copy (%s)", 4119 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4120 db_printf("\n"); 4121 4122 if ((entry->prev == &map->header) || 4123 (entry->prev->object.vm_object != 4124 entry->object.vm_object)) { 4125 db_indent += 2; 4126 vm_object_print((db_expr_t)(intptr_t) 4127 entry->object.vm_object, 4128 1, 0, (char *)0); 4129 db_indent -= 2; 4130 } 4131 } 4132 } 4133 db_indent -= 2; 4134 } 4135 4136 DB_SHOW_COMMAND(map, map) 4137 { 4138 4139 if (!have_addr) { 4140 db_printf("usage: show map <addr>\n"); 4141 return; 4142 } 4143 vm_map_print((vm_map_t)addr); 4144 } 4145 4146 DB_SHOW_COMMAND(procvm, procvm) 4147 { 4148 struct proc *p; 4149 4150 if (have_addr) { 4151 p = (struct proc *) addr; 4152 } else { 4153 p = curproc; 4154 } 4155 4156 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4157 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4158 (void *)vmspace_pmap(p->p_vmspace)); 4159 4160 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4161 } 4162 4163 #endif /* DDB */ 4164