1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/file.h> 81 #include <sys/sysctl.h> 82 #include <sys/sysent.h> 83 #include <sys/shm.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_kern.h> 93 #include <vm/vm_extern.h> 94 #include <vm/vnode_pager.h> 95 #include <vm/swap_pager.h> 96 #include <vm/uma.h> 97 98 /* 99 * Virtual memory maps provide for the mapping, protection, 100 * and sharing of virtual memory objects. In addition, 101 * this module provides for an efficient virtual copy of 102 * memory from one map to another. 103 * 104 * Synchronization is required prior to most operations. 105 * 106 * Maps consist of an ordered doubly-linked list of simple 107 * entries; a self-adjusting binary search tree of these 108 * entries is used to speed up lookups. 109 * 110 * Since portions of maps are specified by start/end addresses, 111 * which may not align with existing map entries, all 112 * routines merely "clip" entries to these start/end values. 113 * [That is, an entry is split into two, bordering at a 114 * start or end value.] Note that these clippings may not 115 * always be necessary (as the two resulting entries are then 116 * not changed); however, the clipping is done for convenience. 117 * 118 * As mentioned above, virtual copy operations are performed 119 * by copying VM object references from one map to 120 * another, and then marking both regions as copy-on-write. 121 */ 122 123 static struct mtx map_sleep_mtx; 124 static uma_zone_t mapentzone; 125 static uma_zone_t kmapentzone; 126 static uma_zone_t mapzone; 127 static uma_zone_t vmspace_zone; 128 static struct vm_object kmapentobj; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static void vmspace_zfini(void *mem, int size); 131 static int vm_map_zinit(void *mem, int ize, int flags); 132 static void vm_map_zfini(void *mem, int size); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 137 #ifdef INVARIANTS 138 static void vm_map_zdtor(void *mem, int size, void *arg); 139 static void vmspace_zdtor(void *mem, int size, void *arg); 140 #endif 141 142 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 143 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 144 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 145 146 /* 147 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 148 * stable. 149 */ 150 #define PROC_VMSPACE_LOCK(p) do { } while (0) 151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 152 153 /* 154 * VM_MAP_RANGE_CHECK: [ internal use only ] 155 * 156 * Asserts that the starting and ending region 157 * addresses fall within the valid range of the map. 158 */ 159 #define VM_MAP_RANGE_CHECK(map, start, end) \ 160 { \ 161 if (start < vm_map_min(map)) \ 162 start = vm_map_min(map); \ 163 if (end > vm_map_max(map)) \ 164 end = vm_map_max(map); \ 165 if (start > end) \ 166 start = end; \ 167 } 168 169 /* 170 * vm_map_startup: 171 * 172 * Initialize the vm_map module. Must be called before 173 * any other vm_map routines. 174 * 175 * Map and entry structures are allocated from the general 176 * purpose memory pool with some exceptions: 177 * 178 * - The kernel map and kmem submap are allocated statically. 179 * - Kernel map entries are allocated out of a static pool. 180 * 181 * These restrictions are necessary since malloc() uses the 182 * maps and requires map entries. 183 */ 184 185 void 186 vm_map_startup(void) 187 { 188 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 189 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 190 #ifdef INVARIANTS 191 vm_map_zdtor, 192 #else 193 NULL, 194 #endif 195 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 196 uma_prealloc(mapzone, MAX_KMAP); 197 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 198 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 199 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 200 uma_prealloc(kmapentzone, MAX_KMAPENT); 201 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 202 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 203 } 204 205 static void 206 vmspace_zfini(void *mem, int size) 207 { 208 struct vmspace *vm; 209 210 vm = (struct vmspace *)mem; 211 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 212 } 213 214 static int 215 vmspace_zinit(void *mem, int size, int flags) 216 { 217 struct vmspace *vm; 218 219 vm = (struct vmspace *)mem; 220 221 vm->vm_map.pmap = NULL; 222 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 223 return (0); 224 } 225 226 static void 227 vm_map_zfini(void *mem, int size) 228 { 229 vm_map_t map; 230 231 map = (vm_map_t)mem; 232 mtx_destroy(&map->system_mtx); 233 sx_destroy(&map->lock); 234 } 235 236 static int 237 vm_map_zinit(void *mem, int size, int flags) 238 { 239 vm_map_t map; 240 241 map = (vm_map_t)mem; 242 map->nentries = 0; 243 map->size = 0; 244 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 245 sx_init(&map->lock, "user map"); 246 return (0); 247 } 248 249 #ifdef INVARIANTS 250 static void 251 vmspace_zdtor(void *mem, int size, void *arg) 252 { 253 struct vmspace *vm; 254 255 vm = (struct vmspace *)mem; 256 257 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 258 } 259 static void 260 vm_map_zdtor(void *mem, int size, void *arg) 261 { 262 vm_map_t map; 263 264 map = (vm_map_t)mem; 265 KASSERT(map->nentries == 0, 266 ("map %p nentries == %d on free.", 267 map, map->nentries)); 268 KASSERT(map->size == 0, 269 ("map %p size == %lu on free.", 270 map, (unsigned long)map->size)); 271 } 272 #endif /* INVARIANTS */ 273 274 /* 275 * Allocate a vmspace structure, including a vm_map and pmap, 276 * and initialize those structures. The refcnt is set to 1. 277 */ 278 struct vmspace * 279 vmspace_alloc(min, max) 280 vm_offset_t min, max; 281 { 282 struct vmspace *vm; 283 284 vm = uma_zalloc(vmspace_zone, M_WAITOK); 285 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 void 304 vm_init2(void) 305 { 306 uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count, 307 (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 + 308 maxproc * 2 + maxfiles); 309 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 310 #ifdef INVARIANTS 311 vmspace_zdtor, 312 #else 313 NULL, 314 #endif 315 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 316 } 317 318 static void 319 vmspace_container_reset(struct proc *p) 320 { 321 322 #ifdef RACCT 323 PROC_LOCK(p); 324 racct_set(p, RACCT_DATA, 0); 325 racct_set(p, RACCT_STACK, 0); 326 racct_set(p, RACCT_RSS, 0); 327 racct_set(p, RACCT_MEMLOCK, 0); 328 racct_set(p, RACCT_VMEM, 0); 329 PROC_UNLOCK(p); 330 #endif 331 } 332 333 static inline void 334 vmspace_dofree(struct vmspace *vm) 335 { 336 337 CTR1(KTR_VM, "vmspace_free: %p", vm); 338 339 /* 340 * Make sure any SysV shm is freed, it might not have been in 341 * exit1(). 342 */ 343 shmexit(vm); 344 345 /* 346 * Lock the map, to wait out all other references to it. 347 * Delete all of the mappings and pages they hold, then call 348 * the pmap module to reclaim anything left. 349 */ 350 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 351 vm->vm_map.max_offset); 352 353 pmap_release(vmspace_pmap(vm)); 354 vm->vm_map.pmap = NULL; 355 uma_zfree(vmspace_zone, vm); 356 } 357 358 void 359 vmspace_free(struct vmspace *vm) 360 { 361 362 if (vm->vm_refcnt == 0) 363 panic("vmspace_free: attempt to free already freed vmspace"); 364 365 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 366 vmspace_dofree(vm); 367 } 368 369 void 370 vmspace_exitfree(struct proc *p) 371 { 372 struct vmspace *vm; 373 374 PROC_VMSPACE_LOCK(p); 375 vm = p->p_vmspace; 376 p->p_vmspace = NULL; 377 PROC_VMSPACE_UNLOCK(p); 378 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 379 vmspace_free(vm); 380 } 381 382 void 383 vmspace_exit(struct thread *td) 384 { 385 int refcnt; 386 struct vmspace *vm; 387 struct proc *p; 388 389 /* 390 * Release user portion of address space. 391 * This releases references to vnodes, 392 * which could cause I/O if the file has been unlinked. 393 * Need to do this early enough that we can still sleep. 394 * 395 * The last exiting process to reach this point releases as 396 * much of the environment as it can. vmspace_dofree() is the 397 * slower fallback in case another process had a temporary 398 * reference to the vmspace. 399 */ 400 401 p = td->td_proc; 402 vm = p->p_vmspace; 403 atomic_add_int(&vmspace0.vm_refcnt, 1); 404 do { 405 refcnt = vm->vm_refcnt; 406 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 407 /* Switch now since other proc might free vmspace */ 408 PROC_VMSPACE_LOCK(p); 409 p->p_vmspace = &vmspace0; 410 PROC_VMSPACE_UNLOCK(p); 411 pmap_activate(td); 412 } 413 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 414 if (refcnt == 1) { 415 if (p->p_vmspace != vm) { 416 /* vmspace not yet freed, switch back */ 417 PROC_VMSPACE_LOCK(p); 418 p->p_vmspace = vm; 419 PROC_VMSPACE_UNLOCK(p); 420 pmap_activate(td); 421 } 422 pmap_remove_pages(vmspace_pmap(vm)); 423 /* Switch now since this proc will free vmspace */ 424 PROC_VMSPACE_LOCK(p); 425 p->p_vmspace = &vmspace0; 426 PROC_VMSPACE_UNLOCK(p); 427 pmap_activate(td); 428 vmspace_dofree(vm); 429 } 430 vmspace_container_reset(p); 431 } 432 433 /* Acquire reference to vmspace owned by another process. */ 434 435 struct vmspace * 436 vmspace_acquire_ref(struct proc *p) 437 { 438 struct vmspace *vm; 439 int refcnt; 440 441 PROC_VMSPACE_LOCK(p); 442 vm = p->p_vmspace; 443 if (vm == NULL) { 444 PROC_VMSPACE_UNLOCK(p); 445 return (NULL); 446 } 447 do { 448 refcnt = vm->vm_refcnt; 449 if (refcnt <= 0) { /* Avoid 0->1 transition */ 450 PROC_VMSPACE_UNLOCK(p); 451 return (NULL); 452 } 453 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 454 if (vm != p->p_vmspace) { 455 PROC_VMSPACE_UNLOCK(p); 456 vmspace_free(vm); 457 return (NULL); 458 } 459 PROC_VMSPACE_UNLOCK(p); 460 return (vm); 461 } 462 463 void 464 _vm_map_lock(vm_map_t map, const char *file, int line) 465 { 466 467 if (map->system_map) 468 mtx_lock_flags_(&map->system_mtx, 0, file, line); 469 else 470 sx_xlock_(&map->lock, file, line); 471 map->timestamp++; 472 } 473 474 static void 475 vm_map_process_deferred(void) 476 { 477 struct thread *td; 478 vm_map_entry_t entry; 479 vm_object_t object; 480 481 td = curthread; 482 while ((entry = td->td_map_def_user) != NULL) { 483 td->td_map_def_user = entry->next; 484 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 485 /* 486 * Decrement the object's writemappings and 487 * possibly the vnode's v_writecount. 488 */ 489 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 490 ("Submap with writecount")); 491 object = entry->object.vm_object; 492 KASSERT(object != NULL, ("No object for writecount")); 493 vnode_pager_release_writecount(object, entry->start, 494 entry->end); 495 } 496 vm_map_entry_deallocate(entry, FALSE); 497 } 498 } 499 500 void 501 _vm_map_unlock(vm_map_t map, const char *file, int line) 502 { 503 504 if (map->system_map) 505 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 506 else { 507 sx_xunlock_(&map->lock, file, line); 508 vm_map_process_deferred(); 509 } 510 } 511 512 void 513 _vm_map_lock_read(vm_map_t map, const char *file, int line) 514 { 515 516 if (map->system_map) 517 mtx_lock_flags_(&map->system_mtx, 0, file, line); 518 else 519 sx_slock_(&map->lock, file, line); 520 } 521 522 void 523 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 524 { 525 526 if (map->system_map) 527 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 528 else { 529 sx_sunlock_(&map->lock, file, line); 530 vm_map_process_deferred(); 531 } 532 } 533 534 int 535 _vm_map_trylock(vm_map_t map, const char *file, int line) 536 { 537 int error; 538 539 error = map->system_map ? 540 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 541 !sx_try_xlock_(&map->lock, file, line); 542 if (error == 0) 543 map->timestamp++; 544 return (error == 0); 545 } 546 547 int 548 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 549 { 550 int error; 551 552 error = map->system_map ? 553 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 554 !sx_try_slock_(&map->lock, file, line); 555 return (error == 0); 556 } 557 558 /* 559 * _vm_map_lock_upgrade: [ internal use only ] 560 * 561 * Tries to upgrade a read (shared) lock on the specified map to a write 562 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 563 * non-zero value if the upgrade fails. If the upgrade fails, the map is 564 * returned without a read or write lock held. 565 * 566 * Requires that the map be read locked. 567 */ 568 int 569 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 570 { 571 unsigned int last_timestamp; 572 573 if (map->system_map) { 574 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 575 } else { 576 if (!sx_try_upgrade_(&map->lock, file, line)) { 577 last_timestamp = map->timestamp; 578 sx_sunlock_(&map->lock, file, line); 579 vm_map_process_deferred(); 580 /* 581 * If the map's timestamp does not change while the 582 * map is unlocked, then the upgrade succeeds. 583 */ 584 sx_xlock_(&map->lock, file, line); 585 if (last_timestamp != map->timestamp) { 586 sx_xunlock_(&map->lock, file, line); 587 return (1); 588 } 589 } 590 } 591 map->timestamp++; 592 return (0); 593 } 594 595 void 596 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 597 { 598 599 if (map->system_map) { 600 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 601 } else 602 sx_downgrade_(&map->lock, file, line); 603 } 604 605 /* 606 * vm_map_locked: 607 * 608 * Returns a non-zero value if the caller holds a write (exclusive) lock 609 * on the specified map and the value "0" otherwise. 610 */ 611 int 612 vm_map_locked(vm_map_t map) 613 { 614 615 if (map->system_map) 616 return (mtx_owned(&map->system_mtx)); 617 else 618 return (sx_xlocked(&map->lock)); 619 } 620 621 #ifdef INVARIANTS 622 static void 623 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 624 { 625 626 if (map->system_map) 627 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 628 else 629 sx_assert_(&map->lock, SA_XLOCKED, file, line); 630 } 631 632 #define VM_MAP_ASSERT_LOCKED(map) \ 633 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 634 #else 635 #define VM_MAP_ASSERT_LOCKED(map) 636 #endif 637 638 /* 639 * _vm_map_unlock_and_wait: 640 * 641 * Atomically releases the lock on the specified map and puts the calling 642 * thread to sleep. The calling thread will remain asleep until either 643 * vm_map_wakeup() is performed on the map or the specified timeout is 644 * exceeded. 645 * 646 * WARNING! This function does not perform deferred deallocations of 647 * objects and map entries. Therefore, the calling thread is expected to 648 * reacquire the map lock after reawakening and later perform an ordinary 649 * unlock operation, such as vm_map_unlock(), before completing its 650 * operation on the map. 651 */ 652 int 653 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 654 { 655 656 mtx_lock(&map_sleep_mtx); 657 if (map->system_map) 658 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 659 else 660 sx_xunlock_(&map->lock, file, line); 661 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 662 timo)); 663 } 664 665 /* 666 * vm_map_wakeup: 667 * 668 * Awaken any threads that have slept on the map using 669 * vm_map_unlock_and_wait(). 670 */ 671 void 672 vm_map_wakeup(vm_map_t map) 673 { 674 675 /* 676 * Acquire and release map_sleep_mtx to prevent a wakeup() 677 * from being performed (and lost) between the map unlock 678 * and the msleep() in _vm_map_unlock_and_wait(). 679 */ 680 mtx_lock(&map_sleep_mtx); 681 mtx_unlock(&map_sleep_mtx); 682 wakeup(&map->root); 683 } 684 685 void 686 vm_map_busy(vm_map_t map) 687 { 688 689 VM_MAP_ASSERT_LOCKED(map); 690 map->busy++; 691 } 692 693 void 694 vm_map_unbusy(vm_map_t map) 695 { 696 697 VM_MAP_ASSERT_LOCKED(map); 698 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 699 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 700 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 701 wakeup(&map->busy); 702 } 703 } 704 705 void 706 vm_map_wait_busy(vm_map_t map) 707 { 708 709 VM_MAP_ASSERT_LOCKED(map); 710 while (map->busy) { 711 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 712 if (map->system_map) 713 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 714 else 715 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 716 } 717 map->timestamp++; 718 } 719 720 long 721 vmspace_resident_count(struct vmspace *vmspace) 722 { 723 return pmap_resident_count(vmspace_pmap(vmspace)); 724 } 725 726 long 727 vmspace_wired_count(struct vmspace *vmspace) 728 { 729 return pmap_wired_count(vmspace_pmap(vmspace)); 730 } 731 732 /* 733 * vm_map_create: 734 * 735 * Creates and returns a new empty VM map with 736 * the given physical map structure, and having 737 * the given lower and upper address bounds. 738 */ 739 vm_map_t 740 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 741 { 742 vm_map_t result; 743 744 result = uma_zalloc(mapzone, M_WAITOK); 745 CTR1(KTR_VM, "vm_map_create: %p", result); 746 _vm_map_init(result, pmap, min, max); 747 return (result); 748 } 749 750 /* 751 * Initialize an existing vm_map structure 752 * such as that in the vmspace structure. 753 */ 754 static void 755 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 756 { 757 758 map->header.next = map->header.prev = &map->header; 759 map->needs_wakeup = FALSE; 760 map->system_map = 0; 761 map->pmap = pmap; 762 map->min_offset = min; 763 map->max_offset = max; 764 map->flags = 0; 765 map->root = NULL; 766 map->timestamp = 0; 767 map->busy = 0; 768 } 769 770 void 771 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 772 { 773 774 _vm_map_init(map, pmap, min, max); 775 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 776 sx_init(&map->lock, "user map"); 777 } 778 779 /* 780 * vm_map_entry_dispose: [ internal use only ] 781 * 782 * Inverse of vm_map_entry_create. 783 */ 784 static void 785 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 786 { 787 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 788 } 789 790 /* 791 * vm_map_entry_create: [ internal use only ] 792 * 793 * Allocates a VM map entry for insertion. 794 * No entry fields are filled in. 795 */ 796 static vm_map_entry_t 797 vm_map_entry_create(vm_map_t map) 798 { 799 vm_map_entry_t new_entry; 800 801 if (map->system_map) 802 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 803 else 804 new_entry = uma_zalloc(mapentzone, M_WAITOK); 805 if (new_entry == NULL) 806 panic("vm_map_entry_create: kernel resources exhausted"); 807 return (new_entry); 808 } 809 810 /* 811 * vm_map_entry_set_behavior: 812 * 813 * Set the expected access behavior, either normal, random, or 814 * sequential. 815 */ 816 static inline void 817 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 818 { 819 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 820 (behavior & MAP_ENTRY_BEHAV_MASK); 821 } 822 823 /* 824 * vm_map_entry_set_max_free: 825 * 826 * Set the max_free field in a vm_map_entry. 827 */ 828 static inline void 829 vm_map_entry_set_max_free(vm_map_entry_t entry) 830 { 831 832 entry->max_free = entry->adj_free; 833 if (entry->left != NULL && entry->left->max_free > entry->max_free) 834 entry->max_free = entry->left->max_free; 835 if (entry->right != NULL && entry->right->max_free > entry->max_free) 836 entry->max_free = entry->right->max_free; 837 } 838 839 /* 840 * vm_map_entry_splay: 841 * 842 * The Sleator and Tarjan top-down splay algorithm with the 843 * following variation. Max_free must be computed bottom-up, so 844 * on the downward pass, maintain the left and right spines in 845 * reverse order. Then, make a second pass up each side to fix 846 * the pointers and compute max_free. The time bound is O(log n) 847 * amortized. 848 * 849 * The new root is the vm_map_entry containing "addr", or else an 850 * adjacent entry (lower or higher) if addr is not in the tree. 851 * 852 * The map must be locked, and leaves it so. 853 * 854 * Returns: the new root. 855 */ 856 static vm_map_entry_t 857 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 858 { 859 vm_map_entry_t llist, rlist; 860 vm_map_entry_t ltree, rtree; 861 vm_map_entry_t y; 862 863 /* Special case of empty tree. */ 864 if (root == NULL) 865 return (root); 866 867 /* 868 * Pass One: Splay down the tree until we find addr or a NULL 869 * pointer where addr would go. llist and rlist are the two 870 * sides in reverse order (bottom-up), with llist linked by 871 * the right pointer and rlist linked by the left pointer in 872 * the vm_map_entry. Wait until Pass Two to set max_free on 873 * the two spines. 874 */ 875 llist = NULL; 876 rlist = NULL; 877 for (;;) { 878 /* root is never NULL in here. */ 879 if (addr < root->start) { 880 y = root->left; 881 if (y == NULL) 882 break; 883 if (addr < y->start && y->left != NULL) { 884 /* Rotate right and put y on rlist. */ 885 root->left = y->right; 886 y->right = root; 887 vm_map_entry_set_max_free(root); 888 root = y->left; 889 y->left = rlist; 890 rlist = y; 891 } else { 892 /* Put root on rlist. */ 893 root->left = rlist; 894 rlist = root; 895 root = y; 896 } 897 } else if (addr >= root->end) { 898 y = root->right; 899 if (y == NULL) 900 break; 901 if (addr >= y->end && y->right != NULL) { 902 /* Rotate left and put y on llist. */ 903 root->right = y->left; 904 y->left = root; 905 vm_map_entry_set_max_free(root); 906 root = y->right; 907 y->right = llist; 908 llist = y; 909 } else { 910 /* Put root on llist. */ 911 root->right = llist; 912 llist = root; 913 root = y; 914 } 915 } else 916 break; 917 } 918 919 /* 920 * Pass Two: Walk back up the two spines, flip the pointers 921 * and set max_free. The subtrees of the root go at the 922 * bottom of llist and rlist. 923 */ 924 ltree = root->left; 925 while (llist != NULL) { 926 y = llist->right; 927 llist->right = ltree; 928 vm_map_entry_set_max_free(llist); 929 ltree = llist; 930 llist = y; 931 } 932 rtree = root->right; 933 while (rlist != NULL) { 934 y = rlist->left; 935 rlist->left = rtree; 936 vm_map_entry_set_max_free(rlist); 937 rtree = rlist; 938 rlist = y; 939 } 940 941 /* 942 * Final assembly: add ltree and rtree as subtrees of root. 943 */ 944 root->left = ltree; 945 root->right = rtree; 946 vm_map_entry_set_max_free(root); 947 948 return (root); 949 } 950 951 /* 952 * vm_map_entry_{un,}link: 953 * 954 * Insert/remove entries from maps. 955 */ 956 static void 957 vm_map_entry_link(vm_map_t map, 958 vm_map_entry_t after_where, 959 vm_map_entry_t entry) 960 { 961 962 CTR4(KTR_VM, 963 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 964 map->nentries, entry, after_where); 965 VM_MAP_ASSERT_LOCKED(map); 966 map->nentries++; 967 entry->prev = after_where; 968 entry->next = after_where->next; 969 entry->next->prev = entry; 970 after_where->next = entry; 971 972 if (after_where != &map->header) { 973 if (after_where != map->root) 974 vm_map_entry_splay(after_where->start, map->root); 975 entry->right = after_where->right; 976 entry->left = after_where; 977 after_where->right = NULL; 978 after_where->adj_free = entry->start - after_where->end; 979 vm_map_entry_set_max_free(after_where); 980 } else { 981 entry->right = map->root; 982 entry->left = NULL; 983 } 984 entry->adj_free = (entry->next == &map->header ? map->max_offset : 985 entry->next->start) - entry->end; 986 vm_map_entry_set_max_free(entry); 987 map->root = entry; 988 } 989 990 static void 991 vm_map_entry_unlink(vm_map_t map, 992 vm_map_entry_t entry) 993 { 994 vm_map_entry_t next, prev, root; 995 996 VM_MAP_ASSERT_LOCKED(map); 997 if (entry != map->root) 998 vm_map_entry_splay(entry->start, map->root); 999 if (entry->left == NULL) 1000 root = entry->right; 1001 else { 1002 root = vm_map_entry_splay(entry->start, entry->left); 1003 root->right = entry->right; 1004 root->adj_free = (entry->next == &map->header ? map->max_offset : 1005 entry->next->start) - root->end; 1006 vm_map_entry_set_max_free(root); 1007 } 1008 map->root = root; 1009 1010 prev = entry->prev; 1011 next = entry->next; 1012 next->prev = prev; 1013 prev->next = next; 1014 map->nentries--; 1015 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1016 map->nentries, entry); 1017 } 1018 1019 /* 1020 * vm_map_entry_resize_free: 1021 * 1022 * Recompute the amount of free space following a vm_map_entry 1023 * and propagate that value up the tree. Call this function after 1024 * resizing a map entry in-place, that is, without a call to 1025 * vm_map_entry_link() or _unlink(). 1026 * 1027 * The map must be locked, and leaves it so. 1028 */ 1029 static void 1030 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1031 { 1032 1033 /* 1034 * Using splay trees without parent pointers, propagating 1035 * max_free up the tree is done by moving the entry to the 1036 * root and making the change there. 1037 */ 1038 if (entry != map->root) 1039 map->root = vm_map_entry_splay(entry->start, map->root); 1040 1041 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1042 entry->next->start) - entry->end; 1043 vm_map_entry_set_max_free(entry); 1044 } 1045 1046 /* 1047 * vm_map_lookup_entry: [ internal use only ] 1048 * 1049 * Finds the map entry containing (or 1050 * immediately preceding) the specified address 1051 * in the given map; the entry is returned 1052 * in the "entry" parameter. The boolean 1053 * result indicates whether the address is 1054 * actually contained in the map. 1055 */ 1056 boolean_t 1057 vm_map_lookup_entry( 1058 vm_map_t map, 1059 vm_offset_t address, 1060 vm_map_entry_t *entry) /* OUT */ 1061 { 1062 vm_map_entry_t cur; 1063 boolean_t locked; 1064 1065 /* 1066 * If the map is empty, then the map entry immediately preceding 1067 * "address" is the map's header. 1068 */ 1069 cur = map->root; 1070 if (cur == NULL) 1071 *entry = &map->header; 1072 else if (address >= cur->start && cur->end > address) { 1073 *entry = cur; 1074 return (TRUE); 1075 } else if ((locked = vm_map_locked(map)) || 1076 sx_try_upgrade(&map->lock)) { 1077 /* 1078 * Splay requires a write lock on the map. However, it only 1079 * restructures the binary search tree; it does not otherwise 1080 * change the map. Thus, the map's timestamp need not change 1081 * on a temporary upgrade. 1082 */ 1083 map->root = cur = vm_map_entry_splay(address, cur); 1084 if (!locked) 1085 sx_downgrade(&map->lock); 1086 1087 /* 1088 * If "address" is contained within a map entry, the new root 1089 * is that map entry. Otherwise, the new root is a map entry 1090 * immediately before or after "address". 1091 */ 1092 if (address >= cur->start) { 1093 *entry = cur; 1094 if (cur->end > address) 1095 return (TRUE); 1096 } else 1097 *entry = cur->prev; 1098 } else 1099 /* 1100 * Since the map is only locked for read access, perform a 1101 * standard binary search tree lookup for "address". 1102 */ 1103 for (;;) { 1104 if (address < cur->start) { 1105 if (cur->left == NULL) { 1106 *entry = cur->prev; 1107 break; 1108 } 1109 cur = cur->left; 1110 } else if (cur->end > address) { 1111 *entry = cur; 1112 return (TRUE); 1113 } else { 1114 if (cur->right == NULL) { 1115 *entry = cur; 1116 break; 1117 } 1118 cur = cur->right; 1119 } 1120 } 1121 return (FALSE); 1122 } 1123 1124 /* 1125 * vm_map_insert: 1126 * 1127 * Inserts the given whole VM object into the target 1128 * map at the specified address range. The object's 1129 * size should match that of the address range. 1130 * 1131 * Requires that the map be locked, and leaves it so. 1132 * 1133 * If object is non-NULL, ref count must be bumped by caller 1134 * prior to making call to account for the new entry. 1135 */ 1136 int 1137 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1138 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1139 int cow) 1140 { 1141 vm_map_entry_t new_entry; 1142 vm_map_entry_t prev_entry; 1143 vm_map_entry_t temp_entry; 1144 vm_eflags_t protoeflags; 1145 struct ucred *cred; 1146 vm_inherit_t inheritance; 1147 boolean_t charge_prev_obj; 1148 1149 VM_MAP_ASSERT_LOCKED(map); 1150 1151 /* 1152 * Check that the start and end points are not bogus. 1153 */ 1154 if ((start < map->min_offset) || (end > map->max_offset) || 1155 (start >= end)) 1156 return (KERN_INVALID_ADDRESS); 1157 1158 /* 1159 * Find the entry prior to the proposed starting address; if it's part 1160 * of an existing entry, this range is bogus. 1161 */ 1162 if (vm_map_lookup_entry(map, start, &temp_entry)) 1163 return (KERN_NO_SPACE); 1164 1165 prev_entry = temp_entry; 1166 1167 /* 1168 * Assert that the next entry doesn't overlap the end point. 1169 */ 1170 if ((prev_entry->next != &map->header) && 1171 (prev_entry->next->start < end)) 1172 return (KERN_NO_SPACE); 1173 1174 protoeflags = 0; 1175 charge_prev_obj = FALSE; 1176 1177 if (cow & MAP_COPY_ON_WRITE) 1178 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1179 1180 if (cow & MAP_NOFAULT) { 1181 protoeflags |= MAP_ENTRY_NOFAULT; 1182 1183 KASSERT(object == NULL, 1184 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1185 } 1186 if (cow & MAP_DISABLE_SYNCER) 1187 protoeflags |= MAP_ENTRY_NOSYNC; 1188 if (cow & MAP_DISABLE_COREDUMP) 1189 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1190 if (cow & MAP_VN_WRITECOUNT) 1191 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1192 if (cow & MAP_INHERIT_SHARE) 1193 inheritance = VM_INHERIT_SHARE; 1194 else 1195 inheritance = VM_INHERIT_DEFAULT; 1196 1197 cred = NULL; 1198 KASSERT((object != kmem_object && object != kernel_object) || 1199 ((object == kmem_object || object == kernel_object) && 1200 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1201 ("kmem or kernel object and cow")); 1202 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1203 goto charged; 1204 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1205 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1206 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1207 return (KERN_RESOURCE_SHORTAGE); 1208 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1209 object->cred == NULL, 1210 ("OVERCOMMIT: vm_map_insert o %p", object)); 1211 cred = curthread->td_ucred; 1212 crhold(cred); 1213 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1214 charge_prev_obj = TRUE; 1215 } 1216 1217 charged: 1218 /* Expand the kernel pmap, if necessary. */ 1219 if (map == kernel_map && end > kernel_vm_end) 1220 pmap_growkernel(end); 1221 if (object != NULL) { 1222 /* 1223 * OBJ_ONEMAPPING must be cleared unless this mapping 1224 * is trivially proven to be the only mapping for any 1225 * of the object's pages. (Object granularity 1226 * reference counting is insufficient to recognize 1227 * aliases with precision.) 1228 */ 1229 VM_OBJECT_LOCK(object); 1230 if (object->ref_count > 1 || object->shadow_count != 0) 1231 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1232 VM_OBJECT_UNLOCK(object); 1233 } 1234 else if ((prev_entry != &map->header) && 1235 (prev_entry->eflags == protoeflags) && 1236 (prev_entry->end == start) && 1237 (prev_entry->wired_count == 0) && 1238 (prev_entry->cred == cred || 1239 (prev_entry->object.vm_object != NULL && 1240 (prev_entry->object.vm_object->cred == cred))) && 1241 vm_object_coalesce(prev_entry->object.vm_object, 1242 prev_entry->offset, 1243 (vm_size_t)(prev_entry->end - prev_entry->start), 1244 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1245 /* 1246 * We were able to extend the object. Determine if we 1247 * can extend the previous map entry to include the 1248 * new range as well. 1249 */ 1250 if ((prev_entry->inheritance == inheritance) && 1251 (prev_entry->protection == prot) && 1252 (prev_entry->max_protection == max)) { 1253 map->size += (end - prev_entry->end); 1254 prev_entry->end = end; 1255 vm_map_entry_resize_free(map, prev_entry); 1256 vm_map_simplify_entry(map, prev_entry); 1257 if (cred != NULL) 1258 crfree(cred); 1259 return (KERN_SUCCESS); 1260 } 1261 1262 /* 1263 * If we can extend the object but cannot extend the 1264 * map entry, we have to create a new map entry. We 1265 * must bump the ref count on the extended object to 1266 * account for it. object may be NULL. 1267 */ 1268 object = prev_entry->object.vm_object; 1269 offset = prev_entry->offset + 1270 (prev_entry->end - prev_entry->start); 1271 vm_object_reference(object); 1272 if (cred != NULL && object != NULL && object->cred != NULL && 1273 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1274 /* Object already accounts for this uid. */ 1275 crfree(cred); 1276 cred = NULL; 1277 } 1278 } 1279 1280 /* 1281 * NOTE: if conditionals fail, object can be NULL here. This occurs 1282 * in things like the buffer map where we manage kva but do not manage 1283 * backing objects. 1284 */ 1285 1286 /* 1287 * Create a new entry 1288 */ 1289 new_entry = vm_map_entry_create(map); 1290 new_entry->start = start; 1291 new_entry->end = end; 1292 new_entry->cred = NULL; 1293 1294 new_entry->eflags = protoeflags; 1295 new_entry->object.vm_object = object; 1296 new_entry->offset = offset; 1297 new_entry->avail_ssize = 0; 1298 1299 new_entry->inheritance = inheritance; 1300 new_entry->protection = prot; 1301 new_entry->max_protection = max; 1302 new_entry->wired_count = 0; 1303 1304 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1305 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1306 new_entry->cred = cred; 1307 1308 /* 1309 * Insert the new entry into the list 1310 */ 1311 vm_map_entry_link(map, prev_entry, new_entry); 1312 map->size += new_entry->end - new_entry->start; 1313 1314 /* 1315 * It may be possible to merge the new entry with the next and/or 1316 * previous entries. However, due to MAP_STACK_* being a hack, a 1317 * panic can result from merging such entries. 1318 */ 1319 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1320 vm_map_simplify_entry(map, new_entry); 1321 1322 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1323 vm_map_pmap_enter(map, start, prot, 1324 object, OFF_TO_IDX(offset), end - start, 1325 cow & MAP_PREFAULT_PARTIAL); 1326 } 1327 1328 return (KERN_SUCCESS); 1329 } 1330 1331 /* 1332 * vm_map_findspace: 1333 * 1334 * Find the first fit (lowest VM address) for "length" free bytes 1335 * beginning at address >= start in the given map. 1336 * 1337 * In a vm_map_entry, "adj_free" is the amount of free space 1338 * adjacent (higher address) to this entry, and "max_free" is the 1339 * maximum amount of contiguous free space in its subtree. This 1340 * allows finding a free region in one path down the tree, so 1341 * O(log n) amortized with splay trees. 1342 * 1343 * The map must be locked, and leaves it so. 1344 * 1345 * Returns: 0 on success, and starting address in *addr, 1346 * 1 if insufficient space. 1347 */ 1348 int 1349 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1350 vm_offset_t *addr) /* OUT */ 1351 { 1352 vm_map_entry_t entry; 1353 vm_offset_t st; 1354 1355 /* 1356 * Request must fit within min/max VM address and must avoid 1357 * address wrap. 1358 */ 1359 if (start < map->min_offset) 1360 start = map->min_offset; 1361 if (start + length > map->max_offset || start + length < start) 1362 return (1); 1363 1364 /* Empty tree means wide open address space. */ 1365 if (map->root == NULL) { 1366 *addr = start; 1367 return (0); 1368 } 1369 1370 /* 1371 * After splay, if start comes before root node, then there 1372 * must be a gap from start to the root. 1373 */ 1374 map->root = vm_map_entry_splay(start, map->root); 1375 if (start + length <= map->root->start) { 1376 *addr = start; 1377 return (0); 1378 } 1379 1380 /* 1381 * Root is the last node that might begin its gap before 1382 * start, and this is the last comparison where address 1383 * wrap might be a problem. 1384 */ 1385 st = (start > map->root->end) ? start : map->root->end; 1386 if (length <= map->root->end + map->root->adj_free - st) { 1387 *addr = st; 1388 return (0); 1389 } 1390 1391 /* With max_free, can immediately tell if no solution. */ 1392 entry = map->root->right; 1393 if (entry == NULL || length > entry->max_free) 1394 return (1); 1395 1396 /* 1397 * Search the right subtree in the order: left subtree, root, 1398 * right subtree (first fit). The previous splay implies that 1399 * all regions in the right subtree have addresses > start. 1400 */ 1401 while (entry != NULL) { 1402 if (entry->left != NULL && entry->left->max_free >= length) 1403 entry = entry->left; 1404 else if (entry->adj_free >= length) { 1405 *addr = entry->end; 1406 return (0); 1407 } else 1408 entry = entry->right; 1409 } 1410 1411 /* Can't get here, so panic if we do. */ 1412 panic("vm_map_findspace: max_free corrupt"); 1413 } 1414 1415 int 1416 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1417 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1418 vm_prot_t max, int cow) 1419 { 1420 vm_offset_t end; 1421 int result; 1422 1423 end = start + length; 1424 vm_map_lock(map); 1425 VM_MAP_RANGE_CHECK(map, start, end); 1426 (void) vm_map_delete(map, start, end); 1427 result = vm_map_insert(map, object, offset, start, end, prot, 1428 max, cow); 1429 vm_map_unlock(map); 1430 return (result); 1431 } 1432 1433 /* 1434 * vm_map_find finds an unallocated region in the target address 1435 * map with the given length. The search is defined to be 1436 * first-fit from the specified address; the region found is 1437 * returned in the same parameter. 1438 * 1439 * If object is non-NULL, ref count must be bumped by caller 1440 * prior to making call to account for the new entry. 1441 */ 1442 int 1443 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1444 vm_offset_t *addr, /* IN/OUT */ 1445 vm_size_t length, int find_space, vm_prot_t prot, 1446 vm_prot_t max, int cow) 1447 { 1448 vm_offset_t start; 1449 int result; 1450 1451 start = *addr; 1452 vm_map_lock(map); 1453 do { 1454 if (find_space != VMFS_NO_SPACE) { 1455 if (vm_map_findspace(map, start, length, addr)) { 1456 vm_map_unlock(map); 1457 return (KERN_NO_SPACE); 1458 } 1459 switch (find_space) { 1460 case VMFS_ALIGNED_SPACE: 1461 pmap_align_superpage(object, offset, addr, 1462 length); 1463 break; 1464 #ifdef VMFS_TLB_ALIGNED_SPACE 1465 case VMFS_TLB_ALIGNED_SPACE: 1466 pmap_align_tlb(addr); 1467 break; 1468 #endif 1469 default: 1470 break; 1471 } 1472 1473 start = *addr; 1474 } 1475 result = vm_map_insert(map, object, offset, start, start + 1476 length, prot, max, cow); 1477 } while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE 1478 #ifdef VMFS_TLB_ALIGNED_SPACE 1479 || find_space == VMFS_TLB_ALIGNED_SPACE 1480 #endif 1481 )); 1482 vm_map_unlock(map); 1483 return (result); 1484 } 1485 1486 /* 1487 * vm_map_simplify_entry: 1488 * 1489 * Simplify the given map entry by merging with either neighbor. This 1490 * routine also has the ability to merge with both neighbors. 1491 * 1492 * The map must be locked. 1493 * 1494 * This routine guarentees that the passed entry remains valid (though 1495 * possibly extended). When merging, this routine may delete one or 1496 * both neighbors. 1497 */ 1498 void 1499 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1500 { 1501 vm_map_entry_t next, prev; 1502 vm_size_t prevsize, esize; 1503 1504 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1505 return; 1506 1507 prev = entry->prev; 1508 if (prev != &map->header) { 1509 prevsize = prev->end - prev->start; 1510 if ( (prev->end == entry->start) && 1511 (prev->object.vm_object == entry->object.vm_object) && 1512 (!prev->object.vm_object || 1513 (prev->offset + prevsize == entry->offset)) && 1514 (prev->eflags == entry->eflags) && 1515 (prev->protection == entry->protection) && 1516 (prev->max_protection == entry->max_protection) && 1517 (prev->inheritance == entry->inheritance) && 1518 (prev->wired_count == entry->wired_count) && 1519 (prev->cred == entry->cred)) { 1520 vm_map_entry_unlink(map, prev); 1521 entry->start = prev->start; 1522 entry->offset = prev->offset; 1523 if (entry->prev != &map->header) 1524 vm_map_entry_resize_free(map, entry->prev); 1525 1526 /* 1527 * If the backing object is a vnode object, 1528 * vm_object_deallocate() calls vrele(). 1529 * However, vrele() does not lock the vnode 1530 * because the vnode has additional 1531 * references. Thus, the map lock can be kept 1532 * without causing a lock-order reversal with 1533 * the vnode lock. 1534 * 1535 * Since we count the number of virtual page 1536 * mappings in object->un_pager.vnp.writemappings, 1537 * the writemappings value should not be adjusted 1538 * when the entry is disposed of. 1539 */ 1540 if (prev->object.vm_object) 1541 vm_object_deallocate(prev->object.vm_object); 1542 if (prev->cred != NULL) 1543 crfree(prev->cred); 1544 vm_map_entry_dispose(map, prev); 1545 } 1546 } 1547 1548 next = entry->next; 1549 if (next != &map->header) { 1550 esize = entry->end - entry->start; 1551 if ((entry->end == next->start) && 1552 (next->object.vm_object == entry->object.vm_object) && 1553 (!entry->object.vm_object || 1554 (entry->offset + esize == next->offset)) && 1555 (next->eflags == entry->eflags) && 1556 (next->protection == entry->protection) && 1557 (next->max_protection == entry->max_protection) && 1558 (next->inheritance == entry->inheritance) && 1559 (next->wired_count == entry->wired_count) && 1560 (next->cred == entry->cred)) { 1561 vm_map_entry_unlink(map, next); 1562 entry->end = next->end; 1563 vm_map_entry_resize_free(map, entry); 1564 1565 /* 1566 * See comment above. 1567 */ 1568 if (next->object.vm_object) 1569 vm_object_deallocate(next->object.vm_object); 1570 if (next->cred != NULL) 1571 crfree(next->cred); 1572 vm_map_entry_dispose(map, next); 1573 } 1574 } 1575 } 1576 /* 1577 * vm_map_clip_start: [ internal use only ] 1578 * 1579 * Asserts that the given entry begins at or after 1580 * the specified address; if necessary, 1581 * it splits the entry into two. 1582 */ 1583 #define vm_map_clip_start(map, entry, startaddr) \ 1584 { \ 1585 if (startaddr > entry->start) \ 1586 _vm_map_clip_start(map, entry, startaddr); \ 1587 } 1588 1589 /* 1590 * This routine is called only when it is known that 1591 * the entry must be split. 1592 */ 1593 static void 1594 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1595 { 1596 vm_map_entry_t new_entry; 1597 1598 VM_MAP_ASSERT_LOCKED(map); 1599 1600 /* 1601 * Split off the front portion -- note that we must insert the new 1602 * entry BEFORE this one, so that this entry has the specified 1603 * starting address. 1604 */ 1605 vm_map_simplify_entry(map, entry); 1606 1607 /* 1608 * If there is no object backing this entry, we might as well create 1609 * one now. If we defer it, an object can get created after the map 1610 * is clipped, and individual objects will be created for the split-up 1611 * map. This is a bit of a hack, but is also about the best place to 1612 * put this improvement. 1613 */ 1614 if (entry->object.vm_object == NULL && !map->system_map) { 1615 vm_object_t object; 1616 object = vm_object_allocate(OBJT_DEFAULT, 1617 atop(entry->end - entry->start)); 1618 entry->object.vm_object = object; 1619 entry->offset = 0; 1620 if (entry->cred != NULL) { 1621 object->cred = entry->cred; 1622 object->charge = entry->end - entry->start; 1623 entry->cred = NULL; 1624 } 1625 } else if (entry->object.vm_object != NULL && 1626 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1627 entry->cred != NULL) { 1628 VM_OBJECT_LOCK(entry->object.vm_object); 1629 KASSERT(entry->object.vm_object->cred == NULL, 1630 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1631 entry->object.vm_object->cred = entry->cred; 1632 entry->object.vm_object->charge = entry->end - entry->start; 1633 VM_OBJECT_UNLOCK(entry->object.vm_object); 1634 entry->cred = NULL; 1635 } 1636 1637 new_entry = vm_map_entry_create(map); 1638 *new_entry = *entry; 1639 1640 new_entry->end = start; 1641 entry->offset += (start - entry->start); 1642 entry->start = start; 1643 if (new_entry->cred != NULL) 1644 crhold(entry->cred); 1645 1646 vm_map_entry_link(map, entry->prev, new_entry); 1647 1648 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1649 vm_object_reference(new_entry->object.vm_object); 1650 /* 1651 * The object->un_pager.vnp.writemappings for the 1652 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1653 * kept as is here. The virtual pages are 1654 * re-distributed among the clipped entries, so the sum is 1655 * left the same. 1656 */ 1657 } 1658 } 1659 1660 /* 1661 * vm_map_clip_end: [ internal use only ] 1662 * 1663 * Asserts that the given entry ends at or before 1664 * the specified address; if necessary, 1665 * it splits the entry into two. 1666 */ 1667 #define vm_map_clip_end(map, entry, endaddr) \ 1668 { \ 1669 if ((endaddr) < (entry->end)) \ 1670 _vm_map_clip_end((map), (entry), (endaddr)); \ 1671 } 1672 1673 /* 1674 * This routine is called only when it is known that 1675 * the entry must be split. 1676 */ 1677 static void 1678 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1679 { 1680 vm_map_entry_t new_entry; 1681 1682 VM_MAP_ASSERT_LOCKED(map); 1683 1684 /* 1685 * If there is no object backing this entry, we might as well create 1686 * one now. If we defer it, an object can get created after the map 1687 * is clipped, and individual objects will be created for the split-up 1688 * map. This is a bit of a hack, but is also about the best place to 1689 * put this improvement. 1690 */ 1691 if (entry->object.vm_object == NULL && !map->system_map) { 1692 vm_object_t object; 1693 object = vm_object_allocate(OBJT_DEFAULT, 1694 atop(entry->end - entry->start)); 1695 entry->object.vm_object = object; 1696 entry->offset = 0; 1697 if (entry->cred != NULL) { 1698 object->cred = entry->cred; 1699 object->charge = entry->end - entry->start; 1700 entry->cred = NULL; 1701 } 1702 } else if (entry->object.vm_object != NULL && 1703 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1704 entry->cred != NULL) { 1705 VM_OBJECT_LOCK(entry->object.vm_object); 1706 KASSERT(entry->object.vm_object->cred == NULL, 1707 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1708 entry->object.vm_object->cred = entry->cred; 1709 entry->object.vm_object->charge = entry->end - entry->start; 1710 VM_OBJECT_UNLOCK(entry->object.vm_object); 1711 entry->cred = NULL; 1712 } 1713 1714 /* 1715 * Create a new entry and insert it AFTER the specified entry 1716 */ 1717 new_entry = vm_map_entry_create(map); 1718 *new_entry = *entry; 1719 1720 new_entry->start = entry->end = end; 1721 new_entry->offset += (end - entry->start); 1722 if (new_entry->cred != NULL) 1723 crhold(entry->cred); 1724 1725 vm_map_entry_link(map, entry, new_entry); 1726 1727 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1728 vm_object_reference(new_entry->object.vm_object); 1729 } 1730 } 1731 1732 /* 1733 * vm_map_submap: [ kernel use only ] 1734 * 1735 * Mark the given range as handled by a subordinate map. 1736 * 1737 * This range must have been created with vm_map_find, 1738 * and no other operations may have been performed on this 1739 * range prior to calling vm_map_submap. 1740 * 1741 * Only a limited number of operations can be performed 1742 * within this rage after calling vm_map_submap: 1743 * vm_fault 1744 * [Don't try vm_map_copy!] 1745 * 1746 * To remove a submapping, one must first remove the 1747 * range from the superior map, and then destroy the 1748 * submap (if desired). [Better yet, don't try it.] 1749 */ 1750 int 1751 vm_map_submap( 1752 vm_map_t map, 1753 vm_offset_t start, 1754 vm_offset_t end, 1755 vm_map_t submap) 1756 { 1757 vm_map_entry_t entry; 1758 int result = KERN_INVALID_ARGUMENT; 1759 1760 vm_map_lock(map); 1761 1762 VM_MAP_RANGE_CHECK(map, start, end); 1763 1764 if (vm_map_lookup_entry(map, start, &entry)) { 1765 vm_map_clip_start(map, entry, start); 1766 } else 1767 entry = entry->next; 1768 1769 vm_map_clip_end(map, entry, end); 1770 1771 if ((entry->start == start) && (entry->end == end) && 1772 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1773 (entry->object.vm_object == NULL)) { 1774 entry->object.sub_map = submap; 1775 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1776 result = KERN_SUCCESS; 1777 } 1778 vm_map_unlock(map); 1779 1780 return (result); 1781 } 1782 1783 /* 1784 * The maximum number of pages to map 1785 */ 1786 #define MAX_INIT_PT 96 1787 1788 /* 1789 * vm_map_pmap_enter: 1790 * 1791 * Preload read-only mappings for the given object's resident pages into 1792 * the given map. This eliminates the soft faults on process startup and 1793 * immediately after an mmap(2). Because these are speculative mappings, 1794 * cached pages are not reactivated and mapped. 1795 */ 1796 void 1797 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1798 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1799 { 1800 vm_offset_t start; 1801 vm_page_t p, p_start; 1802 vm_pindex_t psize, tmpidx; 1803 1804 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1805 return; 1806 VM_OBJECT_LOCK(object); 1807 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1808 pmap_object_init_pt(map->pmap, addr, object, pindex, size); 1809 goto unlock_return; 1810 } 1811 1812 psize = atop(size); 1813 1814 if ((flags & MAP_PREFAULT_PARTIAL) && psize > MAX_INIT_PT && 1815 object->resident_page_count > MAX_INIT_PT) 1816 goto unlock_return; 1817 1818 if (psize + pindex > object->size) { 1819 if (object->size < pindex) 1820 goto unlock_return; 1821 psize = object->size - pindex; 1822 } 1823 1824 start = 0; 1825 p_start = NULL; 1826 1827 p = vm_page_find_least(object, pindex); 1828 /* 1829 * Assert: the variable p is either (1) the page with the 1830 * least pindex greater than or equal to the parameter pindex 1831 * or (2) NULL. 1832 */ 1833 for (; 1834 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1835 p = TAILQ_NEXT(p, listq)) { 1836 /* 1837 * don't allow an madvise to blow away our really 1838 * free pages allocating pv entries. 1839 */ 1840 if ((flags & MAP_PREFAULT_MADVISE) && 1841 cnt.v_free_count < cnt.v_free_reserved) { 1842 psize = tmpidx; 1843 break; 1844 } 1845 if (p->valid == VM_PAGE_BITS_ALL) { 1846 if (p_start == NULL) { 1847 start = addr + ptoa(tmpidx); 1848 p_start = p; 1849 } 1850 } else if (p_start != NULL) { 1851 pmap_enter_object(map->pmap, start, addr + 1852 ptoa(tmpidx), p_start, prot); 1853 p_start = NULL; 1854 } 1855 } 1856 if (p_start != NULL) 1857 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1858 p_start, prot); 1859 unlock_return: 1860 VM_OBJECT_UNLOCK(object); 1861 } 1862 1863 /* 1864 * vm_map_protect: 1865 * 1866 * Sets the protection of the specified address 1867 * region in the target map. If "set_max" is 1868 * specified, the maximum protection is to be set; 1869 * otherwise, only the current protection is affected. 1870 */ 1871 int 1872 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1873 vm_prot_t new_prot, boolean_t set_max) 1874 { 1875 vm_map_entry_t current, entry; 1876 vm_object_t obj; 1877 struct ucred *cred; 1878 vm_prot_t old_prot; 1879 1880 vm_map_lock(map); 1881 1882 VM_MAP_RANGE_CHECK(map, start, end); 1883 1884 if (vm_map_lookup_entry(map, start, &entry)) { 1885 vm_map_clip_start(map, entry, start); 1886 } else { 1887 entry = entry->next; 1888 } 1889 1890 /* 1891 * Make a first pass to check for protection violations. 1892 */ 1893 current = entry; 1894 while ((current != &map->header) && (current->start < end)) { 1895 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1896 vm_map_unlock(map); 1897 return (KERN_INVALID_ARGUMENT); 1898 } 1899 if ((new_prot & current->max_protection) != new_prot) { 1900 vm_map_unlock(map); 1901 return (KERN_PROTECTION_FAILURE); 1902 } 1903 current = current->next; 1904 } 1905 1906 1907 /* 1908 * Do an accounting pass for private read-only mappings that 1909 * now will do cow due to allowed write (e.g. debugger sets 1910 * breakpoint on text segment) 1911 */ 1912 for (current = entry; (current != &map->header) && 1913 (current->start < end); current = current->next) { 1914 1915 vm_map_clip_end(map, current, end); 1916 1917 if (set_max || 1918 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1919 ENTRY_CHARGED(current)) { 1920 continue; 1921 } 1922 1923 cred = curthread->td_ucred; 1924 obj = current->object.vm_object; 1925 1926 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1927 if (!swap_reserve(current->end - current->start)) { 1928 vm_map_unlock(map); 1929 return (KERN_RESOURCE_SHORTAGE); 1930 } 1931 crhold(cred); 1932 current->cred = cred; 1933 continue; 1934 } 1935 1936 VM_OBJECT_LOCK(obj); 1937 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1938 VM_OBJECT_UNLOCK(obj); 1939 continue; 1940 } 1941 1942 /* 1943 * Charge for the whole object allocation now, since 1944 * we cannot distinguish between non-charged and 1945 * charged clipped mapping of the same object later. 1946 */ 1947 KASSERT(obj->charge == 0, 1948 ("vm_map_protect: object %p overcharged\n", obj)); 1949 if (!swap_reserve(ptoa(obj->size))) { 1950 VM_OBJECT_UNLOCK(obj); 1951 vm_map_unlock(map); 1952 return (KERN_RESOURCE_SHORTAGE); 1953 } 1954 1955 crhold(cred); 1956 obj->cred = cred; 1957 obj->charge = ptoa(obj->size); 1958 VM_OBJECT_UNLOCK(obj); 1959 } 1960 1961 /* 1962 * Go back and fix up protections. [Note that clipping is not 1963 * necessary the second time.] 1964 */ 1965 current = entry; 1966 while ((current != &map->header) && (current->start < end)) { 1967 old_prot = current->protection; 1968 1969 if (set_max) 1970 current->protection = 1971 (current->max_protection = new_prot) & 1972 old_prot; 1973 else 1974 current->protection = new_prot; 1975 1976 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1977 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1978 (current->protection & VM_PROT_WRITE) != 0 && 1979 (old_prot & VM_PROT_WRITE) == 0) { 1980 vm_fault_copy_entry(map, map, current, current, NULL); 1981 } 1982 1983 /* 1984 * When restricting access, update the physical map. Worry 1985 * about copy-on-write here. 1986 */ 1987 if ((old_prot & ~current->protection) != 0) { 1988 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1989 VM_PROT_ALL) 1990 pmap_protect(map->pmap, current->start, 1991 current->end, 1992 current->protection & MASK(current)); 1993 #undef MASK 1994 } 1995 vm_map_simplify_entry(map, current); 1996 current = current->next; 1997 } 1998 vm_map_unlock(map); 1999 return (KERN_SUCCESS); 2000 } 2001 2002 /* 2003 * vm_map_madvise: 2004 * 2005 * This routine traverses a processes map handling the madvise 2006 * system call. Advisories are classified as either those effecting 2007 * the vm_map_entry structure, or those effecting the underlying 2008 * objects. 2009 */ 2010 int 2011 vm_map_madvise( 2012 vm_map_t map, 2013 vm_offset_t start, 2014 vm_offset_t end, 2015 int behav) 2016 { 2017 vm_map_entry_t current, entry; 2018 int modify_map = 0; 2019 2020 /* 2021 * Some madvise calls directly modify the vm_map_entry, in which case 2022 * we need to use an exclusive lock on the map and we need to perform 2023 * various clipping operations. Otherwise we only need a read-lock 2024 * on the map. 2025 */ 2026 switch(behav) { 2027 case MADV_NORMAL: 2028 case MADV_SEQUENTIAL: 2029 case MADV_RANDOM: 2030 case MADV_NOSYNC: 2031 case MADV_AUTOSYNC: 2032 case MADV_NOCORE: 2033 case MADV_CORE: 2034 modify_map = 1; 2035 vm_map_lock(map); 2036 break; 2037 case MADV_WILLNEED: 2038 case MADV_DONTNEED: 2039 case MADV_FREE: 2040 vm_map_lock_read(map); 2041 break; 2042 default: 2043 return (KERN_INVALID_ARGUMENT); 2044 } 2045 2046 /* 2047 * Locate starting entry and clip if necessary. 2048 */ 2049 VM_MAP_RANGE_CHECK(map, start, end); 2050 2051 if (vm_map_lookup_entry(map, start, &entry)) { 2052 if (modify_map) 2053 vm_map_clip_start(map, entry, start); 2054 } else { 2055 entry = entry->next; 2056 } 2057 2058 if (modify_map) { 2059 /* 2060 * madvise behaviors that are implemented in the vm_map_entry. 2061 * 2062 * We clip the vm_map_entry so that behavioral changes are 2063 * limited to the specified address range. 2064 */ 2065 for (current = entry; 2066 (current != &map->header) && (current->start < end); 2067 current = current->next 2068 ) { 2069 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2070 continue; 2071 2072 vm_map_clip_end(map, current, end); 2073 2074 switch (behav) { 2075 case MADV_NORMAL: 2076 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2077 break; 2078 case MADV_SEQUENTIAL: 2079 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2080 break; 2081 case MADV_RANDOM: 2082 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2083 break; 2084 case MADV_NOSYNC: 2085 current->eflags |= MAP_ENTRY_NOSYNC; 2086 break; 2087 case MADV_AUTOSYNC: 2088 current->eflags &= ~MAP_ENTRY_NOSYNC; 2089 break; 2090 case MADV_NOCORE: 2091 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2092 break; 2093 case MADV_CORE: 2094 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2095 break; 2096 default: 2097 break; 2098 } 2099 vm_map_simplify_entry(map, current); 2100 } 2101 vm_map_unlock(map); 2102 } else { 2103 vm_pindex_t pstart, pend; 2104 2105 /* 2106 * madvise behaviors that are implemented in the underlying 2107 * vm_object. 2108 * 2109 * Since we don't clip the vm_map_entry, we have to clip 2110 * the vm_object pindex and count. 2111 */ 2112 for (current = entry; 2113 (current != &map->header) && (current->start < end); 2114 current = current->next 2115 ) { 2116 vm_offset_t useStart; 2117 2118 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2119 continue; 2120 2121 pstart = OFF_TO_IDX(current->offset); 2122 pend = pstart + atop(current->end - current->start); 2123 useStart = current->start; 2124 2125 if (current->start < start) { 2126 pstart += atop(start - current->start); 2127 useStart = start; 2128 } 2129 if (current->end > end) 2130 pend -= atop(current->end - end); 2131 2132 if (pstart >= pend) 2133 continue; 2134 2135 vm_object_madvise(current->object.vm_object, pstart, 2136 pend, behav); 2137 if (behav == MADV_WILLNEED) { 2138 vm_map_pmap_enter(map, 2139 useStart, 2140 current->protection, 2141 current->object.vm_object, 2142 pstart, 2143 ptoa(pend - pstart), 2144 MAP_PREFAULT_MADVISE 2145 ); 2146 } 2147 } 2148 vm_map_unlock_read(map); 2149 } 2150 return (0); 2151 } 2152 2153 2154 /* 2155 * vm_map_inherit: 2156 * 2157 * Sets the inheritance of the specified address 2158 * range in the target map. Inheritance 2159 * affects how the map will be shared with 2160 * child maps at the time of vmspace_fork. 2161 */ 2162 int 2163 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2164 vm_inherit_t new_inheritance) 2165 { 2166 vm_map_entry_t entry; 2167 vm_map_entry_t temp_entry; 2168 2169 switch (new_inheritance) { 2170 case VM_INHERIT_NONE: 2171 case VM_INHERIT_COPY: 2172 case VM_INHERIT_SHARE: 2173 break; 2174 default: 2175 return (KERN_INVALID_ARGUMENT); 2176 } 2177 vm_map_lock(map); 2178 VM_MAP_RANGE_CHECK(map, start, end); 2179 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2180 entry = temp_entry; 2181 vm_map_clip_start(map, entry, start); 2182 } else 2183 entry = temp_entry->next; 2184 while ((entry != &map->header) && (entry->start < end)) { 2185 vm_map_clip_end(map, entry, end); 2186 entry->inheritance = new_inheritance; 2187 vm_map_simplify_entry(map, entry); 2188 entry = entry->next; 2189 } 2190 vm_map_unlock(map); 2191 return (KERN_SUCCESS); 2192 } 2193 2194 /* 2195 * vm_map_unwire: 2196 * 2197 * Implements both kernel and user unwiring. 2198 */ 2199 int 2200 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2201 int flags) 2202 { 2203 vm_map_entry_t entry, first_entry, tmp_entry; 2204 vm_offset_t saved_start; 2205 unsigned int last_timestamp; 2206 int rv; 2207 boolean_t need_wakeup, result, user_unwire; 2208 2209 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2210 vm_map_lock(map); 2211 VM_MAP_RANGE_CHECK(map, start, end); 2212 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2213 if (flags & VM_MAP_WIRE_HOLESOK) 2214 first_entry = first_entry->next; 2215 else { 2216 vm_map_unlock(map); 2217 return (KERN_INVALID_ADDRESS); 2218 } 2219 } 2220 last_timestamp = map->timestamp; 2221 entry = first_entry; 2222 while (entry != &map->header && entry->start < end) { 2223 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2224 /* 2225 * We have not yet clipped the entry. 2226 */ 2227 saved_start = (start >= entry->start) ? start : 2228 entry->start; 2229 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2230 if (vm_map_unlock_and_wait(map, 0)) { 2231 /* 2232 * Allow interruption of user unwiring? 2233 */ 2234 } 2235 vm_map_lock(map); 2236 if (last_timestamp+1 != map->timestamp) { 2237 /* 2238 * Look again for the entry because the map was 2239 * modified while it was unlocked. 2240 * Specifically, the entry may have been 2241 * clipped, merged, or deleted. 2242 */ 2243 if (!vm_map_lookup_entry(map, saved_start, 2244 &tmp_entry)) { 2245 if (flags & VM_MAP_WIRE_HOLESOK) 2246 tmp_entry = tmp_entry->next; 2247 else { 2248 if (saved_start == start) { 2249 /* 2250 * First_entry has been deleted. 2251 */ 2252 vm_map_unlock(map); 2253 return (KERN_INVALID_ADDRESS); 2254 } 2255 end = saved_start; 2256 rv = KERN_INVALID_ADDRESS; 2257 goto done; 2258 } 2259 } 2260 if (entry == first_entry) 2261 first_entry = tmp_entry; 2262 else 2263 first_entry = NULL; 2264 entry = tmp_entry; 2265 } 2266 last_timestamp = map->timestamp; 2267 continue; 2268 } 2269 vm_map_clip_start(map, entry, start); 2270 vm_map_clip_end(map, entry, end); 2271 /* 2272 * Mark the entry in case the map lock is released. (See 2273 * above.) 2274 */ 2275 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2276 /* 2277 * Check the map for holes in the specified region. 2278 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2279 */ 2280 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2281 (entry->end < end && (entry->next == &map->header || 2282 entry->next->start > entry->end))) { 2283 end = entry->end; 2284 rv = KERN_INVALID_ADDRESS; 2285 goto done; 2286 } 2287 /* 2288 * If system unwiring, require that the entry is system wired. 2289 */ 2290 if (!user_unwire && 2291 vm_map_entry_system_wired_count(entry) == 0) { 2292 end = entry->end; 2293 rv = KERN_INVALID_ARGUMENT; 2294 goto done; 2295 } 2296 entry = entry->next; 2297 } 2298 rv = KERN_SUCCESS; 2299 done: 2300 need_wakeup = FALSE; 2301 if (first_entry == NULL) { 2302 result = vm_map_lookup_entry(map, start, &first_entry); 2303 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2304 first_entry = first_entry->next; 2305 else 2306 KASSERT(result, ("vm_map_unwire: lookup failed")); 2307 } 2308 entry = first_entry; 2309 while (entry != &map->header && entry->start < end) { 2310 if (rv == KERN_SUCCESS && (!user_unwire || 2311 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2312 if (user_unwire) 2313 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2314 entry->wired_count--; 2315 if (entry->wired_count == 0) { 2316 /* 2317 * Retain the map lock. 2318 */ 2319 vm_fault_unwire(map, entry->start, entry->end, 2320 entry->object.vm_object != NULL && 2321 (entry->object.vm_object->type == OBJT_DEVICE || 2322 entry->object.vm_object->type == OBJT_SG)); 2323 } 2324 } 2325 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2326 ("vm_map_unwire: in-transition flag missing")); 2327 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2328 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2329 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2330 need_wakeup = TRUE; 2331 } 2332 vm_map_simplify_entry(map, entry); 2333 entry = entry->next; 2334 } 2335 vm_map_unlock(map); 2336 if (need_wakeup) 2337 vm_map_wakeup(map); 2338 return (rv); 2339 } 2340 2341 /* 2342 * vm_map_wire: 2343 * 2344 * Implements both kernel and user wiring. 2345 */ 2346 int 2347 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2348 int flags) 2349 { 2350 vm_map_entry_t entry, first_entry, tmp_entry; 2351 vm_offset_t saved_end, saved_start; 2352 unsigned int last_timestamp; 2353 int rv; 2354 boolean_t fictitious, need_wakeup, result, user_wire; 2355 vm_prot_t prot; 2356 2357 prot = 0; 2358 if (flags & VM_MAP_WIRE_WRITE) 2359 prot |= VM_PROT_WRITE; 2360 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2361 vm_map_lock(map); 2362 VM_MAP_RANGE_CHECK(map, start, end); 2363 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2364 if (flags & VM_MAP_WIRE_HOLESOK) 2365 first_entry = first_entry->next; 2366 else { 2367 vm_map_unlock(map); 2368 return (KERN_INVALID_ADDRESS); 2369 } 2370 } 2371 last_timestamp = map->timestamp; 2372 entry = first_entry; 2373 while (entry != &map->header && entry->start < end) { 2374 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2375 /* 2376 * We have not yet clipped the entry. 2377 */ 2378 saved_start = (start >= entry->start) ? start : 2379 entry->start; 2380 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2381 if (vm_map_unlock_and_wait(map, 0)) { 2382 /* 2383 * Allow interruption of user wiring? 2384 */ 2385 } 2386 vm_map_lock(map); 2387 if (last_timestamp + 1 != map->timestamp) { 2388 /* 2389 * Look again for the entry because the map was 2390 * modified while it was unlocked. 2391 * Specifically, the entry may have been 2392 * clipped, merged, or deleted. 2393 */ 2394 if (!vm_map_lookup_entry(map, saved_start, 2395 &tmp_entry)) { 2396 if (flags & VM_MAP_WIRE_HOLESOK) 2397 tmp_entry = tmp_entry->next; 2398 else { 2399 if (saved_start == start) { 2400 /* 2401 * first_entry has been deleted. 2402 */ 2403 vm_map_unlock(map); 2404 return (KERN_INVALID_ADDRESS); 2405 } 2406 end = saved_start; 2407 rv = KERN_INVALID_ADDRESS; 2408 goto done; 2409 } 2410 } 2411 if (entry == first_entry) 2412 first_entry = tmp_entry; 2413 else 2414 first_entry = NULL; 2415 entry = tmp_entry; 2416 } 2417 last_timestamp = map->timestamp; 2418 continue; 2419 } 2420 vm_map_clip_start(map, entry, start); 2421 vm_map_clip_end(map, entry, end); 2422 /* 2423 * Mark the entry in case the map lock is released. (See 2424 * above.) 2425 */ 2426 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2427 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2428 || (entry->protection & prot) != prot) { 2429 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2430 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2431 end = entry->end; 2432 rv = KERN_INVALID_ADDRESS; 2433 goto done; 2434 } 2435 goto next_entry; 2436 } 2437 if (entry->wired_count == 0) { 2438 entry->wired_count++; 2439 saved_start = entry->start; 2440 saved_end = entry->end; 2441 fictitious = entry->object.vm_object != NULL && 2442 (entry->object.vm_object->type == OBJT_DEVICE || 2443 entry->object.vm_object->type == OBJT_SG); 2444 /* 2445 * Release the map lock, relying on the in-transition 2446 * mark. Mark the map busy for fork. 2447 */ 2448 vm_map_busy(map); 2449 vm_map_unlock(map); 2450 rv = vm_fault_wire(map, saved_start, saved_end, 2451 fictitious); 2452 vm_map_lock(map); 2453 vm_map_unbusy(map); 2454 if (last_timestamp + 1 != map->timestamp) { 2455 /* 2456 * Look again for the entry because the map was 2457 * modified while it was unlocked. The entry 2458 * may have been clipped, but NOT merged or 2459 * deleted. 2460 */ 2461 result = vm_map_lookup_entry(map, saved_start, 2462 &tmp_entry); 2463 KASSERT(result, ("vm_map_wire: lookup failed")); 2464 if (entry == first_entry) 2465 first_entry = tmp_entry; 2466 else 2467 first_entry = NULL; 2468 entry = tmp_entry; 2469 while (entry->end < saved_end) { 2470 if (rv != KERN_SUCCESS) { 2471 KASSERT(entry->wired_count == 1, 2472 ("vm_map_wire: bad count")); 2473 entry->wired_count = -1; 2474 } 2475 entry = entry->next; 2476 } 2477 } 2478 last_timestamp = map->timestamp; 2479 if (rv != KERN_SUCCESS) { 2480 KASSERT(entry->wired_count == 1, 2481 ("vm_map_wire: bad count")); 2482 /* 2483 * Assign an out-of-range value to represent 2484 * the failure to wire this entry. 2485 */ 2486 entry->wired_count = -1; 2487 end = entry->end; 2488 goto done; 2489 } 2490 } else if (!user_wire || 2491 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2492 entry->wired_count++; 2493 } 2494 /* 2495 * Check the map for holes in the specified region. 2496 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2497 */ 2498 next_entry: 2499 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2500 (entry->end < end && (entry->next == &map->header || 2501 entry->next->start > entry->end))) { 2502 end = entry->end; 2503 rv = KERN_INVALID_ADDRESS; 2504 goto done; 2505 } 2506 entry = entry->next; 2507 } 2508 rv = KERN_SUCCESS; 2509 done: 2510 need_wakeup = FALSE; 2511 if (first_entry == NULL) { 2512 result = vm_map_lookup_entry(map, start, &first_entry); 2513 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2514 first_entry = first_entry->next; 2515 else 2516 KASSERT(result, ("vm_map_wire: lookup failed")); 2517 } 2518 entry = first_entry; 2519 while (entry != &map->header && entry->start < end) { 2520 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2521 goto next_entry_done; 2522 if (rv == KERN_SUCCESS) { 2523 if (user_wire) 2524 entry->eflags |= MAP_ENTRY_USER_WIRED; 2525 } else if (entry->wired_count == -1) { 2526 /* 2527 * Wiring failed on this entry. Thus, unwiring is 2528 * unnecessary. 2529 */ 2530 entry->wired_count = 0; 2531 } else { 2532 if (!user_wire || 2533 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2534 entry->wired_count--; 2535 if (entry->wired_count == 0) { 2536 /* 2537 * Retain the map lock. 2538 */ 2539 vm_fault_unwire(map, entry->start, entry->end, 2540 entry->object.vm_object != NULL && 2541 (entry->object.vm_object->type == OBJT_DEVICE || 2542 entry->object.vm_object->type == OBJT_SG)); 2543 } 2544 } 2545 next_entry_done: 2546 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2547 ("vm_map_wire: in-transition flag missing")); 2548 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED); 2549 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2550 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2551 need_wakeup = TRUE; 2552 } 2553 vm_map_simplify_entry(map, entry); 2554 entry = entry->next; 2555 } 2556 vm_map_unlock(map); 2557 if (need_wakeup) 2558 vm_map_wakeup(map); 2559 return (rv); 2560 } 2561 2562 /* 2563 * vm_map_sync 2564 * 2565 * Push any dirty cached pages in the address range to their pager. 2566 * If syncio is TRUE, dirty pages are written synchronously. 2567 * If invalidate is TRUE, any cached pages are freed as well. 2568 * 2569 * If the size of the region from start to end is zero, we are 2570 * supposed to flush all modified pages within the region containing 2571 * start. Unfortunately, a region can be split or coalesced with 2572 * neighboring regions, making it difficult to determine what the 2573 * original region was. Therefore, we approximate this requirement by 2574 * flushing the current region containing start. 2575 * 2576 * Returns an error if any part of the specified range is not mapped. 2577 */ 2578 int 2579 vm_map_sync( 2580 vm_map_t map, 2581 vm_offset_t start, 2582 vm_offset_t end, 2583 boolean_t syncio, 2584 boolean_t invalidate) 2585 { 2586 vm_map_entry_t current; 2587 vm_map_entry_t entry; 2588 vm_size_t size; 2589 vm_object_t object; 2590 vm_ooffset_t offset; 2591 unsigned int last_timestamp; 2592 boolean_t failed; 2593 2594 vm_map_lock_read(map); 2595 VM_MAP_RANGE_CHECK(map, start, end); 2596 if (!vm_map_lookup_entry(map, start, &entry)) { 2597 vm_map_unlock_read(map); 2598 return (KERN_INVALID_ADDRESS); 2599 } else if (start == end) { 2600 start = entry->start; 2601 end = entry->end; 2602 } 2603 /* 2604 * Make a first pass to check for user-wired memory and holes. 2605 */ 2606 for (current = entry; current != &map->header && current->start < end; 2607 current = current->next) { 2608 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2609 vm_map_unlock_read(map); 2610 return (KERN_INVALID_ARGUMENT); 2611 } 2612 if (end > current->end && 2613 (current->next == &map->header || 2614 current->end != current->next->start)) { 2615 vm_map_unlock_read(map); 2616 return (KERN_INVALID_ADDRESS); 2617 } 2618 } 2619 2620 if (invalidate) 2621 pmap_remove(map->pmap, start, end); 2622 failed = FALSE; 2623 2624 /* 2625 * Make a second pass, cleaning/uncaching pages from the indicated 2626 * objects as we go. 2627 */ 2628 for (current = entry; current != &map->header && current->start < end;) { 2629 offset = current->offset + (start - current->start); 2630 size = (end <= current->end ? end : current->end) - start; 2631 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2632 vm_map_t smap; 2633 vm_map_entry_t tentry; 2634 vm_size_t tsize; 2635 2636 smap = current->object.sub_map; 2637 vm_map_lock_read(smap); 2638 (void) vm_map_lookup_entry(smap, offset, &tentry); 2639 tsize = tentry->end - offset; 2640 if (tsize < size) 2641 size = tsize; 2642 object = tentry->object.vm_object; 2643 offset = tentry->offset + (offset - tentry->start); 2644 vm_map_unlock_read(smap); 2645 } else { 2646 object = current->object.vm_object; 2647 } 2648 vm_object_reference(object); 2649 last_timestamp = map->timestamp; 2650 vm_map_unlock_read(map); 2651 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2652 failed = TRUE; 2653 start += size; 2654 vm_object_deallocate(object); 2655 vm_map_lock_read(map); 2656 if (last_timestamp == map->timestamp || 2657 !vm_map_lookup_entry(map, start, ¤t)) 2658 current = current->next; 2659 } 2660 2661 vm_map_unlock_read(map); 2662 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2663 } 2664 2665 /* 2666 * vm_map_entry_unwire: [ internal use only ] 2667 * 2668 * Make the region specified by this entry pageable. 2669 * 2670 * The map in question should be locked. 2671 * [This is the reason for this routine's existence.] 2672 */ 2673 static void 2674 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2675 { 2676 vm_fault_unwire(map, entry->start, entry->end, 2677 entry->object.vm_object != NULL && 2678 (entry->object.vm_object->type == OBJT_DEVICE || 2679 entry->object.vm_object->type == OBJT_SG)); 2680 entry->wired_count = 0; 2681 } 2682 2683 static void 2684 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2685 { 2686 2687 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2688 vm_object_deallocate(entry->object.vm_object); 2689 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2690 } 2691 2692 /* 2693 * vm_map_entry_delete: [ internal use only ] 2694 * 2695 * Deallocate the given entry from the target map. 2696 */ 2697 static void 2698 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2699 { 2700 vm_object_t object; 2701 vm_pindex_t offidxstart, offidxend, count, size1; 2702 vm_ooffset_t size; 2703 2704 vm_map_entry_unlink(map, entry); 2705 object = entry->object.vm_object; 2706 size = entry->end - entry->start; 2707 map->size -= size; 2708 2709 if (entry->cred != NULL) { 2710 swap_release_by_cred(size, entry->cred); 2711 crfree(entry->cred); 2712 } 2713 2714 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2715 (object != NULL)) { 2716 KASSERT(entry->cred == NULL || object->cred == NULL || 2717 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2718 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2719 count = OFF_TO_IDX(size); 2720 offidxstart = OFF_TO_IDX(entry->offset); 2721 offidxend = offidxstart + count; 2722 VM_OBJECT_LOCK(object); 2723 if (object->ref_count != 1 && 2724 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2725 object == kernel_object || object == kmem_object)) { 2726 vm_object_collapse(object); 2727 2728 /* 2729 * The option OBJPR_NOTMAPPED can be passed here 2730 * because vm_map_delete() already performed 2731 * pmap_remove() on the only mapping to this range 2732 * of pages. 2733 */ 2734 vm_object_page_remove(object, offidxstart, offidxend, 2735 OBJPR_NOTMAPPED); 2736 if (object->type == OBJT_SWAP) 2737 swap_pager_freespace(object, offidxstart, count); 2738 if (offidxend >= object->size && 2739 offidxstart < object->size) { 2740 size1 = object->size; 2741 object->size = offidxstart; 2742 if (object->cred != NULL) { 2743 size1 -= object->size; 2744 KASSERT(object->charge >= ptoa(size1), 2745 ("vm_map_entry_delete: object->charge < 0")); 2746 swap_release_by_cred(ptoa(size1), object->cred); 2747 object->charge -= ptoa(size1); 2748 } 2749 } 2750 } 2751 VM_OBJECT_UNLOCK(object); 2752 } else 2753 entry->object.vm_object = NULL; 2754 if (map->system_map) 2755 vm_map_entry_deallocate(entry, TRUE); 2756 else { 2757 entry->next = curthread->td_map_def_user; 2758 curthread->td_map_def_user = entry; 2759 } 2760 } 2761 2762 /* 2763 * vm_map_delete: [ internal use only ] 2764 * 2765 * Deallocates the given address range from the target 2766 * map. 2767 */ 2768 int 2769 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2770 { 2771 vm_map_entry_t entry; 2772 vm_map_entry_t first_entry; 2773 2774 VM_MAP_ASSERT_LOCKED(map); 2775 2776 /* 2777 * Find the start of the region, and clip it 2778 */ 2779 if (!vm_map_lookup_entry(map, start, &first_entry)) 2780 entry = first_entry->next; 2781 else { 2782 entry = first_entry; 2783 vm_map_clip_start(map, entry, start); 2784 } 2785 2786 /* 2787 * Step through all entries in this region 2788 */ 2789 while ((entry != &map->header) && (entry->start < end)) { 2790 vm_map_entry_t next; 2791 2792 /* 2793 * Wait for wiring or unwiring of an entry to complete. 2794 * Also wait for any system wirings to disappear on 2795 * user maps. 2796 */ 2797 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2798 (vm_map_pmap(map) != kernel_pmap && 2799 vm_map_entry_system_wired_count(entry) != 0)) { 2800 unsigned int last_timestamp; 2801 vm_offset_t saved_start; 2802 vm_map_entry_t tmp_entry; 2803 2804 saved_start = entry->start; 2805 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2806 last_timestamp = map->timestamp; 2807 (void) vm_map_unlock_and_wait(map, 0); 2808 vm_map_lock(map); 2809 if (last_timestamp + 1 != map->timestamp) { 2810 /* 2811 * Look again for the entry because the map was 2812 * modified while it was unlocked. 2813 * Specifically, the entry may have been 2814 * clipped, merged, or deleted. 2815 */ 2816 if (!vm_map_lookup_entry(map, saved_start, 2817 &tmp_entry)) 2818 entry = tmp_entry->next; 2819 else { 2820 entry = tmp_entry; 2821 vm_map_clip_start(map, entry, 2822 saved_start); 2823 } 2824 } 2825 continue; 2826 } 2827 vm_map_clip_end(map, entry, end); 2828 2829 next = entry->next; 2830 2831 /* 2832 * Unwire before removing addresses from the pmap; otherwise, 2833 * unwiring will put the entries back in the pmap. 2834 */ 2835 if (entry->wired_count != 0) { 2836 vm_map_entry_unwire(map, entry); 2837 } 2838 2839 pmap_remove(map->pmap, entry->start, entry->end); 2840 2841 /* 2842 * Delete the entry only after removing all pmap 2843 * entries pointing to its pages. (Otherwise, its 2844 * page frames may be reallocated, and any modify bits 2845 * will be set in the wrong object!) 2846 */ 2847 vm_map_entry_delete(map, entry); 2848 entry = next; 2849 } 2850 return (KERN_SUCCESS); 2851 } 2852 2853 /* 2854 * vm_map_remove: 2855 * 2856 * Remove the given address range from the target map. 2857 * This is the exported form of vm_map_delete. 2858 */ 2859 int 2860 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2861 { 2862 int result; 2863 2864 vm_map_lock(map); 2865 VM_MAP_RANGE_CHECK(map, start, end); 2866 result = vm_map_delete(map, start, end); 2867 vm_map_unlock(map); 2868 return (result); 2869 } 2870 2871 /* 2872 * vm_map_check_protection: 2873 * 2874 * Assert that the target map allows the specified privilege on the 2875 * entire address region given. The entire region must be allocated. 2876 * 2877 * WARNING! This code does not and should not check whether the 2878 * contents of the region is accessible. For example a smaller file 2879 * might be mapped into a larger address space. 2880 * 2881 * NOTE! This code is also called by munmap(). 2882 * 2883 * The map must be locked. A read lock is sufficient. 2884 */ 2885 boolean_t 2886 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2887 vm_prot_t protection) 2888 { 2889 vm_map_entry_t entry; 2890 vm_map_entry_t tmp_entry; 2891 2892 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2893 return (FALSE); 2894 entry = tmp_entry; 2895 2896 while (start < end) { 2897 if (entry == &map->header) 2898 return (FALSE); 2899 /* 2900 * No holes allowed! 2901 */ 2902 if (start < entry->start) 2903 return (FALSE); 2904 /* 2905 * Check protection associated with entry. 2906 */ 2907 if ((entry->protection & protection) != protection) 2908 return (FALSE); 2909 /* go to next entry */ 2910 start = entry->end; 2911 entry = entry->next; 2912 } 2913 return (TRUE); 2914 } 2915 2916 /* 2917 * vm_map_copy_entry: 2918 * 2919 * Copies the contents of the source entry to the destination 2920 * entry. The entries *must* be aligned properly. 2921 */ 2922 static void 2923 vm_map_copy_entry( 2924 vm_map_t src_map, 2925 vm_map_t dst_map, 2926 vm_map_entry_t src_entry, 2927 vm_map_entry_t dst_entry, 2928 vm_ooffset_t *fork_charge) 2929 { 2930 vm_object_t src_object; 2931 vm_map_entry_t fake_entry; 2932 vm_offset_t size; 2933 struct ucred *cred; 2934 int charged; 2935 2936 VM_MAP_ASSERT_LOCKED(dst_map); 2937 2938 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2939 return; 2940 2941 if (src_entry->wired_count == 0) { 2942 2943 /* 2944 * If the source entry is marked needs_copy, it is already 2945 * write-protected. 2946 */ 2947 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2948 pmap_protect(src_map->pmap, 2949 src_entry->start, 2950 src_entry->end, 2951 src_entry->protection & ~VM_PROT_WRITE); 2952 } 2953 2954 /* 2955 * Make a copy of the object. 2956 */ 2957 size = src_entry->end - src_entry->start; 2958 if ((src_object = src_entry->object.vm_object) != NULL) { 2959 VM_OBJECT_LOCK(src_object); 2960 charged = ENTRY_CHARGED(src_entry); 2961 if ((src_object->handle == NULL) && 2962 (src_object->type == OBJT_DEFAULT || 2963 src_object->type == OBJT_SWAP)) { 2964 vm_object_collapse(src_object); 2965 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2966 vm_object_split(src_entry); 2967 src_object = src_entry->object.vm_object; 2968 } 2969 } 2970 vm_object_reference_locked(src_object); 2971 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2972 if (src_entry->cred != NULL && 2973 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 2974 KASSERT(src_object->cred == NULL, 2975 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 2976 src_object)); 2977 src_object->cred = src_entry->cred; 2978 src_object->charge = size; 2979 } 2980 VM_OBJECT_UNLOCK(src_object); 2981 dst_entry->object.vm_object = src_object; 2982 if (charged) { 2983 cred = curthread->td_ucred; 2984 crhold(cred); 2985 dst_entry->cred = cred; 2986 *fork_charge += size; 2987 if (!(src_entry->eflags & 2988 MAP_ENTRY_NEEDS_COPY)) { 2989 crhold(cred); 2990 src_entry->cred = cred; 2991 *fork_charge += size; 2992 } 2993 } 2994 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2995 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2996 dst_entry->offset = src_entry->offset; 2997 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 2998 /* 2999 * MAP_ENTRY_VN_WRITECNT cannot 3000 * indicate write reference from 3001 * src_entry, since the entry is 3002 * marked as needs copy. Allocate a 3003 * fake entry that is used to 3004 * decrement object->un_pager.vnp.writecount 3005 * at the appropriate time. Attach 3006 * fake_entry to the deferred list. 3007 */ 3008 fake_entry = vm_map_entry_create(dst_map); 3009 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3010 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3011 vm_object_reference(src_object); 3012 fake_entry->object.vm_object = src_object; 3013 fake_entry->start = src_entry->start; 3014 fake_entry->end = src_entry->end; 3015 fake_entry->next = curthread->td_map_def_user; 3016 curthread->td_map_def_user = fake_entry; 3017 } 3018 } else { 3019 dst_entry->object.vm_object = NULL; 3020 dst_entry->offset = 0; 3021 if (src_entry->cred != NULL) { 3022 dst_entry->cred = curthread->td_ucred; 3023 crhold(dst_entry->cred); 3024 *fork_charge += size; 3025 } 3026 } 3027 3028 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3029 dst_entry->end - dst_entry->start, src_entry->start); 3030 } else { 3031 /* 3032 * Of course, wired down pages can't be set copy-on-write. 3033 * Cause wired pages to be copied into the new map by 3034 * simulating faults (the new pages are pageable) 3035 */ 3036 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3037 fork_charge); 3038 } 3039 } 3040 3041 /* 3042 * vmspace_map_entry_forked: 3043 * Update the newly-forked vmspace each time a map entry is inherited 3044 * or copied. The values for vm_dsize and vm_tsize are approximate 3045 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3046 */ 3047 static void 3048 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3049 vm_map_entry_t entry) 3050 { 3051 vm_size_t entrysize; 3052 vm_offset_t newend; 3053 3054 entrysize = entry->end - entry->start; 3055 vm2->vm_map.size += entrysize; 3056 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3057 vm2->vm_ssize += btoc(entrysize); 3058 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3059 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3060 newend = MIN(entry->end, 3061 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3062 vm2->vm_dsize += btoc(newend - entry->start); 3063 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3064 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3065 newend = MIN(entry->end, 3066 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3067 vm2->vm_tsize += btoc(newend - entry->start); 3068 } 3069 } 3070 3071 /* 3072 * vmspace_fork: 3073 * Create a new process vmspace structure and vm_map 3074 * based on those of an existing process. The new map 3075 * is based on the old map, according to the inheritance 3076 * values on the regions in that map. 3077 * 3078 * XXX It might be worth coalescing the entries added to the new vmspace. 3079 * 3080 * The source map must not be locked. 3081 */ 3082 struct vmspace * 3083 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3084 { 3085 struct vmspace *vm2; 3086 vm_map_t new_map, old_map; 3087 vm_map_entry_t new_entry, old_entry; 3088 vm_object_t object; 3089 int locked; 3090 3091 old_map = &vm1->vm_map; 3092 /* Copy immutable fields of vm1 to vm2. */ 3093 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3094 if (vm2 == NULL) 3095 return (NULL); 3096 vm2->vm_taddr = vm1->vm_taddr; 3097 vm2->vm_daddr = vm1->vm_daddr; 3098 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3099 vm_map_lock(old_map); 3100 if (old_map->busy) 3101 vm_map_wait_busy(old_map); 3102 new_map = &vm2->vm_map; 3103 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3104 KASSERT(locked, ("vmspace_fork: lock failed")); 3105 3106 old_entry = old_map->header.next; 3107 3108 while (old_entry != &old_map->header) { 3109 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3110 panic("vm_map_fork: encountered a submap"); 3111 3112 switch (old_entry->inheritance) { 3113 case VM_INHERIT_NONE: 3114 break; 3115 3116 case VM_INHERIT_SHARE: 3117 /* 3118 * Clone the entry, creating the shared object if necessary. 3119 */ 3120 object = old_entry->object.vm_object; 3121 if (object == NULL) { 3122 object = vm_object_allocate(OBJT_DEFAULT, 3123 atop(old_entry->end - old_entry->start)); 3124 old_entry->object.vm_object = object; 3125 old_entry->offset = 0; 3126 if (old_entry->cred != NULL) { 3127 object->cred = old_entry->cred; 3128 object->charge = old_entry->end - 3129 old_entry->start; 3130 old_entry->cred = NULL; 3131 } 3132 } 3133 3134 /* 3135 * Add the reference before calling vm_object_shadow 3136 * to insure that a shadow object is created. 3137 */ 3138 vm_object_reference(object); 3139 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3140 vm_object_shadow(&old_entry->object.vm_object, 3141 &old_entry->offset, 3142 old_entry->end - old_entry->start); 3143 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3144 /* Transfer the second reference too. */ 3145 vm_object_reference( 3146 old_entry->object.vm_object); 3147 3148 /* 3149 * As in vm_map_simplify_entry(), the 3150 * vnode lock will not be acquired in 3151 * this call to vm_object_deallocate(). 3152 */ 3153 vm_object_deallocate(object); 3154 object = old_entry->object.vm_object; 3155 } 3156 VM_OBJECT_LOCK(object); 3157 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3158 if (old_entry->cred != NULL) { 3159 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3160 object->cred = old_entry->cred; 3161 object->charge = old_entry->end - old_entry->start; 3162 old_entry->cred = NULL; 3163 } 3164 VM_OBJECT_UNLOCK(object); 3165 3166 /* 3167 * Clone the entry, referencing the shared object. 3168 */ 3169 new_entry = vm_map_entry_create(new_map); 3170 *new_entry = *old_entry; 3171 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3172 MAP_ENTRY_IN_TRANSITION); 3173 new_entry->wired_count = 0; 3174 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3175 object = new_entry->object.vm_object; 3176 KASSERT(((struct vnode *)object->handle)-> 3177 v_writecount > 0, 3178 ("vmspace_fork: v_writecount")); 3179 KASSERT(object->un_pager.vnp.writemappings > 0, 3180 ("vmspace_fork: vnp.writecount")); 3181 vnode_pager_update_writecount(object, 3182 new_entry->start, new_entry->end); 3183 } 3184 3185 /* 3186 * Insert the entry into the new map -- we know we're 3187 * inserting at the end of the new map. 3188 */ 3189 vm_map_entry_link(new_map, new_map->header.prev, 3190 new_entry); 3191 vmspace_map_entry_forked(vm1, vm2, new_entry); 3192 3193 /* 3194 * Update the physical map 3195 */ 3196 pmap_copy(new_map->pmap, old_map->pmap, 3197 new_entry->start, 3198 (old_entry->end - old_entry->start), 3199 old_entry->start); 3200 break; 3201 3202 case VM_INHERIT_COPY: 3203 /* 3204 * Clone the entry and link into the map. 3205 */ 3206 new_entry = vm_map_entry_create(new_map); 3207 *new_entry = *old_entry; 3208 /* 3209 * Copied entry is COW over the old object. 3210 */ 3211 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3212 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3213 new_entry->wired_count = 0; 3214 new_entry->object.vm_object = NULL; 3215 new_entry->cred = NULL; 3216 vm_map_entry_link(new_map, new_map->header.prev, 3217 new_entry); 3218 vmspace_map_entry_forked(vm1, vm2, new_entry); 3219 vm_map_copy_entry(old_map, new_map, old_entry, 3220 new_entry, fork_charge); 3221 break; 3222 } 3223 old_entry = old_entry->next; 3224 } 3225 /* 3226 * Use inlined vm_map_unlock() to postpone handling the deferred 3227 * map entries, which cannot be done until both old_map and 3228 * new_map locks are released. 3229 */ 3230 sx_xunlock(&old_map->lock); 3231 sx_xunlock(&new_map->lock); 3232 vm_map_process_deferred(); 3233 3234 return (vm2); 3235 } 3236 3237 int 3238 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3239 vm_prot_t prot, vm_prot_t max, int cow) 3240 { 3241 vm_map_entry_t new_entry, prev_entry; 3242 vm_offset_t bot, top; 3243 vm_size_t init_ssize; 3244 int orient, rv; 3245 rlim_t vmemlim; 3246 3247 /* 3248 * The stack orientation is piggybacked with the cow argument. 3249 * Extract it into orient and mask the cow argument so that we 3250 * don't pass it around further. 3251 * NOTE: We explicitly allow bi-directional stacks. 3252 */ 3253 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3254 cow &= ~orient; 3255 KASSERT(orient != 0, ("No stack grow direction")); 3256 3257 if (addrbos < vm_map_min(map) || 3258 addrbos > vm_map_max(map) || 3259 addrbos + max_ssize < addrbos) 3260 return (KERN_NO_SPACE); 3261 3262 init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz; 3263 3264 PROC_LOCK(curthread->td_proc); 3265 vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM); 3266 PROC_UNLOCK(curthread->td_proc); 3267 3268 vm_map_lock(map); 3269 3270 /* If addr is already mapped, no go */ 3271 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3272 vm_map_unlock(map); 3273 return (KERN_NO_SPACE); 3274 } 3275 3276 /* If we would blow our VMEM resource limit, no go */ 3277 if (map->size + init_ssize > vmemlim) { 3278 vm_map_unlock(map); 3279 return (KERN_NO_SPACE); 3280 } 3281 3282 /* 3283 * If we can't accomodate max_ssize in the current mapping, no go. 3284 * However, we need to be aware that subsequent user mappings might 3285 * map into the space we have reserved for stack, and currently this 3286 * space is not protected. 3287 * 3288 * Hopefully we will at least detect this condition when we try to 3289 * grow the stack. 3290 */ 3291 if ((prev_entry->next != &map->header) && 3292 (prev_entry->next->start < addrbos + max_ssize)) { 3293 vm_map_unlock(map); 3294 return (KERN_NO_SPACE); 3295 } 3296 3297 /* 3298 * We initially map a stack of only init_ssize. We will grow as 3299 * needed later. Depending on the orientation of the stack (i.e. 3300 * the grow direction) we either map at the top of the range, the 3301 * bottom of the range or in the middle. 3302 * 3303 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3304 * and cow to be 0. Possibly we should eliminate these as input 3305 * parameters, and just pass these values here in the insert call. 3306 */ 3307 if (orient == MAP_STACK_GROWS_DOWN) 3308 bot = addrbos + max_ssize - init_ssize; 3309 else if (orient == MAP_STACK_GROWS_UP) 3310 bot = addrbos; 3311 else 3312 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3313 top = bot + init_ssize; 3314 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3315 3316 /* Now set the avail_ssize amount. */ 3317 if (rv == KERN_SUCCESS) { 3318 if (prev_entry != &map->header) 3319 vm_map_clip_end(map, prev_entry, bot); 3320 new_entry = prev_entry->next; 3321 if (new_entry->end != top || new_entry->start != bot) 3322 panic("Bad entry start/end for new stack entry"); 3323 3324 new_entry->avail_ssize = max_ssize - init_ssize; 3325 if (orient & MAP_STACK_GROWS_DOWN) 3326 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3327 if (orient & MAP_STACK_GROWS_UP) 3328 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3329 } 3330 3331 vm_map_unlock(map); 3332 return (rv); 3333 } 3334 3335 static int stack_guard_page = 0; 3336 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3337 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3338 &stack_guard_page, 0, 3339 "Insert stack guard page ahead of the growable segments."); 3340 3341 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3342 * desired address is already mapped, or if we successfully grow 3343 * the stack. Also returns KERN_SUCCESS if addr is outside the 3344 * stack range (this is strange, but preserves compatibility with 3345 * the grow function in vm_machdep.c). 3346 */ 3347 int 3348 vm_map_growstack(struct proc *p, vm_offset_t addr) 3349 { 3350 vm_map_entry_t next_entry, prev_entry; 3351 vm_map_entry_t new_entry, stack_entry; 3352 struct vmspace *vm = p->p_vmspace; 3353 vm_map_t map = &vm->vm_map; 3354 vm_offset_t end; 3355 size_t grow_amount, max_grow; 3356 rlim_t stacklim, vmemlim; 3357 int is_procstack, rv; 3358 struct ucred *cred; 3359 #ifdef notyet 3360 uint64_t limit; 3361 #endif 3362 #ifdef RACCT 3363 int error; 3364 #endif 3365 3366 Retry: 3367 PROC_LOCK(p); 3368 stacklim = lim_cur(p, RLIMIT_STACK); 3369 vmemlim = lim_cur(p, RLIMIT_VMEM); 3370 PROC_UNLOCK(p); 3371 3372 vm_map_lock_read(map); 3373 3374 /* If addr is already in the entry range, no need to grow.*/ 3375 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3376 vm_map_unlock_read(map); 3377 return (KERN_SUCCESS); 3378 } 3379 3380 next_entry = prev_entry->next; 3381 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3382 /* 3383 * This entry does not grow upwards. Since the address lies 3384 * beyond this entry, the next entry (if one exists) has to 3385 * be a downward growable entry. The entry list header is 3386 * never a growable entry, so it suffices to check the flags. 3387 */ 3388 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3389 vm_map_unlock_read(map); 3390 return (KERN_SUCCESS); 3391 } 3392 stack_entry = next_entry; 3393 } else { 3394 /* 3395 * This entry grows upward. If the next entry does not at 3396 * least grow downwards, this is the entry we need to grow. 3397 * otherwise we have two possible choices and we have to 3398 * select one. 3399 */ 3400 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3401 /* 3402 * We have two choices; grow the entry closest to 3403 * the address to minimize the amount of growth. 3404 */ 3405 if (addr - prev_entry->end <= next_entry->start - addr) 3406 stack_entry = prev_entry; 3407 else 3408 stack_entry = next_entry; 3409 } else 3410 stack_entry = prev_entry; 3411 } 3412 3413 if (stack_entry == next_entry) { 3414 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3415 KASSERT(addr < stack_entry->start, ("foo")); 3416 end = (prev_entry != &map->header) ? prev_entry->end : 3417 stack_entry->start - stack_entry->avail_ssize; 3418 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3419 max_grow = stack_entry->start - end; 3420 } else { 3421 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3422 KASSERT(addr >= stack_entry->end, ("foo")); 3423 end = (next_entry != &map->header) ? next_entry->start : 3424 stack_entry->end + stack_entry->avail_ssize; 3425 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3426 max_grow = end - stack_entry->end; 3427 } 3428 3429 if (grow_amount > stack_entry->avail_ssize) { 3430 vm_map_unlock_read(map); 3431 return (KERN_NO_SPACE); 3432 } 3433 3434 /* 3435 * If there is no longer enough space between the entries nogo, and 3436 * adjust the available space. Note: this should only happen if the 3437 * user has mapped into the stack area after the stack was created, 3438 * and is probably an error. 3439 * 3440 * This also effectively destroys any guard page the user might have 3441 * intended by limiting the stack size. 3442 */ 3443 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3444 if (vm_map_lock_upgrade(map)) 3445 goto Retry; 3446 3447 stack_entry->avail_ssize = max_grow; 3448 3449 vm_map_unlock(map); 3450 return (KERN_NO_SPACE); 3451 } 3452 3453 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3454 3455 /* 3456 * If this is the main process stack, see if we're over the stack 3457 * limit. 3458 */ 3459 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3460 vm_map_unlock_read(map); 3461 return (KERN_NO_SPACE); 3462 } 3463 #ifdef RACCT 3464 PROC_LOCK(p); 3465 if (is_procstack && 3466 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3467 PROC_UNLOCK(p); 3468 vm_map_unlock_read(map); 3469 return (KERN_NO_SPACE); 3470 } 3471 PROC_UNLOCK(p); 3472 #endif 3473 3474 /* Round up the grow amount modulo SGROWSIZ */ 3475 grow_amount = roundup (grow_amount, sgrowsiz); 3476 if (grow_amount > stack_entry->avail_ssize) 3477 grow_amount = stack_entry->avail_ssize; 3478 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3479 grow_amount = trunc_page((vm_size_t)stacklim) - 3480 ctob(vm->vm_ssize); 3481 } 3482 #ifdef notyet 3483 PROC_LOCK(p); 3484 limit = racct_get_available(p, RACCT_STACK); 3485 PROC_UNLOCK(p); 3486 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3487 grow_amount = limit - ctob(vm->vm_ssize); 3488 #endif 3489 3490 /* If we would blow our VMEM resource limit, no go */ 3491 if (map->size + grow_amount > vmemlim) { 3492 vm_map_unlock_read(map); 3493 rv = KERN_NO_SPACE; 3494 goto out; 3495 } 3496 #ifdef RACCT 3497 PROC_LOCK(p); 3498 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3499 PROC_UNLOCK(p); 3500 vm_map_unlock_read(map); 3501 rv = KERN_NO_SPACE; 3502 goto out; 3503 } 3504 PROC_UNLOCK(p); 3505 #endif 3506 3507 if (vm_map_lock_upgrade(map)) 3508 goto Retry; 3509 3510 if (stack_entry == next_entry) { 3511 /* 3512 * Growing downward. 3513 */ 3514 /* Get the preliminary new entry start value */ 3515 addr = stack_entry->start - grow_amount; 3516 3517 /* 3518 * If this puts us into the previous entry, cut back our 3519 * growth to the available space. Also, see the note above. 3520 */ 3521 if (addr < end) { 3522 stack_entry->avail_ssize = max_grow; 3523 addr = end; 3524 if (stack_guard_page) 3525 addr += PAGE_SIZE; 3526 } 3527 3528 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3529 p->p_sysent->sv_stackprot, VM_PROT_ALL, 0); 3530 3531 /* Adjust the available stack space by the amount we grew. */ 3532 if (rv == KERN_SUCCESS) { 3533 if (prev_entry != &map->header) 3534 vm_map_clip_end(map, prev_entry, addr); 3535 new_entry = prev_entry->next; 3536 KASSERT(new_entry == stack_entry->prev, ("foo")); 3537 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3538 KASSERT(new_entry->start == addr, ("foo")); 3539 grow_amount = new_entry->end - new_entry->start; 3540 new_entry->avail_ssize = stack_entry->avail_ssize - 3541 grow_amount; 3542 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3543 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3544 } 3545 } else { 3546 /* 3547 * Growing upward. 3548 */ 3549 addr = stack_entry->end + grow_amount; 3550 3551 /* 3552 * If this puts us into the next entry, cut back our growth 3553 * to the available space. Also, see the note above. 3554 */ 3555 if (addr > end) { 3556 stack_entry->avail_ssize = end - stack_entry->end; 3557 addr = end; 3558 if (stack_guard_page) 3559 addr -= PAGE_SIZE; 3560 } 3561 3562 grow_amount = addr - stack_entry->end; 3563 cred = stack_entry->cred; 3564 if (cred == NULL && stack_entry->object.vm_object != NULL) 3565 cred = stack_entry->object.vm_object->cred; 3566 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3567 rv = KERN_NO_SPACE; 3568 /* Grow the underlying object if applicable. */ 3569 else if (stack_entry->object.vm_object == NULL || 3570 vm_object_coalesce(stack_entry->object.vm_object, 3571 stack_entry->offset, 3572 (vm_size_t)(stack_entry->end - stack_entry->start), 3573 (vm_size_t)grow_amount, cred != NULL)) { 3574 map->size += (addr - stack_entry->end); 3575 /* Update the current entry. */ 3576 stack_entry->end = addr; 3577 stack_entry->avail_ssize -= grow_amount; 3578 vm_map_entry_resize_free(map, stack_entry); 3579 rv = KERN_SUCCESS; 3580 3581 if (next_entry != &map->header) 3582 vm_map_clip_start(map, next_entry, addr); 3583 } else 3584 rv = KERN_FAILURE; 3585 } 3586 3587 if (rv == KERN_SUCCESS && is_procstack) 3588 vm->vm_ssize += btoc(grow_amount); 3589 3590 vm_map_unlock(map); 3591 3592 /* 3593 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3594 */ 3595 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3596 vm_map_wire(map, 3597 (stack_entry == next_entry) ? addr : addr - grow_amount, 3598 (stack_entry == next_entry) ? stack_entry->start : addr, 3599 (p->p_flag & P_SYSTEM) 3600 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3601 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3602 } 3603 3604 out: 3605 #ifdef RACCT 3606 if (rv != KERN_SUCCESS) { 3607 PROC_LOCK(p); 3608 error = racct_set(p, RACCT_VMEM, map->size); 3609 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3610 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3611 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3612 PROC_UNLOCK(p); 3613 } 3614 #endif 3615 3616 return (rv); 3617 } 3618 3619 /* 3620 * Unshare the specified VM space for exec. If other processes are 3621 * mapped to it, then create a new one. The new vmspace is null. 3622 */ 3623 int 3624 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3625 { 3626 struct vmspace *oldvmspace = p->p_vmspace; 3627 struct vmspace *newvmspace; 3628 3629 newvmspace = vmspace_alloc(minuser, maxuser); 3630 if (newvmspace == NULL) 3631 return (ENOMEM); 3632 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3633 /* 3634 * This code is written like this for prototype purposes. The 3635 * goal is to avoid running down the vmspace here, but let the 3636 * other process's that are still using the vmspace to finally 3637 * run it down. Even though there is little or no chance of blocking 3638 * here, it is a good idea to keep this form for future mods. 3639 */ 3640 PROC_VMSPACE_LOCK(p); 3641 p->p_vmspace = newvmspace; 3642 PROC_VMSPACE_UNLOCK(p); 3643 if (p == curthread->td_proc) 3644 pmap_activate(curthread); 3645 vmspace_free(oldvmspace); 3646 return (0); 3647 } 3648 3649 /* 3650 * Unshare the specified VM space for forcing COW. This 3651 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3652 */ 3653 int 3654 vmspace_unshare(struct proc *p) 3655 { 3656 struct vmspace *oldvmspace = p->p_vmspace; 3657 struct vmspace *newvmspace; 3658 vm_ooffset_t fork_charge; 3659 3660 if (oldvmspace->vm_refcnt == 1) 3661 return (0); 3662 fork_charge = 0; 3663 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3664 if (newvmspace == NULL) 3665 return (ENOMEM); 3666 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3667 vmspace_free(newvmspace); 3668 return (ENOMEM); 3669 } 3670 PROC_VMSPACE_LOCK(p); 3671 p->p_vmspace = newvmspace; 3672 PROC_VMSPACE_UNLOCK(p); 3673 if (p == curthread->td_proc) 3674 pmap_activate(curthread); 3675 vmspace_free(oldvmspace); 3676 return (0); 3677 } 3678 3679 /* 3680 * vm_map_lookup: 3681 * 3682 * Finds the VM object, offset, and 3683 * protection for a given virtual address in the 3684 * specified map, assuming a page fault of the 3685 * type specified. 3686 * 3687 * Leaves the map in question locked for read; return 3688 * values are guaranteed until a vm_map_lookup_done 3689 * call is performed. Note that the map argument 3690 * is in/out; the returned map must be used in 3691 * the call to vm_map_lookup_done. 3692 * 3693 * A handle (out_entry) is returned for use in 3694 * vm_map_lookup_done, to make that fast. 3695 * 3696 * If a lookup is requested with "write protection" 3697 * specified, the map may be changed to perform virtual 3698 * copying operations, although the data referenced will 3699 * remain the same. 3700 */ 3701 int 3702 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3703 vm_offset_t vaddr, 3704 vm_prot_t fault_typea, 3705 vm_map_entry_t *out_entry, /* OUT */ 3706 vm_object_t *object, /* OUT */ 3707 vm_pindex_t *pindex, /* OUT */ 3708 vm_prot_t *out_prot, /* OUT */ 3709 boolean_t *wired) /* OUT */ 3710 { 3711 vm_map_entry_t entry; 3712 vm_map_t map = *var_map; 3713 vm_prot_t prot; 3714 vm_prot_t fault_type = fault_typea; 3715 vm_object_t eobject; 3716 vm_size_t size; 3717 struct ucred *cred; 3718 3719 RetryLookup:; 3720 3721 vm_map_lock_read(map); 3722 3723 /* 3724 * Lookup the faulting address. 3725 */ 3726 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3727 vm_map_unlock_read(map); 3728 return (KERN_INVALID_ADDRESS); 3729 } 3730 3731 entry = *out_entry; 3732 3733 /* 3734 * Handle submaps. 3735 */ 3736 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3737 vm_map_t old_map = map; 3738 3739 *var_map = map = entry->object.sub_map; 3740 vm_map_unlock_read(old_map); 3741 goto RetryLookup; 3742 } 3743 3744 /* 3745 * Check whether this task is allowed to have this page. 3746 */ 3747 prot = entry->protection; 3748 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3749 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3750 vm_map_unlock_read(map); 3751 return (KERN_PROTECTION_FAILURE); 3752 } 3753 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3754 (entry->eflags & MAP_ENTRY_COW) && 3755 (fault_type & VM_PROT_WRITE)) { 3756 vm_map_unlock_read(map); 3757 return (KERN_PROTECTION_FAILURE); 3758 } 3759 3760 /* 3761 * If this page is not pageable, we have to get it for all possible 3762 * accesses. 3763 */ 3764 *wired = (entry->wired_count != 0); 3765 if (*wired) 3766 fault_type = entry->protection; 3767 size = entry->end - entry->start; 3768 /* 3769 * If the entry was copy-on-write, we either ... 3770 */ 3771 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3772 /* 3773 * If we want to write the page, we may as well handle that 3774 * now since we've got the map locked. 3775 * 3776 * If we don't need to write the page, we just demote the 3777 * permissions allowed. 3778 */ 3779 if ((fault_type & VM_PROT_WRITE) != 0 || 3780 (fault_typea & VM_PROT_COPY) != 0) { 3781 /* 3782 * Make a new object, and place it in the object 3783 * chain. Note that no new references have appeared 3784 * -- one just moved from the map to the new 3785 * object. 3786 */ 3787 if (vm_map_lock_upgrade(map)) 3788 goto RetryLookup; 3789 3790 if (entry->cred == NULL) { 3791 /* 3792 * The debugger owner is charged for 3793 * the memory. 3794 */ 3795 cred = curthread->td_ucred; 3796 crhold(cred); 3797 if (!swap_reserve_by_cred(size, cred)) { 3798 crfree(cred); 3799 vm_map_unlock(map); 3800 return (KERN_RESOURCE_SHORTAGE); 3801 } 3802 entry->cred = cred; 3803 } 3804 vm_object_shadow(&entry->object.vm_object, 3805 &entry->offset, size); 3806 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3807 eobject = entry->object.vm_object; 3808 if (eobject->cred != NULL) { 3809 /* 3810 * The object was not shadowed. 3811 */ 3812 swap_release_by_cred(size, entry->cred); 3813 crfree(entry->cred); 3814 entry->cred = NULL; 3815 } else if (entry->cred != NULL) { 3816 VM_OBJECT_LOCK(eobject); 3817 eobject->cred = entry->cred; 3818 eobject->charge = size; 3819 VM_OBJECT_UNLOCK(eobject); 3820 entry->cred = NULL; 3821 } 3822 3823 vm_map_lock_downgrade(map); 3824 } else { 3825 /* 3826 * We're attempting to read a copy-on-write page -- 3827 * don't allow writes. 3828 */ 3829 prot &= ~VM_PROT_WRITE; 3830 } 3831 } 3832 3833 /* 3834 * Create an object if necessary. 3835 */ 3836 if (entry->object.vm_object == NULL && 3837 !map->system_map) { 3838 if (vm_map_lock_upgrade(map)) 3839 goto RetryLookup; 3840 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3841 atop(size)); 3842 entry->offset = 0; 3843 if (entry->cred != NULL) { 3844 VM_OBJECT_LOCK(entry->object.vm_object); 3845 entry->object.vm_object->cred = entry->cred; 3846 entry->object.vm_object->charge = size; 3847 VM_OBJECT_UNLOCK(entry->object.vm_object); 3848 entry->cred = NULL; 3849 } 3850 vm_map_lock_downgrade(map); 3851 } 3852 3853 /* 3854 * Return the object/offset from this entry. If the entry was 3855 * copy-on-write or empty, it has been fixed up. 3856 */ 3857 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3858 *object = entry->object.vm_object; 3859 3860 *out_prot = prot; 3861 return (KERN_SUCCESS); 3862 } 3863 3864 /* 3865 * vm_map_lookup_locked: 3866 * 3867 * Lookup the faulting address. A version of vm_map_lookup that returns 3868 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3869 */ 3870 int 3871 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3872 vm_offset_t vaddr, 3873 vm_prot_t fault_typea, 3874 vm_map_entry_t *out_entry, /* OUT */ 3875 vm_object_t *object, /* OUT */ 3876 vm_pindex_t *pindex, /* OUT */ 3877 vm_prot_t *out_prot, /* OUT */ 3878 boolean_t *wired) /* OUT */ 3879 { 3880 vm_map_entry_t entry; 3881 vm_map_t map = *var_map; 3882 vm_prot_t prot; 3883 vm_prot_t fault_type = fault_typea; 3884 3885 /* 3886 * Lookup the faulting address. 3887 */ 3888 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 3889 return (KERN_INVALID_ADDRESS); 3890 3891 entry = *out_entry; 3892 3893 /* 3894 * Fail if the entry refers to a submap. 3895 */ 3896 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3897 return (KERN_FAILURE); 3898 3899 /* 3900 * Check whether this task is allowed to have this page. 3901 */ 3902 prot = entry->protection; 3903 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 3904 if ((fault_type & prot) != fault_type) 3905 return (KERN_PROTECTION_FAILURE); 3906 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3907 (entry->eflags & MAP_ENTRY_COW) && 3908 (fault_type & VM_PROT_WRITE)) 3909 return (KERN_PROTECTION_FAILURE); 3910 3911 /* 3912 * If this page is not pageable, we have to get it for all possible 3913 * accesses. 3914 */ 3915 *wired = (entry->wired_count != 0); 3916 if (*wired) 3917 fault_type = entry->protection; 3918 3919 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3920 /* 3921 * Fail if the entry was copy-on-write for a write fault. 3922 */ 3923 if (fault_type & VM_PROT_WRITE) 3924 return (KERN_FAILURE); 3925 /* 3926 * We're attempting to read a copy-on-write page -- 3927 * don't allow writes. 3928 */ 3929 prot &= ~VM_PROT_WRITE; 3930 } 3931 3932 /* 3933 * Fail if an object should be created. 3934 */ 3935 if (entry->object.vm_object == NULL && !map->system_map) 3936 return (KERN_FAILURE); 3937 3938 /* 3939 * Return the object/offset from this entry. If the entry was 3940 * copy-on-write or empty, it has been fixed up. 3941 */ 3942 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3943 *object = entry->object.vm_object; 3944 3945 *out_prot = prot; 3946 return (KERN_SUCCESS); 3947 } 3948 3949 /* 3950 * vm_map_lookup_done: 3951 * 3952 * Releases locks acquired by a vm_map_lookup 3953 * (according to the handle returned by that lookup). 3954 */ 3955 void 3956 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 3957 { 3958 /* 3959 * Unlock the main-level map 3960 */ 3961 vm_map_unlock_read(map); 3962 } 3963 3964 #include "opt_ddb.h" 3965 #ifdef DDB 3966 #include <sys/kernel.h> 3967 3968 #include <ddb/ddb.h> 3969 3970 /* 3971 * vm_map_print: [ debug ] 3972 */ 3973 DB_SHOW_COMMAND(map, vm_map_print) 3974 { 3975 static int nlines; 3976 /* XXX convert args. */ 3977 vm_map_t map = (vm_map_t)addr; 3978 boolean_t full = have_addr; 3979 3980 vm_map_entry_t entry; 3981 3982 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3983 (void *)map, 3984 (void *)map->pmap, map->nentries, map->timestamp); 3985 nlines++; 3986 3987 if (!full && db_indent) 3988 return; 3989 3990 db_indent += 2; 3991 for (entry = map->header.next; entry != &map->header; 3992 entry = entry->next) { 3993 db_iprintf("map entry %p: start=%p, end=%p\n", 3994 (void *)entry, (void *)entry->start, (void *)entry->end); 3995 nlines++; 3996 { 3997 static char *inheritance_name[4] = 3998 {"share", "copy", "none", "donate_copy"}; 3999 4000 db_iprintf(" prot=%x/%x/%s", 4001 entry->protection, 4002 entry->max_protection, 4003 inheritance_name[(int)(unsigned char)entry->inheritance]); 4004 if (entry->wired_count != 0) 4005 db_printf(", wired"); 4006 } 4007 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4008 db_printf(", share=%p, offset=0x%jx\n", 4009 (void *)entry->object.sub_map, 4010 (uintmax_t)entry->offset); 4011 nlines++; 4012 if ((entry->prev == &map->header) || 4013 (entry->prev->object.sub_map != 4014 entry->object.sub_map)) { 4015 db_indent += 2; 4016 vm_map_print((db_expr_t)(intptr_t) 4017 entry->object.sub_map, 4018 full, 0, (char *)0); 4019 db_indent -= 2; 4020 } 4021 } else { 4022 if (entry->cred != NULL) 4023 db_printf(", ruid %d", entry->cred->cr_ruid); 4024 db_printf(", object=%p, offset=0x%jx", 4025 (void *)entry->object.vm_object, 4026 (uintmax_t)entry->offset); 4027 if (entry->object.vm_object && entry->object.vm_object->cred) 4028 db_printf(", obj ruid %d charge %jx", 4029 entry->object.vm_object->cred->cr_ruid, 4030 (uintmax_t)entry->object.vm_object->charge); 4031 if (entry->eflags & MAP_ENTRY_COW) 4032 db_printf(", copy (%s)", 4033 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4034 db_printf("\n"); 4035 nlines++; 4036 4037 if ((entry->prev == &map->header) || 4038 (entry->prev->object.vm_object != 4039 entry->object.vm_object)) { 4040 db_indent += 2; 4041 vm_object_print((db_expr_t)(intptr_t) 4042 entry->object.vm_object, 4043 full, 0, (char *)0); 4044 nlines += 4; 4045 db_indent -= 2; 4046 } 4047 } 4048 } 4049 db_indent -= 2; 4050 if (db_indent == 0) 4051 nlines = 0; 4052 } 4053 4054 4055 DB_SHOW_COMMAND(procvm, procvm) 4056 { 4057 struct proc *p; 4058 4059 if (have_addr) { 4060 p = (struct proc *) addr; 4061 } else { 4062 p = curproc; 4063 } 4064 4065 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4066 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4067 (void *)vmspace_pmap(p->p_vmspace)); 4068 4069 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 4070 } 4071 4072 #endif /* DDB */ 4073