1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/racct.h> 81 #include <sys/resourcevar.h> 82 #include <sys/rwlock.h> 83 #include <sys/file.h> 84 #include <sys/sysctl.h> 85 #include <sys/sysent.h> 86 #include <sys/shm.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_pageout.h> 94 #include <vm/vm_object.h> 95 #include <vm/vm_pager.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_extern.h> 98 #include <vm/vnode_pager.h> 99 #include <vm/swap_pager.h> 100 #include <vm/uma.h> 101 102 /* 103 * Virtual memory maps provide for the mapping, protection, 104 * and sharing of virtual memory objects. In addition, 105 * this module provides for an efficient virtual copy of 106 * memory from one map to another. 107 * 108 * Synchronization is required prior to most operations. 109 * 110 * Maps consist of an ordered doubly-linked list of simple 111 * entries; a self-adjusting binary search tree of these 112 * entries is used to speed up lookups. 113 * 114 * Since portions of maps are specified by start/end addresses, 115 * which may not align with existing map entries, all 116 * routines merely "clip" entries to these start/end values. 117 * [That is, an entry is split into two, bordering at a 118 * start or end value.] Note that these clippings may not 119 * always be necessary (as the two resulting entries are then 120 * not changed); however, the clipping is done for convenience. 121 * 122 * As mentioned above, virtual copy operations are performed 123 * by copying VM object references from one map to 124 * another, and then marking both regions as copy-on-write. 125 */ 126 127 static struct mtx map_sleep_mtx; 128 static uma_zone_t mapentzone; 129 static uma_zone_t kmapentzone; 130 static uma_zone_t mapzone; 131 static uma_zone_t vmspace_zone; 132 static int vmspace_zinit(void *mem, int size, int flags); 133 static int vm_map_zinit(void *mem, int ize, int flags); 134 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 135 vm_offset_t max); 136 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 137 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 138 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 139 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 140 vm_map_entry_t gap_entry); 141 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 142 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 143 #ifdef INVARIANTS 144 static void vm_map_zdtor(void *mem, int size, void *arg); 145 static void vmspace_zdtor(void *mem, int size, void *arg); 146 #endif 147 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 148 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 149 int cow); 150 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 151 vm_offset_t failed_addr); 152 153 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 154 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 155 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 156 157 /* 158 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 159 * stable. 160 */ 161 #define PROC_VMSPACE_LOCK(p) do { } while (0) 162 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 163 164 /* 165 * VM_MAP_RANGE_CHECK: [ internal use only ] 166 * 167 * Asserts that the starting and ending region 168 * addresses fall within the valid range of the map. 169 */ 170 #define VM_MAP_RANGE_CHECK(map, start, end) \ 171 { \ 172 if (start < vm_map_min(map)) \ 173 start = vm_map_min(map); \ 174 if (end > vm_map_max(map)) \ 175 end = vm_map_max(map); \ 176 if (start > end) \ 177 start = end; \ 178 } 179 180 /* 181 * vm_map_startup: 182 * 183 * Initialize the vm_map module. Must be called before 184 * any other vm_map routines. 185 * 186 * Map and entry structures are allocated from the general 187 * purpose memory pool with some exceptions: 188 * 189 * - The kernel map and kmem submap are allocated statically. 190 * - Kernel map entries are allocated out of a static pool. 191 * 192 * These restrictions are necessary since malloc() uses the 193 * maps and requires map entries. 194 */ 195 196 void 197 vm_map_startup(void) 198 { 199 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 200 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 201 #ifdef INVARIANTS 202 vm_map_zdtor, 203 #else 204 NULL, 205 #endif 206 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 207 uma_prealloc(mapzone, MAX_KMAP); 208 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 209 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 210 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 211 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 212 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 213 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 214 #ifdef INVARIANTS 215 vmspace_zdtor, 216 #else 217 NULL, 218 #endif 219 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 220 } 221 222 static int 223 vmspace_zinit(void *mem, int size, int flags) 224 { 225 struct vmspace *vm; 226 227 vm = (struct vmspace *)mem; 228 229 vm->vm_map.pmap = NULL; 230 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 231 PMAP_LOCK_INIT(vmspace_pmap(vm)); 232 return (0); 233 } 234 235 static int 236 vm_map_zinit(void *mem, int size, int flags) 237 { 238 vm_map_t map; 239 240 map = (vm_map_t)mem; 241 memset(map, 0, sizeof(*map)); 242 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 243 sx_init(&map->lock, "vm map (user)"); 244 return (0); 245 } 246 247 #ifdef INVARIANTS 248 static void 249 vmspace_zdtor(void *mem, int size, void *arg) 250 { 251 struct vmspace *vm; 252 253 vm = (struct vmspace *)mem; 254 255 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 256 } 257 static void 258 vm_map_zdtor(void *mem, int size, void *arg) 259 { 260 vm_map_t map; 261 262 map = (vm_map_t)mem; 263 KASSERT(map->nentries == 0, 264 ("map %p nentries == %d on free.", 265 map, map->nentries)); 266 KASSERT(map->size == 0, 267 ("map %p size == %lu on free.", 268 map, (unsigned long)map->size)); 269 } 270 #endif /* INVARIANTS */ 271 272 /* 273 * Allocate a vmspace structure, including a vm_map and pmap, 274 * and initialize those structures. The refcnt is set to 1. 275 * 276 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 277 */ 278 struct vmspace * 279 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 280 { 281 struct vmspace *vm; 282 283 vm = uma_zalloc(vmspace_zone, M_WAITOK); 284 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 285 if (!pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 #ifdef RACCT 304 static void 305 vmspace_container_reset(struct proc *p) 306 { 307 308 PROC_LOCK(p); 309 racct_set(p, RACCT_DATA, 0); 310 racct_set(p, RACCT_STACK, 0); 311 racct_set(p, RACCT_RSS, 0); 312 racct_set(p, RACCT_MEMLOCK, 0); 313 racct_set(p, RACCT_VMEM, 0); 314 PROC_UNLOCK(p); 315 } 316 #endif 317 318 static inline void 319 vmspace_dofree(struct vmspace *vm) 320 { 321 322 CTR1(KTR_VM, "vmspace_free: %p", vm); 323 324 /* 325 * Make sure any SysV shm is freed, it might not have been in 326 * exit1(). 327 */ 328 shmexit(vm); 329 330 /* 331 * Lock the map, to wait out all other references to it. 332 * Delete all of the mappings and pages they hold, then call 333 * the pmap module to reclaim anything left. 334 */ 335 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 336 vm_map_max(&vm->vm_map)); 337 338 pmap_release(vmspace_pmap(vm)); 339 vm->vm_map.pmap = NULL; 340 uma_zfree(vmspace_zone, vm); 341 } 342 343 void 344 vmspace_free(struct vmspace *vm) 345 { 346 347 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 348 "vmspace_free() called"); 349 350 if (vm->vm_refcnt == 0) 351 panic("vmspace_free: attempt to free already freed vmspace"); 352 353 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 354 vmspace_dofree(vm); 355 } 356 357 void 358 vmspace_exitfree(struct proc *p) 359 { 360 struct vmspace *vm; 361 362 PROC_VMSPACE_LOCK(p); 363 vm = p->p_vmspace; 364 p->p_vmspace = NULL; 365 PROC_VMSPACE_UNLOCK(p); 366 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 367 vmspace_free(vm); 368 } 369 370 void 371 vmspace_exit(struct thread *td) 372 { 373 int refcnt; 374 struct vmspace *vm; 375 struct proc *p; 376 377 /* 378 * Release user portion of address space. 379 * This releases references to vnodes, 380 * which could cause I/O if the file has been unlinked. 381 * Need to do this early enough that we can still sleep. 382 * 383 * The last exiting process to reach this point releases as 384 * much of the environment as it can. vmspace_dofree() is the 385 * slower fallback in case another process had a temporary 386 * reference to the vmspace. 387 */ 388 389 p = td->td_proc; 390 vm = p->p_vmspace; 391 atomic_add_int(&vmspace0.vm_refcnt, 1); 392 refcnt = vm->vm_refcnt; 393 do { 394 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 395 /* Switch now since other proc might free vmspace */ 396 PROC_VMSPACE_LOCK(p); 397 p->p_vmspace = &vmspace0; 398 PROC_VMSPACE_UNLOCK(p); 399 pmap_activate(td); 400 } 401 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1)); 402 if (refcnt == 1) { 403 if (p->p_vmspace != vm) { 404 /* vmspace not yet freed, switch back */ 405 PROC_VMSPACE_LOCK(p); 406 p->p_vmspace = vm; 407 PROC_VMSPACE_UNLOCK(p); 408 pmap_activate(td); 409 } 410 pmap_remove_pages(vmspace_pmap(vm)); 411 /* Switch now since this proc will free vmspace */ 412 PROC_VMSPACE_LOCK(p); 413 p->p_vmspace = &vmspace0; 414 PROC_VMSPACE_UNLOCK(p); 415 pmap_activate(td); 416 vmspace_dofree(vm); 417 } 418 #ifdef RACCT 419 if (racct_enable) 420 vmspace_container_reset(p); 421 #endif 422 } 423 424 /* Acquire reference to vmspace owned by another process. */ 425 426 struct vmspace * 427 vmspace_acquire_ref(struct proc *p) 428 { 429 struct vmspace *vm; 430 int refcnt; 431 432 PROC_VMSPACE_LOCK(p); 433 vm = p->p_vmspace; 434 if (vm == NULL) { 435 PROC_VMSPACE_UNLOCK(p); 436 return (NULL); 437 } 438 refcnt = vm->vm_refcnt; 439 do { 440 if (refcnt <= 0) { /* Avoid 0->1 transition */ 441 PROC_VMSPACE_UNLOCK(p); 442 return (NULL); 443 } 444 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1)); 445 if (vm != p->p_vmspace) { 446 PROC_VMSPACE_UNLOCK(p); 447 vmspace_free(vm); 448 return (NULL); 449 } 450 PROC_VMSPACE_UNLOCK(p); 451 return (vm); 452 } 453 454 /* 455 * Switch between vmspaces in an AIO kernel process. 456 * 457 * The new vmspace is either the vmspace of a user process obtained 458 * from an active AIO request or the initial vmspace of the AIO kernel 459 * process (when it is idling). Because user processes will block to 460 * drain any active AIO requests before proceeding in exit() or 461 * execve(), the reference count for vmspaces from AIO requests can 462 * never be 0. Similarly, AIO kernel processes hold an extra 463 * reference on their initial vmspace for the life of the process. As 464 * a result, the 'newvm' vmspace always has a non-zero reference 465 * count. This permits an additional reference on 'newvm' to be 466 * acquired via a simple atomic increment rather than the loop in 467 * vmspace_acquire_ref() above. 468 */ 469 void 470 vmspace_switch_aio(struct vmspace *newvm) 471 { 472 struct vmspace *oldvm; 473 474 /* XXX: Need some way to assert that this is an aio daemon. */ 475 476 KASSERT(newvm->vm_refcnt > 0, 477 ("vmspace_switch_aio: newvm unreferenced")); 478 479 oldvm = curproc->p_vmspace; 480 if (oldvm == newvm) 481 return; 482 483 /* 484 * Point to the new address space and refer to it. 485 */ 486 curproc->p_vmspace = newvm; 487 atomic_add_int(&newvm->vm_refcnt, 1); 488 489 /* Activate the new mapping. */ 490 pmap_activate(curthread); 491 492 vmspace_free(oldvm); 493 } 494 495 void 496 _vm_map_lock(vm_map_t map, const char *file, int line) 497 { 498 499 if (map->system_map) 500 mtx_lock_flags_(&map->system_mtx, 0, file, line); 501 else 502 sx_xlock_(&map->lock, file, line); 503 map->timestamp++; 504 } 505 506 void 507 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 508 { 509 vm_object_t object, object1; 510 struct vnode *vp; 511 512 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 513 return; 514 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 515 ("Submap with execs")); 516 object = entry->object.vm_object; 517 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 518 VM_OBJECT_RLOCK(object); 519 while ((object1 = object->backing_object) != NULL) { 520 VM_OBJECT_RLOCK(object1); 521 VM_OBJECT_RUNLOCK(object); 522 object = object1; 523 } 524 525 vp = NULL; 526 if (object->type == OBJT_DEAD) { 527 /* 528 * For OBJT_DEAD objects, v_writecount was handled in 529 * vnode_pager_dealloc(). 530 */ 531 } else if (object->type == OBJT_VNODE) { 532 vp = object->handle; 533 } else if (object->type == OBJT_SWAP) { 534 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0, 535 ("vm_map_entry_set_vnode_text: swap and !TMPFS " 536 "entry %p, object %p, add %d", entry, object, add)); 537 /* 538 * Tmpfs VREG node, which was reclaimed, has 539 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS. In 540 * this case there is no v_writecount to adjust. 541 */ 542 if ((object->flags & OBJ_TMPFS) != 0) 543 vp = object->un_pager.swp.swp_tmpfs; 544 } else { 545 KASSERT(0, 546 ("vm_map_entry_set_vnode_text: wrong object type, " 547 "entry %p, object %p, add %d", entry, object, add)); 548 } 549 if (vp != NULL) { 550 if (add) 551 VOP_SET_TEXT_CHECKED(vp); 552 else 553 VOP_UNSET_TEXT_CHECKED(vp); 554 } 555 VM_OBJECT_RUNLOCK(object); 556 } 557 558 static void 559 vm_map_process_deferred(void) 560 { 561 struct thread *td; 562 vm_map_entry_t entry, next; 563 vm_object_t object; 564 565 td = curthread; 566 entry = td->td_map_def_user; 567 td->td_map_def_user = NULL; 568 while (entry != NULL) { 569 next = entry->next; 570 MPASS((entry->eflags & (MAP_ENTRY_VN_WRITECNT | 571 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_VN_WRITECNT | 572 MAP_ENTRY_VN_EXEC)); 573 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 574 /* 575 * Decrement the object's writemappings and 576 * possibly the vnode's v_writecount. 577 */ 578 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 579 ("Submap with writecount")); 580 object = entry->object.vm_object; 581 KASSERT(object != NULL, ("No object for writecount")); 582 vnode_pager_release_writecount(object, entry->start, 583 entry->end); 584 } 585 vm_map_entry_set_vnode_text(entry, false); 586 vm_map_entry_deallocate(entry, FALSE); 587 entry = next; 588 } 589 } 590 591 void 592 _vm_map_unlock(vm_map_t map, const char *file, int line) 593 { 594 595 if (map->system_map) 596 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 597 else { 598 sx_xunlock_(&map->lock, file, line); 599 vm_map_process_deferred(); 600 } 601 } 602 603 void 604 _vm_map_lock_read(vm_map_t map, const char *file, int line) 605 { 606 607 if (map->system_map) 608 mtx_lock_flags_(&map->system_mtx, 0, file, line); 609 else 610 sx_slock_(&map->lock, file, line); 611 } 612 613 void 614 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 615 { 616 617 if (map->system_map) 618 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 619 else { 620 sx_sunlock_(&map->lock, file, line); 621 vm_map_process_deferred(); 622 } 623 } 624 625 int 626 _vm_map_trylock(vm_map_t map, const char *file, int line) 627 { 628 int error; 629 630 error = map->system_map ? 631 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 632 !sx_try_xlock_(&map->lock, file, line); 633 if (error == 0) 634 map->timestamp++; 635 return (error == 0); 636 } 637 638 int 639 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 640 { 641 int error; 642 643 error = map->system_map ? 644 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 645 !sx_try_slock_(&map->lock, file, line); 646 return (error == 0); 647 } 648 649 /* 650 * _vm_map_lock_upgrade: [ internal use only ] 651 * 652 * Tries to upgrade a read (shared) lock on the specified map to a write 653 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 654 * non-zero value if the upgrade fails. If the upgrade fails, the map is 655 * returned without a read or write lock held. 656 * 657 * Requires that the map be read locked. 658 */ 659 int 660 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 661 { 662 unsigned int last_timestamp; 663 664 if (map->system_map) { 665 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 666 } else { 667 if (!sx_try_upgrade_(&map->lock, file, line)) { 668 last_timestamp = map->timestamp; 669 sx_sunlock_(&map->lock, file, line); 670 vm_map_process_deferred(); 671 /* 672 * If the map's timestamp does not change while the 673 * map is unlocked, then the upgrade succeeds. 674 */ 675 sx_xlock_(&map->lock, file, line); 676 if (last_timestamp != map->timestamp) { 677 sx_xunlock_(&map->lock, file, line); 678 return (1); 679 } 680 } 681 } 682 map->timestamp++; 683 return (0); 684 } 685 686 void 687 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 688 { 689 690 if (map->system_map) { 691 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 692 } else 693 sx_downgrade_(&map->lock, file, line); 694 } 695 696 /* 697 * vm_map_locked: 698 * 699 * Returns a non-zero value if the caller holds a write (exclusive) lock 700 * on the specified map and the value "0" otherwise. 701 */ 702 int 703 vm_map_locked(vm_map_t map) 704 { 705 706 if (map->system_map) 707 return (mtx_owned(&map->system_mtx)); 708 else 709 return (sx_xlocked(&map->lock)); 710 } 711 712 #ifdef INVARIANTS 713 static void 714 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 715 { 716 717 if (map->system_map) 718 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 719 else 720 sx_assert_(&map->lock, SA_XLOCKED, file, line); 721 } 722 723 #define VM_MAP_ASSERT_LOCKED(map) \ 724 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 725 726 #ifdef DIAGNOSTIC 727 static int enable_vmmap_check = 1; 728 #else 729 static int enable_vmmap_check = 0; 730 #endif 731 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 732 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 733 734 static void 735 _vm_map_assert_consistent(vm_map_t map) 736 { 737 vm_map_entry_t child, entry, prev; 738 vm_size_t max_left, max_right; 739 740 if (!enable_vmmap_check) 741 return; 742 743 for (prev = &map->header; (entry = prev->next) != &map->header; 744 prev = entry) { 745 KASSERT(prev->end <= entry->start, 746 ("map %p prev->end = %jx, start = %jx", map, 747 (uintmax_t)prev->end, (uintmax_t)entry->start)); 748 KASSERT(entry->start < entry->end, 749 ("map %p start = %jx, end = %jx", map, 750 (uintmax_t)entry->start, (uintmax_t)entry->end)); 751 KASSERT(entry->end <= entry->next->start, 752 ("map %p end = %jx, next->start = %jx", map, 753 (uintmax_t)entry->end, (uintmax_t)entry->next->start)); 754 KASSERT(entry->left == NULL || 755 entry->left->start < entry->start, 756 ("map %p left->start = %jx, start = %jx", map, 757 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 758 KASSERT(entry->right == NULL || 759 entry->start < entry->right->start, 760 ("map %p start = %jx, right->start = %jx", map, 761 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 762 child = entry->left; 763 max_left = (child != NULL) ? child->max_free : 764 entry->start - prev->end; 765 child = entry->right; 766 max_right = (child != NULL) ? child->max_free : 767 entry->next->start - entry->end; 768 KASSERT(entry->max_free == MAX(max_left, max_right), 769 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 770 (uintmax_t)entry->max_free, 771 (uintmax_t)max_left, (uintmax_t)max_right)); 772 } 773 } 774 775 #define VM_MAP_ASSERT_CONSISTENT(map) \ 776 _vm_map_assert_consistent(map) 777 #else 778 #define VM_MAP_ASSERT_LOCKED(map) 779 #define VM_MAP_ASSERT_CONSISTENT(map) 780 #endif /* INVARIANTS */ 781 782 /* 783 * _vm_map_unlock_and_wait: 784 * 785 * Atomically releases the lock on the specified map and puts the calling 786 * thread to sleep. The calling thread will remain asleep until either 787 * vm_map_wakeup() is performed on the map or the specified timeout is 788 * exceeded. 789 * 790 * WARNING! This function does not perform deferred deallocations of 791 * objects and map entries. Therefore, the calling thread is expected to 792 * reacquire the map lock after reawakening and later perform an ordinary 793 * unlock operation, such as vm_map_unlock(), before completing its 794 * operation on the map. 795 */ 796 int 797 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 798 { 799 800 mtx_lock(&map_sleep_mtx); 801 if (map->system_map) 802 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 803 else 804 sx_xunlock_(&map->lock, file, line); 805 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 806 timo)); 807 } 808 809 /* 810 * vm_map_wakeup: 811 * 812 * Awaken any threads that have slept on the map using 813 * vm_map_unlock_and_wait(). 814 */ 815 void 816 vm_map_wakeup(vm_map_t map) 817 { 818 819 /* 820 * Acquire and release map_sleep_mtx to prevent a wakeup() 821 * from being performed (and lost) between the map unlock 822 * and the msleep() in _vm_map_unlock_and_wait(). 823 */ 824 mtx_lock(&map_sleep_mtx); 825 mtx_unlock(&map_sleep_mtx); 826 wakeup(&map->root); 827 } 828 829 void 830 vm_map_busy(vm_map_t map) 831 { 832 833 VM_MAP_ASSERT_LOCKED(map); 834 map->busy++; 835 } 836 837 void 838 vm_map_unbusy(vm_map_t map) 839 { 840 841 VM_MAP_ASSERT_LOCKED(map); 842 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 843 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 844 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 845 wakeup(&map->busy); 846 } 847 } 848 849 void 850 vm_map_wait_busy(vm_map_t map) 851 { 852 853 VM_MAP_ASSERT_LOCKED(map); 854 while (map->busy) { 855 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 856 if (map->system_map) 857 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 858 else 859 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 860 } 861 map->timestamp++; 862 } 863 864 long 865 vmspace_resident_count(struct vmspace *vmspace) 866 { 867 return pmap_resident_count(vmspace_pmap(vmspace)); 868 } 869 870 /* 871 * vm_map_create: 872 * 873 * Creates and returns a new empty VM map with 874 * the given physical map structure, and having 875 * the given lower and upper address bounds. 876 */ 877 vm_map_t 878 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 879 { 880 vm_map_t result; 881 882 result = uma_zalloc(mapzone, M_WAITOK); 883 CTR1(KTR_VM, "vm_map_create: %p", result); 884 _vm_map_init(result, pmap, min, max); 885 return (result); 886 } 887 888 /* 889 * Initialize an existing vm_map structure 890 * such as that in the vmspace structure. 891 */ 892 static void 893 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 894 { 895 896 map->header.next = map->header.prev = &map->header; 897 map->header.eflags = MAP_ENTRY_HEADER; 898 map->needs_wakeup = FALSE; 899 map->system_map = 0; 900 map->pmap = pmap; 901 map->header.end = min; 902 map->header.start = max; 903 map->flags = 0; 904 map->root = NULL; 905 map->timestamp = 0; 906 map->busy = 0; 907 map->anon_loc = 0; 908 } 909 910 void 911 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 912 { 913 914 _vm_map_init(map, pmap, min, max); 915 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 916 sx_init(&map->lock, "user map"); 917 } 918 919 /* 920 * vm_map_entry_dispose: [ internal use only ] 921 * 922 * Inverse of vm_map_entry_create. 923 */ 924 static void 925 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 926 { 927 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 928 } 929 930 /* 931 * vm_map_entry_create: [ internal use only ] 932 * 933 * Allocates a VM map entry for insertion. 934 * No entry fields are filled in. 935 */ 936 static vm_map_entry_t 937 vm_map_entry_create(vm_map_t map) 938 { 939 vm_map_entry_t new_entry; 940 941 if (map->system_map) 942 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 943 else 944 new_entry = uma_zalloc(mapentzone, M_WAITOK); 945 if (new_entry == NULL) 946 panic("vm_map_entry_create: kernel resources exhausted"); 947 return (new_entry); 948 } 949 950 /* 951 * vm_map_entry_set_behavior: 952 * 953 * Set the expected access behavior, either normal, random, or 954 * sequential. 955 */ 956 static inline void 957 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 958 { 959 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 960 (behavior & MAP_ENTRY_BEHAV_MASK); 961 } 962 963 /* 964 * vm_map_entry_max_free_{left,right}: 965 * 966 * Compute the size of the largest free gap between two entries, 967 * one the root of a tree and the other the ancestor of that root 968 * that is the least or greatest ancestor found on the search path. 969 */ 970 static inline vm_size_t 971 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 972 { 973 974 return (root->left != NULL ? 975 root->left->max_free : root->start - left_ancestor->end); 976 } 977 978 static inline vm_size_t 979 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 980 { 981 982 return (root->right != NULL ? 983 root->right->max_free : right_ancestor->start - root->end); 984 } 985 986 #define SPLAY_LEFT_STEP(root, y, rlist, test) do { \ 987 vm_size_t max_free; \ 988 \ 989 /* \ 990 * Infer root->right->max_free == root->max_free when \ 991 * y->max_free < root->max_free || root->max_free == 0. \ 992 * Otherwise, look right to find it. \ 993 */ \ 994 y = root->left; \ 995 max_free = root->max_free; \ 996 KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist), \ 997 ("%s: max_free invariant fails", __func__)); \ 998 if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free) \ 999 max_free = vm_map_entry_max_free_right(root, rlist); \ 1000 if (y != NULL && (test)) { \ 1001 /* Rotate right and make y root. */ \ 1002 root->left = y->right; \ 1003 y->right = root; \ 1004 if (max_free < y->max_free) \ 1005 root->max_free = max_free = MAX(max_free, \ 1006 vm_map_entry_max_free_left(root, y)); \ 1007 root = y; \ 1008 y = root->left; \ 1009 } \ 1010 /* Copy right->max_free. Put root on rlist. */ \ 1011 root->max_free = max_free; \ 1012 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1013 ("%s: max_free not copied from right", __func__)); \ 1014 root->left = rlist; \ 1015 rlist = root; \ 1016 root = y; \ 1017 } while (0) 1018 1019 #define SPLAY_RIGHT_STEP(root, y, llist, test) do { \ 1020 vm_size_t max_free; \ 1021 \ 1022 /* \ 1023 * Infer root->left->max_free == root->max_free when \ 1024 * y->max_free < root->max_free || root->max_free == 0. \ 1025 * Otherwise, look left to find it. \ 1026 */ \ 1027 y = root->right; \ 1028 max_free = root->max_free; \ 1029 KASSERT(max_free >= vm_map_entry_max_free_left(root, llist), \ 1030 ("%s: max_free invariant fails", __func__)); \ 1031 if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free) \ 1032 max_free = vm_map_entry_max_free_left(root, llist); \ 1033 if (y != NULL && (test)) { \ 1034 /* Rotate left and make y root. */ \ 1035 root->right = y->left; \ 1036 y->left = root; \ 1037 if (max_free < y->max_free) \ 1038 root->max_free = max_free = MAX(max_free, \ 1039 vm_map_entry_max_free_right(root, y)); \ 1040 root = y; \ 1041 y = root->right; \ 1042 } \ 1043 /* Copy left->max_free. Put root on llist. */ \ 1044 root->max_free = max_free; \ 1045 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1046 ("%s: max_free not copied from left", __func__)); \ 1047 root->right = llist; \ 1048 llist = root; \ 1049 root = y; \ 1050 } while (0) 1051 1052 /* 1053 * Walk down the tree until we find addr or a NULL pointer where addr would go, 1054 * breaking off left and right subtrees of nodes less than, or greater than 1055 * addr. Treat pointers to nodes with max_free < length as NULL pointers. 1056 * llist and rlist are the two sides in reverse order (bottom-up), with llist 1057 * linked by the right pointer and rlist linked by the left pointer in the 1058 * vm_map_entry, and both lists terminated by &map->header. This function, and 1059 * the subsequent call to vm_map_splay_merge, rely on the start and end address 1060 * values in &map->header. 1061 */ 1062 static vm_map_entry_t 1063 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1064 vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist) 1065 { 1066 vm_map_entry_t llist, rlist, root, y; 1067 1068 llist = rlist = &map->header; 1069 root = map->root; 1070 while (root != NULL && root->max_free >= length) { 1071 KASSERT(llist->end <= root->start && root->end <= rlist->start, 1072 ("%s: root not within tree bounds", __func__)); 1073 if (addr < root->start) { 1074 SPLAY_LEFT_STEP(root, y, rlist, 1075 y->max_free >= length && addr < y->start); 1076 } else if (addr >= root->end) { 1077 SPLAY_RIGHT_STEP(root, y, llist, 1078 y->max_free >= length && addr >= y->end); 1079 } else 1080 break; 1081 } 1082 *out_llist = llist; 1083 *out_rlist = rlist; 1084 return (root); 1085 } 1086 1087 static void 1088 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist) 1089 { 1090 vm_map_entry_t rlist, y; 1091 1092 root = root->right; 1093 rlist = *iolist; 1094 while (root != NULL) 1095 SPLAY_LEFT_STEP(root, y, rlist, true); 1096 *iolist = rlist; 1097 } 1098 1099 static void 1100 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist) 1101 { 1102 vm_map_entry_t llist, y; 1103 1104 root = root->left; 1105 llist = *iolist; 1106 while (root != NULL) 1107 SPLAY_RIGHT_STEP(root, y, llist, true); 1108 *iolist = llist; 1109 } 1110 1111 static inline void 1112 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1113 { 1114 vm_map_entry_t tmp; 1115 1116 tmp = *b; 1117 *b = *a; 1118 *a = tmp; 1119 } 1120 1121 /* 1122 * Walk back up the two spines, flip the pointers and set max_free. The 1123 * subtrees of the root go at the bottom of llist and rlist. 1124 */ 1125 static void 1126 vm_map_splay_merge(vm_map_t map, vm_map_entry_t root, 1127 vm_map_entry_t llist, vm_map_entry_t rlist) 1128 { 1129 vm_map_entry_t prev; 1130 vm_size_t max_free_left, max_free_right; 1131 1132 max_free_left = vm_map_entry_max_free_left(root, llist); 1133 if (llist != &map->header) { 1134 prev = root->left; 1135 do { 1136 /* 1137 * The max_free values of the children of llist are in 1138 * llist->max_free and max_free_left. Update with the 1139 * max value. 1140 */ 1141 llist->max_free = max_free_left = 1142 MAX(llist->max_free, max_free_left); 1143 vm_map_entry_swap(&llist->right, &prev); 1144 vm_map_entry_swap(&prev, &llist); 1145 } while (llist != &map->header); 1146 root->left = prev; 1147 } 1148 max_free_right = vm_map_entry_max_free_right(root, rlist); 1149 if (rlist != &map->header) { 1150 prev = root->right; 1151 do { 1152 /* 1153 * The max_free values of the children of rlist are in 1154 * rlist->max_free and max_free_right. Update with the 1155 * max value. 1156 */ 1157 rlist->max_free = max_free_right = 1158 MAX(rlist->max_free, max_free_right); 1159 vm_map_entry_swap(&rlist->left, &prev); 1160 vm_map_entry_swap(&prev, &rlist); 1161 } while (rlist != &map->header); 1162 root->right = prev; 1163 } 1164 root->max_free = MAX(max_free_left, max_free_right); 1165 map->root = root; 1166 } 1167 1168 /* 1169 * vm_map_splay: 1170 * 1171 * The Sleator and Tarjan top-down splay algorithm with the 1172 * following variation. Max_free must be computed bottom-up, so 1173 * on the downward pass, maintain the left and right spines in 1174 * reverse order. Then, make a second pass up each side to fix 1175 * the pointers and compute max_free. The time bound is O(log n) 1176 * amortized. 1177 * 1178 * The new root is the vm_map_entry containing "addr", or else an 1179 * adjacent entry (lower if possible) if addr is not in the tree. 1180 * 1181 * The map must be locked, and leaves it so. 1182 * 1183 * Returns: the new root. 1184 */ 1185 static vm_map_entry_t 1186 vm_map_splay(vm_map_t map, vm_offset_t addr) 1187 { 1188 vm_map_entry_t llist, rlist, root; 1189 1190 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1191 if (root != NULL) { 1192 /* do nothing */ 1193 } else if (llist != &map->header) { 1194 /* 1195 * Recover the greatest node in the left 1196 * subtree and make it the root. 1197 */ 1198 root = llist; 1199 llist = root->right; 1200 root->right = NULL; 1201 } else if (rlist != &map->header) { 1202 /* 1203 * Recover the least node in the right 1204 * subtree and make it the root. 1205 */ 1206 root = rlist; 1207 rlist = root->left; 1208 root->left = NULL; 1209 } else { 1210 /* There is no root. */ 1211 return (NULL); 1212 } 1213 vm_map_splay_merge(map, root, llist, rlist); 1214 VM_MAP_ASSERT_CONSISTENT(map); 1215 return (root); 1216 } 1217 1218 /* 1219 * vm_map_entry_{un,}link: 1220 * 1221 * Insert/remove entries from maps. 1222 */ 1223 static void 1224 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1225 { 1226 vm_map_entry_t llist, rlist, root; 1227 1228 CTR3(KTR_VM, 1229 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1230 map->nentries, entry); 1231 VM_MAP_ASSERT_LOCKED(map); 1232 map->nentries++; 1233 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1234 KASSERT(root == NULL, 1235 ("vm_map_entry_link: link object already mapped")); 1236 entry->prev = llist; 1237 entry->next = rlist; 1238 llist->next = rlist->prev = entry; 1239 entry->left = entry->right = NULL; 1240 vm_map_splay_merge(map, entry, llist, rlist); 1241 VM_MAP_ASSERT_CONSISTENT(map); 1242 } 1243 1244 enum unlink_merge_type { 1245 UNLINK_MERGE_PREV, 1246 UNLINK_MERGE_NONE, 1247 UNLINK_MERGE_NEXT 1248 }; 1249 1250 static void 1251 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1252 enum unlink_merge_type op) 1253 { 1254 vm_map_entry_t llist, rlist, root, y; 1255 1256 VM_MAP_ASSERT_LOCKED(map); 1257 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1258 KASSERT(root != NULL, 1259 ("vm_map_entry_unlink: unlink object not mapped")); 1260 1261 switch (op) { 1262 case UNLINK_MERGE_PREV: 1263 vm_map_splay_findprev(root, &llist); 1264 llist->end = root->end; 1265 y = root->right; 1266 root = llist; 1267 llist = root->right; 1268 root->right = y; 1269 break; 1270 case UNLINK_MERGE_NEXT: 1271 vm_map_splay_findnext(root, &rlist); 1272 rlist->start = root->start; 1273 rlist->offset = root->offset; 1274 y = root->left; 1275 root = rlist; 1276 rlist = root->left; 1277 root->left = y; 1278 break; 1279 case UNLINK_MERGE_NONE: 1280 vm_map_splay_findprev(root, &llist); 1281 vm_map_splay_findnext(root, &rlist); 1282 if (llist != &map->header) { 1283 root = llist; 1284 llist = root->right; 1285 root->right = NULL; 1286 } else if (rlist != &map->header) { 1287 root = rlist; 1288 rlist = root->left; 1289 root->left = NULL; 1290 } else 1291 root = NULL; 1292 break; 1293 } 1294 y = entry->next; 1295 y->prev = entry->prev; 1296 y->prev->next = y; 1297 if (root != NULL) 1298 vm_map_splay_merge(map, root, llist, rlist); 1299 else 1300 map->root = NULL; 1301 VM_MAP_ASSERT_CONSISTENT(map); 1302 map->nentries--; 1303 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1304 map->nentries, entry); 1305 } 1306 1307 /* 1308 * vm_map_entry_resize: 1309 * 1310 * Resize a vm_map_entry, recompute the amount of free space that 1311 * follows it and propagate that value up the tree. 1312 * 1313 * The map must be locked, and leaves it so. 1314 */ 1315 static void 1316 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1317 { 1318 vm_map_entry_t llist, rlist, root; 1319 1320 VM_MAP_ASSERT_LOCKED(map); 1321 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1322 KASSERT(root != NULL, 1323 ("%s: resize object not mapped", __func__)); 1324 vm_map_splay_findnext(root, &rlist); 1325 root->right = NULL; 1326 entry->end += grow_amount; 1327 vm_map_splay_merge(map, root, llist, rlist); 1328 VM_MAP_ASSERT_CONSISTENT(map); 1329 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1330 __func__, map, map->nentries, entry); 1331 } 1332 1333 /* 1334 * vm_map_lookup_entry: [ internal use only ] 1335 * 1336 * Finds the map entry containing (or 1337 * immediately preceding) the specified address 1338 * in the given map; the entry is returned 1339 * in the "entry" parameter. The boolean 1340 * result indicates whether the address is 1341 * actually contained in the map. 1342 */ 1343 boolean_t 1344 vm_map_lookup_entry( 1345 vm_map_t map, 1346 vm_offset_t address, 1347 vm_map_entry_t *entry) /* OUT */ 1348 { 1349 vm_map_entry_t cur, lbound; 1350 boolean_t locked; 1351 1352 /* 1353 * If the map is empty, then the map entry immediately preceding 1354 * "address" is the map's header. 1355 */ 1356 cur = map->root; 1357 if (cur == NULL) { 1358 *entry = &map->header; 1359 return (FALSE); 1360 } 1361 if (address >= cur->start && cur->end > address) { 1362 *entry = cur; 1363 return (TRUE); 1364 } 1365 if ((locked = vm_map_locked(map)) || 1366 sx_try_upgrade(&map->lock)) { 1367 /* 1368 * Splay requires a write lock on the map. However, it only 1369 * restructures the binary search tree; it does not otherwise 1370 * change the map. Thus, the map's timestamp need not change 1371 * on a temporary upgrade. 1372 */ 1373 cur = vm_map_splay(map, address); 1374 if (!locked) 1375 sx_downgrade(&map->lock); 1376 1377 /* 1378 * If "address" is contained within a map entry, the new root 1379 * is that map entry. Otherwise, the new root is a map entry 1380 * immediately before or after "address". 1381 */ 1382 if (address < cur->start) { 1383 *entry = &map->header; 1384 return (FALSE); 1385 } 1386 *entry = cur; 1387 return (address < cur->end); 1388 } 1389 /* 1390 * Since the map is only locked for read access, perform a 1391 * standard binary search tree lookup for "address". 1392 */ 1393 lbound = &map->header; 1394 do { 1395 if (address < cur->start) { 1396 cur = cur->left; 1397 } else if (cur->end <= address) { 1398 lbound = cur; 1399 cur = cur->right; 1400 } else { 1401 *entry = cur; 1402 return (TRUE); 1403 } 1404 } while (cur != NULL); 1405 *entry = lbound; 1406 return (FALSE); 1407 } 1408 1409 /* 1410 * vm_map_insert: 1411 * 1412 * Inserts the given whole VM object into the target 1413 * map at the specified address range. The object's 1414 * size should match that of the address range. 1415 * 1416 * Requires that the map be locked, and leaves it so. 1417 * 1418 * If object is non-NULL, ref count must be bumped by caller 1419 * prior to making call to account for the new entry. 1420 */ 1421 int 1422 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1423 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1424 { 1425 vm_map_entry_t new_entry, prev_entry, temp_entry; 1426 struct ucred *cred; 1427 vm_eflags_t protoeflags; 1428 vm_inherit_t inheritance; 1429 1430 VM_MAP_ASSERT_LOCKED(map); 1431 KASSERT(object != kernel_object || 1432 (cow & MAP_COPY_ON_WRITE) == 0, 1433 ("vm_map_insert: kernel object and COW")); 1434 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1435 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1436 KASSERT((prot & ~max) == 0, 1437 ("prot %#x is not subset of max_prot %#x", prot, max)); 1438 1439 /* 1440 * Check that the start and end points are not bogus. 1441 */ 1442 if (start < vm_map_min(map) || end > vm_map_max(map) || 1443 start >= end) 1444 return (KERN_INVALID_ADDRESS); 1445 1446 /* 1447 * Find the entry prior to the proposed starting address; if it's part 1448 * of an existing entry, this range is bogus. 1449 */ 1450 if (vm_map_lookup_entry(map, start, &temp_entry)) 1451 return (KERN_NO_SPACE); 1452 1453 prev_entry = temp_entry; 1454 1455 /* 1456 * Assert that the next entry doesn't overlap the end point. 1457 */ 1458 if (prev_entry->next->start < end) 1459 return (KERN_NO_SPACE); 1460 1461 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1462 max != VM_PROT_NONE)) 1463 return (KERN_INVALID_ARGUMENT); 1464 1465 protoeflags = 0; 1466 if (cow & MAP_COPY_ON_WRITE) 1467 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1468 if (cow & MAP_NOFAULT) 1469 protoeflags |= MAP_ENTRY_NOFAULT; 1470 if (cow & MAP_DISABLE_SYNCER) 1471 protoeflags |= MAP_ENTRY_NOSYNC; 1472 if (cow & MAP_DISABLE_COREDUMP) 1473 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1474 if (cow & MAP_STACK_GROWS_DOWN) 1475 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1476 if (cow & MAP_STACK_GROWS_UP) 1477 protoeflags |= MAP_ENTRY_GROWS_UP; 1478 if (cow & MAP_VN_WRITECOUNT) 1479 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1480 if (cow & MAP_VN_EXEC) 1481 protoeflags |= MAP_ENTRY_VN_EXEC; 1482 if ((cow & MAP_CREATE_GUARD) != 0) 1483 protoeflags |= MAP_ENTRY_GUARD; 1484 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1485 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1486 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1487 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1488 if (cow & MAP_INHERIT_SHARE) 1489 inheritance = VM_INHERIT_SHARE; 1490 else 1491 inheritance = VM_INHERIT_DEFAULT; 1492 1493 cred = NULL; 1494 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1495 goto charged; 1496 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1497 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1498 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1499 return (KERN_RESOURCE_SHORTAGE); 1500 KASSERT(object == NULL || 1501 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1502 object->cred == NULL, 1503 ("overcommit: vm_map_insert o %p", object)); 1504 cred = curthread->td_ucred; 1505 } 1506 1507 charged: 1508 /* Expand the kernel pmap, if necessary. */ 1509 if (map == kernel_map && end > kernel_vm_end) 1510 pmap_growkernel(end); 1511 if (object != NULL) { 1512 /* 1513 * OBJ_ONEMAPPING must be cleared unless this mapping 1514 * is trivially proven to be the only mapping for any 1515 * of the object's pages. (Object granularity 1516 * reference counting is insufficient to recognize 1517 * aliases with precision.) 1518 */ 1519 VM_OBJECT_WLOCK(object); 1520 if (object->ref_count > 1 || object->shadow_count != 0) 1521 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1522 VM_OBJECT_WUNLOCK(object); 1523 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1524 protoeflags && 1525 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1526 MAP_VN_EXEC)) == 0 && 1527 prev_entry->end == start && (prev_entry->cred == cred || 1528 (prev_entry->object.vm_object != NULL && 1529 prev_entry->object.vm_object->cred == cred)) && 1530 vm_object_coalesce(prev_entry->object.vm_object, 1531 prev_entry->offset, 1532 (vm_size_t)(prev_entry->end - prev_entry->start), 1533 (vm_size_t)(end - prev_entry->end), cred != NULL && 1534 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1535 /* 1536 * We were able to extend the object. Determine if we 1537 * can extend the previous map entry to include the 1538 * new range as well. 1539 */ 1540 if (prev_entry->inheritance == inheritance && 1541 prev_entry->protection == prot && 1542 prev_entry->max_protection == max && 1543 prev_entry->wired_count == 0) { 1544 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1545 0, ("prev_entry %p has incoherent wiring", 1546 prev_entry)); 1547 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1548 map->size += end - prev_entry->end; 1549 vm_map_entry_resize(map, prev_entry, 1550 end - prev_entry->end); 1551 vm_map_simplify_entry(map, prev_entry); 1552 return (KERN_SUCCESS); 1553 } 1554 1555 /* 1556 * If we can extend the object but cannot extend the 1557 * map entry, we have to create a new map entry. We 1558 * must bump the ref count on the extended object to 1559 * account for it. object may be NULL. 1560 */ 1561 object = prev_entry->object.vm_object; 1562 offset = prev_entry->offset + 1563 (prev_entry->end - prev_entry->start); 1564 vm_object_reference(object); 1565 if (cred != NULL && object != NULL && object->cred != NULL && 1566 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1567 /* Object already accounts for this uid. */ 1568 cred = NULL; 1569 } 1570 } 1571 if (cred != NULL) 1572 crhold(cred); 1573 1574 /* 1575 * Create a new entry 1576 */ 1577 new_entry = vm_map_entry_create(map); 1578 new_entry->start = start; 1579 new_entry->end = end; 1580 new_entry->cred = NULL; 1581 1582 new_entry->eflags = protoeflags; 1583 new_entry->object.vm_object = object; 1584 new_entry->offset = offset; 1585 1586 new_entry->inheritance = inheritance; 1587 new_entry->protection = prot; 1588 new_entry->max_protection = max; 1589 new_entry->wired_count = 0; 1590 new_entry->wiring_thread = NULL; 1591 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1592 new_entry->next_read = start; 1593 1594 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1595 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1596 new_entry->cred = cred; 1597 1598 /* 1599 * Insert the new entry into the list 1600 */ 1601 vm_map_entry_link(map, new_entry); 1602 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1603 map->size += new_entry->end - new_entry->start; 1604 1605 /* 1606 * Try to coalesce the new entry with both the previous and next 1607 * entries in the list. Previously, we only attempted to coalesce 1608 * with the previous entry when object is NULL. Here, we handle the 1609 * other cases, which are less common. 1610 */ 1611 vm_map_simplify_entry(map, new_entry); 1612 1613 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1614 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1615 end - start, cow & MAP_PREFAULT_PARTIAL); 1616 } 1617 1618 return (KERN_SUCCESS); 1619 } 1620 1621 /* 1622 * vm_map_findspace: 1623 * 1624 * Find the first fit (lowest VM address) for "length" free bytes 1625 * beginning at address >= start in the given map. 1626 * 1627 * In a vm_map_entry, "max_free" is the maximum amount of 1628 * contiguous free space between an entry in its subtree and a 1629 * neighbor of that entry. This allows finding a free region in 1630 * one path down the tree, so O(log n) amortized with splay 1631 * trees. 1632 * 1633 * The map must be locked, and leaves it so. 1634 * 1635 * Returns: starting address if sufficient space, 1636 * vm_map_max(map)-length+1 if insufficient space. 1637 */ 1638 vm_offset_t 1639 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1640 { 1641 vm_map_entry_t llist, rlist, root, y; 1642 vm_size_t left_length; 1643 vm_offset_t gap_end; 1644 1645 /* 1646 * Request must fit within min/max VM address and must avoid 1647 * address wrap. 1648 */ 1649 start = MAX(start, vm_map_min(map)); 1650 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1651 return (vm_map_max(map) - length + 1); 1652 1653 /* Empty tree means wide open address space. */ 1654 if (map->root == NULL) 1655 return (start); 1656 1657 /* 1658 * After splay_split, if start is within an entry, push it to the start 1659 * of the following gap. If rlist is at the end of the gap containing 1660 * start, save the end of that gap in gap_end to see if the gap is big 1661 * enough; otherwise set gap_end to start skip gap-checking and move 1662 * directly to a search of the right subtree. 1663 */ 1664 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1665 gap_end = rlist->start; 1666 if (root != NULL) { 1667 start = root->end; 1668 if (root->right != NULL) 1669 gap_end = start; 1670 } else if (rlist != &map->header) { 1671 root = rlist; 1672 rlist = root->left; 1673 root->left = NULL; 1674 } else { 1675 root = llist; 1676 llist = root->right; 1677 root->right = NULL; 1678 } 1679 vm_map_splay_merge(map, root, llist, rlist); 1680 VM_MAP_ASSERT_CONSISTENT(map); 1681 if (length <= gap_end - start) 1682 return (start); 1683 1684 /* With max_free, can immediately tell if no solution. */ 1685 if (root->right == NULL || length > root->right->max_free) 1686 return (vm_map_max(map) - length + 1); 1687 1688 /* 1689 * Splay for the least large-enough gap in the right subtree. 1690 */ 1691 llist = rlist = &map->header; 1692 for (left_length = 0;; 1693 left_length = vm_map_entry_max_free_left(root, llist)) { 1694 if (length <= left_length) 1695 SPLAY_LEFT_STEP(root, y, rlist, 1696 length <= vm_map_entry_max_free_left(y, llist)); 1697 else 1698 SPLAY_RIGHT_STEP(root, y, llist, 1699 length > vm_map_entry_max_free_left(y, root)); 1700 if (root == NULL) 1701 break; 1702 } 1703 root = llist; 1704 llist = root->right; 1705 root->right = NULL; 1706 if (rlist != &map->header) { 1707 y = rlist; 1708 rlist = y->left; 1709 y->left = NULL; 1710 vm_map_splay_merge(map, y, &map->header, rlist); 1711 y->max_free = MAX( 1712 vm_map_entry_max_free_left(y, root), 1713 vm_map_entry_max_free_right(y, &map->header)); 1714 root->right = y; 1715 } 1716 vm_map_splay_merge(map, root, llist, &map->header); 1717 VM_MAP_ASSERT_CONSISTENT(map); 1718 return (root->end); 1719 } 1720 1721 int 1722 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1723 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1724 vm_prot_t max, int cow) 1725 { 1726 vm_offset_t end; 1727 int result; 1728 1729 end = start + length; 1730 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1731 object == NULL, 1732 ("vm_map_fixed: non-NULL backing object for stack")); 1733 vm_map_lock(map); 1734 VM_MAP_RANGE_CHECK(map, start, end); 1735 if ((cow & MAP_CHECK_EXCL) == 0) 1736 vm_map_delete(map, start, end); 1737 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1738 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1739 prot, max, cow); 1740 } else { 1741 result = vm_map_insert(map, object, offset, start, end, 1742 prot, max, cow); 1743 } 1744 vm_map_unlock(map); 1745 return (result); 1746 } 1747 1748 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1749 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1750 1751 static int cluster_anon = 1; 1752 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1753 &cluster_anon, 0, 1754 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 1755 1756 static bool 1757 clustering_anon_allowed(vm_offset_t addr) 1758 { 1759 1760 switch (cluster_anon) { 1761 case 0: 1762 return (false); 1763 case 1: 1764 return (addr == 0); 1765 case 2: 1766 default: 1767 return (true); 1768 } 1769 } 1770 1771 static long aslr_restarts; 1772 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 1773 &aslr_restarts, 0, 1774 "Number of aslr failures"); 1775 1776 #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) 1777 1778 /* 1779 * Searches for the specified amount of free space in the given map with the 1780 * specified alignment. Performs an address-ordered, first-fit search from 1781 * the given address "*addr", with an optional upper bound "max_addr". If the 1782 * parameter "alignment" is zero, then the alignment is computed from the 1783 * given (object, offset) pair so as to enable the greatest possible use of 1784 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1785 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1786 * 1787 * The map must be locked. Initially, there must be at least "length" bytes 1788 * of free space at the given address. 1789 */ 1790 static int 1791 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1792 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1793 vm_offset_t alignment) 1794 { 1795 vm_offset_t aligned_addr, free_addr; 1796 1797 VM_MAP_ASSERT_LOCKED(map); 1798 free_addr = *addr; 1799 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 1800 ("caller failed to provide space %#jx at address %p", 1801 (uintmax_t)length, (void *)free_addr)); 1802 for (;;) { 1803 /* 1804 * At the start of every iteration, the free space at address 1805 * "*addr" is at least "length" bytes. 1806 */ 1807 if (alignment == 0) 1808 pmap_align_superpage(object, offset, addr, length); 1809 else if ((*addr & (alignment - 1)) != 0) { 1810 *addr &= ~(alignment - 1); 1811 *addr += alignment; 1812 } 1813 aligned_addr = *addr; 1814 if (aligned_addr == free_addr) { 1815 /* 1816 * Alignment did not change "*addr", so "*addr" must 1817 * still provide sufficient free space. 1818 */ 1819 return (KERN_SUCCESS); 1820 } 1821 1822 /* 1823 * Test for address wrap on "*addr". A wrapped "*addr" could 1824 * be a valid address, in which case vm_map_findspace() cannot 1825 * be relied upon to fail. 1826 */ 1827 if (aligned_addr < free_addr) 1828 return (KERN_NO_SPACE); 1829 *addr = vm_map_findspace(map, aligned_addr, length); 1830 if (*addr + length > vm_map_max(map) || 1831 (max_addr != 0 && *addr + length > max_addr)) 1832 return (KERN_NO_SPACE); 1833 free_addr = *addr; 1834 if (free_addr == aligned_addr) { 1835 /* 1836 * If a successful call to vm_map_findspace() did not 1837 * change "*addr", then "*addr" must still be aligned 1838 * and provide sufficient free space. 1839 */ 1840 return (KERN_SUCCESS); 1841 } 1842 } 1843 } 1844 1845 /* 1846 * vm_map_find finds an unallocated region in the target address 1847 * map with the given length. The search is defined to be 1848 * first-fit from the specified address; the region found is 1849 * returned in the same parameter. 1850 * 1851 * If object is non-NULL, ref count must be bumped by caller 1852 * prior to making call to account for the new entry. 1853 */ 1854 int 1855 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1856 vm_offset_t *addr, /* IN/OUT */ 1857 vm_size_t length, vm_offset_t max_addr, int find_space, 1858 vm_prot_t prot, vm_prot_t max, int cow) 1859 { 1860 vm_offset_t alignment, curr_min_addr, min_addr; 1861 int gap, pidx, rv, try; 1862 bool cluster, en_aslr, update_anon; 1863 1864 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1865 object == NULL, 1866 ("vm_map_find: non-NULL backing object for stack")); 1867 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 1868 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 1869 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1870 (object->flags & OBJ_COLORED) == 0)) 1871 find_space = VMFS_ANY_SPACE; 1872 if (find_space >> 8 != 0) { 1873 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1874 alignment = (vm_offset_t)1 << (find_space >> 8); 1875 } else 1876 alignment = 0; 1877 en_aslr = (map->flags & MAP_ASLR) != 0; 1878 update_anon = cluster = clustering_anon_allowed(*addr) && 1879 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 1880 find_space != VMFS_NO_SPACE && object == NULL && 1881 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 1882 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 1883 curr_min_addr = min_addr = *addr; 1884 if (en_aslr && min_addr == 0 && !cluster && 1885 find_space != VMFS_NO_SPACE && 1886 (map->flags & MAP_ASLR_IGNSTART) != 0) 1887 curr_min_addr = min_addr = vm_map_min(map); 1888 try = 0; 1889 vm_map_lock(map); 1890 if (cluster) { 1891 curr_min_addr = map->anon_loc; 1892 if (curr_min_addr == 0) 1893 cluster = false; 1894 } 1895 if (find_space != VMFS_NO_SPACE) { 1896 KASSERT(find_space == VMFS_ANY_SPACE || 1897 find_space == VMFS_OPTIMAL_SPACE || 1898 find_space == VMFS_SUPER_SPACE || 1899 alignment != 0, ("unexpected VMFS flag")); 1900 again: 1901 /* 1902 * When creating an anonymous mapping, try clustering 1903 * with an existing anonymous mapping first. 1904 * 1905 * We make up to two attempts to find address space 1906 * for a given find_space value. The first attempt may 1907 * apply randomization or may cluster with an existing 1908 * anonymous mapping. If this first attempt fails, 1909 * perform a first-fit search of the available address 1910 * space. 1911 * 1912 * If all tries failed, and find_space is 1913 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 1914 * Again enable clustering and randomization. 1915 */ 1916 try++; 1917 MPASS(try <= 2); 1918 1919 if (try == 2) { 1920 /* 1921 * Second try: we failed either to find a 1922 * suitable region for randomizing the 1923 * allocation, or to cluster with an existing 1924 * mapping. Retry with free run. 1925 */ 1926 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 1927 vm_map_min(map) : min_addr; 1928 atomic_add_long(&aslr_restarts, 1); 1929 } 1930 1931 if (try == 1 && en_aslr && !cluster) { 1932 /* 1933 * Find space for allocation, including 1934 * gap needed for later randomization. 1935 */ 1936 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 1937 (find_space == VMFS_SUPER_SPACE || find_space == 1938 VMFS_OPTIMAL_SPACE) ? 1 : 0; 1939 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 1940 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 1941 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 1942 *addr = vm_map_findspace(map, curr_min_addr, 1943 length + gap * pagesizes[pidx]); 1944 if (*addr + length + gap * pagesizes[pidx] > 1945 vm_map_max(map)) 1946 goto again; 1947 /* And randomize the start address. */ 1948 *addr += (arc4random() % gap) * pagesizes[pidx]; 1949 if (max_addr != 0 && *addr + length > max_addr) 1950 goto again; 1951 } else { 1952 *addr = vm_map_findspace(map, curr_min_addr, length); 1953 if (*addr + length > vm_map_max(map) || 1954 (max_addr != 0 && *addr + length > max_addr)) { 1955 if (cluster) { 1956 cluster = false; 1957 MPASS(try == 1); 1958 goto again; 1959 } 1960 rv = KERN_NO_SPACE; 1961 goto done; 1962 } 1963 } 1964 1965 if (find_space != VMFS_ANY_SPACE && 1966 (rv = vm_map_alignspace(map, object, offset, addr, length, 1967 max_addr, alignment)) != KERN_SUCCESS) { 1968 if (find_space == VMFS_OPTIMAL_SPACE) { 1969 find_space = VMFS_ANY_SPACE; 1970 curr_min_addr = min_addr; 1971 cluster = update_anon; 1972 try = 0; 1973 goto again; 1974 } 1975 goto done; 1976 } 1977 } else if ((cow & MAP_REMAP) != 0) { 1978 if (*addr < vm_map_min(map) || 1979 *addr + length > vm_map_max(map) || 1980 *addr + length <= length) { 1981 rv = KERN_INVALID_ADDRESS; 1982 goto done; 1983 } 1984 vm_map_delete(map, *addr, *addr + length); 1985 } 1986 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1987 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 1988 max, cow); 1989 } else { 1990 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 1991 prot, max, cow); 1992 } 1993 if (rv == KERN_SUCCESS && update_anon) 1994 map->anon_loc = *addr + length; 1995 done: 1996 vm_map_unlock(map); 1997 return (rv); 1998 } 1999 2000 /* 2001 * vm_map_find_min() is a variant of vm_map_find() that takes an 2002 * additional parameter (min_addr) and treats the given address 2003 * (*addr) differently. Specifically, it treats *addr as a hint 2004 * and not as the minimum address where the mapping is created. 2005 * 2006 * This function works in two phases. First, it tries to 2007 * allocate above the hint. If that fails and the hint is 2008 * greater than min_addr, it performs a second pass, replacing 2009 * the hint with min_addr as the minimum address for the 2010 * allocation. 2011 */ 2012 int 2013 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2014 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 2015 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2016 int cow) 2017 { 2018 vm_offset_t hint; 2019 int rv; 2020 2021 hint = *addr; 2022 for (;;) { 2023 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2024 find_space, prot, max, cow); 2025 if (rv == KERN_SUCCESS || min_addr >= hint) 2026 return (rv); 2027 *addr = hint = min_addr; 2028 } 2029 } 2030 2031 /* 2032 * A map entry with any of the following flags set must not be merged with 2033 * another entry. 2034 */ 2035 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 2036 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC) 2037 2038 static bool 2039 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2040 { 2041 2042 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2043 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2044 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2045 prev, entry)); 2046 return (prev->end == entry->start && 2047 prev->object.vm_object == entry->object.vm_object && 2048 (prev->object.vm_object == NULL || 2049 prev->offset + (prev->end - prev->start) == entry->offset) && 2050 prev->eflags == entry->eflags && 2051 prev->protection == entry->protection && 2052 prev->max_protection == entry->max_protection && 2053 prev->inheritance == entry->inheritance && 2054 prev->wired_count == entry->wired_count && 2055 prev->cred == entry->cred); 2056 } 2057 2058 static void 2059 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2060 { 2061 2062 /* 2063 * If the backing object is a vnode object, vm_object_deallocate() 2064 * calls vrele(). However, vrele() does not lock the vnode because 2065 * the vnode has additional references. Thus, the map lock can be 2066 * kept without causing a lock-order reversal with the vnode lock. 2067 * 2068 * Since we count the number of virtual page mappings in 2069 * object->un_pager.vnp.writemappings, the writemappings value 2070 * should not be adjusted when the entry is disposed of. 2071 */ 2072 if (entry->object.vm_object != NULL) 2073 vm_object_deallocate(entry->object.vm_object); 2074 if (entry->cred != NULL) 2075 crfree(entry->cred); 2076 vm_map_entry_dispose(map, entry); 2077 } 2078 2079 /* 2080 * vm_map_simplify_entry: 2081 * 2082 * Simplify the given map entry by merging with either neighbor. This 2083 * routine also has the ability to merge with both neighbors. 2084 * 2085 * The map must be locked. 2086 * 2087 * This routine guarantees that the passed entry remains valid (though 2088 * possibly extended). When merging, this routine may delete one or 2089 * both neighbors. 2090 */ 2091 void 2092 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 2093 { 2094 vm_map_entry_t next, prev; 2095 2096 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0) 2097 return; 2098 prev = entry->prev; 2099 if (vm_map_mergeable_neighbors(prev, entry)) { 2100 vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT); 2101 vm_map_merged_neighbor_dispose(map, prev); 2102 } 2103 next = entry->next; 2104 if (vm_map_mergeable_neighbors(entry, next)) { 2105 vm_map_entry_unlink(map, next, UNLINK_MERGE_PREV); 2106 vm_map_merged_neighbor_dispose(map, next); 2107 } 2108 } 2109 2110 /* 2111 * vm_map_entry_back: 2112 * 2113 * Allocate an object to back a map entry. 2114 */ 2115 static inline void 2116 vm_map_entry_back(vm_map_entry_t entry) 2117 { 2118 vm_object_t object; 2119 2120 KASSERT(entry->object.vm_object == NULL, 2121 ("map entry %p has backing object", entry)); 2122 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2123 ("map entry %p is a submap", entry)); 2124 object = vm_object_allocate(OBJT_DEFAULT, 2125 atop(entry->end - entry->start)); 2126 entry->object.vm_object = object; 2127 entry->offset = 0; 2128 if (entry->cred != NULL) { 2129 object->cred = entry->cred; 2130 object->charge = entry->end - entry->start; 2131 entry->cred = NULL; 2132 } 2133 } 2134 2135 /* 2136 * vm_map_entry_charge_object 2137 * 2138 * If there is no object backing this entry, create one. Otherwise, if 2139 * the entry has cred, give it to the backing object. 2140 */ 2141 static inline void 2142 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2143 { 2144 2145 VM_MAP_ASSERT_LOCKED(map); 2146 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2147 ("map entry %p is a submap", entry)); 2148 if (entry->object.vm_object == NULL && !map->system_map && 2149 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2150 vm_map_entry_back(entry); 2151 else if (entry->object.vm_object != NULL && 2152 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2153 entry->cred != NULL) { 2154 VM_OBJECT_WLOCK(entry->object.vm_object); 2155 KASSERT(entry->object.vm_object->cred == NULL, 2156 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2157 entry->object.vm_object->cred = entry->cred; 2158 entry->object.vm_object->charge = entry->end - entry->start; 2159 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2160 entry->cred = NULL; 2161 } 2162 } 2163 2164 /* 2165 * vm_map_clip_start: [ internal use only ] 2166 * 2167 * Asserts that the given entry begins at or after 2168 * the specified address; if necessary, 2169 * it splits the entry into two. 2170 */ 2171 #define vm_map_clip_start(map, entry, startaddr) \ 2172 { \ 2173 if (startaddr > entry->start) \ 2174 _vm_map_clip_start(map, entry, startaddr); \ 2175 } 2176 2177 /* 2178 * This routine is called only when it is known that 2179 * the entry must be split. 2180 */ 2181 static void 2182 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 2183 { 2184 vm_map_entry_t new_entry; 2185 2186 VM_MAP_ASSERT_LOCKED(map); 2187 KASSERT(entry->end > start && entry->start < start, 2188 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 2189 vm_map_simplify_entry(map, entry); 2190 2191 /* 2192 * Create a backing object now, if none exists, so that more individual 2193 * objects won't be created after the map entry is split. 2194 */ 2195 vm_map_entry_charge_object(map, entry); 2196 2197 /* Clone the entry. */ 2198 new_entry = vm_map_entry_create(map); 2199 *new_entry = *entry; 2200 2201 /* 2202 * Split off the front portion. Insert the new entry BEFORE this one, 2203 * so that this entry has the specified starting address. 2204 */ 2205 new_entry->end = start; 2206 entry->offset += (start - entry->start); 2207 entry->start = start; 2208 if (new_entry->cred != NULL) 2209 crhold(entry->cred); 2210 2211 vm_map_entry_link(map, new_entry); 2212 2213 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2214 vm_object_reference(new_entry->object.vm_object); 2215 vm_map_entry_set_vnode_text(new_entry, true); 2216 /* 2217 * The object->un_pager.vnp.writemappings for the 2218 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 2219 * kept as is here. The virtual pages are 2220 * re-distributed among the clipped entries, so the sum is 2221 * left the same. 2222 */ 2223 } 2224 } 2225 2226 /* 2227 * vm_map_clip_end: [ internal use only ] 2228 * 2229 * Asserts that the given entry ends at or before 2230 * the specified address; if necessary, 2231 * it splits the entry into two. 2232 */ 2233 #define vm_map_clip_end(map, entry, endaddr) \ 2234 { \ 2235 if ((endaddr) < (entry->end)) \ 2236 _vm_map_clip_end((map), (entry), (endaddr)); \ 2237 } 2238 2239 /* 2240 * This routine is called only when it is known that 2241 * the entry must be split. 2242 */ 2243 static void 2244 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 2245 { 2246 vm_map_entry_t new_entry; 2247 2248 VM_MAP_ASSERT_LOCKED(map); 2249 KASSERT(entry->start < end && entry->end > end, 2250 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 2251 2252 /* 2253 * Create a backing object now, if none exists, so that more individual 2254 * objects won't be created after the map entry is split. 2255 */ 2256 vm_map_entry_charge_object(map, entry); 2257 2258 /* Clone the entry. */ 2259 new_entry = vm_map_entry_create(map); 2260 *new_entry = *entry; 2261 2262 /* 2263 * Split off the back portion. Insert the new entry AFTER this one, 2264 * so that this entry has the specified ending address. 2265 */ 2266 new_entry->start = entry->end = end; 2267 new_entry->offset += (end - entry->start); 2268 if (new_entry->cred != NULL) 2269 crhold(entry->cred); 2270 2271 vm_map_entry_link(map, new_entry); 2272 2273 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2274 vm_object_reference(new_entry->object.vm_object); 2275 vm_map_entry_set_vnode_text(new_entry, true); 2276 } 2277 } 2278 2279 /* 2280 * vm_map_submap: [ kernel use only ] 2281 * 2282 * Mark the given range as handled by a subordinate map. 2283 * 2284 * This range must have been created with vm_map_find, 2285 * and no other operations may have been performed on this 2286 * range prior to calling vm_map_submap. 2287 * 2288 * Only a limited number of operations can be performed 2289 * within this rage after calling vm_map_submap: 2290 * vm_fault 2291 * [Don't try vm_map_copy!] 2292 * 2293 * To remove a submapping, one must first remove the 2294 * range from the superior map, and then destroy the 2295 * submap (if desired). [Better yet, don't try it.] 2296 */ 2297 int 2298 vm_map_submap( 2299 vm_map_t map, 2300 vm_offset_t start, 2301 vm_offset_t end, 2302 vm_map_t submap) 2303 { 2304 vm_map_entry_t entry; 2305 int result; 2306 2307 result = KERN_INVALID_ARGUMENT; 2308 2309 vm_map_lock(submap); 2310 submap->flags |= MAP_IS_SUB_MAP; 2311 vm_map_unlock(submap); 2312 2313 vm_map_lock(map); 2314 2315 VM_MAP_RANGE_CHECK(map, start, end); 2316 2317 if (vm_map_lookup_entry(map, start, &entry)) { 2318 vm_map_clip_start(map, entry, start); 2319 } else 2320 entry = entry->next; 2321 2322 vm_map_clip_end(map, entry, end); 2323 2324 if ((entry->start == start) && (entry->end == end) && 2325 ((entry->eflags & MAP_ENTRY_COW) == 0) && 2326 (entry->object.vm_object == NULL)) { 2327 entry->object.sub_map = submap; 2328 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2329 result = KERN_SUCCESS; 2330 } 2331 vm_map_unlock(map); 2332 2333 if (result != KERN_SUCCESS) { 2334 vm_map_lock(submap); 2335 submap->flags &= ~MAP_IS_SUB_MAP; 2336 vm_map_unlock(submap); 2337 } 2338 return (result); 2339 } 2340 2341 /* 2342 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2343 */ 2344 #define MAX_INIT_PT 96 2345 2346 /* 2347 * vm_map_pmap_enter: 2348 * 2349 * Preload the specified map's pmap with mappings to the specified 2350 * object's memory-resident pages. No further physical pages are 2351 * allocated, and no further virtual pages are retrieved from secondary 2352 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2353 * limited number of page mappings are created at the low-end of the 2354 * specified address range. (For this purpose, a superpage mapping 2355 * counts as one page mapping.) Otherwise, all resident pages within 2356 * the specified address range are mapped. 2357 */ 2358 static void 2359 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2360 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2361 { 2362 vm_offset_t start; 2363 vm_page_t p, p_start; 2364 vm_pindex_t mask, psize, threshold, tmpidx; 2365 2366 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2367 return; 2368 VM_OBJECT_RLOCK(object); 2369 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2370 VM_OBJECT_RUNLOCK(object); 2371 VM_OBJECT_WLOCK(object); 2372 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2373 pmap_object_init_pt(map->pmap, addr, object, pindex, 2374 size); 2375 VM_OBJECT_WUNLOCK(object); 2376 return; 2377 } 2378 VM_OBJECT_LOCK_DOWNGRADE(object); 2379 } 2380 2381 psize = atop(size); 2382 if (psize + pindex > object->size) { 2383 if (object->size < pindex) { 2384 VM_OBJECT_RUNLOCK(object); 2385 return; 2386 } 2387 psize = object->size - pindex; 2388 } 2389 2390 start = 0; 2391 p_start = NULL; 2392 threshold = MAX_INIT_PT; 2393 2394 p = vm_page_find_least(object, pindex); 2395 /* 2396 * Assert: the variable p is either (1) the page with the 2397 * least pindex greater than or equal to the parameter pindex 2398 * or (2) NULL. 2399 */ 2400 for (; 2401 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2402 p = TAILQ_NEXT(p, listq)) { 2403 /* 2404 * don't allow an madvise to blow away our really 2405 * free pages allocating pv entries. 2406 */ 2407 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2408 vm_page_count_severe()) || 2409 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2410 tmpidx >= threshold)) { 2411 psize = tmpidx; 2412 break; 2413 } 2414 if (p->valid == VM_PAGE_BITS_ALL) { 2415 if (p_start == NULL) { 2416 start = addr + ptoa(tmpidx); 2417 p_start = p; 2418 } 2419 /* Jump ahead if a superpage mapping is possible. */ 2420 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2421 (pagesizes[p->psind] - 1)) == 0) { 2422 mask = atop(pagesizes[p->psind]) - 1; 2423 if (tmpidx + mask < psize && 2424 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2425 p += mask; 2426 threshold += mask; 2427 } 2428 } 2429 } else if (p_start != NULL) { 2430 pmap_enter_object(map->pmap, start, addr + 2431 ptoa(tmpidx), p_start, prot); 2432 p_start = NULL; 2433 } 2434 } 2435 if (p_start != NULL) 2436 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2437 p_start, prot); 2438 VM_OBJECT_RUNLOCK(object); 2439 } 2440 2441 /* 2442 * vm_map_protect: 2443 * 2444 * Sets the protection of the specified address 2445 * region in the target map. If "set_max" is 2446 * specified, the maximum protection is to be set; 2447 * otherwise, only the current protection is affected. 2448 */ 2449 int 2450 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2451 vm_prot_t new_prot, boolean_t set_max) 2452 { 2453 vm_map_entry_t current, entry, in_tran; 2454 vm_object_t obj; 2455 struct ucred *cred; 2456 vm_prot_t old_prot; 2457 2458 if (start == end) 2459 return (KERN_SUCCESS); 2460 2461 again: 2462 in_tran = NULL; 2463 vm_map_lock(map); 2464 2465 /* 2466 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2467 * need to fault pages into the map and will drop the map lock while 2468 * doing so, and the VM object may end up in an inconsistent state if we 2469 * update the protection on the map entry in between faults. 2470 */ 2471 vm_map_wait_busy(map); 2472 2473 VM_MAP_RANGE_CHECK(map, start, end); 2474 2475 if (!vm_map_lookup_entry(map, start, &entry)) 2476 entry = entry->next; 2477 2478 /* 2479 * Make a first pass to check for protection violations. 2480 */ 2481 for (current = entry; current->start < end; current = current->next) { 2482 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2483 continue; 2484 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2485 vm_map_unlock(map); 2486 return (KERN_INVALID_ARGUMENT); 2487 } 2488 if ((new_prot & current->max_protection) != new_prot) { 2489 vm_map_unlock(map); 2490 return (KERN_PROTECTION_FAILURE); 2491 } 2492 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2493 in_tran = entry; 2494 } 2495 2496 /* 2497 * Postpone the operation until all in transition map entries 2498 * are stabilized. In-transition entry might already have its 2499 * pages wired and wired_count incremented, but 2500 * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other 2501 * threads because the map lock is dropped. In this case we 2502 * would miss our call to vm_fault_copy_entry(). 2503 */ 2504 if (in_tran != NULL) { 2505 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2506 vm_map_unlock_and_wait(map, 0); 2507 goto again; 2508 } 2509 2510 /* 2511 * Do an accounting pass for private read-only mappings that 2512 * now will do cow due to allowed write (e.g. debugger sets 2513 * breakpoint on text segment) 2514 */ 2515 vm_map_clip_start(map, entry, start); 2516 for (current = entry; current->start < end; current = current->next) { 2517 2518 vm_map_clip_end(map, current, end); 2519 2520 if (set_max || 2521 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 2522 ENTRY_CHARGED(current) || 2523 (current->eflags & MAP_ENTRY_GUARD) != 0) { 2524 continue; 2525 } 2526 2527 cred = curthread->td_ucred; 2528 obj = current->object.vm_object; 2529 2530 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 2531 if (!swap_reserve(current->end - current->start)) { 2532 vm_map_unlock(map); 2533 return (KERN_RESOURCE_SHORTAGE); 2534 } 2535 crhold(cred); 2536 current->cred = cred; 2537 continue; 2538 } 2539 2540 VM_OBJECT_WLOCK(obj); 2541 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2542 VM_OBJECT_WUNLOCK(obj); 2543 continue; 2544 } 2545 2546 /* 2547 * Charge for the whole object allocation now, since 2548 * we cannot distinguish between non-charged and 2549 * charged clipped mapping of the same object later. 2550 */ 2551 KASSERT(obj->charge == 0, 2552 ("vm_map_protect: object %p overcharged (entry %p)", 2553 obj, current)); 2554 if (!swap_reserve(ptoa(obj->size))) { 2555 VM_OBJECT_WUNLOCK(obj); 2556 vm_map_unlock(map); 2557 return (KERN_RESOURCE_SHORTAGE); 2558 } 2559 2560 crhold(cred); 2561 obj->cred = cred; 2562 obj->charge = ptoa(obj->size); 2563 VM_OBJECT_WUNLOCK(obj); 2564 } 2565 2566 /* 2567 * Go back and fix up protections. [Note that clipping is not 2568 * necessary the second time.] 2569 */ 2570 for (current = entry; current->start < end; current = current->next) { 2571 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2572 continue; 2573 2574 old_prot = current->protection; 2575 2576 if (set_max) 2577 current->protection = 2578 (current->max_protection = new_prot) & 2579 old_prot; 2580 else 2581 current->protection = new_prot; 2582 2583 /* 2584 * For user wired map entries, the normal lazy evaluation of 2585 * write access upgrades through soft page faults is 2586 * undesirable. Instead, immediately copy any pages that are 2587 * copy-on-write and enable write access in the physical map. 2588 */ 2589 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2590 (current->protection & VM_PROT_WRITE) != 0 && 2591 (old_prot & VM_PROT_WRITE) == 0) 2592 vm_fault_copy_entry(map, map, current, current, NULL); 2593 2594 /* 2595 * When restricting access, update the physical map. Worry 2596 * about copy-on-write here. 2597 */ 2598 if ((old_prot & ~current->protection) != 0) { 2599 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2600 VM_PROT_ALL) 2601 pmap_protect(map->pmap, current->start, 2602 current->end, 2603 current->protection & MASK(current)); 2604 #undef MASK 2605 } 2606 vm_map_simplify_entry(map, current); 2607 } 2608 vm_map_unlock(map); 2609 return (KERN_SUCCESS); 2610 } 2611 2612 /* 2613 * vm_map_madvise: 2614 * 2615 * This routine traverses a processes map handling the madvise 2616 * system call. Advisories are classified as either those effecting 2617 * the vm_map_entry structure, or those effecting the underlying 2618 * objects. 2619 */ 2620 int 2621 vm_map_madvise( 2622 vm_map_t map, 2623 vm_offset_t start, 2624 vm_offset_t end, 2625 int behav) 2626 { 2627 vm_map_entry_t current, entry; 2628 bool modify_map; 2629 2630 /* 2631 * Some madvise calls directly modify the vm_map_entry, in which case 2632 * we need to use an exclusive lock on the map and we need to perform 2633 * various clipping operations. Otherwise we only need a read-lock 2634 * on the map. 2635 */ 2636 switch(behav) { 2637 case MADV_NORMAL: 2638 case MADV_SEQUENTIAL: 2639 case MADV_RANDOM: 2640 case MADV_NOSYNC: 2641 case MADV_AUTOSYNC: 2642 case MADV_NOCORE: 2643 case MADV_CORE: 2644 if (start == end) 2645 return (0); 2646 modify_map = true; 2647 vm_map_lock(map); 2648 break; 2649 case MADV_WILLNEED: 2650 case MADV_DONTNEED: 2651 case MADV_FREE: 2652 if (start == end) 2653 return (0); 2654 modify_map = false; 2655 vm_map_lock_read(map); 2656 break; 2657 default: 2658 return (EINVAL); 2659 } 2660 2661 /* 2662 * Locate starting entry and clip if necessary. 2663 */ 2664 VM_MAP_RANGE_CHECK(map, start, end); 2665 2666 if (vm_map_lookup_entry(map, start, &entry)) { 2667 if (modify_map) 2668 vm_map_clip_start(map, entry, start); 2669 } else { 2670 entry = entry->next; 2671 } 2672 2673 if (modify_map) { 2674 /* 2675 * madvise behaviors that are implemented in the vm_map_entry. 2676 * 2677 * We clip the vm_map_entry so that behavioral changes are 2678 * limited to the specified address range. 2679 */ 2680 for (current = entry; current->start < end; 2681 current = current->next) { 2682 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2683 continue; 2684 2685 vm_map_clip_end(map, current, end); 2686 2687 switch (behav) { 2688 case MADV_NORMAL: 2689 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2690 break; 2691 case MADV_SEQUENTIAL: 2692 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2693 break; 2694 case MADV_RANDOM: 2695 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2696 break; 2697 case MADV_NOSYNC: 2698 current->eflags |= MAP_ENTRY_NOSYNC; 2699 break; 2700 case MADV_AUTOSYNC: 2701 current->eflags &= ~MAP_ENTRY_NOSYNC; 2702 break; 2703 case MADV_NOCORE: 2704 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2705 break; 2706 case MADV_CORE: 2707 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2708 break; 2709 default: 2710 break; 2711 } 2712 vm_map_simplify_entry(map, current); 2713 } 2714 vm_map_unlock(map); 2715 } else { 2716 vm_pindex_t pstart, pend; 2717 2718 /* 2719 * madvise behaviors that are implemented in the underlying 2720 * vm_object. 2721 * 2722 * Since we don't clip the vm_map_entry, we have to clip 2723 * the vm_object pindex and count. 2724 */ 2725 for (current = entry; current->start < end; 2726 current = current->next) { 2727 vm_offset_t useEnd, useStart; 2728 2729 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2730 continue; 2731 2732 pstart = OFF_TO_IDX(current->offset); 2733 pend = pstart + atop(current->end - current->start); 2734 useStart = current->start; 2735 useEnd = current->end; 2736 2737 if (current->start < start) { 2738 pstart += atop(start - current->start); 2739 useStart = start; 2740 } 2741 if (current->end > end) { 2742 pend -= atop(current->end - end); 2743 useEnd = end; 2744 } 2745 2746 if (pstart >= pend) 2747 continue; 2748 2749 /* 2750 * Perform the pmap_advise() before clearing 2751 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2752 * concurrent pmap operation, such as pmap_remove(), 2753 * could clear a reference in the pmap and set 2754 * PGA_REFERENCED on the page before the pmap_advise() 2755 * had completed. Consequently, the page would appear 2756 * referenced based upon an old reference that 2757 * occurred before this pmap_advise() ran. 2758 */ 2759 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2760 pmap_advise(map->pmap, useStart, useEnd, 2761 behav); 2762 2763 vm_object_madvise(current->object.vm_object, pstart, 2764 pend, behav); 2765 2766 /* 2767 * Pre-populate paging structures in the 2768 * WILLNEED case. For wired entries, the 2769 * paging structures are already populated. 2770 */ 2771 if (behav == MADV_WILLNEED && 2772 current->wired_count == 0) { 2773 vm_map_pmap_enter(map, 2774 useStart, 2775 current->protection, 2776 current->object.vm_object, 2777 pstart, 2778 ptoa(pend - pstart), 2779 MAP_PREFAULT_MADVISE 2780 ); 2781 } 2782 } 2783 vm_map_unlock_read(map); 2784 } 2785 return (0); 2786 } 2787 2788 2789 /* 2790 * vm_map_inherit: 2791 * 2792 * Sets the inheritance of the specified address 2793 * range in the target map. Inheritance 2794 * affects how the map will be shared with 2795 * child maps at the time of vmspace_fork. 2796 */ 2797 int 2798 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2799 vm_inherit_t new_inheritance) 2800 { 2801 vm_map_entry_t entry; 2802 vm_map_entry_t temp_entry; 2803 2804 switch (new_inheritance) { 2805 case VM_INHERIT_NONE: 2806 case VM_INHERIT_COPY: 2807 case VM_INHERIT_SHARE: 2808 case VM_INHERIT_ZERO: 2809 break; 2810 default: 2811 return (KERN_INVALID_ARGUMENT); 2812 } 2813 if (start == end) 2814 return (KERN_SUCCESS); 2815 vm_map_lock(map); 2816 VM_MAP_RANGE_CHECK(map, start, end); 2817 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2818 entry = temp_entry; 2819 vm_map_clip_start(map, entry, start); 2820 } else 2821 entry = temp_entry->next; 2822 while (entry->start < end) { 2823 vm_map_clip_end(map, entry, end); 2824 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 2825 new_inheritance != VM_INHERIT_ZERO) 2826 entry->inheritance = new_inheritance; 2827 vm_map_simplify_entry(map, entry); 2828 entry = entry->next; 2829 } 2830 vm_map_unlock(map); 2831 return (KERN_SUCCESS); 2832 } 2833 2834 /* 2835 * vm_map_unwire: 2836 * 2837 * Implements both kernel and user unwiring. 2838 */ 2839 int 2840 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2841 int flags) 2842 { 2843 vm_map_entry_t entry, first_entry, tmp_entry; 2844 vm_offset_t saved_start; 2845 unsigned int last_timestamp; 2846 int rv; 2847 boolean_t need_wakeup, result, user_unwire; 2848 2849 if (start == end) 2850 return (KERN_SUCCESS); 2851 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2852 vm_map_lock(map); 2853 VM_MAP_RANGE_CHECK(map, start, end); 2854 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2855 if (flags & VM_MAP_WIRE_HOLESOK) 2856 first_entry = first_entry->next; 2857 else { 2858 vm_map_unlock(map); 2859 return (KERN_INVALID_ADDRESS); 2860 } 2861 } 2862 last_timestamp = map->timestamp; 2863 entry = first_entry; 2864 while (entry->start < end) { 2865 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2866 /* 2867 * We have not yet clipped the entry. 2868 */ 2869 saved_start = (start >= entry->start) ? start : 2870 entry->start; 2871 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2872 if (vm_map_unlock_and_wait(map, 0)) { 2873 /* 2874 * Allow interruption of user unwiring? 2875 */ 2876 } 2877 vm_map_lock(map); 2878 if (last_timestamp+1 != map->timestamp) { 2879 /* 2880 * Look again for the entry because the map was 2881 * modified while it was unlocked. 2882 * Specifically, the entry may have been 2883 * clipped, merged, or deleted. 2884 */ 2885 if (!vm_map_lookup_entry(map, saved_start, 2886 &tmp_entry)) { 2887 if (flags & VM_MAP_WIRE_HOLESOK) 2888 tmp_entry = tmp_entry->next; 2889 else { 2890 if (saved_start == start) { 2891 /* 2892 * First_entry has been deleted. 2893 */ 2894 vm_map_unlock(map); 2895 return (KERN_INVALID_ADDRESS); 2896 } 2897 end = saved_start; 2898 rv = KERN_INVALID_ADDRESS; 2899 goto done; 2900 } 2901 } 2902 if (entry == first_entry) 2903 first_entry = tmp_entry; 2904 else 2905 first_entry = NULL; 2906 entry = tmp_entry; 2907 } 2908 last_timestamp = map->timestamp; 2909 continue; 2910 } 2911 vm_map_clip_start(map, entry, start); 2912 vm_map_clip_end(map, entry, end); 2913 /* 2914 * Mark the entry in case the map lock is released. (See 2915 * above.) 2916 */ 2917 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2918 entry->wiring_thread == NULL, 2919 ("owned map entry %p", entry)); 2920 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2921 entry->wiring_thread = curthread; 2922 /* 2923 * Check the map for holes in the specified region. 2924 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2925 */ 2926 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2927 (entry->end < end && entry->next->start > entry->end)) { 2928 end = entry->end; 2929 rv = KERN_INVALID_ADDRESS; 2930 goto done; 2931 } 2932 /* 2933 * If system unwiring, require that the entry is system wired. 2934 */ 2935 if (!user_unwire && 2936 vm_map_entry_system_wired_count(entry) == 0) { 2937 end = entry->end; 2938 rv = KERN_INVALID_ARGUMENT; 2939 goto done; 2940 } 2941 entry = entry->next; 2942 } 2943 rv = KERN_SUCCESS; 2944 done: 2945 need_wakeup = FALSE; 2946 if (first_entry == NULL) { 2947 result = vm_map_lookup_entry(map, start, &first_entry); 2948 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2949 first_entry = first_entry->next; 2950 else 2951 KASSERT(result, ("vm_map_unwire: lookup failed")); 2952 } 2953 for (entry = first_entry; entry->start < end; entry = entry->next) { 2954 /* 2955 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2956 * space in the unwired region could have been mapped 2957 * while the map lock was dropped for draining 2958 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2959 * could be simultaneously wiring this new mapping 2960 * entry. Detect these cases and skip any entries 2961 * marked as in transition by us. 2962 */ 2963 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2964 entry->wiring_thread != curthread) { 2965 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2966 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2967 continue; 2968 } 2969 2970 if (rv == KERN_SUCCESS && (!user_unwire || 2971 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2972 if (entry->wired_count == 1) 2973 vm_map_entry_unwire(map, entry); 2974 else 2975 entry->wired_count--; 2976 if (user_unwire) 2977 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2978 } 2979 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2980 ("vm_map_unwire: in-transition flag missing %p", entry)); 2981 KASSERT(entry->wiring_thread == curthread, 2982 ("vm_map_unwire: alien wire %p", entry)); 2983 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2984 entry->wiring_thread = NULL; 2985 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2986 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2987 need_wakeup = TRUE; 2988 } 2989 vm_map_simplify_entry(map, entry); 2990 } 2991 vm_map_unlock(map); 2992 if (need_wakeup) 2993 vm_map_wakeup(map); 2994 return (rv); 2995 } 2996 2997 static void 2998 vm_map_wire_user_count_sub(u_long npages) 2999 { 3000 3001 atomic_subtract_long(&vm_user_wire_count, npages); 3002 } 3003 3004 static bool 3005 vm_map_wire_user_count_add(u_long npages) 3006 { 3007 u_long wired; 3008 3009 wired = vm_user_wire_count; 3010 do { 3011 if (npages + wired > vm_page_max_user_wired) 3012 return (false); 3013 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3014 npages + wired)); 3015 3016 return (true); 3017 } 3018 3019 /* 3020 * vm_map_wire_entry_failure: 3021 * 3022 * Handle a wiring failure on the given entry. 3023 * 3024 * The map should be locked. 3025 */ 3026 static void 3027 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3028 vm_offset_t failed_addr) 3029 { 3030 3031 VM_MAP_ASSERT_LOCKED(map); 3032 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3033 entry->wired_count == 1, 3034 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3035 KASSERT(failed_addr < entry->end, 3036 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3037 3038 /* 3039 * If any pages at the start of this entry were successfully wired, 3040 * then unwire them. 3041 */ 3042 if (failed_addr > entry->start) { 3043 pmap_unwire(map->pmap, entry->start, failed_addr); 3044 vm_object_unwire(entry->object.vm_object, entry->offset, 3045 failed_addr - entry->start, PQ_ACTIVE); 3046 } 3047 3048 /* 3049 * Assign an out-of-range value to represent the failure to wire this 3050 * entry. 3051 */ 3052 entry->wired_count = -1; 3053 } 3054 3055 int 3056 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3057 { 3058 int rv; 3059 3060 vm_map_lock(map); 3061 rv = vm_map_wire_locked(map, start, end, flags); 3062 vm_map_unlock(map); 3063 return (rv); 3064 } 3065 3066 3067 /* 3068 * vm_map_wire_locked: 3069 * 3070 * Implements both kernel and user wiring. Returns with the map locked, 3071 * the map lock may be dropped. 3072 */ 3073 int 3074 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3075 { 3076 vm_map_entry_t entry, first_entry, tmp_entry; 3077 vm_offset_t faddr, saved_end, saved_start; 3078 u_long npages; 3079 u_int last_timestamp; 3080 int rv; 3081 boolean_t need_wakeup, result, user_wire; 3082 vm_prot_t prot; 3083 3084 VM_MAP_ASSERT_LOCKED(map); 3085 3086 if (start == end) 3087 return (KERN_SUCCESS); 3088 prot = 0; 3089 if (flags & VM_MAP_WIRE_WRITE) 3090 prot |= VM_PROT_WRITE; 3091 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 3092 VM_MAP_RANGE_CHECK(map, start, end); 3093 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3094 if (flags & VM_MAP_WIRE_HOLESOK) 3095 first_entry = first_entry->next; 3096 else 3097 return (KERN_INVALID_ADDRESS); 3098 } 3099 last_timestamp = map->timestamp; 3100 entry = first_entry; 3101 while (entry->start < end) { 3102 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3103 /* 3104 * We have not yet clipped the entry. 3105 */ 3106 saved_start = (start >= entry->start) ? start : 3107 entry->start; 3108 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3109 if (vm_map_unlock_and_wait(map, 0)) { 3110 /* 3111 * Allow interruption of user wiring? 3112 */ 3113 } 3114 vm_map_lock(map); 3115 if (last_timestamp + 1 != map->timestamp) { 3116 /* 3117 * Look again for the entry because the map was 3118 * modified while it was unlocked. 3119 * Specifically, the entry may have been 3120 * clipped, merged, or deleted. 3121 */ 3122 if (!vm_map_lookup_entry(map, saved_start, 3123 &tmp_entry)) { 3124 if (flags & VM_MAP_WIRE_HOLESOK) 3125 tmp_entry = tmp_entry->next; 3126 else { 3127 if (saved_start == start) { 3128 /* 3129 * first_entry has been deleted. 3130 */ 3131 return (KERN_INVALID_ADDRESS); 3132 } 3133 end = saved_start; 3134 rv = KERN_INVALID_ADDRESS; 3135 goto done; 3136 } 3137 } 3138 if (entry == first_entry) 3139 first_entry = tmp_entry; 3140 else 3141 first_entry = NULL; 3142 entry = tmp_entry; 3143 } 3144 last_timestamp = map->timestamp; 3145 continue; 3146 } 3147 vm_map_clip_start(map, entry, start); 3148 vm_map_clip_end(map, entry, end); 3149 /* 3150 * Mark the entry in case the map lock is released. (See 3151 * above.) 3152 */ 3153 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3154 entry->wiring_thread == NULL, 3155 ("owned map entry %p", entry)); 3156 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3157 entry->wiring_thread = curthread; 3158 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3159 || (entry->protection & prot) != prot) { 3160 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3161 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 3162 end = entry->end; 3163 rv = KERN_INVALID_ADDRESS; 3164 goto done; 3165 } 3166 goto next_entry; 3167 } 3168 if (entry->wired_count == 0) { 3169 entry->wired_count++; 3170 3171 npages = atop(entry->end - entry->start); 3172 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3173 vm_map_wire_entry_failure(map, entry, 3174 entry->start); 3175 end = entry->end; 3176 rv = KERN_RESOURCE_SHORTAGE; 3177 goto done; 3178 } 3179 3180 /* 3181 * Release the map lock, relying on the in-transition 3182 * mark. Mark the map busy for fork. 3183 */ 3184 saved_start = entry->start; 3185 saved_end = entry->end; 3186 vm_map_busy(map); 3187 vm_map_unlock(map); 3188 3189 faddr = saved_start; 3190 do { 3191 /* 3192 * Simulate a fault to get the page and enter 3193 * it into the physical map. 3194 */ 3195 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 3196 VM_FAULT_WIRE)) != KERN_SUCCESS) 3197 break; 3198 } while ((faddr += PAGE_SIZE) < saved_end); 3199 vm_map_lock(map); 3200 vm_map_unbusy(map); 3201 if (last_timestamp + 1 != map->timestamp) { 3202 /* 3203 * Look again for the entry because the map was 3204 * modified while it was unlocked. The entry 3205 * may have been clipped, but NOT merged or 3206 * deleted. 3207 */ 3208 result = vm_map_lookup_entry(map, saved_start, 3209 &tmp_entry); 3210 KASSERT(result, ("vm_map_wire: lookup failed")); 3211 if (entry == first_entry) 3212 first_entry = tmp_entry; 3213 else 3214 first_entry = NULL; 3215 entry = tmp_entry; 3216 while (entry->end < saved_end) { 3217 /* 3218 * In case of failure, handle entries 3219 * that were not fully wired here; 3220 * fully wired entries are handled 3221 * later. 3222 */ 3223 if (rv != KERN_SUCCESS && 3224 faddr < entry->end) 3225 vm_map_wire_entry_failure(map, 3226 entry, faddr); 3227 entry = entry->next; 3228 } 3229 } 3230 last_timestamp = map->timestamp; 3231 if (rv != KERN_SUCCESS) { 3232 vm_map_wire_entry_failure(map, entry, faddr); 3233 if (user_wire) 3234 vm_map_wire_user_count_sub(npages); 3235 end = entry->end; 3236 goto done; 3237 } 3238 } else if (!user_wire || 3239 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3240 entry->wired_count++; 3241 } 3242 /* 3243 * Check the map for holes in the specified region. 3244 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 3245 */ 3246 next_entry: 3247 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 && 3248 entry->end < end && entry->next->start > entry->end) { 3249 end = entry->end; 3250 rv = KERN_INVALID_ADDRESS; 3251 goto done; 3252 } 3253 entry = entry->next; 3254 } 3255 rv = KERN_SUCCESS; 3256 done: 3257 need_wakeup = FALSE; 3258 if (first_entry == NULL) { 3259 result = vm_map_lookup_entry(map, start, &first_entry); 3260 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 3261 first_entry = first_entry->next; 3262 else 3263 KASSERT(result, ("vm_map_wire: lookup failed")); 3264 } 3265 for (entry = first_entry; entry->start < end; entry = entry->next) { 3266 /* 3267 * If VM_MAP_WIRE_HOLESOK was specified, an empty 3268 * space in the unwired region could have been mapped 3269 * while the map lock was dropped for faulting in the 3270 * pages or draining MAP_ENTRY_IN_TRANSITION. 3271 * Moreover, another thread could be simultaneously 3272 * wiring this new mapping entry. Detect these cases 3273 * and skip any entries marked as in transition not by us. 3274 */ 3275 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3276 entry->wiring_thread != curthread) { 3277 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 3278 ("vm_map_wire: !HOLESOK and new/changed entry")); 3279 continue; 3280 } 3281 3282 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 3283 goto next_entry_done; 3284 3285 if (rv == KERN_SUCCESS) { 3286 if (user_wire) 3287 entry->eflags |= MAP_ENTRY_USER_WIRED; 3288 } else if (entry->wired_count == -1) { 3289 /* 3290 * Wiring failed on this entry. Thus, unwiring is 3291 * unnecessary. 3292 */ 3293 entry->wired_count = 0; 3294 } else if (!user_wire || 3295 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3296 /* 3297 * Undo the wiring. Wiring succeeded on this entry 3298 * but failed on a later entry. 3299 */ 3300 if (entry->wired_count == 1) { 3301 vm_map_entry_unwire(map, entry); 3302 if (user_wire) 3303 vm_map_wire_user_count_sub( 3304 atop(entry->end - entry->start)); 3305 } else 3306 entry->wired_count--; 3307 } 3308 next_entry_done: 3309 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3310 ("vm_map_wire: in-transition flag missing %p", entry)); 3311 KASSERT(entry->wiring_thread == curthread, 3312 ("vm_map_wire: alien wire %p", entry)); 3313 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3314 MAP_ENTRY_WIRE_SKIPPED); 3315 entry->wiring_thread = NULL; 3316 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3317 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3318 need_wakeup = TRUE; 3319 } 3320 vm_map_simplify_entry(map, entry); 3321 } 3322 if (need_wakeup) 3323 vm_map_wakeup(map); 3324 return (rv); 3325 } 3326 3327 /* 3328 * vm_map_sync 3329 * 3330 * Push any dirty cached pages in the address range to their pager. 3331 * If syncio is TRUE, dirty pages are written synchronously. 3332 * If invalidate is TRUE, any cached pages are freed as well. 3333 * 3334 * If the size of the region from start to end is zero, we are 3335 * supposed to flush all modified pages within the region containing 3336 * start. Unfortunately, a region can be split or coalesced with 3337 * neighboring regions, making it difficult to determine what the 3338 * original region was. Therefore, we approximate this requirement by 3339 * flushing the current region containing start. 3340 * 3341 * Returns an error if any part of the specified range is not mapped. 3342 */ 3343 int 3344 vm_map_sync( 3345 vm_map_t map, 3346 vm_offset_t start, 3347 vm_offset_t end, 3348 boolean_t syncio, 3349 boolean_t invalidate) 3350 { 3351 vm_map_entry_t current; 3352 vm_map_entry_t entry; 3353 vm_size_t size; 3354 vm_object_t object; 3355 vm_ooffset_t offset; 3356 unsigned int last_timestamp; 3357 boolean_t failed; 3358 3359 vm_map_lock_read(map); 3360 VM_MAP_RANGE_CHECK(map, start, end); 3361 if (!vm_map_lookup_entry(map, start, &entry)) { 3362 vm_map_unlock_read(map); 3363 return (KERN_INVALID_ADDRESS); 3364 } else if (start == end) { 3365 start = entry->start; 3366 end = entry->end; 3367 } 3368 /* 3369 * Make a first pass to check for user-wired memory and holes. 3370 */ 3371 for (current = entry; current->start < end; current = current->next) { 3372 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 3373 vm_map_unlock_read(map); 3374 return (KERN_INVALID_ARGUMENT); 3375 } 3376 if (end > current->end && 3377 current->end != current->next->start) { 3378 vm_map_unlock_read(map); 3379 return (KERN_INVALID_ADDRESS); 3380 } 3381 } 3382 3383 if (invalidate) 3384 pmap_remove(map->pmap, start, end); 3385 failed = FALSE; 3386 3387 /* 3388 * Make a second pass, cleaning/uncaching pages from the indicated 3389 * objects as we go. 3390 */ 3391 for (current = entry; current->start < end;) { 3392 offset = current->offset + (start - current->start); 3393 size = (end <= current->end ? end : current->end) - start; 3394 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 3395 vm_map_t smap; 3396 vm_map_entry_t tentry; 3397 vm_size_t tsize; 3398 3399 smap = current->object.sub_map; 3400 vm_map_lock_read(smap); 3401 (void) vm_map_lookup_entry(smap, offset, &tentry); 3402 tsize = tentry->end - offset; 3403 if (tsize < size) 3404 size = tsize; 3405 object = tentry->object.vm_object; 3406 offset = tentry->offset + (offset - tentry->start); 3407 vm_map_unlock_read(smap); 3408 } else { 3409 object = current->object.vm_object; 3410 } 3411 vm_object_reference(object); 3412 last_timestamp = map->timestamp; 3413 vm_map_unlock_read(map); 3414 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3415 failed = TRUE; 3416 start += size; 3417 vm_object_deallocate(object); 3418 vm_map_lock_read(map); 3419 if (last_timestamp == map->timestamp || 3420 !vm_map_lookup_entry(map, start, ¤t)) 3421 current = current->next; 3422 } 3423 3424 vm_map_unlock_read(map); 3425 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3426 } 3427 3428 /* 3429 * vm_map_entry_unwire: [ internal use only ] 3430 * 3431 * Make the region specified by this entry pageable. 3432 * 3433 * The map in question should be locked. 3434 * [This is the reason for this routine's existence.] 3435 */ 3436 static void 3437 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3438 { 3439 vm_size_t size; 3440 3441 VM_MAP_ASSERT_LOCKED(map); 3442 KASSERT(entry->wired_count > 0, 3443 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3444 3445 size = entry->end - entry->start; 3446 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3447 vm_map_wire_user_count_sub(atop(size)); 3448 pmap_unwire(map->pmap, entry->start, entry->end); 3449 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3450 PQ_ACTIVE); 3451 entry->wired_count = 0; 3452 } 3453 3454 static void 3455 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3456 { 3457 3458 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3459 vm_object_deallocate(entry->object.vm_object); 3460 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3461 } 3462 3463 /* 3464 * vm_map_entry_delete: [ internal use only ] 3465 * 3466 * Deallocate the given entry from the target map. 3467 */ 3468 static void 3469 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3470 { 3471 vm_object_t object; 3472 vm_pindex_t offidxstart, offidxend, count, size1; 3473 vm_size_t size; 3474 3475 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3476 object = entry->object.vm_object; 3477 3478 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3479 MPASS(entry->cred == NULL); 3480 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3481 MPASS(object == NULL); 3482 vm_map_entry_deallocate(entry, map->system_map); 3483 return; 3484 } 3485 3486 size = entry->end - entry->start; 3487 map->size -= size; 3488 3489 if (entry->cred != NULL) { 3490 swap_release_by_cred(size, entry->cred); 3491 crfree(entry->cred); 3492 } 3493 3494 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 3495 (object != NULL)) { 3496 KASSERT(entry->cred == NULL || object->cred == NULL || 3497 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3498 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3499 count = atop(size); 3500 offidxstart = OFF_TO_IDX(entry->offset); 3501 offidxend = offidxstart + count; 3502 VM_OBJECT_WLOCK(object); 3503 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT | 3504 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 3505 object == kernel_object)) { 3506 vm_object_collapse(object); 3507 3508 /* 3509 * The option OBJPR_NOTMAPPED can be passed here 3510 * because vm_map_delete() already performed 3511 * pmap_remove() on the only mapping to this range 3512 * of pages. 3513 */ 3514 vm_object_page_remove(object, offidxstart, offidxend, 3515 OBJPR_NOTMAPPED); 3516 if (object->type == OBJT_SWAP) 3517 swap_pager_freespace(object, offidxstart, 3518 count); 3519 if (offidxend >= object->size && 3520 offidxstart < object->size) { 3521 size1 = object->size; 3522 object->size = offidxstart; 3523 if (object->cred != NULL) { 3524 size1 -= object->size; 3525 KASSERT(object->charge >= ptoa(size1), 3526 ("object %p charge < 0", object)); 3527 swap_release_by_cred(ptoa(size1), 3528 object->cred); 3529 object->charge -= ptoa(size1); 3530 } 3531 } 3532 } 3533 VM_OBJECT_WUNLOCK(object); 3534 } else 3535 entry->object.vm_object = NULL; 3536 if (map->system_map) 3537 vm_map_entry_deallocate(entry, TRUE); 3538 else { 3539 entry->next = curthread->td_map_def_user; 3540 curthread->td_map_def_user = entry; 3541 } 3542 } 3543 3544 /* 3545 * vm_map_delete: [ internal use only ] 3546 * 3547 * Deallocates the given address range from the target 3548 * map. 3549 */ 3550 int 3551 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3552 { 3553 vm_map_entry_t entry; 3554 vm_map_entry_t first_entry; 3555 3556 VM_MAP_ASSERT_LOCKED(map); 3557 if (start == end) 3558 return (KERN_SUCCESS); 3559 3560 /* 3561 * Find the start of the region, and clip it 3562 */ 3563 if (!vm_map_lookup_entry(map, start, &first_entry)) 3564 entry = first_entry->next; 3565 else { 3566 entry = first_entry; 3567 vm_map_clip_start(map, entry, start); 3568 } 3569 3570 /* 3571 * Step through all entries in this region 3572 */ 3573 while (entry->start < end) { 3574 vm_map_entry_t next; 3575 3576 /* 3577 * Wait for wiring or unwiring of an entry to complete. 3578 * Also wait for any system wirings to disappear on 3579 * user maps. 3580 */ 3581 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3582 (vm_map_pmap(map) != kernel_pmap && 3583 vm_map_entry_system_wired_count(entry) != 0)) { 3584 unsigned int last_timestamp; 3585 vm_offset_t saved_start; 3586 vm_map_entry_t tmp_entry; 3587 3588 saved_start = entry->start; 3589 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3590 last_timestamp = map->timestamp; 3591 (void) vm_map_unlock_and_wait(map, 0); 3592 vm_map_lock(map); 3593 if (last_timestamp + 1 != map->timestamp) { 3594 /* 3595 * Look again for the entry because the map was 3596 * modified while it was unlocked. 3597 * Specifically, the entry may have been 3598 * clipped, merged, or deleted. 3599 */ 3600 if (!vm_map_lookup_entry(map, saved_start, 3601 &tmp_entry)) 3602 entry = tmp_entry->next; 3603 else { 3604 entry = tmp_entry; 3605 vm_map_clip_start(map, entry, 3606 saved_start); 3607 } 3608 } 3609 continue; 3610 } 3611 vm_map_clip_end(map, entry, end); 3612 3613 next = entry->next; 3614 3615 /* 3616 * Unwire before removing addresses from the pmap; otherwise, 3617 * unwiring will put the entries back in the pmap. 3618 */ 3619 if (entry->wired_count != 0) 3620 vm_map_entry_unwire(map, entry); 3621 3622 /* 3623 * Remove mappings for the pages, but only if the 3624 * mappings could exist. For instance, it does not 3625 * make sense to call pmap_remove() for guard entries. 3626 */ 3627 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3628 entry->object.vm_object != NULL) 3629 pmap_remove(map->pmap, entry->start, entry->end); 3630 3631 if (entry->end == map->anon_loc) 3632 map->anon_loc = entry->start; 3633 3634 /* 3635 * Delete the entry only after removing all pmap 3636 * entries pointing to its pages. (Otherwise, its 3637 * page frames may be reallocated, and any modify bits 3638 * will be set in the wrong object!) 3639 */ 3640 vm_map_entry_delete(map, entry); 3641 entry = next; 3642 } 3643 return (KERN_SUCCESS); 3644 } 3645 3646 /* 3647 * vm_map_remove: 3648 * 3649 * Remove the given address range from the target map. 3650 * This is the exported form of vm_map_delete. 3651 */ 3652 int 3653 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3654 { 3655 int result; 3656 3657 vm_map_lock(map); 3658 VM_MAP_RANGE_CHECK(map, start, end); 3659 result = vm_map_delete(map, start, end); 3660 vm_map_unlock(map); 3661 return (result); 3662 } 3663 3664 /* 3665 * vm_map_check_protection: 3666 * 3667 * Assert that the target map allows the specified privilege on the 3668 * entire address region given. The entire region must be allocated. 3669 * 3670 * WARNING! This code does not and should not check whether the 3671 * contents of the region is accessible. For example a smaller file 3672 * might be mapped into a larger address space. 3673 * 3674 * NOTE! This code is also called by munmap(). 3675 * 3676 * The map must be locked. A read lock is sufficient. 3677 */ 3678 boolean_t 3679 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3680 vm_prot_t protection) 3681 { 3682 vm_map_entry_t entry; 3683 vm_map_entry_t tmp_entry; 3684 3685 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3686 return (FALSE); 3687 entry = tmp_entry; 3688 3689 while (start < end) { 3690 /* 3691 * No holes allowed! 3692 */ 3693 if (start < entry->start) 3694 return (FALSE); 3695 /* 3696 * Check protection associated with entry. 3697 */ 3698 if ((entry->protection & protection) != protection) 3699 return (FALSE); 3700 /* go to next entry */ 3701 start = entry->end; 3702 entry = entry->next; 3703 } 3704 return (TRUE); 3705 } 3706 3707 /* 3708 * vm_map_copy_entry: 3709 * 3710 * Copies the contents of the source entry to the destination 3711 * entry. The entries *must* be aligned properly. 3712 */ 3713 static void 3714 vm_map_copy_entry( 3715 vm_map_t src_map, 3716 vm_map_t dst_map, 3717 vm_map_entry_t src_entry, 3718 vm_map_entry_t dst_entry, 3719 vm_ooffset_t *fork_charge) 3720 { 3721 vm_object_t src_object; 3722 vm_map_entry_t fake_entry; 3723 vm_offset_t size; 3724 struct ucred *cred; 3725 int charged; 3726 3727 VM_MAP_ASSERT_LOCKED(dst_map); 3728 3729 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3730 return; 3731 3732 if (src_entry->wired_count == 0 || 3733 (src_entry->protection & VM_PROT_WRITE) == 0) { 3734 /* 3735 * If the source entry is marked needs_copy, it is already 3736 * write-protected. 3737 */ 3738 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3739 (src_entry->protection & VM_PROT_WRITE) != 0) { 3740 pmap_protect(src_map->pmap, 3741 src_entry->start, 3742 src_entry->end, 3743 src_entry->protection & ~VM_PROT_WRITE); 3744 } 3745 3746 /* 3747 * Make a copy of the object. 3748 */ 3749 size = src_entry->end - src_entry->start; 3750 if ((src_object = src_entry->object.vm_object) != NULL) { 3751 VM_OBJECT_WLOCK(src_object); 3752 charged = ENTRY_CHARGED(src_entry); 3753 if (src_object->handle == NULL && 3754 (src_object->type == OBJT_DEFAULT || 3755 src_object->type == OBJT_SWAP)) { 3756 vm_object_collapse(src_object); 3757 if ((src_object->flags & (OBJ_NOSPLIT | 3758 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3759 vm_object_split(src_entry); 3760 src_object = 3761 src_entry->object.vm_object; 3762 } 3763 } 3764 vm_object_reference_locked(src_object); 3765 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3766 if (src_entry->cred != NULL && 3767 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3768 KASSERT(src_object->cred == NULL, 3769 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3770 src_object)); 3771 src_object->cred = src_entry->cred; 3772 src_object->charge = size; 3773 } 3774 VM_OBJECT_WUNLOCK(src_object); 3775 dst_entry->object.vm_object = src_object; 3776 if (charged) { 3777 cred = curthread->td_ucred; 3778 crhold(cred); 3779 dst_entry->cred = cred; 3780 *fork_charge += size; 3781 if (!(src_entry->eflags & 3782 MAP_ENTRY_NEEDS_COPY)) { 3783 crhold(cred); 3784 src_entry->cred = cred; 3785 *fork_charge += size; 3786 } 3787 } 3788 src_entry->eflags |= MAP_ENTRY_COW | 3789 MAP_ENTRY_NEEDS_COPY; 3790 dst_entry->eflags |= MAP_ENTRY_COW | 3791 MAP_ENTRY_NEEDS_COPY; 3792 dst_entry->offset = src_entry->offset; 3793 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3794 /* 3795 * MAP_ENTRY_VN_WRITECNT cannot 3796 * indicate write reference from 3797 * src_entry, since the entry is 3798 * marked as needs copy. Allocate a 3799 * fake entry that is used to 3800 * decrement object->un_pager.vnp.writecount 3801 * at the appropriate time. Attach 3802 * fake_entry to the deferred list. 3803 */ 3804 fake_entry = vm_map_entry_create(dst_map); 3805 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3806 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3807 vm_object_reference(src_object); 3808 fake_entry->object.vm_object = src_object; 3809 fake_entry->start = src_entry->start; 3810 fake_entry->end = src_entry->end; 3811 fake_entry->next = curthread->td_map_def_user; 3812 curthread->td_map_def_user = fake_entry; 3813 } 3814 3815 pmap_copy(dst_map->pmap, src_map->pmap, 3816 dst_entry->start, dst_entry->end - dst_entry->start, 3817 src_entry->start); 3818 } else { 3819 dst_entry->object.vm_object = NULL; 3820 dst_entry->offset = 0; 3821 if (src_entry->cred != NULL) { 3822 dst_entry->cred = curthread->td_ucred; 3823 crhold(dst_entry->cred); 3824 *fork_charge += size; 3825 } 3826 } 3827 } else { 3828 /* 3829 * We don't want to make writeable wired pages copy-on-write. 3830 * Immediately copy these pages into the new map by simulating 3831 * page faults. The new pages are pageable. 3832 */ 3833 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3834 fork_charge); 3835 } 3836 } 3837 3838 /* 3839 * vmspace_map_entry_forked: 3840 * Update the newly-forked vmspace each time a map entry is inherited 3841 * or copied. The values for vm_dsize and vm_tsize are approximate 3842 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3843 */ 3844 static void 3845 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3846 vm_map_entry_t entry) 3847 { 3848 vm_size_t entrysize; 3849 vm_offset_t newend; 3850 3851 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 3852 return; 3853 entrysize = entry->end - entry->start; 3854 vm2->vm_map.size += entrysize; 3855 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3856 vm2->vm_ssize += btoc(entrysize); 3857 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3858 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3859 newend = MIN(entry->end, 3860 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3861 vm2->vm_dsize += btoc(newend - entry->start); 3862 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3863 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3864 newend = MIN(entry->end, 3865 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3866 vm2->vm_tsize += btoc(newend - entry->start); 3867 } 3868 } 3869 3870 /* 3871 * vmspace_fork: 3872 * Create a new process vmspace structure and vm_map 3873 * based on those of an existing process. The new map 3874 * is based on the old map, according to the inheritance 3875 * values on the regions in that map. 3876 * 3877 * XXX It might be worth coalescing the entries added to the new vmspace. 3878 * 3879 * The source map must not be locked. 3880 */ 3881 struct vmspace * 3882 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3883 { 3884 struct vmspace *vm2; 3885 vm_map_t new_map, old_map; 3886 vm_map_entry_t new_entry, old_entry; 3887 vm_object_t object; 3888 int error, locked; 3889 vm_inherit_t inh; 3890 3891 old_map = &vm1->vm_map; 3892 /* Copy immutable fields of vm1 to vm2. */ 3893 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 3894 pmap_pinit); 3895 if (vm2 == NULL) 3896 return (NULL); 3897 3898 vm2->vm_taddr = vm1->vm_taddr; 3899 vm2->vm_daddr = vm1->vm_daddr; 3900 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3901 vm_map_lock(old_map); 3902 if (old_map->busy) 3903 vm_map_wait_busy(old_map); 3904 new_map = &vm2->vm_map; 3905 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3906 KASSERT(locked, ("vmspace_fork: lock failed")); 3907 3908 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 3909 if (error != 0) { 3910 sx_xunlock(&old_map->lock); 3911 sx_xunlock(&new_map->lock); 3912 vm_map_process_deferred(); 3913 vmspace_free(vm2); 3914 return (NULL); 3915 } 3916 3917 new_map->anon_loc = old_map->anon_loc; 3918 3919 old_entry = old_map->header.next; 3920 3921 while (old_entry != &old_map->header) { 3922 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3923 panic("vm_map_fork: encountered a submap"); 3924 3925 inh = old_entry->inheritance; 3926 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 3927 inh != VM_INHERIT_NONE) 3928 inh = VM_INHERIT_COPY; 3929 3930 switch (inh) { 3931 case VM_INHERIT_NONE: 3932 break; 3933 3934 case VM_INHERIT_SHARE: 3935 /* 3936 * Clone the entry, creating the shared object if necessary. 3937 */ 3938 object = old_entry->object.vm_object; 3939 if (object == NULL) { 3940 vm_map_entry_back(old_entry); 3941 object = old_entry->object.vm_object; 3942 } 3943 3944 /* 3945 * Add the reference before calling vm_object_shadow 3946 * to insure that a shadow object is created. 3947 */ 3948 vm_object_reference(object); 3949 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3950 vm_object_shadow(&old_entry->object.vm_object, 3951 &old_entry->offset, 3952 old_entry->end - old_entry->start); 3953 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3954 /* Transfer the second reference too. */ 3955 vm_object_reference( 3956 old_entry->object.vm_object); 3957 3958 /* 3959 * As in vm_map_simplify_entry(), the 3960 * vnode lock will not be acquired in 3961 * this call to vm_object_deallocate(). 3962 */ 3963 vm_object_deallocate(object); 3964 object = old_entry->object.vm_object; 3965 } 3966 VM_OBJECT_WLOCK(object); 3967 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3968 if (old_entry->cred != NULL) { 3969 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3970 object->cred = old_entry->cred; 3971 object->charge = old_entry->end - old_entry->start; 3972 old_entry->cred = NULL; 3973 } 3974 3975 /* 3976 * Assert the correct state of the vnode 3977 * v_writecount while the object is locked, to 3978 * not relock it later for the assertion 3979 * correctness. 3980 */ 3981 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3982 object->type == OBJT_VNODE) { 3983 KASSERT(((struct vnode *)object->handle)-> 3984 v_writecount > 0, 3985 ("vmspace_fork: v_writecount %p", object)); 3986 KASSERT(object->un_pager.vnp.writemappings > 0, 3987 ("vmspace_fork: vnp.writecount %p", 3988 object)); 3989 } 3990 VM_OBJECT_WUNLOCK(object); 3991 3992 /* 3993 * Clone the entry, referencing the shared object. 3994 */ 3995 new_entry = vm_map_entry_create(new_map); 3996 *new_entry = *old_entry; 3997 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3998 MAP_ENTRY_IN_TRANSITION); 3999 new_entry->wiring_thread = NULL; 4000 new_entry->wired_count = 0; 4001 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 4002 vnode_pager_update_writecount(object, 4003 new_entry->start, new_entry->end); 4004 } 4005 vm_map_entry_set_vnode_text(new_entry, true); 4006 4007 /* 4008 * Insert the entry into the new map -- we know we're 4009 * inserting at the end of the new map. 4010 */ 4011 vm_map_entry_link(new_map, new_entry); 4012 vmspace_map_entry_forked(vm1, vm2, new_entry); 4013 4014 /* 4015 * Update the physical map 4016 */ 4017 pmap_copy(new_map->pmap, old_map->pmap, 4018 new_entry->start, 4019 (old_entry->end - old_entry->start), 4020 old_entry->start); 4021 break; 4022 4023 case VM_INHERIT_COPY: 4024 /* 4025 * Clone the entry and link into the map. 4026 */ 4027 new_entry = vm_map_entry_create(new_map); 4028 *new_entry = *old_entry; 4029 /* 4030 * Copied entry is COW over the old object. 4031 */ 4032 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4033 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 4034 new_entry->wiring_thread = NULL; 4035 new_entry->wired_count = 0; 4036 new_entry->object.vm_object = NULL; 4037 new_entry->cred = NULL; 4038 vm_map_entry_link(new_map, new_entry); 4039 vmspace_map_entry_forked(vm1, vm2, new_entry); 4040 vm_map_copy_entry(old_map, new_map, old_entry, 4041 new_entry, fork_charge); 4042 vm_map_entry_set_vnode_text(new_entry, true); 4043 break; 4044 4045 case VM_INHERIT_ZERO: 4046 /* 4047 * Create a new anonymous mapping entry modelled from 4048 * the old one. 4049 */ 4050 new_entry = vm_map_entry_create(new_map); 4051 memset(new_entry, 0, sizeof(*new_entry)); 4052 4053 new_entry->start = old_entry->start; 4054 new_entry->end = old_entry->end; 4055 new_entry->eflags = old_entry->eflags & 4056 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4057 MAP_ENTRY_VN_WRITECNT | MAP_ENTRY_VN_EXEC); 4058 new_entry->protection = old_entry->protection; 4059 new_entry->max_protection = old_entry->max_protection; 4060 new_entry->inheritance = VM_INHERIT_ZERO; 4061 4062 vm_map_entry_link(new_map, new_entry); 4063 vmspace_map_entry_forked(vm1, vm2, new_entry); 4064 4065 new_entry->cred = curthread->td_ucred; 4066 crhold(new_entry->cred); 4067 *fork_charge += (new_entry->end - new_entry->start); 4068 4069 break; 4070 } 4071 old_entry = old_entry->next; 4072 } 4073 /* 4074 * Use inlined vm_map_unlock() to postpone handling the deferred 4075 * map entries, which cannot be done until both old_map and 4076 * new_map locks are released. 4077 */ 4078 sx_xunlock(&old_map->lock); 4079 sx_xunlock(&new_map->lock); 4080 vm_map_process_deferred(); 4081 4082 return (vm2); 4083 } 4084 4085 /* 4086 * Create a process's stack for exec_new_vmspace(). This function is never 4087 * asked to wire the newly created stack. 4088 */ 4089 int 4090 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4091 vm_prot_t prot, vm_prot_t max, int cow) 4092 { 4093 vm_size_t growsize, init_ssize; 4094 rlim_t vmemlim; 4095 int rv; 4096 4097 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4098 growsize = sgrowsiz; 4099 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4100 vm_map_lock(map); 4101 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4102 /* If we would blow our VMEM resource limit, no go */ 4103 if (map->size + init_ssize > vmemlim) { 4104 rv = KERN_NO_SPACE; 4105 goto out; 4106 } 4107 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4108 max, cow); 4109 out: 4110 vm_map_unlock(map); 4111 return (rv); 4112 } 4113 4114 static int stack_guard_page = 1; 4115 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4116 &stack_guard_page, 0, 4117 "Specifies the number of guard pages for a stack that grows"); 4118 4119 static int 4120 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4121 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4122 { 4123 vm_map_entry_t new_entry, prev_entry; 4124 vm_offset_t bot, gap_bot, gap_top, top; 4125 vm_size_t init_ssize, sgp; 4126 int orient, rv; 4127 4128 /* 4129 * The stack orientation is piggybacked with the cow argument. 4130 * Extract it into orient and mask the cow argument so that we 4131 * don't pass it around further. 4132 */ 4133 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4134 KASSERT(orient != 0, ("No stack grow direction")); 4135 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4136 ("bi-dir stack")); 4137 4138 if (addrbos < vm_map_min(map) || 4139 addrbos + max_ssize > vm_map_max(map) || 4140 addrbos + max_ssize <= addrbos) 4141 return (KERN_INVALID_ADDRESS); 4142 sgp = (vm_size_t)stack_guard_page * PAGE_SIZE; 4143 if (sgp >= max_ssize) 4144 return (KERN_INVALID_ARGUMENT); 4145 4146 init_ssize = growsize; 4147 if (max_ssize < init_ssize + sgp) 4148 init_ssize = max_ssize - sgp; 4149 4150 /* If addr is already mapped, no go */ 4151 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4152 return (KERN_NO_SPACE); 4153 4154 /* 4155 * If we can't accommodate max_ssize in the current mapping, no go. 4156 */ 4157 if (prev_entry->next->start < addrbos + max_ssize) 4158 return (KERN_NO_SPACE); 4159 4160 /* 4161 * We initially map a stack of only init_ssize. We will grow as 4162 * needed later. Depending on the orientation of the stack (i.e. 4163 * the grow direction) we either map at the top of the range, the 4164 * bottom of the range or in the middle. 4165 * 4166 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4167 * and cow to be 0. Possibly we should eliminate these as input 4168 * parameters, and just pass these values here in the insert call. 4169 */ 4170 if (orient == MAP_STACK_GROWS_DOWN) { 4171 bot = addrbos + max_ssize - init_ssize; 4172 top = bot + init_ssize; 4173 gap_bot = addrbos; 4174 gap_top = bot; 4175 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4176 bot = addrbos; 4177 top = bot + init_ssize; 4178 gap_bot = top; 4179 gap_top = addrbos + max_ssize; 4180 } 4181 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 4182 if (rv != KERN_SUCCESS) 4183 return (rv); 4184 new_entry = prev_entry->next; 4185 KASSERT(new_entry->end == top || new_entry->start == bot, 4186 ("Bad entry start/end for new stack entry")); 4187 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4188 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4189 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4190 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4191 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4192 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4193 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4194 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4195 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 4196 if (rv != KERN_SUCCESS) 4197 (void)vm_map_delete(map, bot, top); 4198 return (rv); 4199 } 4200 4201 /* 4202 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4203 * successfully grow the stack. 4204 */ 4205 static int 4206 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4207 { 4208 vm_map_entry_t stack_entry; 4209 struct proc *p; 4210 struct vmspace *vm; 4211 struct ucred *cred; 4212 vm_offset_t gap_end, gap_start, grow_start; 4213 vm_size_t grow_amount, guard, max_grow; 4214 rlim_t lmemlim, stacklim, vmemlim; 4215 int rv, rv1; 4216 bool gap_deleted, grow_down, is_procstack; 4217 #ifdef notyet 4218 uint64_t limit; 4219 #endif 4220 #ifdef RACCT 4221 int error; 4222 #endif 4223 4224 p = curproc; 4225 vm = p->p_vmspace; 4226 4227 /* 4228 * Disallow stack growth when the access is performed by a 4229 * debugger or AIO daemon. The reason is that the wrong 4230 * resource limits are applied. 4231 */ 4232 if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL) 4233 return (KERN_FAILURE); 4234 4235 MPASS(!map->system_map); 4236 4237 guard = stack_guard_page * PAGE_SIZE; 4238 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4239 stacklim = lim_cur(curthread, RLIMIT_STACK); 4240 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4241 retry: 4242 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4243 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4244 return (KERN_FAILURE); 4245 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4246 return (KERN_SUCCESS); 4247 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4248 stack_entry = gap_entry->next; 4249 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4250 stack_entry->start != gap_entry->end) 4251 return (KERN_FAILURE); 4252 grow_amount = round_page(stack_entry->start - addr); 4253 grow_down = true; 4254 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4255 stack_entry = gap_entry->prev; 4256 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4257 stack_entry->end != gap_entry->start) 4258 return (KERN_FAILURE); 4259 grow_amount = round_page(addr + 1 - stack_entry->end); 4260 grow_down = false; 4261 } else { 4262 return (KERN_FAILURE); 4263 } 4264 max_grow = gap_entry->end - gap_entry->start; 4265 if (guard > max_grow) 4266 return (KERN_NO_SPACE); 4267 max_grow -= guard; 4268 if (grow_amount > max_grow) 4269 return (KERN_NO_SPACE); 4270 4271 /* 4272 * If this is the main process stack, see if we're over the stack 4273 * limit. 4274 */ 4275 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4276 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 4277 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4278 return (KERN_NO_SPACE); 4279 4280 #ifdef RACCT 4281 if (racct_enable) { 4282 PROC_LOCK(p); 4283 if (is_procstack && racct_set(p, RACCT_STACK, 4284 ctob(vm->vm_ssize) + grow_amount)) { 4285 PROC_UNLOCK(p); 4286 return (KERN_NO_SPACE); 4287 } 4288 PROC_UNLOCK(p); 4289 } 4290 #endif 4291 4292 grow_amount = roundup(grow_amount, sgrowsiz); 4293 if (grow_amount > max_grow) 4294 grow_amount = max_grow; 4295 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4296 grow_amount = trunc_page((vm_size_t)stacklim) - 4297 ctob(vm->vm_ssize); 4298 } 4299 4300 #ifdef notyet 4301 PROC_LOCK(p); 4302 limit = racct_get_available(p, RACCT_STACK); 4303 PROC_UNLOCK(p); 4304 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4305 grow_amount = limit - ctob(vm->vm_ssize); 4306 #endif 4307 4308 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4309 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4310 rv = KERN_NO_SPACE; 4311 goto out; 4312 } 4313 #ifdef RACCT 4314 if (racct_enable) { 4315 PROC_LOCK(p); 4316 if (racct_set(p, RACCT_MEMLOCK, 4317 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4318 PROC_UNLOCK(p); 4319 rv = KERN_NO_SPACE; 4320 goto out; 4321 } 4322 PROC_UNLOCK(p); 4323 } 4324 #endif 4325 } 4326 4327 /* If we would blow our VMEM resource limit, no go */ 4328 if (map->size + grow_amount > vmemlim) { 4329 rv = KERN_NO_SPACE; 4330 goto out; 4331 } 4332 #ifdef RACCT 4333 if (racct_enable) { 4334 PROC_LOCK(p); 4335 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4336 PROC_UNLOCK(p); 4337 rv = KERN_NO_SPACE; 4338 goto out; 4339 } 4340 PROC_UNLOCK(p); 4341 } 4342 #endif 4343 4344 if (vm_map_lock_upgrade(map)) { 4345 gap_entry = NULL; 4346 vm_map_lock_read(map); 4347 goto retry; 4348 } 4349 4350 if (grow_down) { 4351 grow_start = gap_entry->end - grow_amount; 4352 if (gap_entry->start + grow_amount == gap_entry->end) { 4353 gap_start = gap_entry->start; 4354 gap_end = gap_entry->end; 4355 vm_map_entry_delete(map, gap_entry); 4356 gap_deleted = true; 4357 } else { 4358 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4359 vm_map_entry_resize(map, gap_entry, -grow_amount); 4360 gap_deleted = false; 4361 } 4362 rv = vm_map_insert(map, NULL, 0, grow_start, 4363 grow_start + grow_amount, 4364 stack_entry->protection, stack_entry->max_protection, 4365 MAP_STACK_GROWS_DOWN); 4366 if (rv != KERN_SUCCESS) { 4367 if (gap_deleted) { 4368 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4369 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4370 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4371 MPASS(rv1 == KERN_SUCCESS); 4372 } else 4373 vm_map_entry_resize(map, gap_entry, 4374 grow_amount); 4375 } 4376 } else { 4377 grow_start = stack_entry->end; 4378 cred = stack_entry->cred; 4379 if (cred == NULL && stack_entry->object.vm_object != NULL) 4380 cred = stack_entry->object.vm_object->cred; 4381 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4382 rv = KERN_NO_SPACE; 4383 /* Grow the underlying object if applicable. */ 4384 else if (stack_entry->object.vm_object == NULL || 4385 vm_object_coalesce(stack_entry->object.vm_object, 4386 stack_entry->offset, 4387 (vm_size_t)(stack_entry->end - stack_entry->start), 4388 grow_amount, cred != NULL)) { 4389 if (gap_entry->start + grow_amount == gap_entry->end) { 4390 vm_map_entry_delete(map, gap_entry); 4391 vm_map_entry_resize(map, stack_entry, 4392 grow_amount); 4393 } else { 4394 gap_entry->start += grow_amount; 4395 stack_entry->end += grow_amount; 4396 } 4397 map->size += grow_amount; 4398 rv = KERN_SUCCESS; 4399 } else 4400 rv = KERN_FAILURE; 4401 } 4402 if (rv == KERN_SUCCESS && is_procstack) 4403 vm->vm_ssize += btoc(grow_amount); 4404 4405 /* 4406 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4407 */ 4408 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4409 rv = vm_map_wire_locked(map, grow_start, 4410 grow_start + grow_amount, 4411 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4412 } 4413 vm_map_lock_downgrade(map); 4414 4415 out: 4416 #ifdef RACCT 4417 if (racct_enable && rv != KERN_SUCCESS) { 4418 PROC_LOCK(p); 4419 error = racct_set(p, RACCT_VMEM, map->size); 4420 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4421 if (!old_mlock) { 4422 error = racct_set(p, RACCT_MEMLOCK, 4423 ptoa(pmap_wired_count(map->pmap))); 4424 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4425 } 4426 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4427 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4428 PROC_UNLOCK(p); 4429 } 4430 #endif 4431 4432 return (rv); 4433 } 4434 4435 /* 4436 * Unshare the specified VM space for exec. If other processes are 4437 * mapped to it, then create a new one. The new vmspace is null. 4438 */ 4439 int 4440 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4441 { 4442 struct vmspace *oldvmspace = p->p_vmspace; 4443 struct vmspace *newvmspace; 4444 4445 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4446 ("vmspace_exec recursed")); 4447 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4448 if (newvmspace == NULL) 4449 return (ENOMEM); 4450 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4451 /* 4452 * This code is written like this for prototype purposes. The 4453 * goal is to avoid running down the vmspace here, but let the 4454 * other process's that are still using the vmspace to finally 4455 * run it down. Even though there is little or no chance of blocking 4456 * here, it is a good idea to keep this form for future mods. 4457 */ 4458 PROC_VMSPACE_LOCK(p); 4459 p->p_vmspace = newvmspace; 4460 PROC_VMSPACE_UNLOCK(p); 4461 if (p == curthread->td_proc) 4462 pmap_activate(curthread); 4463 curthread->td_pflags |= TDP_EXECVMSPC; 4464 return (0); 4465 } 4466 4467 /* 4468 * Unshare the specified VM space for forcing COW. This 4469 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4470 */ 4471 int 4472 vmspace_unshare(struct proc *p) 4473 { 4474 struct vmspace *oldvmspace = p->p_vmspace; 4475 struct vmspace *newvmspace; 4476 vm_ooffset_t fork_charge; 4477 4478 if (oldvmspace->vm_refcnt == 1) 4479 return (0); 4480 fork_charge = 0; 4481 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4482 if (newvmspace == NULL) 4483 return (ENOMEM); 4484 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4485 vmspace_free(newvmspace); 4486 return (ENOMEM); 4487 } 4488 PROC_VMSPACE_LOCK(p); 4489 p->p_vmspace = newvmspace; 4490 PROC_VMSPACE_UNLOCK(p); 4491 if (p == curthread->td_proc) 4492 pmap_activate(curthread); 4493 vmspace_free(oldvmspace); 4494 return (0); 4495 } 4496 4497 /* 4498 * vm_map_lookup: 4499 * 4500 * Finds the VM object, offset, and 4501 * protection for a given virtual address in the 4502 * specified map, assuming a page fault of the 4503 * type specified. 4504 * 4505 * Leaves the map in question locked for read; return 4506 * values are guaranteed until a vm_map_lookup_done 4507 * call is performed. Note that the map argument 4508 * is in/out; the returned map must be used in 4509 * the call to vm_map_lookup_done. 4510 * 4511 * A handle (out_entry) is returned for use in 4512 * vm_map_lookup_done, to make that fast. 4513 * 4514 * If a lookup is requested with "write protection" 4515 * specified, the map may be changed to perform virtual 4516 * copying operations, although the data referenced will 4517 * remain the same. 4518 */ 4519 int 4520 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4521 vm_offset_t vaddr, 4522 vm_prot_t fault_typea, 4523 vm_map_entry_t *out_entry, /* OUT */ 4524 vm_object_t *object, /* OUT */ 4525 vm_pindex_t *pindex, /* OUT */ 4526 vm_prot_t *out_prot, /* OUT */ 4527 boolean_t *wired) /* OUT */ 4528 { 4529 vm_map_entry_t entry; 4530 vm_map_t map = *var_map; 4531 vm_prot_t prot; 4532 vm_prot_t fault_type = fault_typea; 4533 vm_object_t eobject; 4534 vm_size_t size; 4535 struct ucred *cred; 4536 4537 RetryLookup: 4538 4539 vm_map_lock_read(map); 4540 4541 RetryLookupLocked: 4542 /* 4543 * Lookup the faulting address. 4544 */ 4545 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4546 vm_map_unlock_read(map); 4547 return (KERN_INVALID_ADDRESS); 4548 } 4549 4550 entry = *out_entry; 4551 4552 /* 4553 * Handle submaps. 4554 */ 4555 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4556 vm_map_t old_map = map; 4557 4558 *var_map = map = entry->object.sub_map; 4559 vm_map_unlock_read(old_map); 4560 goto RetryLookup; 4561 } 4562 4563 /* 4564 * Check whether this task is allowed to have this page. 4565 */ 4566 prot = entry->protection; 4567 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4568 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4569 if (prot == VM_PROT_NONE && map != kernel_map && 4570 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4571 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4572 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4573 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4574 goto RetryLookupLocked; 4575 } 4576 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4577 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4578 vm_map_unlock_read(map); 4579 return (KERN_PROTECTION_FAILURE); 4580 } 4581 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4582 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4583 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4584 ("entry %p flags %x", entry, entry->eflags)); 4585 if ((fault_typea & VM_PROT_COPY) != 0 && 4586 (entry->max_protection & VM_PROT_WRITE) == 0 && 4587 (entry->eflags & MAP_ENTRY_COW) == 0) { 4588 vm_map_unlock_read(map); 4589 return (KERN_PROTECTION_FAILURE); 4590 } 4591 4592 /* 4593 * If this page is not pageable, we have to get it for all possible 4594 * accesses. 4595 */ 4596 *wired = (entry->wired_count != 0); 4597 if (*wired) 4598 fault_type = entry->protection; 4599 size = entry->end - entry->start; 4600 /* 4601 * If the entry was copy-on-write, we either ... 4602 */ 4603 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4604 /* 4605 * If we want to write the page, we may as well handle that 4606 * now since we've got the map locked. 4607 * 4608 * If we don't need to write the page, we just demote the 4609 * permissions allowed. 4610 */ 4611 if ((fault_type & VM_PROT_WRITE) != 0 || 4612 (fault_typea & VM_PROT_COPY) != 0) { 4613 /* 4614 * Make a new object, and place it in the object 4615 * chain. Note that no new references have appeared 4616 * -- one just moved from the map to the new 4617 * object. 4618 */ 4619 if (vm_map_lock_upgrade(map)) 4620 goto RetryLookup; 4621 4622 if (entry->cred == NULL) { 4623 /* 4624 * The debugger owner is charged for 4625 * the memory. 4626 */ 4627 cred = curthread->td_ucred; 4628 crhold(cred); 4629 if (!swap_reserve_by_cred(size, cred)) { 4630 crfree(cred); 4631 vm_map_unlock(map); 4632 return (KERN_RESOURCE_SHORTAGE); 4633 } 4634 entry->cred = cred; 4635 } 4636 vm_object_shadow(&entry->object.vm_object, 4637 &entry->offset, size); 4638 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4639 eobject = entry->object.vm_object; 4640 if (eobject->cred != NULL) { 4641 /* 4642 * The object was not shadowed. 4643 */ 4644 swap_release_by_cred(size, entry->cred); 4645 crfree(entry->cred); 4646 entry->cred = NULL; 4647 } else if (entry->cred != NULL) { 4648 VM_OBJECT_WLOCK(eobject); 4649 eobject->cred = entry->cred; 4650 eobject->charge = size; 4651 VM_OBJECT_WUNLOCK(eobject); 4652 entry->cred = NULL; 4653 } 4654 4655 vm_map_lock_downgrade(map); 4656 } else { 4657 /* 4658 * We're attempting to read a copy-on-write page -- 4659 * don't allow writes. 4660 */ 4661 prot &= ~VM_PROT_WRITE; 4662 } 4663 } 4664 4665 /* 4666 * Create an object if necessary. 4667 */ 4668 if (entry->object.vm_object == NULL && 4669 !map->system_map) { 4670 if (vm_map_lock_upgrade(map)) 4671 goto RetryLookup; 4672 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4673 atop(size)); 4674 entry->offset = 0; 4675 if (entry->cred != NULL) { 4676 VM_OBJECT_WLOCK(entry->object.vm_object); 4677 entry->object.vm_object->cred = entry->cred; 4678 entry->object.vm_object->charge = size; 4679 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4680 entry->cred = NULL; 4681 } 4682 vm_map_lock_downgrade(map); 4683 } 4684 4685 /* 4686 * Return the object/offset from this entry. If the entry was 4687 * copy-on-write or empty, it has been fixed up. 4688 */ 4689 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4690 *object = entry->object.vm_object; 4691 4692 *out_prot = prot; 4693 return (KERN_SUCCESS); 4694 } 4695 4696 /* 4697 * vm_map_lookup_locked: 4698 * 4699 * Lookup the faulting address. A version of vm_map_lookup that returns 4700 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4701 */ 4702 int 4703 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4704 vm_offset_t vaddr, 4705 vm_prot_t fault_typea, 4706 vm_map_entry_t *out_entry, /* OUT */ 4707 vm_object_t *object, /* OUT */ 4708 vm_pindex_t *pindex, /* OUT */ 4709 vm_prot_t *out_prot, /* OUT */ 4710 boolean_t *wired) /* OUT */ 4711 { 4712 vm_map_entry_t entry; 4713 vm_map_t map = *var_map; 4714 vm_prot_t prot; 4715 vm_prot_t fault_type = fault_typea; 4716 4717 /* 4718 * Lookup the faulting address. 4719 */ 4720 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4721 return (KERN_INVALID_ADDRESS); 4722 4723 entry = *out_entry; 4724 4725 /* 4726 * Fail if the entry refers to a submap. 4727 */ 4728 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4729 return (KERN_FAILURE); 4730 4731 /* 4732 * Check whether this task is allowed to have this page. 4733 */ 4734 prot = entry->protection; 4735 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4736 if ((fault_type & prot) != fault_type) 4737 return (KERN_PROTECTION_FAILURE); 4738 4739 /* 4740 * If this page is not pageable, we have to get it for all possible 4741 * accesses. 4742 */ 4743 *wired = (entry->wired_count != 0); 4744 if (*wired) 4745 fault_type = entry->protection; 4746 4747 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4748 /* 4749 * Fail if the entry was copy-on-write for a write fault. 4750 */ 4751 if (fault_type & VM_PROT_WRITE) 4752 return (KERN_FAILURE); 4753 /* 4754 * We're attempting to read a copy-on-write page -- 4755 * don't allow writes. 4756 */ 4757 prot &= ~VM_PROT_WRITE; 4758 } 4759 4760 /* 4761 * Fail if an object should be created. 4762 */ 4763 if (entry->object.vm_object == NULL && !map->system_map) 4764 return (KERN_FAILURE); 4765 4766 /* 4767 * Return the object/offset from this entry. If the entry was 4768 * copy-on-write or empty, it has been fixed up. 4769 */ 4770 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4771 *object = entry->object.vm_object; 4772 4773 *out_prot = prot; 4774 return (KERN_SUCCESS); 4775 } 4776 4777 /* 4778 * vm_map_lookup_done: 4779 * 4780 * Releases locks acquired by a vm_map_lookup 4781 * (according to the handle returned by that lookup). 4782 */ 4783 void 4784 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4785 { 4786 /* 4787 * Unlock the main-level map 4788 */ 4789 vm_map_unlock_read(map); 4790 } 4791 4792 vm_offset_t 4793 vm_map_max_KBI(const struct vm_map *map) 4794 { 4795 4796 return (vm_map_max(map)); 4797 } 4798 4799 vm_offset_t 4800 vm_map_min_KBI(const struct vm_map *map) 4801 { 4802 4803 return (vm_map_min(map)); 4804 } 4805 4806 pmap_t 4807 vm_map_pmap_KBI(vm_map_t map) 4808 { 4809 4810 return (map->pmap); 4811 } 4812 4813 #include "opt_ddb.h" 4814 #ifdef DDB 4815 #include <sys/kernel.h> 4816 4817 #include <ddb/ddb.h> 4818 4819 static void 4820 vm_map_print(vm_map_t map) 4821 { 4822 vm_map_entry_t entry, prev; 4823 4824 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4825 (void *)map, 4826 (void *)map->pmap, map->nentries, map->timestamp); 4827 4828 db_indent += 2; 4829 for (prev = &map->header; (entry = prev->next) != &map->header; 4830 prev = entry) { 4831 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 4832 (void *)entry, (void *)entry->start, (void *)entry->end, 4833 entry->eflags); 4834 { 4835 static char *inheritance_name[4] = 4836 {"share", "copy", "none", "donate_copy"}; 4837 4838 db_iprintf(" prot=%x/%x/%s", 4839 entry->protection, 4840 entry->max_protection, 4841 inheritance_name[(int)(unsigned char) 4842 entry->inheritance]); 4843 if (entry->wired_count != 0) 4844 db_printf(", wired"); 4845 } 4846 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4847 db_printf(", share=%p, offset=0x%jx\n", 4848 (void *)entry->object.sub_map, 4849 (uintmax_t)entry->offset); 4850 if (prev == &map->header || 4851 prev->object.sub_map != 4852 entry->object.sub_map) { 4853 db_indent += 2; 4854 vm_map_print((vm_map_t)entry->object.sub_map); 4855 db_indent -= 2; 4856 } 4857 } else { 4858 if (entry->cred != NULL) 4859 db_printf(", ruid %d", entry->cred->cr_ruid); 4860 db_printf(", object=%p, offset=0x%jx", 4861 (void *)entry->object.vm_object, 4862 (uintmax_t)entry->offset); 4863 if (entry->object.vm_object && entry->object.vm_object->cred) 4864 db_printf(", obj ruid %d charge %jx", 4865 entry->object.vm_object->cred->cr_ruid, 4866 (uintmax_t)entry->object.vm_object->charge); 4867 if (entry->eflags & MAP_ENTRY_COW) 4868 db_printf(", copy (%s)", 4869 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4870 db_printf("\n"); 4871 4872 if (prev == &map->header || 4873 prev->object.vm_object != 4874 entry->object.vm_object) { 4875 db_indent += 2; 4876 vm_object_print((db_expr_t)(intptr_t) 4877 entry->object.vm_object, 4878 0, 0, (char *)0); 4879 db_indent -= 2; 4880 } 4881 } 4882 } 4883 db_indent -= 2; 4884 } 4885 4886 DB_SHOW_COMMAND(map, map) 4887 { 4888 4889 if (!have_addr) { 4890 db_printf("usage: show map <addr>\n"); 4891 return; 4892 } 4893 vm_map_print((vm_map_t)addr); 4894 } 4895 4896 DB_SHOW_COMMAND(procvm, procvm) 4897 { 4898 struct proc *p; 4899 4900 if (have_addr) { 4901 p = db_lookup_proc(addr); 4902 } else { 4903 p = curproc; 4904 } 4905 4906 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4907 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4908 (void *)vmspace_pmap(p->p_vmspace)); 4909 4910 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4911 } 4912 4913 #endif /* DDB */ 4914