1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/racct.h> 81 #include <sys/resourcevar.h> 82 #include <sys/rwlock.h> 83 #include <sys/file.h> 84 #include <sys/sysctl.h> 85 #include <sys/sysent.h> 86 #include <sys/shm.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_pageout.h> 94 #include <vm/vm_object.h> 95 #include <vm/vm_pager.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_extern.h> 98 #include <vm/vnode_pager.h> 99 #include <vm/swap_pager.h> 100 #include <vm/uma.h> 101 102 /* 103 * Virtual memory maps provide for the mapping, protection, 104 * and sharing of virtual memory objects. In addition, 105 * this module provides for an efficient virtual copy of 106 * memory from one map to another. 107 * 108 * Synchronization is required prior to most operations. 109 * 110 * Maps consist of an ordered doubly-linked list of simple 111 * entries; a self-adjusting binary search tree of these 112 * entries is used to speed up lookups. 113 * 114 * Since portions of maps are specified by start/end addresses, 115 * which may not align with existing map entries, all 116 * routines merely "clip" entries to these start/end values. 117 * [That is, an entry is split into two, bordering at a 118 * start or end value.] Note that these clippings may not 119 * always be necessary (as the two resulting entries are then 120 * not changed); however, the clipping is done for convenience. 121 * 122 * As mentioned above, virtual copy operations are performed 123 * by copying VM object references from one map to 124 * another, and then marking both regions as copy-on-write. 125 */ 126 127 static struct mtx map_sleep_mtx; 128 static uma_zone_t mapentzone; 129 static uma_zone_t kmapentzone; 130 static uma_zone_t mapzone; 131 static uma_zone_t vmspace_zone; 132 static int vmspace_zinit(void *mem, int size, int flags); 133 static int vm_map_zinit(void *mem, int ize, int flags); 134 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 135 vm_offset_t max); 136 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 137 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 138 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 139 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 140 vm_map_entry_t gap_entry); 141 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 142 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 143 #ifdef INVARIANTS 144 static void vm_map_zdtor(void *mem, int size, void *arg); 145 static void vmspace_zdtor(void *mem, int size, void *arg); 146 #endif 147 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 148 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 149 int cow); 150 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 151 vm_offset_t failed_addr); 152 153 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 154 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 155 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 156 157 /* 158 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 159 * stable. 160 */ 161 #define PROC_VMSPACE_LOCK(p) do { } while (0) 162 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 163 164 /* 165 * VM_MAP_RANGE_CHECK: [ internal use only ] 166 * 167 * Asserts that the starting and ending region 168 * addresses fall within the valid range of the map. 169 */ 170 #define VM_MAP_RANGE_CHECK(map, start, end) \ 171 { \ 172 if (start < vm_map_min(map)) \ 173 start = vm_map_min(map); \ 174 if (end > vm_map_max(map)) \ 175 end = vm_map_max(map); \ 176 if (start > end) \ 177 start = end; \ 178 } 179 180 /* 181 * vm_map_startup: 182 * 183 * Initialize the vm_map module. Must be called before 184 * any other vm_map routines. 185 * 186 * Map and entry structures are allocated from the general 187 * purpose memory pool with some exceptions: 188 * 189 * - The kernel map and kmem submap are allocated statically. 190 * - Kernel map entries are allocated out of a static pool. 191 * 192 * These restrictions are necessary since malloc() uses the 193 * maps and requires map entries. 194 */ 195 196 void 197 vm_map_startup(void) 198 { 199 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 200 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 201 #ifdef INVARIANTS 202 vm_map_zdtor, 203 #else 204 NULL, 205 #endif 206 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 207 uma_prealloc(mapzone, MAX_KMAP); 208 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 209 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 210 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 211 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 212 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 213 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 214 #ifdef INVARIANTS 215 vmspace_zdtor, 216 #else 217 NULL, 218 #endif 219 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 220 } 221 222 static int 223 vmspace_zinit(void *mem, int size, int flags) 224 { 225 struct vmspace *vm; 226 227 vm = (struct vmspace *)mem; 228 229 vm->vm_map.pmap = NULL; 230 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 231 PMAP_LOCK_INIT(vmspace_pmap(vm)); 232 return (0); 233 } 234 235 static int 236 vm_map_zinit(void *mem, int size, int flags) 237 { 238 vm_map_t map; 239 240 map = (vm_map_t)mem; 241 memset(map, 0, sizeof(*map)); 242 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 243 sx_init(&map->lock, "vm map (user)"); 244 return (0); 245 } 246 247 #ifdef INVARIANTS 248 static void 249 vmspace_zdtor(void *mem, int size, void *arg) 250 { 251 struct vmspace *vm; 252 253 vm = (struct vmspace *)mem; 254 255 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 256 } 257 static void 258 vm_map_zdtor(void *mem, int size, void *arg) 259 { 260 vm_map_t map; 261 262 map = (vm_map_t)mem; 263 KASSERT(map->nentries == 0, 264 ("map %p nentries == %d on free.", 265 map, map->nentries)); 266 KASSERT(map->size == 0, 267 ("map %p size == %lu on free.", 268 map, (unsigned long)map->size)); 269 } 270 #endif /* INVARIANTS */ 271 272 /* 273 * Allocate a vmspace structure, including a vm_map and pmap, 274 * and initialize those structures. The refcnt is set to 1. 275 * 276 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 277 */ 278 struct vmspace * 279 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 280 { 281 struct vmspace *vm; 282 283 vm = uma_zalloc(vmspace_zone, M_WAITOK); 284 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 285 if (!pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 #ifdef RACCT 304 static void 305 vmspace_container_reset(struct proc *p) 306 { 307 308 PROC_LOCK(p); 309 racct_set(p, RACCT_DATA, 0); 310 racct_set(p, RACCT_STACK, 0); 311 racct_set(p, RACCT_RSS, 0); 312 racct_set(p, RACCT_MEMLOCK, 0); 313 racct_set(p, RACCT_VMEM, 0); 314 PROC_UNLOCK(p); 315 } 316 #endif 317 318 static inline void 319 vmspace_dofree(struct vmspace *vm) 320 { 321 322 CTR1(KTR_VM, "vmspace_free: %p", vm); 323 324 /* 325 * Make sure any SysV shm is freed, it might not have been in 326 * exit1(). 327 */ 328 shmexit(vm); 329 330 /* 331 * Lock the map, to wait out all other references to it. 332 * Delete all of the mappings and pages they hold, then call 333 * the pmap module to reclaim anything left. 334 */ 335 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 336 vm_map_max(&vm->vm_map)); 337 338 pmap_release(vmspace_pmap(vm)); 339 vm->vm_map.pmap = NULL; 340 uma_zfree(vmspace_zone, vm); 341 } 342 343 void 344 vmspace_free(struct vmspace *vm) 345 { 346 347 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 348 "vmspace_free() called"); 349 350 if (vm->vm_refcnt == 0) 351 panic("vmspace_free: attempt to free already freed vmspace"); 352 353 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 354 vmspace_dofree(vm); 355 } 356 357 void 358 vmspace_exitfree(struct proc *p) 359 { 360 struct vmspace *vm; 361 362 PROC_VMSPACE_LOCK(p); 363 vm = p->p_vmspace; 364 p->p_vmspace = NULL; 365 PROC_VMSPACE_UNLOCK(p); 366 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 367 vmspace_free(vm); 368 } 369 370 void 371 vmspace_exit(struct thread *td) 372 { 373 int refcnt; 374 struct vmspace *vm; 375 struct proc *p; 376 377 /* 378 * Release user portion of address space. 379 * This releases references to vnodes, 380 * which could cause I/O if the file has been unlinked. 381 * Need to do this early enough that we can still sleep. 382 * 383 * The last exiting process to reach this point releases as 384 * much of the environment as it can. vmspace_dofree() is the 385 * slower fallback in case another process had a temporary 386 * reference to the vmspace. 387 */ 388 389 p = td->td_proc; 390 vm = p->p_vmspace; 391 atomic_add_int(&vmspace0.vm_refcnt, 1); 392 refcnt = vm->vm_refcnt; 393 do { 394 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 395 /* Switch now since other proc might free vmspace */ 396 PROC_VMSPACE_LOCK(p); 397 p->p_vmspace = &vmspace0; 398 PROC_VMSPACE_UNLOCK(p); 399 pmap_activate(td); 400 } 401 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1)); 402 if (refcnt == 1) { 403 if (p->p_vmspace != vm) { 404 /* vmspace not yet freed, switch back */ 405 PROC_VMSPACE_LOCK(p); 406 p->p_vmspace = vm; 407 PROC_VMSPACE_UNLOCK(p); 408 pmap_activate(td); 409 } 410 pmap_remove_pages(vmspace_pmap(vm)); 411 /* Switch now since this proc will free vmspace */ 412 PROC_VMSPACE_LOCK(p); 413 p->p_vmspace = &vmspace0; 414 PROC_VMSPACE_UNLOCK(p); 415 pmap_activate(td); 416 vmspace_dofree(vm); 417 } 418 #ifdef RACCT 419 if (racct_enable) 420 vmspace_container_reset(p); 421 #endif 422 } 423 424 /* Acquire reference to vmspace owned by another process. */ 425 426 struct vmspace * 427 vmspace_acquire_ref(struct proc *p) 428 { 429 struct vmspace *vm; 430 int refcnt; 431 432 PROC_VMSPACE_LOCK(p); 433 vm = p->p_vmspace; 434 if (vm == NULL) { 435 PROC_VMSPACE_UNLOCK(p); 436 return (NULL); 437 } 438 refcnt = vm->vm_refcnt; 439 do { 440 if (refcnt <= 0) { /* Avoid 0->1 transition */ 441 PROC_VMSPACE_UNLOCK(p); 442 return (NULL); 443 } 444 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1)); 445 if (vm != p->p_vmspace) { 446 PROC_VMSPACE_UNLOCK(p); 447 vmspace_free(vm); 448 return (NULL); 449 } 450 PROC_VMSPACE_UNLOCK(p); 451 return (vm); 452 } 453 454 /* 455 * Switch between vmspaces in an AIO kernel process. 456 * 457 * The new vmspace is either the vmspace of a user process obtained 458 * from an active AIO request or the initial vmspace of the AIO kernel 459 * process (when it is idling). Because user processes will block to 460 * drain any active AIO requests before proceeding in exit() or 461 * execve(), the reference count for vmspaces from AIO requests can 462 * never be 0. Similarly, AIO kernel processes hold an extra 463 * reference on their initial vmspace for the life of the process. As 464 * a result, the 'newvm' vmspace always has a non-zero reference 465 * count. This permits an additional reference on 'newvm' to be 466 * acquired via a simple atomic increment rather than the loop in 467 * vmspace_acquire_ref() above. 468 */ 469 void 470 vmspace_switch_aio(struct vmspace *newvm) 471 { 472 struct vmspace *oldvm; 473 474 /* XXX: Need some way to assert that this is an aio daemon. */ 475 476 KASSERT(newvm->vm_refcnt > 0, 477 ("vmspace_switch_aio: newvm unreferenced")); 478 479 oldvm = curproc->p_vmspace; 480 if (oldvm == newvm) 481 return; 482 483 /* 484 * Point to the new address space and refer to it. 485 */ 486 curproc->p_vmspace = newvm; 487 atomic_add_int(&newvm->vm_refcnt, 1); 488 489 /* Activate the new mapping. */ 490 pmap_activate(curthread); 491 492 vmspace_free(oldvm); 493 } 494 495 void 496 _vm_map_lock(vm_map_t map, const char *file, int line) 497 { 498 499 if (map->system_map) 500 mtx_lock_flags_(&map->system_mtx, 0, file, line); 501 else 502 sx_xlock_(&map->lock, file, line); 503 map->timestamp++; 504 } 505 506 void 507 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 508 { 509 vm_object_t object, object1; 510 struct vnode *vp; 511 512 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 513 return; 514 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 515 ("Submap with execs")); 516 object = entry->object.vm_object; 517 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 518 VM_OBJECT_RLOCK(object); 519 while ((object1 = object->backing_object) != NULL) { 520 VM_OBJECT_RLOCK(object1); 521 VM_OBJECT_RUNLOCK(object); 522 object = object1; 523 } 524 525 vp = NULL; 526 if (object->type == OBJT_DEAD) { 527 /* 528 * For OBJT_DEAD objects, v_writecount was handled in 529 * vnode_pager_dealloc(). 530 */ 531 } else if (object->type == OBJT_VNODE) { 532 vp = object->handle; 533 } else if (object->type == OBJT_SWAP) { 534 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0, 535 ("vm_map_entry_set_vnode_text: swap and !TMPFS " 536 "entry %p, object %p, add %d", entry, object, add)); 537 /* 538 * Tmpfs VREG node, which was reclaimed, has 539 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS. In 540 * this case there is no v_writecount to adjust. 541 */ 542 if ((object->flags & OBJ_TMPFS) != 0) 543 vp = object->un_pager.swp.swp_tmpfs; 544 } else { 545 KASSERT(0, 546 ("vm_map_entry_set_vnode_text: wrong object type, " 547 "entry %p, object %p, add %d", entry, object, add)); 548 } 549 if (vp != NULL) { 550 if (add) 551 VOP_SET_TEXT_CHECKED(vp); 552 else 553 VOP_UNSET_TEXT_CHECKED(vp); 554 } 555 VM_OBJECT_RUNLOCK(object); 556 } 557 558 static void 559 vm_map_process_deferred(void) 560 { 561 struct thread *td; 562 vm_map_entry_t entry, next; 563 vm_object_t object; 564 565 td = curthread; 566 entry = td->td_map_def_user; 567 td->td_map_def_user = NULL; 568 while (entry != NULL) { 569 next = entry->next; 570 MPASS((entry->eflags & (MAP_ENTRY_VN_WRITECNT | 571 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_VN_WRITECNT | 572 MAP_ENTRY_VN_EXEC)); 573 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 574 /* 575 * Decrement the object's writemappings and 576 * possibly the vnode's v_writecount. 577 */ 578 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 579 ("Submap with writecount")); 580 object = entry->object.vm_object; 581 KASSERT(object != NULL, ("No object for writecount")); 582 vnode_pager_release_writecount(object, entry->start, 583 entry->end); 584 } 585 vm_map_entry_set_vnode_text(entry, false); 586 vm_map_entry_deallocate(entry, FALSE); 587 entry = next; 588 } 589 } 590 591 void 592 _vm_map_unlock(vm_map_t map, const char *file, int line) 593 { 594 595 if (map->system_map) 596 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 597 else { 598 sx_xunlock_(&map->lock, file, line); 599 vm_map_process_deferred(); 600 } 601 } 602 603 void 604 _vm_map_lock_read(vm_map_t map, const char *file, int line) 605 { 606 607 if (map->system_map) 608 mtx_lock_flags_(&map->system_mtx, 0, file, line); 609 else 610 sx_slock_(&map->lock, file, line); 611 } 612 613 void 614 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 615 { 616 617 if (map->system_map) 618 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 619 else { 620 sx_sunlock_(&map->lock, file, line); 621 vm_map_process_deferred(); 622 } 623 } 624 625 int 626 _vm_map_trylock(vm_map_t map, const char *file, int line) 627 { 628 int error; 629 630 error = map->system_map ? 631 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 632 !sx_try_xlock_(&map->lock, file, line); 633 if (error == 0) 634 map->timestamp++; 635 return (error == 0); 636 } 637 638 int 639 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 640 { 641 int error; 642 643 error = map->system_map ? 644 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 645 !sx_try_slock_(&map->lock, file, line); 646 return (error == 0); 647 } 648 649 /* 650 * _vm_map_lock_upgrade: [ internal use only ] 651 * 652 * Tries to upgrade a read (shared) lock on the specified map to a write 653 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 654 * non-zero value if the upgrade fails. If the upgrade fails, the map is 655 * returned without a read or write lock held. 656 * 657 * Requires that the map be read locked. 658 */ 659 int 660 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 661 { 662 unsigned int last_timestamp; 663 664 if (map->system_map) { 665 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 666 } else { 667 if (!sx_try_upgrade_(&map->lock, file, line)) { 668 last_timestamp = map->timestamp; 669 sx_sunlock_(&map->lock, file, line); 670 vm_map_process_deferred(); 671 /* 672 * If the map's timestamp does not change while the 673 * map is unlocked, then the upgrade succeeds. 674 */ 675 sx_xlock_(&map->lock, file, line); 676 if (last_timestamp != map->timestamp) { 677 sx_xunlock_(&map->lock, file, line); 678 return (1); 679 } 680 } 681 } 682 map->timestamp++; 683 return (0); 684 } 685 686 void 687 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 688 { 689 690 if (map->system_map) { 691 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 692 } else 693 sx_downgrade_(&map->lock, file, line); 694 } 695 696 /* 697 * vm_map_locked: 698 * 699 * Returns a non-zero value if the caller holds a write (exclusive) lock 700 * on the specified map and the value "0" otherwise. 701 */ 702 int 703 vm_map_locked(vm_map_t map) 704 { 705 706 if (map->system_map) 707 return (mtx_owned(&map->system_mtx)); 708 else 709 return (sx_xlocked(&map->lock)); 710 } 711 712 #ifdef INVARIANTS 713 static void 714 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 715 { 716 717 if (map->system_map) 718 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 719 else 720 sx_assert_(&map->lock, SA_XLOCKED, file, line); 721 } 722 723 #define VM_MAP_ASSERT_LOCKED(map) \ 724 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 725 726 #ifdef DIAGNOSTIC 727 static int enable_vmmap_check = 1; 728 #else 729 static int enable_vmmap_check = 0; 730 #endif 731 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 732 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 733 734 static void 735 _vm_map_assert_consistent(vm_map_t map) 736 { 737 vm_map_entry_t child, entry, prev; 738 vm_size_t max_left, max_right; 739 740 if (!enable_vmmap_check) 741 return; 742 743 for (prev = &map->header; (entry = prev->next) != &map->header; 744 prev = entry) { 745 KASSERT(prev->end <= entry->start, 746 ("map %p prev->end = %jx, start = %jx", map, 747 (uintmax_t)prev->end, (uintmax_t)entry->start)); 748 KASSERT(entry->start < entry->end, 749 ("map %p start = %jx, end = %jx", map, 750 (uintmax_t)entry->start, (uintmax_t)entry->end)); 751 KASSERT(entry->end <= entry->next->start, 752 ("map %p end = %jx, next->start = %jx", map, 753 (uintmax_t)entry->end, (uintmax_t)entry->next->start)); 754 KASSERT(entry->left == NULL || 755 entry->left->start < entry->start, 756 ("map %p left->start = %jx, start = %jx", map, 757 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 758 KASSERT(entry->right == NULL || 759 entry->start < entry->right->start, 760 ("map %p start = %jx, right->start = %jx", map, 761 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 762 child = entry->left; 763 max_left = (child != NULL) ? child->max_free : 764 entry->start - prev->end; 765 child = entry->right; 766 max_right = (child != NULL) ? child->max_free : 767 entry->next->start - entry->end; 768 KASSERT(entry->max_free == MAX(max_left, max_right), 769 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 770 (uintmax_t)entry->max_free, 771 (uintmax_t)max_left, (uintmax_t)max_right)); 772 } 773 } 774 775 #define VM_MAP_ASSERT_CONSISTENT(map) \ 776 _vm_map_assert_consistent(map) 777 #else 778 #define VM_MAP_ASSERT_LOCKED(map) 779 #define VM_MAP_ASSERT_CONSISTENT(map) 780 #endif /* INVARIANTS */ 781 782 /* 783 * _vm_map_unlock_and_wait: 784 * 785 * Atomically releases the lock on the specified map and puts the calling 786 * thread to sleep. The calling thread will remain asleep until either 787 * vm_map_wakeup() is performed on the map or the specified timeout is 788 * exceeded. 789 * 790 * WARNING! This function does not perform deferred deallocations of 791 * objects and map entries. Therefore, the calling thread is expected to 792 * reacquire the map lock after reawakening and later perform an ordinary 793 * unlock operation, such as vm_map_unlock(), before completing its 794 * operation on the map. 795 */ 796 int 797 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 798 { 799 800 mtx_lock(&map_sleep_mtx); 801 if (map->system_map) 802 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 803 else 804 sx_xunlock_(&map->lock, file, line); 805 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 806 timo)); 807 } 808 809 /* 810 * vm_map_wakeup: 811 * 812 * Awaken any threads that have slept on the map using 813 * vm_map_unlock_and_wait(). 814 */ 815 void 816 vm_map_wakeup(vm_map_t map) 817 { 818 819 /* 820 * Acquire and release map_sleep_mtx to prevent a wakeup() 821 * from being performed (and lost) between the map unlock 822 * and the msleep() in _vm_map_unlock_and_wait(). 823 */ 824 mtx_lock(&map_sleep_mtx); 825 mtx_unlock(&map_sleep_mtx); 826 wakeup(&map->root); 827 } 828 829 void 830 vm_map_busy(vm_map_t map) 831 { 832 833 VM_MAP_ASSERT_LOCKED(map); 834 map->busy++; 835 } 836 837 void 838 vm_map_unbusy(vm_map_t map) 839 { 840 841 VM_MAP_ASSERT_LOCKED(map); 842 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 843 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 844 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 845 wakeup(&map->busy); 846 } 847 } 848 849 void 850 vm_map_wait_busy(vm_map_t map) 851 { 852 853 VM_MAP_ASSERT_LOCKED(map); 854 while (map->busy) { 855 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 856 if (map->system_map) 857 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 858 else 859 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 860 } 861 map->timestamp++; 862 } 863 864 long 865 vmspace_resident_count(struct vmspace *vmspace) 866 { 867 return pmap_resident_count(vmspace_pmap(vmspace)); 868 } 869 870 /* 871 * vm_map_create: 872 * 873 * Creates and returns a new empty VM map with 874 * the given physical map structure, and having 875 * the given lower and upper address bounds. 876 */ 877 vm_map_t 878 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 879 { 880 vm_map_t result; 881 882 result = uma_zalloc(mapzone, M_WAITOK); 883 CTR1(KTR_VM, "vm_map_create: %p", result); 884 _vm_map_init(result, pmap, min, max); 885 return (result); 886 } 887 888 /* 889 * Initialize an existing vm_map structure 890 * such as that in the vmspace structure. 891 */ 892 static void 893 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 894 { 895 896 map->header.next = map->header.prev = &map->header; 897 map->header.eflags = MAP_ENTRY_HEADER; 898 map->needs_wakeup = FALSE; 899 map->system_map = 0; 900 map->pmap = pmap; 901 map->header.end = min; 902 map->header.start = max; 903 map->flags = 0; 904 map->root = NULL; 905 map->timestamp = 0; 906 map->busy = 0; 907 map->anon_loc = 0; 908 } 909 910 void 911 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 912 { 913 914 _vm_map_init(map, pmap, min, max); 915 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 916 sx_init(&map->lock, "user map"); 917 } 918 919 /* 920 * vm_map_entry_dispose: [ internal use only ] 921 * 922 * Inverse of vm_map_entry_create. 923 */ 924 static void 925 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 926 { 927 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 928 } 929 930 /* 931 * vm_map_entry_create: [ internal use only ] 932 * 933 * Allocates a VM map entry for insertion. 934 * No entry fields are filled in. 935 */ 936 static vm_map_entry_t 937 vm_map_entry_create(vm_map_t map) 938 { 939 vm_map_entry_t new_entry; 940 941 if (map->system_map) 942 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 943 else 944 new_entry = uma_zalloc(mapentzone, M_WAITOK); 945 if (new_entry == NULL) 946 panic("vm_map_entry_create: kernel resources exhausted"); 947 return (new_entry); 948 } 949 950 /* 951 * vm_map_entry_set_behavior: 952 * 953 * Set the expected access behavior, either normal, random, or 954 * sequential. 955 */ 956 static inline void 957 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 958 { 959 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 960 (behavior & MAP_ENTRY_BEHAV_MASK); 961 } 962 963 /* 964 * vm_map_entry_max_free_{left,right}: 965 * 966 * Compute the size of the largest free gap between two entries, 967 * one the root of a tree and the other the ancestor of that root 968 * that is the least or greatest ancestor found on the search path. 969 */ 970 static inline vm_size_t 971 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 972 { 973 974 return (root->left != NULL ? 975 root->left->max_free : root->start - left_ancestor->end); 976 } 977 978 static inline vm_size_t 979 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 980 { 981 982 return (root->right != NULL ? 983 root->right->max_free : right_ancestor->start - root->end); 984 } 985 986 #define SPLAY_LEFT_STEP(root, y, rlist, test) do { \ 987 vm_size_t max_free; \ 988 \ 989 /* \ 990 * Infer root->right->max_free == root->max_free when \ 991 * y->max_free < root->max_free || root->max_free == 0. \ 992 * Otherwise, look right to find it. \ 993 */ \ 994 y = root->left; \ 995 max_free = root->max_free; \ 996 KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist), \ 997 ("%s: max_free invariant fails", __func__)); \ 998 if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free) \ 999 max_free = vm_map_entry_max_free_right(root, rlist); \ 1000 if (y != NULL && (test)) { \ 1001 /* Rotate right and make y root. */ \ 1002 root->left = y->right; \ 1003 y->right = root; \ 1004 if (max_free < y->max_free) \ 1005 root->max_free = max_free = MAX(max_free, \ 1006 vm_map_entry_max_free_left(root, y)); \ 1007 root = y; \ 1008 y = root->left; \ 1009 } \ 1010 /* Copy right->max_free. Put root on rlist. */ \ 1011 root->max_free = max_free; \ 1012 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1013 ("%s: max_free not copied from right", __func__)); \ 1014 root->left = rlist; \ 1015 rlist = root; \ 1016 root = y; \ 1017 } while (0) 1018 1019 #define SPLAY_RIGHT_STEP(root, y, llist, test) do { \ 1020 vm_size_t max_free; \ 1021 \ 1022 /* \ 1023 * Infer root->left->max_free == root->max_free when \ 1024 * y->max_free < root->max_free || root->max_free == 0. \ 1025 * Otherwise, look left to find it. \ 1026 */ \ 1027 y = root->right; \ 1028 max_free = root->max_free; \ 1029 KASSERT(max_free >= vm_map_entry_max_free_left(root, llist), \ 1030 ("%s: max_free invariant fails", __func__)); \ 1031 if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free) \ 1032 max_free = vm_map_entry_max_free_left(root, llist); \ 1033 if (y != NULL && (test)) { \ 1034 /* Rotate left and make y root. */ \ 1035 root->right = y->left; \ 1036 y->left = root; \ 1037 if (max_free < y->max_free) \ 1038 root->max_free = max_free = MAX(max_free, \ 1039 vm_map_entry_max_free_right(root, y)); \ 1040 root = y; \ 1041 y = root->right; \ 1042 } \ 1043 /* Copy left->max_free. Put root on llist. */ \ 1044 root->max_free = max_free; \ 1045 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1046 ("%s: max_free not copied from left", __func__)); \ 1047 root->right = llist; \ 1048 llist = root; \ 1049 root = y; \ 1050 } while (0) 1051 1052 /* 1053 * Walk down the tree until we find addr or a NULL pointer where addr would go, 1054 * breaking off left and right subtrees of nodes less than, or greater than 1055 * addr. Treat pointers to nodes with max_free < length as NULL pointers. 1056 * llist and rlist are the two sides in reverse order (bottom-up), with llist 1057 * linked by the right pointer and rlist linked by the left pointer in the 1058 * vm_map_entry, and both lists terminated by &map->header. This function, and 1059 * the subsequent call to vm_map_splay_merge, rely on the start and end address 1060 * values in &map->header. 1061 */ 1062 static vm_map_entry_t 1063 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1064 vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist) 1065 { 1066 vm_map_entry_t llist, rlist, root, y; 1067 1068 llist = rlist = &map->header; 1069 root = map->root; 1070 while (root != NULL && root->max_free >= length) { 1071 KASSERT(llist->end <= root->start && root->end <= rlist->start, 1072 ("%s: root not within tree bounds", __func__)); 1073 if (addr < root->start) { 1074 SPLAY_LEFT_STEP(root, y, rlist, 1075 y->max_free >= length && addr < y->start); 1076 } else if (addr >= root->end) { 1077 SPLAY_RIGHT_STEP(root, y, llist, 1078 y->max_free >= length && addr >= y->end); 1079 } else 1080 break; 1081 } 1082 *out_llist = llist; 1083 *out_rlist = rlist; 1084 return (root); 1085 } 1086 1087 static void 1088 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist) 1089 { 1090 vm_map_entry_t rlist, y; 1091 1092 root = root->right; 1093 rlist = *iolist; 1094 while (root != NULL) 1095 SPLAY_LEFT_STEP(root, y, rlist, true); 1096 *iolist = rlist; 1097 } 1098 1099 static void 1100 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist) 1101 { 1102 vm_map_entry_t llist, y; 1103 1104 root = root->left; 1105 llist = *iolist; 1106 while (root != NULL) 1107 SPLAY_RIGHT_STEP(root, y, llist, true); 1108 *iolist = llist; 1109 } 1110 1111 static inline void 1112 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1113 { 1114 vm_map_entry_t tmp; 1115 1116 tmp = *b; 1117 *b = *a; 1118 *a = tmp; 1119 } 1120 1121 /* 1122 * Walk back up the two spines, flip the pointers and set max_free. The 1123 * subtrees of the root go at the bottom of llist and rlist. 1124 */ 1125 static void 1126 vm_map_splay_merge(vm_map_t map, vm_map_entry_t root, 1127 vm_map_entry_t llist, vm_map_entry_t rlist) 1128 { 1129 vm_map_entry_t prev; 1130 vm_size_t max_free_left, max_free_right; 1131 1132 max_free_left = vm_map_entry_max_free_left(root, llist); 1133 if (llist != &map->header) { 1134 prev = root->left; 1135 do { 1136 /* 1137 * The max_free values of the children of llist are in 1138 * llist->max_free and max_free_left. Update with the 1139 * max value. 1140 */ 1141 llist->max_free = max_free_left = 1142 MAX(llist->max_free, max_free_left); 1143 vm_map_entry_swap(&llist->right, &prev); 1144 vm_map_entry_swap(&prev, &llist); 1145 } while (llist != &map->header); 1146 root->left = prev; 1147 } 1148 max_free_right = vm_map_entry_max_free_right(root, rlist); 1149 if (rlist != &map->header) { 1150 prev = root->right; 1151 do { 1152 /* 1153 * The max_free values of the children of rlist are in 1154 * rlist->max_free and max_free_right. Update with the 1155 * max value. 1156 */ 1157 rlist->max_free = max_free_right = 1158 MAX(rlist->max_free, max_free_right); 1159 vm_map_entry_swap(&rlist->left, &prev); 1160 vm_map_entry_swap(&prev, &rlist); 1161 } while (rlist != &map->header); 1162 root->right = prev; 1163 } 1164 root->max_free = MAX(max_free_left, max_free_right); 1165 map->root = root; 1166 } 1167 1168 /* 1169 * vm_map_splay: 1170 * 1171 * The Sleator and Tarjan top-down splay algorithm with the 1172 * following variation. Max_free must be computed bottom-up, so 1173 * on the downward pass, maintain the left and right spines in 1174 * reverse order. Then, make a second pass up each side to fix 1175 * the pointers and compute max_free. The time bound is O(log n) 1176 * amortized. 1177 * 1178 * The new root is the vm_map_entry containing "addr", or else an 1179 * adjacent entry (lower if possible) if addr is not in the tree. 1180 * 1181 * The map must be locked, and leaves it so. 1182 * 1183 * Returns: the new root. 1184 */ 1185 static vm_map_entry_t 1186 vm_map_splay(vm_map_t map, vm_offset_t addr) 1187 { 1188 vm_map_entry_t llist, rlist, root; 1189 1190 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1191 if (root != NULL) { 1192 /* do nothing */ 1193 } else if (llist != &map->header) { 1194 /* 1195 * Recover the greatest node in the left 1196 * subtree and make it the root. 1197 */ 1198 root = llist; 1199 llist = root->right; 1200 root->right = NULL; 1201 } else if (rlist != &map->header) { 1202 /* 1203 * Recover the least node in the right 1204 * subtree and make it the root. 1205 */ 1206 root = rlist; 1207 rlist = root->left; 1208 root->left = NULL; 1209 } else { 1210 /* There is no root. */ 1211 return (NULL); 1212 } 1213 vm_map_splay_merge(map, root, llist, rlist); 1214 VM_MAP_ASSERT_CONSISTENT(map); 1215 return (root); 1216 } 1217 1218 /* 1219 * vm_map_entry_{un,}link: 1220 * 1221 * Insert/remove entries from maps. 1222 */ 1223 static void 1224 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1225 { 1226 vm_map_entry_t llist, rlist, root; 1227 1228 CTR3(KTR_VM, 1229 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1230 map->nentries, entry); 1231 VM_MAP_ASSERT_LOCKED(map); 1232 map->nentries++; 1233 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1234 KASSERT(root == NULL, 1235 ("vm_map_entry_link: link object already mapped")); 1236 entry->prev = llist; 1237 entry->next = rlist; 1238 llist->next = rlist->prev = entry; 1239 entry->left = entry->right = NULL; 1240 vm_map_splay_merge(map, entry, llist, rlist); 1241 VM_MAP_ASSERT_CONSISTENT(map); 1242 } 1243 1244 enum unlink_merge_type { 1245 UNLINK_MERGE_PREV, 1246 UNLINK_MERGE_NONE, 1247 UNLINK_MERGE_NEXT 1248 }; 1249 1250 static void 1251 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1252 enum unlink_merge_type op) 1253 { 1254 vm_map_entry_t llist, rlist, root, y; 1255 1256 VM_MAP_ASSERT_LOCKED(map); 1257 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1258 KASSERT(root != NULL, 1259 ("vm_map_entry_unlink: unlink object not mapped")); 1260 1261 switch (op) { 1262 case UNLINK_MERGE_PREV: 1263 vm_map_splay_findprev(root, &llist); 1264 llist->end = root->end; 1265 y = root->right; 1266 root = llist; 1267 llist = root->right; 1268 root->right = y; 1269 break; 1270 case UNLINK_MERGE_NEXT: 1271 vm_map_splay_findnext(root, &rlist); 1272 rlist->start = root->start; 1273 rlist->offset = root->offset; 1274 y = root->left; 1275 root = rlist; 1276 rlist = root->left; 1277 root->left = y; 1278 break; 1279 case UNLINK_MERGE_NONE: 1280 vm_map_splay_findprev(root, &llist); 1281 vm_map_splay_findnext(root, &rlist); 1282 if (llist != &map->header) { 1283 root = llist; 1284 llist = root->right; 1285 root->right = NULL; 1286 } else if (rlist != &map->header) { 1287 root = rlist; 1288 rlist = root->left; 1289 root->left = NULL; 1290 } else 1291 root = NULL; 1292 break; 1293 } 1294 y = entry->next; 1295 y->prev = entry->prev; 1296 y->prev->next = y; 1297 if (root != NULL) 1298 vm_map_splay_merge(map, root, llist, rlist); 1299 else 1300 map->root = NULL; 1301 VM_MAP_ASSERT_CONSISTENT(map); 1302 map->nentries--; 1303 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1304 map->nentries, entry); 1305 } 1306 1307 /* 1308 * vm_map_entry_resize: 1309 * 1310 * Resize a vm_map_entry, recompute the amount of free space that 1311 * follows it and propagate that value up the tree. 1312 * 1313 * The map must be locked, and leaves it so. 1314 */ 1315 static void 1316 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1317 { 1318 vm_map_entry_t llist, rlist, root; 1319 1320 VM_MAP_ASSERT_LOCKED(map); 1321 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1322 KASSERT(root != NULL, 1323 ("%s: resize object not mapped", __func__)); 1324 vm_map_splay_findnext(root, &rlist); 1325 root->right = NULL; 1326 entry->end += grow_amount; 1327 vm_map_splay_merge(map, root, llist, rlist); 1328 VM_MAP_ASSERT_CONSISTENT(map); 1329 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1330 __func__, map, map->nentries, entry); 1331 } 1332 1333 /* 1334 * vm_map_lookup_entry: [ internal use only ] 1335 * 1336 * Finds the map entry containing (or 1337 * immediately preceding) the specified address 1338 * in the given map; the entry is returned 1339 * in the "entry" parameter. The boolean 1340 * result indicates whether the address is 1341 * actually contained in the map. 1342 */ 1343 boolean_t 1344 vm_map_lookup_entry( 1345 vm_map_t map, 1346 vm_offset_t address, 1347 vm_map_entry_t *entry) /* OUT */ 1348 { 1349 vm_map_entry_t cur, lbound; 1350 boolean_t locked; 1351 1352 /* 1353 * If the map is empty, then the map entry immediately preceding 1354 * "address" is the map's header. 1355 */ 1356 cur = map->root; 1357 if (cur == NULL) { 1358 *entry = &map->header; 1359 return (FALSE); 1360 } 1361 if (address >= cur->start && cur->end > address) { 1362 *entry = cur; 1363 return (TRUE); 1364 } 1365 if ((locked = vm_map_locked(map)) || 1366 sx_try_upgrade(&map->lock)) { 1367 /* 1368 * Splay requires a write lock on the map. However, it only 1369 * restructures the binary search tree; it does not otherwise 1370 * change the map. Thus, the map's timestamp need not change 1371 * on a temporary upgrade. 1372 */ 1373 cur = vm_map_splay(map, address); 1374 if (!locked) 1375 sx_downgrade(&map->lock); 1376 1377 /* 1378 * If "address" is contained within a map entry, the new root 1379 * is that map entry. Otherwise, the new root is a map entry 1380 * immediately before or after "address". 1381 */ 1382 if (address < cur->start) { 1383 *entry = &map->header; 1384 return (FALSE); 1385 } 1386 *entry = cur; 1387 return (address < cur->end); 1388 } 1389 /* 1390 * Since the map is only locked for read access, perform a 1391 * standard binary search tree lookup for "address". 1392 */ 1393 lbound = &map->header; 1394 do { 1395 if (address < cur->start) { 1396 cur = cur->left; 1397 } else if (cur->end <= address) { 1398 lbound = cur; 1399 cur = cur->right; 1400 } else { 1401 *entry = cur; 1402 return (TRUE); 1403 } 1404 } while (cur != NULL); 1405 *entry = lbound; 1406 return (FALSE); 1407 } 1408 1409 /* 1410 * vm_map_insert: 1411 * 1412 * Inserts the given whole VM object into the target 1413 * map at the specified address range. The object's 1414 * size should match that of the address range. 1415 * 1416 * Requires that the map be locked, and leaves it so. 1417 * 1418 * If object is non-NULL, ref count must be bumped by caller 1419 * prior to making call to account for the new entry. 1420 */ 1421 int 1422 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1423 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1424 { 1425 vm_map_entry_t new_entry, prev_entry, temp_entry; 1426 struct ucred *cred; 1427 vm_eflags_t protoeflags; 1428 vm_inherit_t inheritance; 1429 1430 VM_MAP_ASSERT_LOCKED(map); 1431 KASSERT(object != kernel_object || 1432 (cow & MAP_COPY_ON_WRITE) == 0, 1433 ("vm_map_insert: kernel object and COW")); 1434 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1435 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1436 KASSERT((prot & ~max) == 0, 1437 ("prot %#x is not subset of max_prot %#x", prot, max)); 1438 1439 /* 1440 * Check that the start and end points are not bogus. 1441 */ 1442 if (start < vm_map_min(map) || end > vm_map_max(map) || 1443 start >= end) 1444 return (KERN_INVALID_ADDRESS); 1445 1446 /* 1447 * Find the entry prior to the proposed starting address; if it's part 1448 * of an existing entry, this range is bogus. 1449 */ 1450 if (vm_map_lookup_entry(map, start, &temp_entry)) 1451 return (KERN_NO_SPACE); 1452 1453 prev_entry = temp_entry; 1454 1455 /* 1456 * Assert that the next entry doesn't overlap the end point. 1457 */ 1458 if (prev_entry->next->start < end) 1459 return (KERN_NO_SPACE); 1460 1461 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1462 max != VM_PROT_NONE)) 1463 return (KERN_INVALID_ARGUMENT); 1464 1465 protoeflags = 0; 1466 if (cow & MAP_COPY_ON_WRITE) 1467 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1468 if (cow & MAP_NOFAULT) 1469 protoeflags |= MAP_ENTRY_NOFAULT; 1470 if (cow & MAP_DISABLE_SYNCER) 1471 protoeflags |= MAP_ENTRY_NOSYNC; 1472 if (cow & MAP_DISABLE_COREDUMP) 1473 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1474 if (cow & MAP_STACK_GROWS_DOWN) 1475 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1476 if (cow & MAP_STACK_GROWS_UP) 1477 protoeflags |= MAP_ENTRY_GROWS_UP; 1478 if (cow & MAP_VN_WRITECOUNT) 1479 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1480 if (cow & MAP_VN_EXEC) 1481 protoeflags |= MAP_ENTRY_VN_EXEC; 1482 if ((cow & MAP_CREATE_GUARD) != 0) 1483 protoeflags |= MAP_ENTRY_GUARD; 1484 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1485 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1486 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1487 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1488 if (cow & MAP_INHERIT_SHARE) 1489 inheritance = VM_INHERIT_SHARE; 1490 else 1491 inheritance = VM_INHERIT_DEFAULT; 1492 1493 cred = NULL; 1494 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1495 goto charged; 1496 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1497 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1498 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1499 return (KERN_RESOURCE_SHORTAGE); 1500 KASSERT(object == NULL || 1501 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1502 object->cred == NULL, 1503 ("overcommit: vm_map_insert o %p", object)); 1504 cred = curthread->td_ucred; 1505 } 1506 1507 charged: 1508 /* Expand the kernel pmap, if necessary. */ 1509 if (map == kernel_map && end > kernel_vm_end) 1510 pmap_growkernel(end); 1511 if (object != NULL) { 1512 /* 1513 * OBJ_ONEMAPPING must be cleared unless this mapping 1514 * is trivially proven to be the only mapping for any 1515 * of the object's pages. (Object granularity 1516 * reference counting is insufficient to recognize 1517 * aliases with precision.) 1518 */ 1519 VM_OBJECT_WLOCK(object); 1520 if (object->ref_count > 1 || object->shadow_count != 0) 1521 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1522 VM_OBJECT_WUNLOCK(object); 1523 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1524 protoeflags && 1525 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1526 MAP_VN_EXEC)) == 0 && 1527 prev_entry->end == start && (prev_entry->cred == cred || 1528 (prev_entry->object.vm_object != NULL && 1529 prev_entry->object.vm_object->cred == cred)) && 1530 vm_object_coalesce(prev_entry->object.vm_object, 1531 prev_entry->offset, 1532 (vm_size_t)(prev_entry->end - prev_entry->start), 1533 (vm_size_t)(end - prev_entry->end), cred != NULL && 1534 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1535 /* 1536 * We were able to extend the object. Determine if we 1537 * can extend the previous map entry to include the 1538 * new range as well. 1539 */ 1540 if (prev_entry->inheritance == inheritance && 1541 prev_entry->protection == prot && 1542 prev_entry->max_protection == max && 1543 prev_entry->wired_count == 0) { 1544 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1545 0, ("prev_entry %p has incoherent wiring", 1546 prev_entry)); 1547 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1548 map->size += end - prev_entry->end; 1549 vm_map_entry_resize(map, prev_entry, 1550 end - prev_entry->end); 1551 vm_map_simplify_entry(map, prev_entry); 1552 return (KERN_SUCCESS); 1553 } 1554 1555 /* 1556 * If we can extend the object but cannot extend the 1557 * map entry, we have to create a new map entry. We 1558 * must bump the ref count on the extended object to 1559 * account for it. object may be NULL. 1560 */ 1561 object = prev_entry->object.vm_object; 1562 offset = prev_entry->offset + 1563 (prev_entry->end - prev_entry->start); 1564 vm_object_reference(object); 1565 if (cred != NULL && object != NULL && object->cred != NULL && 1566 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1567 /* Object already accounts for this uid. */ 1568 cred = NULL; 1569 } 1570 } 1571 if (cred != NULL) 1572 crhold(cred); 1573 1574 /* 1575 * Create a new entry 1576 */ 1577 new_entry = vm_map_entry_create(map); 1578 new_entry->start = start; 1579 new_entry->end = end; 1580 new_entry->cred = NULL; 1581 1582 new_entry->eflags = protoeflags; 1583 new_entry->object.vm_object = object; 1584 new_entry->offset = offset; 1585 1586 new_entry->inheritance = inheritance; 1587 new_entry->protection = prot; 1588 new_entry->max_protection = max; 1589 new_entry->wired_count = 0; 1590 new_entry->wiring_thread = NULL; 1591 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1592 new_entry->next_read = start; 1593 1594 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1595 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1596 new_entry->cred = cred; 1597 1598 /* 1599 * Insert the new entry into the list 1600 */ 1601 vm_map_entry_link(map, new_entry); 1602 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1603 map->size += new_entry->end - new_entry->start; 1604 1605 /* 1606 * Try to coalesce the new entry with both the previous and next 1607 * entries in the list. Previously, we only attempted to coalesce 1608 * with the previous entry when object is NULL. Here, we handle the 1609 * other cases, which are less common. 1610 */ 1611 vm_map_simplify_entry(map, new_entry); 1612 1613 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1614 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1615 end - start, cow & MAP_PREFAULT_PARTIAL); 1616 } 1617 1618 return (KERN_SUCCESS); 1619 } 1620 1621 /* 1622 * vm_map_findspace: 1623 * 1624 * Find the first fit (lowest VM address) for "length" free bytes 1625 * beginning at address >= start in the given map. 1626 * 1627 * In a vm_map_entry, "max_free" is the maximum amount of 1628 * contiguous free space between an entry in its subtree and a 1629 * neighbor of that entry. This allows finding a free region in 1630 * one path down the tree, so O(log n) amortized with splay 1631 * trees. 1632 * 1633 * The map must be locked, and leaves it so. 1634 * 1635 * Returns: starting address if sufficient space, 1636 * vm_map_max(map)-length+1 if insufficient space. 1637 */ 1638 vm_offset_t 1639 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1640 { 1641 vm_map_entry_t llist, rlist, root, y; 1642 vm_size_t left_length; 1643 vm_offset_t gap_end; 1644 1645 /* 1646 * Request must fit within min/max VM address and must avoid 1647 * address wrap. 1648 */ 1649 start = MAX(start, vm_map_min(map)); 1650 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1651 return (vm_map_max(map) - length + 1); 1652 1653 /* Empty tree means wide open address space. */ 1654 if (map->root == NULL) 1655 return (start); 1656 1657 /* 1658 * After splay_split, if start is within an entry, push it to the start 1659 * of the following gap. If rlist is at the end of the gap containing 1660 * start, save the end of that gap in gap_end to see if the gap is big 1661 * enough; otherwise set gap_end to start skip gap-checking and move 1662 * directly to a search of the right subtree. 1663 */ 1664 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1665 gap_end = rlist->start; 1666 if (root != NULL) { 1667 start = root->end; 1668 if (root->right != NULL) 1669 gap_end = start; 1670 } else if (rlist != &map->header) { 1671 root = rlist; 1672 rlist = root->left; 1673 root->left = NULL; 1674 } else { 1675 root = llist; 1676 llist = root->right; 1677 root->right = NULL; 1678 } 1679 vm_map_splay_merge(map, root, llist, rlist); 1680 VM_MAP_ASSERT_CONSISTENT(map); 1681 if (length <= gap_end - start) 1682 return (start); 1683 1684 /* With max_free, can immediately tell if no solution. */ 1685 if (root->right == NULL || length > root->right->max_free) 1686 return (vm_map_max(map) - length + 1); 1687 1688 /* 1689 * Splay for the least large-enough gap in the right subtree. 1690 */ 1691 llist = rlist = &map->header; 1692 for (left_length = 0;; 1693 left_length = vm_map_entry_max_free_left(root, llist)) { 1694 if (length <= left_length) 1695 SPLAY_LEFT_STEP(root, y, rlist, 1696 length <= vm_map_entry_max_free_left(y, llist)); 1697 else 1698 SPLAY_RIGHT_STEP(root, y, llist, 1699 length > vm_map_entry_max_free_left(y, root)); 1700 if (root == NULL) 1701 break; 1702 } 1703 root = llist; 1704 llist = root->right; 1705 root->right = NULL; 1706 if (rlist != &map->header) { 1707 y = rlist; 1708 rlist = y->left; 1709 y->left = NULL; 1710 vm_map_splay_merge(map, y, &map->header, rlist); 1711 y->max_free = MAX( 1712 vm_map_entry_max_free_left(y, root), 1713 vm_map_entry_max_free_right(y, &map->header)); 1714 root->right = y; 1715 } 1716 vm_map_splay_merge(map, root, llist, &map->header); 1717 VM_MAP_ASSERT_CONSISTENT(map); 1718 return (root->end); 1719 } 1720 1721 int 1722 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1723 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1724 vm_prot_t max, int cow) 1725 { 1726 vm_offset_t end; 1727 int result; 1728 1729 end = start + length; 1730 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1731 object == NULL, 1732 ("vm_map_fixed: non-NULL backing object for stack")); 1733 vm_map_lock(map); 1734 VM_MAP_RANGE_CHECK(map, start, end); 1735 if ((cow & MAP_CHECK_EXCL) == 0) 1736 vm_map_delete(map, start, end); 1737 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1738 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1739 prot, max, cow); 1740 } else { 1741 result = vm_map_insert(map, object, offset, start, end, 1742 prot, max, cow); 1743 } 1744 vm_map_unlock(map); 1745 return (result); 1746 } 1747 1748 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1749 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1750 1751 static int cluster_anon = 1; 1752 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1753 &cluster_anon, 0, 1754 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 1755 1756 static bool 1757 clustering_anon_allowed(vm_offset_t addr) 1758 { 1759 1760 switch (cluster_anon) { 1761 case 0: 1762 return (false); 1763 case 1: 1764 return (addr == 0); 1765 case 2: 1766 default: 1767 return (true); 1768 } 1769 } 1770 1771 static long aslr_restarts; 1772 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 1773 &aslr_restarts, 0, 1774 "Number of aslr failures"); 1775 1776 #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) 1777 1778 /* 1779 * Searches for the specified amount of free space in the given map with the 1780 * specified alignment. Performs an address-ordered, first-fit search from 1781 * the given address "*addr", with an optional upper bound "max_addr". If the 1782 * parameter "alignment" is zero, then the alignment is computed from the 1783 * given (object, offset) pair so as to enable the greatest possible use of 1784 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1785 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1786 * 1787 * The map must be locked. Initially, there must be at least "length" bytes 1788 * of free space at the given address. 1789 */ 1790 static int 1791 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1792 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1793 vm_offset_t alignment) 1794 { 1795 vm_offset_t aligned_addr, free_addr; 1796 1797 VM_MAP_ASSERT_LOCKED(map); 1798 free_addr = *addr; 1799 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 1800 ("caller failed to provide space %#jx at address %p", 1801 (uintmax_t)length, (void *)free_addr)); 1802 for (;;) { 1803 /* 1804 * At the start of every iteration, the free space at address 1805 * "*addr" is at least "length" bytes. 1806 */ 1807 if (alignment == 0) 1808 pmap_align_superpage(object, offset, addr, length); 1809 else if ((*addr & (alignment - 1)) != 0) { 1810 *addr &= ~(alignment - 1); 1811 *addr += alignment; 1812 } 1813 aligned_addr = *addr; 1814 if (aligned_addr == free_addr) { 1815 /* 1816 * Alignment did not change "*addr", so "*addr" must 1817 * still provide sufficient free space. 1818 */ 1819 return (KERN_SUCCESS); 1820 } 1821 1822 /* 1823 * Test for address wrap on "*addr". A wrapped "*addr" could 1824 * be a valid address, in which case vm_map_findspace() cannot 1825 * be relied upon to fail. 1826 */ 1827 if (aligned_addr < free_addr) 1828 return (KERN_NO_SPACE); 1829 *addr = vm_map_findspace(map, aligned_addr, length); 1830 if (*addr + length > vm_map_max(map) || 1831 (max_addr != 0 && *addr + length > max_addr)) 1832 return (KERN_NO_SPACE); 1833 free_addr = *addr; 1834 if (free_addr == aligned_addr) { 1835 /* 1836 * If a successful call to vm_map_findspace() did not 1837 * change "*addr", then "*addr" must still be aligned 1838 * and provide sufficient free space. 1839 */ 1840 return (KERN_SUCCESS); 1841 } 1842 } 1843 } 1844 1845 /* 1846 * vm_map_find finds an unallocated region in the target address 1847 * map with the given length. The search is defined to be 1848 * first-fit from the specified address; the region found is 1849 * returned in the same parameter. 1850 * 1851 * If object is non-NULL, ref count must be bumped by caller 1852 * prior to making call to account for the new entry. 1853 */ 1854 int 1855 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1856 vm_offset_t *addr, /* IN/OUT */ 1857 vm_size_t length, vm_offset_t max_addr, int find_space, 1858 vm_prot_t prot, vm_prot_t max, int cow) 1859 { 1860 vm_offset_t alignment, curr_min_addr, min_addr; 1861 int gap, pidx, rv, try; 1862 bool cluster, en_aslr, update_anon; 1863 1864 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1865 object == NULL, 1866 ("vm_map_find: non-NULL backing object for stack")); 1867 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 1868 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 1869 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1870 (object->flags & OBJ_COLORED) == 0)) 1871 find_space = VMFS_ANY_SPACE; 1872 if (find_space >> 8 != 0) { 1873 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1874 alignment = (vm_offset_t)1 << (find_space >> 8); 1875 } else 1876 alignment = 0; 1877 en_aslr = (map->flags & MAP_ASLR) != 0; 1878 update_anon = cluster = clustering_anon_allowed(*addr) && 1879 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 1880 find_space != VMFS_NO_SPACE && object == NULL && 1881 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 1882 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 1883 curr_min_addr = min_addr = *addr; 1884 if (en_aslr && min_addr == 0 && !cluster && 1885 find_space != VMFS_NO_SPACE && 1886 (map->flags & MAP_ASLR_IGNSTART) != 0) 1887 curr_min_addr = min_addr = vm_map_min(map); 1888 try = 0; 1889 vm_map_lock(map); 1890 if (cluster) { 1891 curr_min_addr = map->anon_loc; 1892 if (curr_min_addr == 0) 1893 cluster = false; 1894 } 1895 if (find_space != VMFS_NO_SPACE) { 1896 KASSERT(find_space == VMFS_ANY_SPACE || 1897 find_space == VMFS_OPTIMAL_SPACE || 1898 find_space == VMFS_SUPER_SPACE || 1899 alignment != 0, ("unexpected VMFS flag")); 1900 again: 1901 /* 1902 * When creating an anonymous mapping, try clustering 1903 * with an existing anonymous mapping first. 1904 * 1905 * We make up to two attempts to find address space 1906 * for a given find_space value. The first attempt may 1907 * apply randomization or may cluster with an existing 1908 * anonymous mapping. If this first attempt fails, 1909 * perform a first-fit search of the available address 1910 * space. 1911 * 1912 * If all tries failed, and find_space is 1913 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 1914 * Again enable clustering and randomization. 1915 */ 1916 try++; 1917 MPASS(try <= 2); 1918 1919 if (try == 2) { 1920 /* 1921 * Second try: we failed either to find a 1922 * suitable region for randomizing the 1923 * allocation, or to cluster with an existing 1924 * mapping. Retry with free run. 1925 */ 1926 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 1927 vm_map_min(map) : min_addr; 1928 atomic_add_long(&aslr_restarts, 1); 1929 } 1930 1931 if (try == 1 && en_aslr && !cluster) { 1932 /* 1933 * Find space for allocation, including 1934 * gap needed for later randomization. 1935 */ 1936 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 1937 (find_space == VMFS_SUPER_SPACE || find_space == 1938 VMFS_OPTIMAL_SPACE) ? 1 : 0; 1939 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 1940 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 1941 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 1942 *addr = vm_map_findspace(map, curr_min_addr, 1943 length + gap * pagesizes[pidx]); 1944 if (*addr + length + gap * pagesizes[pidx] > 1945 vm_map_max(map)) 1946 goto again; 1947 /* And randomize the start address. */ 1948 *addr += (arc4random() % gap) * pagesizes[pidx]; 1949 if (max_addr != 0 && *addr + length > max_addr) 1950 goto again; 1951 } else { 1952 *addr = vm_map_findspace(map, curr_min_addr, length); 1953 if (*addr + length > vm_map_max(map) || 1954 (max_addr != 0 && *addr + length > max_addr)) { 1955 if (cluster) { 1956 cluster = false; 1957 MPASS(try == 1); 1958 goto again; 1959 } 1960 rv = KERN_NO_SPACE; 1961 goto done; 1962 } 1963 } 1964 1965 if (find_space != VMFS_ANY_SPACE && 1966 (rv = vm_map_alignspace(map, object, offset, addr, length, 1967 max_addr, alignment)) != KERN_SUCCESS) { 1968 if (find_space == VMFS_OPTIMAL_SPACE) { 1969 find_space = VMFS_ANY_SPACE; 1970 curr_min_addr = min_addr; 1971 cluster = update_anon; 1972 try = 0; 1973 goto again; 1974 } 1975 goto done; 1976 } 1977 } else if ((cow & MAP_REMAP) != 0) { 1978 if (*addr < vm_map_min(map) || 1979 *addr + length > vm_map_max(map) || 1980 *addr + length <= length) { 1981 rv = KERN_INVALID_ADDRESS; 1982 goto done; 1983 } 1984 vm_map_delete(map, *addr, *addr + length); 1985 } 1986 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1987 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 1988 max, cow); 1989 } else { 1990 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 1991 prot, max, cow); 1992 } 1993 if (rv == KERN_SUCCESS && update_anon) 1994 map->anon_loc = *addr + length; 1995 done: 1996 vm_map_unlock(map); 1997 return (rv); 1998 } 1999 2000 /* 2001 * vm_map_find_min() is a variant of vm_map_find() that takes an 2002 * additional parameter (min_addr) and treats the given address 2003 * (*addr) differently. Specifically, it treats *addr as a hint 2004 * and not as the minimum address where the mapping is created. 2005 * 2006 * This function works in two phases. First, it tries to 2007 * allocate above the hint. If that fails and the hint is 2008 * greater than min_addr, it performs a second pass, replacing 2009 * the hint with min_addr as the minimum address for the 2010 * allocation. 2011 */ 2012 int 2013 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2014 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 2015 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2016 int cow) 2017 { 2018 vm_offset_t hint; 2019 int rv; 2020 2021 hint = *addr; 2022 for (;;) { 2023 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2024 find_space, prot, max, cow); 2025 if (rv == KERN_SUCCESS || min_addr >= hint) 2026 return (rv); 2027 *addr = hint = min_addr; 2028 } 2029 } 2030 2031 /* 2032 * A map entry with any of the following flags set must not be merged with 2033 * another entry. 2034 */ 2035 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 2036 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC) 2037 2038 static bool 2039 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2040 { 2041 2042 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2043 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2044 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2045 prev, entry)); 2046 return (prev->end == entry->start && 2047 prev->object.vm_object == entry->object.vm_object && 2048 (prev->object.vm_object == NULL || 2049 prev->offset + (prev->end - prev->start) == entry->offset) && 2050 prev->eflags == entry->eflags && 2051 prev->protection == entry->protection && 2052 prev->max_protection == entry->max_protection && 2053 prev->inheritance == entry->inheritance && 2054 prev->wired_count == entry->wired_count && 2055 prev->cred == entry->cred); 2056 } 2057 2058 static void 2059 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2060 { 2061 2062 /* 2063 * If the backing object is a vnode object, vm_object_deallocate() 2064 * calls vrele(). However, vrele() does not lock the vnode because 2065 * the vnode has additional references. Thus, the map lock can be 2066 * kept without causing a lock-order reversal with the vnode lock. 2067 * 2068 * Since we count the number of virtual page mappings in 2069 * object->un_pager.vnp.writemappings, the writemappings value 2070 * should not be adjusted when the entry is disposed of. 2071 */ 2072 if (entry->object.vm_object != NULL) 2073 vm_object_deallocate(entry->object.vm_object); 2074 if (entry->cred != NULL) 2075 crfree(entry->cred); 2076 vm_map_entry_dispose(map, entry); 2077 } 2078 2079 /* 2080 * vm_map_simplify_entry: 2081 * 2082 * Simplify the given map entry by merging with either neighbor. This 2083 * routine also has the ability to merge with both neighbors. 2084 * 2085 * The map must be locked. 2086 * 2087 * This routine guarantees that the passed entry remains valid (though 2088 * possibly extended). When merging, this routine may delete one or 2089 * both neighbors. 2090 */ 2091 void 2092 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 2093 { 2094 vm_map_entry_t next, prev; 2095 2096 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0) 2097 return; 2098 prev = entry->prev; 2099 if (vm_map_mergeable_neighbors(prev, entry)) { 2100 vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT); 2101 vm_map_merged_neighbor_dispose(map, prev); 2102 } 2103 next = entry->next; 2104 if (vm_map_mergeable_neighbors(entry, next)) { 2105 vm_map_entry_unlink(map, next, UNLINK_MERGE_PREV); 2106 vm_map_merged_neighbor_dispose(map, next); 2107 } 2108 } 2109 2110 /* 2111 * vm_map_entry_back: 2112 * 2113 * Allocate an object to back a map entry. 2114 */ 2115 static inline void 2116 vm_map_entry_back(vm_map_entry_t entry) 2117 { 2118 vm_object_t object; 2119 2120 KASSERT(entry->object.vm_object == NULL, 2121 ("map entry %p has backing object", entry)); 2122 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2123 ("map entry %p is a submap", entry)); 2124 object = vm_object_allocate(OBJT_DEFAULT, 2125 atop(entry->end - entry->start)); 2126 entry->object.vm_object = object; 2127 entry->offset = 0; 2128 if (entry->cred != NULL) { 2129 object->cred = entry->cred; 2130 object->charge = entry->end - entry->start; 2131 entry->cred = NULL; 2132 } 2133 } 2134 2135 /* 2136 * vm_map_entry_charge_object 2137 * 2138 * If there is no object backing this entry, create one. Otherwise, if 2139 * the entry has cred, give it to the backing object. 2140 */ 2141 static inline void 2142 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2143 { 2144 2145 VM_MAP_ASSERT_LOCKED(map); 2146 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2147 ("map entry %p is a submap", entry)); 2148 if (entry->object.vm_object == NULL && !map->system_map && 2149 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2150 vm_map_entry_back(entry); 2151 else if (entry->object.vm_object != NULL && 2152 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2153 entry->cred != NULL) { 2154 VM_OBJECT_WLOCK(entry->object.vm_object); 2155 KASSERT(entry->object.vm_object->cred == NULL, 2156 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2157 entry->object.vm_object->cred = entry->cred; 2158 entry->object.vm_object->charge = entry->end - entry->start; 2159 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2160 entry->cred = NULL; 2161 } 2162 } 2163 2164 /* 2165 * vm_map_clip_start: [ internal use only ] 2166 * 2167 * Asserts that the given entry begins at or after 2168 * the specified address; if necessary, 2169 * it splits the entry into two. 2170 */ 2171 #define vm_map_clip_start(map, entry, startaddr) \ 2172 { \ 2173 if (startaddr > entry->start) \ 2174 _vm_map_clip_start(map, entry, startaddr); \ 2175 } 2176 2177 /* 2178 * This routine is called only when it is known that 2179 * the entry must be split. 2180 */ 2181 static void 2182 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 2183 { 2184 vm_map_entry_t new_entry; 2185 2186 VM_MAP_ASSERT_LOCKED(map); 2187 KASSERT(entry->end > start && entry->start < start, 2188 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 2189 vm_map_simplify_entry(map, entry); 2190 2191 /* 2192 * Create a backing object now, if none exists, so that more individual 2193 * objects won't be created after the map entry is split. 2194 */ 2195 vm_map_entry_charge_object(map, entry); 2196 2197 /* Clone the entry. */ 2198 new_entry = vm_map_entry_create(map); 2199 *new_entry = *entry; 2200 2201 /* 2202 * Split off the front portion. Insert the new entry BEFORE this one, 2203 * so that this entry has the specified starting address. 2204 */ 2205 new_entry->end = start; 2206 entry->offset += (start - entry->start); 2207 entry->start = start; 2208 if (new_entry->cred != NULL) 2209 crhold(entry->cred); 2210 2211 vm_map_entry_link(map, new_entry); 2212 2213 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2214 vm_object_reference(new_entry->object.vm_object); 2215 vm_map_entry_set_vnode_text(new_entry, true); 2216 /* 2217 * The object->un_pager.vnp.writemappings for the 2218 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 2219 * kept as is here. The virtual pages are 2220 * re-distributed among the clipped entries, so the sum is 2221 * left the same. 2222 */ 2223 } 2224 } 2225 2226 /* 2227 * vm_map_clip_end: [ internal use only ] 2228 * 2229 * Asserts that the given entry ends at or before 2230 * the specified address; if necessary, 2231 * it splits the entry into two. 2232 */ 2233 #define vm_map_clip_end(map, entry, endaddr) \ 2234 { \ 2235 if ((endaddr) < (entry->end)) \ 2236 _vm_map_clip_end((map), (entry), (endaddr)); \ 2237 } 2238 2239 /* 2240 * This routine is called only when it is known that 2241 * the entry must be split. 2242 */ 2243 static void 2244 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 2245 { 2246 vm_map_entry_t new_entry; 2247 2248 VM_MAP_ASSERT_LOCKED(map); 2249 KASSERT(entry->start < end && entry->end > end, 2250 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 2251 2252 /* 2253 * Create a backing object now, if none exists, so that more individual 2254 * objects won't be created after the map entry is split. 2255 */ 2256 vm_map_entry_charge_object(map, entry); 2257 2258 /* Clone the entry. */ 2259 new_entry = vm_map_entry_create(map); 2260 *new_entry = *entry; 2261 2262 /* 2263 * Split off the back portion. Insert the new entry AFTER this one, 2264 * so that this entry has the specified ending address. 2265 */ 2266 new_entry->start = entry->end = end; 2267 new_entry->offset += (end - entry->start); 2268 if (new_entry->cred != NULL) 2269 crhold(entry->cred); 2270 2271 vm_map_entry_link(map, new_entry); 2272 2273 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2274 vm_object_reference(new_entry->object.vm_object); 2275 vm_map_entry_set_vnode_text(new_entry, true); 2276 } 2277 } 2278 2279 /* 2280 * vm_map_submap: [ kernel use only ] 2281 * 2282 * Mark the given range as handled by a subordinate map. 2283 * 2284 * This range must have been created with vm_map_find, 2285 * and no other operations may have been performed on this 2286 * range prior to calling vm_map_submap. 2287 * 2288 * Only a limited number of operations can be performed 2289 * within this rage after calling vm_map_submap: 2290 * vm_fault 2291 * [Don't try vm_map_copy!] 2292 * 2293 * To remove a submapping, one must first remove the 2294 * range from the superior map, and then destroy the 2295 * submap (if desired). [Better yet, don't try it.] 2296 */ 2297 int 2298 vm_map_submap( 2299 vm_map_t map, 2300 vm_offset_t start, 2301 vm_offset_t end, 2302 vm_map_t submap) 2303 { 2304 vm_map_entry_t entry; 2305 int result; 2306 2307 result = KERN_INVALID_ARGUMENT; 2308 2309 vm_map_lock(submap); 2310 submap->flags |= MAP_IS_SUB_MAP; 2311 vm_map_unlock(submap); 2312 2313 vm_map_lock(map); 2314 2315 VM_MAP_RANGE_CHECK(map, start, end); 2316 2317 if (vm_map_lookup_entry(map, start, &entry)) { 2318 vm_map_clip_start(map, entry, start); 2319 } else 2320 entry = entry->next; 2321 2322 vm_map_clip_end(map, entry, end); 2323 2324 if ((entry->start == start) && (entry->end == end) && 2325 ((entry->eflags & MAP_ENTRY_COW) == 0) && 2326 (entry->object.vm_object == NULL)) { 2327 entry->object.sub_map = submap; 2328 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2329 result = KERN_SUCCESS; 2330 } 2331 vm_map_unlock(map); 2332 2333 if (result != KERN_SUCCESS) { 2334 vm_map_lock(submap); 2335 submap->flags &= ~MAP_IS_SUB_MAP; 2336 vm_map_unlock(submap); 2337 } 2338 return (result); 2339 } 2340 2341 /* 2342 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2343 */ 2344 #define MAX_INIT_PT 96 2345 2346 /* 2347 * vm_map_pmap_enter: 2348 * 2349 * Preload the specified map's pmap with mappings to the specified 2350 * object's memory-resident pages. No further physical pages are 2351 * allocated, and no further virtual pages are retrieved from secondary 2352 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2353 * limited number of page mappings are created at the low-end of the 2354 * specified address range. (For this purpose, a superpage mapping 2355 * counts as one page mapping.) Otherwise, all resident pages within 2356 * the specified address range are mapped. 2357 */ 2358 static void 2359 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2360 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2361 { 2362 vm_offset_t start; 2363 vm_page_t p, p_start; 2364 vm_pindex_t mask, psize, threshold, tmpidx; 2365 2366 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2367 return; 2368 VM_OBJECT_RLOCK(object); 2369 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2370 VM_OBJECT_RUNLOCK(object); 2371 VM_OBJECT_WLOCK(object); 2372 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2373 pmap_object_init_pt(map->pmap, addr, object, pindex, 2374 size); 2375 VM_OBJECT_WUNLOCK(object); 2376 return; 2377 } 2378 VM_OBJECT_LOCK_DOWNGRADE(object); 2379 } 2380 2381 psize = atop(size); 2382 if (psize + pindex > object->size) { 2383 if (object->size < pindex) { 2384 VM_OBJECT_RUNLOCK(object); 2385 return; 2386 } 2387 psize = object->size - pindex; 2388 } 2389 2390 start = 0; 2391 p_start = NULL; 2392 threshold = MAX_INIT_PT; 2393 2394 p = vm_page_find_least(object, pindex); 2395 /* 2396 * Assert: the variable p is either (1) the page with the 2397 * least pindex greater than or equal to the parameter pindex 2398 * or (2) NULL. 2399 */ 2400 for (; 2401 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2402 p = TAILQ_NEXT(p, listq)) { 2403 /* 2404 * don't allow an madvise to blow away our really 2405 * free pages allocating pv entries. 2406 */ 2407 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2408 vm_page_count_severe()) || 2409 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2410 tmpidx >= threshold)) { 2411 psize = tmpidx; 2412 break; 2413 } 2414 if (p->valid == VM_PAGE_BITS_ALL) { 2415 if (p_start == NULL) { 2416 start = addr + ptoa(tmpidx); 2417 p_start = p; 2418 } 2419 /* Jump ahead if a superpage mapping is possible. */ 2420 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2421 (pagesizes[p->psind] - 1)) == 0) { 2422 mask = atop(pagesizes[p->psind]) - 1; 2423 if (tmpidx + mask < psize && 2424 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2425 p += mask; 2426 threshold += mask; 2427 } 2428 } 2429 } else if (p_start != NULL) { 2430 pmap_enter_object(map->pmap, start, addr + 2431 ptoa(tmpidx), p_start, prot); 2432 p_start = NULL; 2433 } 2434 } 2435 if (p_start != NULL) 2436 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2437 p_start, prot); 2438 VM_OBJECT_RUNLOCK(object); 2439 } 2440 2441 /* 2442 * vm_map_protect: 2443 * 2444 * Sets the protection of the specified address 2445 * region in the target map. If "set_max" is 2446 * specified, the maximum protection is to be set; 2447 * otherwise, only the current protection is affected. 2448 */ 2449 int 2450 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2451 vm_prot_t new_prot, boolean_t set_max) 2452 { 2453 vm_map_entry_t current, entry, in_tran; 2454 vm_object_t obj; 2455 struct ucred *cred; 2456 vm_prot_t old_prot; 2457 2458 if (start == end) 2459 return (KERN_SUCCESS); 2460 2461 again: 2462 in_tran = NULL; 2463 vm_map_lock(map); 2464 2465 /* 2466 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2467 * need to fault pages into the map and will drop the map lock while 2468 * doing so, and the VM object may end up in an inconsistent state if we 2469 * update the protection on the map entry in between faults. 2470 */ 2471 vm_map_wait_busy(map); 2472 2473 VM_MAP_RANGE_CHECK(map, start, end); 2474 2475 if (vm_map_lookup_entry(map, start, &entry)) { 2476 vm_map_clip_start(map, entry, start); 2477 } else { 2478 entry = entry->next; 2479 } 2480 2481 /* 2482 * Make a first pass to check for protection violations. 2483 */ 2484 for (current = entry; current->start < end; current = current->next) { 2485 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2486 continue; 2487 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2488 vm_map_unlock(map); 2489 return (KERN_INVALID_ARGUMENT); 2490 } 2491 if ((new_prot & current->max_protection) != new_prot) { 2492 vm_map_unlock(map); 2493 return (KERN_PROTECTION_FAILURE); 2494 } 2495 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2496 in_tran = entry; 2497 } 2498 2499 /* 2500 * Postpone the operation until all in transition map entries 2501 * are stabilized. In-transition entry might already have its 2502 * pages wired and wired_count incremented, but 2503 * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other 2504 * threads because the map lock is dropped. In this case we 2505 * would miss our call to vm_fault_copy_entry(). 2506 */ 2507 if (in_tran != NULL) { 2508 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2509 vm_map_unlock_and_wait(map, 0); 2510 goto again; 2511 } 2512 2513 /* 2514 * Do an accounting pass for private read-only mappings that 2515 * now will do cow due to allowed write (e.g. debugger sets 2516 * breakpoint on text segment) 2517 */ 2518 for (current = entry; current->start < end; current = current->next) { 2519 2520 vm_map_clip_end(map, current, end); 2521 2522 if (set_max || 2523 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 2524 ENTRY_CHARGED(current) || 2525 (current->eflags & MAP_ENTRY_GUARD) != 0) { 2526 continue; 2527 } 2528 2529 cred = curthread->td_ucred; 2530 obj = current->object.vm_object; 2531 2532 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 2533 if (!swap_reserve(current->end - current->start)) { 2534 vm_map_unlock(map); 2535 return (KERN_RESOURCE_SHORTAGE); 2536 } 2537 crhold(cred); 2538 current->cred = cred; 2539 continue; 2540 } 2541 2542 VM_OBJECT_WLOCK(obj); 2543 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2544 VM_OBJECT_WUNLOCK(obj); 2545 continue; 2546 } 2547 2548 /* 2549 * Charge for the whole object allocation now, since 2550 * we cannot distinguish between non-charged and 2551 * charged clipped mapping of the same object later. 2552 */ 2553 KASSERT(obj->charge == 0, 2554 ("vm_map_protect: object %p overcharged (entry %p)", 2555 obj, current)); 2556 if (!swap_reserve(ptoa(obj->size))) { 2557 VM_OBJECT_WUNLOCK(obj); 2558 vm_map_unlock(map); 2559 return (KERN_RESOURCE_SHORTAGE); 2560 } 2561 2562 crhold(cred); 2563 obj->cred = cred; 2564 obj->charge = ptoa(obj->size); 2565 VM_OBJECT_WUNLOCK(obj); 2566 } 2567 2568 /* 2569 * Go back and fix up protections. [Note that clipping is not 2570 * necessary the second time.] 2571 */ 2572 for (current = entry; current->start < end; current = current->next) { 2573 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2574 continue; 2575 2576 old_prot = current->protection; 2577 2578 if (set_max) 2579 current->protection = 2580 (current->max_protection = new_prot) & 2581 old_prot; 2582 else 2583 current->protection = new_prot; 2584 2585 /* 2586 * For user wired map entries, the normal lazy evaluation of 2587 * write access upgrades through soft page faults is 2588 * undesirable. Instead, immediately copy any pages that are 2589 * copy-on-write and enable write access in the physical map. 2590 */ 2591 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2592 (current->protection & VM_PROT_WRITE) != 0 && 2593 (old_prot & VM_PROT_WRITE) == 0) 2594 vm_fault_copy_entry(map, map, current, current, NULL); 2595 2596 /* 2597 * When restricting access, update the physical map. Worry 2598 * about copy-on-write here. 2599 */ 2600 if ((old_prot & ~current->protection) != 0) { 2601 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2602 VM_PROT_ALL) 2603 pmap_protect(map->pmap, current->start, 2604 current->end, 2605 current->protection & MASK(current)); 2606 #undef MASK 2607 } 2608 vm_map_simplify_entry(map, current); 2609 } 2610 vm_map_unlock(map); 2611 return (KERN_SUCCESS); 2612 } 2613 2614 /* 2615 * vm_map_madvise: 2616 * 2617 * This routine traverses a processes map handling the madvise 2618 * system call. Advisories are classified as either those effecting 2619 * the vm_map_entry structure, or those effecting the underlying 2620 * objects. 2621 */ 2622 int 2623 vm_map_madvise( 2624 vm_map_t map, 2625 vm_offset_t start, 2626 vm_offset_t end, 2627 int behav) 2628 { 2629 vm_map_entry_t current, entry; 2630 bool modify_map; 2631 2632 /* 2633 * Some madvise calls directly modify the vm_map_entry, in which case 2634 * we need to use an exclusive lock on the map and we need to perform 2635 * various clipping operations. Otherwise we only need a read-lock 2636 * on the map. 2637 */ 2638 switch(behav) { 2639 case MADV_NORMAL: 2640 case MADV_SEQUENTIAL: 2641 case MADV_RANDOM: 2642 case MADV_NOSYNC: 2643 case MADV_AUTOSYNC: 2644 case MADV_NOCORE: 2645 case MADV_CORE: 2646 if (start == end) 2647 return (0); 2648 modify_map = true; 2649 vm_map_lock(map); 2650 break; 2651 case MADV_WILLNEED: 2652 case MADV_DONTNEED: 2653 case MADV_FREE: 2654 if (start == end) 2655 return (0); 2656 modify_map = false; 2657 vm_map_lock_read(map); 2658 break; 2659 default: 2660 return (EINVAL); 2661 } 2662 2663 /* 2664 * Locate starting entry and clip if necessary. 2665 */ 2666 VM_MAP_RANGE_CHECK(map, start, end); 2667 2668 if (vm_map_lookup_entry(map, start, &entry)) { 2669 if (modify_map) 2670 vm_map_clip_start(map, entry, start); 2671 } else { 2672 entry = entry->next; 2673 } 2674 2675 if (modify_map) { 2676 /* 2677 * madvise behaviors that are implemented in the vm_map_entry. 2678 * 2679 * We clip the vm_map_entry so that behavioral changes are 2680 * limited to the specified address range. 2681 */ 2682 for (current = entry; current->start < end; 2683 current = current->next) { 2684 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2685 continue; 2686 2687 vm_map_clip_end(map, current, end); 2688 2689 switch (behav) { 2690 case MADV_NORMAL: 2691 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2692 break; 2693 case MADV_SEQUENTIAL: 2694 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2695 break; 2696 case MADV_RANDOM: 2697 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2698 break; 2699 case MADV_NOSYNC: 2700 current->eflags |= MAP_ENTRY_NOSYNC; 2701 break; 2702 case MADV_AUTOSYNC: 2703 current->eflags &= ~MAP_ENTRY_NOSYNC; 2704 break; 2705 case MADV_NOCORE: 2706 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2707 break; 2708 case MADV_CORE: 2709 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2710 break; 2711 default: 2712 break; 2713 } 2714 vm_map_simplify_entry(map, current); 2715 } 2716 vm_map_unlock(map); 2717 } else { 2718 vm_pindex_t pstart, pend; 2719 2720 /* 2721 * madvise behaviors that are implemented in the underlying 2722 * vm_object. 2723 * 2724 * Since we don't clip the vm_map_entry, we have to clip 2725 * the vm_object pindex and count. 2726 */ 2727 for (current = entry; current->start < end; 2728 current = current->next) { 2729 vm_offset_t useEnd, useStart; 2730 2731 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2732 continue; 2733 2734 pstart = OFF_TO_IDX(current->offset); 2735 pend = pstart + atop(current->end - current->start); 2736 useStart = current->start; 2737 useEnd = current->end; 2738 2739 if (current->start < start) { 2740 pstart += atop(start - current->start); 2741 useStart = start; 2742 } 2743 if (current->end > end) { 2744 pend -= atop(current->end - end); 2745 useEnd = end; 2746 } 2747 2748 if (pstart >= pend) 2749 continue; 2750 2751 /* 2752 * Perform the pmap_advise() before clearing 2753 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2754 * concurrent pmap operation, such as pmap_remove(), 2755 * could clear a reference in the pmap and set 2756 * PGA_REFERENCED on the page before the pmap_advise() 2757 * had completed. Consequently, the page would appear 2758 * referenced based upon an old reference that 2759 * occurred before this pmap_advise() ran. 2760 */ 2761 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2762 pmap_advise(map->pmap, useStart, useEnd, 2763 behav); 2764 2765 vm_object_madvise(current->object.vm_object, pstart, 2766 pend, behav); 2767 2768 /* 2769 * Pre-populate paging structures in the 2770 * WILLNEED case. For wired entries, the 2771 * paging structures are already populated. 2772 */ 2773 if (behav == MADV_WILLNEED && 2774 current->wired_count == 0) { 2775 vm_map_pmap_enter(map, 2776 useStart, 2777 current->protection, 2778 current->object.vm_object, 2779 pstart, 2780 ptoa(pend - pstart), 2781 MAP_PREFAULT_MADVISE 2782 ); 2783 } 2784 } 2785 vm_map_unlock_read(map); 2786 } 2787 return (0); 2788 } 2789 2790 2791 /* 2792 * vm_map_inherit: 2793 * 2794 * Sets the inheritance of the specified address 2795 * range in the target map. Inheritance 2796 * affects how the map will be shared with 2797 * child maps at the time of vmspace_fork. 2798 */ 2799 int 2800 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2801 vm_inherit_t new_inheritance) 2802 { 2803 vm_map_entry_t entry; 2804 vm_map_entry_t temp_entry; 2805 2806 switch (new_inheritance) { 2807 case VM_INHERIT_NONE: 2808 case VM_INHERIT_COPY: 2809 case VM_INHERIT_SHARE: 2810 case VM_INHERIT_ZERO: 2811 break; 2812 default: 2813 return (KERN_INVALID_ARGUMENT); 2814 } 2815 if (start == end) 2816 return (KERN_SUCCESS); 2817 vm_map_lock(map); 2818 VM_MAP_RANGE_CHECK(map, start, end); 2819 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2820 entry = temp_entry; 2821 vm_map_clip_start(map, entry, start); 2822 } else 2823 entry = temp_entry->next; 2824 while (entry->start < end) { 2825 vm_map_clip_end(map, entry, end); 2826 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 2827 new_inheritance != VM_INHERIT_ZERO) 2828 entry->inheritance = new_inheritance; 2829 vm_map_simplify_entry(map, entry); 2830 entry = entry->next; 2831 } 2832 vm_map_unlock(map); 2833 return (KERN_SUCCESS); 2834 } 2835 2836 /* 2837 * vm_map_unwire: 2838 * 2839 * Implements both kernel and user unwiring. 2840 */ 2841 int 2842 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2843 int flags) 2844 { 2845 vm_map_entry_t entry, first_entry, tmp_entry; 2846 vm_offset_t saved_start; 2847 unsigned int last_timestamp; 2848 int rv; 2849 boolean_t need_wakeup, result, user_unwire; 2850 2851 if (start == end) 2852 return (KERN_SUCCESS); 2853 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2854 vm_map_lock(map); 2855 VM_MAP_RANGE_CHECK(map, start, end); 2856 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2857 if (flags & VM_MAP_WIRE_HOLESOK) 2858 first_entry = first_entry->next; 2859 else { 2860 vm_map_unlock(map); 2861 return (KERN_INVALID_ADDRESS); 2862 } 2863 } 2864 last_timestamp = map->timestamp; 2865 entry = first_entry; 2866 while (entry->start < end) { 2867 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2868 /* 2869 * We have not yet clipped the entry. 2870 */ 2871 saved_start = (start >= entry->start) ? start : 2872 entry->start; 2873 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2874 if (vm_map_unlock_and_wait(map, 0)) { 2875 /* 2876 * Allow interruption of user unwiring? 2877 */ 2878 } 2879 vm_map_lock(map); 2880 if (last_timestamp+1 != map->timestamp) { 2881 /* 2882 * Look again for the entry because the map was 2883 * modified while it was unlocked. 2884 * Specifically, the entry may have been 2885 * clipped, merged, or deleted. 2886 */ 2887 if (!vm_map_lookup_entry(map, saved_start, 2888 &tmp_entry)) { 2889 if (flags & VM_MAP_WIRE_HOLESOK) 2890 tmp_entry = tmp_entry->next; 2891 else { 2892 if (saved_start == start) { 2893 /* 2894 * First_entry has been deleted. 2895 */ 2896 vm_map_unlock(map); 2897 return (KERN_INVALID_ADDRESS); 2898 } 2899 end = saved_start; 2900 rv = KERN_INVALID_ADDRESS; 2901 goto done; 2902 } 2903 } 2904 if (entry == first_entry) 2905 first_entry = tmp_entry; 2906 else 2907 first_entry = NULL; 2908 entry = tmp_entry; 2909 } 2910 last_timestamp = map->timestamp; 2911 continue; 2912 } 2913 vm_map_clip_start(map, entry, start); 2914 vm_map_clip_end(map, entry, end); 2915 /* 2916 * Mark the entry in case the map lock is released. (See 2917 * above.) 2918 */ 2919 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2920 entry->wiring_thread == NULL, 2921 ("owned map entry %p", entry)); 2922 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2923 entry->wiring_thread = curthread; 2924 /* 2925 * Check the map for holes in the specified region. 2926 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2927 */ 2928 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2929 (entry->end < end && entry->next->start > entry->end)) { 2930 end = entry->end; 2931 rv = KERN_INVALID_ADDRESS; 2932 goto done; 2933 } 2934 /* 2935 * If system unwiring, require that the entry is system wired. 2936 */ 2937 if (!user_unwire && 2938 vm_map_entry_system_wired_count(entry) == 0) { 2939 end = entry->end; 2940 rv = KERN_INVALID_ARGUMENT; 2941 goto done; 2942 } 2943 entry = entry->next; 2944 } 2945 rv = KERN_SUCCESS; 2946 done: 2947 need_wakeup = FALSE; 2948 if (first_entry == NULL) { 2949 result = vm_map_lookup_entry(map, start, &first_entry); 2950 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2951 first_entry = first_entry->next; 2952 else 2953 KASSERT(result, ("vm_map_unwire: lookup failed")); 2954 } 2955 for (entry = first_entry; entry->start < end; entry = entry->next) { 2956 /* 2957 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2958 * space in the unwired region could have been mapped 2959 * while the map lock was dropped for draining 2960 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2961 * could be simultaneously wiring this new mapping 2962 * entry. Detect these cases and skip any entries 2963 * marked as in transition by us. 2964 */ 2965 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2966 entry->wiring_thread != curthread) { 2967 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2968 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2969 continue; 2970 } 2971 2972 if (rv == KERN_SUCCESS && (!user_unwire || 2973 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2974 if (entry->wired_count == 1) 2975 vm_map_entry_unwire(map, entry); 2976 else 2977 entry->wired_count--; 2978 if (user_unwire) 2979 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2980 } 2981 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2982 ("vm_map_unwire: in-transition flag missing %p", entry)); 2983 KASSERT(entry->wiring_thread == curthread, 2984 ("vm_map_unwire: alien wire %p", entry)); 2985 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2986 entry->wiring_thread = NULL; 2987 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2988 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2989 need_wakeup = TRUE; 2990 } 2991 vm_map_simplify_entry(map, entry); 2992 } 2993 vm_map_unlock(map); 2994 if (need_wakeup) 2995 vm_map_wakeup(map); 2996 return (rv); 2997 } 2998 2999 static void 3000 vm_map_wire_user_count_sub(u_long npages) 3001 { 3002 3003 atomic_subtract_long(&vm_user_wire_count, npages); 3004 } 3005 3006 static bool 3007 vm_map_wire_user_count_add(u_long npages) 3008 { 3009 u_long wired; 3010 3011 wired = vm_user_wire_count; 3012 do { 3013 if (npages + wired > vm_page_max_user_wired) 3014 return (false); 3015 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3016 npages + wired)); 3017 3018 return (true); 3019 } 3020 3021 /* 3022 * vm_map_wire_entry_failure: 3023 * 3024 * Handle a wiring failure on the given entry. 3025 * 3026 * The map should be locked. 3027 */ 3028 static void 3029 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3030 vm_offset_t failed_addr) 3031 { 3032 3033 VM_MAP_ASSERT_LOCKED(map); 3034 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3035 entry->wired_count == 1, 3036 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3037 KASSERT(failed_addr < entry->end, 3038 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3039 3040 /* 3041 * If any pages at the start of this entry were successfully wired, 3042 * then unwire them. 3043 */ 3044 if (failed_addr > entry->start) { 3045 pmap_unwire(map->pmap, entry->start, failed_addr); 3046 vm_object_unwire(entry->object.vm_object, entry->offset, 3047 failed_addr - entry->start, PQ_ACTIVE); 3048 } 3049 3050 /* 3051 * Assign an out-of-range value to represent the failure to wire this 3052 * entry. 3053 */ 3054 entry->wired_count = -1; 3055 } 3056 3057 int 3058 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3059 { 3060 int rv; 3061 3062 vm_map_lock(map); 3063 rv = vm_map_wire_locked(map, start, end, flags); 3064 vm_map_unlock(map); 3065 return (rv); 3066 } 3067 3068 3069 /* 3070 * vm_map_wire_locked: 3071 * 3072 * Implements both kernel and user wiring. Returns with the map locked, 3073 * the map lock may be dropped. 3074 */ 3075 int 3076 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3077 { 3078 vm_map_entry_t entry, first_entry, tmp_entry; 3079 vm_offset_t faddr, saved_end, saved_start; 3080 u_long npages; 3081 u_int last_timestamp; 3082 int rv; 3083 boolean_t need_wakeup, result, user_wire; 3084 vm_prot_t prot; 3085 3086 VM_MAP_ASSERT_LOCKED(map); 3087 3088 if (start == end) 3089 return (KERN_SUCCESS); 3090 prot = 0; 3091 if (flags & VM_MAP_WIRE_WRITE) 3092 prot |= VM_PROT_WRITE; 3093 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 3094 VM_MAP_RANGE_CHECK(map, start, end); 3095 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3096 if (flags & VM_MAP_WIRE_HOLESOK) 3097 first_entry = first_entry->next; 3098 else 3099 return (KERN_INVALID_ADDRESS); 3100 } 3101 last_timestamp = map->timestamp; 3102 entry = first_entry; 3103 while (entry->start < end) { 3104 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3105 /* 3106 * We have not yet clipped the entry. 3107 */ 3108 saved_start = (start >= entry->start) ? start : 3109 entry->start; 3110 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3111 if (vm_map_unlock_and_wait(map, 0)) { 3112 /* 3113 * Allow interruption of user wiring? 3114 */ 3115 } 3116 vm_map_lock(map); 3117 if (last_timestamp + 1 != map->timestamp) { 3118 /* 3119 * Look again for the entry because the map was 3120 * modified while it was unlocked. 3121 * Specifically, the entry may have been 3122 * clipped, merged, or deleted. 3123 */ 3124 if (!vm_map_lookup_entry(map, saved_start, 3125 &tmp_entry)) { 3126 if (flags & VM_MAP_WIRE_HOLESOK) 3127 tmp_entry = tmp_entry->next; 3128 else { 3129 if (saved_start == start) { 3130 /* 3131 * first_entry has been deleted. 3132 */ 3133 return (KERN_INVALID_ADDRESS); 3134 } 3135 end = saved_start; 3136 rv = KERN_INVALID_ADDRESS; 3137 goto done; 3138 } 3139 } 3140 if (entry == first_entry) 3141 first_entry = tmp_entry; 3142 else 3143 first_entry = NULL; 3144 entry = tmp_entry; 3145 } 3146 last_timestamp = map->timestamp; 3147 continue; 3148 } 3149 vm_map_clip_start(map, entry, start); 3150 vm_map_clip_end(map, entry, end); 3151 /* 3152 * Mark the entry in case the map lock is released. (See 3153 * above.) 3154 */ 3155 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3156 entry->wiring_thread == NULL, 3157 ("owned map entry %p", entry)); 3158 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3159 entry->wiring_thread = curthread; 3160 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3161 || (entry->protection & prot) != prot) { 3162 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3163 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 3164 end = entry->end; 3165 rv = KERN_INVALID_ADDRESS; 3166 goto done; 3167 } 3168 goto next_entry; 3169 } 3170 if (entry->wired_count == 0) { 3171 entry->wired_count++; 3172 3173 npages = atop(entry->end - entry->start); 3174 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3175 vm_map_wire_entry_failure(map, entry, 3176 entry->start); 3177 end = entry->end; 3178 rv = KERN_RESOURCE_SHORTAGE; 3179 goto done; 3180 } 3181 3182 /* 3183 * Release the map lock, relying on the in-transition 3184 * mark. Mark the map busy for fork. 3185 */ 3186 saved_start = entry->start; 3187 saved_end = entry->end; 3188 vm_map_busy(map); 3189 vm_map_unlock(map); 3190 3191 faddr = saved_start; 3192 do { 3193 /* 3194 * Simulate a fault to get the page and enter 3195 * it into the physical map. 3196 */ 3197 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 3198 VM_FAULT_WIRE)) != KERN_SUCCESS) 3199 break; 3200 } while ((faddr += PAGE_SIZE) < saved_end); 3201 vm_map_lock(map); 3202 vm_map_unbusy(map); 3203 if (last_timestamp + 1 != map->timestamp) { 3204 /* 3205 * Look again for the entry because the map was 3206 * modified while it was unlocked. The entry 3207 * may have been clipped, but NOT merged or 3208 * deleted. 3209 */ 3210 result = vm_map_lookup_entry(map, saved_start, 3211 &tmp_entry); 3212 KASSERT(result, ("vm_map_wire: lookup failed")); 3213 if (entry == first_entry) 3214 first_entry = tmp_entry; 3215 else 3216 first_entry = NULL; 3217 entry = tmp_entry; 3218 while (entry->end < saved_end) { 3219 /* 3220 * In case of failure, handle entries 3221 * that were not fully wired here; 3222 * fully wired entries are handled 3223 * later. 3224 */ 3225 if (rv != KERN_SUCCESS && 3226 faddr < entry->end) 3227 vm_map_wire_entry_failure(map, 3228 entry, faddr); 3229 entry = entry->next; 3230 } 3231 } 3232 last_timestamp = map->timestamp; 3233 if (rv != KERN_SUCCESS) { 3234 vm_map_wire_entry_failure(map, entry, faddr); 3235 if (user_wire) 3236 vm_map_wire_user_count_sub(npages); 3237 end = entry->end; 3238 goto done; 3239 } 3240 } else if (!user_wire || 3241 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3242 entry->wired_count++; 3243 } 3244 /* 3245 * Check the map for holes in the specified region. 3246 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 3247 */ 3248 next_entry: 3249 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 && 3250 entry->end < end && entry->next->start > entry->end) { 3251 end = entry->end; 3252 rv = KERN_INVALID_ADDRESS; 3253 goto done; 3254 } 3255 entry = entry->next; 3256 } 3257 rv = KERN_SUCCESS; 3258 done: 3259 need_wakeup = FALSE; 3260 if (first_entry == NULL) { 3261 result = vm_map_lookup_entry(map, start, &first_entry); 3262 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 3263 first_entry = first_entry->next; 3264 else 3265 KASSERT(result, ("vm_map_wire: lookup failed")); 3266 } 3267 for (entry = first_entry; entry->start < end; entry = entry->next) { 3268 /* 3269 * If VM_MAP_WIRE_HOLESOK was specified, an empty 3270 * space in the unwired region could have been mapped 3271 * while the map lock was dropped for faulting in the 3272 * pages or draining MAP_ENTRY_IN_TRANSITION. 3273 * Moreover, another thread could be simultaneously 3274 * wiring this new mapping entry. Detect these cases 3275 * and skip any entries marked as in transition not by us. 3276 */ 3277 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3278 entry->wiring_thread != curthread) { 3279 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 3280 ("vm_map_wire: !HOLESOK and new/changed entry")); 3281 continue; 3282 } 3283 3284 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 3285 goto next_entry_done; 3286 3287 if (rv == KERN_SUCCESS) { 3288 if (user_wire) 3289 entry->eflags |= MAP_ENTRY_USER_WIRED; 3290 } else if (entry->wired_count == -1) { 3291 /* 3292 * Wiring failed on this entry. Thus, unwiring is 3293 * unnecessary. 3294 */ 3295 entry->wired_count = 0; 3296 } else if (!user_wire || 3297 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3298 /* 3299 * Undo the wiring. Wiring succeeded on this entry 3300 * but failed on a later entry. 3301 */ 3302 if (entry->wired_count == 1) { 3303 vm_map_entry_unwire(map, entry); 3304 if (user_wire) 3305 vm_map_wire_user_count_sub( 3306 atop(entry->end - entry->start)); 3307 } else 3308 entry->wired_count--; 3309 } 3310 next_entry_done: 3311 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3312 ("vm_map_wire: in-transition flag missing %p", entry)); 3313 KASSERT(entry->wiring_thread == curthread, 3314 ("vm_map_wire: alien wire %p", entry)); 3315 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3316 MAP_ENTRY_WIRE_SKIPPED); 3317 entry->wiring_thread = NULL; 3318 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3319 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3320 need_wakeup = TRUE; 3321 } 3322 vm_map_simplify_entry(map, entry); 3323 } 3324 if (need_wakeup) 3325 vm_map_wakeup(map); 3326 return (rv); 3327 } 3328 3329 /* 3330 * vm_map_sync 3331 * 3332 * Push any dirty cached pages in the address range to their pager. 3333 * If syncio is TRUE, dirty pages are written synchronously. 3334 * If invalidate is TRUE, any cached pages are freed as well. 3335 * 3336 * If the size of the region from start to end is zero, we are 3337 * supposed to flush all modified pages within the region containing 3338 * start. Unfortunately, a region can be split or coalesced with 3339 * neighboring regions, making it difficult to determine what the 3340 * original region was. Therefore, we approximate this requirement by 3341 * flushing the current region containing start. 3342 * 3343 * Returns an error if any part of the specified range is not mapped. 3344 */ 3345 int 3346 vm_map_sync( 3347 vm_map_t map, 3348 vm_offset_t start, 3349 vm_offset_t end, 3350 boolean_t syncio, 3351 boolean_t invalidate) 3352 { 3353 vm_map_entry_t current; 3354 vm_map_entry_t entry; 3355 vm_size_t size; 3356 vm_object_t object; 3357 vm_ooffset_t offset; 3358 unsigned int last_timestamp; 3359 boolean_t failed; 3360 3361 vm_map_lock_read(map); 3362 VM_MAP_RANGE_CHECK(map, start, end); 3363 if (!vm_map_lookup_entry(map, start, &entry)) { 3364 vm_map_unlock_read(map); 3365 return (KERN_INVALID_ADDRESS); 3366 } else if (start == end) { 3367 start = entry->start; 3368 end = entry->end; 3369 } 3370 /* 3371 * Make a first pass to check for user-wired memory and holes. 3372 */ 3373 for (current = entry; current->start < end; current = current->next) { 3374 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 3375 vm_map_unlock_read(map); 3376 return (KERN_INVALID_ARGUMENT); 3377 } 3378 if (end > current->end && 3379 current->end != current->next->start) { 3380 vm_map_unlock_read(map); 3381 return (KERN_INVALID_ADDRESS); 3382 } 3383 } 3384 3385 if (invalidate) 3386 pmap_remove(map->pmap, start, end); 3387 failed = FALSE; 3388 3389 /* 3390 * Make a second pass, cleaning/uncaching pages from the indicated 3391 * objects as we go. 3392 */ 3393 for (current = entry; current->start < end;) { 3394 offset = current->offset + (start - current->start); 3395 size = (end <= current->end ? end : current->end) - start; 3396 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 3397 vm_map_t smap; 3398 vm_map_entry_t tentry; 3399 vm_size_t tsize; 3400 3401 smap = current->object.sub_map; 3402 vm_map_lock_read(smap); 3403 (void) vm_map_lookup_entry(smap, offset, &tentry); 3404 tsize = tentry->end - offset; 3405 if (tsize < size) 3406 size = tsize; 3407 object = tentry->object.vm_object; 3408 offset = tentry->offset + (offset - tentry->start); 3409 vm_map_unlock_read(smap); 3410 } else { 3411 object = current->object.vm_object; 3412 } 3413 vm_object_reference(object); 3414 last_timestamp = map->timestamp; 3415 vm_map_unlock_read(map); 3416 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3417 failed = TRUE; 3418 start += size; 3419 vm_object_deallocate(object); 3420 vm_map_lock_read(map); 3421 if (last_timestamp == map->timestamp || 3422 !vm_map_lookup_entry(map, start, ¤t)) 3423 current = current->next; 3424 } 3425 3426 vm_map_unlock_read(map); 3427 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3428 } 3429 3430 /* 3431 * vm_map_entry_unwire: [ internal use only ] 3432 * 3433 * Make the region specified by this entry pageable. 3434 * 3435 * The map in question should be locked. 3436 * [This is the reason for this routine's existence.] 3437 */ 3438 static void 3439 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3440 { 3441 vm_size_t size; 3442 3443 VM_MAP_ASSERT_LOCKED(map); 3444 KASSERT(entry->wired_count > 0, 3445 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3446 3447 size = entry->end - entry->start; 3448 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3449 vm_map_wire_user_count_sub(atop(size)); 3450 pmap_unwire(map->pmap, entry->start, entry->end); 3451 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3452 PQ_ACTIVE); 3453 entry->wired_count = 0; 3454 } 3455 3456 static void 3457 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3458 { 3459 3460 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3461 vm_object_deallocate(entry->object.vm_object); 3462 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3463 } 3464 3465 /* 3466 * vm_map_entry_delete: [ internal use only ] 3467 * 3468 * Deallocate the given entry from the target map. 3469 */ 3470 static void 3471 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3472 { 3473 vm_object_t object; 3474 vm_pindex_t offidxstart, offidxend, count, size1; 3475 vm_size_t size; 3476 3477 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3478 object = entry->object.vm_object; 3479 3480 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3481 MPASS(entry->cred == NULL); 3482 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3483 MPASS(object == NULL); 3484 vm_map_entry_deallocate(entry, map->system_map); 3485 return; 3486 } 3487 3488 size = entry->end - entry->start; 3489 map->size -= size; 3490 3491 if (entry->cred != NULL) { 3492 swap_release_by_cred(size, entry->cred); 3493 crfree(entry->cred); 3494 } 3495 3496 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 3497 (object != NULL)) { 3498 KASSERT(entry->cred == NULL || object->cred == NULL || 3499 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3500 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3501 count = atop(size); 3502 offidxstart = OFF_TO_IDX(entry->offset); 3503 offidxend = offidxstart + count; 3504 VM_OBJECT_WLOCK(object); 3505 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT | 3506 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 3507 object == kernel_object)) { 3508 vm_object_collapse(object); 3509 3510 /* 3511 * The option OBJPR_NOTMAPPED can be passed here 3512 * because vm_map_delete() already performed 3513 * pmap_remove() on the only mapping to this range 3514 * of pages. 3515 */ 3516 vm_object_page_remove(object, offidxstart, offidxend, 3517 OBJPR_NOTMAPPED); 3518 if (object->type == OBJT_SWAP) 3519 swap_pager_freespace(object, offidxstart, 3520 count); 3521 if (offidxend >= object->size && 3522 offidxstart < object->size) { 3523 size1 = object->size; 3524 object->size = offidxstart; 3525 if (object->cred != NULL) { 3526 size1 -= object->size; 3527 KASSERT(object->charge >= ptoa(size1), 3528 ("object %p charge < 0", object)); 3529 swap_release_by_cred(ptoa(size1), 3530 object->cred); 3531 object->charge -= ptoa(size1); 3532 } 3533 } 3534 } 3535 VM_OBJECT_WUNLOCK(object); 3536 } else 3537 entry->object.vm_object = NULL; 3538 if (map->system_map) 3539 vm_map_entry_deallocate(entry, TRUE); 3540 else { 3541 entry->next = curthread->td_map_def_user; 3542 curthread->td_map_def_user = entry; 3543 } 3544 } 3545 3546 /* 3547 * vm_map_delete: [ internal use only ] 3548 * 3549 * Deallocates the given address range from the target 3550 * map. 3551 */ 3552 int 3553 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3554 { 3555 vm_map_entry_t entry; 3556 vm_map_entry_t first_entry; 3557 3558 VM_MAP_ASSERT_LOCKED(map); 3559 if (start == end) 3560 return (KERN_SUCCESS); 3561 3562 /* 3563 * Find the start of the region, and clip it 3564 */ 3565 if (!vm_map_lookup_entry(map, start, &first_entry)) 3566 entry = first_entry->next; 3567 else { 3568 entry = first_entry; 3569 vm_map_clip_start(map, entry, start); 3570 } 3571 3572 /* 3573 * Step through all entries in this region 3574 */ 3575 while (entry->start < end) { 3576 vm_map_entry_t next; 3577 3578 /* 3579 * Wait for wiring or unwiring of an entry to complete. 3580 * Also wait for any system wirings to disappear on 3581 * user maps. 3582 */ 3583 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3584 (vm_map_pmap(map) != kernel_pmap && 3585 vm_map_entry_system_wired_count(entry) != 0)) { 3586 unsigned int last_timestamp; 3587 vm_offset_t saved_start; 3588 vm_map_entry_t tmp_entry; 3589 3590 saved_start = entry->start; 3591 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3592 last_timestamp = map->timestamp; 3593 (void) vm_map_unlock_and_wait(map, 0); 3594 vm_map_lock(map); 3595 if (last_timestamp + 1 != map->timestamp) { 3596 /* 3597 * Look again for the entry because the map was 3598 * modified while it was unlocked. 3599 * Specifically, the entry may have been 3600 * clipped, merged, or deleted. 3601 */ 3602 if (!vm_map_lookup_entry(map, saved_start, 3603 &tmp_entry)) 3604 entry = tmp_entry->next; 3605 else { 3606 entry = tmp_entry; 3607 vm_map_clip_start(map, entry, 3608 saved_start); 3609 } 3610 } 3611 continue; 3612 } 3613 vm_map_clip_end(map, entry, end); 3614 3615 next = entry->next; 3616 3617 /* 3618 * Unwire before removing addresses from the pmap; otherwise, 3619 * unwiring will put the entries back in the pmap. 3620 */ 3621 if (entry->wired_count != 0) 3622 vm_map_entry_unwire(map, entry); 3623 3624 /* 3625 * Remove mappings for the pages, but only if the 3626 * mappings could exist. For instance, it does not 3627 * make sense to call pmap_remove() for guard entries. 3628 */ 3629 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3630 entry->object.vm_object != NULL) 3631 pmap_remove(map->pmap, entry->start, entry->end); 3632 3633 if (entry->end == map->anon_loc) 3634 map->anon_loc = entry->start; 3635 3636 /* 3637 * Delete the entry only after removing all pmap 3638 * entries pointing to its pages. (Otherwise, its 3639 * page frames may be reallocated, and any modify bits 3640 * will be set in the wrong object!) 3641 */ 3642 vm_map_entry_delete(map, entry); 3643 entry = next; 3644 } 3645 return (KERN_SUCCESS); 3646 } 3647 3648 /* 3649 * vm_map_remove: 3650 * 3651 * Remove the given address range from the target map. 3652 * This is the exported form of vm_map_delete. 3653 */ 3654 int 3655 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3656 { 3657 int result; 3658 3659 vm_map_lock(map); 3660 VM_MAP_RANGE_CHECK(map, start, end); 3661 result = vm_map_delete(map, start, end); 3662 vm_map_unlock(map); 3663 return (result); 3664 } 3665 3666 /* 3667 * vm_map_check_protection: 3668 * 3669 * Assert that the target map allows the specified privilege on the 3670 * entire address region given. The entire region must be allocated. 3671 * 3672 * WARNING! This code does not and should not check whether the 3673 * contents of the region is accessible. For example a smaller file 3674 * might be mapped into a larger address space. 3675 * 3676 * NOTE! This code is also called by munmap(). 3677 * 3678 * The map must be locked. A read lock is sufficient. 3679 */ 3680 boolean_t 3681 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3682 vm_prot_t protection) 3683 { 3684 vm_map_entry_t entry; 3685 vm_map_entry_t tmp_entry; 3686 3687 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3688 return (FALSE); 3689 entry = tmp_entry; 3690 3691 while (start < end) { 3692 /* 3693 * No holes allowed! 3694 */ 3695 if (start < entry->start) 3696 return (FALSE); 3697 /* 3698 * Check protection associated with entry. 3699 */ 3700 if ((entry->protection & protection) != protection) 3701 return (FALSE); 3702 /* go to next entry */ 3703 start = entry->end; 3704 entry = entry->next; 3705 } 3706 return (TRUE); 3707 } 3708 3709 /* 3710 * vm_map_copy_entry: 3711 * 3712 * Copies the contents of the source entry to the destination 3713 * entry. The entries *must* be aligned properly. 3714 */ 3715 static void 3716 vm_map_copy_entry( 3717 vm_map_t src_map, 3718 vm_map_t dst_map, 3719 vm_map_entry_t src_entry, 3720 vm_map_entry_t dst_entry, 3721 vm_ooffset_t *fork_charge) 3722 { 3723 vm_object_t src_object; 3724 vm_map_entry_t fake_entry; 3725 vm_offset_t size; 3726 struct ucred *cred; 3727 int charged; 3728 3729 VM_MAP_ASSERT_LOCKED(dst_map); 3730 3731 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3732 return; 3733 3734 if (src_entry->wired_count == 0 || 3735 (src_entry->protection & VM_PROT_WRITE) == 0) { 3736 /* 3737 * If the source entry is marked needs_copy, it is already 3738 * write-protected. 3739 */ 3740 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3741 (src_entry->protection & VM_PROT_WRITE) != 0) { 3742 pmap_protect(src_map->pmap, 3743 src_entry->start, 3744 src_entry->end, 3745 src_entry->protection & ~VM_PROT_WRITE); 3746 } 3747 3748 /* 3749 * Make a copy of the object. 3750 */ 3751 size = src_entry->end - src_entry->start; 3752 if ((src_object = src_entry->object.vm_object) != NULL) { 3753 VM_OBJECT_WLOCK(src_object); 3754 charged = ENTRY_CHARGED(src_entry); 3755 if (src_object->handle == NULL && 3756 (src_object->type == OBJT_DEFAULT || 3757 src_object->type == OBJT_SWAP)) { 3758 vm_object_collapse(src_object); 3759 if ((src_object->flags & (OBJ_NOSPLIT | 3760 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3761 vm_object_split(src_entry); 3762 src_object = 3763 src_entry->object.vm_object; 3764 } 3765 } 3766 vm_object_reference_locked(src_object); 3767 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3768 if (src_entry->cred != NULL && 3769 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3770 KASSERT(src_object->cred == NULL, 3771 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3772 src_object)); 3773 src_object->cred = src_entry->cred; 3774 src_object->charge = size; 3775 } 3776 VM_OBJECT_WUNLOCK(src_object); 3777 dst_entry->object.vm_object = src_object; 3778 if (charged) { 3779 cred = curthread->td_ucred; 3780 crhold(cred); 3781 dst_entry->cred = cred; 3782 *fork_charge += size; 3783 if (!(src_entry->eflags & 3784 MAP_ENTRY_NEEDS_COPY)) { 3785 crhold(cred); 3786 src_entry->cred = cred; 3787 *fork_charge += size; 3788 } 3789 } 3790 src_entry->eflags |= MAP_ENTRY_COW | 3791 MAP_ENTRY_NEEDS_COPY; 3792 dst_entry->eflags |= MAP_ENTRY_COW | 3793 MAP_ENTRY_NEEDS_COPY; 3794 dst_entry->offset = src_entry->offset; 3795 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3796 /* 3797 * MAP_ENTRY_VN_WRITECNT cannot 3798 * indicate write reference from 3799 * src_entry, since the entry is 3800 * marked as needs copy. Allocate a 3801 * fake entry that is used to 3802 * decrement object->un_pager.vnp.writecount 3803 * at the appropriate time. Attach 3804 * fake_entry to the deferred list. 3805 */ 3806 fake_entry = vm_map_entry_create(dst_map); 3807 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3808 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3809 vm_object_reference(src_object); 3810 fake_entry->object.vm_object = src_object; 3811 fake_entry->start = src_entry->start; 3812 fake_entry->end = src_entry->end; 3813 fake_entry->next = curthread->td_map_def_user; 3814 curthread->td_map_def_user = fake_entry; 3815 } 3816 3817 pmap_copy(dst_map->pmap, src_map->pmap, 3818 dst_entry->start, dst_entry->end - dst_entry->start, 3819 src_entry->start); 3820 } else { 3821 dst_entry->object.vm_object = NULL; 3822 dst_entry->offset = 0; 3823 if (src_entry->cred != NULL) { 3824 dst_entry->cred = curthread->td_ucred; 3825 crhold(dst_entry->cred); 3826 *fork_charge += size; 3827 } 3828 } 3829 } else { 3830 /* 3831 * We don't want to make writeable wired pages copy-on-write. 3832 * Immediately copy these pages into the new map by simulating 3833 * page faults. The new pages are pageable. 3834 */ 3835 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3836 fork_charge); 3837 } 3838 } 3839 3840 /* 3841 * vmspace_map_entry_forked: 3842 * Update the newly-forked vmspace each time a map entry is inherited 3843 * or copied. The values for vm_dsize and vm_tsize are approximate 3844 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3845 */ 3846 static void 3847 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3848 vm_map_entry_t entry) 3849 { 3850 vm_size_t entrysize; 3851 vm_offset_t newend; 3852 3853 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 3854 return; 3855 entrysize = entry->end - entry->start; 3856 vm2->vm_map.size += entrysize; 3857 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3858 vm2->vm_ssize += btoc(entrysize); 3859 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3860 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3861 newend = MIN(entry->end, 3862 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3863 vm2->vm_dsize += btoc(newend - entry->start); 3864 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3865 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3866 newend = MIN(entry->end, 3867 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3868 vm2->vm_tsize += btoc(newend - entry->start); 3869 } 3870 } 3871 3872 /* 3873 * vmspace_fork: 3874 * Create a new process vmspace structure and vm_map 3875 * based on those of an existing process. The new map 3876 * is based on the old map, according to the inheritance 3877 * values on the regions in that map. 3878 * 3879 * XXX It might be worth coalescing the entries added to the new vmspace. 3880 * 3881 * The source map must not be locked. 3882 */ 3883 struct vmspace * 3884 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3885 { 3886 struct vmspace *vm2; 3887 vm_map_t new_map, old_map; 3888 vm_map_entry_t new_entry, old_entry; 3889 vm_object_t object; 3890 int error, locked; 3891 vm_inherit_t inh; 3892 3893 old_map = &vm1->vm_map; 3894 /* Copy immutable fields of vm1 to vm2. */ 3895 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 3896 pmap_pinit); 3897 if (vm2 == NULL) 3898 return (NULL); 3899 3900 vm2->vm_taddr = vm1->vm_taddr; 3901 vm2->vm_daddr = vm1->vm_daddr; 3902 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3903 vm_map_lock(old_map); 3904 if (old_map->busy) 3905 vm_map_wait_busy(old_map); 3906 new_map = &vm2->vm_map; 3907 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3908 KASSERT(locked, ("vmspace_fork: lock failed")); 3909 3910 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 3911 if (error != 0) { 3912 sx_xunlock(&old_map->lock); 3913 sx_xunlock(&new_map->lock); 3914 vm_map_process_deferred(); 3915 vmspace_free(vm2); 3916 return (NULL); 3917 } 3918 3919 new_map->anon_loc = old_map->anon_loc; 3920 3921 old_entry = old_map->header.next; 3922 3923 while (old_entry != &old_map->header) { 3924 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3925 panic("vm_map_fork: encountered a submap"); 3926 3927 inh = old_entry->inheritance; 3928 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 3929 inh != VM_INHERIT_NONE) 3930 inh = VM_INHERIT_COPY; 3931 3932 switch (inh) { 3933 case VM_INHERIT_NONE: 3934 break; 3935 3936 case VM_INHERIT_SHARE: 3937 /* 3938 * Clone the entry, creating the shared object if necessary. 3939 */ 3940 object = old_entry->object.vm_object; 3941 if (object == NULL) { 3942 vm_map_entry_back(old_entry); 3943 object = old_entry->object.vm_object; 3944 } 3945 3946 /* 3947 * Add the reference before calling vm_object_shadow 3948 * to insure that a shadow object is created. 3949 */ 3950 vm_object_reference(object); 3951 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3952 vm_object_shadow(&old_entry->object.vm_object, 3953 &old_entry->offset, 3954 old_entry->end - old_entry->start); 3955 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3956 /* Transfer the second reference too. */ 3957 vm_object_reference( 3958 old_entry->object.vm_object); 3959 3960 /* 3961 * As in vm_map_simplify_entry(), the 3962 * vnode lock will not be acquired in 3963 * this call to vm_object_deallocate(). 3964 */ 3965 vm_object_deallocate(object); 3966 object = old_entry->object.vm_object; 3967 } 3968 VM_OBJECT_WLOCK(object); 3969 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3970 if (old_entry->cred != NULL) { 3971 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3972 object->cred = old_entry->cred; 3973 object->charge = old_entry->end - old_entry->start; 3974 old_entry->cred = NULL; 3975 } 3976 3977 /* 3978 * Assert the correct state of the vnode 3979 * v_writecount while the object is locked, to 3980 * not relock it later for the assertion 3981 * correctness. 3982 */ 3983 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3984 object->type == OBJT_VNODE) { 3985 KASSERT(((struct vnode *)object->handle)-> 3986 v_writecount > 0, 3987 ("vmspace_fork: v_writecount %p", object)); 3988 KASSERT(object->un_pager.vnp.writemappings > 0, 3989 ("vmspace_fork: vnp.writecount %p", 3990 object)); 3991 } 3992 VM_OBJECT_WUNLOCK(object); 3993 3994 /* 3995 * Clone the entry, referencing the shared object. 3996 */ 3997 new_entry = vm_map_entry_create(new_map); 3998 *new_entry = *old_entry; 3999 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4000 MAP_ENTRY_IN_TRANSITION); 4001 new_entry->wiring_thread = NULL; 4002 new_entry->wired_count = 0; 4003 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 4004 vnode_pager_update_writecount(object, 4005 new_entry->start, new_entry->end); 4006 } 4007 vm_map_entry_set_vnode_text(new_entry, true); 4008 4009 /* 4010 * Insert the entry into the new map -- we know we're 4011 * inserting at the end of the new map. 4012 */ 4013 vm_map_entry_link(new_map, new_entry); 4014 vmspace_map_entry_forked(vm1, vm2, new_entry); 4015 4016 /* 4017 * Update the physical map 4018 */ 4019 pmap_copy(new_map->pmap, old_map->pmap, 4020 new_entry->start, 4021 (old_entry->end - old_entry->start), 4022 old_entry->start); 4023 break; 4024 4025 case VM_INHERIT_COPY: 4026 /* 4027 * Clone the entry and link into the map. 4028 */ 4029 new_entry = vm_map_entry_create(new_map); 4030 *new_entry = *old_entry; 4031 /* 4032 * Copied entry is COW over the old object. 4033 */ 4034 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4035 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 4036 new_entry->wiring_thread = NULL; 4037 new_entry->wired_count = 0; 4038 new_entry->object.vm_object = NULL; 4039 new_entry->cred = NULL; 4040 vm_map_entry_link(new_map, new_entry); 4041 vmspace_map_entry_forked(vm1, vm2, new_entry); 4042 vm_map_copy_entry(old_map, new_map, old_entry, 4043 new_entry, fork_charge); 4044 vm_map_entry_set_vnode_text(new_entry, true); 4045 break; 4046 4047 case VM_INHERIT_ZERO: 4048 /* 4049 * Create a new anonymous mapping entry modelled from 4050 * the old one. 4051 */ 4052 new_entry = vm_map_entry_create(new_map); 4053 memset(new_entry, 0, sizeof(*new_entry)); 4054 4055 new_entry->start = old_entry->start; 4056 new_entry->end = old_entry->end; 4057 new_entry->eflags = old_entry->eflags & 4058 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4059 MAP_ENTRY_VN_WRITECNT | MAP_ENTRY_VN_EXEC); 4060 new_entry->protection = old_entry->protection; 4061 new_entry->max_protection = old_entry->max_protection; 4062 new_entry->inheritance = VM_INHERIT_ZERO; 4063 4064 vm_map_entry_link(new_map, new_entry); 4065 vmspace_map_entry_forked(vm1, vm2, new_entry); 4066 4067 new_entry->cred = curthread->td_ucred; 4068 crhold(new_entry->cred); 4069 *fork_charge += (new_entry->end - new_entry->start); 4070 4071 break; 4072 } 4073 old_entry = old_entry->next; 4074 } 4075 /* 4076 * Use inlined vm_map_unlock() to postpone handling the deferred 4077 * map entries, which cannot be done until both old_map and 4078 * new_map locks are released. 4079 */ 4080 sx_xunlock(&old_map->lock); 4081 sx_xunlock(&new_map->lock); 4082 vm_map_process_deferred(); 4083 4084 return (vm2); 4085 } 4086 4087 /* 4088 * Create a process's stack for exec_new_vmspace(). This function is never 4089 * asked to wire the newly created stack. 4090 */ 4091 int 4092 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4093 vm_prot_t prot, vm_prot_t max, int cow) 4094 { 4095 vm_size_t growsize, init_ssize; 4096 rlim_t vmemlim; 4097 int rv; 4098 4099 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4100 growsize = sgrowsiz; 4101 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4102 vm_map_lock(map); 4103 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4104 /* If we would blow our VMEM resource limit, no go */ 4105 if (map->size + init_ssize > vmemlim) { 4106 rv = KERN_NO_SPACE; 4107 goto out; 4108 } 4109 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4110 max, cow); 4111 out: 4112 vm_map_unlock(map); 4113 return (rv); 4114 } 4115 4116 static int stack_guard_page = 1; 4117 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4118 &stack_guard_page, 0, 4119 "Specifies the number of guard pages for a stack that grows"); 4120 4121 static int 4122 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4123 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4124 { 4125 vm_map_entry_t new_entry, prev_entry; 4126 vm_offset_t bot, gap_bot, gap_top, top; 4127 vm_size_t init_ssize, sgp; 4128 int orient, rv; 4129 4130 /* 4131 * The stack orientation is piggybacked with the cow argument. 4132 * Extract it into orient and mask the cow argument so that we 4133 * don't pass it around further. 4134 */ 4135 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4136 KASSERT(orient != 0, ("No stack grow direction")); 4137 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4138 ("bi-dir stack")); 4139 4140 if (addrbos < vm_map_min(map) || 4141 addrbos + max_ssize > vm_map_max(map) || 4142 addrbos + max_ssize <= addrbos) 4143 return (KERN_INVALID_ADDRESS); 4144 sgp = (vm_size_t)stack_guard_page * PAGE_SIZE; 4145 if (sgp >= max_ssize) 4146 return (KERN_INVALID_ARGUMENT); 4147 4148 init_ssize = growsize; 4149 if (max_ssize < init_ssize + sgp) 4150 init_ssize = max_ssize - sgp; 4151 4152 /* If addr is already mapped, no go */ 4153 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4154 return (KERN_NO_SPACE); 4155 4156 /* 4157 * If we can't accommodate max_ssize in the current mapping, no go. 4158 */ 4159 if (prev_entry->next->start < addrbos + max_ssize) 4160 return (KERN_NO_SPACE); 4161 4162 /* 4163 * We initially map a stack of only init_ssize. We will grow as 4164 * needed later. Depending on the orientation of the stack (i.e. 4165 * the grow direction) we either map at the top of the range, the 4166 * bottom of the range or in the middle. 4167 * 4168 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4169 * and cow to be 0. Possibly we should eliminate these as input 4170 * parameters, and just pass these values here in the insert call. 4171 */ 4172 if (orient == MAP_STACK_GROWS_DOWN) { 4173 bot = addrbos + max_ssize - init_ssize; 4174 top = bot + init_ssize; 4175 gap_bot = addrbos; 4176 gap_top = bot; 4177 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4178 bot = addrbos; 4179 top = bot + init_ssize; 4180 gap_bot = top; 4181 gap_top = addrbos + max_ssize; 4182 } 4183 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 4184 if (rv != KERN_SUCCESS) 4185 return (rv); 4186 new_entry = prev_entry->next; 4187 KASSERT(new_entry->end == top || new_entry->start == bot, 4188 ("Bad entry start/end for new stack entry")); 4189 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4190 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4191 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4192 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4193 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4194 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4195 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4196 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4197 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 4198 if (rv != KERN_SUCCESS) 4199 (void)vm_map_delete(map, bot, top); 4200 return (rv); 4201 } 4202 4203 /* 4204 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4205 * successfully grow the stack. 4206 */ 4207 static int 4208 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4209 { 4210 vm_map_entry_t stack_entry; 4211 struct proc *p; 4212 struct vmspace *vm; 4213 struct ucred *cred; 4214 vm_offset_t gap_end, gap_start, grow_start; 4215 vm_size_t grow_amount, guard, max_grow; 4216 rlim_t lmemlim, stacklim, vmemlim; 4217 int rv, rv1; 4218 bool gap_deleted, grow_down, is_procstack; 4219 #ifdef notyet 4220 uint64_t limit; 4221 #endif 4222 #ifdef RACCT 4223 int error; 4224 #endif 4225 4226 p = curproc; 4227 vm = p->p_vmspace; 4228 4229 /* 4230 * Disallow stack growth when the access is performed by a 4231 * debugger or AIO daemon. The reason is that the wrong 4232 * resource limits are applied. 4233 */ 4234 if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL) 4235 return (KERN_FAILURE); 4236 4237 MPASS(!map->system_map); 4238 4239 guard = stack_guard_page * PAGE_SIZE; 4240 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4241 stacklim = lim_cur(curthread, RLIMIT_STACK); 4242 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4243 retry: 4244 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4245 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4246 return (KERN_FAILURE); 4247 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4248 return (KERN_SUCCESS); 4249 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4250 stack_entry = gap_entry->next; 4251 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4252 stack_entry->start != gap_entry->end) 4253 return (KERN_FAILURE); 4254 grow_amount = round_page(stack_entry->start - addr); 4255 grow_down = true; 4256 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4257 stack_entry = gap_entry->prev; 4258 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4259 stack_entry->end != gap_entry->start) 4260 return (KERN_FAILURE); 4261 grow_amount = round_page(addr + 1 - stack_entry->end); 4262 grow_down = false; 4263 } else { 4264 return (KERN_FAILURE); 4265 } 4266 max_grow = gap_entry->end - gap_entry->start; 4267 if (guard > max_grow) 4268 return (KERN_NO_SPACE); 4269 max_grow -= guard; 4270 if (grow_amount > max_grow) 4271 return (KERN_NO_SPACE); 4272 4273 /* 4274 * If this is the main process stack, see if we're over the stack 4275 * limit. 4276 */ 4277 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4278 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 4279 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4280 return (KERN_NO_SPACE); 4281 4282 #ifdef RACCT 4283 if (racct_enable) { 4284 PROC_LOCK(p); 4285 if (is_procstack && racct_set(p, RACCT_STACK, 4286 ctob(vm->vm_ssize) + grow_amount)) { 4287 PROC_UNLOCK(p); 4288 return (KERN_NO_SPACE); 4289 } 4290 PROC_UNLOCK(p); 4291 } 4292 #endif 4293 4294 grow_amount = roundup(grow_amount, sgrowsiz); 4295 if (grow_amount > max_grow) 4296 grow_amount = max_grow; 4297 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4298 grow_amount = trunc_page((vm_size_t)stacklim) - 4299 ctob(vm->vm_ssize); 4300 } 4301 4302 #ifdef notyet 4303 PROC_LOCK(p); 4304 limit = racct_get_available(p, RACCT_STACK); 4305 PROC_UNLOCK(p); 4306 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4307 grow_amount = limit - ctob(vm->vm_ssize); 4308 #endif 4309 4310 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4311 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4312 rv = KERN_NO_SPACE; 4313 goto out; 4314 } 4315 #ifdef RACCT 4316 if (racct_enable) { 4317 PROC_LOCK(p); 4318 if (racct_set(p, RACCT_MEMLOCK, 4319 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4320 PROC_UNLOCK(p); 4321 rv = KERN_NO_SPACE; 4322 goto out; 4323 } 4324 PROC_UNLOCK(p); 4325 } 4326 #endif 4327 } 4328 4329 /* If we would blow our VMEM resource limit, no go */ 4330 if (map->size + grow_amount > vmemlim) { 4331 rv = KERN_NO_SPACE; 4332 goto out; 4333 } 4334 #ifdef RACCT 4335 if (racct_enable) { 4336 PROC_LOCK(p); 4337 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4338 PROC_UNLOCK(p); 4339 rv = KERN_NO_SPACE; 4340 goto out; 4341 } 4342 PROC_UNLOCK(p); 4343 } 4344 #endif 4345 4346 if (vm_map_lock_upgrade(map)) { 4347 gap_entry = NULL; 4348 vm_map_lock_read(map); 4349 goto retry; 4350 } 4351 4352 if (grow_down) { 4353 grow_start = gap_entry->end - grow_amount; 4354 if (gap_entry->start + grow_amount == gap_entry->end) { 4355 gap_start = gap_entry->start; 4356 gap_end = gap_entry->end; 4357 vm_map_entry_delete(map, gap_entry); 4358 gap_deleted = true; 4359 } else { 4360 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4361 vm_map_entry_resize(map, gap_entry, -grow_amount); 4362 gap_deleted = false; 4363 } 4364 rv = vm_map_insert(map, NULL, 0, grow_start, 4365 grow_start + grow_amount, 4366 stack_entry->protection, stack_entry->max_protection, 4367 MAP_STACK_GROWS_DOWN); 4368 if (rv != KERN_SUCCESS) { 4369 if (gap_deleted) { 4370 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4371 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4372 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4373 MPASS(rv1 == KERN_SUCCESS); 4374 } else 4375 vm_map_entry_resize(map, gap_entry, 4376 grow_amount); 4377 } 4378 } else { 4379 grow_start = stack_entry->end; 4380 cred = stack_entry->cred; 4381 if (cred == NULL && stack_entry->object.vm_object != NULL) 4382 cred = stack_entry->object.vm_object->cred; 4383 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4384 rv = KERN_NO_SPACE; 4385 /* Grow the underlying object if applicable. */ 4386 else if (stack_entry->object.vm_object == NULL || 4387 vm_object_coalesce(stack_entry->object.vm_object, 4388 stack_entry->offset, 4389 (vm_size_t)(stack_entry->end - stack_entry->start), 4390 grow_amount, cred != NULL)) { 4391 if (gap_entry->start + grow_amount == gap_entry->end) { 4392 vm_map_entry_delete(map, gap_entry); 4393 vm_map_entry_resize(map, stack_entry, 4394 grow_amount); 4395 } else { 4396 gap_entry->start += grow_amount; 4397 stack_entry->end += grow_amount; 4398 } 4399 map->size += grow_amount; 4400 rv = KERN_SUCCESS; 4401 } else 4402 rv = KERN_FAILURE; 4403 } 4404 if (rv == KERN_SUCCESS && is_procstack) 4405 vm->vm_ssize += btoc(grow_amount); 4406 4407 /* 4408 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4409 */ 4410 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4411 rv = vm_map_wire_locked(map, grow_start, 4412 grow_start + grow_amount, 4413 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4414 } 4415 vm_map_lock_downgrade(map); 4416 4417 out: 4418 #ifdef RACCT 4419 if (racct_enable && rv != KERN_SUCCESS) { 4420 PROC_LOCK(p); 4421 error = racct_set(p, RACCT_VMEM, map->size); 4422 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4423 if (!old_mlock) { 4424 error = racct_set(p, RACCT_MEMLOCK, 4425 ptoa(pmap_wired_count(map->pmap))); 4426 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4427 } 4428 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4429 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4430 PROC_UNLOCK(p); 4431 } 4432 #endif 4433 4434 return (rv); 4435 } 4436 4437 /* 4438 * Unshare the specified VM space for exec. If other processes are 4439 * mapped to it, then create a new one. The new vmspace is null. 4440 */ 4441 int 4442 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4443 { 4444 struct vmspace *oldvmspace = p->p_vmspace; 4445 struct vmspace *newvmspace; 4446 4447 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4448 ("vmspace_exec recursed")); 4449 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4450 if (newvmspace == NULL) 4451 return (ENOMEM); 4452 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4453 /* 4454 * This code is written like this for prototype purposes. The 4455 * goal is to avoid running down the vmspace here, but let the 4456 * other process's that are still using the vmspace to finally 4457 * run it down. Even though there is little or no chance of blocking 4458 * here, it is a good idea to keep this form for future mods. 4459 */ 4460 PROC_VMSPACE_LOCK(p); 4461 p->p_vmspace = newvmspace; 4462 PROC_VMSPACE_UNLOCK(p); 4463 if (p == curthread->td_proc) 4464 pmap_activate(curthread); 4465 curthread->td_pflags |= TDP_EXECVMSPC; 4466 return (0); 4467 } 4468 4469 /* 4470 * Unshare the specified VM space for forcing COW. This 4471 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4472 */ 4473 int 4474 vmspace_unshare(struct proc *p) 4475 { 4476 struct vmspace *oldvmspace = p->p_vmspace; 4477 struct vmspace *newvmspace; 4478 vm_ooffset_t fork_charge; 4479 4480 if (oldvmspace->vm_refcnt == 1) 4481 return (0); 4482 fork_charge = 0; 4483 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4484 if (newvmspace == NULL) 4485 return (ENOMEM); 4486 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4487 vmspace_free(newvmspace); 4488 return (ENOMEM); 4489 } 4490 PROC_VMSPACE_LOCK(p); 4491 p->p_vmspace = newvmspace; 4492 PROC_VMSPACE_UNLOCK(p); 4493 if (p == curthread->td_proc) 4494 pmap_activate(curthread); 4495 vmspace_free(oldvmspace); 4496 return (0); 4497 } 4498 4499 /* 4500 * vm_map_lookup: 4501 * 4502 * Finds the VM object, offset, and 4503 * protection for a given virtual address in the 4504 * specified map, assuming a page fault of the 4505 * type specified. 4506 * 4507 * Leaves the map in question locked for read; return 4508 * values are guaranteed until a vm_map_lookup_done 4509 * call is performed. Note that the map argument 4510 * is in/out; the returned map must be used in 4511 * the call to vm_map_lookup_done. 4512 * 4513 * A handle (out_entry) is returned for use in 4514 * vm_map_lookup_done, to make that fast. 4515 * 4516 * If a lookup is requested with "write protection" 4517 * specified, the map may be changed to perform virtual 4518 * copying operations, although the data referenced will 4519 * remain the same. 4520 */ 4521 int 4522 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4523 vm_offset_t vaddr, 4524 vm_prot_t fault_typea, 4525 vm_map_entry_t *out_entry, /* OUT */ 4526 vm_object_t *object, /* OUT */ 4527 vm_pindex_t *pindex, /* OUT */ 4528 vm_prot_t *out_prot, /* OUT */ 4529 boolean_t *wired) /* OUT */ 4530 { 4531 vm_map_entry_t entry; 4532 vm_map_t map = *var_map; 4533 vm_prot_t prot; 4534 vm_prot_t fault_type = fault_typea; 4535 vm_object_t eobject; 4536 vm_size_t size; 4537 struct ucred *cred; 4538 4539 RetryLookup: 4540 4541 vm_map_lock_read(map); 4542 4543 RetryLookupLocked: 4544 /* 4545 * Lookup the faulting address. 4546 */ 4547 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4548 vm_map_unlock_read(map); 4549 return (KERN_INVALID_ADDRESS); 4550 } 4551 4552 entry = *out_entry; 4553 4554 /* 4555 * Handle submaps. 4556 */ 4557 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4558 vm_map_t old_map = map; 4559 4560 *var_map = map = entry->object.sub_map; 4561 vm_map_unlock_read(old_map); 4562 goto RetryLookup; 4563 } 4564 4565 /* 4566 * Check whether this task is allowed to have this page. 4567 */ 4568 prot = entry->protection; 4569 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4570 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4571 if (prot == VM_PROT_NONE && map != kernel_map && 4572 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4573 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4574 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4575 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4576 goto RetryLookupLocked; 4577 } 4578 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4579 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4580 vm_map_unlock_read(map); 4581 return (KERN_PROTECTION_FAILURE); 4582 } 4583 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4584 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4585 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4586 ("entry %p flags %x", entry, entry->eflags)); 4587 if ((fault_typea & VM_PROT_COPY) != 0 && 4588 (entry->max_protection & VM_PROT_WRITE) == 0 && 4589 (entry->eflags & MAP_ENTRY_COW) == 0) { 4590 vm_map_unlock_read(map); 4591 return (KERN_PROTECTION_FAILURE); 4592 } 4593 4594 /* 4595 * If this page is not pageable, we have to get it for all possible 4596 * accesses. 4597 */ 4598 *wired = (entry->wired_count != 0); 4599 if (*wired) 4600 fault_type = entry->protection; 4601 size = entry->end - entry->start; 4602 /* 4603 * If the entry was copy-on-write, we either ... 4604 */ 4605 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4606 /* 4607 * If we want to write the page, we may as well handle that 4608 * now since we've got the map locked. 4609 * 4610 * If we don't need to write the page, we just demote the 4611 * permissions allowed. 4612 */ 4613 if ((fault_type & VM_PROT_WRITE) != 0 || 4614 (fault_typea & VM_PROT_COPY) != 0) { 4615 /* 4616 * Make a new object, and place it in the object 4617 * chain. Note that no new references have appeared 4618 * -- one just moved from the map to the new 4619 * object. 4620 */ 4621 if (vm_map_lock_upgrade(map)) 4622 goto RetryLookup; 4623 4624 if (entry->cred == NULL) { 4625 /* 4626 * The debugger owner is charged for 4627 * the memory. 4628 */ 4629 cred = curthread->td_ucred; 4630 crhold(cred); 4631 if (!swap_reserve_by_cred(size, cred)) { 4632 crfree(cred); 4633 vm_map_unlock(map); 4634 return (KERN_RESOURCE_SHORTAGE); 4635 } 4636 entry->cred = cred; 4637 } 4638 vm_object_shadow(&entry->object.vm_object, 4639 &entry->offset, size); 4640 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4641 eobject = entry->object.vm_object; 4642 if (eobject->cred != NULL) { 4643 /* 4644 * The object was not shadowed. 4645 */ 4646 swap_release_by_cred(size, entry->cred); 4647 crfree(entry->cred); 4648 entry->cred = NULL; 4649 } else if (entry->cred != NULL) { 4650 VM_OBJECT_WLOCK(eobject); 4651 eobject->cred = entry->cred; 4652 eobject->charge = size; 4653 VM_OBJECT_WUNLOCK(eobject); 4654 entry->cred = NULL; 4655 } 4656 4657 vm_map_lock_downgrade(map); 4658 } else { 4659 /* 4660 * We're attempting to read a copy-on-write page -- 4661 * don't allow writes. 4662 */ 4663 prot &= ~VM_PROT_WRITE; 4664 } 4665 } 4666 4667 /* 4668 * Create an object if necessary. 4669 */ 4670 if (entry->object.vm_object == NULL && 4671 !map->system_map) { 4672 if (vm_map_lock_upgrade(map)) 4673 goto RetryLookup; 4674 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4675 atop(size)); 4676 entry->offset = 0; 4677 if (entry->cred != NULL) { 4678 VM_OBJECT_WLOCK(entry->object.vm_object); 4679 entry->object.vm_object->cred = entry->cred; 4680 entry->object.vm_object->charge = size; 4681 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4682 entry->cred = NULL; 4683 } 4684 vm_map_lock_downgrade(map); 4685 } 4686 4687 /* 4688 * Return the object/offset from this entry. If the entry was 4689 * copy-on-write or empty, it has been fixed up. 4690 */ 4691 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4692 *object = entry->object.vm_object; 4693 4694 *out_prot = prot; 4695 return (KERN_SUCCESS); 4696 } 4697 4698 /* 4699 * vm_map_lookup_locked: 4700 * 4701 * Lookup the faulting address. A version of vm_map_lookup that returns 4702 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4703 */ 4704 int 4705 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4706 vm_offset_t vaddr, 4707 vm_prot_t fault_typea, 4708 vm_map_entry_t *out_entry, /* OUT */ 4709 vm_object_t *object, /* OUT */ 4710 vm_pindex_t *pindex, /* OUT */ 4711 vm_prot_t *out_prot, /* OUT */ 4712 boolean_t *wired) /* OUT */ 4713 { 4714 vm_map_entry_t entry; 4715 vm_map_t map = *var_map; 4716 vm_prot_t prot; 4717 vm_prot_t fault_type = fault_typea; 4718 4719 /* 4720 * Lookup the faulting address. 4721 */ 4722 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4723 return (KERN_INVALID_ADDRESS); 4724 4725 entry = *out_entry; 4726 4727 /* 4728 * Fail if the entry refers to a submap. 4729 */ 4730 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4731 return (KERN_FAILURE); 4732 4733 /* 4734 * Check whether this task is allowed to have this page. 4735 */ 4736 prot = entry->protection; 4737 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4738 if ((fault_type & prot) != fault_type) 4739 return (KERN_PROTECTION_FAILURE); 4740 4741 /* 4742 * If this page is not pageable, we have to get it for all possible 4743 * accesses. 4744 */ 4745 *wired = (entry->wired_count != 0); 4746 if (*wired) 4747 fault_type = entry->protection; 4748 4749 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4750 /* 4751 * Fail if the entry was copy-on-write for a write fault. 4752 */ 4753 if (fault_type & VM_PROT_WRITE) 4754 return (KERN_FAILURE); 4755 /* 4756 * We're attempting to read a copy-on-write page -- 4757 * don't allow writes. 4758 */ 4759 prot &= ~VM_PROT_WRITE; 4760 } 4761 4762 /* 4763 * Fail if an object should be created. 4764 */ 4765 if (entry->object.vm_object == NULL && !map->system_map) 4766 return (KERN_FAILURE); 4767 4768 /* 4769 * Return the object/offset from this entry. If the entry was 4770 * copy-on-write or empty, it has been fixed up. 4771 */ 4772 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4773 *object = entry->object.vm_object; 4774 4775 *out_prot = prot; 4776 return (KERN_SUCCESS); 4777 } 4778 4779 /* 4780 * vm_map_lookup_done: 4781 * 4782 * Releases locks acquired by a vm_map_lookup 4783 * (according to the handle returned by that lookup). 4784 */ 4785 void 4786 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4787 { 4788 /* 4789 * Unlock the main-level map 4790 */ 4791 vm_map_unlock_read(map); 4792 } 4793 4794 vm_offset_t 4795 vm_map_max_KBI(const struct vm_map *map) 4796 { 4797 4798 return (vm_map_max(map)); 4799 } 4800 4801 vm_offset_t 4802 vm_map_min_KBI(const struct vm_map *map) 4803 { 4804 4805 return (vm_map_min(map)); 4806 } 4807 4808 pmap_t 4809 vm_map_pmap_KBI(vm_map_t map) 4810 { 4811 4812 return (map->pmap); 4813 } 4814 4815 #include "opt_ddb.h" 4816 #ifdef DDB 4817 #include <sys/kernel.h> 4818 4819 #include <ddb/ddb.h> 4820 4821 static void 4822 vm_map_print(vm_map_t map) 4823 { 4824 vm_map_entry_t entry, prev; 4825 4826 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4827 (void *)map, 4828 (void *)map->pmap, map->nentries, map->timestamp); 4829 4830 db_indent += 2; 4831 for (prev = &map->header; (entry = prev->next) != &map->header; 4832 prev = entry) { 4833 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 4834 (void *)entry, (void *)entry->start, (void *)entry->end, 4835 entry->eflags); 4836 { 4837 static char *inheritance_name[4] = 4838 {"share", "copy", "none", "donate_copy"}; 4839 4840 db_iprintf(" prot=%x/%x/%s", 4841 entry->protection, 4842 entry->max_protection, 4843 inheritance_name[(int)(unsigned char) 4844 entry->inheritance]); 4845 if (entry->wired_count != 0) 4846 db_printf(", wired"); 4847 } 4848 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4849 db_printf(", share=%p, offset=0x%jx\n", 4850 (void *)entry->object.sub_map, 4851 (uintmax_t)entry->offset); 4852 if (prev == &map->header || 4853 prev->object.sub_map != 4854 entry->object.sub_map) { 4855 db_indent += 2; 4856 vm_map_print((vm_map_t)entry->object.sub_map); 4857 db_indent -= 2; 4858 } 4859 } else { 4860 if (entry->cred != NULL) 4861 db_printf(", ruid %d", entry->cred->cr_ruid); 4862 db_printf(", object=%p, offset=0x%jx", 4863 (void *)entry->object.vm_object, 4864 (uintmax_t)entry->offset); 4865 if (entry->object.vm_object && entry->object.vm_object->cred) 4866 db_printf(", obj ruid %d charge %jx", 4867 entry->object.vm_object->cred->cr_ruid, 4868 (uintmax_t)entry->object.vm_object->charge); 4869 if (entry->eflags & MAP_ENTRY_COW) 4870 db_printf(", copy (%s)", 4871 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4872 db_printf("\n"); 4873 4874 if (prev == &map->header || 4875 prev->object.vm_object != 4876 entry->object.vm_object) { 4877 db_indent += 2; 4878 vm_object_print((db_expr_t)(intptr_t) 4879 entry->object.vm_object, 4880 0, 0, (char *)0); 4881 db_indent -= 2; 4882 } 4883 } 4884 } 4885 db_indent -= 2; 4886 } 4887 4888 DB_SHOW_COMMAND(map, map) 4889 { 4890 4891 if (!have_addr) { 4892 db_printf("usage: show map <addr>\n"); 4893 return; 4894 } 4895 vm_map_print((vm_map_t)addr); 4896 } 4897 4898 DB_SHOW_COMMAND(procvm, procvm) 4899 { 4900 struct proc *p; 4901 4902 if (have_addr) { 4903 p = db_lookup_proc(addr); 4904 } else { 4905 p = curproc; 4906 } 4907 4908 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4909 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4910 (void *)vmspace_pmap(p->p_vmspace)); 4911 4912 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4913 } 4914 4915 #endif /* DDB */ 4916