1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/elf.h> 73 #include <sys/kernel.h> 74 #include <sys/ktr.h> 75 #include <sys/lock.h> 76 #include <sys/mutex.h> 77 #include <sys/proc.h> 78 #include <sys/vmmeter.h> 79 #include <sys/mman.h> 80 #include <sys/vnode.h> 81 #include <sys/racct.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/file.h> 85 #include <sys/sysctl.h> 86 #include <sys/sysent.h> 87 #include <sys/shm.h> 88 89 #include <vm/vm.h> 90 #include <vm/vm_param.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/vm_object.h> 96 #include <vm/vm_pager.h> 97 #include <vm/vm_kern.h> 98 #include <vm/vm_extern.h> 99 #include <vm/vnode_pager.h> 100 #include <vm/swap_pager.h> 101 #include <vm/uma.h> 102 103 /* 104 * Virtual memory maps provide for the mapping, protection, 105 * and sharing of virtual memory objects. In addition, 106 * this module provides for an efficient virtual copy of 107 * memory from one map to another. 108 * 109 * Synchronization is required prior to most operations. 110 * 111 * Maps consist of an ordered doubly-linked list of simple 112 * entries; a self-adjusting binary search tree of these 113 * entries is used to speed up lookups. 114 * 115 * Since portions of maps are specified by start/end addresses, 116 * which may not align with existing map entries, all 117 * routines merely "clip" entries to these start/end values. 118 * [That is, an entry is split into two, bordering at a 119 * start or end value.] Note that these clippings may not 120 * always be necessary (as the two resulting entries are then 121 * not changed); however, the clipping is done for convenience. 122 * 123 * As mentioned above, virtual copy operations are performed 124 * by copying VM object references from one map to 125 * another, and then marking both regions as copy-on-write. 126 */ 127 128 static struct mtx map_sleep_mtx; 129 static uma_zone_t mapentzone; 130 static uma_zone_t kmapentzone; 131 static uma_zone_t vmspace_zone; 132 static int vmspace_zinit(void *mem, int size, int flags); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 139 vm_map_entry_t gap_entry); 140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 141 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 142 #ifdef INVARIANTS 143 static void vmspace_zdtor(void *mem, int size, void *arg); 144 #endif 145 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 146 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 147 int cow); 148 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 149 vm_offset_t failed_addr); 150 151 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 152 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 153 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 154 155 /* 156 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 157 * stable. 158 */ 159 #define PROC_VMSPACE_LOCK(p) do { } while (0) 160 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 161 162 /* 163 * VM_MAP_RANGE_CHECK: [ internal use only ] 164 * 165 * Asserts that the starting and ending region 166 * addresses fall within the valid range of the map. 167 */ 168 #define VM_MAP_RANGE_CHECK(map, start, end) \ 169 { \ 170 if (start < vm_map_min(map)) \ 171 start = vm_map_min(map); \ 172 if (end > vm_map_max(map)) \ 173 end = vm_map_max(map); \ 174 if (start > end) \ 175 start = end; \ 176 } 177 178 /* 179 * vm_map_startup: 180 * 181 * Initialize the vm_map module. Must be called before 182 * any other vm_map routines. 183 * 184 * Map and entry structures are allocated from the general 185 * purpose memory pool with some exceptions: 186 * 187 * - The kernel map and kmem submap are allocated statically. 188 * - Kernel map entries are allocated out of a static pool. 189 * 190 * These restrictions are necessary since malloc() uses the 191 * maps and requires map entries. 192 */ 193 194 void 195 vm_map_startup(void) 196 { 197 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 198 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 199 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 200 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 201 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 202 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 203 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 204 #ifdef INVARIANTS 205 vmspace_zdtor, 206 #else 207 NULL, 208 #endif 209 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 210 } 211 212 static int 213 vmspace_zinit(void *mem, int size, int flags) 214 { 215 struct vmspace *vm; 216 vm_map_t map; 217 218 vm = (struct vmspace *)mem; 219 map = &vm->vm_map; 220 221 memset(map, 0, sizeof(*map)); 222 mtx_init(&map->system_mtx, "vm map (system)", NULL, 223 MTX_DEF | MTX_DUPOK); 224 sx_init(&map->lock, "vm map (user)"); 225 PMAP_LOCK_INIT(vmspace_pmap(vm)); 226 return (0); 227 } 228 229 #ifdef INVARIANTS 230 static void 231 vmspace_zdtor(void *mem, int size, void *arg) 232 { 233 struct vmspace *vm; 234 235 vm = (struct vmspace *)mem; 236 KASSERT(vm->vm_map.nentries == 0, 237 ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries)); 238 KASSERT(vm->vm_map.size == 0, 239 ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size)); 240 } 241 #endif /* INVARIANTS */ 242 243 /* 244 * Allocate a vmspace structure, including a vm_map and pmap, 245 * and initialize those structures. The refcnt is set to 1. 246 */ 247 struct vmspace * 248 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 249 { 250 struct vmspace *vm; 251 252 vm = uma_zalloc(vmspace_zone, M_WAITOK); 253 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 254 if (!pinit(vmspace_pmap(vm))) { 255 uma_zfree(vmspace_zone, vm); 256 return (NULL); 257 } 258 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 259 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 260 vm->vm_refcnt = 1; 261 vm->vm_shm = NULL; 262 vm->vm_swrss = 0; 263 vm->vm_tsize = 0; 264 vm->vm_dsize = 0; 265 vm->vm_ssize = 0; 266 vm->vm_taddr = 0; 267 vm->vm_daddr = 0; 268 vm->vm_maxsaddr = 0; 269 return (vm); 270 } 271 272 #ifdef RACCT 273 static void 274 vmspace_container_reset(struct proc *p) 275 { 276 277 PROC_LOCK(p); 278 racct_set(p, RACCT_DATA, 0); 279 racct_set(p, RACCT_STACK, 0); 280 racct_set(p, RACCT_RSS, 0); 281 racct_set(p, RACCT_MEMLOCK, 0); 282 racct_set(p, RACCT_VMEM, 0); 283 PROC_UNLOCK(p); 284 } 285 #endif 286 287 static inline void 288 vmspace_dofree(struct vmspace *vm) 289 { 290 291 CTR1(KTR_VM, "vmspace_free: %p", vm); 292 293 /* 294 * Make sure any SysV shm is freed, it might not have been in 295 * exit1(). 296 */ 297 shmexit(vm); 298 299 /* 300 * Lock the map, to wait out all other references to it. 301 * Delete all of the mappings and pages they hold, then call 302 * the pmap module to reclaim anything left. 303 */ 304 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 305 vm_map_max(&vm->vm_map)); 306 307 pmap_release(vmspace_pmap(vm)); 308 vm->vm_map.pmap = NULL; 309 uma_zfree(vmspace_zone, vm); 310 } 311 312 void 313 vmspace_free(struct vmspace *vm) 314 { 315 316 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 317 "vmspace_free() called"); 318 319 if (vm->vm_refcnt == 0) 320 panic("vmspace_free: attempt to free already freed vmspace"); 321 322 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 323 vmspace_dofree(vm); 324 } 325 326 void 327 vmspace_exitfree(struct proc *p) 328 { 329 struct vmspace *vm; 330 331 PROC_VMSPACE_LOCK(p); 332 vm = p->p_vmspace; 333 p->p_vmspace = NULL; 334 PROC_VMSPACE_UNLOCK(p); 335 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 336 vmspace_free(vm); 337 } 338 339 void 340 vmspace_exit(struct thread *td) 341 { 342 int refcnt; 343 struct vmspace *vm; 344 struct proc *p; 345 346 /* 347 * Release user portion of address space. 348 * This releases references to vnodes, 349 * which could cause I/O if the file has been unlinked. 350 * Need to do this early enough that we can still sleep. 351 * 352 * The last exiting process to reach this point releases as 353 * much of the environment as it can. vmspace_dofree() is the 354 * slower fallback in case another process had a temporary 355 * reference to the vmspace. 356 */ 357 358 p = td->td_proc; 359 vm = p->p_vmspace; 360 atomic_add_int(&vmspace0.vm_refcnt, 1); 361 refcnt = vm->vm_refcnt; 362 do { 363 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 364 /* Switch now since other proc might free vmspace */ 365 PROC_VMSPACE_LOCK(p); 366 p->p_vmspace = &vmspace0; 367 PROC_VMSPACE_UNLOCK(p); 368 pmap_activate(td); 369 } 370 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1)); 371 if (refcnt == 1) { 372 if (p->p_vmspace != vm) { 373 /* vmspace not yet freed, switch back */ 374 PROC_VMSPACE_LOCK(p); 375 p->p_vmspace = vm; 376 PROC_VMSPACE_UNLOCK(p); 377 pmap_activate(td); 378 } 379 pmap_remove_pages(vmspace_pmap(vm)); 380 /* Switch now since this proc will free vmspace */ 381 PROC_VMSPACE_LOCK(p); 382 p->p_vmspace = &vmspace0; 383 PROC_VMSPACE_UNLOCK(p); 384 pmap_activate(td); 385 vmspace_dofree(vm); 386 } 387 #ifdef RACCT 388 if (racct_enable) 389 vmspace_container_reset(p); 390 #endif 391 } 392 393 /* Acquire reference to vmspace owned by another process. */ 394 395 struct vmspace * 396 vmspace_acquire_ref(struct proc *p) 397 { 398 struct vmspace *vm; 399 int refcnt; 400 401 PROC_VMSPACE_LOCK(p); 402 vm = p->p_vmspace; 403 if (vm == NULL) { 404 PROC_VMSPACE_UNLOCK(p); 405 return (NULL); 406 } 407 refcnt = vm->vm_refcnt; 408 do { 409 if (refcnt <= 0) { /* Avoid 0->1 transition */ 410 PROC_VMSPACE_UNLOCK(p); 411 return (NULL); 412 } 413 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1)); 414 if (vm != p->p_vmspace) { 415 PROC_VMSPACE_UNLOCK(p); 416 vmspace_free(vm); 417 return (NULL); 418 } 419 PROC_VMSPACE_UNLOCK(p); 420 return (vm); 421 } 422 423 /* 424 * Switch between vmspaces in an AIO kernel process. 425 * 426 * The new vmspace is either the vmspace of a user process obtained 427 * from an active AIO request or the initial vmspace of the AIO kernel 428 * process (when it is idling). Because user processes will block to 429 * drain any active AIO requests before proceeding in exit() or 430 * execve(), the reference count for vmspaces from AIO requests can 431 * never be 0. Similarly, AIO kernel processes hold an extra 432 * reference on their initial vmspace for the life of the process. As 433 * a result, the 'newvm' vmspace always has a non-zero reference 434 * count. This permits an additional reference on 'newvm' to be 435 * acquired via a simple atomic increment rather than the loop in 436 * vmspace_acquire_ref() above. 437 */ 438 void 439 vmspace_switch_aio(struct vmspace *newvm) 440 { 441 struct vmspace *oldvm; 442 443 /* XXX: Need some way to assert that this is an aio daemon. */ 444 445 KASSERT(newvm->vm_refcnt > 0, 446 ("vmspace_switch_aio: newvm unreferenced")); 447 448 oldvm = curproc->p_vmspace; 449 if (oldvm == newvm) 450 return; 451 452 /* 453 * Point to the new address space and refer to it. 454 */ 455 curproc->p_vmspace = newvm; 456 atomic_add_int(&newvm->vm_refcnt, 1); 457 458 /* Activate the new mapping. */ 459 pmap_activate(curthread); 460 461 vmspace_free(oldvm); 462 } 463 464 void 465 _vm_map_lock(vm_map_t map, const char *file, int line) 466 { 467 468 if (map->system_map) 469 mtx_lock_flags_(&map->system_mtx, 0, file, line); 470 else 471 sx_xlock_(&map->lock, file, line); 472 map->timestamp++; 473 } 474 475 void 476 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 477 { 478 vm_object_t object; 479 struct vnode *vp; 480 bool vp_held; 481 482 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 483 return; 484 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 485 ("Submap with execs")); 486 object = entry->object.vm_object; 487 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 488 if ((object->flags & OBJ_ANON) != 0) 489 object = object->handle; 490 else 491 KASSERT(object->backing_object == NULL, 492 ("non-anon object %p shadows", object)); 493 KASSERT(object != NULL, ("No content object for text, entry %p obj %p", 494 entry, entry->object.vm_object)); 495 496 /* 497 * Mostly, we do not lock the backing object. It is 498 * referenced by the entry we are processing, so it cannot go 499 * away. 500 */ 501 vp = NULL; 502 vp_held = false; 503 if (object->type == OBJT_DEAD) { 504 /* 505 * For OBJT_DEAD objects, v_writecount was handled in 506 * vnode_pager_dealloc(). 507 */ 508 } else if (object->type == OBJT_VNODE) { 509 vp = object->handle; 510 } else if (object->type == OBJT_SWAP) { 511 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0, 512 ("vm_map_entry_set_vnode_text: swap and !TMPFS " 513 "entry %p, object %p, add %d", entry, object, add)); 514 /* 515 * Tmpfs VREG node, which was reclaimed, has 516 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS. In 517 * this case there is no v_writecount to adjust. 518 */ 519 VM_OBJECT_RLOCK(object); 520 if ((object->flags & OBJ_TMPFS) != 0) { 521 vp = object->un_pager.swp.swp_tmpfs; 522 if (vp != NULL) { 523 vhold(vp); 524 vp_held = true; 525 } 526 } 527 VM_OBJECT_RUNLOCK(object); 528 } else { 529 KASSERT(0, 530 ("vm_map_entry_set_vnode_text: wrong object type, " 531 "entry %p, object %p, add %d", entry, object, add)); 532 } 533 if (vp != NULL) { 534 if (add) { 535 VOP_SET_TEXT_CHECKED(vp); 536 } else { 537 vn_lock(vp, LK_SHARED | LK_RETRY); 538 VOP_UNSET_TEXT_CHECKED(vp); 539 VOP_UNLOCK(vp); 540 } 541 if (vp_held) 542 vdrop(vp); 543 } 544 } 545 546 /* 547 * Use a different name for this vm_map_entry field when it's use 548 * is not consistent with its use as part of an ordered search tree. 549 */ 550 #define defer_next right 551 552 static void 553 vm_map_process_deferred(void) 554 { 555 struct thread *td; 556 vm_map_entry_t entry, next; 557 vm_object_t object; 558 559 td = curthread; 560 entry = td->td_map_def_user; 561 td->td_map_def_user = NULL; 562 while (entry != NULL) { 563 next = entry->defer_next; 564 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT | 565 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT | 566 MAP_ENTRY_VN_EXEC)); 567 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) { 568 /* 569 * Decrement the object's writemappings and 570 * possibly the vnode's v_writecount. 571 */ 572 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 573 ("Submap with writecount")); 574 object = entry->object.vm_object; 575 KASSERT(object != NULL, ("No object for writecount")); 576 vm_pager_release_writecount(object, entry->start, 577 entry->end); 578 } 579 vm_map_entry_set_vnode_text(entry, false); 580 vm_map_entry_deallocate(entry, FALSE); 581 entry = next; 582 } 583 } 584 585 #ifdef INVARIANTS 586 static void 587 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 588 { 589 590 if (map->system_map) 591 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 592 else 593 sx_assert_(&map->lock, SA_XLOCKED, file, line); 594 } 595 596 #define VM_MAP_ASSERT_LOCKED(map) \ 597 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 598 599 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL }; 600 #ifdef DIAGNOSTIC 601 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK; 602 #else 603 static int enable_vmmap_check = VMMAP_CHECK_NONE; 604 #endif 605 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 606 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 607 608 static void _vm_map_assert_consistent(vm_map_t map, int check); 609 610 #define VM_MAP_ASSERT_CONSISTENT(map) \ 611 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL) 612 #ifdef DIAGNOSTIC 613 #define VM_MAP_UNLOCK_CONSISTENT(map) do { \ 614 if (map->nupdates > map->nentries) { \ 615 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \ 616 map->nupdates = 0; \ 617 } \ 618 } while (0) 619 #else 620 #define VM_MAP_UNLOCK_CONSISTENT(map) 621 #endif 622 #else 623 #define VM_MAP_ASSERT_LOCKED(map) 624 #define VM_MAP_ASSERT_CONSISTENT(map) 625 #define VM_MAP_UNLOCK_CONSISTENT(map) 626 #endif /* INVARIANTS */ 627 628 void 629 _vm_map_unlock(vm_map_t map, const char *file, int line) 630 { 631 632 VM_MAP_UNLOCK_CONSISTENT(map); 633 if (map->system_map) 634 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 635 else { 636 sx_xunlock_(&map->lock, file, line); 637 vm_map_process_deferred(); 638 } 639 } 640 641 void 642 _vm_map_lock_read(vm_map_t map, const char *file, int line) 643 { 644 645 if (map->system_map) 646 mtx_lock_flags_(&map->system_mtx, 0, file, line); 647 else 648 sx_slock_(&map->lock, file, line); 649 } 650 651 void 652 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 653 { 654 655 if (map->system_map) 656 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 657 else { 658 sx_sunlock_(&map->lock, file, line); 659 vm_map_process_deferred(); 660 } 661 } 662 663 int 664 _vm_map_trylock(vm_map_t map, const char *file, int line) 665 { 666 int error; 667 668 error = map->system_map ? 669 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 670 !sx_try_xlock_(&map->lock, file, line); 671 if (error == 0) 672 map->timestamp++; 673 return (error == 0); 674 } 675 676 int 677 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 678 { 679 int error; 680 681 error = map->system_map ? 682 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 683 !sx_try_slock_(&map->lock, file, line); 684 return (error == 0); 685 } 686 687 /* 688 * _vm_map_lock_upgrade: [ internal use only ] 689 * 690 * Tries to upgrade a read (shared) lock on the specified map to a write 691 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 692 * non-zero value if the upgrade fails. If the upgrade fails, the map is 693 * returned without a read or write lock held. 694 * 695 * Requires that the map be read locked. 696 */ 697 int 698 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 699 { 700 unsigned int last_timestamp; 701 702 if (map->system_map) { 703 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 704 } else { 705 if (!sx_try_upgrade_(&map->lock, file, line)) { 706 last_timestamp = map->timestamp; 707 sx_sunlock_(&map->lock, file, line); 708 vm_map_process_deferred(); 709 /* 710 * If the map's timestamp does not change while the 711 * map is unlocked, then the upgrade succeeds. 712 */ 713 sx_xlock_(&map->lock, file, line); 714 if (last_timestamp != map->timestamp) { 715 sx_xunlock_(&map->lock, file, line); 716 return (1); 717 } 718 } 719 } 720 map->timestamp++; 721 return (0); 722 } 723 724 void 725 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 726 { 727 728 if (map->system_map) { 729 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 730 } else { 731 VM_MAP_UNLOCK_CONSISTENT(map); 732 sx_downgrade_(&map->lock, file, line); 733 } 734 } 735 736 /* 737 * vm_map_locked: 738 * 739 * Returns a non-zero value if the caller holds a write (exclusive) lock 740 * on the specified map and the value "0" otherwise. 741 */ 742 int 743 vm_map_locked(vm_map_t map) 744 { 745 746 if (map->system_map) 747 return (mtx_owned(&map->system_mtx)); 748 else 749 return (sx_xlocked(&map->lock)); 750 } 751 752 /* 753 * _vm_map_unlock_and_wait: 754 * 755 * Atomically releases the lock on the specified map and puts the calling 756 * thread to sleep. The calling thread will remain asleep until either 757 * vm_map_wakeup() is performed on the map or the specified timeout is 758 * exceeded. 759 * 760 * WARNING! This function does not perform deferred deallocations of 761 * objects and map entries. Therefore, the calling thread is expected to 762 * reacquire the map lock after reawakening and later perform an ordinary 763 * unlock operation, such as vm_map_unlock(), before completing its 764 * operation on the map. 765 */ 766 int 767 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 768 { 769 770 VM_MAP_UNLOCK_CONSISTENT(map); 771 mtx_lock(&map_sleep_mtx); 772 if (map->system_map) 773 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 774 else 775 sx_xunlock_(&map->lock, file, line); 776 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 777 timo)); 778 } 779 780 /* 781 * vm_map_wakeup: 782 * 783 * Awaken any threads that have slept on the map using 784 * vm_map_unlock_and_wait(). 785 */ 786 void 787 vm_map_wakeup(vm_map_t map) 788 { 789 790 /* 791 * Acquire and release map_sleep_mtx to prevent a wakeup() 792 * from being performed (and lost) between the map unlock 793 * and the msleep() in _vm_map_unlock_and_wait(). 794 */ 795 mtx_lock(&map_sleep_mtx); 796 mtx_unlock(&map_sleep_mtx); 797 wakeup(&map->root); 798 } 799 800 void 801 vm_map_busy(vm_map_t map) 802 { 803 804 VM_MAP_ASSERT_LOCKED(map); 805 map->busy++; 806 } 807 808 void 809 vm_map_unbusy(vm_map_t map) 810 { 811 812 VM_MAP_ASSERT_LOCKED(map); 813 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 814 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 815 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 816 wakeup(&map->busy); 817 } 818 } 819 820 void 821 vm_map_wait_busy(vm_map_t map) 822 { 823 824 VM_MAP_ASSERT_LOCKED(map); 825 while (map->busy) { 826 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 827 if (map->system_map) 828 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 829 else 830 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 831 } 832 map->timestamp++; 833 } 834 835 long 836 vmspace_resident_count(struct vmspace *vmspace) 837 { 838 return pmap_resident_count(vmspace_pmap(vmspace)); 839 } 840 841 /* 842 * Initialize an existing vm_map structure 843 * such as that in the vmspace structure. 844 */ 845 static void 846 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 847 { 848 849 map->header.eflags = MAP_ENTRY_HEADER; 850 map->needs_wakeup = FALSE; 851 map->system_map = 0; 852 map->pmap = pmap; 853 map->header.end = min; 854 map->header.start = max; 855 map->flags = 0; 856 map->header.left = map->header.right = &map->header; 857 map->root = NULL; 858 map->timestamp = 0; 859 map->busy = 0; 860 map->anon_loc = 0; 861 #ifdef DIAGNOSTIC 862 map->nupdates = 0; 863 #endif 864 } 865 866 void 867 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 868 { 869 870 _vm_map_init(map, pmap, min, max); 871 mtx_init(&map->system_mtx, "vm map (system)", NULL, 872 MTX_DEF | MTX_DUPOK); 873 sx_init(&map->lock, "vm map (user)"); 874 } 875 876 /* 877 * vm_map_entry_dispose: [ internal use only ] 878 * 879 * Inverse of vm_map_entry_create. 880 */ 881 static void 882 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 883 { 884 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 885 } 886 887 /* 888 * vm_map_entry_create: [ internal use only ] 889 * 890 * Allocates a VM map entry for insertion. 891 * No entry fields are filled in. 892 */ 893 static vm_map_entry_t 894 vm_map_entry_create(vm_map_t map) 895 { 896 vm_map_entry_t new_entry; 897 898 if (map->system_map) 899 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 900 else 901 new_entry = uma_zalloc(mapentzone, M_WAITOK); 902 if (new_entry == NULL) 903 panic("vm_map_entry_create: kernel resources exhausted"); 904 return (new_entry); 905 } 906 907 /* 908 * vm_map_entry_set_behavior: 909 * 910 * Set the expected access behavior, either normal, random, or 911 * sequential. 912 */ 913 static inline void 914 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 915 { 916 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 917 (behavior & MAP_ENTRY_BEHAV_MASK); 918 } 919 920 /* 921 * vm_map_entry_max_free_{left,right}: 922 * 923 * Compute the size of the largest free gap between two entries, 924 * one the root of a tree and the other the ancestor of that root 925 * that is the least or greatest ancestor found on the search path. 926 */ 927 static inline vm_size_t 928 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 929 { 930 931 return (root->left != left_ancestor ? 932 root->left->max_free : root->start - left_ancestor->end); 933 } 934 935 static inline vm_size_t 936 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 937 { 938 939 return (root->right != right_ancestor ? 940 root->right->max_free : right_ancestor->start - root->end); 941 } 942 943 /* 944 * vm_map_entry_{pred,succ}: 945 * 946 * Find the {predecessor, successor} of the entry by taking one step 947 * in the appropriate direction and backtracking as much as necessary. 948 * vm_map_entry_succ is defined in vm_map.h. 949 */ 950 static inline vm_map_entry_t 951 vm_map_entry_pred(vm_map_entry_t entry) 952 { 953 vm_map_entry_t prior; 954 955 prior = entry->left; 956 if (prior->right->start < entry->start) { 957 do 958 prior = prior->right; 959 while (prior->right != entry); 960 } 961 return (prior); 962 } 963 964 static inline vm_size_t 965 vm_size_max(vm_size_t a, vm_size_t b) 966 { 967 968 return (a > b ? a : b); 969 } 970 971 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \ 972 vm_map_entry_t z; \ 973 vm_size_t max_free; \ 974 \ 975 /* \ 976 * Infer root->right->max_free == root->max_free when \ 977 * y->max_free < root->max_free || root->max_free == 0. \ 978 * Otherwise, look right to find it. \ 979 */ \ 980 y = root->left; \ 981 max_free = root->max_free; \ 982 KASSERT(max_free == vm_size_max( \ 983 vm_map_entry_max_free_left(root, llist), \ 984 vm_map_entry_max_free_right(root, rlist)), \ 985 ("%s: max_free invariant fails", __func__)); \ 986 if (max_free - 1 < vm_map_entry_max_free_left(root, llist)) \ 987 max_free = vm_map_entry_max_free_right(root, rlist); \ 988 if (y != llist && (test)) { \ 989 /* Rotate right and make y root. */ \ 990 z = y->right; \ 991 if (z != root) { \ 992 root->left = z; \ 993 y->right = root; \ 994 if (max_free < y->max_free) \ 995 root->max_free = max_free = \ 996 vm_size_max(max_free, z->max_free); \ 997 } else if (max_free < y->max_free) \ 998 root->max_free = max_free = \ 999 vm_size_max(max_free, root->start - y->end);\ 1000 root = y; \ 1001 y = root->left; \ 1002 } \ 1003 /* Copy right->max_free. Put root on rlist. */ \ 1004 root->max_free = max_free; \ 1005 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1006 ("%s: max_free not copied from right", __func__)); \ 1007 root->left = rlist; \ 1008 rlist = root; \ 1009 root = y != llist ? y : NULL; \ 1010 } while (0) 1011 1012 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \ 1013 vm_map_entry_t z; \ 1014 vm_size_t max_free; \ 1015 \ 1016 /* \ 1017 * Infer root->left->max_free == root->max_free when \ 1018 * y->max_free < root->max_free || root->max_free == 0. \ 1019 * Otherwise, look left to find it. \ 1020 */ \ 1021 y = root->right; \ 1022 max_free = root->max_free; \ 1023 KASSERT(max_free == vm_size_max( \ 1024 vm_map_entry_max_free_left(root, llist), \ 1025 vm_map_entry_max_free_right(root, rlist)), \ 1026 ("%s: max_free invariant fails", __func__)); \ 1027 if (max_free - 1 < vm_map_entry_max_free_right(root, rlist)) \ 1028 max_free = vm_map_entry_max_free_left(root, llist); \ 1029 if (y != rlist && (test)) { \ 1030 /* Rotate left and make y root. */ \ 1031 z = y->left; \ 1032 if (z != root) { \ 1033 root->right = z; \ 1034 y->left = root; \ 1035 if (max_free < y->max_free) \ 1036 root->max_free = max_free = \ 1037 vm_size_max(max_free, z->max_free); \ 1038 } else if (max_free < y->max_free) \ 1039 root->max_free = max_free = \ 1040 vm_size_max(max_free, y->start - root->end);\ 1041 root = y; \ 1042 y = root->right; \ 1043 } \ 1044 /* Copy left->max_free. Put root on llist. */ \ 1045 root->max_free = max_free; \ 1046 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1047 ("%s: max_free not copied from left", __func__)); \ 1048 root->right = llist; \ 1049 llist = root; \ 1050 root = y != rlist ? y : NULL; \ 1051 } while (0) 1052 1053 /* 1054 * Walk down the tree until we find addr or a gap where addr would go, breaking 1055 * off left and right subtrees of nodes less than, or greater than addr. Treat 1056 * subtrees with root->max_free < length as empty trees. llist and rlist are 1057 * the two sides in reverse order (bottom-up), with llist linked by the right 1058 * pointer and rlist linked by the left pointer in the vm_map_entry, and both 1059 * lists terminated by &map->header. This function, and the subsequent call to 1060 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address 1061 * values in &map->header. 1062 */ 1063 static __always_inline vm_map_entry_t 1064 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1065 vm_map_entry_t *llist, vm_map_entry_t *rlist) 1066 { 1067 vm_map_entry_t left, right, root, y; 1068 1069 left = right = &map->header; 1070 root = map->root; 1071 while (root != NULL && root->max_free >= length) { 1072 KASSERT(left->end <= root->start && 1073 root->end <= right->start, 1074 ("%s: root not within tree bounds", __func__)); 1075 if (addr < root->start) { 1076 SPLAY_LEFT_STEP(root, y, left, right, 1077 y->max_free >= length && addr < y->start); 1078 } else if (addr >= root->end) { 1079 SPLAY_RIGHT_STEP(root, y, left, right, 1080 y->max_free >= length && addr >= y->end); 1081 } else 1082 break; 1083 } 1084 *llist = left; 1085 *rlist = right; 1086 return (root); 1087 } 1088 1089 static __always_inline void 1090 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist) 1091 { 1092 vm_map_entry_t hi, right, y; 1093 1094 right = *rlist; 1095 hi = root->right == right ? NULL : root->right; 1096 if (hi == NULL) 1097 return; 1098 do 1099 SPLAY_LEFT_STEP(hi, y, root, right, true); 1100 while (hi != NULL); 1101 *rlist = right; 1102 } 1103 1104 static __always_inline void 1105 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist) 1106 { 1107 vm_map_entry_t left, lo, y; 1108 1109 left = *llist; 1110 lo = root->left == left ? NULL : root->left; 1111 if (lo == NULL) 1112 return; 1113 do 1114 SPLAY_RIGHT_STEP(lo, y, left, root, true); 1115 while (lo != NULL); 1116 *llist = left; 1117 } 1118 1119 static inline void 1120 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1121 { 1122 vm_map_entry_t tmp; 1123 1124 tmp = *b; 1125 *b = *a; 1126 *a = tmp; 1127 } 1128 1129 /* 1130 * Walk back up the two spines, flip the pointers and set max_free. The 1131 * subtrees of the root go at the bottom of llist and rlist. 1132 */ 1133 static vm_size_t 1134 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root, 1135 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist) 1136 { 1137 do { 1138 /* 1139 * The max_free values of the children of llist are in 1140 * llist->max_free and max_free. Update with the 1141 * max value. 1142 */ 1143 llist->max_free = max_free = 1144 vm_size_max(llist->max_free, max_free); 1145 vm_map_entry_swap(&llist->right, &tail); 1146 vm_map_entry_swap(&tail, &llist); 1147 } while (llist != header); 1148 root->left = tail; 1149 return (max_free); 1150 } 1151 1152 /* 1153 * When llist is known to be the predecessor of root. 1154 */ 1155 static inline vm_size_t 1156 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root, 1157 vm_map_entry_t llist) 1158 { 1159 vm_size_t max_free; 1160 1161 max_free = root->start - llist->end; 1162 if (llist != header) { 1163 max_free = vm_map_splay_merge_left_walk(header, root, 1164 root, max_free, llist); 1165 } else { 1166 root->left = header; 1167 header->right = root; 1168 } 1169 return (max_free); 1170 } 1171 1172 /* 1173 * When llist may or may not be the predecessor of root. 1174 */ 1175 static inline vm_size_t 1176 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root, 1177 vm_map_entry_t llist) 1178 { 1179 vm_size_t max_free; 1180 1181 max_free = vm_map_entry_max_free_left(root, llist); 1182 if (llist != header) { 1183 max_free = vm_map_splay_merge_left_walk(header, root, 1184 root->left == llist ? root : root->left, 1185 max_free, llist); 1186 } 1187 return (max_free); 1188 } 1189 1190 static vm_size_t 1191 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root, 1192 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist) 1193 { 1194 do { 1195 /* 1196 * The max_free values of the children of rlist are in 1197 * rlist->max_free and max_free. Update with the 1198 * max value. 1199 */ 1200 rlist->max_free = max_free = 1201 vm_size_max(rlist->max_free, max_free); 1202 vm_map_entry_swap(&rlist->left, &tail); 1203 vm_map_entry_swap(&tail, &rlist); 1204 } while (rlist != header); 1205 root->right = tail; 1206 return (max_free); 1207 } 1208 1209 /* 1210 * When rlist is known to be the succecessor of root. 1211 */ 1212 static inline vm_size_t 1213 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root, 1214 vm_map_entry_t rlist) 1215 { 1216 vm_size_t max_free; 1217 1218 max_free = rlist->start - root->end; 1219 if (rlist != header) { 1220 max_free = vm_map_splay_merge_right_walk(header, root, 1221 root, max_free, rlist); 1222 } else { 1223 root->right = header; 1224 header->left = root; 1225 } 1226 return (max_free); 1227 } 1228 1229 /* 1230 * When rlist may or may not be the succecessor of root. 1231 */ 1232 static inline vm_size_t 1233 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root, 1234 vm_map_entry_t rlist) 1235 { 1236 vm_size_t max_free; 1237 1238 max_free = vm_map_entry_max_free_right(root, rlist); 1239 if (rlist != header) { 1240 max_free = vm_map_splay_merge_right_walk(header, root, 1241 root->right == rlist ? root : root->right, 1242 max_free, rlist); 1243 } 1244 return (max_free); 1245 } 1246 1247 /* 1248 * vm_map_splay: 1249 * 1250 * The Sleator and Tarjan top-down splay algorithm with the 1251 * following variation. Max_free must be computed bottom-up, so 1252 * on the downward pass, maintain the left and right spines in 1253 * reverse order. Then, make a second pass up each side to fix 1254 * the pointers and compute max_free. The time bound is O(log n) 1255 * amortized. 1256 * 1257 * The tree is threaded, which means that there are no null pointers. 1258 * When a node has no left child, its left pointer points to its 1259 * predecessor, which the last ancestor on the search path from the root 1260 * where the search branched right. Likewise, when a node has no right 1261 * child, its right pointer points to its successor. The map header node 1262 * is the predecessor of the first map entry, and the successor of the 1263 * last. 1264 * 1265 * The new root is the vm_map_entry containing "addr", or else an 1266 * adjacent entry (lower if possible) if addr is not in the tree. 1267 * 1268 * The map must be locked, and leaves it so. 1269 * 1270 * Returns: the new root. 1271 */ 1272 static vm_map_entry_t 1273 vm_map_splay(vm_map_t map, vm_offset_t addr) 1274 { 1275 vm_map_entry_t header, llist, rlist, root; 1276 vm_size_t max_free_left, max_free_right; 1277 1278 header = &map->header; 1279 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1280 if (root != NULL) { 1281 max_free_left = vm_map_splay_merge_left(header, root, llist); 1282 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1283 } else if (llist != header) { 1284 /* 1285 * Recover the greatest node in the left 1286 * subtree and make it the root. 1287 */ 1288 root = llist; 1289 llist = root->right; 1290 max_free_left = vm_map_splay_merge_left(header, root, llist); 1291 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1292 } else if (rlist != header) { 1293 /* 1294 * Recover the least node in the right 1295 * subtree and make it the root. 1296 */ 1297 root = rlist; 1298 rlist = root->left; 1299 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1300 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1301 } else { 1302 /* There is no root. */ 1303 return (NULL); 1304 } 1305 root->max_free = vm_size_max(max_free_left, max_free_right); 1306 map->root = root; 1307 VM_MAP_ASSERT_CONSISTENT(map); 1308 return (root); 1309 } 1310 1311 /* 1312 * vm_map_entry_{un,}link: 1313 * 1314 * Insert/remove entries from maps. On linking, if new entry clips 1315 * existing entry, trim existing entry to avoid overlap, and manage 1316 * offsets. On unlinking, merge disappearing entry with neighbor, if 1317 * called for, and manage offsets. Callers should not modify fields in 1318 * entries already mapped. 1319 */ 1320 static void 1321 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1322 { 1323 vm_map_entry_t header, llist, rlist, root; 1324 vm_size_t max_free_left, max_free_right; 1325 1326 CTR3(KTR_VM, 1327 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1328 map->nentries, entry); 1329 VM_MAP_ASSERT_LOCKED(map); 1330 map->nentries++; 1331 header = &map->header; 1332 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1333 if (root == NULL) { 1334 /* 1335 * The new entry does not overlap any existing entry in the 1336 * map, so it becomes the new root of the map tree. 1337 */ 1338 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1339 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1340 } else if (entry->start == root->start) { 1341 /* 1342 * The new entry is a clone of root, with only the end field 1343 * changed. The root entry will be shrunk to abut the new 1344 * entry, and will be the right child of the new root entry in 1345 * the modified map. 1346 */ 1347 KASSERT(entry->end < root->end, 1348 ("%s: clip_start not within entry", __func__)); 1349 vm_map_splay_findprev(root, &llist); 1350 root->offset += entry->end - root->start; 1351 root->start = entry->end; 1352 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1353 max_free_right = root->max_free = vm_size_max( 1354 vm_map_splay_merge_pred(entry, root, entry), 1355 vm_map_splay_merge_right(header, root, rlist)); 1356 } else { 1357 /* 1358 * The new entry is a clone of root, with only the start field 1359 * changed. The root entry will be shrunk to abut the new 1360 * entry, and will be the left child of the new root entry in 1361 * the modified map. 1362 */ 1363 KASSERT(entry->end == root->end, 1364 ("%s: clip_start not within entry", __func__)); 1365 vm_map_splay_findnext(root, &rlist); 1366 entry->offset += entry->start - root->start; 1367 root->end = entry->start; 1368 max_free_left = root->max_free = vm_size_max( 1369 vm_map_splay_merge_left(header, root, llist), 1370 vm_map_splay_merge_succ(entry, root, entry)); 1371 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1372 } 1373 entry->max_free = vm_size_max(max_free_left, max_free_right); 1374 map->root = entry; 1375 VM_MAP_ASSERT_CONSISTENT(map); 1376 } 1377 1378 enum unlink_merge_type { 1379 UNLINK_MERGE_NONE, 1380 UNLINK_MERGE_NEXT 1381 }; 1382 1383 static void 1384 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1385 enum unlink_merge_type op) 1386 { 1387 vm_map_entry_t header, llist, rlist, root; 1388 vm_size_t max_free_left, max_free_right; 1389 1390 VM_MAP_ASSERT_LOCKED(map); 1391 header = &map->header; 1392 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1393 KASSERT(root != NULL, 1394 ("vm_map_entry_unlink: unlink object not mapped")); 1395 1396 vm_map_splay_findprev(root, &llist); 1397 vm_map_splay_findnext(root, &rlist); 1398 if (op == UNLINK_MERGE_NEXT) { 1399 rlist->start = root->start; 1400 rlist->offset = root->offset; 1401 } 1402 if (llist != header) { 1403 root = llist; 1404 llist = root->right; 1405 max_free_left = vm_map_splay_merge_left(header, root, llist); 1406 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1407 } else if (rlist != header) { 1408 root = rlist; 1409 rlist = root->left; 1410 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1411 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1412 } else { 1413 header->left = header->right = header; 1414 root = NULL; 1415 } 1416 if (root != NULL) 1417 root->max_free = vm_size_max(max_free_left, max_free_right); 1418 map->root = root; 1419 VM_MAP_ASSERT_CONSISTENT(map); 1420 map->nentries--; 1421 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1422 map->nentries, entry); 1423 } 1424 1425 /* 1426 * vm_map_entry_resize: 1427 * 1428 * Resize a vm_map_entry, recompute the amount of free space that 1429 * follows it and propagate that value up the tree. 1430 * 1431 * The map must be locked, and leaves it so. 1432 */ 1433 static void 1434 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1435 { 1436 vm_map_entry_t header, llist, rlist, root; 1437 1438 VM_MAP_ASSERT_LOCKED(map); 1439 header = &map->header; 1440 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1441 KASSERT(root != NULL, ("%s: resize object not mapped", __func__)); 1442 vm_map_splay_findnext(root, &rlist); 1443 entry->end += grow_amount; 1444 root->max_free = vm_size_max( 1445 vm_map_splay_merge_left(header, root, llist), 1446 vm_map_splay_merge_succ(header, root, rlist)); 1447 map->root = root; 1448 VM_MAP_ASSERT_CONSISTENT(map); 1449 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1450 __func__, map, map->nentries, entry); 1451 } 1452 1453 /* 1454 * vm_map_lookup_entry: [ internal use only ] 1455 * 1456 * Finds the map entry containing (or 1457 * immediately preceding) the specified address 1458 * in the given map; the entry is returned 1459 * in the "entry" parameter. The boolean 1460 * result indicates whether the address is 1461 * actually contained in the map. 1462 */ 1463 boolean_t 1464 vm_map_lookup_entry( 1465 vm_map_t map, 1466 vm_offset_t address, 1467 vm_map_entry_t *entry) /* OUT */ 1468 { 1469 vm_map_entry_t cur, header, lbound, ubound; 1470 boolean_t locked; 1471 1472 /* 1473 * If the map is empty, then the map entry immediately preceding 1474 * "address" is the map's header. 1475 */ 1476 header = &map->header; 1477 cur = map->root; 1478 if (cur == NULL) { 1479 *entry = header; 1480 return (FALSE); 1481 } 1482 if (address >= cur->start && cur->end > address) { 1483 *entry = cur; 1484 return (TRUE); 1485 } 1486 if ((locked = vm_map_locked(map)) || 1487 sx_try_upgrade(&map->lock)) { 1488 /* 1489 * Splay requires a write lock on the map. However, it only 1490 * restructures the binary search tree; it does not otherwise 1491 * change the map. Thus, the map's timestamp need not change 1492 * on a temporary upgrade. 1493 */ 1494 cur = vm_map_splay(map, address); 1495 if (!locked) { 1496 VM_MAP_UNLOCK_CONSISTENT(map); 1497 sx_downgrade(&map->lock); 1498 } 1499 1500 /* 1501 * If "address" is contained within a map entry, the new root 1502 * is that map entry. Otherwise, the new root is a map entry 1503 * immediately before or after "address". 1504 */ 1505 if (address < cur->start) { 1506 *entry = header; 1507 return (FALSE); 1508 } 1509 *entry = cur; 1510 return (address < cur->end); 1511 } 1512 /* 1513 * Since the map is only locked for read access, perform a 1514 * standard binary search tree lookup for "address". 1515 */ 1516 lbound = ubound = header; 1517 for (;;) { 1518 if (address < cur->start) { 1519 ubound = cur; 1520 cur = cur->left; 1521 if (cur == lbound) 1522 break; 1523 } else if (cur->end <= address) { 1524 lbound = cur; 1525 cur = cur->right; 1526 if (cur == ubound) 1527 break; 1528 } else { 1529 *entry = cur; 1530 return (TRUE); 1531 } 1532 } 1533 *entry = lbound; 1534 return (FALSE); 1535 } 1536 1537 /* 1538 * vm_map_insert: 1539 * 1540 * Inserts the given whole VM object into the target 1541 * map at the specified address range. The object's 1542 * size should match that of the address range. 1543 * 1544 * Requires that the map be locked, and leaves it so. 1545 * 1546 * If object is non-NULL, ref count must be bumped by caller 1547 * prior to making call to account for the new entry. 1548 */ 1549 int 1550 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1551 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1552 { 1553 vm_map_entry_t new_entry, next_entry, prev_entry; 1554 struct ucred *cred; 1555 vm_eflags_t protoeflags; 1556 vm_inherit_t inheritance; 1557 u_long bdry; 1558 u_int bidx; 1559 1560 VM_MAP_ASSERT_LOCKED(map); 1561 KASSERT(object != kernel_object || 1562 (cow & MAP_COPY_ON_WRITE) == 0, 1563 ("vm_map_insert: kernel object and COW")); 1564 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 || 1565 (cow & MAP_SPLIT_BOUNDARY_MASK) != 0, 1566 ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x", 1567 object, cow)); 1568 KASSERT((prot & ~max) == 0, 1569 ("prot %#x is not subset of max_prot %#x", prot, max)); 1570 1571 /* 1572 * Check that the start and end points are not bogus. 1573 */ 1574 if (start == end || !vm_map_range_valid(map, start, end)) 1575 return (KERN_INVALID_ADDRESS); 1576 1577 /* 1578 * Find the entry prior to the proposed starting address; if it's part 1579 * of an existing entry, this range is bogus. 1580 */ 1581 if (vm_map_lookup_entry(map, start, &prev_entry)) 1582 return (KERN_NO_SPACE); 1583 1584 /* 1585 * Assert that the next entry doesn't overlap the end point. 1586 */ 1587 next_entry = vm_map_entry_succ(prev_entry); 1588 if (next_entry->start < end) 1589 return (KERN_NO_SPACE); 1590 1591 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1592 max != VM_PROT_NONE)) 1593 return (KERN_INVALID_ARGUMENT); 1594 1595 protoeflags = 0; 1596 if (cow & MAP_COPY_ON_WRITE) 1597 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1598 if (cow & MAP_NOFAULT) 1599 protoeflags |= MAP_ENTRY_NOFAULT; 1600 if (cow & MAP_DISABLE_SYNCER) 1601 protoeflags |= MAP_ENTRY_NOSYNC; 1602 if (cow & MAP_DISABLE_COREDUMP) 1603 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1604 if (cow & MAP_STACK_GROWS_DOWN) 1605 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1606 if (cow & MAP_STACK_GROWS_UP) 1607 protoeflags |= MAP_ENTRY_GROWS_UP; 1608 if (cow & MAP_WRITECOUNT) 1609 protoeflags |= MAP_ENTRY_WRITECNT; 1610 if (cow & MAP_VN_EXEC) 1611 protoeflags |= MAP_ENTRY_VN_EXEC; 1612 if ((cow & MAP_CREATE_GUARD) != 0) 1613 protoeflags |= MAP_ENTRY_GUARD; 1614 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1615 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1616 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1617 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1618 if (cow & MAP_INHERIT_SHARE) 1619 inheritance = VM_INHERIT_SHARE; 1620 else 1621 inheritance = VM_INHERIT_DEFAULT; 1622 if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) { 1623 /* This magically ignores index 0, for usual page size. */ 1624 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >> 1625 MAP_SPLIT_BOUNDARY_SHIFT; 1626 if (bidx >= MAXPAGESIZES) 1627 return (KERN_INVALID_ARGUMENT); 1628 bdry = pagesizes[bidx] - 1; 1629 if ((start & bdry) != 0 || (end & bdry) != 0) 1630 return (KERN_INVALID_ARGUMENT); 1631 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 1632 } 1633 1634 cred = NULL; 1635 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1636 goto charged; 1637 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1638 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1639 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1640 return (KERN_RESOURCE_SHORTAGE); 1641 KASSERT(object == NULL || 1642 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1643 object->cred == NULL, 1644 ("overcommit: vm_map_insert o %p", object)); 1645 cred = curthread->td_ucred; 1646 } 1647 1648 charged: 1649 /* Expand the kernel pmap, if necessary. */ 1650 if (map == kernel_map && end > kernel_vm_end) 1651 pmap_growkernel(end); 1652 if (object != NULL) { 1653 /* 1654 * OBJ_ONEMAPPING must be cleared unless this mapping 1655 * is trivially proven to be the only mapping for any 1656 * of the object's pages. (Object granularity 1657 * reference counting is insufficient to recognize 1658 * aliases with precision.) 1659 */ 1660 if ((object->flags & OBJ_ANON) != 0) { 1661 VM_OBJECT_WLOCK(object); 1662 if (object->ref_count > 1 || object->shadow_count != 0) 1663 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1664 VM_OBJECT_WUNLOCK(object); 1665 } 1666 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1667 protoeflags && 1668 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1669 MAP_VN_EXEC)) == 0 && 1670 prev_entry->end == start && (prev_entry->cred == cred || 1671 (prev_entry->object.vm_object != NULL && 1672 prev_entry->object.vm_object->cred == cred)) && 1673 vm_object_coalesce(prev_entry->object.vm_object, 1674 prev_entry->offset, 1675 (vm_size_t)(prev_entry->end - prev_entry->start), 1676 (vm_size_t)(end - prev_entry->end), cred != NULL && 1677 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1678 /* 1679 * We were able to extend the object. Determine if we 1680 * can extend the previous map entry to include the 1681 * new range as well. 1682 */ 1683 if (prev_entry->inheritance == inheritance && 1684 prev_entry->protection == prot && 1685 prev_entry->max_protection == max && 1686 prev_entry->wired_count == 0) { 1687 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1688 0, ("prev_entry %p has incoherent wiring", 1689 prev_entry)); 1690 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1691 map->size += end - prev_entry->end; 1692 vm_map_entry_resize(map, prev_entry, 1693 end - prev_entry->end); 1694 vm_map_try_merge_entries(map, prev_entry, next_entry); 1695 return (KERN_SUCCESS); 1696 } 1697 1698 /* 1699 * If we can extend the object but cannot extend the 1700 * map entry, we have to create a new map entry. We 1701 * must bump the ref count on the extended object to 1702 * account for it. object may be NULL. 1703 */ 1704 object = prev_entry->object.vm_object; 1705 offset = prev_entry->offset + 1706 (prev_entry->end - prev_entry->start); 1707 vm_object_reference(object); 1708 if (cred != NULL && object != NULL && object->cred != NULL && 1709 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1710 /* Object already accounts for this uid. */ 1711 cred = NULL; 1712 } 1713 } 1714 if (cred != NULL) 1715 crhold(cred); 1716 1717 /* 1718 * Create a new entry 1719 */ 1720 new_entry = vm_map_entry_create(map); 1721 new_entry->start = start; 1722 new_entry->end = end; 1723 new_entry->cred = NULL; 1724 1725 new_entry->eflags = protoeflags; 1726 new_entry->object.vm_object = object; 1727 new_entry->offset = offset; 1728 1729 new_entry->inheritance = inheritance; 1730 new_entry->protection = prot; 1731 new_entry->max_protection = max; 1732 new_entry->wired_count = 0; 1733 new_entry->wiring_thread = NULL; 1734 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1735 new_entry->next_read = start; 1736 1737 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1738 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1739 new_entry->cred = cred; 1740 1741 /* 1742 * Insert the new entry into the list 1743 */ 1744 vm_map_entry_link(map, new_entry); 1745 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1746 map->size += new_entry->end - new_entry->start; 1747 1748 /* 1749 * Try to coalesce the new entry with both the previous and next 1750 * entries in the list. Previously, we only attempted to coalesce 1751 * with the previous entry when object is NULL. Here, we handle the 1752 * other cases, which are less common. 1753 */ 1754 vm_map_try_merge_entries(map, prev_entry, new_entry); 1755 vm_map_try_merge_entries(map, new_entry, next_entry); 1756 1757 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1758 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1759 end - start, cow & MAP_PREFAULT_PARTIAL); 1760 } 1761 1762 return (KERN_SUCCESS); 1763 } 1764 1765 /* 1766 * vm_map_findspace: 1767 * 1768 * Find the first fit (lowest VM address) for "length" free bytes 1769 * beginning at address >= start in the given map. 1770 * 1771 * In a vm_map_entry, "max_free" is the maximum amount of 1772 * contiguous free space between an entry in its subtree and a 1773 * neighbor of that entry. This allows finding a free region in 1774 * one path down the tree, so O(log n) amortized with splay 1775 * trees. 1776 * 1777 * The map must be locked, and leaves it so. 1778 * 1779 * Returns: starting address if sufficient space, 1780 * vm_map_max(map)-length+1 if insufficient space. 1781 */ 1782 vm_offset_t 1783 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1784 { 1785 vm_map_entry_t header, llist, rlist, root, y; 1786 vm_size_t left_length, max_free_left, max_free_right; 1787 vm_offset_t gap_end; 1788 1789 /* 1790 * Request must fit within min/max VM address and must avoid 1791 * address wrap. 1792 */ 1793 start = MAX(start, vm_map_min(map)); 1794 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1795 return (vm_map_max(map) - length + 1); 1796 1797 /* Empty tree means wide open address space. */ 1798 if (map->root == NULL) 1799 return (start); 1800 1801 /* 1802 * After splay_split, if start is within an entry, push it to the start 1803 * of the following gap. If rlist is at the end of the gap containing 1804 * start, save the end of that gap in gap_end to see if the gap is big 1805 * enough; otherwise set gap_end to start skip gap-checking and move 1806 * directly to a search of the right subtree. 1807 */ 1808 header = &map->header; 1809 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1810 gap_end = rlist->start; 1811 if (root != NULL) { 1812 start = root->end; 1813 if (root->right != rlist) 1814 gap_end = start; 1815 max_free_left = vm_map_splay_merge_left(header, root, llist); 1816 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1817 } else if (rlist != header) { 1818 root = rlist; 1819 rlist = root->left; 1820 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1821 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1822 } else { 1823 root = llist; 1824 llist = root->right; 1825 max_free_left = vm_map_splay_merge_left(header, root, llist); 1826 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1827 } 1828 root->max_free = vm_size_max(max_free_left, max_free_right); 1829 map->root = root; 1830 VM_MAP_ASSERT_CONSISTENT(map); 1831 if (length <= gap_end - start) 1832 return (start); 1833 1834 /* With max_free, can immediately tell if no solution. */ 1835 if (root->right == header || length > root->right->max_free) 1836 return (vm_map_max(map) - length + 1); 1837 1838 /* 1839 * Splay for the least large-enough gap in the right subtree. 1840 */ 1841 llist = rlist = header; 1842 for (left_length = 0;; 1843 left_length = vm_map_entry_max_free_left(root, llist)) { 1844 if (length <= left_length) 1845 SPLAY_LEFT_STEP(root, y, llist, rlist, 1846 length <= vm_map_entry_max_free_left(y, llist)); 1847 else 1848 SPLAY_RIGHT_STEP(root, y, llist, rlist, 1849 length > vm_map_entry_max_free_left(y, root)); 1850 if (root == NULL) 1851 break; 1852 } 1853 root = llist; 1854 llist = root->right; 1855 max_free_left = vm_map_splay_merge_left(header, root, llist); 1856 if (rlist == header) { 1857 root->max_free = vm_size_max(max_free_left, 1858 vm_map_splay_merge_succ(header, root, rlist)); 1859 } else { 1860 y = rlist; 1861 rlist = y->left; 1862 y->max_free = vm_size_max( 1863 vm_map_splay_merge_pred(root, y, root), 1864 vm_map_splay_merge_right(header, y, rlist)); 1865 root->max_free = vm_size_max(max_free_left, y->max_free); 1866 } 1867 map->root = root; 1868 VM_MAP_ASSERT_CONSISTENT(map); 1869 return (root->end); 1870 } 1871 1872 int 1873 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1874 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1875 vm_prot_t max, int cow) 1876 { 1877 vm_offset_t end; 1878 int result; 1879 1880 end = start + length; 1881 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1882 object == NULL, 1883 ("vm_map_fixed: non-NULL backing object for stack")); 1884 vm_map_lock(map); 1885 VM_MAP_RANGE_CHECK(map, start, end); 1886 if ((cow & MAP_CHECK_EXCL) == 0) { 1887 result = vm_map_delete(map, start, end); 1888 if (result != KERN_SUCCESS) 1889 goto out; 1890 } 1891 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1892 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1893 prot, max, cow); 1894 } else { 1895 result = vm_map_insert(map, object, offset, start, end, 1896 prot, max, cow); 1897 } 1898 out: 1899 vm_map_unlock(map); 1900 return (result); 1901 } 1902 1903 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1904 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1905 1906 static int cluster_anon = 1; 1907 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1908 &cluster_anon, 0, 1909 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 1910 1911 static bool 1912 clustering_anon_allowed(vm_offset_t addr) 1913 { 1914 1915 switch (cluster_anon) { 1916 case 0: 1917 return (false); 1918 case 1: 1919 return (addr == 0); 1920 case 2: 1921 default: 1922 return (true); 1923 } 1924 } 1925 1926 static long aslr_restarts; 1927 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 1928 &aslr_restarts, 0, 1929 "Number of aslr failures"); 1930 1931 /* 1932 * Searches for the specified amount of free space in the given map with the 1933 * specified alignment. Performs an address-ordered, first-fit search from 1934 * the given address "*addr", with an optional upper bound "max_addr". If the 1935 * parameter "alignment" is zero, then the alignment is computed from the 1936 * given (object, offset) pair so as to enable the greatest possible use of 1937 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1938 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1939 * 1940 * The map must be locked. Initially, there must be at least "length" bytes 1941 * of free space at the given address. 1942 */ 1943 static int 1944 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1945 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1946 vm_offset_t alignment) 1947 { 1948 vm_offset_t aligned_addr, free_addr; 1949 1950 VM_MAP_ASSERT_LOCKED(map); 1951 free_addr = *addr; 1952 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 1953 ("caller failed to provide space %#jx at address %p", 1954 (uintmax_t)length, (void *)free_addr)); 1955 for (;;) { 1956 /* 1957 * At the start of every iteration, the free space at address 1958 * "*addr" is at least "length" bytes. 1959 */ 1960 if (alignment == 0) 1961 pmap_align_superpage(object, offset, addr, length); 1962 else if ((*addr & (alignment - 1)) != 0) { 1963 *addr &= ~(alignment - 1); 1964 *addr += alignment; 1965 } 1966 aligned_addr = *addr; 1967 if (aligned_addr == free_addr) { 1968 /* 1969 * Alignment did not change "*addr", so "*addr" must 1970 * still provide sufficient free space. 1971 */ 1972 return (KERN_SUCCESS); 1973 } 1974 1975 /* 1976 * Test for address wrap on "*addr". A wrapped "*addr" could 1977 * be a valid address, in which case vm_map_findspace() cannot 1978 * be relied upon to fail. 1979 */ 1980 if (aligned_addr < free_addr) 1981 return (KERN_NO_SPACE); 1982 *addr = vm_map_findspace(map, aligned_addr, length); 1983 if (*addr + length > vm_map_max(map) || 1984 (max_addr != 0 && *addr + length > max_addr)) 1985 return (KERN_NO_SPACE); 1986 free_addr = *addr; 1987 if (free_addr == aligned_addr) { 1988 /* 1989 * If a successful call to vm_map_findspace() did not 1990 * change "*addr", then "*addr" must still be aligned 1991 * and provide sufficient free space. 1992 */ 1993 return (KERN_SUCCESS); 1994 } 1995 } 1996 } 1997 1998 int 1999 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length, 2000 vm_offset_t max_addr, vm_offset_t alignment) 2001 { 2002 /* XXXKIB ASLR eh ? */ 2003 *addr = vm_map_findspace(map, *addr, length); 2004 if (*addr + length > vm_map_max(map) || 2005 (max_addr != 0 && *addr + length > max_addr)) 2006 return (KERN_NO_SPACE); 2007 return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr, 2008 alignment)); 2009 } 2010 2011 /* 2012 * vm_map_find finds an unallocated region in the target address 2013 * map with the given length. The search is defined to be 2014 * first-fit from the specified address; the region found is 2015 * returned in the same parameter. 2016 * 2017 * If object is non-NULL, ref count must be bumped by caller 2018 * prior to making call to account for the new entry. 2019 */ 2020 int 2021 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2022 vm_offset_t *addr, /* IN/OUT */ 2023 vm_size_t length, vm_offset_t max_addr, int find_space, 2024 vm_prot_t prot, vm_prot_t max, int cow) 2025 { 2026 vm_offset_t alignment, curr_min_addr, min_addr; 2027 int gap, pidx, rv, try; 2028 bool cluster, en_aslr, update_anon; 2029 2030 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 2031 object == NULL, 2032 ("vm_map_find: non-NULL backing object for stack")); 2033 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 2034 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 2035 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 2036 (object->flags & OBJ_COLORED) == 0)) 2037 find_space = VMFS_ANY_SPACE; 2038 if (find_space >> 8 != 0) { 2039 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 2040 alignment = (vm_offset_t)1 << (find_space >> 8); 2041 } else 2042 alignment = 0; 2043 en_aslr = (map->flags & MAP_ASLR) != 0; 2044 update_anon = cluster = clustering_anon_allowed(*addr) && 2045 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 2046 find_space != VMFS_NO_SPACE && object == NULL && 2047 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 2048 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 2049 curr_min_addr = min_addr = *addr; 2050 if (en_aslr && min_addr == 0 && !cluster && 2051 find_space != VMFS_NO_SPACE && 2052 (map->flags & MAP_ASLR_IGNSTART) != 0) 2053 curr_min_addr = min_addr = vm_map_min(map); 2054 try = 0; 2055 vm_map_lock(map); 2056 if (cluster) { 2057 curr_min_addr = map->anon_loc; 2058 if (curr_min_addr == 0) 2059 cluster = false; 2060 } 2061 if (find_space != VMFS_NO_SPACE) { 2062 KASSERT(find_space == VMFS_ANY_SPACE || 2063 find_space == VMFS_OPTIMAL_SPACE || 2064 find_space == VMFS_SUPER_SPACE || 2065 alignment != 0, ("unexpected VMFS flag")); 2066 again: 2067 /* 2068 * When creating an anonymous mapping, try clustering 2069 * with an existing anonymous mapping first. 2070 * 2071 * We make up to two attempts to find address space 2072 * for a given find_space value. The first attempt may 2073 * apply randomization or may cluster with an existing 2074 * anonymous mapping. If this first attempt fails, 2075 * perform a first-fit search of the available address 2076 * space. 2077 * 2078 * If all tries failed, and find_space is 2079 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 2080 * Again enable clustering and randomization. 2081 */ 2082 try++; 2083 MPASS(try <= 2); 2084 2085 if (try == 2) { 2086 /* 2087 * Second try: we failed either to find a 2088 * suitable region for randomizing the 2089 * allocation, or to cluster with an existing 2090 * mapping. Retry with free run. 2091 */ 2092 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 2093 vm_map_min(map) : min_addr; 2094 atomic_add_long(&aslr_restarts, 1); 2095 } 2096 2097 if (try == 1 && en_aslr && !cluster) { 2098 /* 2099 * Find space for allocation, including 2100 * gap needed for later randomization. 2101 */ 2102 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 2103 (find_space == VMFS_SUPER_SPACE || find_space == 2104 VMFS_OPTIMAL_SPACE) ? 1 : 0; 2105 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 2106 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 2107 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 2108 *addr = vm_map_findspace(map, curr_min_addr, 2109 length + gap * pagesizes[pidx]); 2110 if (*addr + length + gap * pagesizes[pidx] > 2111 vm_map_max(map)) 2112 goto again; 2113 /* And randomize the start address. */ 2114 *addr += (arc4random() % gap) * pagesizes[pidx]; 2115 if (max_addr != 0 && *addr + length > max_addr) 2116 goto again; 2117 } else { 2118 *addr = vm_map_findspace(map, curr_min_addr, length); 2119 if (*addr + length > vm_map_max(map) || 2120 (max_addr != 0 && *addr + length > max_addr)) { 2121 if (cluster) { 2122 cluster = false; 2123 MPASS(try == 1); 2124 goto again; 2125 } 2126 rv = KERN_NO_SPACE; 2127 goto done; 2128 } 2129 } 2130 2131 if (find_space != VMFS_ANY_SPACE && 2132 (rv = vm_map_alignspace(map, object, offset, addr, length, 2133 max_addr, alignment)) != KERN_SUCCESS) { 2134 if (find_space == VMFS_OPTIMAL_SPACE) { 2135 find_space = VMFS_ANY_SPACE; 2136 curr_min_addr = min_addr; 2137 cluster = update_anon; 2138 try = 0; 2139 goto again; 2140 } 2141 goto done; 2142 } 2143 } else if ((cow & MAP_REMAP) != 0) { 2144 if (!vm_map_range_valid(map, *addr, *addr + length)) { 2145 rv = KERN_INVALID_ADDRESS; 2146 goto done; 2147 } 2148 rv = vm_map_delete(map, *addr, *addr + length); 2149 if (rv != KERN_SUCCESS) 2150 goto done; 2151 } 2152 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 2153 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 2154 max, cow); 2155 } else { 2156 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 2157 prot, max, cow); 2158 } 2159 if (rv == KERN_SUCCESS && update_anon) 2160 map->anon_loc = *addr + length; 2161 done: 2162 vm_map_unlock(map); 2163 return (rv); 2164 } 2165 2166 /* 2167 * vm_map_find_min() is a variant of vm_map_find() that takes an 2168 * additional parameter (min_addr) and treats the given address 2169 * (*addr) differently. Specifically, it treats *addr as a hint 2170 * and not as the minimum address where the mapping is created. 2171 * 2172 * This function works in two phases. First, it tries to 2173 * allocate above the hint. If that fails and the hint is 2174 * greater than min_addr, it performs a second pass, replacing 2175 * the hint with min_addr as the minimum address for the 2176 * allocation. 2177 */ 2178 int 2179 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2180 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 2181 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2182 int cow) 2183 { 2184 vm_offset_t hint; 2185 int rv; 2186 2187 hint = *addr; 2188 for (;;) { 2189 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2190 find_space, prot, max, cow); 2191 if (rv == KERN_SUCCESS || min_addr >= hint) 2192 return (rv); 2193 *addr = hint = min_addr; 2194 } 2195 } 2196 2197 /* 2198 * A map entry with any of the following flags set must not be merged with 2199 * another entry. 2200 */ 2201 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 2202 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC) 2203 2204 static bool 2205 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2206 { 2207 2208 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2209 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2210 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2211 prev, entry)); 2212 return (prev->end == entry->start && 2213 prev->object.vm_object == entry->object.vm_object && 2214 (prev->object.vm_object == NULL || 2215 prev->offset + (prev->end - prev->start) == entry->offset) && 2216 prev->eflags == entry->eflags && 2217 prev->protection == entry->protection && 2218 prev->max_protection == entry->max_protection && 2219 prev->inheritance == entry->inheritance && 2220 prev->wired_count == entry->wired_count && 2221 prev->cred == entry->cred); 2222 } 2223 2224 static void 2225 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2226 { 2227 2228 /* 2229 * If the backing object is a vnode object, vm_object_deallocate() 2230 * calls vrele(). However, vrele() does not lock the vnode because 2231 * the vnode has additional references. Thus, the map lock can be 2232 * kept without causing a lock-order reversal with the vnode lock. 2233 * 2234 * Since we count the number of virtual page mappings in 2235 * object->un_pager.vnp.writemappings, the writemappings value 2236 * should not be adjusted when the entry is disposed of. 2237 */ 2238 if (entry->object.vm_object != NULL) 2239 vm_object_deallocate(entry->object.vm_object); 2240 if (entry->cred != NULL) 2241 crfree(entry->cred); 2242 vm_map_entry_dispose(map, entry); 2243 } 2244 2245 /* 2246 * vm_map_try_merge_entries: 2247 * 2248 * Compare the given map entry to its predecessor, and merge its precessor 2249 * into it if possible. The entry remains valid, and may be extended. 2250 * The predecessor may be deleted. 2251 * 2252 * The map must be locked. 2253 */ 2254 void 2255 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry, 2256 vm_map_entry_t entry) 2257 { 2258 2259 VM_MAP_ASSERT_LOCKED(map); 2260 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 && 2261 vm_map_mergeable_neighbors(prev_entry, entry)) { 2262 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT); 2263 vm_map_merged_neighbor_dispose(map, prev_entry); 2264 } 2265 } 2266 2267 /* 2268 * vm_map_entry_back: 2269 * 2270 * Allocate an object to back a map entry. 2271 */ 2272 static inline void 2273 vm_map_entry_back(vm_map_entry_t entry) 2274 { 2275 vm_object_t object; 2276 2277 KASSERT(entry->object.vm_object == NULL, 2278 ("map entry %p has backing object", entry)); 2279 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2280 ("map entry %p is a submap", entry)); 2281 object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL, 2282 entry->cred, entry->end - entry->start); 2283 entry->object.vm_object = object; 2284 entry->offset = 0; 2285 entry->cred = NULL; 2286 } 2287 2288 /* 2289 * vm_map_entry_charge_object 2290 * 2291 * If there is no object backing this entry, create one. Otherwise, if 2292 * the entry has cred, give it to the backing object. 2293 */ 2294 static inline void 2295 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2296 { 2297 2298 VM_MAP_ASSERT_LOCKED(map); 2299 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2300 ("map entry %p is a submap", entry)); 2301 if (entry->object.vm_object == NULL && !map->system_map && 2302 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2303 vm_map_entry_back(entry); 2304 else if (entry->object.vm_object != NULL && 2305 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2306 entry->cred != NULL) { 2307 VM_OBJECT_WLOCK(entry->object.vm_object); 2308 KASSERT(entry->object.vm_object->cred == NULL, 2309 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2310 entry->object.vm_object->cred = entry->cred; 2311 entry->object.vm_object->charge = entry->end - entry->start; 2312 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2313 entry->cred = NULL; 2314 } 2315 } 2316 2317 /* 2318 * vm_map_entry_clone 2319 * 2320 * Create a duplicate map entry for clipping. 2321 */ 2322 static vm_map_entry_t 2323 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry) 2324 { 2325 vm_map_entry_t new_entry; 2326 2327 VM_MAP_ASSERT_LOCKED(map); 2328 2329 /* 2330 * Create a backing object now, if none exists, so that more individual 2331 * objects won't be created after the map entry is split. 2332 */ 2333 vm_map_entry_charge_object(map, entry); 2334 2335 /* Clone the entry. */ 2336 new_entry = vm_map_entry_create(map); 2337 *new_entry = *entry; 2338 if (new_entry->cred != NULL) 2339 crhold(entry->cred); 2340 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2341 vm_object_reference(new_entry->object.vm_object); 2342 vm_map_entry_set_vnode_text(new_entry, true); 2343 /* 2344 * The object->un_pager.vnp.writemappings for the object of 2345 * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The 2346 * virtual pages are re-distributed among the clipped entries, 2347 * so the sum is left the same. 2348 */ 2349 } 2350 return (new_entry); 2351 } 2352 2353 /* 2354 * vm_map_clip_start: [ internal use only ] 2355 * 2356 * Asserts that the given entry begins at or after 2357 * the specified address; if necessary, 2358 * it splits the entry into two. 2359 */ 2360 static int 2361 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr) 2362 { 2363 vm_map_entry_t new_entry; 2364 int bdry_idx; 2365 2366 if (!map->system_map) 2367 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2368 "%s: map %p entry %p start 0x%jx", __func__, map, entry, 2369 (uintmax_t)startaddr); 2370 2371 if (startaddr <= entry->start) 2372 return (KERN_SUCCESS); 2373 2374 VM_MAP_ASSERT_LOCKED(map); 2375 KASSERT(entry->end > startaddr && entry->start < startaddr, 2376 ("%s: invalid clip of entry %p", __func__, entry)); 2377 2378 bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >> 2379 MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 2380 if (bdry_idx != 0) { 2381 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0) 2382 return (KERN_INVALID_ARGUMENT); 2383 } 2384 2385 new_entry = vm_map_entry_clone(map, entry); 2386 2387 /* 2388 * Split off the front portion. Insert the new entry BEFORE this one, 2389 * so that this entry has the specified starting address. 2390 */ 2391 new_entry->end = startaddr; 2392 vm_map_entry_link(map, new_entry); 2393 return (KERN_SUCCESS); 2394 } 2395 2396 /* 2397 * vm_map_lookup_clip_start: 2398 * 2399 * Find the entry at or just after 'start', and clip it if 'start' is in 2400 * the interior of the entry. Return entry after 'start', and in 2401 * prev_entry set the entry before 'start'. 2402 */ 2403 static int 2404 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start, 2405 vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry) 2406 { 2407 vm_map_entry_t entry; 2408 int rv; 2409 2410 if (!map->system_map) 2411 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2412 "%s: map %p start 0x%jx prev %p", __func__, map, 2413 (uintmax_t)start, prev_entry); 2414 2415 if (vm_map_lookup_entry(map, start, prev_entry)) { 2416 entry = *prev_entry; 2417 rv = vm_map_clip_start(map, entry, start); 2418 if (rv != KERN_SUCCESS) 2419 return (rv); 2420 *prev_entry = vm_map_entry_pred(entry); 2421 } else 2422 entry = vm_map_entry_succ(*prev_entry); 2423 *res_entry = entry; 2424 return (KERN_SUCCESS); 2425 } 2426 2427 /* 2428 * vm_map_clip_end: [ internal use only ] 2429 * 2430 * Asserts that the given entry ends at or before 2431 * the specified address; if necessary, 2432 * it splits the entry into two. 2433 */ 2434 static int 2435 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr) 2436 { 2437 vm_map_entry_t new_entry; 2438 int bdry_idx; 2439 2440 if (!map->system_map) 2441 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2442 "%s: map %p entry %p end 0x%jx", __func__, map, entry, 2443 (uintmax_t)endaddr); 2444 2445 if (endaddr >= entry->end) 2446 return (KERN_SUCCESS); 2447 2448 VM_MAP_ASSERT_LOCKED(map); 2449 KASSERT(entry->start < endaddr && entry->end > endaddr, 2450 ("%s: invalid clip of entry %p", __func__, entry)); 2451 2452 bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >> 2453 MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 2454 if (bdry_idx != 0) { 2455 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0) 2456 return (KERN_INVALID_ARGUMENT); 2457 } 2458 2459 new_entry = vm_map_entry_clone(map, entry); 2460 2461 /* 2462 * Split off the back portion. Insert the new entry AFTER this one, 2463 * so that this entry has the specified ending address. 2464 */ 2465 new_entry->start = endaddr; 2466 vm_map_entry_link(map, new_entry); 2467 2468 return (KERN_SUCCESS); 2469 } 2470 2471 /* 2472 * vm_map_submap: [ kernel use only ] 2473 * 2474 * Mark the given range as handled by a subordinate map. 2475 * 2476 * This range must have been created with vm_map_find, 2477 * and no other operations may have been performed on this 2478 * range prior to calling vm_map_submap. 2479 * 2480 * Only a limited number of operations can be performed 2481 * within this rage after calling vm_map_submap: 2482 * vm_fault 2483 * [Don't try vm_map_copy!] 2484 * 2485 * To remove a submapping, one must first remove the 2486 * range from the superior map, and then destroy the 2487 * submap (if desired). [Better yet, don't try it.] 2488 */ 2489 int 2490 vm_map_submap( 2491 vm_map_t map, 2492 vm_offset_t start, 2493 vm_offset_t end, 2494 vm_map_t submap) 2495 { 2496 vm_map_entry_t entry; 2497 int result; 2498 2499 result = KERN_INVALID_ARGUMENT; 2500 2501 vm_map_lock(submap); 2502 submap->flags |= MAP_IS_SUB_MAP; 2503 vm_map_unlock(submap); 2504 2505 vm_map_lock(map); 2506 VM_MAP_RANGE_CHECK(map, start, end); 2507 if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end && 2508 (entry->eflags & MAP_ENTRY_COW) == 0 && 2509 entry->object.vm_object == NULL) { 2510 result = vm_map_clip_start(map, entry, start); 2511 if (result != KERN_SUCCESS) 2512 goto unlock; 2513 result = vm_map_clip_end(map, entry, end); 2514 if (result != KERN_SUCCESS) 2515 goto unlock; 2516 entry->object.sub_map = submap; 2517 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2518 result = KERN_SUCCESS; 2519 } 2520 unlock: 2521 vm_map_unlock(map); 2522 2523 if (result != KERN_SUCCESS) { 2524 vm_map_lock(submap); 2525 submap->flags &= ~MAP_IS_SUB_MAP; 2526 vm_map_unlock(submap); 2527 } 2528 return (result); 2529 } 2530 2531 /* 2532 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2533 */ 2534 #define MAX_INIT_PT 96 2535 2536 /* 2537 * vm_map_pmap_enter: 2538 * 2539 * Preload the specified map's pmap with mappings to the specified 2540 * object's memory-resident pages. No further physical pages are 2541 * allocated, and no further virtual pages are retrieved from secondary 2542 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2543 * limited number of page mappings are created at the low-end of the 2544 * specified address range. (For this purpose, a superpage mapping 2545 * counts as one page mapping.) Otherwise, all resident pages within 2546 * the specified address range are mapped. 2547 */ 2548 static void 2549 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2550 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2551 { 2552 vm_offset_t start; 2553 vm_page_t p, p_start; 2554 vm_pindex_t mask, psize, threshold, tmpidx; 2555 2556 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2557 return; 2558 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2559 VM_OBJECT_WLOCK(object); 2560 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2561 pmap_object_init_pt(map->pmap, addr, object, pindex, 2562 size); 2563 VM_OBJECT_WUNLOCK(object); 2564 return; 2565 } 2566 VM_OBJECT_LOCK_DOWNGRADE(object); 2567 } else 2568 VM_OBJECT_RLOCK(object); 2569 2570 psize = atop(size); 2571 if (psize + pindex > object->size) { 2572 if (pindex >= object->size) { 2573 VM_OBJECT_RUNLOCK(object); 2574 return; 2575 } 2576 psize = object->size - pindex; 2577 } 2578 2579 start = 0; 2580 p_start = NULL; 2581 threshold = MAX_INIT_PT; 2582 2583 p = vm_page_find_least(object, pindex); 2584 /* 2585 * Assert: the variable p is either (1) the page with the 2586 * least pindex greater than or equal to the parameter pindex 2587 * or (2) NULL. 2588 */ 2589 for (; 2590 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2591 p = TAILQ_NEXT(p, listq)) { 2592 /* 2593 * don't allow an madvise to blow away our really 2594 * free pages allocating pv entries. 2595 */ 2596 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2597 vm_page_count_severe()) || 2598 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2599 tmpidx >= threshold)) { 2600 psize = tmpidx; 2601 break; 2602 } 2603 if (vm_page_all_valid(p)) { 2604 if (p_start == NULL) { 2605 start = addr + ptoa(tmpidx); 2606 p_start = p; 2607 } 2608 /* Jump ahead if a superpage mapping is possible. */ 2609 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2610 (pagesizes[p->psind] - 1)) == 0) { 2611 mask = atop(pagesizes[p->psind]) - 1; 2612 if (tmpidx + mask < psize && 2613 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2614 p += mask; 2615 threshold += mask; 2616 } 2617 } 2618 } else if (p_start != NULL) { 2619 pmap_enter_object(map->pmap, start, addr + 2620 ptoa(tmpidx), p_start, prot); 2621 p_start = NULL; 2622 } 2623 } 2624 if (p_start != NULL) 2625 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2626 p_start, prot); 2627 VM_OBJECT_RUNLOCK(object); 2628 } 2629 2630 /* 2631 * vm_map_protect: 2632 * 2633 * Sets the protection of the specified address 2634 * region in the target map. If "set_max" is 2635 * specified, the maximum protection is to be set; 2636 * otherwise, only the current protection is affected. 2637 */ 2638 int 2639 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2640 vm_prot_t new_prot, boolean_t set_max) 2641 { 2642 vm_map_entry_t entry, first_entry, in_tran, prev_entry; 2643 vm_object_t obj; 2644 struct ucred *cred; 2645 vm_prot_t old_prot; 2646 int rv; 2647 2648 if (start == end) 2649 return (KERN_SUCCESS); 2650 2651 again: 2652 in_tran = NULL; 2653 vm_map_lock(map); 2654 2655 /* 2656 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2657 * need to fault pages into the map and will drop the map lock while 2658 * doing so, and the VM object may end up in an inconsistent state if we 2659 * update the protection on the map entry in between faults. 2660 */ 2661 vm_map_wait_busy(map); 2662 2663 VM_MAP_RANGE_CHECK(map, start, end); 2664 2665 if (!vm_map_lookup_entry(map, start, &first_entry)) 2666 first_entry = vm_map_entry_succ(first_entry); 2667 2668 /* 2669 * Make a first pass to check for protection violations. 2670 */ 2671 for (entry = first_entry; entry->start < end; 2672 entry = vm_map_entry_succ(entry)) { 2673 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 2674 continue; 2675 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 2676 vm_map_unlock(map); 2677 return (KERN_INVALID_ARGUMENT); 2678 } 2679 if ((new_prot & entry->max_protection) != new_prot) { 2680 vm_map_unlock(map); 2681 return (KERN_PROTECTION_FAILURE); 2682 } 2683 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2684 in_tran = entry; 2685 } 2686 2687 /* 2688 * Postpone the operation until all in-transition map entries have 2689 * stabilized. An in-transition entry might already have its pages 2690 * wired and wired_count incremented, but not yet have its 2691 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call 2692 * vm_fault_copy_entry() in the final loop below. 2693 */ 2694 if (in_tran != NULL) { 2695 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2696 vm_map_unlock_and_wait(map, 0); 2697 goto again; 2698 } 2699 2700 /* 2701 * Before changing the protections, try to reserve swap space for any 2702 * private (i.e., copy-on-write) mappings that are transitioning from 2703 * read-only to read/write access. If a reservation fails, break out 2704 * of this loop early and let the next loop simplify the entries, since 2705 * some may now be mergeable. 2706 */ 2707 rv = vm_map_clip_start(map, first_entry, start); 2708 if (rv != KERN_SUCCESS) { 2709 vm_map_unlock(map); 2710 return (rv); 2711 } 2712 for (entry = first_entry; entry->start < end; 2713 entry = vm_map_entry_succ(entry)) { 2714 rv = vm_map_clip_end(map, entry, end); 2715 if (rv != KERN_SUCCESS) { 2716 vm_map_unlock(map); 2717 return (rv); 2718 } 2719 2720 if (set_max || 2721 ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 || 2722 ENTRY_CHARGED(entry) || 2723 (entry->eflags & MAP_ENTRY_GUARD) != 0) { 2724 continue; 2725 } 2726 2727 cred = curthread->td_ucred; 2728 obj = entry->object.vm_object; 2729 2730 if (obj == NULL || 2731 (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) { 2732 if (!swap_reserve(entry->end - entry->start)) { 2733 rv = KERN_RESOURCE_SHORTAGE; 2734 end = entry->end; 2735 break; 2736 } 2737 crhold(cred); 2738 entry->cred = cred; 2739 continue; 2740 } 2741 2742 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) 2743 continue; 2744 VM_OBJECT_WLOCK(obj); 2745 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2746 VM_OBJECT_WUNLOCK(obj); 2747 continue; 2748 } 2749 2750 /* 2751 * Charge for the whole object allocation now, since 2752 * we cannot distinguish between non-charged and 2753 * charged clipped mapping of the same object later. 2754 */ 2755 KASSERT(obj->charge == 0, 2756 ("vm_map_protect: object %p overcharged (entry %p)", 2757 obj, entry)); 2758 if (!swap_reserve(ptoa(obj->size))) { 2759 VM_OBJECT_WUNLOCK(obj); 2760 rv = KERN_RESOURCE_SHORTAGE; 2761 end = entry->end; 2762 break; 2763 } 2764 2765 crhold(cred); 2766 obj->cred = cred; 2767 obj->charge = ptoa(obj->size); 2768 VM_OBJECT_WUNLOCK(obj); 2769 } 2770 2771 /* 2772 * If enough swap space was available, go back and fix up protections. 2773 * Otherwise, just simplify entries, since some may have been modified. 2774 * [Note that clipping is not necessary the second time.] 2775 */ 2776 for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry; 2777 entry->start < end; 2778 vm_map_try_merge_entries(map, prev_entry, entry), 2779 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2780 if (rv != KERN_SUCCESS || 2781 (entry->eflags & MAP_ENTRY_GUARD) != 0) 2782 continue; 2783 2784 old_prot = entry->protection; 2785 2786 if (set_max) 2787 entry->protection = 2788 (entry->max_protection = new_prot) & 2789 old_prot; 2790 else 2791 entry->protection = new_prot; 2792 2793 /* 2794 * For user wired map entries, the normal lazy evaluation of 2795 * write access upgrades through soft page faults is 2796 * undesirable. Instead, immediately copy any pages that are 2797 * copy-on-write and enable write access in the physical map. 2798 */ 2799 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2800 (entry->protection & VM_PROT_WRITE) != 0 && 2801 (old_prot & VM_PROT_WRITE) == 0) 2802 vm_fault_copy_entry(map, map, entry, entry, NULL); 2803 2804 /* 2805 * When restricting access, update the physical map. Worry 2806 * about copy-on-write here. 2807 */ 2808 if ((old_prot & ~entry->protection) != 0) { 2809 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2810 VM_PROT_ALL) 2811 pmap_protect(map->pmap, entry->start, 2812 entry->end, 2813 entry->protection & MASK(entry)); 2814 #undef MASK 2815 } 2816 } 2817 vm_map_try_merge_entries(map, prev_entry, entry); 2818 vm_map_unlock(map); 2819 return (rv); 2820 } 2821 2822 /* 2823 * vm_map_madvise: 2824 * 2825 * This routine traverses a processes map handling the madvise 2826 * system call. Advisories are classified as either those effecting 2827 * the vm_map_entry structure, or those effecting the underlying 2828 * objects. 2829 */ 2830 int 2831 vm_map_madvise( 2832 vm_map_t map, 2833 vm_offset_t start, 2834 vm_offset_t end, 2835 int behav) 2836 { 2837 vm_map_entry_t entry, prev_entry; 2838 int rv; 2839 bool modify_map; 2840 2841 /* 2842 * Some madvise calls directly modify the vm_map_entry, in which case 2843 * we need to use an exclusive lock on the map and we need to perform 2844 * various clipping operations. Otherwise we only need a read-lock 2845 * on the map. 2846 */ 2847 switch(behav) { 2848 case MADV_NORMAL: 2849 case MADV_SEQUENTIAL: 2850 case MADV_RANDOM: 2851 case MADV_NOSYNC: 2852 case MADV_AUTOSYNC: 2853 case MADV_NOCORE: 2854 case MADV_CORE: 2855 if (start == end) 2856 return (0); 2857 modify_map = true; 2858 vm_map_lock(map); 2859 break; 2860 case MADV_WILLNEED: 2861 case MADV_DONTNEED: 2862 case MADV_FREE: 2863 if (start == end) 2864 return (0); 2865 modify_map = false; 2866 vm_map_lock_read(map); 2867 break; 2868 default: 2869 return (EINVAL); 2870 } 2871 2872 /* 2873 * Locate starting entry and clip if necessary. 2874 */ 2875 VM_MAP_RANGE_CHECK(map, start, end); 2876 2877 if (modify_map) { 2878 /* 2879 * madvise behaviors that are implemented in the vm_map_entry. 2880 * 2881 * We clip the vm_map_entry so that behavioral changes are 2882 * limited to the specified address range. 2883 */ 2884 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry); 2885 if (rv != KERN_SUCCESS) { 2886 vm_map_unlock(map); 2887 return (vm_mmap_to_errno(rv)); 2888 } 2889 2890 for (; entry->start < end; prev_entry = entry, 2891 entry = vm_map_entry_succ(entry)) { 2892 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 2893 continue; 2894 2895 rv = vm_map_clip_end(map, entry, end); 2896 if (rv != KERN_SUCCESS) { 2897 vm_map_unlock(map); 2898 return (vm_mmap_to_errno(rv)); 2899 } 2900 2901 switch (behav) { 2902 case MADV_NORMAL: 2903 vm_map_entry_set_behavior(entry, 2904 MAP_ENTRY_BEHAV_NORMAL); 2905 break; 2906 case MADV_SEQUENTIAL: 2907 vm_map_entry_set_behavior(entry, 2908 MAP_ENTRY_BEHAV_SEQUENTIAL); 2909 break; 2910 case MADV_RANDOM: 2911 vm_map_entry_set_behavior(entry, 2912 MAP_ENTRY_BEHAV_RANDOM); 2913 break; 2914 case MADV_NOSYNC: 2915 entry->eflags |= MAP_ENTRY_NOSYNC; 2916 break; 2917 case MADV_AUTOSYNC: 2918 entry->eflags &= ~MAP_ENTRY_NOSYNC; 2919 break; 2920 case MADV_NOCORE: 2921 entry->eflags |= MAP_ENTRY_NOCOREDUMP; 2922 break; 2923 case MADV_CORE: 2924 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2925 break; 2926 default: 2927 break; 2928 } 2929 vm_map_try_merge_entries(map, prev_entry, entry); 2930 } 2931 vm_map_try_merge_entries(map, prev_entry, entry); 2932 vm_map_unlock(map); 2933 } else { 2934 vm_pindex_t pstart, pend; 2935 2936 /* 2937 * madvise behaviors that are implemented in the underlying 2938 * vm_object. 2939 * 2940 * Since we don't clip the vm_map_entry, we have to clip 2941 * the vm_object pindex and count. 2942 */ 2943 if (!vm_map_lookup_entry(map, start, &entry)) 2944 entry = vm_map_entry_succ(entry); 2945 for (; entry->start < end; 2946 entry = vm_map_entry_succ(entry)) { 2947 vm_offset_t useEnd, useStart; 2948 2949 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 2950 continue; 2951 2952 /* 2953 * MADV_FREE would otherwise rewind time to 2954 * the creation of the shadow object. Because 2955 * we hold the VM map read-locked, neither the 2956 * entry's object nor the presence of a 2957 * backing object can change. 2958 */ 2959 if (behav == MADV_FREE && 2960 entry->object.vm_object != NULL && 2961 entry->object.vm_object->backing_object != NULL) 2962 continue; 2963 2964 pstart = OFF_TO_IDX(entry->offset); 2965 pend = pstart + atop(entry->end - entry->start); 2966 useStart = entry->start; 2967 useEnd = entry->end; 2968 2969 if (entry->start < start) { 2970 pstart += atop(start - entry->start); 2971 useStart = start; 2972 } 2973 if (entry->end > end) { 2974 pend -= atop(entry->end - end); 2975 useEnd = end; 2976 } 2977 2978 if (pstart >= pend) 2979 continue; 2980 2981 /* 2982 * Perform the pmap_advise() before clearing 2983 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2984 * concurrent pmap operation, such as pmap_remove(), 2985 * could clear a reference in the pmap and set 2986 * PGA_REFERENCED on the page before the pmap_advise() 2987 * had completed. Consequently, the page would appear 2988 * referenced based upon an old reference that 2989 * occurred before this pmap_advise() ran. 2990 */ 2991 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2992 pmap_advise(map->pmap, useStart, useEnd, 2993 behav); 2994 2995 vm_object_madvise(entry->object.vm_object, pstart, 2996 pend, behav); 2997 2998 /* 2999 * Pre-populate paging structures in the 3000 * WILLNEED case. For wired entries, the 3001 * paging structures are already populated. 3002 */ 3003 if (behav == MADV_WILLNEED && 3004 entry->wired_count == 0) { 3005 vm_map_pmap_enter(map, 3006 useStart, 3007 entry->protection, 3008 entry->object.vm_object, 3009 pstart, 3010 ptoa(pend - pstart), 3011 MAP_PREFAULT_MADVISE 3012 ); 3013 } 3014 } 3015 vm_map_unlock_read(map); 3016 } 3017 return (0); 3018 } 3019 3020 /* 3021 * vm_map_inherit: 3022 * 3023 * Sets the inheritance of the specified address 3024 * range in the target map. Inheritance 3025 * affects how the map will be shared with 3026 * child maps at the time of vmspace_fork. 3027 */ 3028 int 3029 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 3030 vm_inherit_t new_inheritance) 3031 { 3032 vm_map_entry_t entry, lentry, prev_entry, start_entry; 3033 int rv; 3034 3035 switch (new_inheritance) { 3036 case VM_INHERIT_NONE: 3037 case VM_INHERIT_COPY: 3038 case VM_INHERIT_SHARE: 3039 case VM_INHERIT_ZERO: 3040 break; 3041 default: 3042 return (KERN_INVALID_ARGUMENT); 3043 } 3044 if (start == end) 3045 return (KERN_SUCCESS); 3046 vm_map_lock(map); 3047 VM_MAP_RANGE_CHECK(map, start, end); 3048 rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry); 3049 if (rv != KERN_SUCCESS) 3050 goto unlock; 3051 if (vm_map_lookup_entry(map, end - 1, &lentry)) { 3052 rv = vm_map_clip_end(map, lentry, end); 3053 if (rv != KERN_SUCCESS) 3054 goto unlock; 3055 } 3056 if (new_inheritance == VM_INHERIT_COPY) { 3057 for (entry = start_entry; entry->start < end; 3058 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3059 if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) 3060 != 0) { 3061 rv = KERN_INVALID_ARGUMENT; 3062 goto unlock; 3063 } 3064 } 3065 } 3066 for (entry = start_entry; entry->start < end; prev_entry = entry, 3067 entry = vm_map_entry_succ(entry)) { 3068 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx", 3069 entry, (uintmax_t)entry->end, (uintmax_t)end)); 3070 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 3071 new_inheritance != VM_INHERIT_ZERO) 3072 entry->inheritance = new_inheritance; 3073 vm_map_try_merge_entries(map, prev_entry, entry); 3074 } 3075 vm_map_try_merge_entries(map, prev_entry, entry); 3076 unlock: 3077 vm_map_unlock(map); 3078 return (rv); 3079 } 3080 3081 /* 3082 * vm_map_entry_in_transition: 3083 * 3084 * Release the map lock, and sleep until the entry is no longer in 3085 * transition. Awake and acquire the map lock. If the map changed while 3086 * another held the lock, lookup a possibly-changed entry at or after the 3087 * 'start' position of the old entry. 3088 */ 3089 static vm_map_entry_t 3090 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, 3091 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) 3092 { 3093 vm_map_entry_t entry; 3094 vm_offset_t start; 3095 u_int last_timestamp; 3096 3097 VM_MAP_ASSERT_LOCKED(map); 3098 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3099 ("not in-tranition map entry %p", in_entry)); 3100 /* 3101 * We have not yet clipped the entry. 3102 */ 3103 start = MAX(in_start, in_entry->start); 3104 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3105 last_timestamp = map->timestamp; 3106 if (vm_map_unlock_and_wait(map, 0)) { 3107 /* 3108 * Allow interruption of user wiring/unwiring? 3109 */ 3110 } 3111 vm_map_lock(map); 3112 if (last_timestamp + 1 == map->timestamp) 3113 return (in_entry); 3114 3115 /* 3116 * Look again for the entry because the map was modified while it was 3117 * unlocked. Specifically, the entry may have been clipped, merged, or 3118 * deleted. 3119 */ 3120 if (!vm_map_lookup_entry(map, start, &entry)) { 3121 if (!holes_ok) { 3122 *io_end = start; 3123 return (NULL); 3124 } 3125 entry = vm_map_entry_succ(entry); 3126 } 3127 return (entry); 3128 } 3129 3130 /* 3131 * vm_map_unwire: 3132 * 3133 * Implements both kernel and user unwiring. 3134 */ 3135 int 3136 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 3137 int flags) 3138 { 3139 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3140 int rv; 3141 bool holes_ok, need_wakeup, user_unwire; 3142 3143 if (start == end) 3144 return (KERN_SUCCESS); 3145 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3146 user_unwire = (flags & VM_MAP_WIRE_USER) != 0; 3147 vm_map_lock(map); 3148 VM_MAP_RANGE_CHECK(map, start, end); 3149 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3150 if (holes_ok) 3151 first_entry = vm_map_entry_succ(first_entry); 3152 else { 3153 vm_map_unlock(map); 3154 return (KERN_INVALID_ADDRESS); 3155 } 3156 } 3157 rv = KERN_SUCCESS; 3158 for (entry = first_entry; entry->start < end; entry = next_entry) { 3159 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3160 /* 3161 * We have not yet clipped the entry. 3162 */ 3163 next_entry = vm_map_entry_in_transition(map, start, 3164 &end, holes_ok, entry); 3165 if (next_entry == NULL) { 3166 if (entry == first_entry) { 3167 vm_map_unlock(map); 3168 return (KERN_INVALID_ADDRESS); 3169 } 3170 rv = KERN_INVALID_ADDRESS; 3171 break; 3172 } 3173 first_entry = (entry == first_entry) ? 3174 next_entry : NULL; 3175 continue; 3176 } 3177 rv = vm_map_clip_start(map, entry, start); 3178 if (rv != KERN_SUCCESS) 3179 break; 3180 rv = vm_map_clip_end(map, entry, end); 3181 if (rv != KERN_SUCCESS) 3182 break; 3183 3184 /* 3185 * Mark the entry in case the map lock is released. (See 3186 * above.) 3187 */ 3188 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3189 entry->wiring_thread == NULL, 3190 ("owned map entry %p", entry)); 3191 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3192 entry->wiring_thread = curthread; 3193 next_entry = vm_map_entry_succ(entry); 3194 /* 3195 * Check the map for holes in the specified region. 3196 * If holes_ok, skip this check. 3197 */ 3198 if (!holes_ok && 3199 entry->end < end && next_entry->start > entry->end) { 3200 end = entry->end; 3201 rv = KERN_INVALID_ADDRESS; 3202 break; 3203 } 3204 /* 3205 * If system unwiring, require that the entry is system wired. 3206 */ 3207 if (!user_unwire && 3208 vm_map_entry_system_wired_count(entry) == 0) { 3209 end = entry->end; 3210 rv = KERN_INVALID_ARGUMENT; 3211 break; 3212 } 3213 } 3214 need_wakeup = false; 3215 if (first_entry == NULL && 3216 !vm_map_lookup_entry(map, start, &first_entry)) { 3217 KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); 3218 prev_entry = first_entry; 3219 entry = vm_map_entry_succ(first_entry); 3220 } else { 3221 prev_entry = vm_map_entry_pred(first_entry); 3222 entry = first_entry; 3223 } 3224 for (; entry->start < end; 3225 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3226 /* 3227 * If holes_ok was specified, an empty 3228 * space in the unwired region could have been mapped 3229 * while the map lock was dropped for draining 3230 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 3231 * could be simultaneously wiring this new mapping 3232 * entry. Detect these cases and skip any entries 3233 * marked as in transition by us. 3234 */ 3235 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3236 entry->wiring_thread != curthread) { 3237 KASSERT(holes_ok, 3238 ("vm_map_unwire: !HOLESOK and new/changed entry")); 3239 continue; 3240 } 3241 3242 if (rv == KERN_SUCCESS && (!user_unwire || 3243 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 3244 if (entry->wired_count == 1) 3245 vm_map_entry_unwire(map, entry); 3246 else 3247 entry->wired_count--; 3248 if (user_unwire) 3249 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3250 } 3251 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3252 ("vm_map_unwire: in-transition flag missing %p", entry)); 3253 KASSERT(entry->wiring_thread == curthread, 3254 ("vm_map_unwire: alien wire %p", entry)); 3255 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 3256 entry->wiring_thread = NULL; 3257 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3258 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3259 need_wakeup = true; 3260 } 3261 vm_map_try_merge_entries(map, prev_entry, entry); 3262 } 3263 vm_map_try_merge_entries(map, prev_entry, entry); 3264 vm_map_unlock(map); 3265 if (need_wakeup) 3266 vm_map_wakeup(map); 3267 return (rv); 3268 } 3269 3270 static void 3271 vm_map_wire_user_count_sub(u_long npages) 3272 { 3273 3274 atomic_subtract_long(&vm_user_wire_count, npages); 3275 } 3276 3277 static bool 3278 vm_map_wire_user_count_add(u_long npages) 3279 { 3280 u_long wired; 3281 3282 wired = vm_user_wire_count; 3283 do { 3284 if (npages + wired > vm_page_max_user_wired) 3285 return (false); 3286 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3287 npages + wired)); 3288 3289 return (true); 3290 } 3291 3292 /* 3293 * vm_map_wire_entry_failure: 3294 * 3295 * Handle a wiring failure on the given entry. 3296 * 3297 * The map should be locked. 3298 */ 3299 static void 3300 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3301 vm_offset_t failed_addr) 3302 { 3303 3304 VM_MAP_ASSERT_LOCKED(map); 3305 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3306 entry->wired_count == 1, 3307 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3308 KASSERT(failed_addr < entry->end, 3309 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3310 3311 /* 3312 * If any pages at the start of this entry were successfully wired, 3313 * then unwire them. 3314 */ 3315 if (failed_addr > entry->start) { 3316 pmap_unwire(map->pmap, entry->start, failed_addr); 3317 vm_object_unwire(entry->object.vm_object, entry->offset, 3318 failed_addr - entry->start, PQ_ACTIVE); 3319 } 3320 3321 /* 3322 * Assign an out-of-range value to represent the failure to wire this 3323 * entry. 3324 */ 3325 entry->wired_count = -1; 3326 } 3327 3328 int 3329 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3330 { 3331 int rv; 3332 3333 vm_map_lock(map); 3334 rv = vm_map_wire_locked(map, start, end, flags); 3335 vm_map_unlock(map); 3336 return (rv); 3337 } 3338 3339 /* 3340 * vm_map_wire_locked: 3341 * 3342 * Implements both kernel and user wiring. Returns with the map locked, 3343 * the map lock may be dropped. 3344 */ 3345 int 3346 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3347 { 3348 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3349 vm_offset_t faddr, saved_end, saved_start; 3350 u_long incr, npages; 3351 u_int bidx, last_timestamp; 3352 int rv; 3353 bool holes_ok, need_wakeup, user_wire; 3354 vm_prot_t prot; 3355 3356 VM_MAP_ASSERT_LOCKED(map); 3357 3358 if (start == end) 3359 return (KERN_SUCCESS); 3360 prot = 0; 3361 if (flags & VM_MAP_WIRE_WRITE) 3362 prot |= VM_PROT_WRITE; 3363 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3364 user_wire = (flags & VM_MAP_WIRE_USER) != 0; 3365 VM_MAP_RANGE_CHECK(map, start, end); 3366 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3367 if (holes_ok) 3368 first_entry = vm_map_entry_succ(first_entry); 3369 else 3370 return (KERN_INVALID_ADDRESS); 3371 } 3372 for (entry = first_entry; entry->start < end; entry = next_entry) { 3373 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3374 /* 3375 * We have not yet clipped the entry. 3376 */ 3377 next_entry = vm_map_entry_in_transition(map, start, 3378 &end, holes_ok, entry); 3379 if (next_entry == NULL) { 3380 if (entry == first_entry) 3381 return (KERN_INVALID_ADDRESS); 3382 rv = KERN_INVALID_ADDRESS; 3383 goto done; 3384 } 3385 first_entry = (entry == first_entry) ? 3386 next_entry : NULL; 3387 continue; 3388 } 3389 rv = vm_map_clip_start(map, entry, start); 3390 if (rv != KERN_SUCCESS) 3391 goto done; 3392 rv = vm_map_clip_end(map, entry, end); 3393 if (rv != KERN_SUCCESS) 3394 goto done; 3395 3396 /* 3397 * Mark the entry in case the map lock is released. (See 3398 * above.) 3399 */ 3400 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3401 entry->wiring_thread == NULL, 3402 ("owned map entry %p", entry)); 3403 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3404 entry->wiring_thread = curthread; 3405 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3406 || (entry->protection & prot) != prot) { 3407 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3408 if (!holes_ok) { 3409 end = entry->end; 3410 rv = KERN_INVALID_ADDRESS; 3411 goto done; 3412 } 3413 } else if (entry->wired_count == 0) { 3414 entry->wired_count++; 3415 3416 npages = atop(entry->end - entry->start); 3417 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3418 vm_map_wire_entry_failure(map, entry, 3419 entry->start); 3420 end = entry->end; 3421 rv = KERN_RESOURCE_SHORTAGE; 3422 goto done; 3423 } 3424 3425 /* 3426 * Release the map lock, relying on the in-transition 3427 * mark. Mark the map busy for fork. 3428 */ 3429 saved_start = entry->start; 3430 saved_end = entry->end; 3431 last_timestamp = map->timestamp; 3432 bidx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) 3433 >> MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 3434 incr = pagesizes[bidx]; 3435 vm_map_busy(map); 3436 vm_map_unlock(map); 3437 3438 for (faddr = saved_start; faddr < saved_end; 3439 faddr += incr) { 3440 /* 3441 * Simulate a fault to get the page and enter 3442 * it into the physical map. 3443 */ 3444 rv = vm_fault(map, faddr, VM_PROT_NONE, 3445 VM_FAULT_WIRE, NULL); 3446 if (rv != KERN_SUCCESS) 3447 break; 3448 } 3449 vm_map_lock(map); 3450 vm_map_unbusy(map); 3451 if (last_timestamp + 1 != map->timestamp) { 3452 /* 3453 * Look again for the entry because the map was 3454 * modified while it was unlocked. The entry 3455 * may have been clipped, but NOT merged or 3456 * deleted. 3457 */ 3458 if (!vm_map_lookup_entry(map, saved_start, 3459 &next_entry)) 3460 KASSERT(false, 3461 ("vm_map_wire: lookup failed")); 3462 first_entry = (entry == first_entry) ? 3463 next_entry : NULL; 3464 for (entry = next_entry; entry->end < saved_end; 3465 entry = vm_map_entry_succ(entry)) { 3466 /* 3467 * In case of failure, handle entries 3468 * that were not fully wired here; 3469 * fully wired entries are handled 3470 * later. 3471 */ 3472 if (rv != KERN_SUCCESS && 3473 faddr < entry->end) 3474 vm_map_wire_entry_failure(map, 3475 entry, faddr); 3476 } 3477 } 3478 if (rv != KERN_SUCCESS) { 3479 vm_map_wire_entry_failure(map, entry, faddr); 3480 if (user_wire) 3481 vm_map_wire_user_count_sub(npages); 3482 end = entry->end; 3483 goto done; 3484 } 3485 } else if (!user_wire || 3486 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3487 entry->wired_count++; 3488 } 3489 /* 3490 * Check the map for holes in the specified region. 3491 * If holes_ok was specified, skip this check. 3492 */ 3493 next_entry = vm_map_entry_succ(entry); 3494 if (!holes_ok && 3495 entry->end < end && next_entry->start > entry->end) { 3496 end = entry->end; 3497 rv = KERN_INVALID_ADDRESS; 3498 goto done; 3499 } 3500 } 3501 rv = KERN_SUCCESS; 3502 done: 3503 need_wakeup = false; 3504 if (first_entry == NULL && 3505 !vm_map_lookup_entry(map, start, &first_entry)) { 3506 KASSERT(holes_ok, ("vm_map_wire: lookup failed")); 3507 prev_entry = first_entry; 3508 entry = vm_map_entry_succ(first_entry); 3509 } else { 3510 prev_entry = vm_map_entry_pred(first_entry); 3511 entry = first_entry; 3512 } 3513 for (; entry->start < end; 3514 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3515 /* 3516 * If holes_ok was specified, an empty 3517 * space in the unwired region could have been mapped 3518 * while the map lock was dropped for faulting in the 3519 * pages or draining MAP_ENTRY_IN_TRANSITION. 3520 * Moreover, another thread could be simultaneously 3521 * wiring this new mapping entry. Detect these cases 3522 * and skip any entries marked as in transition not by us. 3523 * 3524 * Another way to get an entry not marked with 3525 * MAP_ENTRY_IN_TRANSITION is after failed clipping, 3526 * which set rv to KERN_INVALID_ARGUMENT. 3527 */ 3528 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3529 entry->wiring_thread != curthread) { 3530 KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT, 3531 ("vm_map_wire: !HOLESOK and new/changed entry")); 3532 continue; 3533 } 3534 3535 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { 3536 /* do nothing */ 3537 } else if (rv == KERN_SUCCESS) { 3538 if (user_wire) 3539 entry->eflags |= MAP_ENTRY_USER_WIRED; 3540 } else if (entry->wired_count == -1) { 3541 /* 3542 * Wiring failed on this entry. Thus, unwiring is 3543 * unnecessary. 3544 */ 3545 entry->wired_count = 0; 3546 } else if (!user_wire || 3547 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3548 /* 3549 * Undo the wiring. Wiring succeeded on this entry 3550 * but failed on a later entry. 3551 */ 3552 if (entry->wired_count == 1) { 3553 vm_map_entry_unwire(map, entry); 3554 if (user_wire) 3555 vm_map_wire_user_count_sub( 3556 atop(entry->end - entry->start)); 3557 } else 3558 entry->wired_count--; 3559 } 3560 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3561 ("vm_map_wire: in-transition flag missing %p", entry)); 3562 KASSERT(entry->wiring_thread == curthread, 3563 ("vm_map_wire: alien wire %p", entry)); 3564 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3565 MAP_ENTRY_WIRE_SKIPPED); 3566 entry->wiring_thread = NULL; 3567 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3568 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3569 need_wakeup = true; 3570 } 3571 vm_map_try_merge_entries(map, prev_entry, entry); 3572 } 3573 vm_map_try_merge_entries(map, prev_entry, entry); 3574 if (need_wakeup) 3575 vm_map_wakeup(map); 3576 return (rv); 3577 } 3578 3579 /* 3580 * vm_map_sync 3581 * 3582 * Push any dirty cached pages in the address range to their pager. 3583 * If syncio is TRUE, dirty pages are written synchronously. 3584 * If invalidate is TRUE, any cached pages are freed as well. 3585 * 3586 * If the size of the region from start to end is zero, we are 3587 * supposed to flush all modified pages within the region containing 3588 * start. Unfortunately, a region can be split or coalesced with 3589 * neighboring regions, making it difficult to determine what the 3590 * original region was. Therefore, we approximate this requirement by 3591 * flushing the current region containing start. 3592 * 3593 * Returns an error if any part of the specified range is not mapped. 3594 */ 3595 int 3596 vm_map_sync( 3597 vm_map_t map, 3598 vm_offset_t start, 3599 vm_offset_t end, 3600 boolean_t syncio, 3601 boolean_t invalidate) 3602 { 3603 vm_map_entry_t entry, first_entry, next_entry; 3604 vm_size_t size; 3605 vm_object_t object; 3606 vm_ooffset_t offset; 3607 unsigned int last_timestamp; 3608 int bdry_idx; 3609 boolean_t failed; 3610 3611 vm_map_lock_read(map); 3612 VM_MAP_RANGE_CHECK(map, start, end); 3613 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3614 vm_map_unlock_read(map); 3615 return (KERN_INVALID_ADDRESS); 3616 } else if (start == end) { 3617 start = first_entry->start; 3618 end = first_entry->end; 3619 } 3620 3621 /* 3622 * Make a first pass to check for user-wired memory, holes, 3623 * and partial invalidation of largepage mappings. 3624 */ 3625 for (entry = first_entry; entry->start < end; entry = next_entry) { 3626 if (invalidate) { 3627 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) { 3628 vm_map_unlock_read(map); 3629 return (KERN_INVALID_ARGUMENT); 3630 } 3631 bdry_idx = (entry->eflags & 3632 MAP_ENTRY_SPLIT_BOUNDARY_MASK) >> 3633 MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 3634 if (bdry_idx != 0 && 3635 ((start & (pagesizes[bdry_idx] - 1)) != 0 || 3636 (end & (pagesizes[bdry_idx] - 1)) != 0)) { 3637 vm_map_unlock_read(map); 3638 return (KERN_INVALID_ARGUMENT); 3639 } 3640 } 3641 next_entry = vm_map_entry_succ(entry); 3642 if (end > entry->end && 3643 entry->end != next_entry->start) { 3644 vm_map_unlock_read(map); 3645 return (KERN_INVALID_ADDRESS); 3646 } 3647 } 3648 3649 if (invalidate) 3650 pmap_remove(map->pmap, start, end); 3651 failed = FALSE; 3652 3653 /* 3654 * Make a second pass, cleaning/uncaching pages from the indicated 3655 * objects as we go. 3656 */ 3657 for (entry = first_entry; entry->start < end;) { 3658 offset = entry->offset + (start - entry->start); 3659 size = (end <= entry->end ? end : entry->end) - start; 3660 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 3661 vm_map_t smap; 3662 vm_map_entry_t tentry; 3663 vm_size_t tsize; 3664 3665 smap = entry->object.sub_map; 3666 vm_map_lock_read(smap); 3667 (void) vm_map_lookup_entry(smap, offset, &tentry); 3668 tsize = tentry->end - offset; 3669 if (tsize < size) 3670 size = tsize; 3671 object = tentry->object.vm_object; 3672 offset = tentry->offset + (offset - tentry->start); 3673 vm_map_unlock_read(smap); 3674 } else { 3675 object = entry->object.vm_object; 3676 } 3677 vm_object_reference(object); 3678 last_timestamp = map->timestamp; 3679 vm_map_unlock_read(map); 3680 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3681 failed = TRUE; 3682 start += size; 3683 vm_object_deallocate(object); 3684 vm_map_lock_read(map); 3685 if (last_timestamp == map->timestamp || 3686 !vm_map_lookup_entry(map, start, &entry)) 3687 entry = vm_map_entry_succ(entry); 3688 } 3689 3690 vm_map_unlock_read(map); 3691 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3692 } 3693 3694 /* 3695 * vm_map_entry_unwire: [ internal use only ] 3696 * 3697 * Make the region specified by this entry pageable. 3698 * 3699 * The map in question should be locked. 3700 * [This is the reason for this routine's existence.] 3701 */ 3702 static void 3703 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3704 { 3705 vm_size_t size; 3706 3707 VM_MAP_ASSERT_LOCKED(map); 3708 KASSERT(entry->wired_count > 0, 3709 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3710 3711 size = entry->end - entry->start; 3712 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3713 vm_map_wire_user_count_sub(atop(size)); 3714 pmap_unwire(map->pmap, entry->start, entry->end); 3715 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3716 PQ_ACTIVE); 3717 entry->wired_count = 0; 3718 } 3719 3720 static void 3721 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3722 { 3723 3724 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3725 vm_object_deallocate(entry->object.vm_object); 3726 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3727 } 3728 3729 /* 3730 * vm_map_entry_delete: [ internal use only ] 3731 * 3732 * Deallocate the given entry from the target map. 3733 */ 3734 static void 3735 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3736 { 3737 vm_object_t object; 3738 vm_pindex_t offidxstart, offidxend, size1; 3739 vm_size_t size; 3740 3741 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3742 object = entry->object.vm_object; 3743 3744 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3745 MPASS(entry->cred == NULL); 3746 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3747 MPASS(object == NULL); 3748 vm_map_entry_deallocate(entry, map->system_map); 3749 return; 3750 } 3751 3752 size = entry->end - entry->start; 3753 map->size -= size; 3754 3755 if (entry->cred != NULL) { 3756 swap_release_by_cred(size, entry->cred); 3757 crfree(entry->cred); 3758 } 3759 3760 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) { 3761 entry->object.vm_object = NULL; 3762 } else if ((object->flags & OBJ_ANON) != 0 || 3763 object == kernel_object) { 3764 KASSERT(entry->cred == NULL || object->cred == NULL || 3765 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3766 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3767 offidxstart = OFF_TO_IDX(entry->offset); 3768 offidxend = offidxstart + atop(size); 3769 VM_OBJECT_WLOCK(object); 3770 if (object->ref_count != 1 && 3771 ((object->flags & OBJ_ONEMAPPING) != 0 || 3772 object == kernel_object)) { 3773 vm_object_collapse(object); 3774 3775 /* 3776 * The option OBJPR_NOTMAPPED can be passed here 3777 * because vm_map_delete() already performed 3778 * pmap_remove() on the only mapping to this range 3779 * of pages. 3780 */ 3781 vm_object_page_remove(object, offidxstart, offidxend, 3782 OBJPR_NOTMAPPED); 3783 if (offidxend >= object->size && 3784 offidxstart < object->size) { 3785 size1 = object->size; 3786 object->size = offidxstart; 3787 if (object->cred != NULL) { 3788 size1 -= object->size; 3789 KASSERT(object->charge >= ptoa(size1), 3790 ("object %p charge < 0", object)); 3791 swap_release_by_cred(ptoa(size1), 3792 object->cred); 3793 object->charge -= ptoa(size1); 3794 } 3795 } 3796 } 3797 VM_OBJECT_WUNLOCK(object); 3798 } 3799 if (map->system_map) 3800 vm_map_entry_deallocate(entry, TRUE); 3801 else { 3802 entry->defer_next = curthread->td_map_def_user; 3803 curthread->td_map_def_user = entry; 3804 } 3805 } 3806 3807 /* 3808 * vm_map_delete: [ internal use only ] 3809 * 3810 * Deallocates the given address range from the target 3811 * map. 3812 */ 3813 int 3814 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3815 { 3816 vm_map_entry_t entry, next_entry, scratch_entry; 3817 int rv; 3818 3819 VM_MAP_ASSERT_LOCKED(map); 3820 3821 if (start == end) 3822 return (KERN_SUCCESS); 3823 3824 /* 3825 * Find the start of the region, and clip it. 3826 * Step through all entries in this region. 3827 */ 3828 rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry); 3829 if (rv != KERN_SUCCESS) 3830 return (rv); 3831 for (; entry->start < end; entry = next_entry) { 3832 /* 3833 * Wait for wiring or unwiring of an entry to complete. 3834 * Also wait for any system wirings to disappear on 3835 * user maps. 3836 */ 3837 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3838 (vm_map_pmap(map) != kernel_pmap && 3839 vm_map_entry_system_wired_count(entry) != 0)) { 3840 unsigned int last_timestamp; 3841 vm_offset_t saved_start; 3842 3843 saved_start = entry->start; 3844 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3845 last_timestamp = map->timestamp; 3846 (void) vm_map_unlock_and_wait(map, 0); 3847 vm_map_lock(map); 3848 if (last_timestamp + 1 != map->timestamp) { 3849 /* 3850 * Look again for the entry because the map was 3851 * modified while it was unlocked. 3852 * Specifically, the entry may have been 3853 * clipped, merged, or deleted. 3854 */ 3855 rv = vm_map_lookup_clip_start(map, saved_start, 3856 &next_entry, &scratch_entry); 3857 if (rv != KERN_SUCCESS) 3858 break; 3859 } else 3860 next_entry = entry; 3861 continue; 3862 } 3863 3864 /* XXXKIB or delete to the upper superpage boundary ? */ 3865 rv = vm_map_clip_end(map, entry, end); 3866 if (rv != KERN_SUCCESS) 3867 break; 3868 next_entry = vm_map_entry_succ(entry); 3869 3870 /* 3871 * Unwire before removing addresses from the pmap; otherwise, 3872 * unwiring will put the entries back in the pmap. 3873 */ 3874 if (entry->wired_count != 0) 3875 vm_map_entry_unwire(map, entry); 3876 3877 /* 3878 * Remove mappings for the pages, but only if the 3879 * mappings could exist. For instance, it does not 3880 * make sense to call pmap_remove() for guard entries. 3881 */ 3882 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3883 entry->object.vm_object != NULL) 3884 pmap_remove(map->pmap, entry->start, entry->end); 3885 3886 if (entry->end == map->anon_loc) 3887 map->anon_loc = entry->start; 3888 3889 /* 3890 * Delete the entry only after removing all pmap 3891 * entries pointing to its pages. (Otherwise, its 3892 * page frames may be reallocated, and any modify bits 3893 * will be set in the wrong object!) 3894 */ 3895 vm_map_entry_delete(map, entry); 3896 } 3897 return (rv); 3898 } 3899 3900 /* 3901 * vm_map_remove: 3902 * 3903 * Remove the given address range from the target map. 3904 * This is the exported form of vm_map_delete. 3905 */ 3906 int 3907 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3908 { 3909 int result; 3910 3911 vm_map_lock(map); 3912 VM_MAP_RANGE_CHECK(map, start, end); 3913 result = vm_map_delete(map, start, end); 3914 vm_map_unlock(map); 3915 return (result); 3916 } 3917 3918 /* 3919 * vm_map_check_protection: 3920 * 3921 * Assert that the target map allows the specified privilege on the 3922 * entire address region given. The entire region must be allocated. 3923 * 3924 * WARNING! This code does not and should not check whether the 3925 * contents of the region is accessible. For example a smaller file 3926 * might be mapped into a larger address space. 3927 * 3928 * NOTE! This code is also called by munmap(). 3929 * 3930 * The map must be locked. A read lock is sufficient. 3931 */ 3932 boolean_t 3933 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3934 vm_prot_t protection) 3935 { 3936 vm_map_entry_t entry; 3937 vm_map_entry_t tmp_entry; 3938 3939 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3940 return (FALSE); 3941 entry = tmp_entry; 3942 3943 while (start < end) { 3944 /* 3945 * No holes allowed! 3946 */ 3947 if (start < entry->start) 3948 return (FALSE); 3949 /* 3950 * Check protection associated with entry. 3951 */ 3952 if ((entry->protection & protection) != protection) 3953 return (FALSE); 3954 /* go to next entry */ 3955 start = entry->end; 3956 entry = vm_map_entry_succ(entry); 3957 } 3958 return (TRUE); 3959 } 3960 3961 /* 3962 * 3963 * vm_map_copy_swap_object: 3964 * 3965 * Copies a swap-backed object from an existing map entry to a 3966 * new one. Carries forward the swap charge. May change the 3967 * src object on return. 3968 */ 3969 static void 3970 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry, 3971 vm_offset_t size, vm_ooffset_t *fork_charge) 3972 { 3973 vm_object_t src_object; 3974 struct ucred *cred; 3975 int charged; 3976 3977 src_object = src_entry->object.vm_object; 3978 charged = ENTRY_CHARGED(src_entry); 3979 if ((src_object->flags & OBJ_ANON) != 0) { 3980 VM_OBJECT_WLOCK(src_object); 3981 vm_object_collapse(src_object); 3982 if ((src_object->flags & OBJ_ONEMAPPING) != 0) { 3983 vm_object_split(src_entry); 3984 src_object = src_entry->object.vm_object; 3985 } 3986 vm_object_reference_locked(src_object); 3987 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3988 VM_OBJECT_WUNLOCK(src_object); 3989 } else 3990 vm_object_reference(src_object); 3991 if (src_entry->cred != NULL && 3992 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3993 KASSERT(src_object->cred == NULL, 3994 ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p", 3995 src_object)); 3996 src_object->cred = src_entry->cred; 3997 src_object->charge = size; 3998 } 3999 dst_entry->object.vm_object = src_object; 4000 if (charged) { 4001 cred = curthread->td_ucred; 4002 crhold(cred); 4003 dst_entry->cred = cred; 4004 *fork_charge += size; 4005 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4006 crhold(cred); 4007 src_entry->cred = cred; 4008 *fork_charge += size; 4009 } 4010 } 4011 } 4012 4013 /* 4014 * vm_map_copy_entry: 4015 * 4016 * Copies the contents of the source entry to the destination 4017 * entry. The entries *must* be aligned properly. 4018 */ 4019 static void 4020 vm_map_copy_entry( 4021 vm_map_t src_map, 4022 vm_map_t dst_map, 4023 vm_map_entry_t src_entry, 4024 vm_map_entry_t dst_entry, 4025 vm_ooffset_t *fork_charge) 4026 { 4027 vm_object_t src_object; 4028 vm_map_entry_t fake_entry; 4029 vm_offset_t size; 4030 4031 VM_MAP_ASSERT_LOCKED(dst_map); 4032 4033 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 4034 return; 4035 4036 if (src_entry->wired_count == 0 || 4037 (src_entry->protection & VM_PROT_WRITE) == 0) { 4038 /* 4039 * If the source entry is marked needs_copy, it is already 4040 * write-protected. 4041 */ 4042 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 4043 (src_entry->protection & VM_PROT_WRITE) != 0) { 4044 pmap_protect(src_map->pmap, 4045 src_entry->start, 4046 src_entry->end, 4047 src_entry->protection & ~VM_PROT_WRITE); 4048 } 4049 4050 /* 4051 * Make a copy of the object. 4052 */ 4053 size = src_entry->end - src_entry->start; 4054 if ((src_object = src_entry->object.vm_object) != NULL) { 4055 if (src_object->type == OBJT_DEFAULT || 4056 src_object->type == OBJT_SWAP) { 4057 vm_map_copy_swap_object(src_entry, dst_entry, 4058 size, fork_charge); 4059 /* May have split/collapsed, reload obj. */ 4060 src_object = src_entry->object.vm_object; 4061 } else { 4062 vm_object_reference(src_object); 4063 dst_entry->object.vm_object = src_object; 4064 } 4065 src_entry->eflags |= MAP_ENTRY_COW | 4066 MAP_ENTRY_NEEDS_COPY; 4067 dst_entry->eflags |= MAP_ENTRY_COW | 4068 MAP_ENTRY_NEEDS_COPY; 4069 dst_entry->offset = src_entry->offset; 4070 if (src_entry->eflags & MAP_ENTRY_WRITECNT) { 4071 /* 4072 * MAP_ENTRY_WRITECNT cannot 4073 * indicate write reference from 4074 * src_entry, since the entry is 4075 * marked as needs copy. Allocate a 4076 * fake entry that is used to 4077 * decrement object->un_pager writecount 4078 * at the appropriate time. Attach 4079 * fake_entry to the deferred list. 4080 */ 4081 fake_entry = vm_map_entry_create(dst_map); 4082 fake_entry->eflags = MAP_ENTRY_WRITECNT; 4083 src_entry->eflags &= ~MAP_ENTRY_WRITECNT; 4084 vm_object_reference(src_object); 4085 fake_entry->object.vm_object = src_object; 4086 fake_entry->start = src_entry->start; 4087 fake_entry->end = src_entry->end; 4088 fake_entry->defer_next = 4089 curthread->td_map_def_user; 4090 curthread->td_map_def_user = fake_entry; 4091 } 4092 4093 pmap_copy(dst_map->pmap, src_map->pmap, 4094 dst_entry->start, dst_entry->end - dst_entry->start, 4095 src_entry->start); 4096 } else { 4097 dst_entry->object.vm_object = NULL; 4098 dst_entry->offset = 0; 4099 if (src_entry->cred != NULL) { 4100 dst_entry->cred = curthread->td_ucred; 4101 crhold(dst_entry->cred); 4102 *fork_charge += size; 4103 } 4104 } 4105 } else { 4106 /* 4107 * We don't want to make writeable wired pages copy-on-write. 4108 * Immediately copy these pages into the new map by simulating 4109 * page faults. The new pages are pageable. 4110 */ 4111 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 4112 fork_charge); 4113 } 4114 } 4115 4116 /* 4117 * vmspace_map_entry_forked: 4118 * Update the newly-forked vmspace each time a map entry is inherited 4119 * or copied. The values for vm_dsize and vm_tsize are approximate 4120 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 4121 */ 4122 static void 4123 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 4124 vm_map_entry_t entry) 4125 { 4126 vm_size_t entrysize; 4127 vm_offset_t newend; 4128 4129 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 4130 return; 4131 entrysize = entry->end - entry->start; 4132 vm2->vm_map.size += entrysize; 4133 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 4134 vm2->vm_ssize += btoc(entrysize); 4135 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 4136 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 4137 newend = MIN(entry->end, 4138 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 4139 vm2->vm_dsize += btoc(newend - entry->start); 4140 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 4141 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 4142 newend = MIN(entry->end, 4143 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 4144 vm2->vm_tsize += btoc(newend - entry->start); 4145 } 4146 } 4147 4148 /* 4149 * vmspace_fork: 4150 * Create a new process vmspace structure and vm_map 4151 * based on those of an existing process. The new map 4152 * is based on the old map, according to the inheritance 4153 * values on the regions in that map. 4154 * 4155 * XXX It might be worth coalescing the entries added to the new vmspace. 4156 * 4157 * The source map must not be locked. 4158 */ 4159 struct vmspace * 4160 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 4161 { 4162 struct vmspace *vm2; 4163 vm_map_t new_map, old_map; 4164 vm_map_entry_t new_entry, old_entry; 4165 vm_object_t object; 4166 int error, locked; 4167 vm_inherit_t inh; 4168 4169 old_map = &vm1->vm_map; 4170 /* Copy immutable fields of vm1 to vm2. */ 4171 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 4172 pmap_pinit); 4173 if (vm2 == NULL) 4174 return (NULL); 4175 4176 vm2->vm_taddr = vm1->vm_taddr; 4177 vm2->vm_daddr = vm1->vm_daddr; 4178 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 4179 vm_map_lock(old_map); 4180 if (old_map->busy) 4181 vm_map_wait_busy(old_map); 4182 new_map = &vm2->vm_map; 4183 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 4184 KASSERT(locked, ("vmspace_fork: lock failed")); 4185 4186 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 4187 if (error != 0) { 4188 sx_xunlock(&old_map->lock); 4189 sx_xunlock(&new_map->lock); 4190 vm_map_process_deferred(); 4191 vmspace_free(vm2); 4192 return (NULL); 4193 } 4194 4195 new_map->anon_loc = old_map->anon_loc; 4196 new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART); 4197 4198 VM_MAP_ENTRY_FOREACH(old_entry, old_map) { 4199 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 4200 panic("vm_map_fork: encountered a submap"); 4201 4202 inh = old_entry->inheritance; 4203 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 4204 inh != VM_INHERIT_NONE) 4205 inh = VM_INHERIT_COPY; 4206 4207 switch (inh) { 4208 case VM_INHERIT_NONE: 4209 break; 4210 4211 case VM_INHERIT_SHARE: 4212 /* 4213 * Clone the entry, creating the shared object if 4214 * necessary. 4215 */ 4216 object = old_entry->object.vm_object; 4217 if (object == NULL) { 4218 vm_map_entry_back(old_entry); 4219 object = old_entry->object.vm_object; 4220 } 4221 4222 /* 4223 * Add the reference before calling vm_object_shadow 4224 * to insure that a shadow object is created. 4225 */ 4226 vm_object_reference(object); 4227 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4228 vm_object_shadow(&old_entry->object.vm_object, 4229 &old_entry->offset, 4230 old_entry->end - old_entry->start, 4231 old_entry->cred, 4232 /* Transfer the second reference too. */ 4233 true); 4234 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4235 old_entry->cred = NULL; 4236 4237 /* 4238 * As in vm_map_merged_neighbor_dispose(), 4239 * the vnode lock will not be acquired in 4240 * this call to vm_object_deallocate(). 4241 */ 4242 vm_object_deallocate(object); 4243 object = old_entry->object.vm_object; 4244 } else { 4245 VM_OBJECT_WLOCK(object); 4246 vm_object_clear_flag(object, OBJ_ONEMAPPING); 4247 if (old_entry->cred != NULL) { 4248 KASSERT(object->cred == NULL, 4249 ("vmspace_fork both cred")); 4250 object->cred = old_entry->cred; 4251 object->charge = old_entry->end - 4252 old_entry->start; 4253 old_entry->cred = NULL; 4254 } 4255 4256 /* 4257 * Assert the correct state of the vnode 4258 * v_writecount while the object is locked, to 4259 * not relock it later for the assertion 4260 * correctness. 4261 */ 4262 if (old_entry->eflags & MAP_ENTRY_WRITECNT && 4263 object->type == OBJT_VNODE) { 4264 KASSERT(((struct vnode *)object-> 4265 handle)->v_writecount > 0, 4266 ("vmspace_fork: v_writecount %p", 4267 object)); 4268 KASSERT(object->un_pager.vnp. 4269 writemappings > 0, 4270 ("vmspace_fork: vnp.writecount %p", 4271 object)); 4272 } 4273 VM_OBJECT_WUNLOCK(object); 4274 } 4275 4276 /* 4277 * Clone the entry, referencing the shared object. 4278 */ 4279 new_entry = vm_map_entry_create(new_map); 4280 *new_entry = *old_entry; 4281 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4282 MAP_ENTRY_IN_TRANSITION); 4283 new_entry->wiring_thread = NULL; 4284 new_entry->wired_count = 0; 4285 if (new_entry->eflags & MAP_ENTRY_WRITECNT) { 4286 vm_pager_update_writecount(object, 4287 new_entry->start, new_entry->end); 4288 } 4289 vm_map_entry_set_vnode_text(new_entry, true); 4290 4291 /* 4292 * Insert the entry into the new map -- we know we're 4293 * inserting at the end of the new map. 4294 */ 4295 vm_map_entry_link(new_map, new_entry); 4296 vmspace_map_entry_forked(vm1, vm2, new_entry); 4297 4298 /* 4299 * Update the physical map 4300 */ 4301 pmap_copy(new_map->pmap, old_map->pmap, 4302 new_entry->start, 4303 (old_entry->end - old_entry->start), 4304 old_entry->start); 4305 break; 4306 4307 case VM_INHERIT_COPY: 4308 /* 4309 * Clone the entry and link into the map. 4310 */ 4311 new_entry = vm_map_entry_create(new_map); 4312 *new_entry = *old_entry; 4313 /* 4314 * Copied entry is COW over the old object. 4315 */ 4316 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4317 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT); 4318 new_entry->wiring_thread = NULL; 4319 new_entry->wired_count = 0; 4320 new_entry->object.vm_object = NULL; 4321 new_entry->cred = NULL; 4322 vm_map_entry_link(new_map, new_entry); 4323 vmspace_map_entry_forked(vm1, vm2, new_entry); 4324 vm_map_copy_entry(old_map, new_map, old_entry, 4325 new_entry, fork_charge); 4326 vm_map_entry_set_vnode_text(new_entry, true); 4327 break; 4328 4329 case VM_INHERIT_ZERO: 4330 /* 4331 * Create a new anonymous mapping entry modelled from 4332 * the old one. 4333 */ 4334 new_entry = vm_map_entry_create(new_map); 4335 memset(new_entry, 0, sizeof(*new_entry)); 4336 4337 new_entry->start = old_entry->start; 4338 new_entry->end = old_entry->end; 4339 new_entry->eflags = old_entry->eflags & 4340 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4341 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC | 4342 MAP_ENTRY_SPLIT_BOUNDARY_MASK); 4343 new_entry->protection = old_entry->protection; 4344 new_entry->max_protection = old_entry->max_protection; 4345 new_entry->inheritance = VM_INHERIT_ZERO; 4346 4347 vm_map_entry_link(new_map, new_entry); 4348 vmspace_map_entry_forked(vm1, vm2, new_entry); 4349 4350 new_entry->cred = curthread->td_ucred; 4351 crhold(new_entry->cred); 4352 *fork_charge += (new_entry->end - new_entry->start); 4353 4354 break; 4355 } 4356 } 4357 /* 4358 * Use inlined vm_map_unlock() to postpone handling the deferred 4359 * map entries, which cannot be done until both old_map and 4360 * new_map locks are released. 4361 */ 4362 sx_xunlock(&old_map->lock); 4363 sx_xunlock(&new_map->lock); 4364 vm_map_process_deferred(); 4365 4366 return (vm2); 4367 } 4368 4369 /* 4370 * Create a process's stack for exec_new_vmspace(). This function is never 4371 * asked to wire the newly created stack. 4372 */ 4373 int 4374 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4375 vm_prot_t prot, vm_prot_t max, int cow) 4376 { 4377 vm_size_t growsize, init_ssize; 4378 rlim_t vmemlim; 4379 int rv; 4380 4381 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4382 growsize = sgrowsiz; 4383 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4384 vm_map_lock(map); 4385 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4386 /* If we would blow our VMEM resource limit, no go */ 4387 if (map->size + init_ssize > vmemlim) { 4388 rv = KERN_NO_SPACE; 4389 goto out; 4390 } 4391 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4392 max, cow); 4393 out: 4394 vm_map_unlock(map); 4395 return (rv); 4396 } 4397 4398 static int stack_guard_page = 1; 4399 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4400 &stack_guard_page, 0, 4401 "Specifies the number of guard pages for a stack that grows"); 4402 4403 static int 4404 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4405 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4406 { 4407 vm_map_entry_t new_entry, prev_entry; 4408 vm_offset_t bot, gap_bot, gap_top, top; 4409 vm_size_t init_ssize, sgp; 4410 int orient, rv; 4411 4412 /* 4413 * The stack orientation is piggybacked with the cow argument. 4414 * Extract it into orient and mask the cow argument so that we 4415 * don't pass it around further. 4416 */ 4417 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4418 KASSERT(orient != 0, ("No stack grow direction")); 4419 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4420 ("bi-dir stack")); 4421 4422 if (max_ssize == 0 || 4423 !vm_map_range_valid(map, addrbos, addrbos + max_ssize)) 4424 return (KERN_INVALID_ADDRESS); 4425 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4426 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4427 (vm_size_t)stack_guard_page * PAGE_SIZE; 4428 if (sgp >= max_ssize) 4429 return (KERN_INVALID_ARGUMENT); 4430 4431 init_ssize = growsize; 4432 if (max_ssize < init_ssize + sgp) 4433 init_ssize = max_ssize - sgp; 4434 4435 /* If addr is already mapped, no go */ 4436 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4437 return (KERN_NO_SPACE); 4438 4439 /* 4440 * If we can't accommodate max_ssize in the current mapping, no go. 4441 */ 4442 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize) 4443 return (KERN_NO_SPACE); 4444 4445 /* 4446 * We initially map a stack of only init_ssize. We will grow as 4447 * needed later. Depending on the orientation of the stack (i.e. 4448 * the grow direction) we either map at the top of the range, the 4449 * bottom of the range or in the middle. 4450 * 4451 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4452 * and cow to be 0. Possibly we should eliminate these as input 4453 * parameters, and just pass these values here in the insert call. 4454 */ 4455 if (orient == MAP_STACK_GROWS_DOWN) { 4456 bot = addrbos + max_ssize - init_ssize; 4457 top = bot + init_ssize; 4458 gap_bot = addrbos; 4459 gap_top = bot; 4460 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4461 bot = addrbos; 4462 top = bot + init_ssize; 4463 gap_bot = top; 4464 gap_top = addrbos + max_ssize; 4465 } 4466 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 4467 if (rv != KERN_SUCCESS) 4468 return (rv); 4469 new_entry = vm_map_entry_succ(prev_entry); 4470 KASSERT(new_entry->end == top || new_entry->start == bot, 4471 ("Bad entry start/end for new stack entry")); 4472 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4473 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4474 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4475 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4476 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4477 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4478 if (gap_bot == gap_top) 4479 return (KERN_SUCCESS); 4480 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4481 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4482 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 4483 if (rv == KERN_SUCCESS) { 4484 /* 4485 * Gap can never successfully handle a fault, so 4486 * read-ahead logic is never used for it. Re-use 4487 * next_read of the gap entry to store 4488 * stack_guard_page for vm_map_growstack(). 4489 */ 4490 if (orient == MAP_STACK_GROWS_DOWN) 4491 vm_map_entry_pred(new_entry)->next_read = sgp; 4492 else 4493 vm_map_entry_succ(new_entry)->next_read = sgp; 4494 } else { 4495 (void)vm_map_delete(map, bot, top); 4496 } 4497 return (rv); 4498 } 4499 4500 /* 4501 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4502 * successfully grow the stack. 4503 */ 4504 static int 4505 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4506 { 4507 vm_map_entry_t stack_entry; 4508 struct proc *p; 4509 struct vmspace *vm; 4510 struct ucred *cred; 4511 vm_offset_t gap_end, gap_start, grow_start; 4512 vm_size_t grow_amount, guard, max_grow; 4513 rlim_t lmemlim, stacklim, vmemlim; 4514 int rv, rv1; 4515 bool gap_deleted, grow_down, is_procstack; 4516 #ifdef notyet 4517 uint64_t limit; 4518 #endif 4519 #ifdef RACCT 4520 int error; 4521 #endif 4522 4523 p = curproc; 4524 vm = p->p_vmspace; 4525 4526 /* 4527 * Disallow stack growth when the access is performed by a 4528 * debugger or AIO daemon. The reason is that the wrong 4529 * resource limits are applied. 4530 */ 4531 if (p != initproc && (map != &p->p_vmspace->vm_map || 4532 p->p_textvp == NULL)) 4533 return (KERN_FAILURE); 4534 4535 MPASS(!map->system_map); 4536 4537 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4538 stacklim = lim_cur(curthread, RLIMIT_STACK); 4539 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4540 retry: 4541 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4542 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4543 return (KERN_FAILURE); 4544 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4545 return (KERN_SUCCESS); 4546 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4547 stack_entry = vm_map_entry_succ(gap_entry); 4548 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4549 stack_entry->start != gap_entry->end) 4550 return (KERN_FAILURE); 4551 grow_amount = round_page(stack_entry->start - addr); 4552 grow_down = true; 4553 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4554 stack_entry = vm_map_entry_pred(gap_entry); 4555 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4556 stack_entry->end != gap_entry->start) 4557 return (KERN_FAILURE); 4558 grow_amount = round_page(addr + 1 - stack_entry->end); 4559 grow_down = false; 4560 } else { 4561 return (KERN_FAILURE); 4562 } 4563 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4564 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4565 gap_entry->next_read; 4566 max_grow = gap_entry->end - gap_entry->start; 4567 if (guard > max_grow) 4568 return (KERN_NO_SPACE); 4569 max_grow -= guard; 4570 if (grow_amount > max_grow) 4571 return (KERN_NO_SPACE); 4572 4573 /* 4574 * If this is the main process stack, see if we're over the stack 4575 * limit. 4576 */ 4577 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4578 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 4579 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4580 return (KERN_NO_SPACE); 4581 4582 #ifdef RACCT 4583 if (racct_enable) { 4584 PROC_LOCK(p); 4585 if (is_procstack && racct_set(p, RACCT_STACK, 4586 ctob(vm->vm_ssize) + grow_amount)) { 4587 PROC_UNLOCK(p); 4588 return (KERN_NO_SPACE); 4589 } 4590 PROC_UNLOCK(p); 4591 } 4592 #endif 4593 4594 grow_amount = roundup(grow_amount, sgrowsiz); 4595 if (grow_amount > max_grow) 4596 grow_amount = max_grow; 4597 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4598 grow_amount = trunc_page((vm_size_t)stacklim) - 4599 ctob(vm->vm_ssize); 4600 } 4601 4602 #ifdef notyet 4603 PROC_LOCK(p); 4604 limit = racct_get_available(p, RACCT_STACK); 4605 PROC_UNLOCK(p); 4606 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4607 grow_amount = limit - ctob(vm->vm_ssize); 4608 #endif 4609 4610 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4611 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4612 rv = KERN_NO_SPACE; 4613 goto out; 4614 } 4615 #ifdef RACCT 4616 if (racct_enable) { 4617 PROC_LOCK(p); 4618 if (racct_set(p, RACCT_MEMLOCK, 4619 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4620 PROC_UNLOCK(p); 4621 rv = KERN_NO_SPACE; 4622 goto out; 4623 } 4624 PROC_UNLOCK(p); 4625 } 4626 #endif 4627 } 4628 4629 /* If we would blow our VMEM resource limit, no go */ 4630 if (map->size + grow_amount > vmemlim) { 4631 rv = KERN_NO_SPACE; 4632 goto out; 4633 } 4634 #ifdef RACCT 4635 if (racct_enable) { 4636 PROC_LOCK(p); 4637 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4638 PROC_UNLOCK(p); 4639 rv = KERN_NO_SPACE; 4640 goto out; 4641 } 4642 PROC_UNLOCK(p); 4643 } 4644 #endif 4645 4646 if (vm_map_lock_upgrade(map)) { 4647 gap_entry = NULL; 4648 vm_map_lock_read(map); 4649 goto retry; 4650 } 4651 4652 if (grow_down) { 4653 grow_start = gap_entry->end - grow_amount; 4654 if (gap_entry->start + grow_amount == gap_entry->end) { 4655 gap_start = gap_entry->start; 4656 gap_end = gap_entry->end; 4657 vm_map_entry_delete(map, gap_entry); 4658 gap_deleted = true; 4659 } else { 4660 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4661 vm_map_entry_resize(map, gap_entry, -grow_amount); 4662 gap_deleted = false; 4663 } 4664 rv = vm_map_insert(map, NULL, 0, grow_start, 4665 grow_start + grow_amount, 4666 stack_entry->protection, stack_entry->max_protection, 4667 MAP_STACK_GROWS_DOWN); 4668 if (rv != KERN_SUCCESS) { 4669 if (gap_deleted) { 4670 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4671 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4672 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4673 MPASS(rv1 == KERN_SUCCESS); 4674 } else 4675 vm_map_entry_resize(map, gap_entry, 4676 grow_amount); 4677 } 4678 } else { 4679 grow_start = stack_entry->end; 4680 cred = stack_entry->cred; 4681 if (cred == NULL && stack_entry->object.vm_object != NULL) 4682 cred = stack_entry->object.vm_object->cred; 4683 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4684 rv = KERN_NO_SPACE; 4685 /* Grow the underlying object if applicable. */ 4686 else if (stack_entry->object.vm_object == NULL || 4687 vm_object_coalesce(stack_entry->object.vm_object, 4688 stack_entry->offset, 4689 (vm_size_t)(stack_entry->end - stack_entry->start), 4690 grow_amount, cred != NULL)) { 4691 if (gap_entry->start + grow_amount == gap_entry->end) { 4692 vm_map_entry_delete(map, gap_entry); 4693 vm_map_entry_resize(map, stack_entry, 4694 grow_amount); 4695 } else { 4696 gap_entry->start += grow_amount; 4697 stack_entry->end += grow_amount; 4698 } 4699 map->size += grow_amount; 4700 rv = KERN_SUCCESS; 4701 } else 4702 rv = KERN_FAILURE; 4703 } 4704 if (rv == KERN_SUCCESS && is_procstack) 4705 vm->vm_ssize += btoc(grow_amount); 4706 4707 /* 4708 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4709 */ 4710 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4711 rv = vm_map_wire_locked(map, grow_start, 4712 grow_start + grow_amount, 4713 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4714 } 4715 vm_map_lock_downgrade(map); 4716 4717 out: 4718 #ifdef RACCT 4719 if (racct_enable && rv != KERN_SUCCESS) { 4720 PROC_LOCK(p); 4721 error = racct_set(p, RACCT_VMEM, map->size); 4722 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4723 if (!old_mlock) { 4724 error = racct_set(p, RACCT_MEMLOCK, 4725 ptoa(pmap_wired_count(map->pmap))); 4726 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4727 } 4728 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4729 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4730 PROC_UNLOCK(p); 4731 } 4732 #endif 4733 4734 return (rv); 4735 } 4736 4737 /* 4738 * Unshare the specified VM space for exec. If other processes are 4739 * mapped to it, then create a new one. The new vmspace is null. 4740 */ 4741 int 4742 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4743 { 4744 struct vmspace *oldvmspace = p->p_vmspace; 4745 struct vmspace *newvmspace; 4746 4747 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4748 ("vmspace_exec recursed")); 4749 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4750 if (newvmspace == NULL) 4751 return (ENOMEM); 4752 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4753 /* 4754 * This code is written like this for prototype purposes. The 4755 * goal is to avoid running down the vmspace here, but let the 4756 * other process's that are still using the vmspace to finally 4757 * run it down. Even though there is little or no chance of blocking 4758 * here, it is a good idea to keep this form for future mods. 4759 */ 4760 PROC_VMSPACE_LOCK(p); 4761 p->p_vmspace = newvmspace; 4762 PROC_VMSPACE_UNLOCK(p); 4763 if (p == curthread->td_proc) 4764 pmap_activate(curthread); 4765 curthread->td_pflags |= TDP_EXECVMSPC; 4766 return (0); 4767 } 4768 4769 /* 4770 * Unshare the specified VM space for forcing COW. This 4771 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4772 */ 4773 int 4774 vmspace_unshare(struct proc *p) 4775 { 4776 struct vmspace *oldvmspace = p->p_vmspace; 4777 struct vmspace *newvmspace; 4778 vm_ooffset_t fork_charge; 4779 4780 if (oldvmspace->vm_refcnt == 1) 4781 return (0); 4782 fork_charge = 0; 4783 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4784 if (newvmspace == NULL) 4785 return (ENOMEM); 4786 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4787 vmspace_free(newvmspace); 4788 return (ENOMEM); 4789 } 4790 PROC_VMSPACE_LOCK(p); 4791 p->p_vmspace = newvmspace; 4792 PROC_VMSPACE_UNLOCK(p); 4793 if (p == curthread->td_proc) 4794 pmap_activate(curthread); 4795 vmspace_free(oldvmspace); 4796 return (0); 4797 } 4798 4799 /* 4800 * vm_map_lookup: 4801 * 4802 * Finds the VM object, offset, and 4803 * protection for a given virtual address in the 4804 * specified map, assuming a page fault of the 4805 * type specified. 4806 * 4807 * Leaves the map in question locked for read; return 4808 * values are guaranteed until a vm_map_lookup_done 4809 * call is performed. Note that the map argument 4810 * is in/out; the returned map must be used in 4811 * the call to vm_map_lookup_done. 4812 * 4813 * A handle (out_entry) is returned for use in 4814 * vm_map_lookup_done, to make that fast. 4815 * 4816 * If a lookup is requested with "write protection" 4817 * specified, the map may be changed to perform virtual 4818 * copying operations, although the data referenced will 4819 * remain the same. 4820 */ 4821 int 4822 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4823 vm_offset_t vaddr, 4824 vm_prot_t fault_typea, 4825 vm_map_entry_t *out_entry, /* OUT */ 4826 vm_object_t *object, /* OUT */ 4827 vm_pindex_t *pindex, /* OUT */ 4828 vm_prot_t *out_prot, /* OUT */ 4829 boolean_t *wired) /* OUT */ 4830 { 4831 vm_map_entry_t entry; 4832 vm_map_t map = *var_map; 4833 vm_prot_t prot; 4834 vm_prot_t fault_type; 4835 vm_object_t eobject; 4836 vm_size_t size; 4837 struct ucred *cred; 4838 4839 RetryLookup: 4840 4841 vm_map_lock_read(map); 4842 4843 RetryLookupLocked: 4844 /* 4845 * Lookup the faulting address. 4846 */ 4847 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4848 vm_map_unlock_read(map); 4849 return (KERN_INVALID_ADDRESS); 4850 } 4851 4852 entry = *out_entry; 4853 4854 /* 4855 * Handle submaps. 4856 */ 4857 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4858 vm_map_t old_map = map; 4859 4860 *var_map = map = entry->object.sub_map; 4861 vm_map_unlock_read(old_map); 4862 goto RetryLookup; 4863 } 4864 4865 /* 4866 * Check whether this task is allowed to have this page. 4867 */ 4868 prot = entry->protection; 4869 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4870 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4871 if (prot == VM_PROT_NONE && map != kernel_map && 4872 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4873 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4874 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4875 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4876 goto RetryLookupLocked; 4877 } 4878 fault_type = fault_typea & VM_PROT_ALL; 4879 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4880 vm_map_unlock_read(map); 4881 return (KERN_PROTECTION_FAILURE); 4882 } 4883 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4884 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4885 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4886 ("entry %p flags %x", entry, entry->eflags)); 4887 if ((fault_typea & VM_PROT_COPY) != 0 && 4888 (entry->max_protection & VM_PROT_WRITE) == 0 && 4889 (entry->eflags & MAP_ENTRY_COW) == 0) { 4890 vm_map_unlock_read(map); 4891 return (KERN_PROTECTION_FAILURE); 4892 } 4893 4894 /* 4895 * If this page is not pageable, we have to get it for all possible 4896 * accesses. 4897 */ 4898 *wired = (entry->wired_count != 0); 4899 if (*wired) 4900 fault_type = entry->protection; 4901 size = entry->end - entry->start; 4902 4903 /* 4904 * If the entry was copy-on-write, we either ... 4905 */ 4906 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4907 /* 4908 * If we want to write the page, we may as well handle that 4909 * now since we've got the map locked. 4910 * 4911 * If we don't need to write the page, we just demote the 4912 * permissions allowed. 4913 */ 4914 if ((fault_type & VM_PROT_WRITE) != 0 || 4915 (fault_typea & VM_PROT_COPY) != 0) { 4916 /* 4917 * Make a new object, and place it in the object 4918 * chain. Note that no new references have appeared 4919 * -- one just moved from the map to the new 4920 * object. 4921 */ 4922 if (vm_map_lock_upgrade(map)) 4923 goto RetryLookup; 4924 4925 if (entry->cred == NULL) { 4926 /* 4927 * The debugger owner is charged for 4928 * the memory. 4929 */ 4930 cred = curthread->td_ucred; 4931 crhold(cred); 4932 if (!swap_reserve_by_cred(size, cred)) { 4933 crfree(cred); 4934 vm_map_unlock(map); 4935 return (KERN_RESOURCE_SHORTAGE); 4936 } 4937 entry->cred = cred; 4938 } 4939 eobject = entry->object.vm_object; 4940 vm_object_shadow(&entry->object.vm_object, 4941 &entry->offset, size, entry->cred, false); 4942 if (eobject == entry->object.vm_object) { 4943 /* 4944 * The object was not shadowed. 4945 */ 4946 swap_release_by_cred(size, entry->cred); 4947 crfree(entry->cred); 4948 } 4949 entry->cred = NULL; 4950 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4951 4952 vm_map_lock_downgrade(map); 4953 } else { 4954 /* 4955 * We're attempting to read a copy-on-write page -- 4956 * don't allow writes. 4957 */ 4958 prot &= ~VM_PROT_WRITE; 4959 } 4960 } 4961 4962 /* 4963 * Create an object if necessary. 4964 */ 4965 if (entry->object.vm_object == NULL && !map->system_map) { 4966 if (vm_map_lock_upgrade(map)) 4967 goto RetryLookup; 4968 entry->object.vm_object = vm_object_allocate_anon(atop(size), 4969 NULL, entry->cred, entry->cred != NULL ? size : 0); 4970 entry->offset = 0; 4971 entry->cred = NULL; 4972 vm_map_lock_downgrade(map); 4973 } 4974 4975 /* 4976 * Return the object/offset from this entry. If the entry was 4977 * copy-on-write or empty, it has been fixed up. 4978 */ 4979 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4980 *object = entry->object.vm_object; 4981 4982 *out_prot = prot; 4983 return (KERN_SUCCESS); 4984 } 4985 4986 /* 4987 * vm_map_lookup_locked: 4988 * 4989 * Lookup the faulting address. A version of vm_map_lookup that returns 4990 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4991 */ 4992 int 4993 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4994 vm_offset_t vaddr, 4995 vm_prot_t fault_typea, 4996 vm_map_entry_t *out_entry, /* OUT */ 4997 vm_object_t *object, /* OUT */ 4998 vm_pindex_t *pindex, /* OUT */ 4999 vm_prot_t *out_prot, /* OUT */ 5000 boolean_t *wired) /* OUT */ 5001 { 5002 vm_map_entry_t entry; 5003 vm_map_t map = *var_map; 5004 vm_prot_t prot; 5005 vm_prot_t fault_type = fault_typea; 5006 5007 /* 5008 * Lookup the faulting address. 5009 */ 5010 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 5011 return (KERN_INVALID_ADDRESS); 5012 5013 entry = *out_entry; 5014 5015 /* 5016 * Fail if the entry refers to a submap. 5017 */ 5018 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 5019 return (KERN_FAILURE); 5020 5021 /* 5022 * Check whether this task is allowed to have this page. 5023 */ 5024 prot = entry->protection; 5025 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 5026 if ((fault_type & prot) != fault_type) 5027 return (KERN_PROTECTION_FAILURE); 5028 5029 /* 5030 * If this page is not pageable, we have to get it for all possible 5031 * accesses. 5032 */ 5033 *wired = (entry->wired_count != 0); 5034 if (*wired) 5035 fault_type = entry->protection; 5036 5037 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5038 /* 5039 * Fail if the entry was copy-on-write for a write fault. 5040 */ 5041 if (fault_type & VM_PROT_WRITE) 5042 return (KERN_FAILURE); 5043 /* 5044 * We're attempting to read a copy-on-write page -- 5045 * don't allow writes. 5046 */ 5047 prot &= ~VM_PROT_WRITE; 5048 } 5049 5050 /* 5051 * Fail if an object should be created. 5052 */ 5053 if (entry->object.vm_object == NULL && !map->system_map) 5054 return (KERN_FAILURE); 5055 5056 /* 5057 * Return the object/offset from this entry. If the entry was 5058 * copy-on-write or empty, it has been fixed up. 5059 */ 5060 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5061 *object = entry->object.vm_object; 5062 5063 *out_prot = prot; 5064 return (KERN_SUCCESS); 5065 } 5066 5067 /* 5068 * vm_map_lookup_done: 5069 * 5070 * Releases locks acquired by a vm_map_lookup 5071 * (according to the handle returned by that lookup). 5072 */ 5073 void 5074 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 5075 { 5076 /* 5077 * Unlock the main-level map 5078 */ 5079 vm_map_unlock_read(map); 5080 } 5081 5082 vm_offset_t 5083 vm_map_max_KBI(const struct vm_map *map) 5084 { 5085 5086 return (vm_map_max(map)); 5087 } 5088 5089 vm_offset_t 5090 vm_map_min_KBI(const struct vm_map *map) 5091 { 5092 5093 return (vm_map_min(map)); 5094 } 5095 5096 pmap_t 5097 vm_map_pmap_KBI(vm_map_t map) 5098 { 5099 5100 return (map->pmap); 5101 } 5102 5103 bool 5104 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end) 5105 { 5106 5107 return (vm_map_range_valid(map, start, end)); 5108 } 5109 5110 #ifdef INVARIANTS 5111 static void 5112 _vm_map_assert_consistent(vm_map_t map, int check) 5113 { 5114 vm_map_entry_t entry, prev; 5115 vm_map_entry_t cur, header, lbound, ubound; 5116 vm_size_t max_left, max_right; 5117 5118 #ifdef DIAGNOSTIC 5119 ++map->nupdates; 5120 #endif 5121 if (enable_vmmap_check != check) 5122 return; 5123 5124 header = prev = &map->header; 5125 VM_MAP_ENTRY_FOREACH(entry, map) { 5126 KASSERT(prev->end <= entry->start, 5127 ("map %p prev->end = %jx, start = %jx", map, 5128 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5129 KASSERT(entry->start < entry->end, 5130 ("map %p start = %jx, end = %jx", map, 5131 (uintmax_t)entry->start, (uintmax_t)entry->end)); 5132 KASSERT(entry->left == header || 5133 entry->left->start < entry->start, 5134 ("map %p left->start = %jx, start = %jx", map, 5135 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 5136 KASSERT(entry->right == header || 5137 entry->start < entry->right->start, 5138 ("map %p start = %jx, right->start = %jx", map, 5139 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 5140 cur = map->root; 5141 lbound = ubound = header; 5142 for (;;) { 5143 if (entry->start < cur->start) { 5144 ubound = cur; 5145 cur = cur->left; 5146 KASSERT(cur != lbound, 5147 ("map %p cannot find %jx", 5148 map, (uintmax_t)entry->start)); 5149 } else if (cur->end <= entry->start) { 5150 lbound = cur; 5151 cur = cur->right; 5152 KASSERT(cur != ubound, 5153 ("map %p cannot find %jx", 5154 map, (uintmax_t)entry->start)); 5155 } else { 5156 KASSERT(cur == entry, 5157 ("map %p cannot find %jx", 5158 map, (uintmax_t)entry->start)); 5159 break; 5160 } 5161 } 5162 max_left = vm_map_entry_max_free_left(entry, lbound); 5163 max_right = vm_map_entry_max_free_right(entry, ubound); 5164 KASSERT(entry->max_free == vm_size_max(max_left, max_right), 5165 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 5166 (uintmax_t)entry->max_free, 5167 (uintmax_t)max_left, (uintmax_t)max_right)); 5168 prev = entry; 5169 } 5170 KASSERT(prev->end <= entry->start, 5171 ("map %p prev->end = %jx, start = %jx", map, 5172 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5173 } 5174 #endif 5175 5176 #include "opt_ddb.h" 5177 #ifdef DDB 5178 #include <sys/kernel.h> 5179 5180 #include <ddb/ddb.h> 5181 5182 static void 5183 vm_map_print(vm_map_t map) 5184 { 5185 vm_map_entry_t entry, prev; 5186 5187 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 5188 (void *)map, 5189 (void *)map->pmap, map->nentries, map->timestamp); 5190 5191 db_indent += 2; 5192 prev = &map->header; 5193 VM_MAP_ENTRY_FOREACH(entry, map) { 5194 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 5195 (void *)entry, (void *)entry->start, (void *)entry->end, 5196 entry->eflags); 5197 { 5198 static const char * const inheritance_name[4] = 5199 {"share", "copy", "none", "donate_copy"}; 5200 5201 db_iprintf(" prot=%x/%x/%s", 5202 entry->protection, 5203 entry->max_protection, 5204 inheritance_name[(int)(unsigned char) 5205 entry->inheritance]); 5206 if (entry->wired_count != 0) 5207 db_printf(", wired"); 5208 } 5209 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5210 db_printf(", share=%p, offset=0x%jx\n", 5211 (void *)entry->object.sub_map, 5212 (uintmax_t)entry->offset); 5213 if (prev == &map->header || 5214 prev->object.sub_map != 5215 entry->object.sub_map) { 5216 db_indent += 2; 5217 vm_map_print((vm_map_t)entry->object.sub_map); 5218 db_indent -= 2; 5219 } 5220 } else { 5221 if (entry->cred != NULL) 5222 db_printf(", ruid %d", entry->cred->cr_ruid); 5223 db_printf(", object=%p, offset=0x%jx", 5224 (void *)entry->object.vm_object, 5225 (uintmax_t)entry->offset); 5226 if (entry->object.vm_object && entry->object.vm_object->cred) 5227 db_printf(", obj ruid %d charge %jx", 5228 entry->object.vm_object->cred->cr_ruid, 5229 (uintmax_t)entry->object.vm_object->charge); 5230 if (entry->eflags & MAP_ENTRY_COW) 5231 db_printf(", copy (%s)", 5232 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 5233 db_printf("\n"); 5234 5235 if (prev == &map->header || 5236 prev->object.vm_object != 5237 entry->object.vm_object) { 5238 db_indent += 2; 5239 vm_object_print((db_expr_t)(intptr_t) 5240 entry->object.vm_object, 5241 0, 0, (char *)0); 5242 db_indent -= 2; 5243 } 5244 } 5245 prev = entry; 5246 } 5247 db_indent -= 2; 5248 } 5249 5250 DB_SHOW_COMMAND(map, map) 5251 { 5252 5253 if (!have_addr) { 5254 db_printf("usage: show map <addr>\n"); 5255 return; 5256 } 5257 vm_map_print((vm_map_t)addr); 5258 } 5259 5260 DB_SHOW_COMMAND(procvm, procvm) 5261 { 5262 struct proc *p; 5263 5264 if (have_addr) { 5265 p = db_lookup_proc(addr); 5266 } else { 5267 p = curproc; 5268 } 5269 5270 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 5271 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 5272 (void *)vmspace_pmap(p->p_vmspace)); 5273 5274 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 5275 } 5276 5277 #endif /* DDB */ 5278