1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/param.h> 66 #include <sys/systm.h> 67 #include <sys/elf.h> 68 #include <sys/kernel.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/vmmeter.h> 74 #include <sys/mman.h> 75 #include <sys/vnode.h> 76 #include <sys/racct.h> 77 #include <sys/resourcevar.h> 78 #include <sys/rwlock.h> 79 #include <sys/file.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/shm.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_param.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_pageout.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_kern.h> 93 #include <vm/vm_extern.h> 94 #include <vm/vnode_pager.h> 95 #include <vm/swap_pager.h> 96 #include <vm/uma.h> 97 98 /* 99 * Virtual memory maps provide for the mapping, protection, 100 * and sharing of virtual memory objects. In addition, 101 * this module provides for an efficient virtual copy of 102 * memory from one map to another. 103 * 104 * Synchronization is required prior to most operations. 105 * 106 * Maps consist of an ordered doubly-linked list of simple 107 * entries; a self-adjusting binary search tree of these 108 * entries is used to speed up lookups. 109 * 110 * Since portions of maps are specified by start/end addresses, 111 * which may not align with existing map entries, all 112 * routines merely "clip" entries to these start/end values. 113 * [That is, an entry is split into two, bordering at a 114 * start or end value.] Note that these clippings may not 115 * always be necessary (as the two resulting entries are then 116 * not changed); however, the clipping is done for convenience. 117 * 118 * As mentioned above, virtual copy operations are performed 119 * by copying VM object references from one map to 120 * another, and then marking both regions as copy-on-write. 121 */ 122 123 static struct mtx map_sleep_mtx; 124 static uma_zone_t mapentzone; 125 static uma_zone_t kmapentzone; 126 static uma_zone_t vmspace_zone; 127 static int vmspace_zinit(void *mem, int size, int flags); 128 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 129 vm_offset_t max); 130 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 131 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 132 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 133 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 134 vm_map_entry_t gap_entry); 135 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 136 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 137 #ifdef INVARIANTS 138 static void vmspace_zdtor(void *mem, int size, void *arg); 139 #endif 140 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 141 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 142 int cow); 143 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 144 vm_offset_t failed_addr); 145 146 #define CONTAINS_BITS(set, bits) ((~(set) & (bits)) == 0) 147 148 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 149 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 150 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 151 152 /* 153 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 154 * stable. 155 */ 156 #define PROC_VMSPACE_LOCK(p) do { } while (0) 157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 158 159 /* 160 * VM_MAP_RANGE_CHECK: [ internal use only ] 161 * 162 * Asserts that the starting and ending region 163 * addresses fall within the valid range of the map. 164 */ 165 #define VM_MAP_RANGE_CHECK(map, start, end) \ 166 { \ 167 if (start < vm_map_min(map)) \ 168 start = vm_map_min(map); \ 169 if (end > vm_map_max(map)) \ 170 end = vm_map_max(map); \ 171 if (start > end) \ 172 start = end; \ 173 } 174 175 #ifndef UMA_USE_DMAP 176 177 /* 178 * Allocate a new slab for kernel map entries. The kernel map may be locked or 179 * unlocked, depending on whether the request is coming from the kernel map or a 180 * submap. This function allocates a virtual address range directly from the 181 * kernel map instead of the kmem_* layer to avoid recursion on the kernel map 182 * lock and also to avoid triggering allocator recursion in the vmem boundary 183 * tag allocator. 184 */ 185 static void * 186 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 187 int wait) 188 { 189 vm_offset_t addr; 190 int error, locked; 191 192 *pflag = UMA_SLAB_PRIV; 193 194 if (!(locked = vm_map_locked(kernel_map))) 195 vm_map_lock(kernel_map); 196 addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes); 197 if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map)) 198 panic("%s: kernel map is exhausted", __func__); 199 error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes, 200 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 201 if (error != KERN_SUCCESS) 202 panic("%s: vm_map_insert() failed: %d", __func__, error); 203 if (!locked) 204 vm_map_unlock(kernel_map); 205 error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT | 206 M_USE_RESERVE | (wait & M_ZERO)); 207 if (error == KERN_SUCCESS) { 208 return ((void *)addr); 209 } else { 210 if (!locked) 211 vm_map_lock(kernel_map); 212 vm_map_delete(kernel_map, addr, bytes); 213 if (!locked) 214 vm_map_unlock(kernel_map); 215 return (NULL); 216 } 217 } 218 219 static void 220 kmapent_free(void *item, vm_size_t size, uint8_t pflag) 221 { 222 vm_offset_t addr; 223 int error __diagused; 224 225 if ((pflag & UMA_SLAB_PRIV) == 0) 226 /* XXX leaked */ 227 return; 228 229 addr = (vm_offset_t)item; 230 kmem_unback(kernel_object, addr, size); 231 error = vm_map_remove(kernel_map, addr, addr + size); 232 KASSERT(error == KERN_SUCCESS, 233 ("%s: vm_map_remove failed: %d", __func__, error)); 234 } 235 236 /* 237 * The worst-case upper bound on the number of kernel map entries that may be 238 * created before the zone must be replenished in _vm_map_unlock(). 239 */ 240 #define KMAPENT_RESERVE 1 241 242 #endif /* !UMD_MD_SMALL_ALLOC */ 243 244 /* 245 * vm_map_startup: 246 * 247 * Initialize the vm_map module. Must be called before any other vm_map 248 * routines. 249 * 250 * User map and entry structures are allocated from the general purpose 251 * memory pool. Kernel maps are statically defined. Kernel map entries 252 * require special handling to avoid recursion; see the comments above 253 * kmapent_alloc() and in vm_map_entry_create(). 254 */ 255 void 256 vm_map_startup(void) 257 { 258 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 259 260 /* 261 * Disable the use of per-CPU buckets: map entry allocation is 262 * serialized by the kernel map lock. 263 */ 264 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 265 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 266 UMA_ZONE_VM | UMA_ZONE_NOBUCKET); 267 #ifndef UMA_USE_DMAP 268 /* Reserve an extra map entry for use when replenishing the reserve. */ 269 uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1); 270 uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1); 271 uma_zone_set_allocf(kmapentzone, kmapent_alloc); 272 uma_zone_set_freef(kmapentzone, kmapent_free); 273 #endif 274 275 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 276 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 277 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 278 #ifdef INVARIANTS 279 vmspace_zdtor, 280 #else 281 NULL, 282 #endif 283 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 284 } 285 286 static int 287 vmspace_zinit(void *mem, int size, int flags) 288 { 289 struct vmspace *vm; 290 vm_map_t map; 291 292 vm = (struct vmspace *)mem; 293 map = &vm->vm_map; 294 295 memset(map, 0, sizeof(*map)); /* set map->system_map = false */ 296 sx_init(&map->lock, "vm map (user)"); 297 PMAP_LOCK_INIT(vmspace_pmap(vm)); 298 return (0); 299 } 300 301 #ifdef INVARIANTS 302 static void 303 vmspace_zdtor(void *mem, int size, void *arg) 304 { 305 struct vmspace *vm; 306 307 vm = (struct vmspace *)mem; 308 KASSERT(vm->vm_map.nentries == 0, 309 ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries)); 310 KASSERT(vm->vm_map.size == 0, 311 ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size)); 312 } 313 #endif /* INVARIANTS */ 314 315 /* 316 * Allocate a vmspace structure, including a vm_map and pmap, 317 * and initialize those structures. The refcnt is set to 1. 318 */ 319 struct vmspace * 320 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 321 { 322 struct vmspace *vm; 323 324 vm = uma_zalloc(vmspace_zone, M_WAITOK); 325 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 326 if (!pinit(vmspace_pmap(vm))) { 327 uma_zfree(vmspace_zone, vm); 328 return (NULL); 329 } 330 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 331 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 332 refcount_init(&vm->vm_refcnt, 1); 333 vm->vm_shm = NULL; 334 vm->vm_swrss = 0; 335 vm->vm_tsize = 0; 336 vm->vm_dsize = 0; 337 vm->vm_ssize = 0; 338 vm->vm_taddr = 0; 339 vm->vm_daddr = 0; 340 vm->vm_maxsaddr = 0; 341 return (vm); 342 } 343 344 #ifdef RACCT 345 static void 346 vmspace_container_reset(struct proc *p) 347 { 348 349 PROC_LOCK(p); 350 racct_set(p, RACCT_DATA, 0); 351 racct_set(p, RACCT_STACK, 0); 352 racct_set(p, RACCT_RSS, 0); 353 racct_set(p, RACCT_MEMLOCK, 0); 354 racct_set(p, RACCT_VMEM, 0); 355 PROC_UNLOCK(p); 356 } 357 #endif 358 359 static inline void 360 vmspace_dofree(struct vmspace *vm) 361 { 362 363 CTR1(KTR_VM, "vmspace_free: %p", vm); 364 365 /* 366 * Make sure any SysV shm is freed, it might not have been in 367 * exit1(). 368 */ 369 shmexit(vm); 370 371 /* 372 * Lock the map, to wait out all other references to it. 373 * Delete all of the mappings and pages they hold, then call 374 * the pmap module to reclaim anything left. 375 */ 376 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 377 vm_map_max(&vm->vm_map)); 378 379 pmap_release(vmspace_pmap(vm)); 380 vm->vm_map.pmap = NULL; 381 uma_zfree(vmspace_zone, vm); 382 } 383 384 void 385 vmspace_free(struct vmspace *vm) 386 { 387 388 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 389 "vmspace_free() called"); 390 391 if (refcount_release(&vm->vm_refcnt)) 392 vmspace_dofree(vm); 393 } 394 395 void 396 vmspace_exitfree(struct proc *p) 397 { 398 struct vmspace *vm; 399 400 PROC_VMSPACE_LOCK(p); 401 vm = p->p_vmspace; 402 p->p_vmspace = NULL; 403 PROC_VMSPACE_UNLOCK(p); 404 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 405 vmspace_free(vm); 406 } 407 408 void 409 vmspace_exit(struct thread *td) 410 { 411 struct vmspace *vm; 412 struct proc *p; 413 bool released; 414 415 p = td->td_proc; 416 vm = p->p_vmspace; 417 418 /* 419 * Prepare to release the vmspace reference. The thread that releases 420 * the last reference is responsible for tearing down the vmspace. 421 * However, threads not releasing the final reference must switch to the 422 * kernel's vmspace0 before the decrement so that the subsequent pmap 423 * deactivation does not modify a freed vmspace. 424 */ 425 refcount_acquire(&vmspace0.vm_refcnt); 426 if (!(released = refcount_release_if_last(&vm->vm_refcnt))) { 427 if (p->p_vmspace != &vmspace0) { 428 PROC_VMSPACE_LOCK(p); 429 p->p_vmspace = &vmspace0; 430 PROC_VMSPACE_UNLOCK(p); 431 pmap_activate(td); 432 } 433 released = refcount_release(&vm->vm_refcnt); 434 } 435 if (released) { 436 /* 437 * pmap_remove_pages() expects the pmap to be active, so switch 438 * back first if necessary. 439 */ 440 if (p->p_vmspace != vm) { 441 PROC_VMSPACE_LOCK(p); 442 p->p_vmspace = vm; 443 PROC_VMSPACE_UNLOCK(p); 444 pmap_activate(td); 445 } 446 pmap_remove_pages(vmspace_pmap(vm)); 447 PROC_VMSPACE_LOCK(p); 448 p->p_vmspace = &vmspace0; 449 PROC_VMSPACE_UNLOCK(p); 450 pmap_activate(td); 451 vmspace_dofree(vm); 452 } 453 #ifdef RACCT 454 if (racct_enable) 455 vmspace_container_reset(p); 456 #endif 457 } 458 459 /* Acquire reference to vmspace owned by another process. */ 460 461 struct vmspace * 462 vmspace_acquire_ref(struct proc *p) 463 { 464 struct vmspace *vm; 465 466 PROC_VMSPACE_LOCK(p); 467 vm = p->p_vmspace; 468 if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) { 469 PROC_VMSPACE_UNLOCK(p); 470 return (NULL); 471 } 472 if (vm != p->p_vmspace) { 473 PROC_VMSPACE_UNLOCK(p); 474 vmspace_free(vm); 475 return (NULL); 476 } 477 PROC_VMSPACE_UNLOCK(p); 478 return (vm); 479 } 480 481 /* 482 * Switch between vmspaces in an AIO kernel process. 483 * 484 * The new vmspace is either the vmspace of a user process obtained 485 * from an active AIO request or the initial vmspace of the AIO kernel 486 * process (when it is idling). Because user processes will block to 487 * drain any active AIO requests before proceeding in exit() or 488 * execve(), the reference count for vmspaces from AIO requests can 489 * never be 0. Similarly, AIO kernel processes hold an extra 490 * reference on their initial vmspace for the life of the process. As 491 * a result, the 'newvm' vmspace always has a non-zero reference 492 * count. This permits an additional reference on 'newvm' to be 493 * acquired via a simple atomic increment rather than the loop in 494 * vmspace_acquire_ref() above. 495 */ 496 void 497 vmspace_switch_aio(struct vmspace *newvm) 498 { 499 struct vmspace *oldvm; 500 501 /* XXX: Need some way to assert that this is an aio daemon. */ 502 503 KASSERT(refcount_load(&newvm->vm_refcnt) > 0, 504 ("vmspace_switch_aio: newvm unreferenced")); 505 506 oldvm = curproc->p_vmspace; 507 if (oldvm == newvm) 508 return; 509 510 /* 511 * Point to the new address space and refer to it. 512 */ 513 curproc->p_vmspace = newvm; 514 refcount_acquire(&newvm->vm_refcnt); 515 516 /* Activate the new mapping. */ 517 pmap_activate(curthread); 518 519 vmspace_free(oldvm); 520 } 521 522 void 523 _vm_map_lock(vm_map_t map, const char *file, int line) 524 { 525 526 if (vm_map_is_system(map)) 527 mtx_lock_flags_(&map->system_mtx, 0, file, line); 528 else 529 sx_xlock_(&map->lock, file, line); 530 map->timestamp++; 531 } 532 533 void 534 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 535 { 536 vm_object_t object; 537 struct vnode *vp; 538 bool vp_held; 539 540 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 541 return; 542 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 543 ("Submap with execs")); 544 object = entry->object.vm_object; 545 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 546 if ((object->flags & OBJ_ANON) != 0) 547 object = object->handle; 548 else 549 KASSERT(object->backing_object == NULL, 550 ("non-anon object %p shadows", object)); 551 KASSERT(object != NULL, ("No content object for text, entry %p obj %p", 552 entry, entry->object.vm_object)); 553 554 /* 555 * Mostly, we do not lock the backing object. It is 556 * referenced by the entry we are processing, so it cannot go 557 * away. 558 */ 559 vm_pager_getvp(object, &vp, &vp_held); 560 if (vp != NULL) { 561 if (add) { 562 VOP_SET_TEXT_CHECKED(vp); 563 } else { 564 vn_lock(vp, LK_SHARED | LK_RETRY); 565 VOP_UNSET_TEXT_CHECKED(vp); 566 VOP_UNLOCK(vp); 567 } 568 if (vp_held) 569 vdrop(vp); 570 } 571 } 572 573 /* 574 * Use a different name for this vm_map_entry field when it's use 575 * is not consistent with its use as part of an ordered search tree. 576 */ 577 #define defer_next right 578 579 static void 580 vm_map_process_deferred(void) 581 { 582 struct thread *td; 583 vm_map_entry_t entry, next; 584 vm_object_t object; 585 586 td = curthread; 587 entry = td->td_map_def_user; 588 td->td_map_def_user = NULL; 589 while (entry != NULL) { 590 next = entry->defer_next; 591 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT | 592 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT | 593 MAP_ENTRY_VN_EXEC)); 594 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) { 595 /* 596 * Decrement the object's writemappings and 597 * possibly the vnode's v_writecount. 598 */ 599 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 600 ("Submap with writecount")); 601 object = entry->object.vm_object; 602 KASSERT(object != NULL, ("No object for writecount")); 603 vm_pager_release_writecount(object, entry->start, 604 entry->end); 605 } 606 vm_map_entry_set_vnode_text(entry, false); 607 vm_map_entry_deallocate(entry, FALSE); 608 entry = next; 609 } 610 } 611 612 #ifdef INVARIANTS 613 static void 614 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 615 { 616 617 if (vm_map_is_system(map)) 618 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 619 else 620 sx_assert_(&map->lock, SA_XLOCKED, file, line); 621 } 622 623 #define VM_MAP_ASSERT_LOCKED(map) \ 624 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 625 626 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL }; 627 #ifdef DIAGNOSTIC 628 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK; 629 #else 630 static int enable_vmmap_check = VMMAP_CHECK_NONE; 631 #endif 632 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 633 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 634 635 static void _vm_map_assert_consistent(vm_map_t map, int check); 636 637 #define VM_MAP_ASSERT_CONSISTENT(map) \ 638 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL) 639 #ifdef DIAGNOSTIC 640 #define VM_MAP_UNLOCK_CONSISTENT(map) do { \ 641 if (map->nupdates > map->nentries) { \ 642 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \ 643 map->nupdates = 0; \ 644 } \ 645 } while (0) 646 #else 647 #define VM_MAP_UNLOCK_CONSISTENT(map) 648 #endif 649 #else 650 #define VM_MAP_ASSERT_LOCKED(map) 651 #define VM_MAP_ASSERT_CONSISTENT(map) 652 #define VM_MAP_UNLOCK_CONSISTENT(map) 653 #endif /* INVARIANTS */ 654 655 void 656 _vm_map_unlock(vm_map_t map, const char *file, int line) 657 { 658 659 VM_MAP_UNLOCK_CONSISTENT(map); 660 if (vm_map_is_system(map)) { 661 #ifndef UMA_USE_DMAP 662 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) { 663 uma_prealloc(kmapentzone, 1); 664 map->flags &= ~MAP_REPLENISH; 665 } 666 #endif 667 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 668 } else { 669 sx_xunlock_(&map->lock, file, line); 670 vm_map_process_deferred(); 671 } 672 } 673 674 void 675 _vm_map_lock_read(vm_map_t map, const char *file, int line) 676 { 677 678 if (vm_map_is_system(map)) 679 mtx_lock_flags_(&map->system_mtx, 0, file, line); 680 else 681 sx_slock_(&map->lock, file, line); 682 } 683 684 void 685 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 686 { 687 688 if (vm_map_is_system(map)) { 689 KASSERT((map->flags & MAP_REPLENISH) == 0, 690 ("%s: MAP_REPLENISH leaked", __func__)); 691 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 692 } else { 693 sx_sunlock_(&map->lock, file, line); 694 vm_map_process_deferred(); 695 } 696 } 697 698 int 699 _vm_map_trylock(vm_map_t map, const char *file, int line) 700 { 701 int error; 702 703 error = vm_map_is_system(map) ? 704 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 705 !sx_try_xlock_(&map->lock, file, line); 706 if (error == 0) 707 map->timestamp++; 708 return (error == 0); 709 } 710 711 int 712 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 713 { 714 int error; 715 716 error = vm_map_is_system(map) ? 717 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 718 !sx_try_slock_(&map->lock, file, line); 719 return (error == 0); 720 } 721 722 /* 723 * _vm_map_lock_upgrade: [ internal use only ] 724 * 725 * Tries to upgrade a read (shared) lock on the specified map to a write 726 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 727 * non-zero value if the upgrade fails. If the upgrade fails, the map is 728 * returned without a read or write lock held. 729 * 730 * Requires that the map be read locked. 731 */ 732 int 733 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 734 { 735 unsigned int last_timestamp; 736 737 if (vm_map_is_system(map)) { 738 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 739 } else { 740 if (!sx_try_upgrade_(&map->lock, file, line)) { 741 last_timestamp = map->timestamp; 742 sx_sunlock_(&map->lock, file, line); 743 vm_map_process_deferred(); 744 /* 745 * If the map's timestamp does not change while the 746 * map is unlocked, then the upgrade succeeds. 747 */ 748 sx_xlock_(&map->lock, file, line); 749 if (last_timestamp != map->timestamp) { 750 sx_xunlock_(&map->lock, file, line); 751 return (1); 752 } 753 } 754 } 755 map->timestamp++; 756 return (0); 757 } 758 759 void 760 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 761 { 762 763 if (vm_map_is_system(map)) { 764 KASSERT((map->flags & MAP_REPLENISH) == 0, 765 ("%s: MAP_REPLENISH leaked", __func__)); 766 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 767 } else { 768 VM_MAP_UNLOCK_CONSISTENT(map); 769 sx_downgrade_(&map->lock, file, line); 770 } 771 } 772 773 /* 774 * vm_map_locked: 775 * 776 * Returns a non-zero value if the caller holds a write (exclusive) lock 777 * on the specified map and the value "0" otherwise. 778 */ 779 int 780 vm_map_locked(vm_map_t map) 781 { 782 783 if (vm_map_is_system(map)) 784 return (mtx_owned(&map->system_mtx)); 785 return (sx_xlocked(&map->lock)); 786 } 787 788 /* 789 * _vm_map_unlock_and_wait: 790 * 791 * Atomically releases the lock on the specified map and puts the calling 792 * thread to sleep. The calling thread will remain asleep until either 793 * vm_map_wakeup() is performed on the map or the specified timeout is 794 * exceeded. 795 * 796 * WARNING! This function does not perform deferred deallocations of 797 * objects and map entries. Therefore, the calling thread is expected to 798 * reacquire the map lock after reawakening and later perform an ordinary 799 * unlock operation, such as vm_map_unlock(), before completing its 800 * operation on the map. 801 */ 802 int 803 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 804 { 805 806 VM_MAP_UNLOCK_CONSISTENT(map); 807 mtx_lock(&map_sleep_mtx); 808 if (vm_map_is_system(map)) { 809 KASSERT((map->flags & MAP_REPLENISH) == 0, 810 ("%s: MAP_REPLENISH leaked", __func__)); 811 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 812 } else { 813 sx_xunlock_(&map->lock, file, line); 814 } 815 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 816 timo)); 817 } 818 819 /* 820 * vm_map_wakeup: 821 * 822 * Awaken any threads that have slept on the map using 823 * vm_map_unlock_and_wait(). 824 */ 825 void 826 vm_map_wakeup(vm_map_t map) 827 { 828 829 /* 830 * Acquire and release map_sleep_mtx to prevent a wakeup() 831 * from being performed (and lost) between the map unlock 832 * and the msleep() in _vm_map_unlock_and_wait(). 833 */ 834 mtx_lock(&map_sleep_mtx); 835 mtx_unlock(&map_sleep_mtx); 836 wakeup(&map->root); 837 } 838 839 void 840 vm_map_busy(vm_map_t map) 841 { 842 843 VM_MAP_ASSERT_LOCKED(map); 844 map->busy++; 845 } 846 847 void 848 vm_map_unbusy(vm_map_t map) 849 { 850 851 VM_MAP_ASSERT_LOCKED(map); 852 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 853 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 854 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 855 wakeup(&map->busy); 856 } 857 } 858 859 void 860 vm_map_wait_busy(vm_map_t map) 861 { 862 863 VM_MAP_ASSERT_LOCKED(map); 864 while (map->busy) { 865 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 866 if (vm_map_is_system(map)) 867 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 868 else 869 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 870 } 871 map->timestamp++; 872 } 873 874 long 875 vmspace_resident_count(struct vmspace *vmspace) 876 { 877 return pmap_resident_count(vmspace_pmap(vmspace)); 878 } 879 880 /* 881 * Initialize an existing vm_map structure 882 * such as that in the vmspace structure. 883 */ 884 static void 885 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 886 { 887 888 map->header.eflags = MAP_ENTRY_HEADER; 889 map->needs_wakeup = FALSE; 890 map->pmap = pmap; 891 map->header.end = min; 892 map->header.start = max; 893 map->flags = 0; 894 map->header.left = map->header.right = &map->header; 895 map->root = NULL; 896 map->timestamp = 0; 897 map->busy = 0; 898 map->anon_loc = 0; 899 #ifdef DIAGNOSTIC 900 map->nupdates = 0; 901 #endif 902 } 903 904 void 905 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 906 { 907 _vm_map_init(map, pmap, min, max); 908 map->system_map = false; 909 sx_init(&map->lock, "vm map (user)"); 910 } 911 912 void 913 vm_map_init_system(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 914 { 915 _vm_map_init(map, pmap, min, max); 916 map->system_map = true; 917 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | 918 MTX_DUPOK); 919 } 920 921 /* 922 * vm_map_entry_dispose: [ internal use only ] 923 * 924 * Inverse of vm_map_entry_create. 925 */ 926 static void 927 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 928 { 929 uma_zfree(vm_map_is_system(map) ? kmapentzone : mapentzone, entry); 930 } 931 932 /* 933 * vm_map_entry_create: [ internal use only ] 934 * 935 * Allocates a VM map entry for insertion. 936 * No entry fields are filled in. 937 */ 938 static vm_map_entry_t 939 vm_map_entry_create(vm_map_t map) 940 { 941 vm_map_entry_t new_entry; 942 943 #ifndef UMA_USE_DMAP 944 if (map == kernel_map) { 945 VM_MAP_ASSERT_LOCKED(map); 946 947 /* 948 * A new slab of kernel map entries cannot be allocated at this 949 * point because the kernel map has not yet been updated to 950 * reflect the caller's request. Therefore, we allocate a new 951 * map entry, dipping into the reserve if necessary, and set a 952 * flag indicating that the reserve must be replenished before 953 * the map is unlocked. 954 */ 955 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM); 956 if (new_entry == NULL) { 957 new_entry = uma_zalloc(kmapentzone, 958 M_NOWAIT | M_NOVM | M_USE_RESERVE); 959 kernel_map->flags |= MAP_REPLENISH; 960 } 961 } else 962 #endif 963 if (vm_map_is_system(map)) { 964 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 965 } else { 966 new_entry = uma_zalloc(mapentzone, M_WAITOK); 967 } 968 KASSERT(new_entry != NULL, 969 ("vm_map_entry_create: kernel resources exhausted")); 970 return (new_entry); 971 } 972 973 /* 974 * vm_map_entry_set_behavior: 975 * 976 * Set the expected access behavior, either normal, random, or 977 * sequential. 978 */ 979 static inline void 980 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 981 { 982 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 983 (behavior & MAP_ENTRY_BEHAV_MASK); 984 } 985 986 /* 987 * vm_map_entry_max_free_{left,right}: 988 * 989 * Compute the size of the largest free gap between two entries, 990 * one the root of a tree and the other the ancestor of that root 991 * that is the least or greatest ancestor found on the search path. 992 */ 993 static inline vm_size_t 994 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 995 { 996 997 return (root->left != left_ancestor ? 998 root->left->max_free : root->start - left_ancestor->end); 999 } 1000 1001 static inline vm_size_t 1002 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 1003 { 1004 1005 return (root->right != right_ancestor ? 1006 root->right->max_free : right_ancestor->start - root->end); 1007 } 1008 1009 /* 1010 * vm_map_entry_{pred,succ}: 1011 * 1012 * Find the {predecessor, successor} of the entry by taking one step 1013 * in the appropriate direction and backtracking as much as necessary. 1014 * vm_map_entry_succ is defined in vm_map.h. 1015 */ 1016 static inline vm_map_entry_t 1017 vm_map_entry_pred(vm_map_entry_t entry) 1018 { 1019 vm_map_entry_t prior; 1020 1021 prior = entry->left; 1022 if (prior->right->start < entry->start) { 1023 do 1024 prior = prior->right; 1025 while (prior->right != entry); 1026 } 1027 return (prior); 1028 } 1029 1030 static inline vm_size_t 1031 vm_size_max(vm_size_t a, vm_size_t b) 1032 { 1033 1034 return (a > b ? a : b); 1035 } 1036 1037 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \ 1038 vm_map_entry_t z; \ 1039 vm_size_t max_free; \ 1040 \ 1041 /* \ 1042 * Infer root->right->max_free == root->max_free when \ 1043 * y->max_free < root->max_free || root->max_free == 0. \ 1044 * Otherwise, look right to find it. \ 1045 */ \ 1046 y = root->left; \ 1047 max_free = root->max_free; \ 1048 KASSERT(max_free == vm_size_max( \ 1049 vm_map_entry_max_free_left(root, llist), \ 1050 vm_map_entry_max_free_right(root, rlist)), \ 1051 ("%s: max_free invariant fails", __func__)); \ 1052 if (max_free - 1 < vm_map_entry_max_free_left(root, llist)) \ 1053 max_free = vm_map_entry_max_free_right(root, rlist); \ 1054 if (y != llist && (test)) { \ 1055 /* Rotate right and make y root. */ \ 1056 z = y->right; \ 1057 if (z != root) { \ 1058 root->left = z; \ 1059 y->right = root; \ 1060 if (max_free < y->max_free) \ 1061 root->max_free = max_free = \ 1062 vm_size_max(max_free, z->max_free); \ 1063 } else if (max_free < y->max_free) \ 1064 root->max_free = max_free = \ 1065 vm_size_max(max_free, root->start - y->end);\ 1066 root = y; \ 1067 y = root->left; \ 1068 } \ 1069 /* Copy right->max_free. Put root on rlist. */ \ 1070 root->max_free = max_free; \ 1071 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1072 ("%s: max_free not copied from right", __func__)); \ 1073 root->left = rlist; \ 1074 rlist = root; \ 1075 root = y != llist ? y : NULL; \ 1076 } while (0) 1077 1078 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \ 1079 vm_map_entry_t z; \ 1080 vm_size_t max_free; \ 1081 \ 1082 /* \ 1083 * Infer root->left->max_free == root->max_free when \ 1084 * y->max_free < root->max_free || root->max_free == 0. \ 1085 * Otherwise, look left to find it. \ 1086 */ \ 1087 y = root->right; \ 1088 max_free = root->max_free; \ 1089 KASSERT(max_free == vm_size_max( \ 1090 vm_map_entry_max_free_left(root, llist), \ 1091 vm_map_entry_max_free_right(root, rlist)), \ 1092 ("%s: max_free invariant fails", __func__)); \ 1093 if (max_free - 1 < vm_map_entry_max_free_right(root, rlist)) \ 1094 max_free = vm_map_entry_max_free_left(root, llist); \ 1095 if (y != rlist && (test)) { \ 1096 /* Rotate left and make y root. */ \ 1097 z = y->left; \ 1098 if (z != root) { \ 1099 root->right = z; \ 1100 y->left = root; \ 1101 if (max_free < y->max_free) \ 1102 root->max_free = max_free = \ 1103 vm_size_max(max_free, z->max_free); \ 1104 } else if (max_free < y->max_free) \ 1105 root->max_free = max_free = \ 1106 vm_size_max(max_free, y->start - root->end);\ 1107 root = y; \ 1108 y = root->right; \ 1109 } \ 1110 /* Copy left->max_free. Put root on llist. */ \ 1111 root->max_free = max_free; \ 1112 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1113 ("%s: max_free not copied from left", __func__)); \ 1114 root->right = llist; \ 1115 llist = root; \ 1116 root = y != rlist ? y : NULL; \ 1117 } while (0) 1118 1119 /* 1120 * Walk down the tree until we find addr or a gap where addr would go, breaking 1121 * off left and right subtrees of nodes less than, or greater than addr. Treat 1122 * subtrees with root->max_free < length as empty trees. llist and rlist are 1123 * the two sides in reverse order (bottom-up), with llist linked by the right 1124 * pointer and rlist linked by the left pointer in the vm_map_entry, and both 1125 * lists terminated by &map->header. This function, and the subsequent call to 1126 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address 1127 * values in &map->header. 1128 */ 1129 static __always_inline vm_map_entry_t 1130 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1131 vm_map_entry_t *llist, vm_map_entry_t *rlist) 1132 { 1133 vm_map_entry_t left, right, root, y; 1134 1135 left = right = &map->header; 1136 root = map->root; 1137 while (root != NULL && root->max_free >= length) { 1138 KASSERT(left->end <= root->start && 1139 root->end <= right->start, 1140 ("%s: root not within tree bounds", __func__)); 1141 if (addr < root->start) { 1142 SPLAY_LEFT_STEP(root, y, left, right, 1143 y->max_free >= length && addr < y->start); 1144 } else if (addr >= root->end) { 1145 SPLAY_RIGHT_STEP(root, y, left, right, 1146 y->max_free >= length && addr >= y->end); 1147 } else 1148 break; 1149 } 1150 *llist = left; 1151 *rlist = right; 1152 return (root); 1153 } 1154 1155 static __always_inline void 1156 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist) 1157 { 1158 vm_map_entry_t hi, right, y; 1159 1160 right = *rlist; 1161 hi = root->right == right ? NULL : root->right; 1162 if (hi == NULL) 1163 return; 1164 do 1165 SPLAY_LEFT_STEP(hi, y, root, right, true); 1166 while (hi != NULL); 1167 *rlist = right; 1168 } 1169 1170 static __always_inline void 1171 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist) 1172 { 1173 vm_map_entry_t left, lo, y; 1174 1175 left = *llist; 1176 lo = root->left == left ? NULL : root->left; 1177 if (lo == NULL) 1178 return; 1179 do 1180 SPLAY_RIGHT_STEP(lo, y, left, root, true); 1181 while (lo != NULL); 1182 *llist = left; 1183 } 1184 1185 static inline void 1186 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1187 { 1188 vm_map_entry_t tmp; 1189 1190 tmp = *b; 1191 *b = *a; 1192 *a = tmp; 1193 } 1194 1195 /* 1196 * Walk back up the two spines, flip the pointers and set max_free. The 1197 * subtrees of the root go at the bottom of llist and rlist. 1198 */ 1199 static vm_size_t 1200 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root, 1201 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist) 1202 { 1203 do { 1204 /* 1205 * The max_free values of the children of llist are in 1206 * llist->max_free and max_free. Update with the 1207 * max value. 1208 */ 1209 llist->max_free = max_free = 1210 vm_size_max(llist->max_free, max_free); 1211 vm_map_entry_swap(&llist->right, &tail); 1212 vm_map_entry_swap(&tail, &llist); 1213 } while (llist != header); 1214 root->left = tail; 1215 return (max_free); 1216 } 1217 1218 /* 1219 * When llist is known to be the predecessor of root. 1220 */ 1221 static inline vm_size_t 1222 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root, 1223 vm_map_entry_t llist) 1224 { 1225 vm_size_t max_free; 1226 1227 max_free = root->start - llist->end; 1228 if (llist != header) { 1229 max_free = vm_map_splay_merge_left_walk(header, root, 1230 root, max_free, llist); 1231 } else { 1232 root->left = header; 1233 header->right = root; 1234 } 1235 return (max_free); 1236 } 1237 1238 /* 1239 * When llist may or may not be the predecessor of root. 1240 */ 1241 static inline vm_size_t 1242 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root, 1243 vm_map_entry_t llist) 1244 { 1245 vm_size_t max_free; 1246 1247 max_free = vm_map_entry_max_free_left(root, llist); 1248 if (llist != header) { 1249 max_free = vm_map_splay_merge_left_walk(header, root, 1250 root->left == llist ? root : root->left, 1251 max_free, llist); 1252 } 1253 return (max_free); 1254 } 1255 1256 static vm_size_t 1257 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root, 1258 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist) 1259 { 1260 do { 1261 /* 1262 * The max_free values of the children of rlist are in 1263 * rlist->max_free and max_free. Update with the 1264 * max value. 1265 */ 1266 rlist->max_free = max_free = 1267 vm_size_max(rlist->max_free, max_free); 1268 vm_map_entry_swap(&rlist->left, &tail); 1269 vm_map_entry_swap(&tail, &rlist); 1270 } while (rlist != header); 1271 root->right = tail; 1272 return (max_free); 1273 } 1274 1275 /* 1276 * When rlist is known to be the succecessor of root. 1277 */ 1278 static inline vm_size_t 1279 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root, 1280 vm_map_entry_t rlist) 1281 { 1282 vm_size_t max_free; 1283 1284 max_free = rlist->start - root->end; 1285 if (rlist != header) { 1286 max_free = vm_map_splay_merge_right_walk(header, root, 1287 root, max_free, rlist); 1288 } else { 1289 root->right = header; 1290 header->left = root; 1291 } 1292 return (max_free); 1293 } 1294 1295 /* 1296 * When rlist may or may not be the succecessor of root. 1297 */ 1298 static inline vm_size_t 1299 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root, 1300 vm_map_entry_t rlist) 1301 { 1302 vm_size_t max_free; 1303 1304 max_free = vm_map_entry_max_free_right(root, rlist); 1305 if (rlist != header) { 1306 max_free = vm_map_splay_merge_right_walk(header, root, 1307 root->right == rlist ? root : root->right, 1308 max_free, rlist); 1309 } 1310 return (max_free); 1311 } 1312 1313 /* 1314 * vm_map_splay: 1315 * 1316 * The Sleator and Tarjan top-down splay algorithm with the 1317 * following variation. Max_free must be computed bottom-up, so 1318 * on the downward pass, maintain the left and right spines in 1319 * reverse order. Then, make a second pass up each side to fix 1320 * the pointers and compute max_free. The time bound is O(log n) 1321 * amortized. 1322 * 1323 * The tree is threaded, which means that there are no null pointers. 1324 * When a node has no left child, its left pointer points to its 1325 * predecessor, which the last ancestor on the search path from the root 1326 * where the search branched right. Likewise, when a node has no right 1327 * child, its right pointer points to its successor. The map header node 1328 * is the predecessor of the first map entry, and the successor of the 1329 * last. 1330 * 1331 * The new root is the vm_map_entry containing "addr", or else an 1332 * adjacent entry (lower if possible) if addr is not in the tree. 1333 * 1334 * The map must be locked, and leaves it so. 1335 * 1336 * Returns: the new root. 1337 */ 1338 static vm_map_entry_t 1339 vm_map_splay(vm_map_t map, vm_offset_t addr) 1340 { 1341 vm_map_entry_t header, llist, rlist, root; 1342 vm_size_t max_free_left, max_free_right; 1343 1344 header = &map->header; 1345 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1346 if (root != NULL) { 1347 max_free_left = vm_map_splay_merge_left(header, root, llist); 1348 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1349 } else if (llist != header) { 1350 /* 1351 * Recover the greatest node in the left 1352 * subtree and make it the root. 1353 */ 1354 root = llist; 1355 llist = root->right; 1356 max_free_left = vm_map_splay_merge_left(header, root, llist); 1357 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1358 } else if (rlist != header) { 1359 /* 1360 * Recover the least node in the right 1361 * subtree and make it the root. 1362 */ 1363 root = rlist; 1364 rlist = root->left; 1365 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1366 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1367 } else { 1368 /* There is no root. */ 1369 return (NULL); 1370 } 1371 root->max_free = vm_size_max(max_free_left, max_free_right); 1372 map->root = root; 1373 VM_MAP_ASSERT_CONSISTENT(map); 1374 return (root); 1375 } 1376 1377 /* 1378 * vm_map_entry_{un,}link: 1379 * 1380 * Insert/remove entries from maps. On linking, if new entry clips 1381 * existing entry, trim existing entry to avoid overlap, and manage 1382 * offsets. On unlinking, merge disappearing entry with neighbor, if 1383 * called for, and manage offsets. Callers should not modify fields in 1384 * entries already mapped. 1385 */ 1386 static void 1387 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1388 { 1389 vm_map_entry_t header, llist, rlist, root; 1390 vm_size_t max_free_left, max_free_right; 1391 1392 CTR3(KTR_VM, 1393 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1394 map->nentries, entry); 1395 VM_MAP_ASSERT_LOCKED(map); 1396 map->nentries++; 1397 header = &map->header; 1398 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1399 if (root == NULL) { 1400 /* 1401 * The new entry does not overlap any existing entry in the 1402 * map, so it becomes the new root of the map tree. 1403 */ 1404 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1405 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1406 } else if (entry->start == root->start) { 1407 /* 1408 * The new entry is a clone of root, with only the end field 1409 * changed. The root entry will be shrunk to abut the new 1410 * entry, and will be the right child of the new root entry in 1411 * the modified map. 1412 */ 1413 KASSERT(entry->end < root->end, 1414 ("%s: clip_start not within entry", __func__)); 1415 vm_map_splay_findprev(root, &llist); 1416 if ((root->eflags & MAP_ENTRY_STACK_GAP) == 0) 1417 root->offset += entry->end - root->start; 1418 root->start = entry->end; 1419 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1420 max_free_right = root->max_free = vm_size_max( 1421 vm_map_splay_merge_pred(entry, root, entry), 1422 vm_map_splay_merge_right(header, root, rlist)); 1423 } else { 1424 /* 1425 * The new entry is a clone of root, with only the start field 1426 * changed. The root entry will be shrunk to abut the new 1427 * entry, and will be the left child of the new root entry in 1428 * the modified map. 1429 */ 1430 KASSERT(entry->end == root->end, 1431 ("%s: clip_start not within entry", __func__)); 1432 vm_map_splay_findnext(root, &rlist); 1433 if ((entry->eflags & MAP_ENTRY_STACK_GAP) == 0) 1434 entry->offset += entry->start - root->start; 1435 root->end = entry->start; 1436 max_free_left = root->max_free = vm_size_max( 1437 vm_map_splay_merge_left(header, root, llist), 1438 vm_map_splay_merge_succ(entry, root, entry)); 1439 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1440 } 1441 entry->max_free = vm_size_max(max_free_left, max_free_right); 1442 map->root = entry; 1443 VM_MAP_ASSERT_CONSISTENT(map); 1444 } 1445 1446 enum unlink_merge_type { 1447 UNLINK_MERGE_NONE, 1448 UNLINK_MERGE_NEXT 1449 }; 1450 1451 static void 1452 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1453 enum unlink_merge_type op) 1454 { 1455 vm_map_entry_t header, llist, rlist, root; 1456 vm_size_t max_free_left, max_free_right; 1457 1458 VM_MAP_ASSERT_LOCKED(map); 1459 header = &map->header; 1460 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1461 KASSERT(root != NULL, 1462 ("vm_map_entry_unlink: unlink object not mapped")); 1463 1464 vm_map_splay_findprev(root, &llist); 1465 vm_map_splay_findnext(root, &rlist); 1466 if (op == UNLINK_MERGE_NEXT) { 1467 rlist->start = root->start; 1468 MPASS((rlist->eflags & MAP_ENTRY_STACK_GAP) == 0); 1469 rlist->offset = root->offset; 1470 } 1471 if (llist != header) { 1472 root = llist; 1473 llist = root->right; 1474 max_free_left = vm_map_splay_merge_left(header, root, llist); 1475 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1476 } else if (rlist != header) { 1477 root = rlist; 1478 rlist = root->left; 1479 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1480 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1481 } else { 1482 header->left = header->right = header; 1483 root = NULL; 1484 } 1485 if (root != NULL) 1486 root->max_free = vm_size_max(max_free_left, max_free_right); 1487 map->root = root; 1488 VM_MAP_ASSERT_CONSISTENT(map); 1489 map->nentries--; 1490 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1491 map->nentries, entry); 1492 } 1493 1494 /* 1495 * vm_map_entry_resize: 1496 * 1497 * Resize a vm_map_entry, recompute the amount of free space that 1498 * follows it and propagate that value up the tree. 1499 * 1500 * The map must be locked, and leaves it so. 1501 */ 1502 static void 1503 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1504 { 1505 vm_map_entry_t header, llist, rlist, root; 1506 1507 VM_MAP_ASSERT_LOCKED(map); 1508 header = &map->header; 1509 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1510 KASSERT(root != NULL, ("%s: resize object not mapped", __func__)); 1511 vm_map_splay_findnext(root, &rlist); 1512 entry->end += grow_amount; 1513 root->max_free = vm_size_max( 1514 vm_map_splay_merge_left(header, root, llist), 1515 vm_map_splay_merge_succ(header, root, rlist)); 1516 map->root = root; 1517 VM_MAP_ASSERT_CONSISTENT(map); 1518 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1519 __func__, map, map->nentries, entry); 1520 } 1521 1522 /* 1523 * vm_map_lookup_entry: [ internal use only ] 1524 * 1525 * Finds the map entry containing (or 1526 * immediately preceding) the specified address 1527 * in the given map; the entry is returned 1528 * in the "entry" parameter. The boolean 1529 * result indicates whether the address is 1530 * actually contained in the map. 1531 */ 1532 boolean_t 1533 vm_map_lookup_entry( 1534 vm_map_t map, 1535 vm_offset_t address, 1536 vm_map_entry_t *entry) /* OUT */ 1537 { 1538 vm_map_entry_t cur, header, lbound, ubound; 1539 boolean_t locked; 1540 1541 /* 1542 * If the map is empty, then the map entry immediately preceding 1543 * "address" is the map's header. 1544 */ 1545 header = &map->header; 1546 cur = map->root; 1547 if (cur == NULL) { 1548 *entry = header; 1549 return (FALSE); 1550 } 1551 if (address >= cur->start && cur->end > address) { 1552 *entry = cur; 1553 return (TRUE); 1554 } 1555 if ((locked = vm_map_locked(map)) || 1556 sx_try_upgrade(&map->lock)) { 1557 /* 1558 * Splay requires a write lock on the map. However, it only 1559 * restructures the binary search tree; it does not otherwise 1560 * change the map. Thus, the map's timestamp need not change 1561 * on a temporary upgrade. 1562 */ 1563 cur = vm_map_splay(map, address); 1564 if (!locked) { 1565 VM_MAP_UNLOCK_CONSISTENT(map); 1566 sx_downgrade(&map->lock); 1567 } 1568 1569 /* 1570 * If "address" is contained within a map entry, the new root 1571 * is that map entry. Otherwise, the new root is a map entry 1572 * immediately before or after "address". 1573 */ 1574 if (address < cur->start) { 1575 *entry = header; 1576 return (FALSE); 1577 } 1578 *entry = cur; 1579 return (address < cur->end); 1580 } 1581 /* 1582 * Since the map is only locked for read access, perform a 1583 * standard binary search tree lookup for "address". 1584 */ 1585 lbound = ubound = header; 1586 for (;;) { 1587 if (address < cur->start) { 1588 ubound = cur; 1589 cur = cur->left; 1590 if (cur == lbound) 1591 break; 1592 } else if (cur->end <= address) { 1593 lbound = cur; 1594 cur = cur->right; 1595 if (cur == ubound) 1596 break; 1597 } else { 1598 *entry = cur; 1599 return (TRUE); 1600 } 1601 } 1602 *entry = lbound; 1603 return (FALSE); 1604 } 1605 1606 /* 1607 * vm_map_insert1() is identical to vm_map_insert() except that it 1608 * returns the newly inserted map entry in '*res'. In case the new 1609 * entry is coalesced with a neighbor or an existing entry was 1610 * resized, that entry is returned. In any case, the returned entry 1611 * covers the specified address range. 1612 */ 1613 static int 1614 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1615 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow, 1616 vm_map_entry_t *res) 1617 { 1618 vm_map_entry_t new_entry, next_entry, prev_entry; 1619 struct ucred *cred; 1620 vm_eflags_t protoeflags; 1621 vm_inherit_t inheritance; 1622 u_long bdry; 1623 u_int bidx; 1624 1625 VM_MAP_ASSERT_LOCKED(map); 1626 KASSERT(object != kernel_object || 1627 (cow & MAP_COPY_ON_WRITE) == 0, 1628 ("vm_map_insert: kernel object and COW")); 1629 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 || 1630 (cow & MAP_SPLIT_BOUNDARY_MASK) != 0, 1631 ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x", 1632 object, cow)); 1633 KASSERT((prot & ~max) == 0, 1634 ("prot %#x is not subset of max_prot %#x", prot, max)); 1635 1636 /* 1637 * Check that the start and end points are not bogus. 1638 */ 1639 if (start == end || !vm_map_range_valid(map, start, end)) 1640 return (KERN_INVALID_ADDRESS); 1641 1642 if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE | 1643 VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE)) 1644 return (KERN_PROTECTION_FAILURE); 1645 1646 /* 1647 * Find the entry prior to the proposed starting address; if it's part 1648 * of an existing entry, this range is bogus. 1649 */ 1650 if (vm_map_lookup_entry(map, start, &prev_entry)) 1651 return (KERN_NO_SPACE); 1652 1653 /* 1654 * Assert that the next entry doesn't overlap the end point. 1655 */ 1656 next_entry = vm_map_entry_succ(prev_entry); 1657 if (next_entry->start < end) 1658 return (KERN_NO_SPACE); 1659 1660 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1661 max != VM_PROT_NONE)) 1662 return (KERN_INVALID_ARGUMENT); 1663 1664 protoeflags = 0; 1665 if (cow & MAP_COPY_ON_WRITE) 1666 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1667 if (cow & MAP_NOFAULT) 1668 protoeflags |= MAP_ENTRY_NOFAULT; 1669 if (cow & MAP_DISABLE_SYNCER) 1670 protoeflags |= MAP_ENTRY_NOSYNC; 1671 if (cow & MAP_DISABLE_COREDUMP) 1672 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1673 if (cow & MAP_STACK_AREA) 1674 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1675 if (cow & MAP_WRITECOUNT) 1676 protoeflags |= MAP_ENTRY_WRITECNT; 1677 if (cow & MAP_VN_EXEC) 1678 protoeflags |= MAP_ENTRY_VN_EXEC; 1679 if ((cow & MAP_CREATE_GUARD) != 0) 1680 protoeflags |= MAP_ENTRY_GUARD; 1681 if ((cow & MAP_CREATE_STACK_GAP) != 0) 1682 protoeflags |= MAP_ENTRY_STACK_GAP; 1683 if (cow & MAP_INHERIT_SHARE) 1684 inheritance = VM_INHERIT_SHARE; 1685 else 1686 inheritance = VM_INHERIT_DEFAULT; 1687 if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) { 1688 /* This magically ignores index 0, for usual page size. */ 1689 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >> 1690 MAP_SPLIT_BOUNDARY_SHIFT; 1691 if (bidx >= MAXPAGESIZES) 1692 return (KERN_INVALID_ARGUMENT); 1693 bdry = pagesizes[bidx] - 1; 1694 if ((start & bdry) != 0 || (end & bdry) != 0) 1695 return (KERN_INVALID_ARGUMENT); 1696 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 1697 } 1698 1699 cred = NULL; 1700 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1701 goto charged; 1702 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1703 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1704 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1705 return (KERN_RESOURCE_SHORTAGE); 1706 KASSERT(object == NULL || 1707 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1708 object->cred == NULL, 1709 ("overcommit: vm_map_insert o %p", object)); 1710 cred = curthread->td_ucred; 1711 } 1712 1713 charged: 1714 /* Expand the kernel pmap, if necessary. */ 1715 if (map == kernel_map && end > kernel_vm_end) 1716 pmap_growkernel(end); 1717 if (object != NULL) { 1718 /* 1719 * OBJ_ONEMAPPING must be cleared unless this mapping 1720 * is trivially proven to be the only mapping for any 1721 * of the object's pages. (Object granularity 1722 * reference counting is insufficient to recognize 1723 * aliases with precision.) 1724 */ 1725 if ((object->flags & OBJ_ANON) != 0) { 1726 VM_OBJECT_WLOCK(object); 1727 if (object->ref_count > 1 || object->shadow_count != 0) 1728 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1729 VM_OBJECT_WUNLOCK(object); 1730 } 1731 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1732 protoeflags && 1733 (cow & (MAP_STACK_AREA | MAP_VN_EXEC)) == 0 && 1734 prev_entry->end == start && (prev_entry->cred == cred || 1735 (prev_entry->object.vm_object != NULL && 1736 prev_entry->object.vm_object->cred == cred)) && 1737 vm_object_coalesce(prev_entry->object.vm_object, 1738 prev_entry->offset, 1739 (vm_size_t)(prev_entry->end - prev_entry->start), 1740 (vm_size_t)(end - prev_entry->end), cred != NULL && 1741 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1742 /* 1743 * We were able to extend the object. Determine if we 1744 * can extend the previous map entry to include the 1745 * new range as well. 1746 */ 1747 if (prev_entry->inheritance == inheritance && 1748 prev_entry->protection == prot && 1749 prev_entry->max_protection == max && 1750 prev_entry->wired_count == 0) { 1751 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1752 0, ("prev_entry %p has incoherent wiring", 1753 prev_entry)); 1754 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1755 map->size += end - prev_entry->end; 1756 vm_map_entry_resize(map, prev_entry, 1757 end - prev_entry->end); 1758 *res = vm_map_try_merge_entries(map, prev_entry, 1759 next_entry); 1760 return (KERN_SUCCESS); 1761 } 1762 1763 /* 1764 * If we can extend the object but cannot extend the 1765 * map entry, we have to create a new map entry. We 1766 * must bump the ref count on the extended object to 1767 * account for it. object may be NULL. 1768 */ 1769 object = prev_entry->object.vm_object; 1770 offset = prev_entry->offset + 1771 (prev_entry->end - prev_entry->start); 1772 vm_object_reference(object); 1773 if (cred != NULL && object != NULL && object->cred != NULL && 1774 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1775 /* Object already accounts for this uid. */ 1776 cred = NULL; 1777 } 1778 } 1779 if (cred != NULL) 1780 crhold(cred); 1781 1782 /* 1783 * Create a new entry 1784 */ 1785 new_entry = vm_map_entry_create(map); 1786 new_entry->start = start; 1787 new_entry->end = end; 1788 new_entry->cred = NULL; 1789 1790 new_entry->eflags = protoeflags; 1791 new_entry->object.vm_object = object; 1792 new_entry->offset = offset; 1793 1794 new_entry->inheritance = inheritance; 1795 new_entry->protection = prot; 1796 new_entry->max_protection = max; 1797 new_entry->wired_count = 0; 1798 new_entry->wiring_thread = NULL; 1799 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1800 new_entry->next_read = start; 1801 1802 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1803 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1804 new_entry->cred = cred; 1805 1806 /* 1807 * Insert the new entry into the list 1808 */ 1809 vm_map_entry_link(map, new_entry); 1810 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1811 map->size += new_entry->end - new_entry->start; 1812 1813 /* 1814 * Try to coalesce the new entry with both the previous and next 1815 * entries in the list. Previously, we only attempted to coalesce 1816 * with the previous entry when object is NULL. Here, we handle the 1817 * other cases, which are less common. 1818 */ 1819 vm_map_try_merge_entries(map, prev_entry, new_entry); 1820 *res = vm_map_try_merge_entries(map, new_entry, next_entry); 1821 1822 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1823 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1824 end - start, cow & MAP_PREFAULT_PARTIAL); 1825 } 1826 1827 return (KERN_SUCCESS); 1828 } 1829 1830 /* 1831 * vm_map_insert: 1832 * 1833 * Inserts the given VM object into the target map at the 1834 * specified address range. 1835 * 1836 * Requires that the map be locked, and leaves it so. 1837 * 1838 * If object is non-NULL, ref count must be bumped by caller 1839 * prior to making call to account for the new entry. 1840 */ 1841 int 1842 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1843 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1844 { 1845 vm_map_entry_t res; 1846 1847 return (vm_map_insert1(map, object, offset, start, end, prot, max, 1848 cow, &res)); 1849 } 1850 1851 /* 1852 * vm_map_findspace: 1853 * 1854 * Find the first fit (lowest VM address) for "length" free bytes 1855 * beginning at address >= start in the given map. 1856 * 1857 * In a vm_map_entry, "max_free" is the maximum amount of 1858 * contiguous free space between an entry in its subtree and a 1859 * neighbor of that entry. This allows finding a free region in 1860 * one path down the tree, so O(log n) amortized with splay 1861 * trees. 1862 * 1863 * The map must be locked, and leaves it so. 1864 * 1865 * Returns: starting address if sufficient space, 1866 * vm_map_max(map)-length+1 if insufficient space. 1867 */ 1868 vm_offset_t 1869 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1870 { 1871 vm_map_entry_t header, llist, rlist, root, y; 1872 vm_size_t left_length, max_free_left, max_free_right; 1873 vm_offset_t gap_end; 1874 1875 VM_MAP_ASSERT_LOCKED(map); 1876 1877 /* 1878 * Request must fit within min/max VM address and must avoid 1879 * address wrap. 1880 */ 1881 start = MAX(start, vm_map_min(map)); 1882 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1883 return (vm_map_max(map) - length + 1); 1884 1885 /* Empty tree means wide open address space. */ 1886 if (map->root == NULL) 1887 return (start); 1888 1889 /* 1890 * After splay_split, if start is within an entry, push it to the start 1891 * of the following gap. If rlist is at the end of the gap containing 1892 * start, save the end of that gap in gap_end to see if the gap is big 1893 * enough; otherwise set gap_end to start skip gap-checking and move 1894 * directly to a search of the right subtree. 1895 */ 1896 header = &map->header; 1897 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1898 gap_end = rlist->start; 1899 if (root != NULL) { 1900 start = root->end; 1901 if (root->right != rlist) 1902 gap_end = start; 1903 max_free_left = vm_map_splay_merge_left(header, root, llist); 1904 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1905 } else if (rlist != header) { 1906 root = rlist; 1907 rlist = root->left; 1908 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1909 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1910 } else { 1911 root = llist; 1912 llist = root->right; 1913 max_free_left = vm_map_splay_merge_left(header, root, llist); 1914 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1915 } 1916 root->max_free = vm_size_max(max_free_left, max_free_right); 1917 map->root = root; 1918 VM_MAP_ASSERT_CONSISTENT(map); 1919 if (length <= gap_end - start) 1920 return (start); 1921 1922 /* With max_free, can immediately tell if no solution. */ 1923 if (root->right == header || length > root->right->max_free) 1924 return (vm_map_max(map) - length + 1); 1925 1926 /* 1927 * Splay for the least large-enough gap in the right subtree. 1928 */ 1929 llist = rlist = header; 1930 for (left_length = 0;; 1931 left_length = vm_map_entry_max_free_left(root, llist)) { 1932 if (length <= left_length) 1933 SPLAY_LEFT_STEP(root, y, llist, rlist, 1934 length <= vm_map_entry_max_free_left(y, llist)); 1935 else 1936 SPLAY_RIGHT_STEP(root, y, llist, rlist, 1937 length > vm_map_entry_max_free_left(y, root)); 1938 if (root == NULL) 1939 break; 1940 } 1941 root = llist; 1942 llist = root->right; 1943 max_free_left = vm_map_splay_merge_left(header, root, llist); 1944 if (rlist == header) { 1945 root->max_free = vm_size_max(max_free_left, 1946 vm_map_splay_merge_succ(header, root, rlist)); 1947 } else { 1948 y = rlist; 1949 rlist = y->left; 1950 y->max_free = vm_size_max( 1951 vm_map_splay_merge_pred(root, y, root), 1952 vm_map_splay_merge_right(header, y, rlist)); 1953 root->max_free = vm_size_max(max_free_left, y->max_free); 1954 } 1955 map->root = root; 1956 VM_MAP_ASSERT_CONSISTENT(map); 1957 return (root->end); 1958 } 1959 1960 int 1961 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1962 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1963 vm_prot_t max, int cow) 1964 { 1965 vm_offset_t end; 1966 int result; 1967 1968 end = start + length; 1969 KASSERT((cow & MAP_STACK_AREA) == 0 || object == NULL, 1970 ("vm_map_fixed: non-NULL backing object for stack")); 1971 vm_map_lock(map); 1972 VM_MAP_RANGE_CHECK(map, start, end); 1973 if ((cow & MAP_CHECK_EXCL) == 0) { 1974 result = vm_map_delete(map, start, end); 1975 if (result != KERN_SUCCESS) 1976 goto out; 1977 } 1978 if ((cow & MAP_STACK_AREA) != 0) { 1979 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1980 prot, max, cow); 1981 } else { 1982 result = vm_map_insert(map, object, offset, start, end, 1983 prot, max, cow); 1984 } 1985 out: 1986 vm_map_unlock(map); 1987 return (result); 1988 } 1989 1990 #if VM_NRESERVLEVEL <= 1 1991 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1992 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1993 #elif VM_NRESERVLEVEL == 2 1994 static const int aslr_pages_rnd_64[3] = {0x1000, 0x1000, 0x10}; 1995 static const int aslr_pages_rnd_32[3] = {0x100, 0x100, 0x4}; 1996 #else 1997 #error "Unsupported VM_NRESERVLEVEL" 1998 #endif 1999 2000 static int cluster_anon = 1; 2001 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 2002 &cluster_anon, 0, 2003 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 2004 2005 static bool 2006 clustering_anon_allowed(vm_offset_t addr, int cow) 2007 { 2008 2009 switch (cluster_anon) { 2010 case 0: 2011 return (false); 2012 case 1: 2013 return (addr == 0 || (cow & MAP_NO_HINT) != 0); 2014 case 2: 2015 default: 2016 return (true); 2017 } 2018 } 2019 2020 static long aslr_restarts; 2021 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 2022 &aslr_restarts, 0, 2023 "Number of aslr failures"); 2024 2025 /* 2026 * Searches for the specified amount of free space in the given map with the 2027 * specified alignment. Performs an address-ordered, first-fit search from 2028 * the given address "*addr", with an optional upper bound "max_addr". If the 2029 * parameter "alignment" is zero, then the alignment is computed from the 2030 * given (object, offset) pair so as to enable the greatest possible use of 2031 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 2032 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 2033 * 2034 * The map must be locked. Initially, there must be at least "length" bytes 2035 * of free space at the given address. 2036 */ 2037 static int 2038 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2039 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 2040 vm_offset_t alignment) 2041 { 2042 vm_offset_t aligned_addr, free_addr; 2043 2044 VM_MAP_ASSERT_LOCKED(map); 2045 free_addr = *addr; 2046 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 2047 ("caller failed to provide space %#jx at address %p", 2048 (uintmax_t)length, (void *)free_addr)); 2049 for (;;) { 2050 /* 2051 * At the start of every iteration, the free space at address 2052 * "*addr" is at least "length" bytes. 2053 */ 2054 if (alignment == 0) 2055 pmap_align_superpage(object, offset, addr, length); 2056 else 2057 *addr = roundup2(*addr, alignment); 2058 aligned_addr = *addr; 2059 if (aligned_addr == free_addr) { 2060 /* 2061 * Alignment did not change "*addr", so "*addr" must 2062 * still provide sufficient free space. 2063 */ 2064 return (KERN_SUCCESS); 2065 } 2066 2067 /* 2068 * Test for address wrap on "*addr". A wrapped "*addr" could 2069 * be a valid address, in which case vm_map_findspace() cannot 2070 * be relied upon to fail. 2071 */ 2072 if (aligned_addr < free_addr) 2073 return (KERN_NO_SPACE); 2074 *addr = vm_map_findspace(map, aligned_addr, length); 2075 if (*addr + length > vm_map_max(map) || 2076 (max_addr != 0 && *addr + length > max_addr)) 2077 return (KERN_NO_SPACE); 2078 free_addr = *addr; 2079 if (free_addr == aligned_addr) { 2080 /* 2081 * If a successful call to vm_map_findspace() did not 2082 * change "*addr", then "*addr" must still be aligned 2083 * and provide sufficient free space. 2084 */ 2085 return (KERN_SUCCESS); 2086 } 2087 } 2088 } 2089 2090 int 2091 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length, 2092 vm_offset_t max_addr, vm_offset_t alignment) 2093 { 2094 /* XXXKIB ASLR eh ? */ 2095 *addr = vm_map_findspace(map, *addr, length); 2096 if (*addr + length > vm_map_max(map) || 2097 (max_addr != 0 && *addr + length > max_addr)) 2098 return (KERN_NO_SPACE); 2099 return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr, 2100 alignment)); 2101 } 2102 2103 /* 2104 * vm_map_find finds an unallocated region in the target address 2105 * map with the given length. The search is defined to be 2106 * first-fit from the specified address; the region found is 2107 * returned in the same parameter. 2108 * 2109 * If object is non-NULL, ref count must be bumped by caller 2110 * prior to making call to account for the new entry. 2111 */ 2112 int 2113 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2114 vm_offset_t *addr, /* IN/OUT */ 2115 vm_size_t length, vm_offset_t max_addr, int find_space, 2116 vm_prot_t prot, vm_prot_t max, int cow) 2117 { 2118 int rv; 2119 2120 vm_map_lock(map); 2121 rv = vm_map_find_locked(map, object, offset, addr, length, max_addr, 2122 find_space, prot, max, cow); 2123 vm_map_unlock(map); 2124 return (rv); 2125 } 2126 2127 int 2128 vm_map_find_locked(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2129 vm_offset_t *addr, /* IN/OUT */ 2130 vm_size_t length, vm_offset_t max_addr, int find_space, 2131 vm_prot_t prot, vm_prot_t max, int cow) 2132 { 2133 vm_offset_t alignment, curr_min_addr, min_addr; 2134 int gap, pidx, rv, try; 2135 bool cluster, en_aslr, update_anon; 2136 2137 KASSERT((cow & MAP_STACK_AREA) == 0 || object == NULL, 2138 ("non-NULL backing object for stack")); 2139 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 2140 (cow & MAP_STACK_AREA) == 0)); 2141 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 2142 (object->flags & OBJ_COLORED) == 0)) 2143 find_space = VMFS_ANY_SPACE; 2144 if (find_space >> 8 != 0) { 2145 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 2146 alignment = (vm_offset_t)1 << (find_space >> 8); 2147 } else 2148 alignment = 0; 2149 en_aslr = (map->flags & MAP_ASLR) != 0; 2150 update_anon = cluster = clustering_anon_allowed(*addr, cow) && 2151 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 2152 find_space != VMFS_NO_SPACE && object == NULL && 2153 (cow & (MAP_INHERIT_SHARE | MAP_STACK_AREA)) == 0 && 2154 prot != PROT_NONE; 2155 curr_min_addr = min_addr = *addr; 2156 if (en_aslr && min_addr == 0 && !cluster && 2157 find_space != VMFS_NO_SPACE && 2158 (map->flags & MAP_ASLR_IGNSTART) != 0) 2159 curr_min_addr = min_addr = vm_map_min(map); 2160 try = 0; 2161 if (cluster) { 2162 curr_min_addr = map->anon_loc; 2163 if (curr_min_addr == 0) 2164 cluster = false; 2165 } 2166 if (find_space != VMFS_NO_SPACE) { 2167 KASSERT(find_space == VMFS_ANY_SPACE || 2168 find_space == VMFS_OPTIMAL_SPACE || 2169 find_space == VMFS_SUPER_SPACE || 2170 alignment != 0, ("unexpected VMFS flag")); 2171 again: 2172 /* 2173 * When creating an anonymous mapping, try clustering 2174 * with an existing anonymous mapping first. 2175 * 2176 * We make up to two attempts to find address space 2177 * for a given find_space value. The first attempt may 2178 * apply randomization or may cluster with an existing 2179 * anonymous mapping. If this first attempt fails, 2180 * perform a first-fit search of the available address 2181 * space. 2182 * 2183 * If all tries failed, and find_space is 2184 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 2185 * Again enable clustering and randomization. 2186 */ 2187 try++; 2188 MPASS(try <= 2); 2189 2190 if (try == 2) { 2191 /* 2192 * Second try: we failed either to find a 2193 * suitable region for randomizing the 2194 * allocation, or to cluster with an existing 2195 * mapping. Retry with free run. 2196 */ 2197 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 2198 vm_map_min(map) : min_addr; 2199 atomic_add_long(&aslr_restarts, 1); 2200 } 2201 2202 if (try == 1 && en_aslr && !cluster) { 2203 /* 2204 * Find space for allocation, including 2205 * gap needed for later randomization. 2206 */ 2207 pidx = 0; 2208 #if VM_NRESERVLEVEL > 0 2209 if ((find_space == VMFS_SUPER_SPACE || 2210 find_space == VMFS_OPTIMAL_SPACE) && 2211 pagesizes[VM_NRESERVLEVEL] != 0) { 2212 /* 2213 * Do not pointlessly increase the space that 2214 * is requested from vm_map_findspace(). 2215 * pmap_align_superpage() will only change a 2216 * mapping's alignment if that mapping is at 2217 * least a superpage in size. 2218 */ 2219 pidx = VM_NRESERVLEVEL; 2220 while (pidx > 0 && length < pagesizes[pidx]) 2221 pidx--; 2222 } 2223 #endif 2224 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 2225 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 2226 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 2227 *addr = vm_map_findspace(map, curr_min_addr, 2228 length + gap * pagesizes[pidx]); 2229 if (*addr + length + gap * pagesizes[pidx] > 2230 vm_map_max(map)) 2231 goto again; 2232 /* And randomize the start address. */ 2233 *addr += (arc4random() % gap) * pagesizes[pidx]; 2234 if (max_addr != 0 && *addr + length > max_addr) 2235 goto again; 2236 } else { 2237 *addr = vm_map_findspace(map, curr_min_addr, length); 2238 if (*addr + length > vm_map_max(map) || 2239 (max_addr != 0 && *addr + length > max_addr)) { 2240 if (cluster) { 2241 cluster = false; 2242 MPASS(try == 1); 2243 goto again; 2244 } 2245 return (KERN_NO_SPACE); 2246 } 2247 } 2248 2249 if (find_space != VMFS_ANY_SPACE && 2250 (rv = vm_map_alignspace(map, object, offset, addr, length, 2251 max_addr, alignment)) != KERN_SUCCESS) { 2252 if (find_space == VMFS_OPTIMAL_SPACE) { 2253 find_space = VMFS_ANY_SPACE; 2254 curr_min_addr = min_addr; 2255 cluster = update_anon; 2256 try = 0; 2257 goto again; 2258 } 2259 return (rv); 2260 } 2261 } else if ((cow & MAP_REMAP) != 0) { 2262 if (!vm_map_range_valid(map, *addr, *addr + length)) 2263 return (KERN_INVALID_ADDRESS); 2264 rv = vm_map_delete(map, *addr, *addr + length); 2265 if (rv != KERN_SUCCESS) 2266 return (rv); 2267 } 2268 if ((cow & MAP_STACK_AREA) != 0) { 2269 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 2270 max, cow); 2271 } else { 2272 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 2273 prot, max, cow); 2274 } 2275 2276 /* 2277 * Update the starting address for clustered anonymous memory mappings 2278 * if a starting address was not previously defined or an ASLR restart 2279 * placed an anonymous memory mapping at a lower address. 2280 */ 2281 if (update_anon && rv == KERN_SUCCESS && (map->anon_loc == 0 || 2282 *addr < map->anon_loc)) 2283 map->anon_loc = *addr; 2284 return (rv); 2285 } 2286 2287 /* 2288 * vm_map_find_min() is a variant of vm_map_find() that takes an 2289 * additional parameter ("default_addr") and treats the given address 2290 * ("*addr") differently. Specifically, it treats "*addr" as a hint 2291 * and not as the minimum address where the mapping is created. 2292 * 2293 * This function works in two phases. First, it tries to 2294 * allocate above the hint. If that fails and the hint is 2295 * greater than "default_addr", it performs a second pass, replacing 2296 * the hint with "default_addr" as the minimum address for the 2297 * allocation. 2298 */ 2299 int 2300 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2301 vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr, 2302 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2303 int cow) 2304 { 2305 vm_offset_t hint; 2306 int rv; 2307 2308 hint = *addr; 2309 if (hint == 0) { 2310 cow |= MAP_NO_HINT; 2311 *addr = hint = default_addr; 2312 } 2313 for (;;) { 2314 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2315 find_space, prot, max, cow); 2316 if (rv == KERN_SUCCESS || default_addr >= hint) 2317 return (rv); 2318 *addr = hint = default_addr; 2319 } 2320 } 2321 2322 /* 2323 * A map entry with any of the following flags set must not be merged with 2324 * another entry. 2325 */ 2326 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | \ 2327 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \ 2328 MAP_ENTRY_STACK_GAP) 2329 2330 static bool 2331 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2332 { 2333 2334 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2335 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2336 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2337 prev, entry)); 2338 return (prev->end == entry->start && 2339 prev->object.vm_object == entry->object.vm_object && 2340 (prev->object.vm_object == NULL || 2341 prev->offset + (prev->end - prev->start) == entry->offset) && 2342 prev->eflags == entry->eflags && 2343 prev->protection == entry->protection && 2344 prev->max_protection == entry->max_protection && 2345 prev->inheritance == entry->inheritance && 2346 prev->wired_count == entry->wired_count && 2347 prev->cred == entry->cred); 2348 } 2349 2350 static void 2351 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2352 { 2353 2354 /* 2355 * If the backing object is a vnode object, vm_object_deallocate() 2356 * calls vrele(). However, vrele() does not lock the vnode because 2357 * the vnode has additional references. Thus, the map lock can be 2358 * kept without causing a lock-order reversal with the vnode lock. 2359 * 2360 * Since we count the number of virtual page mappings in 2361 * object->un_pager.vnp.writemappings, the writemappings value 2362 * should not be adjusted when the entry is disposed of. 2363 */ 2364 if (entry->object.vm_object != NULL) 2365 vm_object_deallocate(entry->object.vm_object); 2366 if (entry->cred != NULL) 2367 crfree(entry->cred); 2368 vm_map_entry_dispose(map, entry); 2369 } 2370 2371 /* 2372 * vm_map_try_merge_entries: 2373 * 2374 * Compare two map entries that represent consecutive ranges. If 2375 * the entries can be merged, expand the range of the second to 2376 * cover the range of the first and delete the first. Then return 2377 * the map entry that includes the first range. 2378 * 2379 * The map must be locked. 2380 */ 2381 vm_map_entry_t 2382 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry, 2383 vm_map_entry_t entry) 2384 { 2385 2386 VM_MAP_ASSERT_LOCKED(map); 2387 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 && 2388 vm_map_mergeable_neighbors(prev_entry, entry)) { 2389 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT); 2390 vm_map_merged_neighbor_dispose(map, prev_entry); 2391 return (entry); 2392 } 2393 return (prev_entry); 2394 } 2395 2396 /* 2397 * vm_map_entry_back: 2398 * 2399 * Allocate an object to back a map entry. 2400 */ 2401 static inline void 2402 vm_map_entry_back(vm_map_entry_t entry) 2403 { 2404 vm_object_t object; 2405 2406 KASSERT(entry->object.vm_object == NULL, 2407 ("map entry %p has backing object", entry)); 2408 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2409 ("map entry %p is a submap", entry)); 2410 object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL, 2411 entry->cred, entry->end - entry->start); 2412 entry->object.vm_object = object; 2413 entry->offset = 0; 2414 entry->cred = NULL; 2415 } 2416 2417 /* 2418 * vm_map_entry_charge_object 2419 * 2420 * If there is no object backing this entry, create one. Otherwise, if 2421 * the entry has cred, give it to the backing object. 2422 */ 2423 static inline void 2424 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2425 { 2426 2427 VM_MAP_ASSERT_LOCKED(map); 2428 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2429 ("map entry %p is a submap", entry)); 2430 if (entry->object.vm_object == NULL && !vm_map_is_system(map) && 2431 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2432 vm_map_entry_back(entry); 2433 else if (entry->object.vm_object != NULL && 2434 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2435 entry->cred != NULL) { 2436 VM_OBJECT_WLOCK(entry->object.vm_object); 2437 KASSERT(entry->object.vm_object->cred == NULL, 2438 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2439 entry->object.vm_object->cred = entry->cred; 2440 entry->object.vm_object->charge = entry->end - entry->start; 2441 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2442 entry->cred = NULL; 2443 } 2444 } 2445 2446 /* 2447 * vm_map_entry_clone 2448 * 2449 * Create a duplicate map entry for clipping. 2450 */ 2451 static vm_map_entry_t 2452 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry) 2453 { 2454 vm_map_entry_t new_entry; 2455 2456 VM_MAP_ASSERT_LOCKED(map); 2457 2458 /* 2459 * Create a backing object now, if none exists, so that more individual 2460 * objects won't be created after the map entry is split. 2461 */ 2462 vm_map_entry_charge_object(map, entry); 2463 2464 /* Clone the entry. */ 2465 new_entry = vm_map_entry_create(map); 2466 *new_entry = *entry; 2467 if (new_entry->cred != NULL) 2468 crhold(entry->cred); 2469 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2470 vm_object_reference(new_entry->object.vm_object); 2471 vm_map_entry_set_vnode_text(new_entry, true); 2472 /* 2473 * The object->un_pager.vnp.writemappings for the object of 2474 * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The 2475 * virtual pages are re-distributed among the clipped entries, 2476 * so the sum is left the same. 2477 */ 2478 } 2479 return (new_entry); 2480 } 2481 2482 /* 2483 * vm_map_clip_start: [ internal use only ] 2484 * 2485 * Asserts that the given entry begins at or after 2486 * the specified address; if necessary, 2487 * it splits the entry into two. 2488 */ 2489 static int 2490 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr) 2491 { 2492 vm_map_entry_t new_entry; 2493 int bdry_idx; 2494 2495 if (!vm_map_is_system(map)) 2496 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2497 "%s: map %p entry %p start 0x%jx", __func__, map, entry, 2498 (uintmax_t)startaddr); 2499 2500 if (startaddr <= entry->start) 2501 return (KERN_SUCCESS); 2502 2503 VM_MAP_ASSERT_LOCKED(map); 2504 KASSERT(entry->end > startaddr && entry->start < startaddr, 2505 ("%s: invalid clip of entry %p", __func__, entry)); 2506 2507 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 2508 if (bdry_idx != 0) { 2509 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0) 2510 return (KERN_INVALID_ARGUMENT); 2511 } 2512 2513 new_entry = vm_map_entry_clone(map, entry); 2514 2515 /* 2516 * Split off the front portion. Insert the new entry BEFORE this one, 2517 * so that this entry has the specified starting address. 2518 */ 2519 new_entry->end = startaddr; 2520 vm_map_entry_link(map, new_entry); 2521 return (KERN_SUCCESS); 2522 } 2523 2524 /* 2525 * vm_map_lookup_clip_start: 2526 * 2527 * Find the entry at or just after 'start', and clip it if 'start' is in 2528 * the interior of the entry. Return entry after 'start', and in 2529 * prev_entry set the entry before 'start'. 2530 */ 2531 static int 2532 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start, 2533 vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry) 2534 { 2535 vm_map_entry_t entry; 2536 int rv; 2537 2538 if (!vm_map_is_system(map)) 2539 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2540 "%s: map %p start 0x%jx prev %p", __func__, map, 2541 (uintmax_t)start, prev_entry); 2542 2543 if (vm_map_lookup_entry(map, start, prev_entry)) { 2544 entry = *prev_entry; 2545 rv = vm_map_clip_start(map, entry, start); 2546 if (rv != KERN_SUCCESS) 2547 return (rv); 2548 *prev_entry = vm_map_entry_pred(entry); 2549 } else 2550 entry = vm_map_entry_succ(*prev_entry); 2551 *res_entry = entry; 2552 return (KERN_SUCCESS); 2553 } 2554 2555 /* 2556 * vm_map_clip_end: [ internal use only ] 2557 * 2558 * Asserts that the given entry ends at or before 2559 * the specified address; if necessary, 2560 * it splits the entry into two. 2561 */ 2562 static int 2563 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr) 2564 { 2565 vm_map_entry_t new_entry; 2566 int bdry_idx; 2567 2568 if (!vm_map_is_system(map)) 2569 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2570 "%s: map %p entry %p end 0x%jx", __func__, map, entry, 2571 (uintmax_t)endaddr); 2572 2573 if (endaddr >= entry->end) 2574 return (KERN_SUCCESS); 2575 2576 VM_MAP_ASSERT_LOCKED(map); 2577 KASSERT(entry->start < endaddr && entry->end > endaddr, 2578 ("%s: invalid clip of entry %p", __func__, entry)); 2579 2580 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 2581 if (bdry_idx != 0) { 2582 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0) 2583 return (KERN_INVALID_ARGUMENT); 2584 } 2585 2586 new_entry = vm_map_entry_clone(map, entry); 2587 2588 /* 2589 * Split off the back portion. Insert the new entry AFTER this one, 2590 * so that this entry has the specified ending address. 2591 */ 2592 new_entry->start = endaddr; 2593 vm_map_entry_link(map, new_entry); 2594 2595 return (KERN_SUCCESS); 2596 } 2597 2598 /* 2599 * vm_map_submap: [ kernel use only ] 2600 * 2601 * Mark the given range as handled by a subordinate map. 2602 * 2603 * This range must have been created with vm_map_find, 2604 * and no other operations may have been performed on this 2605 * range prior to calling vm_map_submap. 2606 * 2607 * Only a limited number of operations can be performed 2608 * within this rage after calling vm_map_submap: 2609 * vm_fault 2610 * [Don't try vm_map_copy!] 2611 * 2612 * To remove a submapping, one must first remove the 2613 * range from the superior map, and then destroy the 2614 * submap (if desired). [Better yet, don't try it.] 2615 */ 2616 int 2617 vm_map_submap( 2618 vm_map_t map, 2619 vm_offset_t start, 2620 vm_offset_t end, 2621 vm_map_t submap) 2622 { 2623 vm_map_entry_t entry; 2624 int result; 2625 2626 result = KERN_INVALID_ARGUMENT; 2627 2628 vm_map_lock(submap); 2629 submap->flags |= MAP_IS_SUB_MAP; 2630 vm_map_unlock(submap); 2631 2632 vm_map_lock(map); 2633 VM_MAP_RANGE_CHECK(map, start, end); 2634 if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end && 2635 (entry->eflags & MAP_ENTRY_COW) == 0 && 2636 entry->object.vm_object == NULL) { 2637 result = vm_map_clip_start(map, entry, start); 2638 if (result != KERN_SUCCESS) 2639 goto unlock; 2640 result = vm_map_clip_end(map, entry, end); 2641 if (result != KERN_SUCCESS) 2642 goto unlock; 2643 entry->object.sub_map = submap; 2644 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2645 result = KERN_SUCCESS; 2646 } 2647 unlock: 2648 vm_map_unlock(map); 2649 2650 if (result != KERN_SUCCESS) { 2651 vm_map_lock(submap); 2652 submap->flags &= ~MAP_IS_SUB_MAP; 2653 vm_map_unlock(submap); 2654 } 2655 return (result); 2656 } 2657 2658 /* 2659 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2660 */ 2661 #define MAX_INIT_PT 96 2662 2663 /* 2664 * vm_map_pmap_enter: 2665 * 2666 * Preload the specified map's pmap with mappings to the specified 2667 * object's memory-resident pages. No further physical pages are 2668 * allocated, and no further virtual pages are retrieved from secondary 2669 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2670 * limited number of page mappings are created at the low-end of the 2671 * specified address range. (For this purpose, a superpage mapping 2672 * counts as one page mapping.) Otherwise, all resident pages within 2673 * the specified address range are mapped. 2674 */ 2675 static void 2676 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2677 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2678 { 2679 vm_offset_t start; 2680 vm_page_t p, p_start; 2681 vm_pindex_t mask, psize, threshold, tmpidx; 2682 int psind; 2683 2684 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2685 return; 2686 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2687 VM_OBJECT_WLOCK(object); 2688 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2689 pmap_object_init_pt(map->pmap, addr, object, pindex, 2690 size); 2691 VM_OBJECT_WUNLOCK(object); 2692 return; 2693 } 2694 VM_OBJECT_LOCK_DOWNGRADE(object); 2695 } else 2696 VM_OBJECT_RLOCK(object); 2697 2698 psize = atop(size); 2699 if (psize + pindex > object->size) { 2700 if (pindex >= object->size) { 2701 VM_OBJECT_RUNLOCK(object); 2702 return; 2703 } 2704 psize = object->size - pindex; 2705 } 2706 2707 start = 0; 2708 p_start = NULL; 2709 threshold = MAX_INIT_PT; 2710 2711 p = vm_page_find_least(object, pindex); 2712 /* 2713 * Assert: the variable p is either (1) the page with the 2714 * least pindex greater than or equal to the parameter pindex 2715 * or (2) NULL. 2716 */ 2717 for (; 2718 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2719 p = TAILQ_NEXT(p, listq)) { 2720 /* 2721 * don't allow an madvise to blow away our really 2722 * free pages allocating pv entries. 2723 */ 2724 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2725 vm_page_count_severe()) || 2726 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2727 tmpidx >= threshold)) { 2728 psize = tmpidx; 2729 break; 2730 } 2731 if (vm_page_all_valid(p)) { 2732 if (p_start == NULL) { 2733 start = addr + ptoa(tmpidx); 2734 p_start = p; 2735 } 2736 /* Jump ahead if a superpage mapping is possible. */ 2737 for (psind = p->psind; psind > 0; psind--) { 2738 if (((addr + ptoa(tmpidx)) & 2739 (pagesizes[psind] - 1)) == 0) { 2740 mask = atop(pagesizes[psind]) - 1; 2741 if (tmpidx + mask < psize && 2742 vm_page_ps_test(p, psind, 2743 PS_ALL_VALID, NULL)) { 2744 p += mask; 2745 threshold += mask; 2746 break; 2747 } 2748 } 2749 } 2750 } else if (p_start != NULL) { 2751 pmap_enter_object(map->pmap, start, addr + 2752 ptoa(tmpidx), p_start, prot); 2753 p_start = NULL; 2754 } 2755 } 2756 if (p_start != NULL) 2757 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2758 p_start, prot); 2759 VM_OBJECT_RUNLOCK(object); 2760 } 2761 2762 static void 2763 vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot, 2764 vm_prot_t new_maxprot, int flags) 2765 { 2766 vm_prot_t old_prot; 2767 2768 MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0); 2769 if ((entry->eflags & MAP_ENTRY_STACK_GAP) == 0) 2770 return; 2771 2772 old_prot = PROT_EXTRACT(entry->offset); 2773 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) { 2774 entry->offset = PROT_MAX(new_maxprot) | 2775 (new_maxprot & old_prot); 2776 } 2777 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) { 2778 entry->offset = new_prot | PROT_MAX( 2779 PROT_MAX_EXTRACT(entry->offset)); 2780 } 2781 } 2782 2783 /* 2784 * vm_map_protect: 2785 * 2786 * Sets the protection and/or the maximum protection of the 2787 * specified address region in the target map. 2788 */ 2789 int 2790 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2791 vm_prot_t new_prot, vm_prot_t new_maxprot, int flags) 2792 { 2793 vm_map_entry_t entry, first_entry, in_tran, prev_entry; 2794 vm_object_t obj; 2795 struct ucred *cred; 2796 vm_offset_t orig_start; 2797 vm_prot_t check_prot, max_prot, old_prot; 2798 int rv; 2799 2800 if (start == end) 2801 return (KERN_SUCCESS); 2802 2803 if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT | 2804 VM_MAP_PROTECT_SET_MAXPROT) && 2805 !CONTAINS_BITS(new_maxprot, new_prot)) 2806 return (KERN_OUT_OF_BOUNDS); 2807 2808 orig_start = start; 2809 again: 2810 in_tran = NULL; 2811 start = orig_start; 2812 vm_map_lock(map); 2813 2814 if ((map->flags & MAP_WXORX) != 0 && 2815 (flags & VM_MAP_PROTECT_SET_PROT) != 0 && 2816 CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) { 2817 vm_map_unlock(map); 2818 return (KERN_PROTECTION_FAILURE); 2819 } 2820 2821 /* 2822 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2823 * need to fault pages into the map and will drop the map lock while 2824 * doing so, and the VM object may end up in an inconsistent state if we 2825 * update the protection on the map entry in between faults. 2826 */ 2827 vm_map_wait_busy(map); 2828 2829 VM_MAP_RANGE_CHECK(map, start, end); 2830 2831 if (!vm_map_lookup_entry(map, start, &first_entry)) 2832 first_entry = vm_map_entry_succ(first_entry); 2833 2834 if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 && 2835 (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) { 2836 /* 2837 * Handle Linux's PROT_GROWSDOWN flag. 2838 * It means that protection is applied down to the 2839 * whole stack, including the specified range of the 2840 * mapped region, and the grow down region (AKA 2841 * guard). 2842 */ 2843 while (!CONTAINS_BITS(first_entry->eflags, 2844 MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP) && 2845 first_entry != vm_map_entry_first(map)) 2846 first_entry = vm_map_entry_pred(first_entry); 2847 start = first_entry->start; 2848 } 2849 2850 /* 2851 * Make a first pass to check for protection violations. 2852 */ 2853 check_prot = 0; 2854 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) 2855 check_prot |= new_prot; 2856 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) 2857 check_prot |= new_maxprot; 2858 for (entry = first_entry; entry->start < end; 2859 entry = vm_map_entry_succ(entry)) { 2860 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 2861 vm_map_unlock(map); 2862 return (KERN_INVALID_ARGUMENT); 2863 } 2864 if ((entry->eflags & (MAP_ENTRY_GUARD | 2865 MAP_ENTRY_STACK_GAP)) == MAP_ENTRY_GUARD) 2866 continue; 2867 max_prot = (entry->eflags & MAP_ENTRY_STACK_GAP) != 0 ? 2868 PROT_MAX_EXTRACT(entry->offset) : entry->max_protection; 2869 if (!CONTAINS_BITS(max_prot, check_prot)) { 2870 vm_map_unlock(map); 2871 return (KERN_PROTECTION_FAILURE); 2872 } 2873 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2874 in_tran = entry; 2875 } 2876 2877 /* 2878 * Postpone the operation until all in-transition map entries have 2879 * stabilized. An in-transition entry might already have its pages 2880 * wired and wired_count incremented, but not yet have its 2881 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call 2882 * vm_fault_copy_entry() in the final loop below. 2883 */ 2884 if (in_tran != NULL) { 2885 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2886 vm_map_unlock_and_wait(map, 0); 2887 goto again; 2888 } 2889 2890 /* 2891 * Before changing the protections, try to reserve swap space for any 2892 * private (i.e., copy-on-write) mappings that are transitioning from 2893 * read-only to read/write access. If a reservation fails, break out 2894 * of this loop early and let the next loop simplify the entries, since 2895 * some may now be mergeable. 2896 */ 2897 rv = vm_map_clip_start(map, first_entry, start); 2898 if (rv != KERN_SUCCESS) { 2899 vm_map_unlock(map); 2900 return (rv); 2901 } 2902 for (entry = first_entry; entry->start < end; 2903 entry = vm_map_entry_succ(entry)) { 2904 rv = vm_map_clip_end(map, entry, end); 2905 if (rv != KERN_SUCCESS) { 2906 vm_map_unlock(map); 2907 return (rv); 2908 } 2909 2910 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 || 2911 ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 || 2912 ENTRY_CHARGED(entry) || 2913 (entry->eflags & MAP_ENTRY_GUARD) != 0) 2914 continue; 2915 2916 cred = curthread->td_ucred; 2917 obj = entry->object.vm_object; 2918 2919 if (obj == NULL || 2920 (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) { 2921 if (!swap_reserve(entry->end - entry->start)) { 2922 rv = KERN_RESOURCE_SHORTAGE; 2923 end = entry->end; 2924 break; 2925 } 2926 crhold(cred); 2927 entry->cred = cred; 2928 continue; 2929 } 2930 2931 VM_OBJECT_WLOCK(obj); 2932 if ((obj->flags & OBJ_SWAP) == 0) { 2933 VM_OBJECT_WUNLOCK(obj); 2934 continue; 2935 } 2936 2937 /* 2938 * Charge for the whole object allocation now, since 2939 * we cannot distinguish between non-charged and 2940 * charged clipped mapping of the same object later. 2941 */ 2942 KASSERT(obj->charge == 0, 2943 ("vm_map_protect: object %p overcharged (entry %p)", 2944 obj, entry)); 2945 if (!swap_reserve(ptoa(obj->size))) { 2946 VM_OBJECT_WUNLOCK(obj); 2947 rv = KERN_RESOURCE_SHORTAGE; 2948 end = entry->end; 2949 break; 2950 } 2951 2952 crhold(cred); 2953 obj->cred = cred; 2954 obj->charge = ptoa(obj->size); 2955 VM_OBJECT_WUNLOCK(obj); 2956 } 2957 2958 /* 2959 * If enough swap space was available, go back and fix up protections. 2960 * Otherwise, just simplify entries, since some may have been modified. 2961 * [Note that clipping is not necessary the second time.] 2962 */ 2963 for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry; 2964 entry->start < end; 2965 vm_map_try_merge_entries(map, prev_entry, entry), 2966 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2967 if (rv != KERN_SUCCESS) 2968 continue; 2969 2970 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 2971 vm_map_protect_guard(entry, new_prot, new_maxprot, 2972 flags); 2973 continue; 2974 } 2975 2976 old_prot = entry->protection; 2977 2978 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) { 2979 entry->max_protection = new_maxprot; 2980 entry->protection = new_maxprot & old_prot; 2981 } 2982 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) 2983 entry->protection = new_prot; 2984 2985 /* 2986 * For user wired map entries, the normal lazy evaluation of 2987 * write access upgrades through soft page faults is 2988 * undesirable. Instead, immediately copy any pages that are 2989 * copy-on-write and enable write access in the physical map. 2990 */ 2991 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2992 (entry->protection & VM_PROT_WRITE) != 0 && 2993 (old_prot & VM_PROT_WRITE) == 0) 2994 vm_fault_copy_entry(map, map, entry, entry, NULL); 2995 2996 /* 2997 * When restricting access, update the physical map. Worry 2998 * about copy-on-write here. 2999 */ 3000 if ((old_prot & ~entry->protection) != 0) { 3001 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 3002 VM_PROT_ALL) 3003 pmap_protect(map->pmap, entry->start, 3004 entry->end, 3005 entry->protection & MASK(entry)); 3006 #undef MASK 3007 } 3008 } 3009 vm_map_try_merge_entries(map, prev_entry, entry); 3010 vm_map_unlock(map); 3011 return (rv); 3012 } 3013 3014 /* 3015 * vm_map_madvise: 3016 * 3017 * This routine traverses a processes map handling the madvise 3018 * system call. Advisories are classified as either those effecting 3019 * the vm_map_entry structure, or those effecting the underlying 3020 * objects. 3021 */ 3022 int 3023 vm_map_madvise( 3024 vm_map_t map, 3025 vm_offset_t start, 3026 vm_offset_t end, 3027 int behav) 3028 { 3029 vm_map_entry_t entry, prev_entry; 3030 int rv; 3031 bool modify_map; 3032 3033 /* 3034 * Some madvise calls directly modify the vm_map_entry, in which case 3035 * we need to use an exclusive lock on the map and we need to perform 3036 * various clipping operations. Otherwise we only need a read-lock 3037 * on the map. 3038 */ 3039 switch(behav) { 3040 case MADV_NORMAL: 3041 case MADV_SEQUENTIAL: 3042 case MADV_RANDOM: 3043 case MADV_NOSYNC: 3044 case MADV_AUTOSYNC: 3045 case MADV_NOCORE: 3046 case MADV_CORE: 3047 if (start == end) 3048 return (0); 3049 modify_map = true; 3050 vm_map_lock(map); 3051 break; 3052 case MADV_WILLNEED: 3053 case MADV_DONTNEED: 3054 case MADV_FREE: 3055 if (start == end) 3056 return (0); 3057 modify_map = false; 3058 vm_map_lock_read(map); 3059 break; 3060 default: 3061 return (EINVAL); 3062 } 3063 3064 /* 3065 * Locate starting entry and clip if necessary. 3066 */ 3067 VM_MAP_RANGE_CHECK(map, start, end); 3068 3069 if (modify_map) { 3070 /* 3071 * madvise behaviors that are implemented in the vm_map_entry. 3072 * 3073 * We clip the vm_map_entry so that behavioral changes are 3074 * limited to the specified address range. 3075 */ 3076 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry); 3077 if (rv != KERN_SUCCESS) { 3078 vm_map_unlock(map); 3079 return (vm_mmap_to_errno(rv)); 3080 } 3081 3082 for (; entry->start < end; prev_entry = entry, 3083 entry = vm_map_entry_succ(entry)) { 3084 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 3085 continue; 3086 3087 rv = vm_map_clip_end(map, entry, end); 3088 if (rv != KERN_SUCCESS) { 3089 vm_map_unlock(map); 3090 return (vm_mmap_to_errno(rv)); 3091 } 3092 3093 switch (behav) { 3094 case MADV_NORMAL: 3095 vm_map_entry_set_behavior(entry, 3096 MAP_ENTRY_BEHAV_NORMAL); 3097 break; 3098 case MADV_SEQUENTIAL: 3099 vm_map_entry_set_behavior(entry, 3100 MAP_ENTRY_BEHAV_SEQUENTIAL); 3101 break; 3102 case MADV_RANDOM: 3103 vm_map_entry_set_behavior(entry, 3104 MAP_ENTRY_BEHAV_RANDOM); 3105 break; 3106 case MADV_NOSYNC: 3107 entry->eflags |= MAP_ENTRY_NOSYNC; 3108 break; 3109 case MADV_AUTOSYNC: 3110 entry->eflags &= ~MAP_ENTRY_NOSYNC; 3111 break; 3112 case MADV_NOCORE: 3113 entry->eflags |= MAP_ENTRY_NOCOREDUMP; 3114 break; 3115 case MADV_CORE: 3116 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP; 3117 break; 3118 default: 3119 break; 3120 } 3121 vm_map_try_merge_entries(map, prev_entry, entry); 3122 } 3123 vm_map_try_merge_entries(map, prev_entry, entry); 3124 vm_map_unlock(map); 3125 } else { 3126 vm_pindex_t pstart, pend; 3127 3128 /* 3129 * madvise behaviors that are implemented in the underlying 3130 * vm_object. 3131 * 3132 * Since we don't clip the vm_map_entry, we have to clip 3133 * the vm_object pindex and count. 3134 */ 3135 if (!vm_map_lookup_entry(map, start, &entry)) 3136 entry = vm_map_entry_succ(entry); 3137 for (; entry->start < end; 3138 entry = vm_map_entry_succ(entry)) { 3139 vm_offset_t useEnd, useStart; 3140 3141 if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP | 3142 MAP_ENTRY_GUARD)) != 0) 3143 continue; 3144 3145 /* 3146 * MADV_FREE would otherwise rewind time to 3147 * the creation of the shadow object. Because 3148 * we hold the VM map read-locked, neither the 3149 * entry's object nor the presence of a 3150 * backing object can change. 3151 */ 3152 if (behav == MADV_FREE && 3153 entry->object.vm_object != NULL && 3154 entry->object.vm_object->backing_object != NULL) 3155 continue; 3156 3157 pstart = OFF_TO_IDX(entry->offset); 3158 pend = pstart + atop(entry->end - entry->start); 3159 useStart = entry->start; 3160 useEnd = entry->end; 3161 3162 if (entry->start < start) { 3163 pstart += atop(start - entry->start); 3164 useStart = start; 3165 } 3166 if (entry->end > end) { 3167 pend -= atop(entry->end - end); 3168 useEnd = end; 3169 } 3170 3171 if (pstart >= pend) 3172 continue; 3173 3174 /* 3175 * Perform the pmap_advise() before clearing 3176 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 3177 * concurrent pmap operation, such as pmap_remove(), 3178 * could clear a reference in the pmap and set 3179 * PGA_REFERENCED on the page before the pmap_advise() 3180 * had completed. Consequently, the page would appear 3181 * referenced based upon an old reference that 3182 * occurred before this pmap_advise() ran. 3183 */ 3184 if (behav == MADV_DONTNEED || behav == MADV_FREE) 3185 pmap_advise(map->pmap, useStart, useEnd, 3186 behav); 3187 3188 vm_object_madvise(entry->object.vm_object, pstart, 3189 pend, behav); 3190 3191 /* 3192 * Pre-populate paging structures in the 3193 * WILLNEED case. For wired entries, the 3194 * paging structures are already populated. 3195 */ 3196 if (behav == MADV_WILLNEED && 3197 entry->wired_count == 0) { 3198 vm_map_pmap_enter(map, 3199 useStart, 3200 entry->protection, 3201 entry->object.vm_object, 3202 pstart, 3203 ptoa(pend - pstart), 3204 MAP_PREFAULT_MADVISE 3205 ); 3206 } 3207 } 3208 vm_map_unlock_read(map); 3209 } 3210 return (0); 3211 } 3212 3213 /* 3214 * vm_map_inherit: 3215 * 3216 * Sets the inheritance of the specified address 3217 * range in the target map. Inheritance 3218 * affects how the map will be shared with 3219 * child maps at the time of vmspace_fork. 3220 */ 3221 int 3222 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 3223 vm_inherit_t new_inheritance) 3224 { 3225 vm_map_entry_t entry, lentry, prev_entry, start_entry; 3226 int rv; 3227 3228 switch (new_inheritance) { 3229 case VM_INHERIT_NONE: 3230 case VM_INHERIT_COPY: 3231 case VM_INHERIT_SHARE: 3232 case VM_INHERIT_ZERO: 3233 break; 3234 default: 3235 return (KERN_INVALID_ARGUMENT); 3236 } 3237 if (start == end) 3238 return (KERN_SUCCESS); 3239 vm_map_lock(map); 3240 VM_MAP_RANGE_CHECK(map, start, end); 3241 rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry); 3242 if (rv != KERN_SUCCESS) 3243 goto unlock; 3244 if (vm_map_lookup_entry(map, end - 1, &lentry)) { 3245 rv = vm_map_clip_end(map, lentry, end); 3246 if (rv != KERN_SUCCESS) 3247 goto unlock; 3248 } 3249 if (new_inheritance == VM_INHERIT_COPY) { 3250 for (entry = start_entry; entry->start < end; 3251 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3252 if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) 3253 != 0) { 3254 rv = KERN_INVALID_ARGUMENT; 3255 goto unlock; 3256 } 3257 } 3258 } 3259 for (entry = start_entry; entry->start < end; prev_entry = entry, 3260 entry = vm_map_entry_succ(entry)) { 3261 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx", 3262 entry, (uintmax_t)entry->end, (uintmax_t)end)); 3263 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 3264 new_inheritance != VM_INHERIT_ZERO) 3265 entry->inheritance = new_inheritance; 3266 vm_map_try_merge_entries(map, prev_entry, entry); 3267 } 3268 vm_map_try_merge_entries(map, prev_entry, entry); 3269 unlock: 3270 vm_map_unlock(map); 3271 return (rv); 3272 } 3273 3274 /* 3275 * vm_map_entry_in_transition: 3276 * 3277 * Release the map lock, and sleep until the entry is no longer in 3278 * transition. Awake and acquire the map lock. If the map changed while 3279 * another held the lock, lookup a possibly-changed entry at or after the 3280 * 'start' position of the old entry. 3281 */ 3282 static vm_map_entry_t 3283 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, 3284 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) 3285 { 3286 vm_map_entry_t entry; 3287 vm_offset_t start; 3288 u_int last_timestamp; 3289 3290 VM_MAP_ASSERT_LOCKED(map); 3291 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3292 ("not in-tranition map entry %p", in_entry)); 3293 /* 3294 * We have not yet clipped the entry. 3295 */ 3296 start = MAX(in_start, in_entry->start); 3297 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3298 last_timestamp = map->timestamp; 3299 if (vm_map_unlock_and_wait(map, 0)) { 3300 /* 3301 * Allow interruption of user wiring/unwiring? 3302 */ 3303 } 3304 vm_map_lock(map); 3305 if (last_timestamp + 1 == map->timestamp) 3306 return (in_entry); 3307 3308 /* 3309 * Look again for the entry because the map was modified while it was 3310 * unlocked. Specifically, the entry may have been clipped, merged, or 3311 * deleted. 3312 */ 3313 if (!vm_map_lookup_entry(map, start, &entry)) { 3314 if (!holes_ok) { 3315 *io_end = start; 3316 return (NULL); 3317 } 3318 entry = vm_map_entry_succ(entry); 3319 } 3320 return (entry); 3321 } 3322 3323 /* 3324 * vm_map_unwire: 3325 * 3326 * Implements both kernel and user unwiring. 3327 */ 3328 int 3329 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 3330 int flags) 3331 { 3332 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3333 int rv; 3334 bool holes_ok, need_wakeup, user_unwire; 3335 3336 if (start == end) 3337 return (KERN_SUCCESS); 3338 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3339 user_unwire = (flags & VM_MAP_WIRE_USER) != 0; 3340 vm_map_lock(map); 3341 VM_MAP_RANGE_CHECK(map, start, end); 3342 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3343 if (holes_ok) 3344 first_entry = vm_map_entry_succ(first_entry); 3345 else { 3346 vm_map_unlock(map); 3347 return (KERN_INVALID_ADDRESS); 3348 } 3349 } 3350 rv = KERN_SUCCESS; 3351 for (entry = first_entry; entry->start < end; entry = next_entry) { 3352 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3353 /* 3354 * We have not yet clipped the entry. 3355 */ 3356 next_entry = vm_map_entry_in_transition(map, start, 3357 &end, holes_ok, entry); 3358 if (next_entry == NULL) { 3359 if (entry == first_entry) { 3360 vm_map_unlock(map); 3361 return (KERN_INVALID_ADDRESS); 3362 } 3363 rv = KERN_INVALID_ADDRESS; 3364 break; 3365 } 3366 first_entry = (entry == first_entry) ? 3367 next_entry : NULL; 3368 continue; 3369 } 3370 rv = vm_map_clip_start(map, entry, start); 3371 if (rv != KERN_SUCCESS) 3372 break; 3373 rv = vm_map_clip_end(map, entry, end); 3374 if (rv != KERN_SUCCESS) 3375 break; 3376 3377 /* 3378 * Mark the entry in case the map lock is released. (See 3379 * above.) 3380 */ 3381 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3382 entry->wiring_thread == NULL, 3383 ("owned map entry %p", entry)); 3384 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3385 entry->wiring_thread = curthread; 3386 next_entry = vm_map_entry_succ(entry); 3387 /* 3388 * Check the map for holes in the specified region. 3389 * If holes_ok, skip this check. 3390 */ 3391 if (!holes_ok && 3392 entry->end < end && next_entry->start > entry->end) { 3393 end = entry->end; 3394 rv = KERN_INVALID_ADDRESS; 3395 break; 3396 } 3397 /* 3398 * If system unwiring, require that the entry is system wired. 3399 */ 3400 if (!user_unwire && 3401 vm_map_entry_system_wired_count(entry) == 0) { 3402 end = entry->end; 3403 rv = KERN_INVALID_ARGUMENT; 3404 break; 3405 } 3406 } 3407 need_wakeup = false; 3408 if (first_entry == NULL && 3409 !vm_map_lookup_entry(map, start, &first_entry)) { 3410 KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); 3411 prev_entry = first_entry; 3412 entry = vm_map_entry_succ(first_entry); 3413 } else { 3414 prev_entry = vm_map_entry_pred(first_entry); 3415 entry = first_entry; 3416 } 3417 for (; entry->start < end; 3418 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3419 /* 3420 * If holes_ok was specified, an empty 3421 * space in the unwired region could have been mapped 3422 * while the map lock was dropped for draining 3423 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 3424 * could be simultaneously wiring this new mapping 3425 * entry. Detect these cases and skip any entries 3426 * marked as in transition by us. 3427 */ 3428 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3429 entry->wiring_thread != curthread) { 3430 KASSERT(holes_ok, 3431 ("vm_map_unwire: !HOLESOK and new/changed entry")); 3432 continue; 3433 } 3434 3435 if (rv == KERN_SUCCESS && (!user_unwire || 3436 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 3437 if (entry->wired_count == 1) 3438 vm_map_entry_unwire(map, entry); 3439 else 3440 entry->wired_count--; 3441 if (user_unwire) 3442 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3443 } 3444 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3445 ("vm_map_unwire: in-transition flag missing %p", entry)); 3446 KASSERT(entry->wiring_thread == curthread, 3447 ("vm_map_unwire: alien wire %p", entry)); 3448 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 3449 entry->wiring_thread = NULL; 3450 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3451 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3452 need_wakeup = true; 3453 } 3454 vm_map_try_merge_entries(map, prev_entry, entry); 3455 } 3456 vm_map_try_merge_entries(map, prev_entry, entry); 3457 vm_map_unlock(map); 3458 if (need_wakeup) 3459 vm_map_wakeup(map); 3460 return (rv); 3461 } 3462 3463 static void 3464 vm_map_wire_user_count_sub(u_long npages) 3465 { 3466 3467 atomic_subtract_long(&vm_user_wire_count, npages); 3468 } 3469 3470 static bool 3471 vm_map_wire_user_count_add(u_long npages) 3472 { 3473 u_long wired; 3474 3475 wired = vm_user_wire_count; 3476 do { 3477 if (npages + wired > vm_page_max_user_wired) 3478 return (false); 3479 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3480 npages + wired)); 3481 3482 return (true); 3483 } 3484 3485 /* 3486 * vm_map_wire_entry_failure: 3487 * 3488 * Handle a wiring failure on the given entry. 3489 * 3490 * The map should be locked. 3491 */ 3492 static void 3493 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3494 vm_offset_t failed_addr) 3495 { 3496 3497 VM_MAP_ASSERT_LOCKED(map); 3498 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3499 entry->wired_count == 1, 3500 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3501 KASSERT(failed_addr < entry->end, 3502 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3503 3504 /* 3505 * If any pages at the start of this entry were successfully wired, 3506 * then unwire them. 3507 */ 3508 if (failed_addr > entry->start) { 3509 pmap_unwire(map->pmap, entry->start, failed_addr); 3510 vm_object_unwire(entry->object.vm_object, entry->offset, 3511 failed_addr - entry->start, PQ_ACTIVE); 3512 } 3513 3514 /* 3515 * Assign an out-of-range value to represent the failure to wire this 3516 * entry. 3517 */ 3518 entry->wired_count = -1; 3519 } 3520 3521 int 3522 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3523 { 3524 int rv; 3525 3526 vm_map_lock(map); 3527 rv = vm_map_wire_locked(map, start, end, flags); 3528 vm_map_unlock(map); 3529 return (rv); 3530 } 3531 3532 /* 3533 * vm_map_wire_locked: 3534 * 3535 * Implements both kernel and user wiring. Returns with the map locked, 3536 * the map lock may be dropped. 3537 */ 3538 int 3539 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3540 { 3541 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3542 vm_offset_t faddr, saved_end, saved_start; 3543 u_long incr, npages; 3544 u_int bidx, last_timestamp; 3545 int rv; 3546 bool holes_ok, need_wakeup, user_wire; 3547 vm_prot_t prot; 3548 3549 VM_MAP_ASSERT_LOCKED(map); 3550 3551 if (start == end) 3552 return (KERN_SUCCESS); 3553 prot = 0; 3554 if (flags & VM_MAP_WIRE_WRITE) 3555 prot |= VM_PROT_WRITE; 3556 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3557 user_wire = (flags & VM_MAP_WIRE_USER) != 0; 3558 VM_MAP_RANGE_CHECK(map, start, end); 3559 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3560 if (holes_ok) 3561 first_entry = vm_map_entry_succ(first_entry); 3562 else 3563 return (KERN_INVALID_ADDRESS); 3564 } 3565 for (entry = first_entry; entry->start < end; entry = next_entry) { 3566 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3567 /* 3568 * We have not yet clipped the entry. 3569 */ 3570 next_entry = vm_map_entry_in_transition(map, start, 3571 &end, holes_ok, entry); 3572 if (next_entry == NULL) { 3573 if (entry == first_entry) 3574 return (KERN_INVALID_ADDRESS); 3575 rv = KERN_INVALID_ADDRESS; 3576 goto done; 3577 } 3578 first_entry = (entry == first_entry) ? 3579 next_entry : NULL; 3580 continue; 3581 } 3582 rv = vm_map_clip_start(map, entry, start); 3583 if (rv != KERN_SUCCESS) 3584 goto done; 3585 rv = vm_map_clip_end(map, entry, end); 3586 if (rv != KERN_SUCCESS) 3587 goto done; 3588 3589 /* 3590 * Mark the entry in case the map lock is released. (See 3591 * above.) 3592 */ 3593 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3594 entry->wiring_thread == NULL, 3595 ("owned map entry %p", entry)); 3596 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3597 entry->wiring_thread = curthread; 3598 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3599 || (entry->protection & prot) != prot) { 3600 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3601 if (!holes_ok) { 3602 end = entry->end; 3603 rv = KERN_INVALID_ADDRESS; 3604 goto done; 3605 } 3606 } else if (entry->wired_count == 0) { 3607 entry->wired_count++; 3608 3609 npages = atop(entry->end - entry->start); 3610 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3611 vm_map_wire_entry_failure(map, entry, 3612 entry->start); 3613 end = entry->end; 3614 rv = KERN_RESOURCE_SHORTAGE; 3615 goto done; 3616 } 3617 3618 /* 3619 * Release the map lock, relying on the in-transition 3620 * mark. Mark the map busy for fork. 3621 */ 3622 saved_start = entry->start; 3623 saved_end = entry->end; 3624 last_timestamp = map->timestamp; 3625 bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 3626 incr = pagesizes[bidx]; 3627 vm_map_busy(map); 3628 vm_map_unlock(map); 3629 3630 for (faddr = saved_start; faddr < saved_end; 3631 faddr += incr) { 3632 /* 3633 * Simulate a fault to get the page and enter 3634 * it into the physical map. 3635 */ 3636 rv = vm_fault(map, faddr, VM_PROT_NONE, 3637 VM_FAULT_WIRE, NULL); 3638 if (rv != KERN_SUCCESS) 3639 break; 3640 } 3641 vm_map_lock(map); 3642 vm_map_unbusy(map); 3643 if (last_timestamp + 1 != map->timestamp) { 3644 /* 3645 * Look again for the entry because the map was 3646 * modified while it was unlocked. The entry 3647 * may have been clipped, but NOT merged or 3648 * deleted. 3649 */ 3650 if (!vm_map_lookup_entry(map, saved_start, 3651 &next_entry)) 3652 KASSERT(false, 3653 ("vm_map_wire: lookup failed")); 3654 first_entry = (entry == first_entry) ? 3655 next_entry : NULL; 3656 for (entry = next_entry; entry->end < saved_end; 3657 entry = vm_map_entry_succ(entry)) { 3658 /* 3659 * In case of failure, handle entries 3660 * that were not fully wired here; 3661 * fully wired entries are handled 3662 * later. 3663 */ 3664 if (rv != KERN_SUCCESS && 3665 faddr < entry->end) 3666 vm_map_wire_entry_failure(map, 3667 entry, faddr); 3668 } 3669 } 3670 if (rv != KERN_SUCCESS) { 3671 vm_map_wire_entry_failure(map, entry, faddr); 3672 if (user_wire) 3673 vm_map_wire_user_count_sub(npages); 3674 end = entry->end; 3675 goto done; 3676 } 3677 } else if (!user_wire || 3678 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3679 entry->wired_count++; 3680 } 3681 /* 3682 * Check the map for holes in the specified region. 3683 * If holes_ok was specified, skip this check. 3684 */ 3685 next_entry = vm_map_entry_succ(entry); 3686 if (!holes_ok && 3687 entry->end < end && next_entry->start > entry->end) { 3688 end = entry->end; 3689 rv = KERN_INVALID_ADDRESS; 3690 goto done; 3691 } 3692 } 3693 rv = KERN_SUCCESS; 3694 done: 3695 need_wakeup = false; 3696 if (first_entry == NULL && 3697 !vm_map_lookup_entry(map, start, &first_entry)) { 3698 KASSERT(holes_ok, ("vm_map_wire: lookup failed")); 3699 prev_entry = first_entry; 3700 entry = vm_map_entry_succ(first_entry); 3701 } else { 3702 prev_entry = vm_map_entry_pred(first_entry); 3703 entry = first_entry; 3704 } 3705 for (; entry->start < end; 3706 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3707 /* 3708 * If holes_ok was specified, an empty 3709 * space in the unwired region could have been mapped 3710 * while the map lock was dropped for faulting in the 3711 * pages or draining MAP_ENTRY_IN_TRANSITION. 3712 * Moreover, another thread could be simultaneously 3713 * wiring this new mapping entry. Detect these cases 3714 * and skip any entries marked as in transition not by us. 3715 * 3716 * Another way to get an entry not marked with 3717 * MAP_ENTRY_IN_TRANSITION is after failed clipping, 3718 * which set rv to KERN_INVALID_ARGUMENT. 3719 */ 3720 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3721 entry->wiring_thread != curthread) { 3722 KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT, 3723 ("vm_map_wire: !HOLESOK and new/changed entry")); 3724 continue; 3725 } 3726 3727 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { 3728 /* do nothing */ 3729 } else if (rv == KERN_SUCCESS) { 3730 if (user_wire) 3731 entry->eflags |= MAP_ENTRY_USER_WIRED; 3732 } else if (entry->wired_count == -1) { 3733 /* 3734 * Wiring failed on this entry. Thus, unwiring is 3735 * unnecessary. 3736 */ 3737 entry->wired_count = 0; 3738 } else if (!user_wire || 3739 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3740 /* 3741 * Undo the wiring. Wiring succeeded on this entry 3742 * but failed on a later entry. 3743 */ 3744 if (entry->wired_count == 1) { 3745 vm_map_entry_unwire(map, entry); 3746 if (user_wire) 3747 vm_map_wire_user_count_sub( 3748 atop(entry->end - entry->start)); 3749 } else 3750 entry->wired_count--; 3751 } 3752 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3753 ("vm_map_wire: in-transition flag missing %p", entry)); 3754 KASSERT(entry->wiring_thread == curthread, 3755 ("vm_map_wire: alien wire %p", entry)); 3756 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3757 MAP_ENTRY_WIRE_SKIPPED); 3758 entry->wiring_thread = NULL; 3759 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3760 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3761 need_wakeup = true; 3762 } 3763 vm_map_try_merge_entries(map, prev_entry, entry); 3764 } 3765 vm_map_try_merge_entries(map, prev_entry, entry); 3766 if (need_wakeup) 3767 vm_map_wakeup(map); 3768 return (rv); 3769 } 3770 3771 /* 3772 * vm_map_sync 3773 * 3774 * Push any dirty cached pages in the address range to their pager. 3775 * If syncio is TRUE, dirty pages are written synchronously. 3776 * If invalidate is TRUE, any cached pages are freed as well. 3777 * 3778 * If the size of the region from start to end is zero, we are 3779 * supposed to flush all modified pages within the region containing 3780 * start. Unfortunately, a region can be split or coalesced with 3781 * neighboring regions, making it difficult to determine what the 3782 * original region was. Therefore, we approximate this requirement by 3783 * flushing the current region containing start. 3784 * 3785 * Returns an error if any part of the specified range is not mapped. 3786 */ 3787 int 3788 vm_map_sync( 3789 vm_map_t map, 3790 vm_offset_t start, 3791 vm_offset_t end, 3792 boolean_t syncio, 3793 boolean_t invalidate) 3794 { 3795 vm_map_entry_t entry, first_entry, next_entry; 3796 vm_size_t size; 3797 vm_object_t object; 3798 vm_ooffset_t offset; 3799 unsigned int last_timestamp; 3800 int bdry_idx; 3801 boolean_t failed; 3802 3803 vm_map_lock_read(map); 3804 VM_MAP_RANGE_CHECK(map, start, end); 3805 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3806 vm_map_unlock_read(map); 3807 return (KERN_INVALID_ADDRESS); 3808 } else if (start == end) { 3809 start = first_entry->start; 3810 end = first_entry->end; 3811 } 3812 3813 /* 3814 * Make a first pass to check for user-wired memory, holes, 3815 * and partial invalidation of largepage mappings. 3816 */ 3817 for (entry = first_entry; entry->start < end; entry = next_entry) { 3818 if (invalidate) { 3819 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) { 3820 vm_map_unlock_read(map); 3821 return (KERN_INVALID_ARGUMENT); 3822 } 3823 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 3824 if (bdry_idx != 0 && 3825 ((start & (pagesizes[bdry_idx] - 1)) != 0 || 3826 (end & (pagesizes[bdry_idx] - 1)) != 0)) { 3827 vm_map_unlock_read(map); 3828 return (KERN_INVALID_ARGUMENT); 3829 } 3830 } 3831 next_entry = vm_map_entry_succ(entry); 3832 if (end > entry->end && 3833 entry->end != next_entry->start) { 3834 vm_map_unlock_read(map); 3835 return (KERN_INVALID_ADDRESS); 3836 } 3837 } 3838 3839 if (invalidate) 3840 pmap_remove(map->pmap, start, end); 3841 failed = FALSE; 3842 3843 /* 3844 * Make a second pass, cleaning/uncaching pages from the indicated 3845 * objects as we go. 3846 */ 3847 for (entry = first_entry; entry->start < end;) { 3848 offset = entry->offset + (start - entry->start); 3849 size = (end <= entry->end ? end : entry->end) - start; 3850 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 3851 vm_map_t smap; 3852 vm_map_entry_t tentry; 3853 vm_size_t tsize; 3854 3855 smap = entry->object.sub_map; 3856 vm_map_lock_read(smap); 3857 (void) vm_map_lookup_entry(smap, offset, &tentry); 3858 tsize = tentry->end - offset; 3859 if (tsize < size) 3860 size = tsize; 3861 object = tentry->object.vm_object; 3862 offset = tentry->offset + (offset - tentry->start); 3863 vm_map_unlock_read(smap); 3864 } else { 3865 object = entry->object.vm_object; 3866 } 3867 vm_object_reference(object); 3868 last_timestamp = map->timestamp; 3869 vm_map_unlock_read(map); 3870 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3871 failed = TRUE; 3872 start += size; 3873 vm_object_deallocate(object); 3874 vm_map_lock_read(map); 3875 if (last_timestamp == map->timestamp || 3876 !vm_map_lookup_entry(map, start, &entry)) 3877 entry = vm_map_entry_succ(entry); 3878 } 3879 3880 vm_map_unlock_read(map); 3881 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3882 } 3883 3884 /* 3885 * vm_map_entry_unwire: [ internal use only ] 3886 * 3887 * Make the region specified by this entry pageable. 3888 * 3889 * The map in question should be locked. 3890 * [This is the reason for this routine's existence.] 3891 */ 3892 static void 3893 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3894 { 3895 vm_size_t size; 3896 3897 VM_MAP_ASSERT_LOCKED(map); 3898 KASSERT(entry->wired_count > 0, 3899 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3900 3901 size = entry->end - entry->start; 3902 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3903 vm_map_wire_user_count_sub(atop(size)); 3904 pmap_unwire(map->pmap, entry->start, entry->end); 3905 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3906 PQ_ACTIVE); 3907 entry->wired_count = 0; 3908 } 3909 3910 static void 3911 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3912 { 3913 3914 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3915 vm_object_deallocate(entry->object.vm_object); 3916 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3917 } 3918 3919 /* 3920 * vm_map_entry_delete: [ internal use only ] 3921 * 3922 * Deallocate the given entry from the target map. 3923 */ 3924 static void 3925 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3926 { 3927 vm_object_t object; 3928 vm_pindex_t offidxstart, offidxend, size1; 3929 vm_size_t size; 3930 3931 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3932 object = entry->object.vm_object; 3933 3934 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3935 MPASS(entry->cred == NULL); 3936 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3937 MPASS(object == NULL); 3938 vm_map_entry_deallocate(entry, vm_map_is_system(map)); 3939 return; 3940 } 3941 3942 size = entry->end - entry->start; 3943 map->size -= size; 3944 3945 if (entry->cred != NULL) { 3946 swap_release_by_cred(size, entry->cred); 3947 crfree(entry->cred); 3948 } 3949 3950 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) { 3951 entry->object.vm_object = NULL; 3952 } else if ((object->flags & OBJ_ANON) != 0 || 3953 object == kernel_object) { 3954 KASSERT(entry->cred == NULL || object->cred == NULL || 3955 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3956 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3957 offidxstart = OFF_TO_IDX(entry->offset); 3958 offidxend = offidxstart + atop(size); 3959 VM_OBJECT_WLOCK(object); 3960 if (object->ref_count != 1 && 3961 ((object->flags & OBJ_ONEMAPPING) != 0 || 3962 object == kernel_object)) { 3963 vm_object_collapse(object); 3964 3965 /* 3966 * The option OBJPR_NOTMAPPED can be passed here 3967 * because vm_map_delete() already performed 3968 * pmap_remove() on the only mapping to this range 3969 * of pages. 3970 */ 3971 vm_object_page_remove(object, offidxstart, offidxend, 3972 OBJPR_NOTMAPPED); 3973 if (offidxend >= object->size && 3974 offidxstart < object->size) { 3975 size1 = object->size; 3976 object->size = offidxstart; 3977 if (object->cred != NULL) { 3978 size1 -= object->size; 3979 KASSERT(object->charge >= ptoa(size1), 3980 ("object %p charge < 0", object)); 3981 swap_release_by_cred(ptoa(size1), 3982 object->cred); 3983 object->charge -= ptoa(size1); 3984 } 3985 } 3986 } 3987 VM_OBJECT_WUNLOCK(object); 3988 } 3989 if (vm_map_is_system(map)) 3990 vm_map_entry_deallocate(entry, TRUE); 3991 else { 3992 entry->defer_next = curthread->td_map_def_user; 3993 curthread->td_map_def_user = entry; 3994 } 3995 } 3996 3997 /* 3998 * vm_map_delete: [ internal use only ] 3999 * 4000 * Deallocates the given address range from the target 4001 * map. 4002 */ 4003 int 4004 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 4005 { 4006 vm_map_entry_t entry, next_entry, scratch_entry; 4007 int rv; 4008 4009 VM_MAP_ASSERT_LOCKED(map); 4010 4011 if (start == end) 4012 return (KERN_SUCCESS); 4013 4014 /* 4015 * Find the start of the region, and clip it. 4016 * Step through all entries in this region. 4017 */ 4018 rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry); 4019 if (rv != KERN_SUCCESS) 4020 return (rv); 4021 for (; entry->start < end; entry = next_entry) { 4022 /* 4023 * Wait for wiring or unwiring of an entry to complete. 4024 * Also wait for any system wirings to disappear on 4025 * user maps. 4026 */ 4027 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 4028 (vm_map_pmap(map) != kernel_pmap && 4029 vm_map_entry_system_wired_count(entry) != 0)) { 4030 unsigned int last_timestamp; 4031 vm_offset_t saved_start; 4032 4033 saved_start = entry->start; 4034 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 4035 last_timestamp = map->timestamp; 4036 (void) vm_map_unlock_and_wait(map, 0); 4037 vm_map_lock(map); 4038 if (last_timestamp + 1 != map->timestamp) { 4039 /* 4040 * Look again for the entry because the map was 4041 * modified while it was unlocked. 4042 * Specifically, the entry may have been 4043 * clipped, merged, or deleted. 4044 */ 4045 rv = vm_map_lookup_clip_start(map, saved_start, 4046 &next_entry, &scratch_entry); 4047 if (rv != KERN_SUCCESS) 4048 break; 4049 } else 4050 next_entry = entry; 4051 continue; 4052 } 4053 4054 /* XXXKIB or delete to the upper superpage boundary ? */ 4055 rv = vm_map_clip_end(map, entry, end); 4056 if (rv != KERN_SUCCESS) 4057 break; 4058 next_entry = vm_map_entry_succ(entry); 4059 4060 /* 4061 * Unwire before removing addresses from the pmap; otherwise, 4062 * unwiring will put the entries back in the pmap. 4063 */ 4064 if (entry->wired_count != 0) 4065 vm_map_entry_unwire(map, entry); 4066 4067 /* 4068 * Remove mappings for the pages, but only if the 4069 * mappings could exist. For instance, it does not 4070 * make sense to call pmap_remove() for guard entries. 4071 */ 4072 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 4073 entry->object.vm_object != NULL) 4074 pmap_map_delete(map->pmap, entry->start, entry->end); 4075 4076 /* 4077 * Delete the entry only after removing all pmap 4078 * entries pointing to its pages. (Otherwise, its 4079 * page frames may be reallocated, and any modify bits 4080 * will be set in the wrong object!) 4081 */ 4082 vm_map_entry_delete(map, entry); 4083 } 4084 return (rv); 4085 } 4086 4087 /* 4088 * vm_map_remove: 4089 * 4090 * Remove the given address range from the target map. 4091 * This is the exported form of vm_map_delete. 4092 */ 4093 int 4094 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 4095 { 4096 int result; 4097 4098 vm_map_lock(map); 4099 VM_MAP_RANGE_CHECK(map, start, end); 4100 result = vm_map_delete(map, start, end); 4101 vm_map_unlock(map); 4102 return (result); 4103 } 4104 4105 /* 4106 * vm_map_check_protection: 4107 * 4108 * Assert that the target map allows the specified privilege on the 4109 * entire address region given. The entire region must be allocated. 4110 * 4111 * WARNING! This code does not and should not check whether the 4112 * contents of the region is accessible. For example a smaller file 4113 * might be mapped into a larger address space. 4114 * 4115 * NOTE! This code is also called by munmap(). 4116 * 4117 * The map must be locked. A read lock is sufficient. 4118 */ 4119 boolean_t 4120 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 4121 vm_prot_t protection) 4122 { 4123 vm_map_entry_t entry; 4124 vm_map_entry_t tmp_entry; 4125 4126 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 4127 return (FALSE); 4128 entry = tmp_entry; 4129 4130 while (start < end) { 4131 /* 4132 * No holes allowed! 4133 */ 4134 if (start < entry->start) 4135 return (FALSE); 4136 /* 4137 * Check protection associated with entry. 4138 */ 4139 if ((entry->protection & protection) != protection) 4140 return (FALSE); 4141 /* go to next entry */ 4142 start = entry->end; 4143 entry = vm_map_entry_succ(entry); 4144 } 4145 return (TRUE); 4146 } 4147 4148 /* 4149 * 4150 * vm_map_copy_swap_object: 4151 * 4152 * Copies a swap-backed object from an existing map entry to a 4153 * new one. Carries forward the swap charge. May change the 4154 * src object on return. 4155 */ 4156 static void 4157 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry, 4158 vm_offset_t size, vm_ooffset_t *fork_charge) 4159 { 4160 vm_object_t src_object; 4161 struct ucred *cred; 4162 int charged; 4163 4164 src_object = src_entry->object.vm_object; 4165 charged = ENTRY_CHARGED(src_entry); 4166 if ((src_object->flags & OBJ_ANON) != 0) { 4167 VM_OBJECT_WLOCK(src_object); 4168 vm_object_collapse(src_object); 4169 if ((src_object->flags & OBJ_ONEMAPPING) != 0) { 4170 vm_object_split(src_entry); 4171 src_object = src_entry->object.vm_object; 4172 } 4173 vm_object_reference_locked(src_object); 4174 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 4175 VM_OBJECT_WUNLOCK(src_object); 4176 } else 4177 vm_object_reference(src_object); 4178 if (src_entry->cred != NULL && 4179 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4180 KASSERT(src_object->cred == NULL, 4181 ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p", 4182 src_object)); 4183 src_object->cred = src_entry->cred; 4184 src_object->charge = size; 4185 } 4186 dst_entry->object.vm_object = src_object; 4187 if (charged) { 4188 cred = curthread->td_ucred; 4189 crhold(cred); 4190 dst_entry->cred = cred; 4191 *fork_charge += size; 4192 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4193 crhold(cred); 4194 src_entry->cred = cred; 4195 *fork_charge += size; 4196 } 4197 } 4198 } 4199 4200 /* 4201 * vm_map_copy_entry: 4202 * 4203 * Copies the contents of the source entry to the destination 4204 * entry. The entries *must* be aligned properly. 4205 */ 4206 static void 4207 vm_map_copy_entry( 4208 vm_map_t src_map, 4209 vm_map_t dst_map, 4210 vm_map_entry_t src_entry, 4211 vm_map_entry_t dst_entry, 4212 vm_ooffset_t *fork_charge) 4213 { 4214 vm_object_t src_object; 4215 vm_map_entry_t fake_entry; 4216 vm_offset_t size; 4217 4218 VM_MAP_ASSERT_LOCKED(dst_map); 4219 4220 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 4221 return; 4222 4223 if (src_entry->wired_count == 0 || 4224 (src_entry->protection & VM_PROT_WRITE) == 0) { 4225 /* 4226 * If the source entry is marked needs_copy, it is already 4227 * write-protected. 4228 */ 4229 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 4230 (src_entry->protection & VM_PROT_WRITE) != 0) { 4231 pmap_protect(src_map->pmap, 4232 src_entry->start, 4233 src_entry->end, 4234 src_entry->protection & ~VM_PROT_WRITE); 4235 } 4236 4237 /* 4238 * Make a copy of the object. 4239 */ 4240 size = src_entry->end - src_entry->start; 4241 if ((src_object = src_entry->object.vm_object) != NULL) { 4242 if ((src_object->flags & OBJ_SWAP) != 0) { 4243 vm_map_copy_swap_object(src_entry, dst_entry, 4244 size, fork_charge); 4245 /* May have split/collapsed, reload obj. */ 4246 src_object = src_entry->object.vm_object; 4247 } else { 4248 vm_object_reference(src_object); 4249 dst_entry->object.vm_object = src_object; 4250 } 4251 src_entry->eflags |= MAP_ENTRY_COW | 4252 MAP_ENTRY_NEEDS_COPY; 4253 dst_entry->eflags |= MAP_ENTRY_COW | 4254 MAP_ENTRY_NEEDS_COPY; 4255 dst_entry->offset = src_entry->offset; 4256 if (src_entry->eflags & MAP_ENTRY_WRITECNT) { 4257 /* 4258 * MAP_ENTRY_WRITECNT cannot 4259 * indicate write reference from 4260 * src_entry, since the entry is 4261 * marked as needs copy. Allocate a 4262 * fake entry that is used to 4263 * decrement object->un_pager writecount 4264 * at the appropriate time. Attach 4265 * fake_entry to the deferred list. 4266 */ 4267 fake_entry = vm_map_entry_create(dst_map); 4268 fake_entry->eflags = MAP_ENTRY_WRITECNT; 4269 src_entry->eflags &= ~MAP_ENTRY_WRITECNT; 4270 vm_object_reference(src_object); 4271 fake_entry->object.vm_object = src_object; 4272 fake_entry->start = src_entry->start; 4273 fake_entry->end = src_entry->end; 4274 fake_entry->defer_next = 4275 curthread->td_map_def_user; 4276 curthread->td_map_def_user = fake_entry; 4277 } 4278 4279 pmap_copy(dst_map->pmap, src_map->pmap, 4280 dst_entry->start, dst_entry->end - dst_entry->start, 4281 src_entry->start); 4282 } else { 4283 dst_entry->object.vm_object = NULL; 4284 if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0) 4285 dst_entry->offset = 0; 4286 if (src_entry->cred != NULL) { 4287 dst_entry->cred = curthread->td_ucred; 4288 crhold(dst_entry->cred); 4289 *fork_charge += size; 4290 } 4291 } 4292 } else { 4293 /* 4294 * We don't want to make writeable wired pages copy-on-write. 4295 * Immediately copy these pages into the new map by simulating 4296 * page faults. The new pages are pageable. 4297 */ 4298 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 4299 fork_charge); 4300 } 4301 } 4302 4303 /* 4304 * vmspace_map_entry_forked: 4305 * Update the newly-forked vmspace each time a map entry is inherited 4306 * or copied. The values for vm_dsize and vm_tsize are approximate 4307 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 4308 */ 4309 static void 4310 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 4311 vm_map_entry_t entry) 4312 { 4313 vm_size_t entrysize; 4314 vm_offset_t newend; 4315 4316 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 4317 return; 4318 entrysize = entry->end - entry->start; 4319 vm2->vm_map.size += entrysize; 4320 if ((entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) { 4321 vm2->vm_ssize += btoc(entrysize); 4322 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 4323 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 4324 newend = MIN(entry->end, 4325 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 4326 vm2->vm_dsize += btoc(newend - entry->start); 4327 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 4328 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 4329 newend = MIN(entry->end, 4330 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 4331 vm2->vm_tsize += btoc(newend - entry->start); 4332 } 4333 } 4334 4335 /* 4336 * vmspace_fork: 4337 * Create a new process vmspace structure and vm_map 4338 * based on those of an existing process. The new map 4339 * is based on the old map, according to the inheritance 4340 * values on the regions in that map. 4341 * 4342 * XXX It might be worth coalescing the entries added to the new vmspace. 4343 * 4344 * The source map must not be locked. 4345 */ 4346 struct vmspace * 4347 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 4348 { 4349 struct vmspace *vm2; 4350 vm_map_t new_map, old_map; 4351 vm_map_entry_t new_entry, old_entry; 4352 vm_object_t object; 4353 int error, locked __diagused; 4354 vm_inherit_t inh; 4355 4356 old_map = &vm1->vm_map; 4357 /* Copy immutable fields of vm1 to vm2. */ 4358 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 4359 pmap_pinit); 4360 if (vm2 == NULL) 4361 return (NULL); 4362 4363 vm2->vm_taddr = vm1->vm_taddr; 4364 vm2->vm_daddr = vm1->vm_daddr; 4365 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 4366 vm2->vm_stacktop = vm1->vm_stacktop; 4367 vm2->vm_shp_base = vm1->vm_shp_base; 4368 vm_map_lock(old_map); 4369 if (old_map->busy) 4370 vm_map_wait_busy(old_map); 4371 new_map = &vm2->vm_map; 4372 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 4373 KASSERT(locked, ("vmspace_fork: lock failed")); 4374 4375 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 4376 if (error != 0) { 4377 sx_xunlock(&old_map->lock); 4378 sx_xunlock(&new_map->lock); 4379 vm_map_process_deferred(); 4380 vmspace_free(vm2); 4381 return (NULL); 4382 } 4383 4384 new_map->anon_loc = old_map->anon_loc; 4385 new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART | 4386 MAP_ASLR_STACK | MAP_WXORX); 4387 4388 VM_MAP_ENTRY_FOREACH(old_entry, old_map) { 4389 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 4390 panic("vm_map_fork: encountered a submap"); 4391 4392 inh = old_entry->inheritance; 4393 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 4394 inh != VM_INHERIT_NONE) 4395 inh = VM_INHERIT_COPY; 4396 4397 switch (inh) { 4398 case VM_INHERIT_NONE: 4399 break; 4400 4401 case VM_INHERIT_SHARE: 4402 /* 4403 * Clone the entry, creating the shared object if 4404 * necessary. 4405 */ 4406 object = old_entry->object.vm_object; 4407 if (object == NULL) { 4408 vm_map_entry_back(old_entry); 4409 object = old_entry->object.vm_object; 4410 } 4411 4412 /* 4413 * Add the reference before calling vm_object_shadow 4414 * to insure that a shadow object is created. 4415 */ 4416 vm_object_reference(object); 4417 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4418 vm_object_shadow(&old_entry->object.vm_object, 4419 &old_entry->offset, 4420 old_entry->end - old_entry->start, 4421 old_entry->cred, 4422 /* Transfer the second reference too. */ 4423 true); 4424 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4425 old_entry->cred = NULL; 4426 4427 /* 4428 * As in vm_map_merged_neighbor_dispose(), 4429 * the vnode lock will not be acquired in 4430 * this call to vm_object_deallocate(). 4431 */ 4432 vm_object_deallocate(object); 4433 object = old_entry->object.vm_object; 4434 } else { 4435 VM_OBJECT_WLOCK(object); 4436 vm_object_clear_flag(object, OBJ_ONEMAPPING); 4437 if (old_entry->cred != NULL) { 4438 KASSERT(object->cred == NULL, 4439 ("vmspace_fork both cred")); 4440 object->cred = old_entry->cred; 4441 object->charge = old_entry->end - 4442 old_entry->start; 4443 old_entry->cred = NULL; 4444 } 4445 4446 /* 4447 * Assert the correct state of the vnode 4448 * v_writecount while the object is locked, to 4449 * not relock it later for the assertion 4450 * correctness. 4451 */ 4452 if (old_entry->eflags & MAP_ENTRY_WRITECNT && 4453 object->type == OBJT_VNODE) { 4454 KASSERT(((struct vnode *)object-> 4455 handle)->v_writecount > 0, 4456 ("vmspace_fork: v_writecount %p", 4457 object)); 4458 KASSERT(object->un_pager.vnp. 4459 writemappings > 0, 4460 ("vmspace_fork: vnp.writecount %p", 4461 object)); 4462 } 4463 VM_OBJECT_WUNLOCK(object); 4464 } 4465 4466 /* 4467 * Clone the entry, referencing the shared object. 4468 */ 4469 new_entry = vm_map_entry_create(new_map); 4470 *new_entry = *old_entry; 4471 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4472 MAP_ENTRY_IN_TRANSITION); 4473 new_entry->wiring_thread = NULL; 4474 new_entry->wired_count = 0; 4475 if (new_entry->eflags & MAP_ENTRY_WRITECNT) { 4476 vm_pager_update_writecount(object, 4477 new_entry->start, new_entry->end); 4478 } 4479 vm_map_entry_set_vnode_text(new_entry, true); 4480 4481 /* 4482 * Insert the entry into the new map -- we know we're 4483 * inserting at the end of the new map. 4484 */ 4485 vm_map_entry_link(new_map, new_entry); 4486 vmspace_map_entry_forked(vm1, vm2, new_entry); 4487 4488 /* 4489 * Update the physical map 4490 */ 4491 pmap_copy(new_map->pmap, old_map->pmap, 4492 new_entry->start, 4493 (old_entry->end - old_entry->start), 4494 old_entry->start); 4495 break; 4496 4497 case VM_INHERIT_COPY: 4498 /* 4499 * Clone the entry and link into the map. 4500 */ 4501 new_entry = vm_map_entry_create(new_map); 4502 *new_entry = *old_entry; 4503 /* 4504 * Copied entry is COW over the old object. 4505 */ 4506 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4507 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT); 4508 new_entry->wiring_thread = NULL; 4509 new_entry->wired_count = 0; 4510 new_entry->object.vm_object = NULL; 4511 new_entry->cred = NULL; 4512 vm_map_entry_link(new_map, new_entry); 4513 vmspace_map_entry_forked(vm1, vm2, new_entry); 4514 vm_map_copy_entry(old_map, new_map, old_entry, 4515 new_entry, fork_charge); 4516 vm_map_entry_set_vnode_text(new_entry, true); 4517 break; 4518 4519 case VM_INHERIT_ZERO: 4520 /* 4521 * Create a new anonymous mapping entry modelled from 4522 * the old one. 4523 */ 4524 new_entry = vm_map_entry_create(new_map); 4525 memset(new_entry, 0, sizeof(*new_entry)); 4526 4527 new_entry->start = old_entry->start; 4528 new_entry->end = old_entry->end; 4529 new_entry->eflags = old_entry->eflags & 4530 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4531 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC | 4532 MAP_ENTRY_SPLIT_BOUNDARY_MASK); 4533 new_entry->protection = old_entry->protection; 4534 new_entry->max_protection = old_entry->max_protection; 4535 new_entry->inheritance = VM_INHERIT_ZERO; 4536 4537 vm_map_entry_link(new_map, new_entry); 4538 vmspace_map_entry_forked(vm1, vm2, new_entry); 4539 4540 new_entry->cred = curthread->td_ucred; 4541 crhold(new_entry->cred); 4542 *fork_charge += (new_entry->end - new_entry->start); 4543 4544 break; 4545 } 4546 } 4547 /* 4548 * Use inlined vm_map_unlock() to postpone handling the deferred 4549 * map entries, which cannot be done until both old_map and 4550 * new_map locks are released. 4551 */ 4552 sx_xunlock(&old_map->lock); 4553 sx_xunlock(&new_map->lock); 4554 vm_map_process_deferred(); 4555 4556 return (vm2); 4557 } 4558 4559 /* 4560 * Create a process's stack for exec_new_vmspace(). This function is never 4561 * asked to wire the newly created stack. 4562 */ 4563 int 4564 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4565 vm_prot_t prot, vm_prot_t max, int cow) 4566 { 4567 vm_size_t growsize, init_ssize; 4568 rlim_t vmemlim; 4569 int rv; 4570 4571 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4572 growsize = sgrowsiz; 4573 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4574 vm_map_lock(map); 4575 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4576 /* If we would blow our VMEM resource limit, no go */ 4577 if (map->size + init_ssize > vmemlim) { 4578 rv = KERN_NO_SPACE; 4579 goto out; 4580 } 4581 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4582 max, cow); 4583 out: 4584 vm_map_unlock(map); 4585 return (rv); 4586 } 4587 4588 static int stack_guard_page = 1; 4589 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4590 &stack_guard_page, 0, 4591 "Specifies the number of guard pages for a stack that grows"); 4592 4593 static int 4594 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4595 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4596 { 4597 vm_map_entry_t gap_entry, new_entry, prev_entry; 4598 vm_offset_t bot, gap_bot, gap_top, top; 4599 vm_size_t init_ssize, sgp; 4600 int rv; 4601 4602 KASSERT((cow & MAP_STACK_AREA) != 0, 4603 ("New mapping is not a stack")); 4604 4605 if (max_ssize == 0 || 4606 !vm_map_range_valid(map, addrbos, addrbos + max_ssize)) 4607 return (KERN_INVALID_ADDRESS); 4608 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4609 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4610 (vm_size_t)stack_guard_page * PAGE_SIZE; 4611 if (sgp >= max_ssize) 4612 return (KERN_INVALID_ARGUMENT); 4613 4614 init_ssize = growsize; 4615 if (max_ssize < init_ssize + sgp) 4616 init_ssize = max_ssize - sgp; 4617 4618 /* If addr is already mapped, no go */ 4619 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4620 return (KERN_NO_SPACE); 4621 4622 /* 4623 * If we can't accommodate max_ssize in the current mapping, no go. 4624 */ 4625 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize) 4626 return (KERN_NO_SPACE); 4627 4628 /* 4629 * We initially map a stack of only init_ssize, at the top of 4630 * the range. We will grow as needed later. 4631 * 4632 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4633 * and cow to be 0. Possibly we should eliminate these as input 4634 * parameters, and just pass these values here in the insert call. 4635 */ 4636 bot = addrbos + max_ssize - init_ssize; 4637 top = bot + init_ssize; 4638 gap_bot = addrbos; 4639 gap_top = bot; 4640 rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow, 4641 &new_entry); 4642 if (rv != KERN_SUCCESS) 4643 return (rv); 4644 KASSERT(new_entry->end == top || new_entry->start == bot, 4645 ("Bad entry start/end for new stack entry")); 4646 KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4647 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4648 if (gap_bot == gap_top) 4649 return (KERN_SUCCESS); 4650 rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4651 VM_PROT_NONE, MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP, 4652 &gap_entry); 4653 if (rv == KERN_SUCCESS) { 4654 KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0, 4655 ("entry %p not gap %#x", gap_entry, gap_entry->eflags)); 4656 KASSERT((gap_entry->eflags & MAP_ENTRY_STACK_GAP) != 0, 4657 ("entry %p not stack gap %#x", gap_entry, 4658 gap_entry->eflags)); 4659 4660 /* 4661 * Gap can never successfully handle a fault, so 4662 * read-ahead logic is never used for it. Re-use 4663 * next_read of the gap entry to store 4664 * stack_guard_page for vm_map_growstack(). 4665 * Similarly, since a gap cannot have a backing object, 4666 * store the original stack protections in the 4667 * object offset. 4668 */ 4669 gap_entry->next_read = sgp; 4670 gap_entry->offset = prot | PROT_MAX(max); 4671 } else { 4672 (void)vm_map_delete(map, bot, top); 4673 } 4674 return (rv); 4675 } 4676 4677 /* 4678 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4679 * successfully grow the stack. 4680 */ 4681 static int 4682 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4683 { 4684 vm_map_entry_t stack_entry; 4685 struct proc *p; 4686 struct vmspace *vm; 4687 vm_offset_t gap_end, gap_start, grow_start; 4688 vm_size_t grow_amount, guard, max_grow, sgp; 4689 vm_prot_t prot, max; 4690 rlim_t lmemlim, stacklim, vmemlim; 4691 int rv, rv1 __diagused; 4692 bool gap_deleted, is_procstack; 4693 #ifdef notyet 4694 uint64_t limit; 4695 #endif 4696 #ifdef RACCT 4697 int error __diagused; 4698 #endif 4699 4700 p = curproc; 4701 vm = p->p_vmspace; 4702 4703 /* 4704 * Disallow stack growth when the access is performed by a 4705 * debugger or AIO daemon. The reason is that the wrong 4706 * resource limits are applied. 4707 */ 4708 if (p != initproc && (map != &p->p_vmspace->vm_map || 4709 p->p_textvp == NULL)) 4710 return (KERN_FAILURE); 4711 4712 MPASS(!vm_map_is_system(map)); 4713 4714 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4715 stacklim = lim_cur(curthread, RLIMIT_STACK); 4716 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4717 retry: 4718 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4719 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4720 return (KERN_FAILURE); 4721 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4722 return (KERN_SUCCESS); 4723 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP) != 0) { 4724 stack_entry = vm_map_entry_succ(gap_entry); 4725 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4726 stack_entry->start != gap_entry->end) 4727 return (KERN_FAILURE); 4728 grow_amount = round_page(stack_entry->start - addr); 4729 } else { 4730 return (KERN_FAILURE); 4731 } 4732 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4733 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4734 gap_entry->next_read; 4735 max_grow = gap_entry->end - gap_entry->start; 4736 if (guard > max_grow) 4737 return (KERN_NO_SPACE); 4738 max_grow -= guard; 4739 if (grow_amount > max_grow) 4740 return (KERN_NO_SPACE); 4741 4742 /* 4743 * If this is the main process stack, see if we're over the stack 4744 * limit. 4745 */ 4746 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4747 addr < (vm_offset_t)vm->vm_stacktop; 4748 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4749 return (KERN_NO_SPACE); 4750 4751 #ifdef RACCT 4752 if (racct_enable) { 4753 PROC_LOCK(p); 4754 if (is_procstack && racct_set(p, RACCT_STACK, 4755 ctob(vm->vm_ssize) + grow_amount)) { 4756 PROC_UNLOCK(p); 4757 return (KERN_NO_SPACE); 4758 } 4759 PROC_UNLOCK(p); 4760 } 4761 #endif 4762 4763 grow_amount = roundup(grow_amount, sgrowsiz); 4764 if (grow_amount > max_grow) 4765 grow_amount = max_grow; 4766 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4767 grow_amount = trunc_page((vm_size_t)stacklim) - 4768 ctob(vm->vm_ssize); 4769 } 4770 4771 #ifdef notyet 4772 PROC_LOCK(p); 4773 limit = racct_get_available(p, RACCT_STACK); 4774 PROC_UNLOCK(p); 4775 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4776 grow_amount = limit - ctob(vm->vm_ssize); 4777 #endif 4778 4779 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4780 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4781 rv = KERN_NO_SPACE; 4782 goto out; 4783 } 4784 #ifdef RACCT 4785 if (racct_enable) { 4786 PROC_LOCK(p); 4787 if (racct_set(p, RACCT_MEMLOCK, 4788 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4789 PROC_UNLOCK(p); 4790 rv = KERN_NO_SPACE; 4791 goto out; 4792 } 4793 PROC_UNLOCK(p); 4794 } 4795 #endif 4796 } 4797 4798 /* If we would blow our VMEM resource limit, no go */ 4799 if (map->size + grow_amount > vmemlim) { 4800 rv = KERN_NO_SPACE; 4801 goto out; 4802 } 4803 #ifdef RACCT 4804 if (racct_enable) { 4805 PROC_LOCK(p); 4806 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4807 PROC_UNLOCK(p); 4808 rv = KERN_NO_SPACE; 4809 goto out; 4810 } 4811 PROC_UNLOCK(p); 4812 } 4813 #endif 4814 4815 if (vm_map_lock_upgrade(map)) { 4816 gap_entry = NULL; 4817 vm_map_lock_read(map); 4818 goto retry; 4819 } 4820 4821 /* 4822 * The gap_entry "offset" field is overloaded. See 4823 * vm_map_stack_locked(). 4824 */ 4825 prot = PROT_EXTRACT(gap_entry->offset); 4826 max = PROT_MAX_EXTRACT(gap_entry->offset); 4827 sgp = gap_entry->next_read; 4828 4829 grow_start = gap_entry->end - grow_amount; 4830 if (gap_entry->start + grow_amount == gap_entry->end) { 4831 gap_start = gap_entry->start; 4832 gap_end = gap_entry->end; 4833 vm_map_entry_delete(map, gap_entry); 4834 gap_deleted = true; 4835 } else { 4836 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4837 vm_map_entry_resize(map, gap_entry, -grow_amount); 4838 gap_deleted = false; 4839 } 4840 rv = vm_map_insert(map, NULL, 0, grow_start, 4841 grow_start + grow_amount, prot, max, MAP_STACK_AREA); 4842 if (rv != KERN_SUCCESS) { 4843 if (gap_deleted) { 4844 rv1 = vm_map_insert1(map, NULL, 0, gap_start, 4845 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4846 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP, 4847 &gap_entry); 4848 MPASS(rv1 == KERN_SUCCESS); 4849 gap_entry->next_read = sgp; 4850 gap_entry->offset = prot | PROT_MAX(max); 4851 } else { 4852 vm_map_entry_resize(map, gap_entry, 4853 grow_amount); 4854 } 4855 } 4856 if (rv == KERN_SUCCESS && is_procstack) 4857 vm->vm_ssize += btoc(grow_amount); 4858 4859 /* 4860 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4861 */ 4862 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4863 rv = vm_map_wire_locked(map, grow_start, 4864 grow_start + grow_amount, 4865 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4866 } 4867 vm_map_lock_downgrade(map); 4868 4869 out: 4870 #ifdef RACCT 4871 if (racct_enable && rv != KERN_SUCCESS) { 4872 PROC_LOCK(p); 4873 error = racct_set(p, RACCT_VMEM, map->size); 4874 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4875 if (!old_mlock) { 4876 error = racct_set(p, RACCT_MEMLOCK, 4877 ptoa(pmap_wired_count(map->pmap))); 4878 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4879 } 4880 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4881 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4882 PROC_UNLOCK(p); 4883 } 4884 #endif 4885 4886 return (rv); 4887 } 4888 4889 /* 4890 * Unshare the specified VM space for exec. If other processes are 4891 * mapped to it, then create a new one. The new vmspace is null. 4892 */ 4893 int 4894 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4895 { 4896 struct vmspace *oldvmspace = p->p_vmspace; 4897 struct vmspace *newvmspace; 4898 4899 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4900 ("vmspace_exec recursed")); 4901 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4902 if (newvmspace == NULL) 4903 return (ENOMEM); 4904 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4905 /* 4906 * This code is written like this for prototype purposes. The 4907 * goal is to avoid running down the vmspace here, but let the 4908 * other process's that are still using the vmspace to finally 4909 * run it down. Even though there is little or no chance of blocking 4910 * here, it is a good idea to keep this form for future mods. 4911 */ 4912 PROC_VMSPACE_LOCK(p); 4913 p->p_vmspace = newvmspace; 4914 PROC_VMSPACE_UNLOCK(p); 4915 if (p == curthread->td_proc) 4916 pmap_activate(curthread); 4917 curthread->td_pflags |= TDP_EXECVMSPC; 4918 return (0); 4919 } 4920 4921 /* 4922 * Unshare the specified VM space for forcing COW. This 4923 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4924 */ 4925 int 4926 vmspace_unshare(struct proc *p) 4927 { 4928 struct vmspace *oldvmspace = p->p_vmspace; 4929 struct vmspace *newvmspace; 4930 vm_ooffset_t fork_charge; 4931 4932 /* 4933 * The caller is responsible for ensuring that the reference count 4934 * cannot concurrently transition 1 -> 2. 4935 */ 4936 if (refcount_load(&oldvmspace->vm_refcnt) == 1) 4937 return (0); 4938 fork_charge = 0; 4939 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4940 if (newvmspace == NULL) 4941 return (ENOMEM); 4942 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4943 vmspace_free(newvmspace); 4944 return (ENOMEM); 4945 } 4946 PROC_VMSPACE_LOCK(p); 4947 p->p_vmspace = newvmspace; 4948 PROC_VMSPACE_UNLOCK(p); 4949 if (p == curthread->td_proc) 4950 pmap_activate(curthread); 4951 vmspace_free(oldvmspace); 4952 return (0); 4953 } 4954 4955 /* 4956 * vm_map_lookup: 4957 * 4958 * Finds the VM object, offset, and 4959 * protection for a given virtual address in the 4960 * specified map, assuming a page fault of the 4961 * type specified. 4962 * 4963 * Leaves the map in question locked for read; return 4964 * values are guaranteed until a vm_map_lookup_done 4965 * call is performed. Note that the map argument 4966 * is in/out; the returned map must be used in 4967 * the call to vm_map_lookup_done. 4968 * 4969 * A handle (out_entry) is returned for use in 4970 * vm_map_lookup_done, to make that fast. 4971 * 4972 * If a lookup is requested with "write protection" 4973 * specified, the map may be changed to perform virtual 4974 * copying operations, although the data referenced will 4975 * remain the same. 4976 */ 4977 int 4978 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4979 vm_offset_t vaddr, 4980 vm_prot_t fault_typea, 4981 vm_map_entry_t *out_entry, /* OUT */ 4982 vm_object_t *object, /* OUT */ 4983 vm_pindex_t *pindex, /* OUT */ 4984 vm_prot_t *out_prot, /* OUT */ 4985 boolean_t *wired) /* OUT */ 4986 { 4987 vm_map_entry_t entry; 4988 vm_map_t map = *var_map; 4989 vm_prot_t prot; 4990 vm_prot_t fault_type; 4991 vm_object_t eobject; 4992 vm_size_t size; 4993 struct ucred *cred; 4994 4995 RetryLookup: 4996 4997 vm_map_lock_read(map); 4998 4999 RetryLookupLocked: 5000 /* 5001 * Lookup the faulting address. 5002 */ 5003 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 5004 vm_map_unlock_read(map); 5005 return (KERN_INVALID_ADDRESS); 5006 } 5007 5008 entry = *out_entry; 5009 5010 /* 5011 * Handle submaps. 5012 */ 5013 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5014 vm_map_t old_map = map; 5015 5016 *var_map = map = entry->object.sub_map; 5017 vm_map_unlock_read(old_map); 5018 goto RetryLookup; 5019 } 5020 5021 /* 5022 * Check whether this task is allowed to have this page. 5023 */ 5024 prot = entry->protection; 5025 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 5026 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 5027 if (prot == VM_PROT_NONE && map != kernel_map && 5028 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 5029 (entry->eflags & MAP_ENTRY_STACK_GAP) != 0 && 5030 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 5031 goto RetryLookupLocked; 5032 } 5033 fault_type = fault_typea & VM_PROT_ALL; 5034 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 5035 vm_map_unlock_read(map); 5036 return (KERN_PROTECTION_FAILURE); 5037 } 5038 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 5039 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 5040 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 5041 ("entry %p flags %x", entry, entry->eflags)); 5042 if ((fault_typea & VM_PROT_COPY) != 0 && 5043 (entry->max_protection & VM_PROT_WRITE) == 0 && 5044 (entry->eflags & MAP_ENTRY_COW) == 0) { 5045 vm_map_unlock_read(map); 5046 return (KERN_PROTECTION_FAILURE); 5047 } 5048 5049 /* 5050 * If this page is not pageable, we have to get it for all possible 5051 * accesses. 5052 */ 5053 *wired = (entry->wired_count != 0); 5054 if (*wired) 5055 fault_type = entry->protection; 5056 size = entry->end - entry->start; 5057 5058 /* 5059 * If the entry was copy-on-write, we either ... 5060 */ 5061 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5062 /* 5063 * If we want to write the page, we may as well handle that 5064 * now since we've got the map locked. 5065 * 5066 * If we don't need to write the page, we just demote the 5067 * permissions allowed. 5068 */ 5069 if ((fault_type & VM_PROT_WRITE) != 0 || 5070 (fault_typea & VM_PROT_COPY) != 0) { 5071 /* 5072 * Make a new object, and place it in the object 5073 * chain. Note that no new references have appeared 5074 * -- one just moved from the map to the new 5075 * object. 5076 */ 5077 if (vm_map_lock_upgrade(map)) 5078 goto RetryLookup; 5079 5080 if (entry->cred == NULL) { 5081 /* 5082 * The debugger owner is charged for 5083 * the memory. 5084 */ 5085 cred = curthread->td_ucred; 5086 crhold(cred); 5087 if (!swap_reserve_by_cred(size, cred)) { 5088 crfree(cred); 5089 vm_map_unlock(map); 5090 return (KERN_RESOURCE_SHORTAGE); 5091 } 5092 entry->cred = cred; 5093 } 5094 eobject = entry->object.vm_object; 5095 vm_object_shadow(&entry->object.vm_object, 5096 &entry->offset, size, entry->cred, false); 5097 if (eobject == entry->object.vm_object) { 5098 /* 5099 * The object was not shadowed. 5100 */ 5101 swap_release_by_cred(size, entry->cred); 5102 crfree(entry->cred); 5103 } 5104 entry->cred = NULL; 5105 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 5106 5107 vm_map_lock_downgrade(map); 5108 } else { 5109 /* 5110 * We're attempting to read a copy-on-write page -- 5111 * don't allow writes. 5112 */ 5113 prot &= ~VM_PROT_WRITE; 5114 } 5115 } 5116 5117 /* 5118 * Create an object if necessary. 5119 */ 5120 if (entry->object.vm_object == NULL && !vm_map_is_system(map)) { 5121 if (vm_map_lock_upgrade(map)) 5122 goto RetryLookup; 5123 entry->object.vm_object = vm_object_allocate_anon(atop(size), 5124 NULL, entry->cred, size); 5125 entry->offset = 0; 5126 entry->cred = NULL; 5127 vm_map_lock_downgrade(map); 5128 } 5129 5130 /* 5131 * Return the object/offset from this entry. If the entry was 5132 * copy-on-write or empty, it has been fixed up. 5133 */ 5134 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5135 *object = entry->object.vm_object; 5136 5137 *out_prot = prot; 5138 return (KERN_SUCCESS); 5139 } 5140 5141 /* 5142 * vm_map_lookup_locked: 5143 * 5144 * Lookup the faulting address. A version of vm_map_lookup that returns 5145 * KERN_FAILURE instead of blocking on map lock or memory allocation. 5146 */ 5147 int 5148 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 5149 vm_offset_t vaddr, 5150 vm_prot_t fault_typea, 5151 vm_map_entry_t *out_entry, /* OUT */ 5152 vm_object_t *object, /* OUT */ 5153 vm_pindex_t *pindex, /* OUT */ 5154 vm_prot_t *out_prot, /* OUT */ 5155 boolean_t *wired) /* OUT */ 5156 { 5157 vm_map_entry_t entry; 5158 vm_map_t map = *var_map; 5159 vm_prot_t prot; 5160 vm_prot_t fault_type = fault_typea; 5161 5162 /* 5163 * Lookup the faulting address. 5164 */ 5165 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 5166 return (KERN_INVALID_ADDRESS); 5167 5168 entry = *out_entry; 5169 5170 /* 5171 * Fail if the entry refers to a submap. 5172 */ 5173 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 5174 return (KERN_FAILURE); 5175 5176 /* 5177 * Check whether this task is allowed to have this page. 5178 */ 5179 prot = entry->protection; 5180 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 5181 if ((fault_type & prot) != fault_type) 5182 return (KERN_PROTECTION_FAILURE); 5183 5184 /* 5185 * If this page is not pageable, we have to get it for all possible 5186 * accesses. 5187 */ 5188 *wired = (entry->wired_count != 0); 5189 if (*wired) 5190 fault_type = entry->protection; 5191 5192 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5193 /* 5194 * Fail if the entry was copy-on-write for a write fault. 5195 */ 5196 if (fault_type & VM_PROT_WRITE) 5197 return (KERN_FAILURE); 5198 /* 5199 * We're attempting to read a copy-on-write page -- 5200 * don't allow writes. 5201 */ 5202 prot &= ~VM_PROT_WRITE; 5203 } 5204 5205 /* 5206 * Fail if an object should be created. 5207 */ 5208 if (entry->object.vm_object == NULL && !vm_map_is_system(map)) 5209 return (KERN_FAILURE); 5210 5211 /* 5212 * Return the object/offset from this entry. If the entry was 5213 * copy-on-write or empty, it has been fixed up. 5214 */ 5215 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5216 *object = entry->object.vm_object; 5217 5218 *out_prot = prot; 5219 return (KERN_SUCCESS); 5220 } 5221 5222 /* 5223 * vm_map_lookup_done: 5224 * 5225 * Releases locks acquired by a vm_map_lookup 5226 * (according to the handle returned by that lookup). 5227 */ 5228 void 5229 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 5230 { 5231 /* 5232 * Unlock the main-level map 5233 */ 5234 vm_map_unlock_read(map); 5235 } 5236 5237 vm_offset_t 5238 vm_map_max_KBI(const struct vm_map *map) 5239 { 5240 5241 return (vm_map_max(map)); 5242 } 5243 5244 vm_offset_t 5245 vm_map_min_KBI(const struct vm_map *map) 5246 { 5247 5248 return (vm_map_min(map)); 5249 } 5250 5251 pmap_t 5252 vm_map_pmap_KBI(vm_map_t map) 5253 { 5254 5255 return (map->pmap); 5256 } 5257 5258 bool 5259 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end) 5260 { 5261 5262 return (vm_map_range_valid(map, start, end)); 5263 } 5264 5265 #ifdef INVARIANTS 5266 static void 5267 _vm_map_assert_consistent(vm_map_t map, int check) 5268 { 5269 vm_map_entry_t entry, prev; 5270 vm_map_entry_t cur, header, lbound, ubound; 5271 vm_size_t max_left, max_right; 5272 5273 #ifdef DIAGNOSTIC 5274 ++map->nupdates; 5275 #endif 5276 if (enable_vmmap_check != check) 5277 return; 5278 5279 header = prev = &map->header; 5280 VM_MAP_ENTRY_FOREACH(entry, map) { 5281 KASSERT(prev->end <= entry->start, 5282 ("map %p prev->end = %jx, start = %jx", map, 5283 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5284 KASSERT(entry->start < entry->end, 5285 ("map %p start = %jx, end = %jx", map, 5286 (uintmax_t)entry->start, (uintmax_t)entry->end)); 5287 KASSERT(entry->left == header || 5288 entry->left->start < entry->start, 5289 ("map %p left->start = %jx, start = %jx", map, 5290 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 5291 KASSERT(entry->right == header || 5292 entry->start < entry->right->start, 5293 ("map %p start = %jx, right->start = %jx", map, 5294 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 5295 cur = map->root; 5296 lbound = ubound = header; 5297 for (;;) { 5298 if (entry->start < cur->start) { 5299 ubound = cur; 5300 cur = cur->left; 5301 KASSERT(cur != lbound, 5302 ("map %p cannot find %jx", 5303 map, (uintmax_t)entry->start)); 5304 } else if (cur->end <= entry->start) { 5305 lbound = cur; 5306 cur = cur->right; 5307 KASSERT(cur != ubound, 5308 ("map %p cannot find %jx", 5309 map, (uintmax_t)entry->start)); 5310 } else { 5311 KASSERT(cur == entry, 5312 ("map %p cannot find %jx", 5313 map, (uintmax_t)entry->start)); 5314 break; 5315 } 5316 } 5317 max_left = vm_map_entry_max_free_left(entry, lbound); 5318 max_right = vm_map_entry_max_free_right(entry, ubound); 5319 KASSERT(entry->max_free == vm_size_max(max_left, max_right), 5320 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 5321 (uintmax_t)entry->max_free, 5322 (uintmax_t)max_left, (uintmax_t)max_right)); 5323 prev = entry; 5324 } 5325 KASSERT(prev->end <= entry->start, 5326 ("map %p prev->end = %jx, start = %jx", map, 5327 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5328 } 5329 #endif 5330 5331 #include "opt_ddb.h" 5332 #ifdef DDB 5333 #include <sys/kernel.h> 5334 5335 #include <ddb/ddb.h> 5336 5337 static void 5338 vm_map_print(vm_map_t map) 5339 { 5340 vm_map_entry_t entry, prev; 5341 5342 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 5343 (void *)map, 5344 (void *)map->pmap, map->nentries, map->timestamp); 5345 5346 db_indent += 2; 5347 prev = &map->header; 5348 VM_MAP_ENTRY_FOREACH(entry, map) { 5349 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 5350 (void *)entry, (void *)entry->start, (void *)entry->end, 5351 entry->eflags); 5352 { 5353 static const char * const inheritance_name[4] = 5354 {"share", "copy", "none", "donate_copy"}; 5355 5356 db_iprintf(" prot=%x/%x/%s", 5357 entry->protection, 5358 entry->max_protection, 5359 inheritance_name[(int)(unsigned char) 5360 entry->inheritance]); 5361 if (entry->wired_count != 0) 5362 db_printf(", wired"); 5363 } 5364 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5365 db_printf(", share=%p, offset=0x%jx\n", 5366 (void *)entry->object.sub_map, 5367 (uintmax_t)entry->offset); 5368 if (prev == &map->header || 5369 prev->object.sub_map != 5370 entry->object.sub_map) { 5371 db_indent += 2; 5372 vm_map_print((vm_map_t)entry->object.sub_map); 5373 db_indent -= 2; 5374 } 5375 } else { 5376 if (entry->cred != NULL) 5377 db_printf(", ruid %d", entry->cred->cr_ruid); 5378 db_printf(", object=%p, offset=0x%jx", 5379 (void *)entry->object.vm_object, 5380 (uintmax_t)entry->offset); 5381 if (entry->object.vm_object && entry->object.vm_object->cred) 5382 db_printf(", obj ruid %d charge %jx", 5383 entry->object.vm_object->cred->cr_ruid, 5384 (uintmax_t)entry->object.vm_object->charge); 5385 if (entry->eflags & MAP_ENTRY_COW) 5386 db_printf(", copy (%s)", 5387 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 5388 db_printf("\n"); 5389 5390 if (prev == &map->header || 5391 prev->object.vm_object != 5392 entry->object.vm_object) { 5393 db_indent += 2; 5394 vm_object_print((db_expr_t)(intptr_t) 5395 entry->object.vm_object, 5396 0, 0, (char *)0); 5397 db_indent -= 2; 5398 } 5399 } 5400 prev = entry; 5401 } 5402 db_indent -= 2; 5403 } 5404 5405 DB_SHOW_COMMAND(map, map) 5406 { 5407 5408 if (!have_addr) { 5409 db_printf("usage: show map <addr>\n"); 5410 return; 5411 } 5412 vm_map_print((vm_map_t)addr); 5413 } 5414 5415 DB_SHOW_COMMAND(procvm, procvm) 5416 { 5417 struct proc *p; 5418 5419 if (have_addr) { 5420 p = db_lookup_proc(addr); 5421 } else { 5422 p = curproc; 5423 } 5424 5425 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 5426 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 5427 (void *)vmspace_pmap(p->p_vmspace)); 5428 5429 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 5430 } 5431 5432 #endif /* DDB */ 5433