1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/file.h> 81 #include <sys/sysctl.h> 82 #include <sys/sysent.h> 83 #include <sys/shm.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_kern.h> 93 #include <vm/vm_extern.h> 94 #include <vm/vnode_pager.h> 95 #include <vm/swap_pager.h> 96 #include <vm/uma.h> 97 98 /* 99 * Virtual memory maps provide for the mapping, protection, 100 * and sharing of virtual memory objects. In addition, 101 * this module provides for an efficient virtual copy of 102 * memory from one map to another. 103 * 104 * Synchronization is required prior to most operations. 105 * 106 * Maps consist of an ordered doubly-linked list of simple 107 * entries; a self-adjusting binary search tree of these 108 * entries is used to speed up lookups. 109 * 110 * Since portions of maps are specified by start/end addresses, 111 * which may not align with existing map entries, all 112 * routines merely "clip" entries to these start/end values. 113 * [That is, an entry is split into two, bordering at a 114 * start or end value.] Note that these clippings may not 115 * always be necessary (as the two resulting entries are then 116 * not changed); however, the clipping is done for convenience. 117 * 118 * As mentioned above, virtual copy operations are performed 119 * by copying VM object references from one map to 120 * another, and then marking both regions as copy-on-write. 121 */ 122 123 static struct mtx map_sleep_mtx; 124 static uma_zone_t mapentzone; 125 static uma_zone_t kmapentzone; 126 static uma_zone_t mapzone; 127 static uma_zone_t vmspace_zone; 128 static struct vm_object kmapentobj; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static void vmspace_zfini(void *mem, int size); 131 static int vm_map_zinit(void *mem, int ize, int flags); 132 static void vm_map_zfini(void *mem, int size); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 137 #ifdef INVARIANTS 138 static void vm_map_zdtor(void *mem, int size, void *arg); 139 static void vmspace_zdtor(void *mem, int size, void *arg); 140 #endif 141 142 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 143 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 144 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 145 146 /* 147 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 148 * stable. 149 */ 150 #define PROC_VMSPACE_LOCK(p) do { } while (0) 151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 152 153 /* 154 * VM_MAP_RANGE_CHECK: [ internal use only ] 155 * 156 * Asserts that the starting and ending region 157 * addresses fall within the valid range of the map. 158 */ 159 #define VM_MAP_RANGE_CHECK(map, start, end) \ 160 { \ 161 if (start < vm_map_min(map)) \ 162 start = vm_map_min(map); \ 163 if (end > vm_map_max(map)) \ 164 end = vm_map_max(map); \ 165 if (start > end) \ 166 start = end; \ 167 } 168 169 /* 170 * vm_map_startup: 171 * 172 * Initialize the vm_map module. Must be called before 173 * any other vm_map routines. 174 * 175 * Map and entry structures are allocated from the general 176 * purpose memory pool with some exceptions: 177 * 178 * - The kernel map and kmem submap are allocated statically. 179 * - Kernel map entries are allocated out of a static pool. 180 * 181 * These restrictions are necessary since malloc() uses the 182 * maps and requires map entries. 183 */ 184 185 void 186 vm_map_startup(void) 187 { 188 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 189 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 190 #ifdef INVARIANTS 191 vm_map_zdtor, 192 #else 193 NULL, 194 #endif 195 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 196 uma_prealloc(mapzone, MAX_KMAP); 197 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 198 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 199 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 200 uma_prealloc(kmapentzone, MAX_KMAPENT); 201 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 202 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 203 } 204 205 static void 206 vmspace_zfini(void *mem, int size) 207 { 208 struct vmspace *vm; 209 210 vm = (struct vmspace *)mem; 211 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 212 } 213 214 static int 215 vmspace_zinit(void *mem, int size, int flags) 216 { 217 struct vmspace *vm; 218 219 vm = (struct vmspace *)mem; 220 221 vm->vm_map.pmap = NULL; 222 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 223 return (0); 224 } 225 226 static void 227 vm_map_zfini(void *mem, int size) 228 { 229 vm_map_t map; 230 231 map = (vm_map_t)mem; 232 mtx_destroy(&map->system_mtx); 233 sx_destroy(&map->lock); 234 } 235 236 static int 237 vm_map_zinit(void *mem, int size, int flags) 238 { 239 vm_map_t map; 240 241 map = (vm_map_t)mem; 242 map->nentries = 0; 243 map->size = 0; 244 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 245 sx_init(&map->lock, "vm map (user)"); 246 return (0); 247 } 248 249 #ifdef INVARIANTS 250 static void 251 vmspace_zdtor(void *mem, int size, void *arg) 252 { 253 struct vmspace *vm; 254 255 vm = (struct vmspace *)mem; 256 257 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 258 } 259 static void 260 vm_map_zdtor(void *mem, int size, void *arg) 261 { 262 vm_map_t map; 263 264 map = (vm_map_t)mem; 265 KASSERT(map->nentries == 0, 266 ("map %p nentries == %d on free.", 267 map, map->nentries)); 268 KASSERT(map->size == 0, 269 ("map %p size == %lu on free.", 270 map, (unsigned long)map->size)); 271 } 272 #endif /* INVARIANTS */ 273 274 /* 275 * Allocate a vmspace structure, including a vm_map and pmap, 276 * and initialize those structures. The refcnt is set to 1. 277 */ 278 struct vmspace * 279 vmspace_alloc(min, max) 280 vm_offset_t min, max; 281 { 282 struct vmspace *vm; 283 284 vm = uma_zalloc(vmspace_zone, M_WAITOK); 285 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 void 304 vm_init2(void) 305 { 306 uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count, 307 (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 + 308 maxproc * 2 + maxfiles); 309 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 310 #ifdef INVARIANTS 311 vmspace_zdtor, 312 #else 313 NULL, 314 #endif 315 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 316 } 317 318 static void 319 vmspace_container_reset(struct proc *p) 320 { 321 322 #ifdef RACCT 323 PROC_LOCK(p); 324 racct_set(p, RACCT_DATA, 0); 325 racct_set(p, RACCT_STACK, 0); 326 racct_set(p, RACCT_RSS, 0); 327 racct_set(p, RACCT_MEMLOCK, 0); 328 racct_set(p, RACCT_VMEM, 0); 329 PROC_UNLOCK(p); 330 #endif 331 } 332 333 static inline void 334 vmspace_dofree(struct vmspace *vm) 335 { 336 337 CTR1(KTR_VM, "vmspace_free: %p", vm); 338 339 /* 340 * Make sure any SysV shm is freed, it might not have been in 341 * exit1(). 342 */ 343 shmexit(vm); 344 345 /* 346 * Lock the map, to wait out all other references to it. 347 * Delete all of the mappings and pages they hold, then call 348 * the pmap module to reclaim anything left. 349 */ 350 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 351 vm->vm_map.max_offset); 352 353 pmap_release(vmspace_pmap(vm)); 354 vm->vm_map.pmap = NULL; 355 uma_zfree(vmspace_zone, vm); 356 } 357 358 void 359 vmspace_free(struct vmspace *vm) 360 { 361 362 if (vm->vm_refcnt == 0) 363 panic("vmspace_free: attempt to free already freed vmspace"); 364 365 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 366 vmspace_dofree(vm); 367 } 368 369 void 370 vmspace_exitfree(struct proc *p) 371 { 372 struct vmspace *vm; 373 374 PROC_VMSPACE_LOCK(p); 375 vm = p->p_vmspace; 376 p->p_vmspace = NULL; 377 PROC_VMSPACE_UNLOCK(p); 378 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 379 vmspace_free(vm); 380 } 381 382 void 383 vmspace_exit(struct thread *td) 384 { 385 int refcnt; 386 struct vmspace *vm; 387 struct proc *p; 388 389 /* 390 * Release user portion of address space. 391 * This releases references to vnodes, 392 * which could cause I/O if the file has been unlinked. 393 * Need to do this early enough that we can still sleep. 394 * 395 * The last exiting process to reach this point releases as 396 * much of the environment as it can. vmspace_dofree() is the 397 * slower fallback in case another process had a temporary 398 * reference to the vmspace. 399 */ 400 401 p = td->td_proc; 402 vm = p->p_vmspace; 403 atomic_add_int(&vmspace0.vm_refcnt, 1); 404 do { 405 refcnt = vm->vm_refcnt; 406 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 407 /* Switch now since other proc might free vmspace */ 408 PROC_VMSPACE_LOCK(p); 409 p->p_vmspace = &vmspace0; 410 PROC_VMSPACE_UNLOCK(p); 411 pmap_activate(td); 412 } 413 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 414 if (refcnt == 1) { 415 if (p->p_vmspace != vm) { 416 /* vmspace not yet freed, switch back */ 417 PROC_VMSPACE_LOCK(p); 418 p->p_vmspace = vm; 419 PROC_VMSPACE_UNLOCK(p); 420 pmap_activate(td); 421 } 422 pmap_remove_pages(vmspace_pmap(vm)); 423 /* Switch now since this proc will free vmspace */ 424 PROC_VMSPACE_LOCK(p); 425 p->p_vmspace = &vmspace0; 426 PROC_VMSPACE_UNLOCK(p); 427 pmap_activate(td); 428 vmspace_dofree(vm); 429 } 430 vmspace_container_reset(p); 431 } 432 433 /* Acquire reference to vmspace owned by another process. */ 434 435 struct vmspace * 436 vmspace_acquire_ref(struct proc *p) 437 { 438 struct vmspace *vm; 439 int refcnt; 440 441 PROC_VMSPACE_LOCK(p); 442 vm = p->p_vmspace; 443 if (vm == NULL) { 444 PROC_VMSPACE_UNLOCK(p); 445 return (NULL); 446 } 447 do { 448 refcnt = vm->vm_refcnt; 449 if (refcnt <= 0) { /* Avoid 0->1 transition */ 450 PROC_VMSPACE_UNLOCK(p); 451 return (NULL); 452 } 453 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 454 if (vm != p->p_vmspace) { 455 PROC_VMSPACE_UNLOCK(p); 456 vmspace_free(vm); 457 return (NULL); 458 } 459 PROC_VMSPACE_UNLOCK(p); 460 return (vm); 461 } 462 463 void 464 _vm_map_lock(vm_map_t map, const char *file, int line) 465 { 466 467 if (map->system_map) 468 mtx_lock_flags_(&map->system_mtx, 0, file, line); 469 else 470 sx_xlock_(&map->lock, file, line); 471 map->timestamp++; 472 } 473 474 static void 475 vm_map_process_deferred(void) 476 { 477 struct thread *td; 478 vm_map_entry_t entry, next; 479 vm_object_t object; 480 481 td = curthread; 482 entry = td->td_map_def_user; 483 td->td_map_def_user = NULL; 484 while (entry != NULL) { 485 next = entry->next; 486 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 487 /* 488 * Decrement the object's writemappings and 489 * possibly the vnode's v_writecount. 490 */ 491 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 492 ("Submap with writecount")); 493 object = entry->object.vm_object; 494 KASSERT(object != NULL, ("No object for writecount")); 495 vnode_pager_release_writecount(object, entry->start, 496 entry->end); 497 } 498 vm_map_entry_deallocate(entry, FALSE); 499 entry = next; 500 } 501 } 502 503 void 504 _vm_map_unlock(vm_map_t map, const char *file, int line) 505 { 506 507 if (map->system_map) 508 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 509 else { 510 sx_xunlock_(&map->lock, file, line); 511 vm_map_process_deferred(); 512 } 513 } 514 515 void 516 _vm_map_lock_read(vm_map_t map, const char *file, int line) 517 { 518 519 if (map->system_map) 520 mtx_lock_flags_(&map->system_mtx, 0, file, line); 521 else 522 sx_slock_(&map->lock, file, line); 523 } 524 525 void 526 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 527 { 528 529 if (map->system_map) 530 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 531 else { 532 sx_sunlock_(&map->lock, file, line); 533 vm_map_process_deferred(); 534 } 535 } 536 537 int 538 _vm_map_trylock(vm_map_t map, const char *file, int line) 539 { 540 int error; 541 542 error = map->system_map ? 543 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 544 !sx_try_xlock_(&map->lock, file, line); 545 if (error == 0) 546 map->timestamp++; 547 return (error == 0); 548 } 549 550 int 551 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 552 { 553 int error; 554 555 error = map->system_map ? 556 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 557 !sx_try_slock_(&map->lock, file, line); 558 return (error == 0); 559 } 560 561 /* 562 * _vm_map_lock_upgrade: [ internal use only ] 563 * 564 * Tries to upgrade a read (shared) lock on the specified map to a write 565 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 566 * non-zero value if the upgrade fails. If the upgrade fails, the map is 567 * returned without a read or write lock held. 568 * 569 * Requires that the map be read locked. 570 */ 571 int 572 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 573 { 574 unsigned int last_timestamp; 575 576 if (map->system_map) { 577 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 578 } else { 579 if (!sx_try_upgrade_(&map->lock, file, line)) { 580 last_timestamp = map->timestamp; 581 sx_sunlock_(&map->lock, file, line); 582 vm_map_process_deferred(); 583 /* 584 * If the map's timestamp does not change while the 585 * map is unlocked, then the upgrade succeeds. 586 */ 587 sx_xlock_(&map->lock, file, line); 588 if (last_timestamp != map->timestamp) { 589 sx_xunlock_(&map->lock, file, line); 590 return (1); 591 } 592 } 593 } 594 map->timestamp++; 595 return (0); 596 } 597 598 void 599 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 600 { 601 602 if (map->system_map) { 603 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 604 } else 605 sx_downgrade_(&map->lock, file, line); 606 } 607 608 /* 609 * vm_map_locked: 610 * 611 * Returns a non-zero value if the caller holds a write (exclusive) lock 612 * on the specified map and the value "0" otherwise. 613 */ 614 int 615 vm_map_locked(vm_map_t map) 616 { 617 618 if (map->system_map) 619 return (mtx_owned(&map->system_mtx)); 620 else 621 return (sx_xlocked(&map->lock)); 622 } 623 624 #ifdef INVARIANTS 625 static void 626 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 627 { 628 629 if (map->system_map) 630 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 631 else 632 sx_assert_(&map->lock, SA_XLOCKED, file, line); 633 } 634 635 #define VM_MAP_ASSERT_LOCKED(map) \ 636 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 637 #else 638 #define VM_MAP_ASSERT_LOCKED(map) 639 #endif 640 641 /* 642 * _vm_map_unlock_and_wait: 643 * 644 * Atomically releases the lock on the specified map and puts the calling 645 * thread to sleep. The calling thread will remain asleep until either 646 * vm_map_wakeup() is performed on the map or the specified timeout is 647 * exceeded. 648 * 649 * WARNING! This function does not perform deferred deallocations of 650 * objects and map entries. Therefore, the calling thread is expected to 651 * reacquire the map lock after reawakening and later perform an ordinary 652 * unlock operation, such as vm_map_unlock(), before completing its 653 * operation on the map. 654 */ 655 int 656 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 657 { 658 659 mtx_lock(&map_sleep_mtx); 660 if (map->system_map) 661 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 662 else 663 sx_xunlock_(&map->lock, file, line); 664 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 665 timo)); 666 } 667 668 /* 669 * vm_map_wakeup: 670 * 671 * Awaken any threads that have slept on the map using 672 * vm_map_unlock_and_wait(). 673 */ 674 void 675 vm_map_wakeup(vm_map_t map) 676 { 677 678 /* 679 * Acquire and release map_sleep_mtx to prevent a wakeup() 680 * from being performed (and lost) between the map unlock 681 * and the msleep() in _vm_map_unlock_and_wait(). 682 */ 683 mtx_lock(&map_sleep_mtx); 684 mtx_unlock(&map_sleep_mtx); 685 wakeup(&map->root); 686 } 687 688 void 689 vm_map_busy(vm_map_t map) 690 { 691 692 VM_MAP_ASSERT_LOCKED(map); 693 map->busy++; 694 } 695 696 void 697 vm_map_unbusy(vm_map_t map) 698 { 699 700 VM_MAP_ASSERT_LOCKED(map); 701 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 702 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 703 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 704 wakeup(&map->busy); 705 } 706 } 707 708 void 709 vm_map_wait_busy(vm_map_t map) 710 { 711 712 VM_MAP_ASSERT_LOCKED(map); 713 while (map->busy) { 714 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 715 if (map->system_map) 716 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 717 else 718 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 719 } 720 map->timestamp++; 721 } 722 723 long 724 vmspace_resident_count(struct vmspace *vmspace) 725 { 726 return pmap_resident_count(vmspace_pmap(vmspace)); 727 } 728 729 long 730 vmspace_wired_count(struct vmspace *vmspace) 731 { 732 return pmap_wired_count(vmspace_pmap(vmspace)); 733 } 734 735 /* 736 * vm_map_create: 737 * 738 * Creates and returns a new empty VM map with 739 * the given physical map structure, and having 740 * the given lower and upper address bounds. 741 */ 742 vm_map_t 743 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 744 { 745 vm_map_t result; 746 747 result = uma_zalloc(mapzone, M_WAITOK); 748 CTR1(KTR_VM, "vm_map_create: %p", result); 749 _vm_map_init(result, pmap, min, max); 750 return (result); 751 } 752 753 /* 754 * Initialize an existing vm_map structure 755 * such as that in the vmspace structure. 756 */ 757 static void 758 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 759 { 760 761 map->header.next = map->header.prev = &map->header; 762 map->needs_wakeup = FALSE; 763 map->system_map = 0; 764 map->pmap = pmap; 765 map->min_offset = min; 766 map->max_offset = max; 767 map->flags = 0; 768 map->root = NULL; 769 map->timestamp = 0; 770 map->busy = 0; 771 } 772 773 void 774 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 775 { 776 777 _vm_map_init(map, pmap, min, max); 778 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 779 sx_init(&map->lock, "user map"); 780 } 781 782 /* 783 * vm_map_entry_dispose: [ internal use only ] 784 * 785 * Inverse of vm_map_entry_create. 786 */ 787 static void 788 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 789 { 790 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 791 } 792 793 /* 794 * vm_map_entry_create: [ internal use only ] 795 * 796 * Allocates a VM map entry for insertion. 797 * No entry fields are filled in. 798 */ 799 static vm_map_entry_t 800 vm_map_entry_create(vm_map_t map) 801 { 802 vm_map_entry_t new_entry; 803 804 if (map->system_map) 805 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 806 else 807 new_entry = uma_zalloc(mapentzone, M_WAITOK); 808 if (new_entry == NULL) 809 panic("vm_map_entry_create: kernel resources exhausted"); 810 return (new_entry); 811 } 812 813 /* 814 * vm_map_entry_set_behavior: 815 * 816 * Set the expected access behavior, either normal, random, or 817 * sequential. 818 */ 819 static inline void 820 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 821 { 822 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 823 (behavior & MAP_ENTRY_BEHAV_MASK); 824 } 825 826 /* 827 * vm_map_entry_set_max_free: 828 * 829 * Set the max_free field in a vm_map_entry. 830 */ 831 static inline void 832 vm_map_entry_set_max_free(vm_map_entry_t entry) 833 { 834 835 entry->max_free = entry->adj_free; 836 if (entry->left != NULL && entry->left->max_free > entry->max_free) 837 entry->max_free = entry->left->max_free; 838 if (entry->right != NULL && entry->right->max_free > entry->max_free) 839 entry->max_free = entry->right->max_free; 840 } 841 842 /* 843 * vm_map_entry_splay: 844 * 845 * The Sleator and Tarjan top-down splay algorithm with the 846 * following variation. Max_free must be computed bottom-up, so 847 * on the downward pass, maintain the left and right spines in 848 * reverse order. Then, make a second pass up each side to fix 849 * the pointers and compute max_free. The time bound is O(log n) 850 * amortized. 851 * 852 * The new root is the vm_map_entry containing "addr", or else an 853 * adjacent entry (lower or higher) if addr is not in the tree. 854 * 855 * The map must be locked, and leaves it so. 856 * 857 * Returns: the new root. 858 */ 859 static vm_map_entry_t 860 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 861 { 862 vm_map_entry_t llist, rlist; 863 vm_map_entry_t ltree, rtree; 864 vm_map_entry_t y; 865 866 /* Special case of empty tree. */ 867 if (root == NULL) 868 return (root); 869 870 /* 871 * Pass One: Splay down the tree until we find addr or a NULL 872 * pointer where addr would go. llist and rlist are the two 873 * sides in reverse order (bottom-up), with llist linked by 874 * the right pointer and rlist linked by the left pointer in 875 * the vm_map_entry. Wait until Pass Two to set max_free on 876 * the two spines. 877 */ 878 llist = NULL; 879 rlist = NULL; 880 for (;;) { 881 /* root is never NULL in here. */ 882 if (addr < root->start) { 883 y = root->left; 884 if (y == NULL) 885 break; 886 if (addr < y->start && y->left != NULL) { 887 /* Rotate right and put y on rlist. */ 888 root->left = y->right; 889 y->right = root; 890 vm_map_entry_set_max_free(root); 891 root = y->left; 892 y->left = rlist; 893 rlist = y; 894 } else { 895 /* Put root on rlist. */ 896 root->left = rlist; 897 rlist = root; 898 root = y; 899 } 900 } else if (addr >= root->end) { 901 y = root->right; 902 if (y == NULL) 903 break; 904 if (addr >= y->end && y->right != NULL) { 905 /* Rotate left and put y on llist. */ 906 root->right = y->left; 907 y->left = root; 908 vm_map_entry_set_max_free(root); 909 root = y->right; 910 y->right = llist; 911 llist = y; 912 } else { 913 /* Put root on llist. */ 914 root->right = llist; 915 llist = root; 916 root = y; 917 } 918 } else 919 break; 920 } 921 922 /* 923 * Pass Two: Walk back up the two spines, flip the pointers 924 * and set max_free. The subtrees of the root go at the 925 * bottom of llist and rlist. 926 */ 927 ltree = root->left; 928 while (llist != NULL) { 929 y = llist->right; 930 llist->right = ltree; 931 vm_map_entry_set_max_free(llist); 932 ltree = llist; 933 llist = y; 934 } 935 rtree = root->right; 936 while (rlist != NULL) { 937 y = rlist->left; 938 rlist->left = rtree; 939 vm_map_entry_set_max_free(rlist); 940 rtree = rlist; 941 rlist = y; 942 } 943 944 /* 945 * Final assembly: add ltree and rtree as subtrees of root. 946 */ 947 root->left = ltree; 948 root->right = rtree; 949 vm_map_entry_set_max_free(root); 950 951 return (root); 952 } 953 954 /* 955 * vm_map_entry_{un,}link: 956 * 957 * Insert/remove entries from maps. 958 */ 959 static void 960 vm_map_entry_link(vm_map_t map, 961 vm_map_entry_t after_where, 962 vm_map_entry_t entry) 963 { 964 965 CTR4(KTR_VM, 966 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 967 map->nentries, entry, after_where); 968 VM_MAP_ASSERT_LOCKED(map); 969 map->nentries++; 970 entry->prev = after_where; 971 entry->next = after_where->next; 972 entry->next->prev = entry; 973 after_where->next = entry; 974 975 if (after_where != &map->header) { 976 if (after_where != map->root) 977 vm_map_entry_splay(after_where->start, map->root); 978 entry->right = after_where->right; 979 entry->left = after_where; 980 after_where->right = NULL; 981 after_where->adj_free = entry->start - after_where->end; 982 vm_map_entry_set_max_free(after_where); 983 } else { 984 entry->right = map->root; 985 entry->left = NULL; 986 } 987 entry->adj_free = (entry->next == &map->header ? map->max_offset : 988 entry->next->start) - entry->end; 989 vm_map_entry_set_max_free(entry); 990 map->root = entry; 991 } 992 993 static void 994 vm_map_entry_unlink(vm_map_t map, 995 vm_map_entry_t entry) 996 { 997 vm_map_entry_t next, prev, root; 998 999 VM_MAP_ASSERT_LOCKED(map); 1000 if (entry != map->root) 1001 vm_map_entry_splay(entry->start, map->root); 1002 if (entry->left == NULL) 1003 root = entry->right; 1004 else { 1005 root = vm_map_entry_splay(entry->start, entry->left); 1006 root->right = entry->right; 1007 root->adj_free = (entry->next == &map->header ? map->max_offset : 1008 entry->next->start) - root->end; 1009 vm_map_entry_set_max_free(root); 1010 } 1011 map->root = root; 1012 1013 prev = entry->prev; 1014 next = entry->next; 1015 next->prev = prev; 1016 prev->next = next; 1017 map->nentries--; 1018 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1019 map->nentries, entry); 1020 } 1021 1022 /* 1023 * vm_map_entry_resize_free: 1024 * 1025 * Recompute the amount of free space following a vm_map_entry 1026 * and propagate that value up the tree. Call this function after 1027 * resizing a map entry in-place, that is, without a call to 1028 * vm_map_entry_link() or _unlink(). 1029 * 1030 * The map must be locked, and leaves it so. 1031 */ 1032 static void 1033 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1034 { 1035 1036 /* 1037 * Using splay trees without parent pointers, propagating 1038 * max_free up the tree is done by moving the entry to the 1039 * root and making the change there. 1040 */ 1041 if (entry != map->root) 1042 map->root = vm_map_entry_splay(entry->start, map->root); 1043 1044 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1045 entry->next->start) - entry->end; 1046 vm_map_entry_set_max_free(entry); 1047 } 1048 1049 /* 1050 * vm_map_lookup_entry: [ internal use only ] 1051 * 1052 * Finds the map entry containing (or 1053 * immediately preceding) the specified address 1054 * in the given map; the entry is returned 1055 * in the "entry" parameter. The boolean 1056 * result indicates whether the address is 1057 * actually contained in the map. 1058 */ 1059 boolean_t 1060 vm_map_lookup_entry( 1061 vm_map_t map, 1062 vm_offset_t address, 1063 vm_map_entry_t *entry) /* OUT */ 1064 { 1065 vm_map_entry_t cur; 1066 boolean_t locked; 1067 1068 /* 1069 * If the map is empty, then the map entry immediately preceding 1070 * "address" is the map's header. 1071 */ 1072 cur = map->root; 1073 if (cur == NULL) 1074 *entry = &map->header; 1075 else if (address >= cur->start && cur->end > address) { 1076 *entry = cur; 1077 return (TRUE); 1078 } else if ((locked = vm_map_locked(map)) || 1079 sx_try_upgrade(&map->lock)) { 1080 /* 1081 * Splay requires a write lock on the map. However, it only 1082 * restructures the binary search tree; it does not otherwise 1083 * change the map. Thus, the map's timestamp need not change 1084 * on a temporary upgrade. 1085 */ 1086 map->root = cur = vm_map_entry_splay(address, cur); 1087 if (!locked) 1088 sx_downgrade(&map->lock); 1089 1090 /* 1091 * If "address" is contained within a map entry, the new root 1092 * is that map entry. Otherwise, the new root is a map entry 1093 * immediately before or after "address". 1094 */ 1095 if (address >= cur->start) { 1096 *entry = cur; 1097 if (cur->end > address) 1098 return (TRUE); 1099 } else 1100 *entry = cur->prev; 1101 } else 1102 /* 1103 * Since the map is only locked for read access, perform a 1104 * standard binary search tree lookup for "address". 1105 */ 1106 for (;;) { 1107 if (address < cur->start) { 1108 if (cur->left == NULL) { 1109 *entry = cur->prev; 1110 break; 1111 } 1112 cur = cur->left; 1113 } else if (cur->end > address) { 1114 *entry = cur; 1115 return (TRUE); 1116 } else { 1117 if (cur->right == NULL) { 1118 *entry = cur; 1119 break; 1120 } 1121 cur = cur->right; 1122 } 1123 } 1124 return (FALSE); 1125 } 1126 1127 /* 1128 * vm_map_insert: 1129 * 1130 * Inserts the given whole VM object into the target 1131 * map at the specified address range. The object's 1132 * size should match that of the address range. 1133 * 1134 * Requires that the map be locked, and leaves it so. 1135 * 1136 * If object is non-NULL, ref count must be bumped by caller 1137 * prior to making call to account for the new entry. 1138 */ 1139 int 1140 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1141 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1142 int cow) 1143 { 1144 vm_map_entry_t new_entry; 1145 vm_map_entry_t prev_entry; 1146 vm_map_entry_t temp_entry; 1147 vm_eflags_t protoeflags; 1148 struct ucred *cred; 1149 vm_inherit_t inheritance; 1150 boolean_t charge_prev_obj; 1151 1152 VM_MAP_ASSERT_LOCKED(map); 1153 1154 /* 1155 * Check that the start and end points are not bogus. 1156 */ 1157 if ((start < map->min_offset) || (end > map->max_offset) || 1158 (start >= end)) 1159 return (KERN_INVALID_ADDRESS); 1160 1161 /* 1162 * Find the entry prior to the proposed starting address; if it's part 1163 * of an existing entry, this range is bogus. 1164 */ 1165 if (vm_map_lookup_entry(map, start, &temp_entry)) 1166 return (KERN_NO_SPACE); 1167 1168 prev_entry = temp_entry; 1169 1170 /* 1171 * Assert that the next entry doesn't overlap the end point. 1172 */ 1173 if ((prev_entry->next != &map->header) && 1174 (prev_entry->next->start < end)) 1175 return (KERN_NO_SPACE); 1176 1177 protoeflags = 0; 1178 charge_prev_obj = FALSE; 1179 1180 if (cow & MAP_COPY_ON_WRITE) 1181 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1182 1183 if (cow & MAP_NOFAULT) { 1184 protoeflags |= MAP_ENTRY_NOFAULT; 1185 1186 KASSERT(object == NULL, 1187 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1188 } 1189 if (cow & MAP_DISABLE_SYNCER) 1190 protoeflags |= MAP_ENTRY_NOSYNC; 1191 if (cow & MAP_DISABLE_COREDUMP) 1192 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1193 if (cow & MAP_VN_WRITECOUNT) 1194 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1195 if (cow & MAP_INHERIT_SHARE) 1196 inheritance = VM_INHERIT_SHARE; 1197 else 1198 inheritance = VM_INHERIT_DEFAULT; 1199 1200 cred = NULL; 1201 KASSERT((object != kmem_object && object != kernel_object) || 1202 ((object == kmem_object || object == kernel_object) && 1203 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1204 ("kmem or kernel object and cow")); 1205 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1206 goto charged; 1207 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1208 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1209 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1210 return (KERN_RESOURCE_SHORTAGE); 1211 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1212 object->cred == NULL, 1213 ("OVERCOMMIT: vm_map_insert o %p", object)); 1214 cred = curthread->td_ucred; 1215 crhold(cred); 1216 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1217 charge_prev_obj = TRUE; 1218 } 1219 1220 charged: 1221 /* Expand the kernel pmap, if necessary. */ 1222 if (map == kernel_map && end > kernel_vm_end) 1223 pmap_growkernel(end); 1224 if (object != NULL) { 1225 /* 1226 * OBJ_ONEMAPPING must be cleared unless this mapping 1227 * is trivially proven to be the only mapping for any 1228 * of the object's pages. (Object granularity 1229 * reference counting is insufficient to recognize 1230 * aliases with precision.) 1231 */ 1232 VM_OBJECT_LOCK(object); 1233 if (object->ref_count > 1 || object->shadow_count != 0) 1234 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1235 VM_OBJECT_UNLOCK(object); 1236 } 1237 else if ((prev_entry != &map->header) && 1238 (prev_entry->eflags == protoeflags) && 1239 (prev_entry->end == start) && 1240 (prev_entry->wired_count == 0) && 1241 (prev_entry->cred == cred || 1242 (prev_entry->object.vm_object != NULL && 1243 (prev_entry->object.vm_object->cred == cred))) && 1244 vm_object_coalesce(prev_entry->object.vm_object, 1245 prev_entry->offset, 1246 (vm_size_t)(prev_entry->end - prev_entry->start), 1247 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1248 /* 1249 * We were able to extend the object. Determine if we 1250 * can extend the previous map entry to include the 1251 * new range as well. 1252 */ 1253 if ((prev_entry->inheritance == inheritance) && 1254 (prev_entry->protection == prot) && 1255 (prev_entry->max_protection == max)) { 1256 map->size += (end - prev_entry->end); 1257 prev_entry->end = end; 1258 vm_map_entry_resize_free(map, prev_entry); 1259 vm_map_simplify_entry(map, prev_entry); 1260 if (cred != NULL) 1261 crfree(cred); 1262 return (KERN_SUCCESS); 1263 } 1264 1265 /* 1266 * If we can extend the object but cannot extend the 1267 * map entry, we have to create a new map entry. We 1268 * must bump the ref count on the extended object to 1269 * account for it. object may be NULL. 1270 */ 1271 object = prev_entry->object.vm_object; 1272 offset = prev_entry->offset + 1273 (prev_entry->end - prev_entry->start); 1274 vm_object_reference(object); 1275 if (cred != NULL && object != NULL && object->cred != NULL && 1276 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1277 /* Object already accounts for this uid. */ 1278 crfree(cred); 1279 cred = NULL; 1280 } 1281 } 1282 1283 /* 1284 * NOTE: if conditionals fail, object can be NULL here. This occurs 1285 * in things like the buffer map where we manage kva but do not manage 1286 * backing objects. 1287 */ 1288 1289 /* 1290 * Create a new entry 1291 */ 1292 new_entry = vm_map_entry_create(map); 1293 new_entry->start = start; 1294 new_entry->end = end; 1295 new_entry->cred = NULL; 1296 1297 new_entry->eflags = protoeflags; 1298 new_entry->object.vm_object = object; 1299 new_entry->offset = offset; 1300 new_entry->avail_ssize = 0; 1301 1302 new_entry->inheritance = inheritance; 1303 new_entry->protection = prot; 1304 new_entry->max_protection = max; 1305 new_entry->wired_count = 0; 1306 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1307 new_entry->next_read = OFF_TO_IDX(offset); 1308 1309 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1310 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1311 new_entry->cred = cred; 1312 1313 /* 1314 * Insert the new entry into the list 1315 */ 1316 vm_map_entry_link(map, prev_entry, new_entry); 1317 map->size += new_entry->end - new_entry->start; 1318 1319 /* 1320 * It may be possible to merge the new entry with the next and/or 1321 * previous entries. However, due to MAP_STACK_* being a hack, a 1322 * panic can result from merging such entries. 1323 */ 1324 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1325 vm_map_simplify_entry(map, new_entry); 1326 1327 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1328 vm_map_pmap_enter(map, start, prot, 1329 object, OFF_TO_IDX(offset), end - start, 1330 cow & MAP_PREFAULT_PARTIAL); 1331 } 1332 1333 return (KERN_SUCCESS); 1334 } 1335 1336 /* 1337 * vm_map_findspace: 1338 * 1339 * Find the first fit (lowest VM address) for "length" free bytes 1340 * beginning at address >= start in the given map. 1341 * 1342 * In a vm_map_entry, "adj_free" is the amount of free space 1343 * adjacent (higher address) to this entry, and "max_free" is the 1344 * maximum amount of contiguous free space in its subtree. This 1345 * allows finding a free region in one path down the tree, so 1346 * O(log n) amortized with splay trees. 1347 * 1348 * The map must be locked, and leaves it so. 1349 * 1350 * Returns: 0 on success, and starting address in *addr, 1351 * 1 if insufficient space. 1352 */ 1353 int 1354 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1355 vm_offset_t *addr) /* OUT */ 1356 { 1357 vm_map_entry_t entry; 1358 vm_offset_t st; 1359 1360 /* 1361 * Request must fit within min/max VM address and must avoid 1362 * address wrap. 1363 */ 1364 if (start < map->min_offset) 1365 start = map->min_offset; 1366 if (start + length > map->max_offset || start + length < start) 1367 return (1); 1368 1369 /* Empty tree means wide open address space. */ 1370 if (map->root == NULL) { 1371 *addr = start; 1372 return (0); 1373 } 1374 1375 /* 1376 * After splay, if start comes before root node, then there 1377 * must be a gap from start to the root. 1378 */ 1379 map->root = vm_map_entry_splay(start, map->root); 1380 if (start + length <= map->root->start) { 1381 *addr = start; 1382 return (0); 1383 } 1384 1385 /* 1386 * Root is the last node that might begin its gap before 1387 * start, and this is the last comparison where address 1388 * wrap might be a problem. 1389 */ 1390 st = (start > map->root->end) ? start : map->root->end; 1391 if (length <= map->root->end + map->root->adj_free - st) { 1392 *addr = st; 1393 return (0); 1394 } 1395 1396 /* With max_free, can immediately tell if no solution. */ 1397 entry = map->root->right; 1398 if (entry == NULL || length > entry->max_free) 1399 return (1); 1400 1401 /* 1402 * Search the right subtree in the order: left subtree, root, 1403 * right subtree (first fit). The previous splay implies that 1404 * all regions in the right subtree have addresses > start. 1405 */ 1406 while (entry != NULL) { 1407 if (entry->left != NULL && entry->left->max_free >= length) 1408 entry = entry->left; 1409 else if (entry->adj_free >= length) { 1410 *addr = entry->end; 1411 return (0); 1412 } else 1413 entry = entry->right; 1414 } 1415 1416 /* Can't get here, so panic if we do. */ 1417 panic("vm_map_findspace: max_free corrupt"); 1418 } 1419 1420 int 1421 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1422 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1423 vm_prot_t max, int cow) 1424 { 1425 vm_offset_t end; 1426 int result; 1427 1428 end = start + length; 1429 vm_map_lock(map); 1430 VM_MAP_RANGE_CHECK(map, start, end); 1431 (void) vm_map_delete(map, start, end); 1432 result = vm_map_insert(map, object, offset, start, end, prot, 1433 max, cow); 1434 vm_map_unlock(map); 1435 return (result); 1436 } 1437 1438 /* 1439 * vm_map_find finds an unallocated region in the target address 1440 * map with the given length. The search is defined to be 1441 * first-fit from the specified address; the region found is 1442 * returned in the same parameter. 1443 * 1444 * If object is non-NULL, ref count must be bumped by caller 1445 * prior to making call to account for the new entry. 1446 */ 1447 int 1448 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1449 vm_offset_t *addr, /* IN/OUT */ 1450 vm_size_t length, int find_space, vm_prot_t prot, 1451 vm_prot_t max, int cow) 1452 { 1453 vm_offset_t start; 1454 int result; 1455 1456 start = *addr; 1457 vm_map_lock(map); 1458 do { 1459 if (find_space != VMFS_NO_SPACE) { 1460 if (vm_map_findspace(map, start, length, addr)) { 1461 vm_map_unlock(map); 1462 return (KERN_NO_SPACE); 1463 } 1464 switch (find_space) { 1465 case VMFS_ALIGNED_SPACE: 1466 pmap_align_superpage(object, offset, addr, 1467 length); 1468 break; 1469 #ifdef VMFS_TLB_ALIGNED_SPACE 1470 case VMFS_TLB_ALIGNED_SPACE: 1471 pmap_align_tlb(addr); 1472 break; 1473 #endif 1474 default: 1475 break; 1476 } 1477 1478 start = *addr; 1479 } 1480 result = vm_map_insert(map, object, offset, start, start + 1481 length, prot, max, cow); 1482 } while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE 1483 #ifdef VMFS_TLB_ALIGNED_SPACE 1484 || find_space == VMFS_TLB_ALIGNED_SPACE 1485 #endif 1486 )); 1487 vm_map_unlock(map); 1488 return (result); 1489 } 1490 1491 /* 1492 * vm_map_simplify_entry: 1493 * 1494 * Simplify the given map entry by merging with either neighbor. This 1495 * routine also has the ability to merge with both neighbors. 1496 * 1497 * The map must be locked. 1498 * 1499 * This routine guarentees that the passed entry remains valid (though 1500 * possibly extended). When merging, this routine may delete one or 1501 * both neighbors. 1502 */ 1503 void 1504 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1505 { 1506 vm_map_entry_t next, prev; 1507 vm_size_t prevsize, esize; 1508 1509 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1510 return; 1511 1512 prev = entry->prev; 1513 if (prev != &map->header) { 1514 prevsize = prev->end - prev->start; 1515 if ( (prev->end == entry->start) && 1516 (prev->object.vm_object == entry->object.vm_object) && 1517 (!prev->object.vm_object || 1518 (prev->offset + prevsize == entry->offset)) && 1519 (prev->eflags == entry->eflags) && 1520 (prev->protection == entry->protection) && 1521 (prev->max_protection == entry->max_protection) && 1522 (prev->inheritance == entry->inheritance) && 1523 (prev->wired_count == entry->wired_count) && 1524 (prev->cred == entry->cred)) { 1525 vm_map_entry_unlink(map, prev); 1526 entry->start = prev->start; 1527 entry->offset = prev->offset; 1528 if (entry->prev != &map->header) 1529 vm_map_entry_resize_free(map, entry->prev); 1530 1531 /* 1532 * If the backing object is a vnode object, 1533 * vm_object_deallocate() calls vrele(). 1534 * However, vrele() does not lock the vnode 1535 * because the vnode has additional 1536 * references. Thus, the map lock can be kept 1537 * without causing a lock-order reversal with 1538 * the vnode lock. 1539 * 1540 * Since we count the number of virtual page 1541 * mappings in object->un_pager.vnp.writemappings, 1542 * the writemappings value should not be adjusted 1543 * when the entry is disposed of. 1544 */ 1545 if (prev->object.vm_object) 1546 vm_object_deallocate(prev->object.vm_object); 1547 if (prev->cred != NULL) 1548 crfree(prev->cred); 1549 vm_map_entry_dispose(map, prev); 1550 } 1551 } 1552 1553 next = entry->next; 1554 if (next != &map->header) { 1555 esize = entry->end - entry->start; 1556 if ((entry->end == next->start) && 1557 (next->object.vm_object == entry->object.vm_object) && 1558 (!entry->object.vm_object || 1559 (entry->offset + esize == next->offset)) && 1560 (next->eflags == entry->eflags) && 1561 (next->protection == entry->protection) && 1562 (next->max_protection == entry->max_protection) && 1563 (next->inheritance == entry->inheritance) && 1564 (next->wired_count == entry->wired_count) && 1565 (next->cred == entry->cred)) { 1566 vm_map_entry_unlink(map, next); 1567 entry->end = next->end; 1568 vm_map_entry_resize_free(map, entry); 1569 1570 /* 1571 * See comment above. 1572 */ 1573 if (next->object.vm_object) 1574 vm_object_deallocate(next->object.vm_object); 1575 if (next->cred != NULL) 1576 crfree(next->cred); 1577 vm_map_entry_dispose(map, next); 1578 } 1579 } 1580 } 1581 /* 1582 * vm_map_clip_start: [ internal use only ] 1583 * 1584 * Asserts that the given entry begins at or after 1585 * the specified address; if necessary, 1586 * it splits the entry into two. 1587 */ 1588 #define vm_map_clip_start(map, entry, startaddr) \ 1589 { \ 1590 if (startaddr > entry->start) \ 1591 _vm_map_clip_start(map, entry, startaddr); \ 1592 } 1593 1594 /* 1595 * This routine is called only when it is known that 1596 * the entry must be split. 1597 */ 1598 static void 1599 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1600 { 1601 vm_map_entry_t new_entry; 1602 1603 VM_MAP_ASSERT_LOCKED(map); 1604 1605 /* 1606 * Split off the front portion -- note that we must insert the new 1607 * entry BEFORE this one, so that this entry has the specified 1608 * starting address. 1609 */ 1610 vm_map_simplify_entry(map, entry); 1611 1612 /* 1613 * If there is no object backing this entry, we might as well create 1614 * one now. If we defer it, an object can get created after the map 1615 * is clipped, and individual objects will be created for the split-up 1616 * map. This is a bit of a hack, but is also about the best place to 1617 * put this improvement. 1618 */ 1619 if (entry->object.vm_object == NULL && !map->system_map) { 1620 vm_object_t object; 1621 object = vm_object_allocate(OBJT_DEFAULT, 1622 atop(entry->end - entry->start)); 1623 entry->object.vm_object = object; 1624 entry->offset = 0; 1625 if (entry->cred != NULL) { 1626 object->cred = entry->cred; 1627 object->charge = entry->end - entry->start; 1628 entry->cred = NULL; 1629 } 1630 } else if (entry->object.vm_object != NULL && 1631 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1632 entry->cred != NULL) { 1633 VM_OBJECT_LOCK(entry->object.vm_object); 1634 KASSERT(entry->object.vm_object->cred == NULL, 1635 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1636 entry->object.vm_object->cred = entry->cred; 1637 entry->object.vm_object->charge = entry->end - entry->start; 1638 VM_OBJECT_UNLOCK(entry->object.vm_object); 1639 entry->cred = NULL; 1640 } 1641 1642 new_entry = vm_map_entry_create(map); 1643 *new_entry = *entry; 1644 1645 new_entry->end = start; 1646 entry->offset += (start - entry->start); 1647 entry->start = start; 1648 if (new_entry->cred != NULL) 1649 crhold(entry->cred); 1650 1651 vm_map_entry_link(map, entry->prev, new_entry); 1652 1653 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1654 vm_object_reference(new_entry->object.vm_object); 1655 /* 1656 * The object->un_pager.vnp.writemappings for the 1657 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1658 * kept as is here. The virtual pages are 1659 * re-distributed among the clipped entries, so the sum is 1660 * left the same. 1661 */ 1662 } 1663 } 1664 1665 /* 1666 * vm_map_clip_end: [ internal use only ] 1667 * 1668 * Asserts that the given entry ends at or before 1669 * the specified address; if necessary, 1670 * it splits the entry into two. 1671 */ 1672 #define vm_map_clip_end(map, entry, endaddr) \ 1673 { \ 1674 if ((endaddr) < (entry->end)) \ 1675 _vm_map_clip_end((map), (entry), (endaddr)); \ 1676 } 1677 1678 /* 1679 * This routine is called only when it is known that 1680 * the entry must be split. 1681 */ 1682 static void 1683 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1684 { 1685 vm_map_entry_t new_entry; 1686 1687 VM_MAP_ASSERT_LOCKED(map); 1688 1689 /* 1690 * If there is no object backing this entry, we might as well create 1691 * one now. If we defer it, an object can get created after the map 1692 * is clipped, and individual objects will be created for the split-up 1693 * map. This is a bit of a hack, but is also about the best place to 1694 * put this improvement. 1695 */ 1696 if (entry->object.vm_object == NULL && !map->system_map) { 1697 vm_object_t object; 1698 object = vm_object_allocate(OBJT_DEFAULT, 1699 atop(entry->end - entry->start)); 1700 entry->object.vm_object = object; 1701 entry->offset = 0; 1702 if (entry->cred != NULL) { 1703 object->cred = entry->cred; 1704 object->charge = entry->end - entry->start; 1705 entry->cred = NULL; 1706 } 1707 } else if (entry->object.vm_object != NULL && 1708 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1709 entry->cred != NULL) { 1710 VM_OBJECT_LOCK(entry->object.vm_object); 1711 KASSERT(entry->object.vm_object->cred == NULL, 1712 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1713 entry->object.vm_object->cred = entry->cred; 1714 entry->object.vm_object->charge = entry->end - entry->start; 1715 VM_OBJECT_UNLOCK(entry->object.vm_object); 1716 entry->cred = NULL; 1717 } 1718 1719 /* 1720 * Create a new entry and insert it AFTER the specified entry 1721 */ 1722 new_entry = vm_map_entry_create(map); 1723 *new_entry = *entry; 1724 1725 new_entry->start = entry->end = end; 1726 new_entry->offset += (end - entry->start); 1727 if (new_entry->cred != NULL) 1728 crhold(entry->cred); 1729 1730 vm_map_entry_link(map, entry, new_entry); 1731 1732 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1733 vm_object_reference(new_entry->object.vm_object); 1734 } 1735 } 1736 1737 /* 1738 * vm_map_submap: [ kernel use only ] 1739 * 1740 * Mark the given range as handled by a subordinate map. 1741 * 1742 * This range must have been created with vm_map_find, 1743 * and no other operations may have been performed on this 1744 * range prior to calling vm_map_submap. 1745 * 1746 * Only a limited number of operations can be performed 1747 * within this rage after calling vm_map_submap: 1748 * vm_fault 1749 * [Don't try vm_map_copy!] 1750 * 1751 * To remove a submapping, one must first remove the 1752 * range from the superior map, and then destroy the 1753 * submap (if desired). [Better yet, don't try it.] 1754 */ 1755 int 1756 vm_map_submap( 1757 vm_map_t map, 1758 vm_offset_t start, 1759 vm_offset_t end, 1760 vm_map_t submap) 1761 { 1762 vm_map_entry_t entry; 1763 int result = KERN_INVALID_ARGUMENT; 1764 1765 vm_map_lock(map); 1766 1767 VM_MAP_RANGE_CHECK(map, start, end); 1768 1769 if (vm_map_lookup_entry(map, start, &entry)) { 1770 vm_map_clip_start(map, entry, start); 1771 } else 1772 entry = entry->next; 1773 1774 vm_map_clip_end(map, entry, end); 1775 1776 if ((entry->start == start) && (entry->end == end) && 1777 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1778 (entry->object.vm_object == NULL)) { 1779 entry->object.sub_map = submap; 1780 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1781 result = KERN_SUCCESS; 1782 } 1783 vm_map_unlock(map); 1784 1785 return (result); 1786 } 1787 1788 /* 1789 * The maximum number of pages to map 1790 */ 1791 #define MAX_INIT_PT 96 1792 1793 /* 1794 * vm_map_pmap_enter: 1795 * 1796 * Preload read-only mappings for the given object's resident pages into 1797 * the given map. This eliminates the soft faults on process startup and 1798 * immediately after an mmap(2). Because these are speculative mappings, 1799 * cached pages are not reactivated and mapped. 1800 */ 1801 void 1802 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1803 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1804 { 1805 vm_offset_t start; 1806 vm_page_t p, p_start; 1807 vm_pindex_t psize, tmpidx; 1808 1809 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1810 return; 1811 VM_OBJECT_LOCK(object); 1812 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1813 pmap_object_init_pt(map->pmap, addr, object, pindex, size); 1814 goto unlock_return; 1815 } 1816 1817 psize = atop(size); 1818 1819 if ((flags & MAP_PREFAULT_PARTIAL) && psize > MAX_INIT_PT && 1820 object->resident_page_count > MAX_INIT_PT) 1821 goto unlock_return; 1822 1823 if (psize + pindex > object->size) { 1824 if (object->size < pindex) 1825 goto unlock_return; 1826 psize = object->size - pindex; 1827 } 1828 1829 start = 0; 1830 p_start = NULL; 1831 1832 p = vm_page_find_least(object, pindex); 1833 /* 1834 * Assert: the variable p is either (1) the page with the 1835 * least pindex greater than or equal to the parameter pindex 1836 * or (2) NULL. 1837 */ 1838 for (; 1839 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1840 p = TAILQ_NEXT(p, listq)) { 1841 /* 1842 * don't allow an madvise to blow away our really 1843 * free pages allocating pv entries. 1844 */ 1845 if ((flags & MAP_PREFAULT_MADVISE) && 1846 cnt.v_free_count < cnt.v_free_reserved) { 1847 psize = tmpidx; 1848 break; 1849 } 1850 if (p->valid == VM_PAGE_BITS_ALL) { 1851 if (p_start == NULL) { 1852 start = addr + ptoa(tmpidx); 1853 p_start = p; 1854 } 1855 } else if (p_start != NULL) { 1856 pmap_enter_object(map->pmap, start, addr + 1857 ptoa(tmpidx), p_start, prot); 1858 p_start = NULL; 1859 } 1860 } 1861 if (p_start != NULL) 1862 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1863 p_start, prot); 1864 unlock_return: 1865 VM_OBJECT_UNLOCK(object); 1866 } 1867 1868 /* 1869 * vm_map_protect: 1870 * 1871 * Sets the protection of the specified address 1872 * region in the target map. If "set_max" is 1873 * specified, the maximum protection is to be set; 1874 * otherwise, only the current protection is affected. 1875 */ 1876 int 1877 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1878 vm_prot_t new_prot, boolean_t set_max) 1879 { 1880 vm_map_entry_t current, entry; 1881 vm_object_t obj; 1882 struct ucred *cred; 1883 vm_prot_t old_prot; 1884 1885 vm_map_lock(map); 1886 1887 VM_MAP_RANGE_CHECK(map, start, end); 1888 1889 if (vm_map_lookup_entry(map, start, &entry)) { 1890 vm_map_clip_start(map, entry, start); 1891 } else { 1892 entry = entry->next; 1893 } 1894 1895 /* 1896 * Make a first pass to check for protection violations. 1897 */ 1898 current = entry; 1899 while ((current != &map->header) && (current->start < end)) { 1900 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1901 vm_map_unlock(map); 1902 return (KERN_INVALID_ARGUMENT); 1903 } 1904 if ((new_prot & current->max_protection) != new_prot) { 1905 vm_map_unlock(map); 1906 return (KERN_PROTECTION_FAILURE); 1907 } 1908 current = current->next; 1909 } 1910 1911 1912 /* 1913 * Do an accounting pass for private read-only mappings that 1914 * now will do cow due to allowed write (e.g. debugger sets 1915 * breakpoint on text segment) 1916 */ 1917 for (current = entry; (current != &map->header) && 1918 (current->start < end); current = current->next) { 1919 1920 vm_map_clip_end(map, current, end); 1921 1922 if (set_max || 1923 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1924 ENTRY_CHARGED(current)) { 1925 continue; 1926 } 1927 1928 cred = curthread->td_ucred; 1929 obj = current->object.vm_object; 1930 1931 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1932 if (!swap_reserve(current->end - current->start)) { 1933 vm_map_unlock(map); 1934 return (KERN_RESOURCE_SHORTAGE); 1935 } 1936 crhold(cred); 1937 current->cred = cred; 1938 continue; 1939 } 1940 1941 VM_OBJECT_LOCK(obj); 1942 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1943 VM_OBJECT_UNLOCK(obj); 1944 continue; 1945 } 1946 1947 /* 1948 * Charge for the whole object allocation now, since 1949 * we cannot distinguish between non-charged and 1950 * charged clipped mapping of the same object later. 1951 */ 1952 KASSERT(obj->charge == 0, 1953 ("vm_map_protect: object %p overcharged\n", obj)); 1954 if (!swap_reserve(ptoa(obj->size))) { 1955 VM_OBJECT_UNLOCK(obj); 1956 vm_map_unlock(map); 1957 return (KERN_RESOURCE_SHORTAGE); 1958 } 1959 1960 crhold(cred); 1961 obj->cred = cred; 1962 obj->charge = ptoa(obj->size); 1963 VM_OBJECT_UNLOCK(obj); 1964 } 1965 1966 /* 1967 * Go back and fix up protections. [Note that clipping is not 1968 * necessary the second time.] 1969 */ 1970 current = entry; 1971 while ((current != &map->header) && (current->start < end)) { 1972 old_prot = current->protection; 1973 1974 if (set_max) 1975 current->protection = 1976 (current->max_protection = new_prot) & 1977 old_prot; 1978 else 1979 current->protection = new_prot; 1980 1981 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1982 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1983 (current->protection & VM_PROT_WRITE) != 0 && 1984 (old_prot & VM_PROT_WRITE) == 0) { 1985 vm_fault_copy_entry(map, map, current, current, NULL); 1986 } 1987 1988 /* 1989 * When restricting access, update the physical map. Worry 1990 * about copy-on-write here. 1991 */ 1992 if ((old_prot & ~current->protection) != 0) { 1993 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1994 VM_PROT_ALL) 1995 pmap_protect(map->pmap, current->start, 1996 current->end, 1997 current->protection & MASK(current)); 1998 #undef MASK 1999 } 2000 vm_map_simplify_entry(map, current); 2001 current = current->next; 2002 } 2003 vm_map_unlock(map); 2004 return (KERN_SUCCESS); 2005 } 2006 2007 /* 2008 * vm_map_madvise: 2009 * 2010 * This routine traverses a processes map handling the madvise 2011 * system call. Advisories are classified as either those effecting 2012 * the vm_map_entry structure, or those effecting the underlying 2013 * objects. 2014 */ 2015 int 2016 vm_map_madvise( 2017 vm_map_t map, 2018 vm_offset_t start, 2019 vm_offset_t end, 2020 int behav) 2021 { 2022 vm_map_entry_t current, entry; 2023 int modify_map = 0; 2024 2025 /* 2026 * Some madvise calls directly modify the vm_map_entry, in which case 2027 * we need to use an exclusive lock on the map and we need to perform 2028 * various clipping operations. Otherwise we only need a read-lock 2029 * on the map. 2030 */ 2031 switch(behav) { 2032 case MADV_NORMAL: 2033 case MADV_SEQUENTIAL: 2034 case MADV_RANDOM: 2035 case MADV_NOSYNC: 2036 case MADV_AUTOSYNC: 2037 case MADV_NOCORE: 2038 case MADV_CORE: 2039 modify_map = 1; 2040 vm_map_lock(map); 2041 break; 2042 case MADV_WILLNEED: 2043 case MADV_DONTNEED: 2044 case MADV_FREE: 2045 vm_map_lock_read(map); 2046 break; 2047 default: 2048 return (KERN_INVALID_ARGUMENT); 2049 } 2050 2051 /* 2052 * Locate starting entry and clip if necessary. 2053 */ 2054 VM_MAP_RANGE_CHECK(map, start, end); 2055 2056 if (vm_map_lookup_entry(map, start, &entry)) { 2057 if (modify_map) 2058 vm_map_clip_start(map, entry, start); 2059 } else { 2060 entry = entry->next; 2061 } 2062 2063 if (modify_map) { 2064 /* 2065 * madvise behaviors that are implemented in the vm_map_entry. 2066 * 2067 * We clip the vm_map_entry so that behavioral changes are 2068 * limited to the specified address range. 2069 */ 2070 for (current = entry; 2071 (current != &map->header) && (current->start < end); 2072 current = current->next 2073 ) { 2074 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2075 continue; 2076 2077 vm_map_clip_end(map, current, end); 2078 2079 switch (behav) { 2080 case MADV_NORMAL: 2081 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2082 break; 2083 case MADV_SEQUENTIAL: 2084 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2085 break; 2086 case MADV_RANDOM: 2087 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2088 break; 2089 case MADV_NOSYNC: 2090 current->eflags |= MAP_ENTRY_NOSYNC; 2091 break; 2092 case MADV_AUTOSYNC: 2093 current->eflags &= ~MAP_ENTRY_NOSYNC; 2094 break; 2095 case MADV_NOCORE: 2096 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2097 break; 2098 case MADV_CORE: 2099 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2100 break; 2101 default: 2102 break; 2103 } 2104 vm_map_simplify_entry(map, current); 2105 } 2106 vm_map_unlock(map); 2107 } else { 2108 vm_pindex_t pstart, pend; 2109 2110 /* 2111 * madvise behaviors that are implemented in the underlying 2112 * vm_object. 2113 * 2114 * Since we don't clip the vm_map_entry, we have to clip 2115 * the vm_object pindex and count. 2116 */ 2117 for (current = entry; 2118 (current != &map->header) && (current->start < end); 2119 current = current->next 2120 ) { 2121 vm_offset_t useStart; 2122 2123 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2124 continue; 2125 2126 pstart = OFF_TO_IDX(current->offset); 2127 pend = pstart + atop(current->end - current->start); 2128 useStart = current->start; 2129 2130 if (current->start < start) { 2131 pstart += atop(start - current->start); 2132 useStart = start; 2133 } 2134 if (current->end > end) 2135 pend -= atop(current->end - end); 2136 2137 if (pstart >= pend) 2138 continue; 2139 2140 vm_object_madvise(current->object.vm_object, pstart, 2141 pend, behav); 2142 if (behav == MADV_WILLNEED) { 2143 vm_map_pmap_enter(map, 2144 useStart, 2145 current->protection, 2146 current->object.vm_object, 2147 pstart, 2148 ptoa(pend - pstart), 2149 MAP_PREFAULT_MADVISE 2150 ); 2151 } 2152 } 2153 vm_map_unlock_read(map); 2154 } 2155 return (0); 2156 } 2157 2158 2159 /* 2160 * vm_map_inherit: 2161 * 2162 * Sets the inheritance of the specified address 2163 * range in the target map. Inheritance 2164 * affects how the map will be shared with 2165 * child maps at the time of vmspace_fork. 2166 */ 2167 int 2168 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2169 vm_inherit_t new_inheritance) 2170 { 2171 vm_map_entry_t entry; 2172 vm_map_entry_t temp_entry; 2173 2174 switch (new_inheritance) { 2175 case VM_INHERIT_NONE: 2176 case VM_INHERIT_COPY: 2177 case VM_INHERIT_SHARE: 2178 break; 2179 default: 2180 return (KERN_INVALID_ARGUMENT); 2181 } 2182 vm_map_lock(map); 2183 VM_MAP_RANGE_CHECK(map, start, end); 2184 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2185 entry = temp_entry; 2186 vm_map_clip_start(map, entry, start); 2187 } else 2188 entry = temp_entry->next; 2189 while ((entry != &map->header) && (entry->start < end)) { 2190 vm_map_clip_end(map, entry, end); 2191 entry->inheritance = new_inheritance; 2192 vm_map_simplify_entry(map, entry); 2193 entry = entry->next; 2194 } 2195 vm_map_unlock(map); 2196 return (KERN_SUCCESS); 2197 } 2198 2199 /* 2200 * vm_map_unwire: 2201 * 2202 * Implements both kernel and user unwiring. 2203 */ 2204 int 2205 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2206 int flags) 2207 { 2208 vm_map_entry_t entry, first_entry, tmp_entry; 2209 vm_offset_t saved_start; 2210 unsigned int last_timestamp; 2211 int rv; 2212 boolean_t need_wakeup, result, user_unwire; 2213 2214 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2215 vm_map_lock(map); 2216 VM_MAP_RANGE_CHECK(map, start, end); 2217 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2218 if (flags & VM_MAP_WIRE_HOLESOK) 2219 first_entry = first_entry->next; 2220 else { 2221 vm_map_unlock(map); 2222 return (KERN_INVALID_ADDRESS); 2223 } 2224 } 2225 last_timestamp = map->timestamp; 2226 entry = first_entry; 2227 while (entry != &map->header && entry->start < end) { 2228 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2229 /* 2230 * We have not yet clipped the entry. 2231 */ 2232 saved_start = (start >= entry->start) ? start : 2233 entry->start; 2234 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2235 if (vm_map_unlock_and_wait(map, 0)) { 2236 /* 2237 * Allow interruption of user unwiring? 2238 */ 2239 } 2240 vm_map_lock(map); 2241 if (last_timestamp+1 != map->timestamp) { 2242 /* 2243 * Look again for the entry because the map was 2244 * modified while it was unlocked. 2245 * Specifically, the entry may have been 2246 * clipped, merged, or deleted. 2247 */ 2248 if (!vm_map_lookup_entry(map, saved_start, 2249 &tmp_entry)) { 2250 if (flags & VM_MAP_WIRE_HOLESOK) 2251 tmp_entry = tmp_entry->next; 2252 else { 2253 if (saved_start == start) { 2254 /* 2255 * First_entry has been deleted. 2256 */ 2257 vm_map_unlock(map); 2258 return (KERN_INVALID_ADDRESS); 2259 } 2260 end = saved_start; 2261 rv = KERN_INVALID_ADDRESS; 2262 goto done; 2263 } 2264 } 2265 if (entry == first_entry) 2266 first_entry = tmp_entry; 2267 else 2268 first_entry = NULL; 2269 entry = tmp_entry; 2270 } 2271 last_timestamp = map->timestamp; 2272 continue; 2273 } 2274 vm_map_clip_start(map, entry, start); 2275 vm_map_clip_end(map, entry, end); 2276 /* 2277 * Mark the entry in case the map lock is released. (See 2278 * above.) 2279 */ 2280 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2281 /* 2282 * Check the map for holes in the specified region. 2283 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2284 */ 2285 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2286 (entry->end < end && (entry->next == &map->header || 2287 entry->next->start > entry->end))) { 2288 end = entry->end; 2289 rv = KERN_INVALID_ADDRESS; 2290 goto done; 2291 } 2292 /* 2293 * If system unwiring, require that the entry is system wired. 2294 */ 2295 if (!user_unwire && 2296 vm_map_entry_system_wired_count(entry) == 0) { 2297 end = entry->end; 2298 rv = KERN_INVALID_ARGUMENT; 2299 goto done; 2300 } 2301 entry = entry->next; 2302 } 2303 rv = KERN_SUCCESS; 2304 done: 2305 need_wakeup = FALSE; 2306 if (first_entry == NULL) { 2307 result = vm_map_lookup_entry(map, start, &first_entry); 2308 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2309 first_entry = first_entry->next; 2310 else 2311 KASSERT(result, ("vm_map_unwire: lookup failed")); 2312 } 2313 entry = first_entry; 2314 while (entry != &map->header && entry->start < end) { 2315 if (rv == KERN_SUCCESS && (!user_unwire || 2316 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2317 if (user_unwire) 2318 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2319 entry->wired_count--; 2320 if (entry->wired_count == 0) { 2321 /* 2322 * Retain the map lock. 2323 */ 2324 vm_fault_unwire(map, entry->start, entry->end, 2325 entry->object.vm_object != NULL && 2326 (entry->object.vm_object->type == OBJT_DEVICE || 2327 entry->object.vm_object->type == OBJT_SG)); 2328 } 2329 } 2330 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2331 ("vm_map_unwire: in-transition flag missing")); 2332 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2333 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2334 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2335 need_wakeup = TRUE; 2336 } 2337 vm_map_simplify_entry(map, entry); 2338 entry = entry->next; 2339 } 2340 vm_map_unlock(map); 2341 if (need_wakeup) 2342 vm_map_wakeup(map); 2343 return (rv); 2344 } 2345 2346 /* 2347 * vm_map_wire: 2348 * 2349 * Implements both kernel and user wiring. 2350 */ 2351 int 2352 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2353 int flags) 2354 { 2355 vm_map_entry_t entry, first_entry, tmp_entry; 2356 vm_offset_t saved_end, saved_start; 2357 unsigned int last_timestamp; 2358 int rv; 2359 boolean_t fictitious, need_wakeup, result, user_wire; 2360 vm_prot_t prot; 2361 2362 prot = 0; 2363 if (flags & VM_MAP_WIRE_WRITE) 2364 prot |= VM_PROT_WRITE; 2365 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2366 vm_map_lock(map); 2367 VM_MAP_RANGE_CHECK(map, start, end); 2368 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2369 if (flags & VM_MAP_WIRE_HOLESOK) 2370 first_entry = first_entry->next; 2371 else { 2372 vm_map_unlock(map); 2373 return (KERN_INVALID_ADDRESS); 2374 } 2375 } 2376 last_timestamp = map->timestamp; 2377 entry = first_entry; 2378 while (entry != &map->header && entry->start < end) { 2379 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2380 /* 2381 * We have not yet clipped the entry. 2382 */ 2383 saved_start = (start >= entry->start) ? start : 2384 entry->start; 2385 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2386 if (vm_map_unlock_and_wait(map, 0)) { 2387 /* 2388 * Allow interruption of user wiring? 2389 */ 2390 } 2391 vm_map_lock(map); 2392 if (last_timestamp + 1 != map->timestamp) { 2393 /* 2394 * Look again for the entry because the map was 2395 * modified while it was unlocked. 2396 * Specifically, the entry may have been 2397 * clipped, merged, or deleted. 2398 */ 2399 if (!vm_map_lookup_entry(map, saved_start, 2400 &tmp_entry)) { 2401 if (flags & VM_MAP_WIRE_HOLESOK) 2402 tmp_entry = tmp_entry->next; 2403 else { 2404 if (saved_start == start) { 2405 /* 2406 * first_entry has been deleted. 2407 */ 2408 vm_map_unlock(map); 2409 return (KERN_INVALID_ADDRESS); 2410 } 2411 end = saved_start; 2412 rv = KERN_INVALID_ADDRESS; 2413 goto done; 2414 } 2415 } 2416 if (entry == first_entry) 2417 first_entry = tmp_entry; 2418 else 2419 first_entry = NULL; 2420 entry = tmp_entry; 2421 } 2422 last_timestamp = map->timestamp; 2423 continue; 2424 } 2425 vm_map_clip_start(map, entry, start); 2426 vm_map_clip_end(map, entry, end); 2427 /* 2428 * Mark the entry in case the map lock is released. (See 2429 * above.) 2430 */ 2431 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2432 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2433 || (entry->protection & prot) != prot) { 2434 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2435 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2436 end = entry->end; 2437 rv = KERN_INVALID_ADDRESS; 2438 goto done; 2439 } 2440 goto next_entry; 2441 } 2442 if (entry->wired_count == 0) { 2443 entry->wired_count++; 2444 saved_start = entry->start; 2445 saved_end = entry->end; 2446 fictitious = entry->object.vm_object != NULL && 2447 (entry->object.vm_object->type == OBJT_DEVICE || 2448 entry->object.vm_object->type == OBJT_SG); 2449 /* 2450 * Release the map lock, relying on the in-transition 2451 * mark. Mark the map busy for fork. 2452 */ 2453 vm_map_busy(map); 2454 vm_map_unlock(map); 2455 rv = vm_fault_wire(map, saved_start, saved_end, 2456 fictitious); 2457 vm_map_lock(map); 2458 vm_map_unbusy(map); 2459 if (last_timestamp + 1 != map->timestamp) { 2460 /* 2461 * Look again for the entry because the map was 2462 * modified while it was unlocked. The entry 2463 * may have been clipped, but NOT merged or 2464 * deleted. 2465 */ 2466 result = vm_map_lookup_entry(map, saved_start, 2467 &tmp_entry); 2468 KASSERT(result, ("vm_map_wire: lookup failed")); 2469 if (entry == first_entry) 2470 first_entry = tmp_entry; 2471 else 2472 first_entry = NULL; 2473 entry = tmp_entry; 2474 while (entry->end < saved_end) { 2475 if (rv != KERN_SUCCESS) { 2476 KASSERT(entry->wired_count == 1, 2477 ("vm_map_wire: bad count")); 2478 entry->wired_count = -1; 2479 } 2480 entry = entry->next; 2481 } 2482 } 2483 last_timestamp = map->timestamp; 2484 if (rv != KERN_SUCCESS) { 2485 KASSERT(entry->wired_count == 1, 2486 ("vm_map_wire: bad count")); 2487 /* 2488 * Assign an out-of-range value to represent 2489 * the failure to wire this entry. 2490 */ 2491 entry->wired_count = -1; 2492 end = entry->end; 2493 goto done; 2494 } 2495 } else if (!user_wire || 2496 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2497 entry->wired_count++; 2498 } 2499 /* 2500 * Check the map for holes in the specified region. 2501 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2502 */ 2503 next_entry: 2504 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2505 (entry->end < end && (entry->next == &map->header || 2506 entry->next->start > entry->end))) { 2507 end = entry->end; 2508 rv = KERN_INVALID_ADDRESS; 2509 goto done; 2510 } 2511 entry = entry->next; 2512 } 2513 rv = KERN_SUCCESS; 2514 done: 2515 need_wakeup = FALSE; 2516 if (first_entry == NULL) { 2517 result = vm_map_lookup_entry(map, start, &first_entry); 2518 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2519 first_entry = first_entry->next; 2520 else 2521 KASSERT(result, ("vm_map_wire: lookup failed")); 2522 } 2523 entry = first_entry; 2524 while (entry != &map->header && entry->start < end) { 2525 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2526 goto next_entry_done; 2527 if (rv == KERN_SUCCESS) { 2528 if (user_wire) 2529 entry->eflags |= MAP_ENTRY_USER_WIRED; 2530 } else if (entry->wired_count == -1) { 2531 /* 2532 * Wiring failed on this entry. Thus, unwiring is 2533 * unnecessary. 2534 */ 2535 entry->wired_count = 0; 2536 } else { 2537 if (!user_wire || 2538 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2539 entry->wired_count--; 2540 if (entry->wired_count == 0) { 2541 /* 2542 * Retain the map lock. 2543 */ 2544 vm_fault_unwire(map, entry->start, entry->end, 2545 entry->object.vm_object != NULL && 2546 (entry->object.vm_object->type == OBJT_DEVICE || 2547 entry->object.vm_object->type == OBJT_SG)); 2548 } 2549 } 2550 next_entry_done: 2551 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2552 ("vm_map_wire: in-transition flag missing")); 2553 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED); 2554 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2555 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2556 need_wakeup = TRUE; 2557 } 2558 vm_map_simplify_entry(map, entry); 2559 entry = entry->next; 2560 } 2561 vm_map_unlock(map); 2562 if (need_wakeup) 2563 vm_map_wakeup(map); 2564 return (rv); 2565 } 2566 2567 /* 2568 * vm_map_sync 2569 * 2570 * Push any dirty cached pages in the address range to their pager. 2571 * If syncio is TRUE, dirty pages are written synchronously. 2572 * If invalidate is TRUE, any cached pages are freed as well. 2573 * 2574 * If the size of the region from start to end is zero, we are 2575 * supposed to flush all modified pages within the region containing 2576 * start. Unfortunately, a region can be split or coalesced with 2577 * neighboring regions, making it difficult to determine what the 2578 * original region was. Therefore, we approximate this requirement by 2579 * flushing the current region containing start. 2580 * 2581 * Returns an error if any part of the specified range is not mapped. 2582 */ 2583 int 2584 vm_map_sync( 2585 vm_map_t map, 2586 vm_offset_t start, 2587 vm_offset_t end, 2588 boolean_t syncio, 2589 boolean_t invalidate) 2590 { 2591 vm_map_entry_t current; 2592 vm_map_entry_t entry; 2593 vm_size_t size; 2594 vm_object_t object; 2595 vm_ooffset_t offset; 2596 unsigned int last_timestamp; 2597 boolean_t failed; 2598 2599 vm_map_lock_read(map); 2600 VM_MAP_RANGE_CHECK(map, start, end); 2601 if (!vm_map_lookup_entry(map, start, &entry)) { 2602 vm_map_unlock_read(map); 2603 return (KERN_INVALID_ADDRESS); 2604 } else if (start == end) { 2605 start = entry->start; 2606 end = entry->end; 2607 } 2608 /* 2609 * Make a first pass to check for user-wired memory and holes. 2610 */ 2611 for (current = entry; current != &map->header && current->start < end; 2612 current = current->next) { 2613 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2614 vm_map_unlock_read(map); 2615 return (KERN_INVALID_ARGUMENT); 2616 } 2617 if (end > current->end && 2618 (current->next == &map->header || 2619 current->end != current->next->start)) { 2620 vm_map_unlock_read(map); 2621 return (KERN_INVALID_ADDRESS); 2622 } 2623 } 2624 2625 if (invalidate) 2626 pmap_remove(map->pmap, start, end); 2627 failed = FALSE; 2628 2629 /* 2630 * Make a second pass, cleaning/uncaching pages from the indicated 2631 * objects as we go. 2632 */ 2633 for (current = entry; current != &map->header && current->start < end;) { 2634 offset = current->offset + (start - current->start); 2635 size = (end <= current->end ? end : current->end) - start; 2636 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2637 vm_map_t smap; 2638 vm_map_entry_t tentry; 2639 vm_size_t tsize; 2640 2641 smap = current->object.sub_map; 2642 vm_map_lock_read(smap); 2643 (void) vm_map_lookup_entry(smap, offset, &tentry); 2644 tsize = tentry->end - offset; 2645 if (tsize < size) 2646 size = tsize; 2647 object = tentry->object.vm_object; 2648 offset = tentry->offset + (offset - tentry->start); 2649 vm_map_unlock_read(smap); 2650 } else { 2651 object = current->object.vm_object; 2652 } 2653 vm_object_reference(object); 2654 last_timestamp = map->timestamp; 2655 vm_map_unlock_read(map); 2656 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2657 failed = TRUE; 2658 start += size; 2659 vm_object_deallocate(object); 2660 vm_map_lock_read(map); 2661 if (last_timestamp == map->timestamp || 2662 !vm_map_lookup_entry(map, start, ¤t)) 2663 current = current->next; 2664 } 2665 2666 vm_map_unlock_read(map); 2667 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2668 } 2669 2670 /* 2671 * vm_map_entry_unwire: [ internal use only ] 2672 * 2673 * Make the region specified by this entry pageable. 2674 * 2675 * The map in question should be locked. 2676 * [This is the reason for this routine's existence.] 2677 */ 2678 static void 2679 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2680 { 2681 vm_fault_unwire(map, entry->start, entry->end, 2682 entry->object.vm_object != NULL && 2683 (entry->object.vm_object->type == OBJT_DEVICE || 2684 entry->object.vm_object->type == OBJT_SG)); 2685 entry->wired_count = 0; 2686 } 2687 2688 static void 2689 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2690 { 2691 2692 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2693 vm_object_deallocate(entry->object.vm_object); 2694 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2695 } 2696 2697 /* 2698 * vm_map_entry_delete: [ internal use only ] 2699 * 2700 * Deallocate the given entry from the target map. 2701 */ 2702 static void 2703 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2704 { 2705 vm_object_t object; 2706 vm_pindex_t offidxstart, offidxend, count, size1; 2707 vm_ooffset_t size; 2708 2709 vm_map_entry_unlink(map, entry); 2710 object = entry->object.vm_object; 2711 size = entry->end - entry->start; 2712 map->size -= size; 2713 2714 if (entry->cred != NULL) { 2715 swap_release_by_cred(size, entry->cred); 2716 crfree(entry->cred); 2717 } 2718 2719 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2720 (object != NULL)) { 2721 KASSERT(entry->cred == NULL || object->cred == NULL || 2722 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2723 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2724 count = OFF_TO_IDX(size); 2725 offidxstart = OFF_TO_IDX(entry->offset); 2726 offidxend = offidxstart + count; 2727 VM_OBJECT_LOCK(object); 2728 if (object->ref_count != 1 && 2729 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2730 object == kernel_object || object == kmem_object)) { 2731 vm_object_collapse(object); 2732 2733 /* 2734 * The option OBJPR_NOTMAPPED can be passed here 2735 * because vm_map_delete() already performed 2736 * pmap_remove() on the only mapping to this range 2737 * of pages. 2738 */ 2739 vm_object_page_remove(object, offidxstart, offidxend, 2740 OBJPR_NOTMAPPED); 2741 if (object->type == OBJT_SWAP) 2742 swap_pager_freespace(object, offidxstart, count); 2743 if (offidxend >= object->size && 2744 offidxstart < object->size) { 2745 size1 = object->size; 2746 object->size = offidxstart; 2747 if (object->cred != NULL) { 2748 size1 -= object->size; 2749 KASSERT(object->charge >= ptoa(size1), 2750 ("vm_map_entry_delete: object->charge < 0")); 2751 swap_release_by_cred(ptoa(size1), object->cred); 2752 object->charge -= ptoa(size1); 2753 } 2754 } 2755 } 2756 VM_OBJECT_UNLOCK(object); 2757 } else 2758 entry->object.vm_object = NULL; 2759 if (map->system_map) 2760 vm_map_entry_deallocate(entry, TRUE); 2761 else { 2762 entry->next = curthread->td_map_def_user; 2763 curthread->td_map_def_user = entry; 2764 } 2765 } 2766 2767 /* 2768 * vm_map_delete: [ internal use only ] 2769 * 2770 * Deallocates the given address range from the target 2771 * map. 2772 */ 2773 int 2774 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2775 { 2776 vm_map_entry_t entry; 2777 vm_map_entry_t first_entry; 2778 2779 VM_MAP_ASSERT_LOCKED(map); 2780 2781 /* 2782 * Find the start of the region, and clip it 2783 */ 2784 if (!vm_map_lookup_entry(map, start, &first_entry)) 2785 entry = first_entry->next; 2786 else { 2787 entry = first_entry; 2788 vm_map_clip_start(map, entry, start); 2789 } 2790 2791 /* 2792 * Step through all entries in this region 2793 */ 2794 while ((entry != &map->header) && (entry->start < end)) { 2795 vm_map_entry_t next; 2796 2797 /* 2798 * Wait for wiring or unwiring of an entry to complete. 2799 * Also wait for any system wirings to disappear on 2800 * user maps. 2801 */ 2802 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2803 (vm_map_pmap(map) != kernel_pmap && 2804 vm_map_entry_system_wired_count(entry) != 0)) { 2805 unsigned int last_timestamp; 2806 vm_offset_t saved_start; 2807 vm_map_entry_t tmp_entry; 2808 2809 saved_start = entry->start; 2810 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2811 last_timestamp = map->timestamp; 2812 (void) vm_map_unlock_and_wait(map, 0); 2813 vm_map_lock(map); 2814 if (last_timestamp + 1 != map->timestamp) { 2815 /* 2816 * Look again for the entry because the map was 2817 * modified while it was unlocked. 2818 * Specifically, the entry may have been 2819 * clipped, merged, or deleted. 2820 */ 2821 if (!vm_map_lookup_entry(map, saved_start, 2822 &tmp_entry)) 2823 entry = tmp_entry->next; 2824 else { 2825 entry = tmp_entry; 2826 vm_map_clip_start(map, entry, 2827 saved_start); 2828 } 2829 } 2830 continue; 2831 } 2832 vm_map_clip_end(map, entry, end); 2833 2834 next = entry->next; 2835 2836 /* 2837 * Unwire before removing addresses from the pmap; otherwise, 2838 * unwiring will put the entries back in the pmap. 2839 */ 2840 if (entry->wired_count != 0) { 2841 vm_map_entry_unwire(map, entry); 2842 } 2843 2844 pmap_remove(map->pmap, entry->start, entry->end); 2845 2846 /* 2847 * Delete the entry only after removing all pmap 2848 * entries pointing to its pages. (Otherwise, its 2849 * page frames may be reallocated, and any modify bits 2850 * will be set in the wrong object!) 2851 */ 2852 vm_map_entry_delete(map, entry); 2853 entry = next; 2854 } 2855 return (KERN_SUCCESS); 2856 } 2857 2858 /* 2859 * vm_map_remove: 2860 * 2861 * Remove the given address range from the target map. 2862 * This is the exported form of vm_map_delete. 2863 */ 2864 int 2865 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2866 { 2867 int result; 2868 2869 vm_map_lock(map); 2870 VM_MAP_RANGE_CHECK(map, start, end); 2871 result = vm_map_delete(map, start, end); 2872 vm_map_unlock(map); 2873 return (result); 2874 } 2875 2876 /* 2877 * vm_map_check_protection: 2878 * 2879 * Assert that the target map allows the specified privilege on the 2880 * entire address region given. The entire region must be allocated. 2881 * 2882 * WARNING! This code does not and should not check whether the 2883 * contents of the region is accessible. For example a smaller file 2884 * might be mapped into a larger address space. 2885 * 2886 * NOTE! This code is also called by munmap(). 2887 * 2888 * The map must be locked. A read lock is sufficient. 2889 */ 2890 boolean_t 2891 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2892 vm_prot_t protection) 2893 { 2894 vm_map_entry_t entry; 2895 vm_map_entry_t tmp_entry; 2896 2897 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2898 return (FALSE); 2899 entry = tmp_entry; 2900 2901 while (start < end) { 2902 if (entry == &map->header) 2903 return (FALSE); 2904 /* 2905 * No holes allowed! 2906 */ 2907 if (start < entry->start) 2908 return (FALSE); 2909 /* 2910 * Check protection associated with entry. 2911 */ 2912 if ((entry->protection & protection) != protection) 2913 return (FALSE); 2914 /* go to next entry */ 2915 start = entry->end; 2916 entry = entry->next; 2917 } 2918 return (TRUE); 2919 } 2920 2921 /* 2922 * vm_map_copy_entry: 2923 * 2924 * Copies the contents of the source entry to the destination 2925 * entry. The entries *must* be aligned properly. 2926 */ 2927 static void 2928 vm_map_copy_entry( 2929 vm_map_t src_map, 2930 vm_map_t dst_map, 2931 vm_map_entry_t src_entry, 2932 vm_map_entry_t dst_entry, 2933 vm_ooffset_t *fork_charge) 2934 { 2935 vm_object_t src_object; 2936 vm_map_entry_t fake_entry; 2937 vm_offset_t size; 2938 struct ucred *cred; 2939 int charged; 2940 2941 VM_MAP_ASSERT_LOCKED(dst_map); 2942 2943 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2944 return; 2945 2946 if (src_entry->wired_count == 0) { 2947 2948 /* 2949 * If the source entry is marked needs_copy, it is already 2950 * write-protected. 2951 */ 2952 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2953 pmap_protect(src_map->pmap, 2954 src_entry->start, 2955 src_entry->end, 2956 src_entry->protection & ~VM_PROT_WRITE); 2957 } 2958 2959 /* 2960 * Make a copy of the object. 2961 */ 2962 size = src_entry->end - src_entry->start; 2963 if ((src_object = src_entry->object.vm_object) != NULL) { 2964 VM_OBJECT_LOCK(src_object); 2965 charged = ENTRY_CHARGED(src_entry); 2966 if ((src_object->handle == NULL) && 2967 (src_object->type == OBJT_DEFAULT || 2968 src_object->type == OBJT_SWAP)) { 2969 vm_object_collapse(src_object); 2970 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2971 vm_object_split(src_entry); 2972 src_object = src_entry->object.vm_object; 2973 } 2974 } 2975 vm_object_reference_locked(src_object); 2976 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2977 if (src_entry->cred != NULL && 2978 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 2979 KASSERT(src_object->cred == NULL, 2980 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 2981 src_object)); 2982 src_object->cred = src_entry->cred; 2983 src_object->charge = size; 2984 } 2985 VM_OBJECT_UNLOCK(src_object); 2986 dst_entry->object.vm_object = src_object; 2987 if (charged) { 2988 cred = curthread->td_ucred; 2989 crhold(cred); 2990 dst_entry->cred = cred; 2991 *fork_charge += size; 2992 if (!(src_entry->eflags & 2993 MAP_ENTRY_NEEDS_COPY)) { 2994 crhold(cred); 2995 src_entry->cred = cred; 2996 *fork_charge += size; 2997 } 2998 } 2999 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3000 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3001 dst_entry->offset = src_entry->offset; 3002 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3003 /* 3004 * MAP_ENTRY_VN_WRITECNT cannot 3005 * indicate write reference from 3006 * src_entry, since the entry is 3007 * marked as needs copy. Allocate a 3008 * fake entry that is used to 3009 * decrement object->un_pager.vnp.writecount 3010 * at the appropriate time. Attach 3011 * fake_entry to the deferred list. 3012 */ 3013 fake_entry = vm_map_entry_create(dst_map); 3014 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3015 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3016 vm_object_reference(src_object); 3017 fake_entry->object.vm_object = src_object; 3018 fake_entry->start = src_entry->start; 3019 fake_entry->end = src_entry->end; 3020 fake_entry->next = curthread->td_map_def_user; 3021 curthread->td_map_def_user = fake_entry; 3022 } 3023 } else { 3024 dst_entry->object.vm_object = NULL; 3025 dst_entry->offset = 0; 3026 if (src_entry->cred != NULL) { 3027 dst_entry->cred = curthread->td_ucred; 3028 crhold(dst_entry->cred); 3029 *fork_charge += size; 3030 } 3031 } 3032 3033 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3034 dst_entry->end - dst_entry->start, src_entry->start); 3035 } else { 3036 /* 3037 * Of course, wired down pages can't be set copy-on-write. 3038 * Cause wired pages to be copied into the new map by 3039 * simulating faults (the new pages are pageable) 3040 */ 3041 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3042 fork_charge); 3043 } 3044 } 3045 3046 /* 3047 * vmspace_map_entry_forked: 3048 * Update the newly-forked vmspace each time a map entry is inherited 3049 * or copied. The values for vm_dsize and vm_tsize are approximate 3050 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3051 */ 3052 static void 3053 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3054 vm_map_entry_t entry) 3055 { 3056 vm_size_t entrysize; 3057 vm_offset_t newend; 3058 3059 entrysize = entry->end - entry->start; 3060 vm2->vm_map.size += entrysize; 3061 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3062 vm2->vm_ssize += btoc(entrysize); 3063 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3064 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3065 newend = MIN(entry->end, 3066 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3067 vm2->vm_dsize += btoc(newend - entry->start); 3068 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3069 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3070 newend = MIN(entry->end, 3071 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3072 vm2->vm_tsize += btoc(newend - entry->start); 3073 } 3074 } 3075 3076 /* 3077 * vmspace_fork: 3078 * Create a new process vmspace structure and vm_map 3079 * based on those of an existing process. The new map 3080 * is based on the old map, according to the inheritance 3081 * values on the regions in that map. 3082 * 3083 * XXX It might be worth coalescing the entries added to the new vmspace. 3084 * 3085 * The source map must not be locked. 3086 */ 3087 struct vmspace * 3088 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3089 { 3090 struct vmspace *vm2; 3091 vm_map_t new_map, old_map; 3092 vm_map_entry_t new_entry, old_entry; 3093 vm_object_t object; 3094 int locked; 3095 3096 old_map = &vm1->vm_map; 3097 /* Copy immutable fields of vm1 to vm2. */ 3098 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3099 if (vm2 == NULL) 3100 return (NULL); 3101 vm2->vm_taddr = vm1->vm_taddr; 3102 vm2->vm_daddr = vm1->vm_daddr; 3103 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3104 vm_map_lock(old_map); 3105 if (old_map->busy) 3106 vm_map_wait_busy(old_map); 3107 new_map = &vm2->vm_map; 3108 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3109 KASSERT(locked, ("vmspace_fork: lock failed")); 3110 3111 old_entry = old_map->header.next; 3112 3113 while (old_entry != &old_map->header) { 3114 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3115 panic("vm_map_fork: encountered a submap"); 3116 3117 switch (old_entry->inheritance) { 3118 case VM_INHERIT_NONE: 3119 break; 3120 3121 case VM_INHERIT_SHARE: 3122 /* 3123 * Clone the entry, creating the shared object if necessary. 3124 */ 3125 object = old_entry->object.vm_object; 3126 if (object == NULL) { 3127 object = vm_object_allocate(OBJT_DEFAULT, 3128 atop(old_entry->end - old_entry->start)); 3129 old_entry->object.vm_object = object; 3130 old_entry->offset = 0; 3131 if (old_entry->cred != NULL) { 3132 object->cred = old_entry->cred; 3133 object->charge = old_entry->end - 3134 old_entry->start; 3135 old_entry->cred = NULL; 3136 } 3137 } 3138 3139 /* 3140 * Add the reference before calling vm_object_shadow 3141 * to insure that a shadow object is created. 3142 */ 3143 vm_object_reference(object); 3144 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3145 vm_object_shadow(&old_entry->object.vm_object, 3146 &old_entry->offset, 3147 old_entry->end - old_entry->start); 3148 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3149 /* Transfer the second reference too. */ 3150 vm_object_reference( 3151 old_entry->object.vm_object); 3152 3153 /* 3154 * As in vm_map_simplify_entry(), the 3155 * vnode lock will not be acquired in 3156 * this call to vm_object_deallocate(). 3157 */ 3158 vm_object_deallocate(object); 3159 object = old_entry->object.vm_object; 3160 } 3161 VM_OBJECT_LOCK(object); 3162 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3163 if (old_entry->cred != NULL) { 3164 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3165 object->cred = old_entry->cred; 3166 object->charge = old_entry->end - old_entry->start; 3167 old_entry->cred = NULL; 3168 } 3169 VM_OBJECT_UNLOCK(object); 3170 3171 /* 3172 * Clone the entry, referencing the shared object. 3173 */ 3174 new_entry = vm_map_entry_create(new_map); 3175 *new_entry = *old_entry; 3176 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3177 MAP_ENTRY_IN_TRANSITION); 3178 new_entry->wired_count = 0; 3179 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3180 object = new_entry->object.vm_object; 3181 KASSERT(((struct vnode *)object->handle)-> 3182 v_writecount > 0, 3183 ("vmspace_fork: v_writecount")); 3184 KASSERT(object->un_pager.vnp.writemappings > 0, 3185 ("vmspace_fork: vnp.writecount")); 3186 vnode_pager_update_writecount(object, 3187 new_entry->start, new_entry->end); 3188 } 3189 3190 /* 3191 * Insert the entry into the new map -- we know we're 3192 * inserting at the end of the new map. 3193 */ 3194 vm_map_entry_link(new_map, new_map->header.prev, 3195 new_entry); 3196 vmspace_map_entry_forked(vm1, vm2, new_entry); 3197 3198 /* 3199 * Update the physical map 3200 */ 3201 pmap_copy(new_map->pmap, old_map->pmap, 3202 new_entry->start, 3203 (old_entry->end - old_entry->start), 3204 old_entry->start); 3205 break; 3206 3207 case VM_INHERIT_COPY: 3208 /* 3209 * Clone the entry and link into the map. 3210 */ 3211 new_entry = vm_map_entry_create(new_map); 3212 *new_entry = *old_entry; 3213 /* 3214 * Copied entry is COW over the old object. 3215 */ 3216 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3217 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3218 new_entry->wired_count = 0; 3219 new_entry->object.vm_object = NULL; 3220 new_entry->cred = NULL; 3221 vm_map_entry_link(new_map, new_map->header.prev, 3222 new_entry); 3223 vmspace_map_entry_forked(vm1, vm2, new_entry); 3224 vm_map_copy_entry(old_map, new_map, old_entry, 3225 new_entry, fork_charge); 3226 break; 3227 } 3228 old_entry = old_entry->next; 3229 } 3230 /* 3231 * Use inlined vm_map_unlock() to postpone handling the deferred 3232 * map entries, which cannot be done until both old_map and 3233 * new_map locks are released. 3234 */ 3235 sx_xunlock(&old_map->lock); 3236 sx_xunlock(&new_map->lock); 3237 vm_map_process_deferred(); 3238 3239 return (vm2); 3240 } 3241 3242 int 3243 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3244 vm_prot_t prot, vm_prot_t max, int cow) 3245 { 3246 vm_map_entry_t new_entry, prev_entry; 3247 vm_offset_t bot, top; 3248 vm_size_t growsize, init_ssize; 3249 int orient, rv; 3250 rlim_t vmemlim; 3251 3252 /* 3253 * The stack orientation is piggybacked with the cow argument. 3254 * Extract it into orient and mask the cow argument so that we 3255 * don't pass it around further. 3256 * NOTE: We explicitly allow bi-directional stacks. 3257 */ 3258 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3259 cow &= ~orient; 3260 KASSERT(orient != 0, ("No stack grow direction")); 3261 3262 if (addrbos < vm_map_min(map) || 3263 addrbos > vm_map_max(map) || 3264 addrbos + max_ssize < addrbos) 3265 return (KERN_NO_SPACE); 3266 3267 growsize = sgrowsiz; 3268 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3269 3270 PROC_LOCK(curthread->td_proc); 3271 vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM); 3272 PROC_UNLOCK(curthread->td_proc); 3273 3274 vm_map_lock(map); 3275 3276 /* If addr is already mapped, no go */ 3277 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3278 vm_map_unlock(map); 3279 return (KERN_NO_SPACE); 3280 } 3281 3282 /* If we would blow our VMEM resource limit, no go */ 3283 if (map->size + init_ssize > vmemlim) { 3284 vm_map_unlock(map); 3285 return (KERN_NO_SPACE); 3286 } 3287 3288 /* 3289 * If we can't accomodate max_ssize in the current mapping, no go. 3290 * However, we need to be aware that subsequent user mappings might 3291 * map into the space we have reserved for stack, and currently this 3292 * space is not protected. 3293 * 3294 * Hopefully we will at least detect this condition when we try to 3295 * grow the stack. 3296 */ 3297 if ((prev_entry->next != &map->header) && 3298 (prev_entry->next->start < addrbos + max_ssize)) { 3299 vm_map_unlock(map); 3300 return (KERN_NO_SPACE); 3301 } 3302 3303 /* 3304 * We initially map a stack of only init_ssize. We will grow as 3305 * needed later. Depending on the orientation of the stack (i.e. 3306 * the grow direction) we either map at the top of the range, the 3307 * bottom of the range or in the middle. 3308 * 3309 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3310 * and cow to be 0. Possibly we should eliminate these as input 3311 * parameters, and just pass these values here in the insert call. 3312 */ 3313 if (orient == MAP_STACK_GROWS_DOWN) 3314 bot = addrbos + max_ssize - init_ssize; 3315 else if (orient == MAP_STACK_GROWS_UP) 3316 bot = addrbos; 3317 else 3318 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3319 top = bot + init_ssize; 3320 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3321 3322 /* Now set the avail_ssize amount. */ 3323 if (rv == KERN_SUCCESS) { 3324 if (prev_entry != &map->header) 3325 vm_map_clip_end(map, prev_entry, bot); 3326 new_entry = prev_entry->next; 3327 if (new_entry->end != top || new_entry->start != bot) 3328 panic("Bad entry start/end for new stack entry"); 3329 3330 new_entry->avail_ssize = max_ssize - init_ssize; 3331 if (orient & MAP_STACK_GROWS_DOWN) 3332 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3333 if (orient & MAP_STACK_GROWS_UP) 3334 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3335 } 3336 3337 vm_map_unlock(map); 3338 return (rv); 3339 } 3340 3341 static int stack_guard_page = 0; 3342 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3343 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3344 &stack_guard_page, 0, 3345 "Insert stack guard page ahead of the growable segments."); 3346 3347 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3348 * desired address is already mapped, or if we successfully grow 3349 * the stack. Also returns KERN_SUCCESS if addr is outside the 3350 * stack range (this is strange, but preserves compatibility with 3351 * the grow function in vm_machdep.c). 3352 */ 3353 int 3354 vm_map_growstack(struct proc *p, vm_offset_t addr) 3355 { 3356 vm_map_entry_t next_entry, prev_entry; 3357 vm_map_entry_t new_entry, stack_entry; 3358 struct vmspace *vm = p->p_vmspace; 3359 vm_map_t map = &vm->vm_map; 3360 vm_offset_t end; 3361 vm_size_t growsize; 3362 size_t grow_amount, max_grow; 3363 rlim_t stacklim, vmemlim; 3364 int is_procstack, rv; 3365 struct ucred *cred; 3366 #ifdef notyet 3367 uint64_t limit; 3368 #endif 3369 #ifdef RACCT 3370 int error; 3371 #endif 3372 3373 Retry: 3374 PROC_LOCK(p); 3375 stacklim = lim_cur(p, RLIMIT_STACK); 3376 vmemlim = lim_cur(p, RLIMIT_VMEM); 3377 PROC_UNLOCK(p); 3378 3379 vm_map_lock_read(map); 3380 3381 /* If addr is already in the entry range, no need to grow.*/ 3382 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3383 vm_map_unlock_read(map); 3384 return (KERN_SUCCESS); 3385 } 3386 3387 next_entry = prev_entry->next; 3388 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3389 /* 3390 * This entry does not grow upwards. Since the address lies 3391 * beyond this entry, the next entry (if one exists) has to 3392 * be a downward growable entry. The entry list header is 3393 * never a growable entry, so it suffices to check the flags. 3394 */ 3395 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3396 vm_map_unlock_read(map); 3397 return (KERN_SUCCESS); 3398 } 3399 stack_entry = next_entry; 3400 } else { 3401 /* 3402 * This entry grows upward. If the next entry does not at 3403 * least grow downwards, this is the entry we need to grow. 3404 * otherwise we have two possible choices and we have to 3405 * select one. 3406 */ 3407 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3408 /* 3409 * We have two choices; grow the entry closest to 3410 * the address to minimize the amount of growth. 3411 */ 3412 if (addr - prev_entry->end <= next_entry->start - addr) 3413 stack_entry = prev_entry; 3414 else 3415 stack_entry = next_entry; 3416 } else 3417 stack_entry = prev_entry; 3418 } 3419 3420 if (stack_entry == next_entry) { 3421 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3422 KASSERT(addr < stack_entry->start, ("foo")); 3423 end = (prev_entry != &map->header) ? prev_entry->end : 3424 stack_entry->start - stack_entry->avail_ssize; 3425 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3426 max_grow = stack_entry->start - end; 3427 } else { 3428 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3429 KASSERT(addr >= stack_entry->end, ("foo")); 3430 end = (next_entry != &map->header) ? next_entry->start : 3431 stack_entry->end + stack_entry->avail_ssize; 3432 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3433 max_grow = end - stack_entry->end; 3434 } 3435 3436 if (grow_amount > stack_entry->avail_ssize) { 3437 vm_map_unlock_read(map); 3438 return (KERN_NO_SPACE); 3439 } 3440 3441 /* 3442 * If there is no longer enough space between the entries nogo, and 3443 * adjust the available space. Note: this should only happen if the 3444 * user has mapped into the stack area after the stack was created, 3445 * and is probably an error. 3446 * 3447 * This also effectively destroys any guard page the user might have 3448 * intended by limiting the stack size. 3449 */ 3450 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3451 if (vm_map_lock_upgrade(map)) 3452 goto Retry; 3453 3454 stack_entry->avail_ssize = max_grow; 3455 3456 vm_map_unlock(map); 3457 return (KERN_NO_SPACE); 3458 } 3459 3460 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3461 3462 /* 3463 * If this is the main process stack, see if we're over the stack 3464 * limit. 3465 */ 3466 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3467 vm_map_unlock_read(map); 3468 return (KERN_NO_SPACE); 3469 } 3470 #ifdef RACCT 3471 PROC_LOCK(p); 3472 if (is_procstack && 3473 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3474 PROC_UNLOCK(p); 3475 vm_map_unlock_read(map); 3476 return (KERN_NO_SPACE); 3477 } 3478 PROC_UNLOCK(p); 3479 #endif 3480 3481 /* Round up the grow amount modulo sgrowsiz */ 3482 growsize = sgrowsiz; 3483 grow_amount = roundup(grow_amount, growsize); 3484 if (grow_amount > stack_entry->avail_ssize) 3485 grow_amount = stack_entry->avail_ssize; 3486 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3487 grow_amount = trunc_page((vm_size_t)stacklim) - 3488 ctob(vm->vm_ssize); 3489 } 3490 #ifdef notyet 3491 PROC_LOCK(p); 3492 limit = racct_get_available(p, RACCT_STACK); 3493 PROC_UNLOCK(p); 3494 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3495 grow_amount = limit - ctob(vm->vm_ssize); 3496 #endif 3497 3498 /* If we would blow our VMEM resource limit, no go */ 3499 if (map->size + grow_amount > vmemlim) { 3500 vm_map_unlock_read(map); 3501 rv = KERN_NO_SPACE; 3502 goto out; 3503 } 3504 #ifdef RACCT 3505 PROC_LOCK(p); 3506 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3507 PROC_UNLOCK(p); 3508 vm_map_unlock_read(map); 3509 rv = KERN_NO_SPACE; 3510 goto out; 3511 } 3512 PROC_UNLOCK(p); 3513 #endif 3514 3515 if (vm_map_lock_upgrade(map)) 3516 goto Retry; 3517 3518 if (stack_entry == next_entry) { 3519 /* 3520 * Growing downward. 3521 */ 3522 /* Get the preliminary new entry start value */ 3523 addr = stack_entry->start - grow_amount; 3524 3525 /* 3526 * If this puts us into the previous entry, cut back our 3527 * growth to the available space. Also, see the note above. 3528 */ 3529 if (addr < end) { 3530 stack_entry->avail_ssize = max_grow; 3531 addr = end; 3532 if (stack_guard_page) 3533 addr += PAGE_SIZE; 3534 } 3535 3536 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3537 next_entry->protection, next_entry->max_protection, 0); 3538 3539 /* Adjust the available stack space by the amount we grew. */ 3540 if (rv == KERN_SUCCESS) { 3541 if (prev_entry != &map->header) 3542 vm_map_clip_end(map, prev_entry, addr); 3543 new_entry = prev_entry->next; 3544 KASSERT(new_entry == stack_entry->prev, ("foo")); 3545 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3546 KASSERT(new_entry->start == addr, ("foo")); 3547 grow_amount = new_entry->end - new_entry->start; 3548 new_entry->avail_ssize = stack_entry->avail_ssize - 3549 grow_amount; 3550 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3551 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3552 } 3553 } else { 3554 /* 3555 * Growing upward. 3556 */ 3557 addr = stack_entry->end + grow_amount; 3558 3559 /* 3560 * If this puts us into the next entry, cut back our growth 3561 * to the available space. Also, see the note above. 3562 */ 3563 if (addr > end) { 3564 stack_entry->avail_ssize = end - stack_entry->end; 3565 addr = end; 3566 if (stack_guard_page) 3567 addr -= PAGE_SIZE; 3568 } 3569 3570 grow_amount = addr - stack_entry->end; 3571 cred = stack_entry->cred; 3572 if (cred == NULL && stack_entry->object.vm_object != NULL) 3573 cred = stack_entry->object.vm_object->cred; 3574 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3575 rv = KERN_NO_SPACE; 3576 /* Grow the underlying object if applicable. */ 3577 else if (stack_entry->object.vm_object == NULL || 3578 vm_object_coalesce(stack_entry->object.vm_object, 3579 stack_entry->offset, 3580 (vm_size_t)(stack_entry->end - stack_entry->start), 3581 (vm_size_t)grow_amount, cred != NULL)) { 3582 map->size += (addr - stack_entry->end); 3583 /* Update the current entry. */ 3584 stack_entry->end = addr; 3585 stack_entry->avail_ssize -= grow_amount; 3586 vm_map_entry_resize_free(map, stack_entry); 3587 rv = KERN_SUCCESS; 3588 3589 if (next_entry != &map->header) 3590 vm_map_clip_start(map, next_entry, addr); 3591 } else 3592 rv = KERN_FAILURE; 3593 } 3594 3595 if (rv == KERN_SUCCESS && is_procstack) 3596 vm->vm_ssize += btoc(grow_amount); 3597 3598 vm_map_unlock(map); 3599 3600 /* 3601 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3602 */ 3603 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3604 vm_map_wire(map, 3605 (stack_entry == next_entry) ? addr : addr - grow_amount, 3606 (stack_entry == next_entry) ? stack_entry->start : addr, 3607 (p->p_flag & P_SYSTEM) 3608 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3609 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3610 } 3611 3612 out: 3613 #ifdef RACCT 3614 if (rv != KERN_SUCCESS) { 3615 PROC_LOCK(p); 3616 error = racct_set(p, RACCT_VMEM, map->size); 3617 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3618 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3619 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3620 PROC_UNLOCK(p); 3621 } 3622 #endif 3623 3624 return (rv); 3625 } 3626 3627 /* 3628 * Unshare the specified VM space for exec. If other processes are 3629 * mapped to it, then create a new one. The new vmspace is null. 3630 */ 3631 int 3632 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3633 { 3634 struct vmspace *oldvmspace = p->p_vmspace; 3635 struct vmspace *newvmspace; 3636 3637 newvmspace = vmspace_alloc(minuser, maxuser); 3638 if (newvmspace == NULL) 3639 return (ENOMEM); 3640 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3641 /* 3642 * This code is written like this for prototype purposes. The 3643 * goal is to avoid running down the vmspace here, but let the 3644 * other process's that are still using the vmspace to finally 3645 * run it down. Even though there is little or no chance of blocking 3646 * here, it is a good idea to keep this form for future mods. 3647 */ 3648 PROC_VMSPACE_LOCK(p); 3649 p->p_vmspace = newvmspace; 3650 PROC_VMSPACE_UNLOCK(p); 3651 if (p == curthread->td_proc) 3652 pmap_activate(curthread); 3653 vmspace_free(oldvmspace); 3654 return (0); 3655 } 3656 3657 /* 3658 * Unshare the specified VM space for forcing COW. This 3659 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3660 */ 3661 int 3662 vmspace_unshare(struct proc *p) 3663 { 3664 struct vmspace *oldvmspace = p->p_vmspace; 3665 struct vmspace *newvmspace; 3666 vm_ooffset_t fork_charge; 3667 3668 if (oldvmspace->vm_refcnt == 1) 3669 return (0); 3670 fork_charge = 0; 3671 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3672 if (newvmspace == NULL) 3673 return (ENOMEM); 3674 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3675 vmspace_free(newvmspace); 3676 return (ENOMEM); 3677 } 3678 PROC_VMSPACE_LOCK(p); 3679 p->p_vmspace = newvmspace; 3680 PROC_VMSPACE_UNLOCK(p); 3681 if (p == curthread->td_proc) 3682 pmap_activate(curthread); 3683 vmspace_free(oldvmspace); 3684 return (0); 3685 } 3686 3687 /* 3688 * vm_map_lookup: 3689 * 3690 * Finds the VM object, offset, and 3691 * protection for a given virtual address in the 3692 * specified map, assuming a page fault of the 3693 * type specified. 3694 * 3695 * Leaves the map in question locked for read; return 3696 * values are guaranteed until a vm_map_lookup_done 3697 * call is performed. Note that the map argument 3698 * is in/out; the returned map must be used in 3699 * the call to vm_map_lookup_done. 3700 * 3701 * A handle (out_entry) is returned for use in 3702 * vm_map_lookup_done, to make that fast. 3703 * 3704 * If a lookup is requested with "write protection" 3705 * specified, the map may be changed to perform virtual 3706 * copying operations, although the data referenced will 3707 * remain the same. 3708 */ 3709 int 3710 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3711 vm_offset_t vaddr, 3712 vm_prot_t fault_typea, 3713 vm_map_entry_t *out_entry, /* OUT */ 3714 vm_object_t *object, /* OUT */ 3715 vm_pindex_t *pindex, /* OUT */ 3716 vm_prot_t *out_prot, /* OUT */ 3717 boolean_t *wired) /* OUT */ 3718 { 3719 vm_map_entry_t entry; 3720 vm_map_t map = *var_map; 3721 vm_prot_t prot; 3722 vm_prot_t fault_type = fault_typea; 3723 vm_object_t eobject; 3724 vm_size_t size; 3725 struct ucred *cred; 3726 3727 RetryLookup:; 3728 3729 vm_map_lock_read(map); 3730 3731 /* 3732 * Lookup the faulting address. 3733 */ 3734 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3735 vm_map_unlock_read(map); 3736 return (KERN_INVALID_ADDRESS); 3737 } 3738 3739 entry = *out_entry; 3740 3741 /* 3742 * Handle submaps. 3743 */ 3744 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3745 vm_map_t old_map = map; 3746 3747 *var_map = map = entry->object.sub_map; 3748 vm_map_unlock_read(old_map); 3749 goto RetryLookup; 3750 } 3751 3752 /* 3753 * Check whether this task is allowed to have this page. 3754 */ 3755 prot = entry->protection; 3756 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3757 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3758 vm_map_unlock_read(map); 3759 return (KERN_PROTECTION_FAILURE); 3760 } 3761 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3762 (entry->eflags & MAP_ENTRY_COW) && 3763 (fault_type & VM_PROT_WRITE)) { 3764 vm_map_unlock_read(map); 3765 return (KERN_PROTECTION_FAILURE); 3766 } 3767 3768 /* 3769 * If this page is not pageable, we have to get it for all possible 3770 * accesses. 3771 */ 3772 *wired = (entry->wired_count != 0); 3773 if (*wired) 3774 fault_type = entry->protection; 3775 size = entry->end - entry->start; 3776 /* 3777 * If the entry was copy-on-write, we either ... 3778 */ 3779 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3780 /* 3781 * If we want to write the page, we may as well handle that 3782 * now since we've got the map locked. 3783 * 3784 * If we don't need to write the page, we just demote the 3785 * permissions allowed. 3786 */ 3787 if ((fault_type & VM_PROT_WRITE) != 0 || 3788 (fault_typea & VM_PROT_COPY) != 0) { 3789 /* 3790 * Make a new object, and place it in the object 3791 * chain. Note that no new references have appeared 3792 * -- one just moved from the map to the new 3793 * object. 3794 */ 3795 if (vm_map_lock_upgrade(map)) 3796 goto RetryLookup; 3797 3798 if (entry->cred == NULL) { 3799 /* 3800 * The debugger owner is charged for 3801 * the memory. 3802 */ 3803 cred = curthread->td_ucred; 3804 crhold(cred); 3805 if (!swap_reserve_by_cred(size, cred)) { 3806 crfree(cred); 3807 vm_map_unlock(map); 3808 return (KERN_RESOURCE_SHORTAGE); 3809 } 3810 entry->cred = cred; 3811 } 3812 vm_object_shadow(&entry->object.vm_object, 3813 &entry->offset, size); 3814 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3815 eobject = entry->object.vm_object; 3816 if (eobject->cred != NULL) { 3817 /* 3818 * The object was not shadowed. 3819 */ 3820 swap_release_by_cred(size, entry->cred); 3821 crfree(entry->cred); 3822 entry->cred = NULL; 3823 } else if (entry->cred != NULL) { 3824 VM_OBJECT_LOCK(eobject); 3825 eobject->cred = entry->cred; 3826 eobject->charge = size; 3827 VM_OBJECT_UNLOCK(eobject); 3828 entry->cred = NULL; 3829 } 3830 3831 vm_map_lock_downgrade(map); 3832 } else { 3833 /* 3834 * We're attempting to read a copy-on-write page -- 3835 * don't allow writes. 3836 */ 3837 prot &= ~VM_PROT_WRITE; 3838 } 3839 } 3840 3841 /* 3842 * Create an object if necessary. 3843 */ 3844 if (entry->object.vm_object == NULL && 3845 !map->system_map) { 3846 if (vm_map_lock_upgrade(map)) 3847 goto RetryLookup; 3848 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3849 atop(size)); 3850 entry->offset = 0; 3851 if (entry->cred != NULL) { 3852 VM_OBJECT_LOCK(entry->object.vm_object); 3853 entry->object.vm_object->cred = entry->cred; 3854 entry->object.vm_object->charge = size; 3855 VM_OBJECT_UNLOCK(entry->object.vm_object); 3856 entry->cred = NULL; 3857 } 3858 vm_map_lock_downgrade(map); 3859 } 3860 3861 /* 3862 * Return the object/offset from this entry. If the entry was 3863 * copy-on-write or empty, it has been fixed up. 3864 */ 3865 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3866 *object = entry->object.vm_object; 3867 3868 *out_prot = prot; 3869 return (KERN_SUCCESS); 3870 } 3871 3872 /* 3873 * vm_map_lookup_locked: 3874 * 3875 * Lookup the faulting address. A version of vm_map_lookup that returns 3876 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3877 */ 3878 int 3879 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3880 vm_offset_t vaddr, 3881 vm_prot_t fault_typea, 3882 vm_map_entry_t *out_entry, /* OUT */ 3883 vm_object_t *object, /* OUT */ 3884 vm_pindex_t *pindex, /* OUT */ 3885 vm_prot_t *out_prot, /* OUT */ 3886 boolean_t *wired) /* OUT */ 3887 { 3888 vm_map_entry_t entry; 3889 vm_map_t map = *var_map; 3890 vm_prot_t prot; 3891 vm_prot_t fault_type = fault_typea; 3892 3893 /* 3894 * Lookup the faulting address. 3895 */ 3896 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 3897 return (KERN_INVALID_ADDRESS); 3898 3899 entry = *out_entry; 3900 3901 /* 3902 * Fail if the entry refers to a submap. 3903 */ 3904 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3905 return (KERN_FAILURE); 3906 3907 /* 3908 * Check whether this task is allowed to have this page. 3909 */ 3910 prot = entry->protection; 3911 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 3912 if ((fault_type & prot) != fault_type) 3913 return (KERN_PROTECTION_FAILURE); 3914 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3915 (entry->eflags & MAP_ENTRY_COW) && 3916 (fault_type & VM_PROT_WRITE)) 3917 return (KERN_PROTECTION_FAILURE); 3918 3919 /* 3920 * If this page is not pageable, we have to get it for all possible 3921 * accesses. 3922 */ 3923 *wired = (entry->wired_count != 0); 3924 if (*wired) 3925 fault_type = entry->protection; 3926 3927 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3928 /* 3929 * Fail if the entry was copy-on-write for a write fault. 3930 */ 3931 if (fault_type & VM_PROT_WRITE) 3932 return (KERN_FAILURE); 3933 /* 3934 * We're attempting to read a copy-on-write page -- 3935 * don't allow writes. 3936 */ 3937 prot &= ~VM_PROT_WRITE; 3938 } 3939 3940 /* 3941 * Fail if an object should be created. 3942 */ 3943 if (entry->object.vm_object == NULL && !map->system_map) 3944 return (KERN_FAILURE); 3945 3946 /* 3947 * Return the object/offset from this entry. If the entry was 3948 * copy-on-write or empty, it has been fixed up. 3949 */ 3950 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3951 *object = entry->object.vm_object; 3952 3953 *out_prot = prot; 3954 return (KERN_SUCCESS); 3955 } 3956 3957 /* 3958 * vm_map_lookup_done: 3959 * 3960 * Releases locks acquired by a vm_map_lookup 3961 * (according to the handle returned by that lookup). 3962 */ 3963 void 3964 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 3965 { 3966 /* 3967 * Unlock the main-level map 3968 */ 3969 vm_map_unlock_read(map); 3970 } 3971 3972 #include "opt_ddb.h" 3973 #ifdef DDB 3974 #include <sys/kernel.h> 3975 3976 #include <ddb/ddb.h> 3977 3978 /* 3979 * vm_map_print: [ debug ] 3980 */ 3981 DB_SHOW_COMMAND(map, vm_map_print) 3982 { 3983 static int nlines; 3984 /* XXX convert args. */ 3985 vm_map_t map = (vm_map_t)addr; 3986 boolean_t full = have_addr; 3987 3988 vm_map_entry_t entry; 3989 3990 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3991 (void *)map, 3992 (void *)map->pmap, map->nentries, map->timestamp); 3993 nlines++; 3994 3995 if (!full && db_indent) 3996 return; 3997 3998 db_indent += 2; 3999 for (entry = map->header.next; entry != &map->header; 4000 entry = entry->next) { 4001 db_iprintf("map entry %p: start=%p, end=%p\n", 4002 (void *)entry, (void *)entry->start, (void *)entry->end); 4003 nlines++; 4004 { 4005 static char *inheritance_name[4] = 4006 {"share", "copy", "none", "donate_copy"}; 4007 4008 db_iprintf(" prot=%x/%x/%s", 4009 entry->protection, 4010 entry->max_protection, 4011 inheritance_name[(int)(unsigned char)entry->inheritance]); 4012 if (entry->wired_count != 0) 4013 db_printf(", wired"); 4014 } 4015 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4016 db_printf(", share=%p, offset=0x%jx\n", 4017 (void *)entry->object.sub_map, 4018 (uintmax_t)entry->offset); 4019 nlines++; 4020 if ((entry->prev == &map->header) || 4021 (entry->prev->object.sub_map != 4022 entry->object.sub_map)) { 4023 db_indent += 2; 4024 vm_map_print((db_expr_t)(intptr_t) 4025 entry->object.sub_map, 4026 full, 0, (char *)0); 4027 db_indent -= 2; 4028 } 4029 } else { 4030 if (entry->cred != NULL) 4031 db_printf(", ruid %d", entry->cred->cr_ruid); 4032 db_printf(", object=%p, offset=0x%jx", 4033 (void *)entry->object.vm_object, 4034 (uintmax_t)entry->offset); 4035 if (entry->object.vm_object && entry->object.vm_object->cred) 4036 db_printf(", obj ruid %d charge %jx", 4037 entry->object.vm_object->cred->cr_ruid, 4038 (uintmax_t)entry->object.vm_object->charge); 4039 if (entry->eflags & MAP_ENTRY_COW) 4040 db_printf(", copy (%s)", 4041 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4042 db_printf("\n"); 4043 nlines++; 4044 4045 if ((entry->prev == &map->header) || 4046 (entry->prev->object.vm_object != 4047 entry->object.vm_object)) { 4048 db_indent += 2; 4049 vm_object_print((db_expr_t)(intptr_t) 4050 entry->object.vm_object, 4051 full, 0, (char *)0); 4052 nlines += 4; 4053 db_indent -= 2; 4054 } 4055 } 4056 } 4057 db_indent -= 2; 4058 if (db_indent == 0) 4059 nlines = 0; 4060 } 4061 4062 4063 DB_SHOW_COMMAND(procvm, procvm) 4064 { 4065 struct proc *p; 4066 4067 if (have_addr) { 4068 p = (struct proc *) addr; 4069 } else { 4070 p = curproc; 4071 } 4072 4073 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4074 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4075 (void *)vmspace_pmap(p->p_vmspace)); 4076 4077 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 4078 } 4079 4080 #endif /* DDB */ 4081