1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Virtual memory mapping module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/resourcevar.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vm_kern.h> 90 #include <vm/vm_extern.h> 91 #include <vm/swap_pager.h> 92 #include <vm/uma.h> 93 94 /* 95 * Virtual memory maps provide for the mapping, protection, 96 * and sharing of virtual memory objects. In addition, 97 * this module provides for an efficient virtual copy of 98 * memory from one map to another. 99 * 100 * Synchronization is required prior to most operations. 101 * 102 * Maps consist of an ordered doubly-linked list of simple 103 * entries; a single hint is used to speed up lookups. 104 * 105 * Since portions of maps are specified by start/end addresses, 106 * which may not align with existing map entries, all 107 * routines merely "clip" entries to these start/end values. 108 * [That is, an entry is split into two, bordering at a 109 * start or end value.] Note that these clippings may not 110 * always be necessary (as the two resulting entries are then 111 * not changed); however, the clipping is done for convenience. 112 * 113 * As mentioned above, virtual copy operations are performed 114 * by copying VM object references from one map to 115 * another, and then marking both regions as copy-on-write. 116 */ 117 118 /* 119 * vm_map_startup: 120 * 121 * Initialize the vm_map module. Must be called before 122 * any other vm_map routines. 123 * 124 * Map and entry structures are allocated from the general 125 * purpose memory pool with some exceptions: 126 * 127 * - The kernel map and kmem submap are allocated statically. 128 * - Kernel map entries are allocated out of a static pool. 129 * 130 * These restrictions are necessary since malloc() uses the 131 * maps and requires map entries. 132 */ 133 134 static uma_zone_t mapentzone; 135 static uma_zone_t kmapentzone; 136 static uma_zone_t mapzone; 137 static uma_zone_t vmspace_zone; 138 static struct vm_object kmapentobj; 139 static void vmspace_zinit(void *mem, int size); 140 static void vmspace_zfini(void *mem, int size); 141 static void vm_map_zinit(void *mem, int size); 142 static void vm_map_zfini(void *mem, int size); 143 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max); 144 145 #ifdef INVARIANTS 146 static void vm_map_zdtor(void *mem, int size, void *arg); 147 static void vmspace_zdtor(void *mem, int size, void *arg); 148 #endif 149 150 void 151 vm_map_startup(void) 152 { 153 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 154 #ifdef INVARIANTS 155 vm_map_zdtor, 156 #else 157 NULL, 158 #endif 159 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 160 uma_prealloc(mapzone, MAX_KMAP); 161 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 162 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_MTXCLASS); 163 uma_prealloc(kmapentzone, MAX_KMAPENT); 164 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 165 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 166 uma_prealloc(mapentzone, MAX_MAPENT); 167 } 168 169 static void 170 vmspace_zfini(void *mem, int size) 171 { 172 struct vmspace *vm; 173 174 vm = (struct vmspace *)mem; 175 176 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 177 } 178 179 static void 180 vmspace_zinit(void *mem, int size) 181 { 182 struct vmspace *vm; 183 184 vm = (struct vmspace *)mem; 185 186 vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map)); 187 } 188 189 static void 190 vm_map_zfini(void *mem, int size) 191 { 192 vm_map_t map; 193 194 GIANT_REQUIRED; 195 map = (vm_map_t)mem; 196 197 lockdestroy(&map->lock); 198 } 199 200 static void 201 vm_map_zinit(void *mem, int size) 202 { 203 vm_map_t map; 204 205 GIANT_REQUIRED; 206 207 map = (vm_map_t)mem; 208 map->nentries = 0; 209 map->size = 0; 210 map->infork = 0; 211 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_CANRECURSE | LK_NOPAUSE); 212 } 213 214 #ifdef INVARIANTS 215 static void 216 vmspace_zdtor(void *mem, int size, void *arg) 217 { 218 struct vmspace *vm; 219 220 vm = (struct vmspace *)mem; 221 222 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 223 } 224 static void 225 vm_map_zdtor(void *mem, int size, void *arg) 226 { 227 vm_map_t map; 228 229 map = (vm_map_t)mem; 230 KASSERT(map->nentries == 0, 231 ("map %p nentries == %d on free.", 232 map, map->nentries)); 233 KASSERT(map->size == 0, 234 ("map %p size == %lu on free.", 235 map, (unsigned long)map->size)); 236 KASSERT(map->infork == 0, 237 ("map %p infork == %d on free.", 238 map, map->infork)); 239 } 240 #endif /* INVARIANTS */ 241 242 /* 243 * Allocate a vmspace structure, including a vm_map and pmap, 244 * and initialize those structures. The refcnt is set to 1. 245 * The remaining fields must be initialized by the caller. 246 */ 247 struct vmspace * 248 vmspace_alloc(min, max) 249 vm_offset_t min, max; 250 { 251 struct vmspace *vm; 252 253 GIANT_REQUIRED; 254 vm = uma_zalloc(vmspace_zone, M_WAITOK); 255 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 256 _vm_map_init(&vm->vm_map, min, max); 257 pmap_pinit(vmspace_pmap(vm)); 258 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 259 vm->vm_refcnt = 1; 260 vm->vm_shm = NULL; 261 vm->vm_freer = NULL; 262 return (vm); 263 } 264 265 void 266 vm_init2(void) 267 { 268 uma_zone_set_obj(kmapentzone, &kmapentobj, cnt.v_page_count / 4); 269 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 270 #ifdef INVARIANTS 271 vmspace_zdtor, 272 #else 273 NULL, 274 #endif 275 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 276 pmap_init2(); 277 vm_object_init2(); 278 } 279 280 static __inline void 281 vmspace_dofree(struct vmspace *vm) 282 { 283 CTR1(KTR_VM, "vmspace_free: %p", vm); 284 /* 285 * Lock the map, to wait out all other references to it. 286 * Delete all of the mappings and pages they hold, then call 287 * the pmap module to reclaim anything left. 288 */ 289 vm_map_lock(&vm->vm_map); 290 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 291 vm->vm_map.max_offset); 292 vm_map_unlock(&vm->vm_map); 293 294 pmap_release(vmspace_pmap(vm)); 295 uma_zfree(vmspace_zone, vm); 296 } 297 298 void 299 vmspace_free(struct vmspace *vm) 300 { 301 GIANT_REQUIRED; 302 303 if (vm->vm_refcnt == 0) 304 panic("vmspace_free: attempt to free already freed vmspace"); 305 306 if (--vm->vm_refcnt == 0) 307 vmspace_dofree(vm); 308 } 309 310 void 311 vmspace_exitfree(struct proc *p) 312 { 313 struct vmspace *vm; 314 315 GIANT_REQUIRED; 316 if (p == p->p_vmspace->vm_freer) { 317 vm = p->p_vmspace; 318 p->p_vmspace = NULL; 319 vmspace_dofree(vm); 320 } 321 } 322 323 /* 324 * vmspace_swap_count() - count the approximate swap useage in pages for a 325 * vmspace. 326 * 327 * Swap useage is determined by taking the proportional swap used by 328 * VM objects backing the VM map. To make up for fractional losses, 329 * if the VM object has any swap use at all the associated map entries 330 * count for at least 1 swap page. 331 */ 332 int 333 vmspace_swap_count(struct vmspace *vmspace) 334 { 335 vm_map_t map = &vmspace->vm_map; 336 vm_map_entry_t cur; 337 int count = 0; 338 339 vm_map_lock_read(map); 340 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 341 vm_object_t object; 342 343 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 344 (object = cur->object.vm_object) != NULL && 345 object->type == OBJT_SWAP 346 ) { 347 int n = (cur->end - cur->start) / PAGE_SIZE; 348 349 if (object->un_pager.swp.swp_bcount) { 350 count += object->un_pager.swp.swp_bcount * 351 SWAP_META_PAGES * n / object->size + 1; 352 } 353 } 354 } 355 vm_map_unlock_read(map); 356 return (count); 357 } 358 359 u_char 360 vm_map_entry_behavior(struct vm_map_entry *entry) 361 { 362 return entry->eflags & MAP_ENTRY_BEHAV_MASK; 363 } 364 365 void 366 vm_map_entry_set_behavior(struct vm_map_entry *entry, u_char behavior) 367 { 368 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 369 (behavior & MAP_ENTRY_BEHAV_MASK); 370 } 371 372 void 373 _vm_map_lock(vm_map_t map, const char *file, int line) 374 { 375 int error; 376 377 error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread); 378 KASSERT(error == 0, ("%s: failed to get lock", __func__)); 379 map->timestamp++; 380 } 381 382 void 383 _vm_map_unlock(vm_map_t map, const char *file, int line) 384 { 385 386 lockmgr(&map->lock, LK_RELEASE, NULL, curthread); 387 } 388 389 void 390 _vm_map_lock_read(vm_map_t map, const char *file, int line) 391 { 392 int error; 393 394 error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread); 395 KASSERT(error == 0, ("%s: failed to get lock", __func__)); 396 } 397 398 void 399 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 400 { 401 402 lockmgr(&map->lock, LK_RELEASE, NULL, curthread); 403 } 404 405 int 406 _vm_map_trylock(vm_map_t map, const char *file, int line) 407 { 408 int error; 409 410 error = lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread); 411 return (error == 0); 412 } 413 414 int 415 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 416 { 417 418 KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE, 419 ("%s: lock not held", __func__)); 420 map->timestamp++; 421 return (0); 422 } 423 424 void 425 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 426 { 427 428 KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE, 429 ("%s: lock not held", __func__)); 430 } 431 432 void 433 _vm_map_set_recursive(vm_map_t map, const char *file, int line) 434 { 435 } 436 437 void 438 _vm_map_clear_recursive(vm_map_t map, const char *file, int line) 439 { 440 } 441 442 struct pmap * 443 vmspace_pmap(struct vmspace *vmspace) 444 { 445 return &vmspace->vm_pmap; 446 } 447 448 long 449 vmspace_resident_count(struct vmspace *vmspace) 450 { 451 return pmap_resident_count(vmspace_pmap(vmspace)); 452 } 453 454 /* 455 * vm_map_create: 456 * 457 * Creates and returns a new empty VM map with 458 * the given physical map structure, and having 459 * the given lower and upper address bounds. 460 */ 461 vm_map_t 462 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 463 { 464 vm_map_t result; 465 466 GIANT_REQUIRED; 467 468 result = uma_zalloc(mapzone, M_WAITOK); 469 CTR1(KTR_VM, "vm_map_create: %p", result); 470 _vm_map_init(result, min, max); 471 result->pmap = pmap; 472 return (result); 473 } 474 475 /* 476 * Initialize an existing vm_map structure 477 * such as that in the vmspace structure. 478 * The pmap is set elsewhere. 479 */ 480 static void 481 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max) 482 { 483 484 map->header.next = map->header.prev = &map->header; 485 map->system_map = 0; 486 map->min_offset = min; 487 map->max_offset = max; 488 map->first_free = &map->header; 489 map->hint = &map->header; 490 map->timestamp = 0; 491 } 492 493 void 494 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max) 495 { 496 _vm_map_init(map, min, max); 497 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_CANRECURSE | LK_NOPAUSE); 498 } 499 500 /* 501 * vm_map_entry_dispose: [ internal use only ] 502 * 503 * Inverse of vm_map_entry_create. 504 */ 505 static void 506 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 507 { 508 uma_zfree((map->system_map || !mapentzone) 509 ? kmapentzone : mapentzone, entry); 510 } 511 512 /* 513 * vm_map_entry_create: [ internal use only ] 514 * 515 * Allocates a VM map entry for insertion. 516 * No entry fields are filled in. 517 */ 518 static vm_map_entry_t 519 vm_map_entry_create(vm_map_t map) 520 { 521 vm_map_entry_t new_entry; 522 523 new_entry = uma_zalloc((map->system_map || !mapentzone) ? 524 kmapentzone : mapentzone, M_WAITOK); 525 if (new_entry == NULL) 526 panic("vm_map_entry_create: kernel resources exhausted"); 527 return (new_entry); 528 } 529 530 /* 531 * vm_map_entry_{un,}link: 532 * 533 * Insert/remove entries from maps. 534 */ 535 static __inline void 536 vm_map_entry_link(vm_map_t map, 537 vm_map_entry_t after_where, 538 vm_map_entry_t entry) 539 { 540 541 CTR4(KTR_VM, 542 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 543 map->nentries, entry, after_where); 544 map->nentries++; 545 entry->prev = after_where; 546 entry->next = after_where->next; 547 entry->next->prev = entry; 548 after_where->next = entry; 549 } 550 551 static __inline void 552 vm_map_entry_unlink(vm_map_t map, 553 vm_map_entry_t entry) 554 { 555 vm_map_entry_t prev = entry->prev; 556 vm_map_entry_t next = entry->next; 557 558 next->prev = prev; 559 prev->next = next; 560 map->nentries--; 561 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 562 map->nentries, entry); 563 } 564 565 /* 566 * SAVE_HINT: 567 * 568 * Saves the specified entry as the hint for 569 * future lookups. 570 */ 571 #define SAVE_HINT(map,value) \ 572 (map)->hint = (value); 573 574 /* 575 * vm_map_lookup_entry: [ internal use only ] 576 * 577 * Finds the map entry containing (or 578 * immediately preceding) the specified address 579 * in the given map; the entry is returned 580 * in the "entry" parameter. The boolean 581 * result indicates whether the address is 582 * actually contained in the map. 583 */ 584 boolean_t 585 vm_map_lookup_entry( 586 vm_map_t map, 587 vm_offset_t address, 588 vm_map_entry_t *entry) /* OUT */ 589 { 590 vm_map_entry_t cur; 591 vm_map_entry_t last; 592 593 /* 594 * Start looking either from the head of the list, or from the hint. 595 */ 596 cur = map->hint; 597 598 if (cur == &map->header) 599 cur = cur->next; 600 601 if (address >= cur->start) { 602 /* 603 * Go from hint to end of list. 604 * 605 * But first, make a quick check to see if we are already looking 606 * at the entry we want (which is usually the case). Note also 607 * that we don't need to save the hint here... it is the same 608 * hint (unless we are at the header, in which case the hint 609 * didn't buy us anything anyway). 610 */ 611 last = &map->header; 612 if ((cur != last) && (cur->end > address)) { 613 *entry = cur; 614 return (TRUE); 615 } 616 } else { 617 /* 618 * Go from start to hint, *inclusively* 619 */ 620 last = cur->next; 621 cur = map->header.next; 622 } 623 624 /* 625 * Search linearly 626 */ 627 while (cur != last) { 628 if (cur->end > address) { 629 if (address >= cur->start) { 630 /* 631 * Save this lookup for future hints, and 632 * return 633 */ 634 *entry = cur; 635 SAVE_HINT(map, cur); 636 return (TRUE); 637 } 638 break; 639 } 640 cur = cur->next; 641 } 642 *entry = cur->prev; 643 SAVE_HINT(map, *entry); 644 return (FALSE); 645 } 646 647 /* 648 * vm_map_insert: 649 * 650 * Inserts the given whole VM object into the target 651 * map at the specified address range. The object's 652 * size should match that of the address range. 653 * 654 * Requires that the map be locked, and leaves it so. 655 * 656 * If object is non-NULL, ref count must be bumped by caller 657 * prior to making call to account for the new entry. 658 */ 659 int 660 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 661 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 662 int cow) 663 { 664 vm_map_entry_t new_entry; 665 vm_map_entry_t prev_entry; 666 vm_map_entry_t temp_entry; 667 vm_eflags_t protoeflags; 668 669 GIANT_REQUIRED; 670 671 /* 672 * Check that the start and end points are not bogus. 673 */ 674 if ((start < map->min_offset) || (end > map->max_offset) || 675 (start >= end)) 676 return (KERN_INVALID_ADDRESS); 677 678 /* 679 * Find the entry prior to the proposed starting address; if it's part 680 * of an existing entry, this range is bogus. 681 */ 682 if (vm_map_lookup_entry(map, start, &temp_entry)) 683 return (KERN_NO_SPACE); 684 685 prev_entry = temp_entry; 686 687 /* 688 * Assert that the next entry doesn't overlap the end point. 689 */ 690 if ((prev_entry->next != &map->header) && 691 (prev_entry->next->start < end)) 692 return (KERN_NO_SPACE); 693 694 protoeflags = 0; 695 696 if (cow & MAP_COPY_ON_WRITE) 697 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 698 699 if (cow & MAP_NOFAULT) { 700 protoeflags |= MAP_ENTRY_NOFAULT; 701 702 KASSERT(object == NULL, 703 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 704 } 705 if (cow & MAP_DISABLE_SYNCER) 706 protoeflags |= MAP_ENTRY_NOSYNC; 707 if (cow & MAP_DISABLE_COREDUMP) 708 protoeflags |= MAP_ENTRY_NOCOREDUMP; 709 710 if (object) { 711 /* 712 * When object is non-NULL, it could be shared with another 713 * process. We have to set or clear OBJ_ONEMAPPING 714 * appropriately. 715 */ 716 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 717 vm_object_clear_flag(object, OBJ_ONEMAPPING); 718 } 719 } 720 else if ((prev_entry != &map->header) && 721 (prev_entry->eflags == protoeflags) && 722 (prev_entry->end == start) && 723 (prev_entry->wired_count == 0) && 724 ((prev_entry->object.vm_object == NULL) || 725 vm_object_coalesce(prev_entry->object.vm_object, 726 OFF_TO_IDX(prev_entry->offset), 727 (vm_size_t)(prev_entry->end - prev_entry->start), 728 (vm_size_t)(end - prev_entry->end)))) { 729 /* 730 * We were able to extend the object. Determine if we 731 * can extend the previous map entry to include the 732 * new range as well. 733 */ 734 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 735 (prev_entry->protection == prot) && 736 (prev_entry->max_protection == max)) { 737 map->size += (end - prev_entry->end); 738 prev_entry->end = end; 739 vm_map_simplify_entry(map, prev_entry); 740 return (KERN_SUCCESS); 741 } 742 743 /* 744 * If we can extend the object but cannot extend the 745 * map entry, we have to create a new map entry. We 746 * must bump the ref count on the extended object to 747 * account for it. object may be NULL. 748 */ 749 object = prev_entry->object.vm_object; 750 offset = prev_entry->offset + 751 (prev_entry->end - prev_entry->start); 752 vm_object_reference(object); 753 } 754 755 /* 756 * NOTE: if conditionals fail, object can be NULL here. This occurs 757 * in things like the buffer map where we manage kva but do not manage 758 * backing objects. 759 */ 760 761 /* 762 * Create a new entry 763 */ 764 new_entry = vm_map_entry_create(map); 765 new_entry->start = start; 766 new_entry->end = end; 767 768 new_entry->eflags = protoeflags; 769 new_entry->object.vm_object = object; 770 new_entry->offset = offset; 771 new_entry->avail_ssize = 0; 772 773 new_entry->inheritance = VM_INHERIT_DEFAULT; 774 new_entry->protection = prot; 775 new_entry->max_protection = max; 776 new_entry->wired_count = 0; 777 778 /* 779 * Insert the new entry into the list 780 */ 781 vm_map_entry_link(map, prev_entry, new_entry); 782 map->size += new_entry->end - new_entry->start; 783 784 /* 785 * Update the free space hint 786 */ 787 if ((map->first_free == prev_entry) && 788 (prev_entry->end >= new_entry->start)) { 789 map->first_free = new_entry; 790 } 791 792 #if 0 793 /* 794 * Temporarily removed to avoid MAP_STACK panic, due to 795 * MAP_STACK being a huge hack. Will be added back in 796 * when MAP_STACK (and the user stack mapping) is fixed. 797 */ 798 /* 799 * It may be possible to simplify the entry 800 */ 801 vm_map_simplify_entry(map, new_entry); 802 #endif 803 804 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 805 pmap_object_init_pt(map->pmap, start, 806 object, OFF_TO_IDX(offset), end - start, 807 cow & MAP_PREFAULT_PARTIAL); 808 } 809 810 return (KERN_SUCCESS); 811 } 812 813 /* 814 * Find sufficient space for `length' bytes in the given map, starting at 815 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 816 */ 817 int 818 vm_map_findspace( 819 vm_map_t map, 820 vm_offset_t start, 821 vm_size_t length, 822 vm_offset_t *addr) 823 { 824 vm_map_entry_t entry, next; 825 vm_offset_t end; 826 827 GIANT_REQUIRED; 828 if (start < map->min_offset) 829 start = map->min_offset; 830 if (start > map->max_offset) 831 return (1); 832 833 /* 834 * Look for the first possible address; if there's already something 835 * at this address, we have to start after it. 836 */ 837 if (start == map->min_offset) { 838 if ((entry = map->first_free) != &map->header) 839 start = entry->end; 840 } else { 841 vm_map_entry_t tmp; 842 843 if (vm_map_lookup_entry(map, start, &tmp)) 844 start = tmp->end; 845 entry = tmp; 846 } 847 848 /* 849 * Look through the rest of the map, trying to fit a new region in the 850 * gap between existing regions, or after the very last region. 851 */ 852 for (;; start = (entry = next)->end) { 853 /* 854 * Find the end of the proposed new region. Be sure we didn't 855 * go beyond the end of the map, or wrap around the address; 856 * if so, we lose. Otherwise, if this is the last entry, or 857 * if the proposed new region fits before the next entry, we 858 * win. 859 */ 860 end = start + length; 861 if (end > map->max_offset || end < start) 862 return (1); 863 next = entry->next; 864 if (next == &map->header || next->start >= end) 865 break; 866 } 867 SAVE_HINT(map, entry); 868 *addr = start; 869 if (map == kernel_map) { 870 vm_offset_t ksize; 871 if ((ksize = round_page(start + length)) > kernel_vm_end) { 872 pmap_growkernel(ksize); 873 } 874 } 875 return (0); 876 } 877 878 /* 879 * vm_map_find finds an unallocated region in the target address 880 * map with the given length. The search is defined to be 881 * first-fit from the specified address; the region found is 882 * returned in the same parameter. 883 * 884 * If object is non-NULL, ref count must be bumped by caller 885 * prior to making call to account for the new entry. 886 */ 887 int 888 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 889 vm_offset_t *addr, /* IN/OUT */ 890 vm_size_t length, boolean_t find_space, vm_prot_t prot, 891 vm_prot_t max, int cow) 892 { 893 vm_offset_t start; 894 int result, s = 0; 895 896 GIANT_REQUIRED; 897 898 start = *addr; 899 900 if (map == kmem_map) 901 s = splvm(); 902 903 vm_map_lock(map); 904 if (find_space) { 905 if (vm_map_findspace(map, start, length, addr)) { 906 vm_map_unlock(map); 907 if (map == kmem_map) 908 splx(s); 909 return (KERN_NO_SPACE); 910 } 911 start = *addr; 912 } 913 result = vm_map_insert(map, object, offset, 914 start, start + length, prot, max, cow); 915 vm_map_unlock(map); 916 917 if (map == kmem_map) 918 splx(s); 919 920 return (result); 921 } 922 923 /* 924 * vm_map_simplify_entry: 925 * 926 * Simplify the given map entry by merging with either neighbor. This 927 * routine also has the ability to merge with both neighbors. 928 * 929 * The map must be locked. 930 * 931 * This routine guarentees that the passed entry remains valid (though 932 * possibly extended). When merging, this routine may delete one or 933 * both neighbors. 934 */ 935 void 936 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 937 { 938 vm_map_entry_t next, prev; 939 vm_size_t prevsize, esize; 940 941 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 942 return; 943 944 prev = entry->prev; 945 if (prev != &map->header) { 946 prevsize = prev->end - prev->start; 947 if ( (prev->end == entry->start) && 948 (prev->object.vm_object == entry->object.vm_object) && 949 (!prev->object.vm_object || 950 (prev->offset + prevsize == entry->offset)) && 951 (prev->eflags == entry->eflags) && 952 (prev->protection == entry->protection) && 953 (prev->max_protection == entry->max_protection) && 954 (prev->inheritance == entry->inheritance) && 955 (prev->wired_count == entry->wired_count)) { 956 if (map->first_free == prev) 957 map->first_free = entry; 958 if (map->hint == prev) 959 map->hint = entry; 960 vm_map_entry_unlink(map, prev); 961 entry->start = prev->start; 962 entry->offset = prev->offset; 963 if (prev->object.vm_object) 964 vm_object_deallocate(prev->object.vm_object); 965 vm_map_entry_dispose(map, prev); 966 } 967 } 968 969 next = entry->next; 970 if (next != &map->header) { 971 esize = entry->end - entry->start; 972 if ((entry->end == next->start) && 973 (next->object.vm_object == entry->object.vm_object) && 974 (!entry->object.vm_object || 975 (entry->offset + esize == next->offset)) && 976 (next->eflags == entry->eflags) && 977 (next->protection == entry->protection) && 978 (next->max_protection == entry->max_protection) && 979 (next->inheritance == entry->inheritance) && 980 (next->wired_count == entry->wired_count)) { 981 if (map->first_free == next) 982 map->first_free = entry; 983 if (map->hint == next) 984 map->hint = entry; 985 vm_map_entry_unlink(map, next); 986 entry->end = next->end; 987 if (next->object.vm_object) 988 vm_object_deallocate(next->object.vm_object); 989 vm_map_entry_dispose(map, next); 990 } 991 } 992 } 993 /* 994 * vm_map_clip_start: [ internal use only ] 995 * 996 * Asserts that the given entry begins at or after 997 * the specified address; if necessary, 998 * it splits the entry into two. 999 */ 1000 #define vm_map_clip_start(map, entry, startaddr) \ 1001 { \ 1002 if (startaddr > entry->start) \ 1003 _vm_map_clip_start(map, entry, startaddr); \ 1004 } 1005 1006 /* 1007 * This routine is called only when it is known that 1008 * the entry must be split. 1009 */ 1010 static void 1011 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1012 { 1013 vm_map_entry_t new_entry; 1014 1015 /* 1016 * Split off the front portion -- note that we must insert the new 1017 * entry BEFORE this one, so that this entry has the specified 1018 * starting address. 1019 */ 1020 vm_map_simplify_entry(map, entry); 1021 1022 /* 1023 * If there is no object backing this entry, we might as well create 1024 * one now. If we defer it, an object can get created after the map 1025 * is clipped, and individual objects will be created for the split-up 1026 * map. This is a bit of a hack, but is also about the best place to 1027 * put this improvement. 1028 */ 1029 if (entry->object.vm_object == NULL && !map->system_map) { 1030 vm_object_t object; 1031 object = vm_object_allocate(OBJT_DEFAULT, 1032 atop(entry->end - entry->start)); 1033 entry->object.vm_object = object; 1034 entry->offset = 0; 1035 } 1036 1037 new_entry = vm_map_entry_create(map); 1038 *new_entry = *entry; 1039 1040 new_entry->end = start; 1041 entry->offset += (start - entry->start); 1042 entry->start = start; 1043 1044 vm_map_entry_link(map, entry->prev, new_entry); 1045 1046 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1047 vm_object_reference(new_entry->object.vm_object); 1048 } 1049 } 1050 1051 /* 1052 * vm_map_clip_end: [ internal use only ] 1053 * 1054 * Asserts that the given entry ends at or before 1055 * the specified address; if necessary, 1056 * it splits the entry into two. 1057 */ 1058 #define vm_map_clip_end(map, entry, endaddr) \ 1059 { \ 1060 if (endaddr < entry->end) \ 1061 _vm_map_clip_end(map, entry, endaddr); \ 1062 } 1063 1064 /* 1065 * This routine is called only when it is known that 1066 * the entry must be split. 1067 */ 1068 static void 1069 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1070 { 1071 vm_map_entry_t new_entry; 1072 1073 /* 1074 * If there is no object backing this entry, we might as well create 1075 * one now. If we defer it, an object can get created after the map 1076 * is clipped, and individual objects will be created for the split-up 1077 * map. This is a bit of a hack, but is also about the best place to 1078 * put this improvement. 1079 */ 1080 if (entry->object.vm_object == NULL && !map->system_map) { 1081 vm_object_t object; 1082 object = vm_object_allocate(OBJT_DEFAULT, 1083 atop(entry->end - entry->start)); 1084 entry->object.vm_object = object; 1085 entry->offset = 0; 1086 } 1087 1088 /* 1089 * Create a new entry and insert it AFTER the specified entry 1090 */ 1091 new_entry = vm_map_entry_create(map); 1092 *new_entry = *entry; 1093 1094 new_entry->start = entry->end = end; 1095 new_entry->offset += (end - entry->start); 1096 1097 vm_map_entry_link(map, entry, new_entry); 1098 1099 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1100 vm_object_reference(new_entry->object.vm_object); 1101 } 1102 } 1103 1104 /* 1105 * VM_MAP_RANGE_CHECK: [ internal use only ] 1106 * 1107 * Asserts that the starting and ending region 1108 * addresses fall within the valid range of the map. 1109 */ 1110 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1111 { \ 1112 if (start < vm_map_min(map)) \ 1113 start = vm_map_min(map); \ 1114 if (end > vm_map_max(map)) \ 1115 end = vm_map_max(map); \ 1116 if (start > end) \ 1117 start = end; \ 1118 } 1119 1120 /* 1121 * vm_map_submap: [ kernel use only ] 1122 * 1123 * Mark the given range as handled by a subordinate map. 1124 * 1125 * This range must have been created with vm_map_find, 1126 * and no other operations may have been performed on this 1127 * range prior to calling vm_map_submap. 1128 * 1129 * Only a limited number of operations can be performed 1130 * within this rage after calling vm_map_submap: 1131 * vm_fault 1132 * [Don't try vm_map_copy!] 1133 * 1134 * To remove a submapping, one must first remove the 1135 * range from the superior map, and then destroy the 1136 * submap (if desired). [Better yet, don't try it.] 1137 */ 1138 int 1139 vm_map_submap( 1140 vm_map_t map, 1141 vm_offset_t start, 1142 vm_offset_t end, 1143 vm_map_t submap) 1144 { 1145 vm_map_entry_t entry; 1146 int result = KERN_INVALID_ARGUMENT; 1147 1148 GIANT_REQUIRED; 1149 1150 vm_map_lock(map); 1151 1152 VM_MAP_RANGE_CHECK(map, start, end); 1153 1154 if (vm_map_lookup_entry(map, start, &entry)) { 1155 vm_map_clip_start(map, entry, start); 1156 } else 1157 entry = entry->next; 1158 1159 vm_map_clip_end(map, entry, end); 1160 1161 if ((entry->start == start) && (entry->end == end) && 1162 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1163 (entry->object.vm_object == NULL)) { 1164 entry->object.sub_map = submap; 1165 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1166 result = KERN_SUCCESS; 1167 } 1168 vm_map_unlock(map); 1169 1170 return (result); 1171 } 1172 1173 /* 1174 * vm_map_protect: 1175 * 1176 * Sets the protection of the specified address 1177 * region in the target map. If "set_max" is 1178 * specified, the maximum protection is to be set; 1179 * otherwise, only the current protection is affected. 1180 */ 1181 int 1182 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1183 vm_prot_t new_prot, boolean_t set_max) 1184 { 1185 vm_map_entry_t current; 1186 vm_map_entry_t entry; 1187 1188 vm_map_lock(map); 1189 1190 VM_MAP_RANGE_CHECK(map, start, end); 1191 1192 if (vm_map_lookup_entry(map, start, &entry)) { 1193 vm_map_clip_start(map, entry, start); 1194 } else { 1195 entry = entry->next; 1196 } 1197 1198 /* 1199 * Make a first pass to check for protection violations. 1200 */ 1201 current = entry; 1202 while ((current != &map->header) && (current->start < end)) { 1203 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1204 vm_map_unlock(map); 1205 return (KERN_INVALID_ARGUMENT); 1206 } 1207 if ((new_prot & current->max_protection) != new_prot) { 1208 vm_map_unlock(map); 1209 return (KERN_PROTECTION_FAILURE); 1210 } 1211 current = current->next; 1212 } 1213 1214 /* 1215 * Go back and fix up protections. [Note that clipping is not 1216 * necessary the second time.] 1217 */ 1218 current = entry; 1219 while ((current != &map->header) && (current->start < end)) { 1220 vm_prot_t old_prot; 1221 1222 vm_map_clip_end(map, current, end); 1223 1224 old_prot = current->protection; 1225 if (set_max) 1226 current->protection = 1227 (current->max_protection = new_prot) & 1228 old_prot; 1229 else 1230 current->protection = new_prot; 1231 1232 /* 1233 * Update physical map if necessary. Worry about copy-on-write 1234 * here -- CHECK THIS XXX 1235 */ 1236 if (current->protection != old_prot) { 1237 mtx_lock(&Giant); 1238 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1239 VM_PROT_ALL) 1240 pmap_protect(map->pmap, current->start, 1241 current->end, 1242 current->protection & MASK(current)); 1243 #undef MASK 1244 mtx_unlock(&Giant); 1245 } 1246 vm_map_simplify_entry(map, current); 1247 current = current->next; 1248 } 1249 vm_map_unlock(map); 1250 return (KERN_SUCCESS); 1251 } 1252 1253 /* 1254 * vm_map_madvise: 1255 * 1256 * This routine traverses a processes map handling the madvise 1257 * system call. Advisories are classified as either those effecting 1258 * the vm_map_entry structure, or those effecting the underlying 1259 * objects. 1260 */ 1261 int 1262 vm_map_madvise( 1263 vm_map_t map, 1264 vm_offset_t start, 1265 vm_offset_t end, 1266 int behav) 1267 { 1268 vm_map_entry_t current, entry; 1269 int modify_map = 0; 1270 1271 /* 1272 * Some madvise calls directly modify the vm_map_entry, in which case 1273 * we need to use an exclusive lock on the map and we need to perform 1274 * various clipping operations. Otherwise we only need a read-lock 1275 * on the map. 1276 */ 1277 switch(behav) { 1278 case MADV_NORMAL: 1279 case MADV_SEQUENTIAL: 1280 case MADV_RANDOM: 1281 case MADV_NOSYNC: 1282 case MADV_AUTOSYNC: 1283 case MADV_NOCORE: 1284 case MADV_CORE: 1285 modify_map = 1; 1286 vm_map_lock(map); 1287 break; 1288 case MADV_WILLNEED: 1289 case MADV_DONTNEED: 1290 case MADV_FREE: 1291 vm_map_lock_read(map); 1292 break; 1293 default: 1294 return (KERN_INVALID_ARGUMENT); 1295 } 1296 1297 /* 1298 * Locate starting entry and clip if necessary. 1299 */ 1300 VM_MAP_RANGE_CHECK(map, start, end); 1301 1302 if (vm_map_lookup_entry(map, start, &entry)) { 1303 if (modify_map) 1304 vm_map_clip_start(map, entry, start); 1305 } else { 1306 entry = entry->next; 1307 } 1308 1309 if (modify_map) { 1310 /* 1311 * madvise behaviors that are implemented in the vm_map_entry. 1312 * 1313 * We clip the vm_map_entry so that behavioral changes are 1314 * limited to the specified address range. 1315 */ 1316 for (current = entry; 1317 (current != &map->header) && (current->start < end); 1318 current = current->next 1319 ) { 1320 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1321 continue; 1322 1323 vm_map_clip_end(map, current, end); 1324 1325 switch (behav) { 1326 case MADV_NORMAL: 1327 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1328 break; 1329 case MADV_SEQUENTIAL: 1330 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1331 break; 1332 case MADV_RANDOM: 1333 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1334 break; 1335 case MADV_NOSYNC: 1336 current->eflags |= MAP_ENTRY_NOSYNC; 1337 break; 1338 case MADV_AUTOSYNC: 1339 current->eflags &= ~MAP_ENTRY_NOSYNC; 1340 break; 1341 case MADV_NOCORE: 1342 current->eflags |= MAP_ENTRY_NOCOREDUMP; 1343 break; 1344 case MADV_CORE: 1345 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 1346 break; 1347 default: 1348 break; 1349 } 1350 vm_map_simplify_entry(map, current); 1351 } 1352 vm_map_unlock(map); 1353 } else { 1354 vm_pindex_t pindex; 1355 int count; 1356 1357 /* 1358 * madvise behaviors that are implemented in the underlying 1359 * vm_object. 1360 * 1361 * Since we don't clip the vm_map_entry, we have to clip 1362 * the vm_object pindex and count. 1363 */ 1364 for (current = entry; 1365 (current != &map->header) && (current->start < end); 1366 current = current->next 1367 ) { 1368 vm_offset_t useStart; 1369 1370 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1371 continue; 1372 1373 pindex = OFF_TO_IDX(current->offset); 1374 count = atop(current->end - current->start); 1375 useStart = current->start; 1376 1377 if (current->start < start) { 1378 pindex += atop(start - current->start); 1379 count -= atop(start - current->start); 1380 useStart = start; 1381 } 1382 if (current->end > end) 1383 count -= atop(current->end - end); 1384 1385 if (count <= 0) 1386 continue; 1387 1388 vm_object_madvise(current->object.vm_object, 1389 pindex, count, behav); 1390 if (behav == MADV_WILLNEED) { 1391 mtx_lock(&Giant); 1392 pmap_object_init_pt( 1393 map->pmap, 1394 useStart, 1395 current->object.vm_object, 1396 pindex, 1397 (count << PAGE_SHIFT), 1398 MAP_PREFAULT_MADVISE 1399 ); 1400 mtx_unlock(&Giant); 1401 } 1402 } 1403 vm_map_unlock_read(map); 1404 } 1405 return (0); 1406 } 1407 1408 1409 /* 1410 * vm_map_inherit: 1411 * 1412 * Sets the inheritance of the specified address 1413 * range in the target map. Inheritance 1414 * affects how the map will be shared with 1415 * child maps at the time of vm_map_fork. 1416 */ 1417 int 1418 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1419 vm_inherit_t new_inheritance) 1420 { 1421 vm_map_entry_t entry; 1422 vm_map_entry_t temp_entry; 1423 1424 switch (new_inheritance) { 1425 case VM_INHERIT_NONE: 1426 case VM_INHERIT_COPY: 1427 case VM_INHERIT_SHARE: 1428 break; 1429 default: 1430 return (KERN_INVALID_ARGUMENT); 1431 } 1432 vm_map_lock(map); 1433 VM_MAP_RANGE_CHECK(map, start, end); 1434 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1435 entry = temp_entry; 1436 vm_map_clip_start(map, entry, start); 1437 } else 1438 entry = temp_entry->next; 1439 while ((entry != &map->header) && (entry->start < end)) { 1440 vm_map_clip_end(map, entry, end); 1441 entry->inheritance = new_inheritance; 1442 vm_map_simplify_entry(map, entry); 1443 entry = entry->next; 1444 } 1445 vm_map_unlock(map); 1446 return (KERN_SUCCESS); 1447 } 1448 1449 /* 1450 * Implement the semantics of mlock 1451 */ 1452 int 1453 vm_map_user_pageable( 1454 vm_map_t map, 1455 vm_offset_t start, 1456 vm_offset_t end, 1457 boolean_t new_pageable) 1458 { 1459 vm_map_entry_t entry; 1460 vm_map_entry_t start_entry; 1461 vm_offset_t estart; 1462 vm_offset_t eend; 1463 int rv; 1464 1465 vm_map_lock(map); 1466 VM_MAP_RANGE_CHECK(map, start, end); 1467 1468 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1469 vm_map_unlock(map); 1470 return (KERN_INVALID_ADDRESS); 1471 } 1472 1473 if (new_pageable) { 1474 1475 entry = start_entry; 1476 vm_map_clip_start(map, entry, start); 1477 1478 /* 1479 * Now decrement the wiring count for each region. If a region 1480 * becomes completely unwired, unwire its physical pages and 1481 * mappings. 1482 */ 1483 while ((entry != &map->header) && (entry->start < end)) { 1484 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1485 vm_map_clip_end(map, entry, end); 1486 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1487 entry->wired_count--; 1488 if (entry->wired_count == 0) 1489 vm_fault_unwire(map, entry->start, entry->end); 1490 } 1491 vm_map_simplify_entry(map,entry); 1492 entry = entry->next; 1493 } 1494 } else { 1495 1496 entry = start_entry; 1497 1498 while ((entry != &map->header) && (entry->start < end)) { 1499 1500 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1501 entry = entry->next; 1502 continue; 1503 } 1504 1505 if (entry->wired_count != 0) { 1506 entry->wired_count++; 1507 entry->eflags |= MAP_ENTRY_USER_WIRED; 1508 entry = entry->next; 1509 continue; 1510 } 1511 1512 /* Here on entry being newly wired */ 1513 1514 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1515 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1516 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) { 1517 1518 vm_object_shadow(&entry->object.vm_object, 1519 &entry->offset, 1520 atop(entry->end - entry->start)); 1521 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1522 1523 } else if (entry->object.vm_object == NULL && 1524 !map->system_map) { 1525 1526 entry->object.vm_object = 1527 vm_object_allocate(OBJT_DEFAULT, 1528 atop(entry->end - entry->start)); 1529 entry->offset = (vm_offset_t) 0; 1530 1531 } 1532 } 1533 1534 vm_map_clip_start(map, entry, start); 1535 vm_map_clip_end(map, entry, end); 1536 1537 entry->wired_count++; 1538 entry->eflags |= MAP_ENTRY_USER_WIRED; 1539 estart = entry->start; 1540 eend = entry->end; 1541 1542 /* First we need to allow map modifications */ 1543 vm_map_set_recursive(map); 1544 vm_map_lock_downgrade(map); 1545 map->timestamp++; 1546 1547 rv = vm_fault_user_wire(map, entry->start, entry->end); 1548 if (rv) { 1549 1550 entry->wired_count--; 1551 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1552 1553 vm_map_clear_recursive(map); 1554 vm_map_unlock(map); 1555 1556 /* 1557 * At this point, the map is unlocked, and 1558 * entry might no longer be valid. Use copy 1559 * of entry start value obtained while entry 1560 * was valid. 1561 */ 1562 (void) vm_map_user_pageable(map, start, estart, 1563 TRUE); 1564 return rv; 1565 } 1566 1567 vm_map_clear_recursive(map); 1568 if (vm_map_lock_upgrade(map)) { 1569 vm_map_lock(map); 1570 if (vm_map_lookup_entry(map, estart, &entry) 1571 == FALSE) { 1572 vm_map_unlock(map); 1573 /* 1574 * vm_fault_user_wire succeded, thus 1575 * the area between start and eend 1576 * is wired and has to be unwired 1577 * here as part of the cleanup. 1578 */ 1579 (void) vm_map_user_pageable(map, 1580 start, 1581 eend, 1582 TRUE); 1583 return (KERN_INVALID_ADDRESS); 1584 } 1585 } 1586 vm_map_simplify_entry(map,entry); 1587 } 1588 } 1589 map->timestamp++; 1590 vm_map_unlock(map); 1591 return KERN_SUCCESS; 1592 } 1593 1594 /* 1595 * vm_map_pageable: 1596 * 1597 * Sets the pageability of the specified address 1598 * range in the target map. Regions specified 1599 * as not pageable require locked-down physical 1600 * memory and physical page maps. 1601 * 1602 * The map must not be locked, but a reference 1603 * must remain to the map throughout the call. 1604 */ 1605 int 1606 vm_map_pageable( 1607 vm_map_t map, 1608 vm_offset_t start, 1609 vm_offset_t end, 1610 boolean_t new_pageable) 1611 { 1612 vm_map_entry_t entry; 1613 vm_map_entry_t start_entry; 1614 vm_offset_t failed = 0; 1615 int rv; 1616 1617 GIANT_REQUIRED; 1618 1619 vm_map_lock(map); 1620 1621 VM_MAP_RANGE_CHECK(map, start, end); 1622 1623 /* 1624 * Only one pageability change may take place at one time, since 1625 * vm_fault assumes it will be called only once for each 1626 * wiring/unwiring. Therefore, we have to make sure we're actually 1627 * changing the pageability for the entire region. We do so before 1628 * making any changes. 1629 */ 1630 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1631 vm_map_unlock(map); 1632 return (KERN_INVALID_ADDRESS); 1633 } 1634 entry = start_entry; 1635 1636 /* 1637 * Actions are rather different for wiring and unwiring, so we have 1638 * two separate cases. 1639 */ 1640 if (new_pageable) { 1641 vm_map_clip_start(map, entry, start); 1642 1643 /* 1644 * Unwiring. First ensure that the range to be unwired is 1645 * really wired down and that there are no holes. 1646 */ 1647 while ((entry != &map->header) && (entry->start < end)) { 1648 if (entry->wired_count == 0 || 1649 (entry->end < end && 1650 (entry->next == &map->header || 1651 entry->next->start > entry->end))) { 1652 vm_map_unlock(map); 1653 return (KERN_INVALID_ARGUMENT); 1654 } 1655 entry = entry->next; 1656 } 1657 1658 /* 1659 * Now decrement the wiring count for each region. If a region 1660 * becomes completely unwired, unwire its physical pages and 1661 * mappings. 1662 */ 1663 entry = start_entry; 1664 while ((entry != &map->header) && (entry->start < end)) { 1665 vm_map_clip_end(map, entry, end); 1666 1667 entry->wired_count--; 1668 if (entry->wired_count == 0) 1669 vm_fault_unwire(map, entry->start, entry->end); 1670 1671 vm_map_simplify_entry(map, entry); 1672 1673 entry = entry->next; 1674 } 1675 } else { 1676 /* 1677 * Wiring. We must do this in two passes: 1678 * 1679 * 1. Holding the write lock, we create any shadow or zero-fill 1680 * objects that need to be created. Then we clip each map 1681 * entry to the region to be wired and increment its wiring 1682 * count. We create objects before clipping the map entries 1683 * to avoid object proliferation. 1684 * 1685 * 2. We downgrade to a read lock, and call vm_fault_wire to 1686 * fault in the pages for any newly wired area (wired_count is 1687 * 1). 1688 * 1689 * Downgrading to a read lock for vm_fault_wire avoids a possible 1690 * deadlock with another process that may have faulted on one 1691 * of the pages to be wired (it would mark the page busy, 1692 * blocking us, then in turn block on the map lock that we 1693 * hold). Because of problems in the recursive lock package, 1694 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 1695 * any actions that require the write lock must be done 1696 * beforehand. Because we keep the read lock on the map, the 1697 * copy-on-write status of the entries we modify here cannot 1698 * change. 1699 */ 1700 1701 /* 1702 * Pass 1. 1703 */ 1704 while ((entry != &map->header) && (entry->start < end)) { 1705 if (entry->wired_count == 0) { 1706 1707 /* 1708 * Perform actions of vm_map_lookup that need 1709 * the write lock on the map: create a shadow 1710 * object for a copy-on-write region, or an 1711 * object for a zero-fill region. 1712 * 1713 * We don't have to do this for entries that 1714 * point to sub maps, because we won't 1715 * hold the lock on the sub map. 1716 */ 1717 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1718 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1719 if (copyflag && 1720 ((entry->protection & VM_PROT_WRITE) != 0)) { 1721 1722 vm_object_shadow(&entry->object.vm_object, 1723 &entry->offset, 1724 atop(entry->end - entry->start)); 1725 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1726 } else if (entry->object.vm_object == NULL && 1727 !map->system_map) { 1728 entry->object.vm_object = 1729 vm_object_allocate(OBJT_DEFAULT, 1730 atop(entry->end - entry->start)); 1731 entry->offset = (vm_offset_t) 0; 1732 } 1733 } 1734 } 1735 vm_map_clip_start(map, entry, start); 1736 vm_map_clip_end(map, entry, end); 1737 entry->wired_count++; 1738 1739 /* 1740 * Check for holes 1741 */ 1742 if (entry->end < end && 1743 (entry->next == &map->header || 1744 entry->next->start > entry->end)) { 1745 /* 1746 * Found one. Object creation actions do not 1747 * need to be undone, but the wired counts 1748 * need to be restored. 1749 */ 1750 while (entry != &map->header && entry->end > start) { 1751 entry->wired_count--; 1752 entry = entry->prev; 1753 } 1754 vm_map_unlock(map); 1755 return (KERN_INVALID_ARGUMENT); 1756 } 1757 entry = entry->next; 1758 } 1759 1760 /* 1761 * Pass 2. 1762 */ 1763 1764 /* 1765 * HACK HACK HACK HACK 1766 * 1767 * If we are wiring in the kernel map or a submap of it, 1768 * unlock the map to avoid deadlocks. We trust that the 1769 * kernel is well-behaved, and therefore will not do 1770 * anything destructive to this region of the map while 1771 * we have it unlocked. We cannot trust user processes 1772 * to do the same. 1773 * 1774 * HACK HACK HACK HACK 1775 */ 1776 if (vm_map_pmap(map) == kernel_pmap) { 1777 vm_map_unlock(map); /* trust me ... */ 1778 } else { 1779 vm_map_lock_downgrade(map); 1780 } 1781 1782 rv = 0; 1783 entry = start_entry; 1784 while (entry != &map->header && entry->start < end) { 1785 /* 1786 * If vm_fault_wire fails for any page we need to undo 1787 * what has been done. We decrement the wiring count 1788 * for those pages which have not yet been wired (now) 1789 * and unwire those that have (later). 1790 * 1791 * XXX this violates the locking protocol on the map, 1792 * needs to be fixed. 1793 */ 1794 if (rv) 1795 entry->wired_count--; 1796 else if (entry->wired_count == 1) { 1797 rv = vm_fault_wire(map, entry->start, entry->end); 1798 if (rv) { 1799 failed = entry->start; 1800 entry->wired_count--; 1801 } 1802 } 1803 entry = entry->next; 1804 } 1805 1806 if (vm_map_pmap(map) == kernel_pmap) { 1807 vm_map_lock(map); 1808 } 1809 if (rv) { 1810 vm_map_unlock(map); 1811 (void) vm_map_pageable(map, start, failed, TRUE); 1812 return (rv); 1813 } 1814 /* 1815 * An exclusive lock on the map is needed in order to call 1816 * vm_map_simplify_entry(). If the current lock on the map 1817 * is only a shared lock, an upgrade is needed. 1818 */ 1819 if (vm_map_pmap(map) != kernel_pmap && 1820 vm_map_lock_upgrade(map)) { 1821 vm_map_lock(map); 1822 if (vm_map_lookup_entry(map, start, &start_entry) == 1823 FALSE) { 1824 vm_map_unlock(map); 1825 return KERN_SUCCESS; 1826 } 1827 } 1828 vm_map_simplify_entry(map, start_entry); 1829 } 1830 1831 vm_map_unlock(map); 1832 1833 return (KERN_SUCCESS); 1834 } 1835 1836 /* 1837 * vm_map_clean 1838 * 1839 * Push any dirty cached pages in the address range to their pager. 1840 * If syncio is TRUE, dirty pages are written synchronously. 1841 * If invalidate is TRUE, any cached pages are freed as well. 1842 * 1843 * Returns an error if any part of the specified range is not mapped. 1844 */ 1845 int 1846 vm_map_clean( 1847 vm_map_t map, 1848 vm_offset_t start, 1849 vm_offset_t end, 1850 boolean_t syncio, 1851 boolean_t invalidate) 1852 { 1853 vm_map_entry_t current; 1854 vm_map_entry_t entry; 1855 vm_size_t size; 1856 vm_object_t object; 1857 vm_ooffset_t offset; 1858 1859 GIANT_REQUIRED; 1860 1861 vm_map_lock_read(map); 1862 VM_MAP_RANGE_CHECK(map, start, end); 1863 if (!vm_map_lookup_entry(map, start, &entry)) { 1864 vm_map_unlock_read(map); 1865 return (KERN_INVALID_ADDRESS); 1866 } 1867 /* 1868 * Make a first pass to check for holes. 1869 */ 1870 for (current = entry; current->start < end; current = current->next) { 1871 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1872 vm_map_unlock_read(map); 1873 return (KERN_INVALID_ARGUMENT); 1874 } 1875 if (end > current->end && 1876 (current->next == &map->header || 1877 current->end != current->next->start)) { 1878 vm_map_unlock_read(map); 1879 return (KERN_INVALID_ADDRESS); 1880 } 1881 } 1882 1883 if (invalidate) 1884 pmap_remove(vm_map_pmap(map), start, end); 1885 /* 1886 * Make a second pass, cleaning/uncaching pages from the indicated 1887 * objects as we go. 1888 */ 1889 for (current = entry; current->start < end; current = current->next) { 1890 offset = current->offset + (start - current->start); 1891 size = (end <= current->end ? end : current->end) - start; 1892 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1893 vm_map_t smap; 1894 vm_map_entry_t tentry; 1895 vm_size_t tsize; 1896 1897 smap = current->object.sub_map; 1898 vm_map_lock_read(smap); 1899 (void) vm_map_lookup_entry(smap, offset, &tentry); 1900 tsize = tentry->end - offset; 1901 if (tsize < size) 1902 size = tsize; 1903 object = tentry->object.vm_object; 1904 offset = tentry->offset + (offset - tentry->start); 1905 vm_map_unlock_read(smap); 1906 } else { 1907 object = current->object.vm_object; 1908 } 1909 /* 1910 * Note that there is absolutely no sense in writing out 1911 * anonymous objects, so we track down the vnode object 1912 * to write out. 1913 * We invalidate (remove) all pages from the address space 1914 * anyway, for semantic correctness. 1915 * 1916 * note: certain anonymous maps, such as MAP_NOSYNC maps, 1917 * may start out with a NULL object. 1918 */ 1919 while (object && object->backing_object) { 1920 object = object->backing_object; 1921 offset += object->backing_object_offset; 1922 if (object->size < OFF_TO_IDX(offset + size)) 1923 size = IDX_TO_OFF(object->size) - offset; 1924 } 1925 if (object && (object->type == OBJT_VNODE) && 1926 (current->protection & VM_PROT_WRITE)) { 1927 /* 1928 * Flush pages if writing is allowed, invalidate them 1929 * if invalidation requested. Pages undergoing I/O 1930 * will be ignored by vm_object_page_remove(). 1931 * 1932 * We cannot lock the vnode and then wait for paging 1933 * to complete without deadlocking against vm_fault. 1934 * Instead we simply call vm_object_page_remove() and 1935 * allow it to block internally on a page-by-page 1936 * basis when it encounters pages undergoing async 1937 * I/O. 1938 */ 1939 int flags; 1940 1941 vm_object_reference(object); 1942 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread); 1943 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1944 flags |= invalidate ? OBJPC_INVAL : 0; 1945 vm_object_page_clean(object, 1946 OFF_TO_IDX(offset), 1947 OFF_TO_IDX(offset + size + PAGE_MASK), 1948 flags); 1949 if (invalidate) { 1950 /*vm_object_pip_wait(object, "objmcl");*/ 1951 vm_object_page_remove(object, 1952 OFF_TO_IDX(offset), 1953 OFF_TO_IDX(offset + size + PAGE_MASK), 1954 FALSE); 1955 } 1956 VOP_UNLOCK(object->handle, 0, curthread); 1957 vm_object_deallocate(object); 1958 } 1959 start += size; 1960 } 1961 1962 vm_map_unlock_read(map); 1963 return (KERN_SUCCESS); 1964 } 1965 1966 /* 1967 * vm_map_entry_unwire: [ internal use only ] 1968 * 1969 * Make the region specified by this entry pageable. 1970 * 1971 * The map in question should be locked. 1972 * [This is the reason for this routine's existence.] 1973 */ 1974 static void 1975 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 1976 { 1977 vm_fault_unwire(map, entry->start, entry->end); 1978 entry->wired_count = 0; 1979 } 1980 1981 /* 1982 * vm_map_entry_delete: [ internal use only ] 1983 * 1984 * Deallocate the given entry from the target map. 1985 */ 1986 static void 1987 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 1988 { 1989 vm_map_entry_unlink(map, entry); 1990 map->size -= entry->end - entry->start; 1991 1992 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1993 vm_object_deallocate(entry->object.vm_object); 1994 } 1995 1996 vm_map_entry_dispose(map, entry); 1997 } 1998 1999 /* 2000 * vm_map_delete: [ internal use only ] 2001 * 2002 * Deallocates the given address range from the target 2003 * map. 2004 */ 2005 int 2006 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2007 { 2008 vm_object_t object; 2009 vm_map_entry_t entry; 2010 vm_map_entry_t first_entry; 2011 2012 GIANT_REQUIRED; 2013 2014 /* 2015 * Find the start of the region, and clip it 2016 */ 2017 if (!vm_map_lookup_entry(map, start, &first_entry)) 2018 entry = first_entry->next; 2019 else { 2020 entry = first_entry; 2021 vm_map_clip_start(map, entry, start); 2022 /* 2023 * Fix the lookup hint now, rather than each time though the 2024 * loop. 2025 */ 2026 SAVE_HINT(map, entry->prev); 2027 } 2028 2029 /* 2030 * Save the free space hint 2031 */ 2032 if (entry == &map->header) { 2033 map->first_free = &map->header; 2034 } else if (map->first_free->start >= start) { 2035 map->first_free = entry->prev; 2036 } 2037 2038 /* 2039 * Step through all entries in this region 2040 */ 2041 while ((entry != &map->header) && (entry->start < end)) { 2042 vm_map_entry_t next; 2043 vm_offset_t s, e; 2044 vm_pindex_t offidxstart, offidxend, count; 2045 2046 vm_map_clip_end(map, entry, end); 2047 2048 s = entry->start; 2049 e = entry->end; 2050 next = entry->next; 2051 2052 offidxstart = OFF_TO_IDX(entry->offset); 2053 count = OFF_TO_IDX(e - s); 2054 object = entry->object.vm_object; 2055 2056 /* 2057 * Unwire before removing addresses from the pmap; otherwise, 2058 * unwiring will put the entries back in the pmap. 2059 */ 2060 if (entry->wired_count != 0) { 2061 vm_map_entry_unwire(map, entry); 2062 } 2063 2064 offidxend = offidxstart + count; 2065 2066 if ((object == kernel_object) || (object == kmem_object)) { 2067 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2068 } else { 2069 pmap_remove(map->pmap, s, e); 2070 if (object != NULL && 2071 object->ref_count != 1 && 2072 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && 2073 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2074 vm_object_collapse(object); 2075 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2076 if (object->type == OBJT_SWAP) { 2077 swap_pager_freespace(object, offidxstart, count); 2078 } 2079 if (offidxend >= object->size && 2080 offidxstart < object->size) { 2081 object->size = offidxstart; 2082 } 2083 } 2084 } 2085 2086 /* 2087 * Delete the entry (which may delete the object) only after 2088 * removing all pmap entries pointing to its pages. 2089 * (Otherwise, its page frames may be reallocated, and any 2090 * modify bits will be set in the wrong object!) 2091 */ 2092 vm_map_entry_delete(map, entry); 2093 entry = next; 2094 } 2095 return (KERN_SUCCESS); 2096 } 2097 2098 /* 2099 * vm_map_remove: 2100 * 2101 * Remove the given address range from the target map. 2102 * This is the exported form of vm_map_delete. 2103 */ 2104 int 2105 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2106 { 2107 int result, s = 0; 2108 2109 GIANT_REQUIRED; 2110 2111 if (map == kmem_map) 2112 s = splvm(); 2113 2114 vm_map_lock(map); 2115 VM_MAP_RANGE_CHECK(map, start, end); 2116 result = vm_map_delete(map, start, end); 2117 vm_map_unlock(map); 2118 2119 if (map == kmem_map) 2120 splx(s); 2121 2122 return (result); 2123 } 2124 2125 /* 2126 * vm_map_check_protection: 2127 * 2128 * Assert that the target map allows the specified 2129 * privilege on the entire address region given. 2130 * The entire region must be allocated. 2131 */ 2132 boolean_t 2133 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2134 vm_prot_t protection) 2135 { 2136 vm_map_entry_t entry; 2137 vm_map_entry_t tmp_entry; 2138 2139 vm_map_lock_read(map); 2140 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 2141 vm_map_unlock_read(map); 2142 return (FALSE); 2143 } 2144 entry = tmp_entry; 2145 2146 while (start < end) { 2147 if (entry == &map->header) { 2148 vm_map_unlock_read(map); 2149 return (FALSE); 2150 } 2151 /* 2152 * No holes allowed! 2153 */ 2154 if (start < entry->start) { 2155 vm_map_unlock_read(map); 2156 return (FALSE); 2157 } 2158 /* 2159 * Check protection associated with entry. 2160 */ 2161 if ((entry->protection & protection) != protection) { 2162 vm_map_unlock_read(map); 2163 return (FALSE); 2164 } 2165 /* go to next entry */ 2166 start = entry->end; 2167 entry = entry->next; 2168 } 2169 vm_map_unlock_read(map); 2170 return (TRUE); 2171 } 2172 2173 /* 2174 * Split the pages in a map entry into a new object. This affords 2175 * easier removal of unused pages, and keeps object inheritance from 2176 * being a negative impact on memory usage. 2177 */ 2178 static void 2179 vm_map_split(vm_map_entry_t entry) 2180 { 2181 vm_page_t m; 2182 vm_object_t orig_object, new_object, source; 2183 vm_offset_t s, e; 2184 vm_pindex_t offidxstart, offidxend, idx; 2185 vm_size_t size; 2186 vm_ooffset_t offset; 2187 2188 GIANT_REQUIRED; 2189 2190 orig_object = entry->object.vm_object; 2191 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 2192 return; 2193 if (orig_object->ref_count <= 1) 2194 return; 2195 2196 offset = entry->offset; 2197 s = entry->start; 2198 e = entry->end; 2199 2200 offidxstart = OFF_TO_IDX(offset); 2201 offidxend = offidxstart + OFF_TO_IDX(e - s); 2202 size = offidxend - offidxstart; 2203 2204 new_object = vm_pager_allocate(orig_object->type, 2205 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL); 2206 if (new_object == NULL) 2207 return; 2208 2209 source = orig_object->backing_object; 2210 if (source != NULL) { 2211 vm_object_reference(source); /* Referenced by new_object */ 2212 TAILQ_INSERT_TAIL(&source->shadow_head, 2213 new_object, shadow_list); 2214 vm_object_clear_flag(source, OBJ_ONEMAPPING); 2215 new_object->backing_object_offset = 2216 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart); 2217 new_object->backing_object = source; 2218 source->shadow_count++; 2219 source->generation++; 2220 } 2221 2222 for (idx = 0; idx < size; idx++) { 2223 vm_page_t m; 2224 2225 retry: 2226 m = vm_page_lookup(orig_object, offidxstart + idx); 2227 if (m == NULL) 2228 continue; 2229 2230 /* 2231 * We must wait for pending I/O to complete before we can 2232 * rename the page. 2233 * 2234 * We do not have to VM_PROT_NONE the page as mappings should 2235 * not be changed by this operation. 2236 */ 2237 if (vm_page_sleep_busy(m, TRUE, "spltwt")) 2238 goto retry; 2239 2240 vm_page_busy(m); 2241 vm_page_rename(m, new_object, idx); 2242 /* page automatically made dirty by rename and cache handled */ 2243 vm_page_busy(m); 2244 } 2245 2246 if (orig_object->type == OBJT_SWAP) { 2247 vm_object_pip_add(orig_object, 1); 2248 /* 2249 * copy orig_object pages into new_object 2250 * and destroy unneeded pages in 2251 * shadow object. 2252 */ 2253 swap_pager_copy(orig_object, new_object, offidxstart, 0); 2254 vm_object_pip_wakeup(orig_object); 2255 } 2256 2257 for (idx = 0; idx < size; idx++) { 2258 m = vm_page_lookup(new_object, idx); 2259 if (m) { 2260 vm_page_wakeup(m); 2261 } 2262 } 2263 2264 entry->object.vm_object = new_object; 2265 entry->offset = 0LL; 2266 vm_object_deallocate(orig_object); 2267 } 2268 2269 /* 2270 * vm_map_copy_entry: 2271 * 2272 * Copies the contents of the source entry to the destination 2273 * entry. The entries *must* be aligned properly. 2274 */ 2275 static void 2276 vm_map_copy_entry( 2277 vm_map_t src_map, 2278 vm_map_t dst_map, 2279 vm_map_entry_t src_entry, 2280 vm_map_entry_t dst_entry) 2281 { 2282 vm_object_t src_object; 2283 2284 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2285 return; 2286 2287 if (src_entry->wired_count == 0) { 2288 2289 /* 2290 * If the source entry is marked needs_copy, it is already 2291 * write-protected. 2292 */ 2293 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2294 pmap_protect(src_map->pmap, 2295 src_entry->start, 2296 src_entry->end, 2297 src_entry->protection & ~VM_PROT_WRITE); 2298 } 2299 2300 /* 2301 * Make a copy of the object. 2302 */ 2303 if ((src_object = src_entry->object.vm_object) != NULL) { 2304 2305 if ((src_object->handle == NULL) && 2306 (src_object->type == OBJT_DEFAULT || 2307 src_object->type == OBJT_SWAP)) { 2308 vm_object_collapse(src_object); 2309 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2310 vm_map_split(src_entry); 2311 src_object = src_entry->object.vm_object; 2312 } 2313 } 2314 2315 vm_object_reference(src_object); 2316 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2317 dst_entry->object.vm_object = src_object; 2318 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2319 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2320 dst_entry->offset = src_entry->offset; 2321 } else { 2322 dst_entry->object.vm_object = NULL; 2323 dst_entry->offset = 0; 2324 } 2325 2326 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2327 dst_entry->end - dst_entry->start, src_entry->start); 2328 } else { 2329 /* 2330 * Of course, wired down pages can't be set copy-on-write. 2331 * Cause wired pages to be copied into the new map by 2332 * simulating faults (the new pages are pageable) 2333 */ 2334 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2335 } 2336 } 2337 2338 /* 2339 * vmspace_fork: 2340 * Create a new process vmspace structure and vm_map 2341 * based on those of an existing process. The new map 2342 * is based on the old map, according to the inheritance 2343 * values on the regions in that map. 2344 * 2345 * The source map must not be locked. 2346 */ 2347 struct vmspace * 2348 vmspace_fork(struct vmspace *vm1) 2349 { 2350 struct vmspace *vm2; 2351 vm_map_t old_map = &vm1->vm_map; 2352 vm_map_t new_map; 2353 vm_map_entry_t old_entry; 2354 vm_map_entry_t new_entry; 2355 vm_object_t object; 2356 2357 GIANT_REQUIRED; 2358 2359 vm_map_lock(old_map); 2360 old_map->infork = 1; 2361 2362 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2363 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2364 (caddr_t) &vm1->vm_endcopy - (caddr_t) &vm1->vm_startcopy); 2365 new_map = &vm2->vm_map; /* XXX */ 2366 new_map->timestamp = 1; 2367 2368 old_entry = old_map->header.next; 2369 2370 while (old_entry != &old_map->header) { 2371 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2372 panic("vm_map_fork: encountered a submap"); 2373 2374 switch (old_entry->inheritance) { 2375 case VM_INHERIT_NONE: 2376 break; 2377 2378 case VM_INHERIT_SHARE: 2379 /* 2380 * Clone the entry, creating the shared object if necessary. 2381 */ 2382 object = old_entry->object.vm_object; 2383 if (object == NULL) { 2384 object = vm_object_allocate(OBJT_DEFAULT, 2385 atop(old_entry->end - old_entry->start)); 2386 old_entry->object.vm_object = object; 2387 old_entry->offset = (vm_offset_t) 0; 2388 } 2389 2390 /* 2391 * Add the reference before calling vm_object_shadow 2392 * to insure that a shadow object is created. 2393 */ 2394 vm_object_reference(object); 2395 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2396 vm_object_shadow(&old_entry->object.vm_object, 2397 &old_entry->offset, 2398 atop(old_entry->end - old_entry->start)); 2399 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2400 /* Transfer the second reference too. */ 2401 vm_object_reference( 2402 old_entry->object.vm_object); 2403 vm_object_deallocate(object); 2404 object = old_entry->object.vm_object; 2405 } 2406 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2407 2408 /* 2409 * Clone the entry, referencing the shared object. 2410 */ 2411 new_entry = vm_map_entry_create(new_map); 2412 *new_entry = *old_entry; 2413 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2414 new_entry->wired_count = 0; 2415 2416 /* 2417 * Insert the entry into the new map -- we know we're 2418 * inserting at the end of the new map. 2419 */ 2420 vm_map_entry_link(new_map, new_map->header.prev, 2421 new_entry); 2422 2423 /* 2424 * Update the physical map 2425 */ 2426 pmap_copy(new_map->pmap, old_map->pmap, 2427 new_entry->start, 2428 (old_entry->end - old_entry->start), 2429 old_entry->start); 2430 break; 2431 2432 case VM_INHERIT_COPY: 2433 /* 2434 * Clone the entry and link into the map. 2435 */ 2436 new_entry = vm_map_entry_create(new_map); 2437 *new_entry = *old_entry; 2438 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2439 new_entry->wired_count = 0; 2440 new_entry->object.vm_object = NULL; 2441 vm_map_entry_link(new_map, new_map->header.prev, 2442 new_entry); 2443 vm_map_copy_entry(old_map, new_map, old_entry, 2444 new_entry); 2445 break; 2446 } 2447 old_entry = old_entry->next; 2448 } 2449 2450 new_map->size = old_map->size; 2451 old_map->infork = 0; 2452 vm_map_unlock(old_map); 2453 2454 return (vm2); 2455 } 2456 2457 int 2458 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 2459 vm_prot_t prot, vm_prot_t max, int cow) 2460 { 2461 vm_map_entry_t prev_entry; 2462 vm_map_entry_t new_stack_entry; 2463 vm_size_t init_ssize; 2464 int rv; 2465 2466 GIANT_REQUIRED; 2467 2468 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS) 2469 return (KERN_NO_SPACE); 2470 2471 if (max_ssize < sgrowsiz) 2472 init_ssize = max_ssize; 2473 else 2474 init_ssize = sgrowsiz; 2475 2476 vm_map_lock(map); 2477 2478 /* If addr is already mapped, no go */ 2479 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 2480 vm_map_unlock(map); 2481 return (KERN_NO_SPACE); 2482 } 2483 2484 /* If we can't accomodate max_ssize in the current mapping, 2485 * no go. However, we need to be aware that subsequent user 2486 * mappings might map into the space we have reserved for 2487 * stack, and currently this space is not protected. 2488 * 2489 * Hopefully we will at least detect this condition 2490 * when we try to grow the stack. 2491 */ 2492 if ((prev_entry->next != &map->header) && 2493 (prev_entry->next->start < addrbos + max_ssize)) { 2494 vm_map_unlock(map); 2495 return (KERN_NO_SPACE); 2496 } 2497 2498 /* We initially map a stack of only init_ssize. We will 2499 * grow as needed later. Since this is to be a grow 2500 * down stack, we map at the top of the range. 2501 * 2502 * Note: we would normally expect prot and max to be 2503 * VM_PROT_ALL, and cow to be 0. Possibly we should 2504 * eliminate these as input parameters, and just 2505 * pass these values here in the insert call. 2506 */ 2507 rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize, 2508 addrbos + max_ssize, prot, max, cow); 2509 2510 /* Now set the avail_ssize amount */ 2511 if (rv == KERN_SUCCESS){ 2512 if (prev_entry != &map->header) 2513 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize); 2514 new_stack_entry = prev_entry->next; 2515 if (new_stack_entry->end != addrbos + max_ssize || 2516 new_stack_entry->start != addrbos + max_ssize - init_ssize) 2517 panic ("Bad entry start/end for new stack entry"); 2518 else 2519 new_stack_entry->avail_ssize = max_ssize - init_ssize; 2520 } 2521 2522 vm_map_unlock(map); 2523 return (rv); 2524 } 2525 2526 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 2527 * desired address is already mapped, or if we successfully grow 2528 * the stack. Also returns KERN_SUCCESS if addr is outside the 2529 * stack range (this is strange, but preserves compatibility with 2530 * the grow function in vm_machdep.c). 2531 */ 2532 int 2533 vm_map_growstack (struct proc *p, vm_offset_t addr) 2534 { 2535 vm_map_entry_t prev_entry; 2536 vm_map_entry_t stack_entry; 2537 vm_map_entry_t new_stack_entry; 2538 struct vmspace *vm = p->p_vmspace; 2539 vm_map_t map = &vm->vm_map; 2540 vm_offset_t end; 2541 int grow_amount; 2542 int rv; 2543 int is_procstack; 2544 2545 GIANT_REQUIRED; 2546 2547 Retry: 2548 vm_map_lock_read(map); 2549 2550 /* If addr is already in the entry range, no need to grow.*/ 2551 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 2552 vm_map_unlock_read(map); 2553 return (KERN_SUCCESS); 2554 } 2555 2556 if ((stack_entry = prev_entry->next) == &map->header) { 2557 vm_map_unlock_read(map); 2558 return (KERN_SUCCESS); 2559 } 2560 if (prev_entry == &map->header) 2561 end = stack_entry->start - stack_entry->avail_ssize; 2562 else 2563 end = prev_entry->end; 2564 2565 /* This next test mimics the old grow function in vm_machdep.c. 2566 * It really doesn't quite make sense, but we do it anyway 2567 * for compatibility. 2568 * 2569 * If not growable stack, return success. This signals the 2570 * caller to proceed as he would normally with normal vm. 2571 */ 2572 if (stack_entry->avail_ssize < 1 || 2573 addr >= stack_entry->start || 2574 addr < stack_entry->start - stack_entry->avail_ssize) { 2575 vm_map_unlock_read(map); 2576 return (KERN_SUCCESS); 2577 } 2578 2579 /* Find the minimum grow amount */ 2580 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 2581 if (grow_amount > stack_entry->avail_ssize) { 2582 vm_map_unlock_read(map); 2583 return (KERN_NO_SPACE); 2584 } 2585 2586 /* If there is no longer enough space between the entries 2587 * nogo, and adjust the available space. Note: this 2588 * should only happen if the user has mapped into the 2589 * stack area after the stack was created, and is 2590 * probably an error. 2591 * 2592 * This also effectively destroys any guard page the user 2593 * might have intended by limiting the stack size. 2594 */ 2595 if (grow_amount > stack_entry->start - end) { 2596 if (vm_map_lock_upgrade(map)) 2597 goto Retry; 2598 2599 stack_entry->avail_ssize = stack_entry->start - end; 2600 2601 vm_map_unlock(map); 2602 return (KERN_NO_SPACE); 2603 } 2604 2605 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 2606 2607 /* If this is the main process stack, see if we're over the 2608 * stack limit. 2609 */ 2610 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2611 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2612 vm_map_unlock_read(map); 2613 return (KERN_NO_SPACE); 2614 } 2615 2616 /* Round up the grow amount modulo SGROWSIZ */ 2617 grow_amount = roundup (grow_amount, sgrowsiz); 2618 if (grow_amount > stack_entry->avail_ssize) { 2619 grow_amount = stack_entry->avail_ssize; 2620 } 2621 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2622 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2623 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 2624 ctob(vm->vm_ssize); 2625 } 2626 2627 if (vm_map_lock_upgrade(map)) 2628 goto Retry; 2629 2630 /* Get the preliminary new entry start value */ 2631 addr = stack_entry->start - grow_amount; 2632 2633 /* If this puts us into the previous entry, cut back our growth 2634 * to the available space. Also, see the note above. 2635 */ 2636 if (addr < end) { 2637 stack_entry->avail_ssize = stack_entry->start - end; 2638 addr = end; 2639 } 2640 2641 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 2642 VM_PROT_ALL, 2643 VM_PROT_ALL, 2644 0); 2645 2646 /* Adjust the available stack space by the amount we grew. */ 2647 if (rv == KERN_SUCCESS) { 2648 if (prev_entry != &map->header) 2649 vm_map_clip_end(map, prev_entry, addr); 2650 new_stack_entry = prev_entry->next; 2651 if (new_stack_entry->end != stack_entry->start || 2652 new_stack_entry->start != addr) 2653 panic ("Bad stack grow start/end in new stack entry"); 2654 else { 2655 new_stack_entry->avail_ssize = stack_entry->avail_ssize - 2656 (new_stack_entry->end - 2657 new_stack_entry->start); 2658 if (is_procstack) 2659 vm->vm_ssize += btoc(new_stack_entry->end - 2660 new_stack_entry->start); 2661 } 2662 } 2663 2664 vm_map_unlock(map); 2665 return (rv); 2666 } 2667 2668 /* 2669 * Unshare the specified VM space for exec. If other processes are 2670 * mapped to it, then create a new one. The new vmspace is null. 2671 */ 2672 void 2673 vmspace_exec(struct proc *p) 2674 { 2675 struct vmspace *oldvmspace = p->p_vmspace; 2676 struct vmspace *newvmspace; 2677 vm_map_t map = &p->p_vmspace->vm_map; 2678 2679 GIANT_REQUIRED; 2680 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 2681 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 2682 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy); 2683 /* 2684 * This code is written like this for prototype purposes. The 2685 * goal is to avoid running down the vmspace here, but let the 2686 * other process's that are still using the vmspace to finally 2687 * run it down. Even though there is little or no chance of blocking 2688 * here, it is a good idea to keep this form for future mods. 2689 */ 2690 p->p_vmspace = newvmspace; 2691 pmap_pinit2(vmspace_pmap(newvmspace)); 2692 vmspace_free(oldvmspace); 2693 if (p == curthread->td_proc) /* XXXKSE ? */ 2694 pmap_activate(curthread); 2695 } 2696 2697 /* 2698 * Unshare the specified VM space for forcing COW. This 2699 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 2700 */ 2701 void 2702 vmspace_unshare(struct proc *p) 2703 { 2704 struct vmspace *oldvmspace = p->p_vmspace; 2705 struct vmspace *newvmspace; 2706 2707 GIANT_REQUIRED; 2708 if (oldvmspace->vm_refcnt == 1) 2709 return; 2710 newvmspace = vmspace_fork(oldvmspace); 2711 p->p_vmspace = newvmspace; 2712 pmap_pinit2(vmspace_pmap(newvmspace)); 2713 vmspace_free(oldvmspace); 2714 if (p == curthread->td_proc) /* XXXKSE ? */ 2715 pmap_activate(curthread); 2716 } 2717 2718 /* 2719 * vm_map_lookup: 2720 * 2721 * Finds the VM object, offset, and 2722 * protection for a given virtual address in the 2723 * specified map, assuming a page fault of the 2724 * type specified. 2725 * 2726 * Leaves the map in question locked for read; return 2727 * values are guaranteed until a vm_map_lookup_done 2728 * call is performed. Note that the map argument 2729 * is in/out; the returned map must be used in 2730 * the call to vm_map_lookup_done. 2731 * 2732 * A handle (out_entry) is returned for use in 2733 * vm_map_lookup_done, to make that fast. 2734 * 2735 * If a lookup is requested with "write protection" 2736 * specified, the map may be changed to perform virtual 2737 * copying operations, although the data referenced will 2738 * remain the same. 2739 */ 2740 int 2741 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 2742 vm_offset_t vaddr, 2743 vm_prot_t fault_typea, 2744 vm_map_entry_t *out_entry, /* OUT */ 2745 vm_object_t *object, /* OUT */ 2746 vm_pindex_t *pindex, /* OUT */ 2747 vm_prot_t *out_prot, /* OUT */ 2748 boolean_t *wired) /* OUT */ 2749 { 2750 vm_map_entry_t entry; 2751 vm_map_t map = *var_map; 2752 vm_prot_t prot; 2753 vm_prot_t fault_type = fault_typea; 2754 2755 RetryLookup:; 2756 /* 2757 * Lookup the faulting address. 2758 */ 2759 2760 vm_map_lock_read(map); 2761 #define RETURN(why) \ 2762 { \ 2763 vm_map_unlock_read(map); \ 2764 return (why); \ 2765 } 2766 2767 /* 2768 * If the map has an interesting hint, try it before calling full 2769 * blown lookup routine. 2770 */ 2771 entry = map->hint; 2772 *out_entry = entry; 2773 if ((entry == &map->header) || 2774 (vaddr < entry->start) || (vaddr >= entry->end)) { 2775 vm_map_entry_t tmp_entry; 2776 2777 /* 2778 * Entry was either not a valid hint, or the vaddr was not 2779 * contained in the entry, so do a full lookup. 2780 */ 2781 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) 2782 RETURN(KERN_INVALID_ADDRESS); 2783 2784 entry = tmp_entry; 2785 *out_entry = entry; 2786 } 2787 2788 /* 2789 * Handle submaps. 2790 */ 2791 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2792 vm_map_t old_map = map; 2793 2794 *var_map = map = entry->object.sub_map; 2795 vm_map_unlock_read(old_map); 2796 goto RetryLookup; 2797 } 2798 2799 /* 2800 * Check whether this task is allowed to have this page. 2801 * Note the special case for MAP_ENTRY_COW 2802 * pages with an override. This is to implement a forced 2803 * COW for debuggers. 2804 */ 2805 if (fault_type & VM_PROT_OVERRIDE_WRITE) 2806 prot = entry->max_protection; 2807 else 2808 prot = entry->protection; 2809 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 2810 if ((fault_type & prot) != fault_type) { 2811 RETURN(KERN_PROTECTION_FAILURE); 2812 } 2813 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 2814 (entry->eflags & MAP_ENTRY_COW) && 2815 (fault_type & VM_PROT_WRITE) && 2816 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 2817 RETURN(KERN_PROTECTION_FAILURE); 2818 } 2819 2820 /* 2821 * If this page is not pageable, we have to get it for all possible 2822 * accesses. 2823 */ 2824 *wired = (entry->wired_count != 0); 2825 if (*wired) 2826 prot = fault_type = entry->protection; 2827 2828 /* 2829 * If the entry was copy-on-write, we either ... 2830 */ 2831 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2832 /* 2833 * If we want to write the page, we may as well handle that 2834 * now since we've got the map locked. 2835 * 2836 * If we don't need to write the page, we just demote the 2837 * permissions allowed. 2838 */ 2839 if (fault_type & VM_PROT_WRITE) { 2840 /* 2841 * Make a new object, and place it in the object 2842 * chain. Note that no new references have appeared 2843 * -- one just moved from the map to the new 2844 * object. 2845 */ 2846 if (vm_map_lock_upgrade(map)) 2847 goto RetryLookup; 2848 mtx_lock(&Giant); 2849 vm_object_shadow( 2850 &entry->object.vm_object, 2851 &entry->offset, 2852 atop(entry->end - entry->start)); 2853 mtx_unlock(&Giant); 2854 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2855 vm_map_lock_downgrade(map); 2856 } else { 2857 /* 2858 * We're attempting to read a copy-on-write page -- 2859 * don't allow writes. 2860 */ 2861 prot &= ~VM_PROT_WRITE; 2862 } 2863 } 2864 2865 /* 2866 * Create an object if necessary. 2867 */ 2868 if (entry->object.vm_object == NULL && 2869 !map->system_map) { 2870 if (vm_map_lock_upgrade(map)) 2871 goto RetryLookup; 2872 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 2873 atop(entry->end - entry->start)); 2874 entry->offset = 0; 2875 vm_map_lock_downgrade(map); 2876 } 2877 2878 /* 2879 * Return the object/offset from this entry. If the entry was 2880 * copy-on-write or empty, it has been fixed up. 2881 */ 2882 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 2883 *object = entry->object.vm_object; 2884 2885 /* 2886 * Return whether this is the only map sharing this data. 2887 */ 2888 *out_prot = prot; 2889 return (KERN_SUCCESS); 2890 2891 #undef RETURN 2892 } 2893 2894 /* 2895 * vm_map_lookup_done: 2896 * 2897 * Releases locks acquired by a vm_map_lookup 2898 * (according to the handle returned by that lookup). 2899 */ 2900 void 2901 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 2902 { 2903 /* 2904 * Unlock the main-level map 2905 */ 2906 vm_map_unlock_read(map); 2907 } 2908 2909 #ifdef ENABLE_VFS_IOOPT 2910 /* 2911 * Experimental support for zero-copy I/O 2912 * 2913 * Implement uiomove with VM operations. This handles (and collateral changes) 2914 * support every combination of source object modification, and COW type 2915 * operations. 2916 */ 2917 int 2918 vm_uiomove( 2919 vm_map_t mapa, 2920 vm_object_t srcobject, 2921 off_t cp, 2922 int cnta, 2923 vm_offset_t uaddra, 2924 int *npages) 2925 { 2926 vm_map_t map; 2927 vm_object_t first_object, oldobject, object; 2928 vm_map_entry_t entry; 2929 vm_prot_t prot; 2930 boolean_t wired; 2931 int tcnt, rv; 2932 vm_offset_t uaddr, start, end, tend; 2933 vm_pindex_t first_pindex, osize, oindex; 2934 off_t ooffset; 2935 int cnt; 2936 2937 GIANT_REQUIRED; 2938 2939 if (npages) 2940 *npages = 0; 2941 2942 cnt = cnta; 2943 uaddr = uaddra; 2944 2945 while (cnt > 0) { 2946 map = mapa; 2947 2948 if ((vm_map_lookup(&map, uaddr, 2949 VM_PROT_READ, &entry, &first_object, 2950 &first_pindex, &prot, &wired)) != KERN_SUCCESS) { 2951 return EFAULT; 2952 } 2953 2954 vm_map_clip_start(map, entry, uaddr); 2955 2956 tcnt = cnt; 2957 tend = uaddr + tcnt; 2958 if (tend > entry->end) { 2959 tcnt = entry->end - uaddr; 2960 tend = entry->end; 2961 } 2962 2963 vm_map_clip_end(map, entry, tend); 2964 2965 start = entry->start; 2966 end = entry->end; 2967 2968 osize = atop(tcnt); 2969 2970 oindex = OFF_TO_IDX(cp); 2971 if (npages) { 2972 vm_pindex_t idx; 2973 for (idx = 0; idx < osize; idx++) { 2974 vm_page_t m; 2975 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) { 2976 vm_map_lookup_done(map, entry); 2977 return 0; 2978 } 2979 /* 2980 * disallow busy or invalid pages, but allow 2981 * m->busy pages if they are entirely valid. 2982 */ 2983 if ((m->flags & PG_BUSY) || 2984 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) { 2985 vm_map_lookup_done(map, entry); 2986 return 0; 2987 } 2988 } 2989 } 2990 2991 /* 2992 * If we are changing an existing map entry, just redirect 2993 * the object, and change mappings. 2994 */ 2995 if ((first_object->type == OBJT_VNODE) && 2996 ((oldobject = entry->object.vm_object) == first_object)) { 2997 2998 if ((entry->offset != cp) || (oldobject != srcobject)) { 2999 /* 3000 * Remove old window into the file 3001 */ 3002 pmap_remove (map->pmap, uaddr, tend); 3003 3004 /* 3005 * Force copy on write for mmaped regions 3006 */ 3007 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 3008 3009 /* 3010 * Point the object appropriately 3011 */ 3012 if (oldobject != srcobject) { 3013 3014 /* 3015 * Set the object optimization hint flag 3016 */ 3017 vm_object_set_flag(srcobject, OBJ_OPT); 3018 vm_object_reference(srcobject); 3019 entry->object.vm_object = srcobject; 3020 3021 if (oldobject) { 3022 vm_object_deallocate(oldobject); 3023 } 3024 } 3025 3026 entry->offset = cp; 3027 map->timestamp++; 3028 } else { 3029 pmap_remove (map->pmap, uaddr, tend); 3030 } 3031 3032 } else if ((first_object->ref_count == 1) && 3033 (first_object->size == osize) && 3034 ((first_object->type == OBJT_DEFAULT) || 3035 (first_object->type == OBJT_SWAP)) ) { 3036 3037 oldobject = first_object->backing_object; 3038 3039 if ((first_object->backing_object_offset != cp) || 3040 (oldobject != srcobject)) { 3041 /* 3042 * Remove old window into the file 3043 */ 3044 pmap_remove (map->pmap, uaddr, tend); 3045 3046 /* 3047 * Remove unneeded old pages 3048 */ 3049 vm_object_page_remove(first_object, 0, 0, 0); 3050 3051 /* 3052 * Invalidate swap space 3053 */ 3054 if (first_object->type == OBJT_SWAP) { 3055 swap_pager_freespace(first_object, 3056 0, 3057 first_object->size); 3058 } 3059 3060 /* 3061 * Force copy on write for mmaped regions 3062 */ 3063 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 3064 3065 /* 3066 * Point the object appropriately 3067 */ 3068 if (oldobject != srcobject) { 3069 /* 3070 * Set the object optimization hint flag 3071 */ 3072 vm_object_set_flag(srcobject, OBJ_OPT); 3073 vm_object_reference(srcobject); 3074 3075 if (oldobject) { 3076 TAILQ_REMOVE(&oldobject->shadow_head, 3077 first_object, shadow_list); 3078 oldobject->shadow_count--; 3079 /* XXX bump generation? */ 3080 vm_object_deallocate(oldobject); 3081 } 3082 3083 TAILQ_INSERT_TAIL(&srcobject->shadow_head, 3084 first_object, shadow_list); 3085 srcobject->shadow_count++; 3086 /* XXX bump generation? */ 3087 3088 first_object->backing_object = srcobject; 3089 } 3090 first_object->backing_object_offset = cp; 3091 map->timestamp++; 3092 } else { 3093 pmap_remove (map->pmap, uaddr, tend); 3094 } 3095 /* 3096 * Otherwise, we have to do a logical mmap. 3097 */ 3098 } else { 3099 3100 vm_object_set_flag(srcobject, OBJ_OPT); 3101 vm_object_reference(srcobject); 3102 3103 pmap_remove (map->pmap, uaddr, tend); 3104 3105 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 3106 vm_map_lock_upgrade(map); 3107 3108 if (entry == &map->header) { 3109 map->first_free = &map->header; 3110 } else if (map->first_free->start >= start) { 3111 map->first_free = entry->prev; 3112 } 3113 3114 SAVE_HINT(map, entry->prev); 3115 vm_map_entry_delete(map, entry); 3116 3117 object = srcobject; 3118 ooffset = cp; 3119 3120 rv = vm_map_insert(map, object, ooffset, start, tend, 3121 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE); 3122 3123 if (rv != KERN_SUCCESS) 3124 panic("vm_uiomove: could not insert new entry: %d", rv); 3125 } 3126 3127 /* 3128 * Map the window directly, if it is already in memory 3129 */ 3130 pmap_object_init_pt(map->pmap, uaddr, 3131 srcobject, oindex, tcnt, 0); 3132 3133 map->timestamp++; 3134 vm_map_unlock(map); 3135 3136 cnt -= tcnt; 3137 uaddr += tcnt; 3138 cp += tcnt; 3139 if (npages) 3140 *npages += osize; 3141 } 3142 return 0; 3143 } 3144 #endif 3145 3146 #include "opt_ddb.h" 3147 #ifdef DDB 3148 #include <sys/kernel.h> 3149 3150 #include <ddb/ddb.h> 3151 3152 /* 3153 * vm_map_print: [ debug ] 3154 */ 3155 DB_SHOW_COMMAND(map, vm_map_print) 3156 { 3157 static int nlines; 3158 /* XXX convert args. */ 3159 vm_map_t map = (vm_map_t)addr; 3160 boolean_t full = have_addr; 3161 3162 vm_map_entry_t entry; 3163 3164 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3165 (void *)map, 3166 (void *)map->pmap, map->nentries, map->timestamp); 3167 nlines++; 3168 3169 if (!full && db_indent) 3170 return; 3171 3172 db_indent += 2; 3173 for (entry = map->header.next; entry != &map->header; 3174 entry = entry->next) { 3175 db_iprintf("map entry %p: start=%p, end=%p\n", 3176 (void *)entry, (void *)entry->start, (void *)entry->end); 3177 nlines++; 3178 { 3179 static char *inheritance_name[4] = 3180 {"share", "copy", "none", "donate_copy"}; 3181 3182 db_iprintf(" prot=%x/%x/%s", 3183 entry->protection, 3184 entry->max_protection, 3185 inheritance_name[(int)(unsigned char)entry->inheritance]); 3186 if (entry->wired_count != 0) 3187 db_printf(", wired"); 3188 } 3189 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3190 /* XXX no %qd in kernel. Truncate entry->offset. */ 3191 db_printf(", share=%p, offset=0x%lx\n", 3192 (void *)entry->object.sub_map, 3193 (long)entry->offset); 3194 nlines++; 3195 if ((entry->prev == &map->header) || 3196 (entry->prev->object.sub_map != 3197 entry->object.sub_map)) { 3198 db_indent += 2; 3199 vm_map_print((db_expr_t)(intptr_t) 3200 entry->object.sub_map, 3201 full, 0, (char *)0); 3202 db_indent -= 2; 3203 } 3204 } else { 3205 /* XXX no %qd in kernel. Truncate entry->offset. */ 3206 db_printf(", object=%p, offset=0x%lx", 3207 (void *)entry->object.vm_object, 3208 (long)entry->offset); 3209 if (entry->eflags & MAP_ENTRY_COW) 3210 db_printf(", copy (%s)", 3211 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3212 db_printf("\n"); 3213 nlines++; 3214 3215 if ((entry->prev == &map->header) || 3216 (entry->prev->object.vm_object != 3217 entry->object.vm_object)) { 3218 db_indent += 2; 3219 vm_object_print((db_expr_t)(intptr_t) 3220 entry->object.vm_object, 3221 full, 0, (char *)0); 3222 nlines += 4; 3223 db_indent -= 2; 3224 } 3225 } 3226 } 3227 db_indent -= 2; 3228 if (db_indent == 0) 3229 nlines = 0; 3230 } 3231 3232 3233 DB_SHOW_COMMAND(procvm, procvm) 3234 { 3235 struct proc *p; 3236 3237 if (have_addr) { 3238 p = (struct proc *) addr; 3239 } else { 3240 p = curproc; 3241 } 3242 3243 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3244 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3245 (void *)vmspace_pmap(p->p_vmspace)); 3246 3247 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3248 } 3249 3250 #endif /* DDB */ 3251