xref: /freebsd/sys/vm/vm_map.c (revision bd81e07d2761cf1c13063eb49a5c0cb4a6951318)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
137     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
138 #ifdef INVARIANTS
139 static void vm_map_zdtor(void *mem, int size, void *arg);
140 static void vmspace_zdtor(void *mem, int size, void *arg);
141 #endif
142 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
143     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
144     int cow);
145 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
146     vm_offset_t failed_addr);
147 
148 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
149     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151 
152 /*
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158 
159 /*
160  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
161  *
162  *	Asserts that the starting and ending region
163  *	addresses fall within the valid range of the map.
164  */
165 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
166 		{					\
167 		if (start < vm_map_min(map))		\
168 			start = vm_map_min(map);	\
169 		if (end > vm_map_max(map))		\
170 			end = vm_map_max(map);		\
171 		if (start > end)			\
172 			start = end;			\
173 		}
174 
175 /*
176  *	vm_map_startup:
177  *
178  *	Initialize the vm_map module.  Must be called before
179  *	any other vm_map routines.
180  *
181  *	Map and entry structures are allocated from the general
182  *	purpose memory pool with some exceptions:
183  *
184  *	- The kernel map and kmem submap are allocated statically.
185  *	- Kernel map entries are allocated out of a static pool.
186  *
187  *	These restrictions are necessary since malloc() uses the
188  *	maps and requires map entries.
189  */
190 
191 void
192 vm_map_startup(void)
193 {
194 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
195 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
196 #ifdef INVARIANTS
197 	    vm_map_zdtor,
198 #else
199 	    NULL,
200 #endif
201 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
202 	uma_prealloc(mapzone, MAX_KMAP);
203 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
204 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
205 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
206 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
207 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
208 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
209 #ifdef INVARIANTS
210 	    vmspace_zdtor,
211 #else
212 	    NULL,
213 #endif
214 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
215 }
216 
217 static int
218 vmspace_zinit(void *mem, int size, int flags)
219 {
220 	struct vmspace *vm;
221 
222 	vm = (struct vmspace *)mem;
223 
224 	vm->vm_map.pmap = NULL;
225 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
226 	PMAP_LOCK_INIT(vmspace_pmap(vm));
227 	return (0);
228 }
229 
230 static int
231 vm_map_zinit(void *mem, int size, int flags)
232 {
233 	vm_map_t map;
234 
235 	map = (vm_map_t)mem;
236 	memset(map, 0, sizeof(*map));
237 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
238 	sx_init(&map->lock, "vm map (user)");
239 	return (0);
240 }
241 
242 #ifdef INVARIANTS
243 static void
244 vmspace_zdtor(void *mem, int size, void *arg)
245 {
246 	struct vmspace *vm;
247 
248 	vm = (struct vmspace *)mem;
249 
250 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
251 }
252 static void
253 vm_map_zdtor(void *mem, int size, void *arg)
254 {
255 	vm_map_t map;
256 
257 	map = (vm_map_t)mem;
258 	KASSERT(map->nentries == 0,
259 	    ("map %p nentries == %d on free.",
260 	    map, map->nentries));
261 	KASSERT(map->size == 0,
262 	    ("map %p size == %lu on free.",
263 	    map, (unsigned long)map->size));
264 }
265 #endif	/* INVARIANTS */
266 
267 /*
268  * Allocate a vmspace structure, including a vm_map and pmap,
269  * and initialize those structures.  The refcnt is set to 1.
270  *
271  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
272  */
273 struct vmspace *
274 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
275 {
276 	struct vmspace *vm;
277 
278 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
279 
280 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
281 
282 	if (pinit == NULL)
283 		pinit = &pmap_pinit;
284 
285 	if (!pinit(vmspace_pmap(vm))) {
286 		uma_zfree(vmspace_zone, vm);
287 		return (NULL);
288 	}
289 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291 	vm->vm_refcnt = 1;
292 	vm->vm_shm = NULL;
293 	vm->vm_swrss = 0;
294 	vm->vm_tsize = 0;
295 	vm->vm_dsize = 0;
296 	vm->vm_ssize = 0;
297 	vm->vm_taddr = 0;
298 	vm->vm_daddr = 0;
299 	vm->vm_maxsaddr = 0;
300 	return (vm);
301 }
302 
303 #ifdef RACCT
304 static void
305 vmspace_container_reset(struct proc *p)
306 {
307 
308 	PROC_LOCK(p);
309 	racct_set(p, RACCT_DATA, 0);
310 	racct_set(p, RACCT_STACK, 0);
311 	racct_set(p, RACCT_RSS, 0);
312 	racct_set(p, RACCT_MEMLOCK, 0);
313 	racct_set(p, RACCT_VMEM, 0);
314 	PROC_UNLOCK(p);
315 }
316 #endif
317 
318 static inline void
319 vmspace_dofree(struct vmspace *vm)
320 {
321 
322 	CTR1(KTR_VM, "vmspace_free: %p", vm);
323 
324 	/*
325 	 * Make sure any SysV shm is freed, it might not have been in
326 	 * exit1().
327 	 */
328 	shmexit(vm);
329 
330 	/*
331 	 * Lock the map, to wait out all other references to it.
332 	 * Delete all of the mappings and pages they hold, then call
333 	 * the pmap module to reclaim anything left.
334 	 */
335 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
336 	    vm->vm_map.max_offset);
337 
338 	pmap_release(vmspace_pmap(vm));
339 	vm->vm_map.pmap = NULL;
340 	uma_zfree(vmspace_zone, vm);
341 }
342 
343 void
344 vmspace_free(struct vmspace *vm)
345 {
346 
347 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
348 	    "vmspace_free() called with non-sleepable lock held");
349 
350 	if (vm->vm_refcnt == 0)
351 		panic("vmspace_free: attempt to free already freed vmspace");
352 
353 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
354 		vmspace_dofree(vm);
355 }
356 
357 void
358 vmspace_exitfree(struct proc *p)
359 {
360 	struct vmspace *vm;
361 
362 	PROC_VMSPACE_LOCK(p);
363 	vm = p->p_vmspace;
364 	p->p_vmspace = NULL;
365 	PROC_VMSPACE_UNLOCK(p);
366 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
367 	vmspace_free(vm);
368 }
369 
370 void
371 vmspace_exit(struct thread *td)
372 {
373 	int refcnt;
374 	struct vmspace *vm;
375 	struct proc *p;
376 
377 	/*
378 	 * Release user portion of address space.
379 	 * This releases references to vnodes,
380 	 * which could cause I/O if the file has been unlinked.
381 	 * Need to do this early enough that we can still sleep.
382 	 *
383 	 * The last exiting process to reach this point releases as
384 	 * much of the environment as it can. vmspace_dofree() is the
385 	 * slower fallback in case another process had a temporary
386 	 * reference to the vmspace.
387 	 */
388 
389 	p = td->td_proc;
390 	vm = p->p_vmspace;
391 	atomic_add_int(&vmspace0.vm_refcnt, 1);
392 	do {
393 		refcnt = vm->vm_refcnt;
394 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
395 			/* Switch now since other proc might free vmspace */
396 			PROC_VMSPACE_LOCK(p);
397 			p->p_vmspace = &vmspace0;
398 			PROC_VMSPACE_UNLOCK(p);
399 			pmap_activate(td);
400 		}
401 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
402 	if (refcnt == 1) {
403 		if (p->p_vmspace != vm) {
404 			/* vmspace not yet freed, switch back */
405 			PROC_VMSPACE_LOCK(p);
406 			p->p_vmspace = vm;
407 			PROC_VMSPACE_UNLOCK(p);
408 			pmap_activate(td);
409 		}
410 		pmap_remove_pages(vmspace_pmap(vm));
411 		/* Switch now since this proc will free vmspace */
412 		PROC_VMSPACE_LOCK(p);
413 		p->p_vmspace = &vmspace0;
414 		PROC_VMSPACE_UNLOCK(p);
415 		pmap_activate(td);
416 		vmspace_dofree(vm);
417 	}
418 #ifdef RACCT
419 	if (racct_enable)
420 		vmspace_container_reset(p);
421 #endif
422 }
423 
424 /* Acquire reference to vmspace owned by another process. */
425 
426 struct vmspace *
427 vmspace_acquire_ref(struct proc *p)
428 {
429 	struct vmspace *vm;
430 	int refcnt;
431 
432 	PROC_VMSPACE_LOCK(p);
433 	vm = p->p_vmspace;
434 	if (vm == NULL) {
435 		PROC_VMSPACE_UNLOCK(p);
436 		return (NULL);
437 	}
438 	do {
439 		refcnt = vm->vm_refcnt;
440 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
441 			PROC_VMSPACE_UNLOCK(p);
442 			return (NULL);
443 		}
444 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
445 	if (vm != p->p_vmspace) {
446 		PROC_VMSPACE_UNLOCK(p);
447 		vmspace_free(vm);
448 		return (NULL);
449 	}
450 	PROC_VMSPACE_UNLOCK(p);
451 	return (vm);
452 }
453 
454 void
455 _vm_map_lock(vm_map_t map, const char *file, int line)
456 {
457 
458 	if (map->system_map)
459 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
460 	else
461 		sx_xlock_(&map->lock, file, line);
462 	map->timestamp++;
463 }
464 
465 static void
466 vm_map_process_deferred(void)
467 {
468 	struct thread *td;
469 	vm_map_entry_t entry, next;
470 	vm_object_t object;
471 
472 	td = curthread;
473 	entry = td->td_map_def_user;
474 	td->td_map_def_user = NULL;
475 	while (entry != NULL) {
476 		next = entry->next;
477 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
478 			/*
479 			 * Decrement the object's writemappings and
480 			 * possibly the vnode's v_writecount.
481 			 */
482 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
483 			    ("Submap with writecount"));
484 			object = entry->object.vm_object;
485 			KASSERT(object != NULL, ("No object for writecount"));
486 			vnode_pager_release_writecount(object, entry->start,
487 			    entry->end);
488 		}
489 		vm_map_entry_deallocate(entry, FALSE);
490 		entry = next;
491 	}
492 }
493 
494 void
495 _vm_map_unlock(vm_map_t map, const char *file, int line)
496 {
497 
498 	if (map->system_map)
499 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
500 	else {
501 		sx_xunlock_(&map->lock, file, line);
502 		vm_map_process_deferred();
503 	}
504 }
505 
506 void
507 _vm_map_lock_read(vm_map_t map, const char *file, int line)
508 {
509 
510 	if (map->system_map)
511 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
512 	else
513 		sx_slock_(&map->lock, file, line);
514 }
515 
516 void
517 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
518 {
519 
520 	if (map->system_map)
521 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
522 	else {
523 		sx_sunlock_(&map->lock, file, line);
524 		vm_map_process_deferred();
525 	}
526 }
527 
528 int
529 _vm_map_trylock(vm_map_t map, const char *file, int line)
530 {
531 	int error;
532 
533 	error = map->system_map ?
534 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
535 	    !sx_try_xlock_(&map->lock, file, line);
536 	if (error == 0)
537 		map->timestamp++;
538 	return (error == 0);
539 }
540 
541 int
542 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
543 {
544 	int error;
545 
546 	error = map->system_map ?
547 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
548 	    !sx_try_slock_(&map->lock, file, line);
549 	return (error == 0);
550 }
551 
552 /*
553  *	_vm_map_lock_upgrade:	[ internal use only ]
554  *
555  *	Tries to upgrade a read (shared) lock on the specified map to a write
556  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
557  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
558  *	returned without a read or write lock held.
559  *
560  *	Requires that the map be read locked.
561  */
562 int
563 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
564 {
565 	unsigned int last_timestamp;
566 
567 	if (map->system_map) {
568 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
569 	} else {
570 		if (!sx_try_upgrade_(&map->lock, file, line)) {
571 			last_timestamp = map->timestamp;
572 			sx_sunlock_(&map->lock, file, line);
573 			vm_map_process_deferred();
574 			/*
575 			 * If the map's timestamp does not change while the
576 			 * map is unlocked, then the upgrade succeeds.
577 			 */
578 			sx_xlock_(&map->lock, file, line);
579 			if (last_timestamp != map->timestamp) {
580 				sx_xunlock_(&map->lock, file, line);
581 				return (1);
582 			}
583 		}
584 	}
585 	map->timestamp++;
586 	return (0);
587 }
588 
589 void
590 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
591 {
592 
593 	if (map->system_map) {
594 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
595 	} else
596 		sx_downgrade_(&map->lock, file, line);
597 }
598 
599 /*
600  *	vm_map_locked:
601  *
602  *	Returns a non-zero value if the caller holds a write (exclusive) lock
603  *	on the specified map and the value "0" otherwise.
604  */
605 int
606 vm_map_locked(vm_map_t map)
607 {
608 
609 	if (map->system_map)
610 		return (mtx_owned(&map->system_mtx));
611 	else
612 		return (sx_xlocked(&map->lock));
613 }
614 
615 #ifdef INVARIANTS
616 static void
617 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
618 {
619 
620 	if (map->system_map)
621 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
622 	else
623 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
624 }
625 
626 #define	VM_MAP_ASSERT_LOCKED(map) \
627     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
628 #else
629 #define	VM_MAP_ASSERT_LOCKED(map)
630 #endif
631 
632 /*
633  *	_vm_map_unlock_and_wait:
634  *
635  *	Atomically releases the lock on the specified map and puts the calling
636  *	thread to sleep.  The calling thread will remain asleep until either
637  *	vm_map_wakeup() is performed on the map or the specified timeout is
638  *	exceeded.
639  *
640  *	WARNING!  This function does not perform deferred deallocations of
641  *	objects and map	entries.  Therefore, the calling thread is expected to
642  *	reacquire the map lock after reawakening and later perform an ordinary
643  *	unlock operation, such as vm_map_unlock(), before completing its
644  *	operation on the map.
645  */
646 int
647 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
648 {
649 
650 	mtx_lock(&map_sleep_mtx);
651 	if (map->system_map)
652 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
653 	else
654 		sx_xunlock_(&map->lock, file, line);
655 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
656 	    timo));
657 }
658 
659 /*
660  *	vm_map_wakeup:
661  *
662  *	Awaken any threads that have slept on the map using
663  *	vm_map_unlock_and_wait().
664  */
665 void
666 vm_map_wakeup(vm_map_t map)
667 {
668 
669 	/*
670 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
671 	 * from being performed (and lost) between the map unlock
672 	 * and the msleep() in _vm_map_unlock_and_wait().
673 	 */
674 	mtx_lock(&map_sleep_mtx);
675 	mtx_unlock(&map_sleep_mtx);
676 	wakeup(&map->root);
677 }
678 
679 void
680 vm_map_busy(vm_map_t map)
681 {
682 
683 	VM_MAP_ASSERT_LOCKED(map);
684 	map->busy++;
685 }
686 
687 void
688 vm_map_unbusy(vm_map_t map)
689 {
690 
691 	VM_MAP_ASSERT_LOCKED(map);
692 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
693 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
694 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
695 		wakeup(&map->busy);
696 	}
697 }
698 
699 void
700 vm_map_wait_busy(vm_map_t map)
701 {
702 
703 	VM_MAP_ASSERT_LOCKED(map);
704 	while (map->busy) {
705 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
706 		if (map->system_map)
707 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
708 		else
709 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
710 	}
711 	map->timestamp++;
712 }
713 
714 long
715 vmspace_resident_count(struct vmspace *vmspace)
716 {
717 	return pmap_resident_count(vmspace_pmap(vmspace));
718 }
719 
720 /*
721  *	vm_map_create:
722  *
723  *	Creates and returns a new empty VM map with
724  *	the given physical map structure, and having
725  *	the given lower and upper address bounds.
726  */
727 vm_map_t
728 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
729 {
730 	vm_map_t result;
731 
732 	result = uma_zalloc(mapzone, M_WAITOK);
733 	CTR1(KTR_VM, "vm_map_create: %p", result);
734 	_vm_map_init(result, pmap, min, max);
735 	return (result);
736 }
737 
738 /*
739  * Initialize an existing vm_map structure
740  * such as that in the vmspace structure.
741  */
742 static void
743 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
744 {
745 
746 	map->header.next = map->header.prev = &map->header;
747 	map->needs_wakeup = FALSE;
748 	map->system_map = 0;
749 	map->pmap = pmap;
750 	map->min_offset = min;
751 	map->max_offset = max;
752 	map->flags = 0;
753 	map->root = NULL;
754 	map->timestamp = 0;
755 	map->busy = 0;
756 }
757 
758 void
759 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
760 {
761 
762 	_vm_map_init(map, pmap, min, max);
763 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
764 	sx_init(&map->lock, "user map");
765 }
766 
767 /*
768  *	vm_map_entry_dispose:	[ internal use only ]
769  *
770  *	Inverse of vm_map_entry_create.
771  */
772 static void
773 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
774 {
775 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
776 }
777 
778 /*
779  *	vm_map_entry_create:	[ internal use only ]
780  *
781  *	Allocates a VM map entry for insertion.
782  *	No entry fields are filled in.
783  */
784 static vm_map_entry_t
785 vm_map_entry_create(vm_map_t map)
786 {
787 	vm_map_entry_t new_entry;
788 
789 	if (map->system_map)
790 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
791 	else
792 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
793 	if (new_entry == NULL)
794 		panic("vm_map_entry_create: kernel resources exhausted");
795 	return (new_entry);
796 }
797 
798 /*
799  *	vm_map_entry_set_behavior:
800  *
801  *	Set the expected access behavior, either normal, random, or
802  *	sequential.
803  */
804 static inline void
805 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
806 {
807 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
808 	    (behavior & MAP_ENTRY_BEHAV_MASK);
809 }
810 
811 /*
812  *	vm_map_entry_set_max_free:
813  *
814  *	Set the max_free field in a vm_map_entry.
815  */
816 static inline void
817 vm_map_entry_set_max_free(vm_map_entry_t entry)
818 {
819 
820 	entry->max_free = entry->adj_free;
821 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
822 		entry->max_free = entry->left->max_free;
823 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
824 		entry->max_free = entry->right->max_free;
825 }
826 
827 /*
828  *	vm_map_entry_splay:
829  *
830  *	The Sleator and Tarjan top-down splay algorithm with the
831  *	following variation.  Max_free must be computed bottom-up, so
832  *	on the downward pass, maintain the left and right spines in
833  *	reverse order.  Then, make a second pass up each side to fix
834  *	the pointers and compute max_free.  The time bound is O(log n)
835  *	amortized.
836  *
837  *	The new root is the vm_map_entry containing "addr", or else an
838  *	adjacent entry (lower or higher) if addr is not in the tree.
839  *
840  *	The map must be locked, and leaves it so.
841  *
842  *	Returns: the new root.
843  */
844 static vm_map_entry_t
845 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
846 {
847 	vm_map_entry_t llist, rlist;
848 	vm_map_entry_t ltree, rtree;
849 	vm_map_entry_t y;
850 
851 	/* Special case of empty tree. */
852 	if (root == NULL)
853 		return (root);
854 
855 	/*
856 	 * Pass One: Splay down the tree until we find addr or a NULL
857 	 * pointer where addr would go.  llist and rlist are the two
858 	 * sides in reverse order (bottom-up), with llist linked by
859 	 * the right pointer and rlist linked by the left pointer in
860 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
861 	 * the two spines.
862 	 */
863 	llist = NULL;
864 	rlist = NULL;
865 	for (;;) {
866 		/* root is never NULL in here. */
867 		if (addr < root->start) {
868 			y = root->left;
869 			if (y == NULL)
870 				break;
871 			if (addr < y->start && y->left != NULL) {
872 				/* Rotate right and put y on rlist. */
873 				root->left = y->right;
874 				y->right = root;
875 				vm_map_entry_set_max_free(root);
876 				root = y->left;
877 				y->left = rlist;
878 				rlist = y;
879 			} else {
880 				/* Put root on rlist. */
881 				root->left = rlist;
882 				rlist = root;
883 				root = y;
884 			}
885 		} else if (addr >= root->end) {
886 			y = root->right;
887 			if (y == NULL)
888 				break;
889 			if (addr >= y->end && y->right != NULL) {
890 				/* Rotate left and put y on llist. */
891 				root->right = y->left;
892 				y->left = root;
893 				vm_map_entry_set_max_free(root);
894 				root = y->right;
895 				y->right = llist;
896 				llist = y;
897 			} else {
898 				/* Put root on llist. */
899 				root->right = llist;
900 				llist = root;
901 				root = y;
902 			}
903 		} else
904 			break;
905 	}
906 
907 	/*
908 	 * Pass Two: Walk back up the two spines, flip the pointers
909 	 * and set max_free.  The subtrees of the root go at the
910 	 * bottom of llist and rlist.
911 	 */
912 	ltree = root->left;
913 	while (llist != NULL) {
914 		y = llist->right;
915 		llist->right = ltree;
916 		vm_map_entry_set_max_free(llist);
917 		ltree = llist;
918 		llist = y;
919 	}
920 	rtree = root->right;
921 	while (rlist != NULL) {
922 		y = rlist->left;
923 		rlist->left = rtree;
924 		vm_map_entry_set_max_free(rlist);
925 		rtree = rlist;
926 		rlist = y;
927 	}
928 
929 	/*
930 	 * Final assembly: add ltree and rtree as subtrees of root.
931 	 */
932 	root->left = ltree;
933 	root->right = rtree;
934 	vm_map_entry_set_max_free(root);
935 
936 	return (root);
937 }
938 
939 /*
940  *	vm_map_entry_{un,}link:
941  *
942  *	Insert/remove entries from maps.
943  */
944 static void
945 vm_map_entry_link(vm_map_t map,
946 		  vm_map_entry_t after_where,
947 		  vm_map_entry_t entry)
948 {
949 
950 	CTR4(KTR_VM,
951 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
952 	    map->nentries, entry, after_where);
953 	VM_MAP_ASSERT_LOCKED(map);
954 	KASSERT(after_where == &map->header ||
955 	    after_where->end <= entry->start,
956 	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
957 	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
958 	KASSERT(after_where->next == &map->header ||
959 	    entry->end <= after_where->next->start,
960 	    ("vm_map_entry_link: new end %jx next start %jx overlap",
961 	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
962 
963 	map->nentries++;
964 	entry->prev = after_where;
965 	entry->next = after_where->next;
966 	entry->next->prev = entry;
967 	after_where->next = entry;
968 
969 	if (after_where != &map->header) {
970 		if (after_where != map->root)
971 			vm_map_entry_splay(after_where->start, map->root);
972 		entry->right = after_where->right;
973 		entry->left = after_where;
974 		after_where->right = NULL;
975 		after_where->adj_free = entry->start - after_where->end;
976 		vm_map_entry_set_max_free(after_where);
977 	} else {
978 		entry->right = map->root;
979 		entry->left = NULL;
980 	}
981 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
982 	    entry->next->start) - entry->end;
983 	vm_map_entry_set_max_free(entry);
984 	map->root = entry;
985 }
986 
987 static void
988 vm_map_entry_unlink(vm_map_t map,
989 		    vm_map_entry_t entry)
990 {
991 	vm_map_entry_t next, prev, root;
992 
993 	VM_MAP_ASSERT_LOCKED(map);
994 	if (entry != map->root)
995 		vm_map_entry_splay(entry->start, map->root);
996 	if (entry->left == NULL)
997 		root = entry->right;
998 	else {
999 		root = vm_map_entry_splay(entry->start, entry->left);
1000 		root->right = entry->right;
1001 		root->adj_free = (entry->next == &map->header ? map->max_offset :
1002 		    entry->next->start) - root->end;
1003 		vm_map_entry_set_max_free(root);
1004 	}
1005 	map->root = root;
1006 
1007 	prev = entry->prev;
1008 	next = entry->next;
1009 	next->prev = prev;
1010 	prev->next = next;
1011 	map->nentries--;
1012 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1013 	    map->nentries, entry);
1014 }
1015 
1016 /*
1017  *	vm_map_entry_resize_free:
1018  *
1019  *	Recompute the amount of free space following a vm_map_entry
1020  *	and propagate that value up the tree.  Call this function after
1021  *	resizing a map entry in-place, that is, without a call to
1022  *	vm_map_entry_link() or _unlink().
1023  *
1024  *	The map must be locked, and leaves it so.
1025  */
1026 static void
1027 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1028 {
1029 
1030 	/*
1031 	 * Using splay trees without parent pointers, propagating
1032 	 * max_free up the tree is done by moving the entry to the
1033 	 * root and making the change there.
1034 	 */
1035 	if (entry != map->root)
1036 		map->root = vm_map_entry_splay(entry->start, map->root);
1037 
1038 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1039 	    entry->next->start) - entry->end;
1040 	vm_map_entry_set_max_free(entry);
1041 }
1042 
1043 /*
1044  *	vm_map_lookup_entry:	[ internal use only ]
1045  *
1046  *	Finds the map entry containing (or
1047  *	immediately preceding) the specified address
1048  *	in the given map; the entry is returned
1049  *	in the "entry" parameter.  The boolean
1050  *	result indicates whether the address is
1051  *	actually contained in the map.
1052  */
1053 boolean_t
1054 vm_map_lookup_entry(
1055 	vm_map_t map,
1056 	vm_offset_t address,
1057 	vm_map_entry_t *entry)	/* OUT */
1058 {
1059 	vm_map_entry_t cur;
1060 	boolean_t locked;
1061 
1062 	/*
1063 	 * If the map is empty, then the map entry immediately preceding
1064 	 * "address" is the map's header.
1065 	 */
1066 	cur = map->root;
1067 	if (cur == NULL)
1068 		*entry = &map->header;
1069 	else if (address >= cur->start && cur->end > address) {
1070 		*entry = cur;
1071 		return (TRUE);
1072 	} else if ((locked = vm_map_locked(map)) ||
1073 	    sx_try_upgrade(&map->lock)) {
1074 		/*
1075 		 * Splay requires a write lock on the map.  However, it only
1076 		 * restructures the binary search tree; it does not otherwise
1077 		 * change the map.  Thus, the map's timestamp need not change
1078 		 * on a temporary upgrade.
1079 		 */
1080 		map->root = cur = vm_map_entry_splay(address, cur);
1081 		if (!locked)
1082 			sx_downgrade(&map->lock);
1083 
1084 		/*
1085 		 * If "address" is contained within a map entry, the new root
1086 		 * is that map entry.  Otherwise, the new root is a map entry
1087 		 * immediately before or after "address".
1088 		 */
1089 		if (address >= cur->start) {
1090 			*entry = cur;
1091 			if (cur->end > address)
1092 				return (TRUE);
1093 		} else
1094 			*entry = cur->prev;
1095 	} else
1096 		/*
1097 		 * Since the map is only locked for read access, perform a
1098 		 * standard binary search tree lookup for "address".
1099 		 */
1100 		for (;;) {
1101 			if (address < cur->start) {
1102 				if (cur->left == NULL) {
1103 					*entry = cur->prev;
1104 					break;
1105 				}
1106 				cur = cur->left;
1107 			} else if (cur->end > address) {
1108 				*entry = cur;
1109 				return (TRUE);
1110 			} else {
1111 				if (cur->right == NULL) {
1112 					*entry = cur;
1113 					break;
1114 				}
1115 				cur = cur->right;
1116 			}
1117 		}
1118 	return (FALSE);
1119 }
1120 
1121 /*
1122  *	vm_map_insert:
1123  *
1124  *	Inserts the given whole VM object into the target
1125  *	map at the specified address range.  The object's
1126  *	size should match that of the address range.
1127  *
1128  *	Requires that the map be locked, and leaves it so.
1129  *
1130  *	If object is non-NULL, ref count must be bumped by caller
1131  *	prior to making call to account for the new entry.
1132  */
1133 int
1134 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1135     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1136 {
1137 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1138 	vm_eflags_t protoeflags;
1139 	struct ucred *cred;
1140 	vm_inherit_t inheritance;
1141 
1142 	VM_MAP_ASSERT_LOCKED(map);
1143 	KASSERT((object != kmem_object && object != kernel_object) ||
1144 	    (cow & MAP_COPY_ON_WRITE) == 0,
1145 	    ("vm_map_insert: kmem or kernel object and COW"));
1146 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1147 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1148 
1149 	/*
1150 	 * Check that the start and end points are not bogus.
1151 	 */
1152 	if ((start < map->min_offset) || (end > map->max_offset) ||
1153 	    (start >= end))
1154 		return (KERN_INVALID_ADDRESS);
1155 
1156 	/*
1157 	 * Find the entry prior to the proposed starting address; if it's part
1158 	 * of an existing entry, this range is bogus.
1159 	 */
1160 	if (vm_map_lookup_entry(map, start, &temp_entry))
1161 		return (KERN_NO_SPACE);
1162 
1163 	prev_entry = temp_entry;
1164 
1165 	/*
1166 	 * Assert that the next entry doesn't overlap the end point.
1167 	 */
1168 	if ((prev_entry->next != &map->header) &&
1169 	    (prev_entry->next->start < end))
1170 		return (KERN_NO_SPACE);
1171 
1172 	protoeflags = 0;
1173 	if (cow & MAP_COPY_ON_WRITE)
1174 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1175 	if (cow & MAP_NOFAULT)
1176 		protoeflags |= MAP_ENTRY_NOFAULT;
1177 	if (cow & MAP_DISABLE_SYNCER)
1178 		protoeflags |= MAP_ENTRY_NOSYNC;
1179 	if (cow & MAP_DISABLE_COREDUMP)
1180 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1181 	if (cow & MAP_STACK_GROWS_DOWN)
1182 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1183 	if (cow & MAP_STACK_GROWS_UP)
1184 		protoeflags |= MAP_ENTRY_GROWS_UP;
1185 	if (cow & MAP_VN_WRITECOUNT)
1186 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1187 	if (cow & MAP_INHERIT_SHARE)
1188 		inheritance = VM_INHERIT_SHARE;
1189 	else
1190 		inheritance = VM_INHERIT_DEFAULT;
1191 
1192 	cred = NULL;
1193 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1194 		goto charged;
1195 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1196 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1197 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1198 			return (KERN_RESOURCE_SHORTAGE);
1199 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1200 		    object->cred == NULL,
1201 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1202 		cred = curthread->td_ucred;
1203 	}
1204 
1205 charged:
1206 	/* Expand the kernel pmap, if necessary. */
1207 	if (map == kernel_map && end > kernel_vm_end)
1208 		pmap_growkernel(end);
1209 	if (object != NULL) {
1210 		/*
1211 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1212 		 * is trivially proven to be the only mapping for any
1213 		 * of the object's pages.  (Object granularity
1214 		 * reference counting is insufficient to recognize
1215 		 * aliases with precision.)
1216 		 */
1217 		VM_OBJECT_WLOCK(object);
1218 		if (object->ref_count > 1 || object->shadow_count != 0)
1219 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1220 		VM_OBJECT_WUNLOCK(object);
1221 	}
1222 	else if ((prev_entry != &map->header) &&
1223 		 (prev_entry->eflags == protoeflags) &&
1224 		 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1225 		 (prev_entry->end == start) &&
1226 		 (prev_entry->wired_count == 0) &&
1227 		 (prev_entry->cred == cred ||
1228 		  (prev_entry->object.vm_object != NULL &&
1229 		   (prev_entry->object.vm_object->cred == cred))) &&
1230 		   vm_object_coalesce(prev_entry->object.vm_object,
1231 		       prev_entry->offset,
1232 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1233 		       (vm_size_t)(end - prev_entry->end), cred != NULL &&
1234 		       (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1235 		/*
1236 		 * We were able to extend the object.  Determine if we
1237 		 * can extend the previous map entry to include the
1238 		 * new range as well.
1239 		 */
1240 		if ((prev_entry->inheritance == inheritance) &&
1241 		    (prev_entry->protection == prot) &&
1242 		    (prev_entry->max_protection == max)) {
1243 			map->size += (end - prev_entry->end);
1244 			prev_entry->end = end;
1245 			vm_map_entry_resize_free(map, prev_entry);
1246 			vm_map_simplify_entry(map, prev_entry);
1247 			return (KERN_SUCCESS);
1248 		}
1249 
1250 		/*
1251 		 * If we can extend the object but cannot extend the
1252 		 * map entry, we have to create a new map entry.  We
1253 		 * must bump the ref count on the extended object to
1254 		 * account for it.  object may be NULL.
1255 		 */
1256 		object = prev_entry->object.vm_object;
1257 		offset = prev_entry->offset +
1258 			(prev_entry->end - prev_entry->start);
1259 		vm_object_reference(object);
1260 		if (cred != NULL && object != NULL && object->cred != NULL &&
1261 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1262 			/* Object already accounts for this uid. */
1263 			cred = NULL;
1264 		}
1265 	}
1266 	if (cred != NULL)
1267 		crhold(cred);
1268 
1269 	/*
1270 	 * Create a new entry
1271 	 */
1272 	new_entry = vm_map_entry_create(map);
1273 	new_entry->start = start;
1274 	new_entry->end = end;
1275 	new_entry->cred = NULL;
1276 
1277 	new_entry->eflags = protoeflags;
1278 	new_entry->object.vm_object = object;
1279 	new_entry->offset = offset;
1280 	new_entry->avail_ssize = 0;
1281 
1282 	new_entry->inheritance = inheritance;
1283 	new_entry->protection = prot;
1284 	new_entry->max_protection = max;
1285 	new_entry->wired_count = 0;
1286 	new_entry->wiring_thread = NULL;
1287 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1288 	new_entry->next_read = OFF_TO_IDX(offset);
1289 
1290 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1291 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1292 	new_entry->cred = cred;
1293 
1294 	/*
1295 	 * Insert the new entry into the list
1296 	 */
1297 	vm_map_entry_link(map, prev_entry, new_entry);
1298 	map->size += new_entry->end - new_entry->start;
1299 
1300 	/*
1301 	 * Try to coalesce the new entry with both the previous and next
1302 	 * entries in the list.  Previously, we only attempted to coalesce
1303 	 * with the previous entry when object is NULL.  Here, we handle the
1304 	 * other cases, which are less common.
1305 	 */
1306 	vm_map_simplify_entry(map, new_entry);
1307 
1308 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1309 		vm_map_pmap_enter(map, start, prot,
1310 				    object, OFF_TO_IDX(offset), end - start,
1311 				    cow & MAP_PREFAULT_PARTIAL);
1312 	}
1313 
1314 	return (KERN_SUCCESS);
1315 }
1316 
1317 /*
1318  *	vm_map_findspace:
1319  *
1320  *	Find the first fit (lowest VM address) for "length" free bytes
1321  *	beginning at address >= start in the given map.
1322  *
1323  *	In a vm_map_entry, "adj_free" is the amount of free space
1324  *	adjacent (higher address) to this entry, and "max_free" is the
1325  *	maximum amount of contiguous free space in its subtree.  This
1326  *	allows finding a free region in one path down the tree, so
1327  *	O(log n) amortized with splay trees.
1328  *
1329  *	The map must be locked, and leaves it so.
1330  *
1331  *	Returns: 0 on success, and starting address in *addr,
1332  *		 1 if insufficient space.
1333  */
1334 int
1335 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1336     vm_offset_t *addr)	/* OUT */
1337 {
1338 	vm_map_entry_t entry;
1339 	vm_offset_t st;
1340 
1341 	/*
1342 	 * Request must fit within min/max VM address and must avoid
1343 	 * address wrap.
1344 	 */
1345 	if (start < map->min_offset)
1346 		start = map->min_offset;
1347 	if (start + length > map->max_offset || start + length < start)
1348 		return (1);
1349 
1350 	/* Empty tree means wide open address space. */
1351 	if (map->root == NULL) {
1352 		*addr = start;
1353 		return (0);
1354 	}
1355 
1356 	/*
1357 	 * After splay, if start comes before root node, then there
1358 	 * must be a gap from start to the root.
1359 	 */
1360 	map->root = vm_map_entry_splay(start, map->root);
1361 	if (start + length <= map->root->start) {
1362 		*addr = start;
1363 		return (0);
1364 	}
1365 
1366 	/*
1367 	 * Root is the last node that might begin its gap before
1368 	 * start, and this is the last comparison where address
1369 	 * wrap might be a problem.
1370 	 */
1371 	st = (start > map->root->end) ? start : map->root->end;
1372 	if (length <= map->root->end + map->root->adj_free - st) {
1373 		*addr = st;
1374 		return (0);
1375 	}
1376 
1377 	/* With max_free, can immediately tell if no solution. */
1378 	entry = map->root->right;
1379 	if (entry == NULL || length > entry->max_free)
1380 		return (1);
1381 
1382 	/*
1383 	 * Search the right subtree in the order: left subtree, root,
1384 	 * right subtree (first fit).  The previous splay implies that
1385 	 * all regions in the right subtree have addresses > start.
1386 	 */
1387 	while (entry != NULL) {
1388 		if (entry->left != NULL && entry->left->max_free >= length)
1389 			entry = entry->left;
1390 		else if (entry->adj_free >= length) {
1391 			*addr = entry->end;
1392 			return (0);
1393 		} else
1394 			entry = entry->right;
1395 	}
1396 
1397 	/* Can't get here, so panic if we do. */
1398 	panic("vm_map_findspace: max_free corrupt");
1399 }
1400 
1401 int
1402 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1403     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1404     vm_prot_t max, int cow)
1405 {
1406 	vm_offset_t end;
1407 	int result;
1408 
1409 	end = start + length;
1410 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1411 	    object == NULL,
1412 	    ("vm_map_fixed: non-NULL backing object for stack"));
1413 	vm_map_lock(map);
1414 	VM_MAP_RANGE_CHECK(map, start, end);
1415 	if ((cow & MAP_CHECK_EXCL) == 0)
1416 		vm_map_delete(map, start, end);
1417 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1418 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1419 		    prot, max, cow);
1420 	} else {
1421 		result = vm_map_insert(map, object, offset, start, end,
1422 		    prot, max, cow);
1423 	}
1424 	vm_map_unlock(map);
1425 	return (result);
1426 }
1427 
1428 /*
1429  *	vm_map_find finds an unallocated region in the target address
1430  *	map with the given length.  The search is defined to be
1431  *	first-fit from the specified address; the region found is
1432  *	returned in the same parameter.
1433  *
1434  *	If object is non-NULL, ref count must be bumped by caller
1435  *	prior to making call to account for the new entry.
1436  */
1437 int
1438 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1439 	    vm_offset_t *addr,	/* IN/OUT */
1440 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1441 	    vm_prot_t prot, vm_prot_t max, int cow)
1442 {
1443 	vm_offset_t alignment, initial_addr, start;
1444 	int result;
1445 
1446 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1447 	    object == NULL,
1448 	    ("vm_map_find: non-NULL backing object for stack"));
1449 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1450 	    (object->flags & OBJ_COLORED) == 0))
1451 		find_space = VMFS_ANY_SPACE;
1452 	if (find_space >> 8 != 0) {
1453 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1454 		alignment = (vm_offset_t)1 << (find_space >> 8);
1455 	} else
1456 		alignment = 0;
1457 	initial_addr = *addr;
1458 again:
1459 	start = initial_addr;
1460 	vm_map_lock(map);
1461 	do {
1462 		if (find_space != VMFS_NO_SPACE) {
1463 			if (vm_map_findspace(map, start, length, addr) ||
1464 			    (max_addr != 0 && *addr + length > max_addr)) {
1465 				vm_map_unlock(map);
1466 				if (find_space == VMFS_OPTIMAL_SPACE) {
1467 					find_space = VMFS_ANY_SPACE;
1468 					goto again;
1469 				}
1470 				return (KERN_NO_SPACE);
1471 			}
1472 			switch (find_space) {
1473 			case VMFS_SUPER_SPACE:
1474 			case VMFS_OPTIMAL_SPACE:
1475 				pmap_align_superpage(object, offset, addr,
1476 				    length);
1477 				break;
1478 			case VMFS_ANY_SPACE:
1479 				break;
1480 			default:
1481 				if ((*addr & (alignment - 1)) != 0) {
1482 					*addr &= ~(alignment - 1);
1483 					*addr += alignment;
1484 				}
1485 				break;
1486 			}
1487 
1488 			start = *addr;
1489 		}
1490 		if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1491 			result = vm_map_stack_locked(map, start, length,
1492 			    sgrowsiz, prot, max, cow);
1493 		} else {
1494 			result = vm_map_insert(map, object, offset, start,
1495 			    start + length, prot, max, cow);
1496 		}
1497 	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1498 	    find_space != VMFS_ANY_SPACE);
1499 	vm_map_unlock(map);
1500 	return (result);
1501 }
1502 
1503 /*
1504  *	vm_map_simplify_entry:
1505  *
1506  *	Simplify the given map entry by merging with either neighbor.  This
1507  *	routine also has the ability to merge with both neighbors.
1508  *
1509  *	The map must be locked.
1510  *
1511  *	This routine guarentees that the passed entry remains valid (though
1512  *	possibly extended).  When merging, this routine may delete one or
1513  *	both neighbors.
1514  */
1515 void
1516 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1517 {
1518 	vm_map_entry_t next, prev;
1519 	vm_size_t prevsize, esize;
1520 
1521 	if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1522 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1523 		return;
1524 
1525 	prev = entry->prev;
1526 	if (prev != &map->header) {
1527 		prevsize = prev->end - prev->start;
1528 		if ( (prev->end == entry->start) &&
1529 		     (prev->object.vm_object == entry->object.vm_object) &&
1530 		     (!prev->object.vm_object ||
1531 			(prev->offset + prevsize == entry->offset)) &&
1532 		     (prev->eflags == entry->eflags) &&
1533 		     (prev->protection == entry->protection) &&
1534 		     (prev->max_protection == entry->max_protection) &&
1535 		     (prev->inheritance == entry->inheritance) &&
1536 		     (prev->wired_count == entry->wired_count) &&
1537 		     (prev->cred == entry->cred)) {
1538 			vm_map_entry_unlink(map, prev);
1539 			entry->start = prev->start;
1540 			entry->offset = prev->offset;
1541 			if (entry->prev != &map->header)
1542 				vm_map_entry_resize_free(map, entry->prev);
1543 
1544 			/*
1545 			 * If the backing object is a vnode object,
1546 			 * vm_object_deallocate() calls vrele().
1547 			 * However, vrele() does not lock the vnode
1548 			 * because the vnode has additional
1549 			 * references.  Thus, the map lock can be kept
1550 			 * without causing a lock-order reversal with
1551 			 * the vnode lock.
1552 			 *
1553 			 * Since we count the number of virtual page
1554 			 * mappings in object->un_pager.vnp.writemappings,
1555 			 * the writemappings value should not be adjusted
1556 			 * when the entry is disposed of.
1557 			 */
1558 			if (prev->object.vm_object)
1559 				vm_object_deallocate(prev->object.vm_object);
1560 			if (prev->cred != NULL)
1561 				crfree(prev->cred);
1562 			vm_map_entry_dispose(map, prev);
1563 		}
1564 	}
1565 
1566 	next = entry->next;
1567 	if (next != &map->header) {
1568 		esize = entry->end - entry->start;
1569 		if ((entry->end == next->start) &&
1570 		    (next->object.vm_object == entry->object.vm_object) &&
1571 		     (!entry->object.vm_object ||
1572 			(entry->offset + esize == next->offset)) &&
1573 		    (next->eflags == entry->eflags) &&
1574 		    (next->protection == entry->protection) &&
1575 		    (next->max_protection == entry->max_protection) &&
1576 		    (next->inheritance == entry->inheritance) &&
1577 		    (next->wired_count == entry->wired_count) &&
1578 		    (next->cred == entry->cred)) {
1579 			vm_map_entry_unlink(map, next);
1580 			entry->end = next->end;
1581 			vm_map_entry_resize_free(map, entry);
1582 
1583 			/*
1584 			 * See comment above.
1585 			 */
1586 			if (next->object.vm_object)
1587 				vm_object_deallocate(next->object.vm_object);
1588 			if (next->cred != NULL)
1589 				crfree(next->cred);
1590 			vm_map_entry_dispose(map, next);
1591 		}
1592 	}
1593 }
1594 /*
1595  *	vm_map_clip_start:	[ internal use only ]
1596  *
1597  *	Asserts that the given entry begins at or after
1598  *	the specified address; if necessary,
1599  *	it splits the entry into two.
1600  */
1601 #define vm_map_clip_start(map, entry, startaddr) \
1602 { \
1603 	if (startaddr > entry->start) \
1604 		_vm_map_clip_start(map, entry, startaddr); \
1605 }
1606 
1607 /*
1608  *	This routine is called only when it is known that
1609  *	the entry must be split.
1610  */
1611 static void
1612 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1613 {
1614 	vm_map_entry_t new_entry;
1615 
1616 	VM_MAP_ASSERT_LOCKED(map);
1617 
1618 	/*
1619 	 * Split off the front portion -- note that we must insert the new
1620 	 * entry BEFORE this one, so that this entry has the specified
1621 	 * starting address.
1622 	 */
1623 	vm_map_simplify_entry(map, entry);
1624 
1625 	/*
1626 	 * If there is no object backing this entry, we might as well create
1627 	 * one now.  If we defer it, an object can get created after the map
1628 	 * is clipped, and individual objects will be created for the split-up
1629 	 * map.  This is a bit of a hack, but is also about the best place to
1630 	 * put this improvement.
1631 	 */
1632 	if (entry->object.vm_object == NULL && !map->system_map) {
1633 		vm_object_t object;
1634 		object = vm_object_allocate(OBJT_DEFAULT,
1635 				atop(entry->end - entry->start));
1636 		entry->object.vm_object = object;
1637 		entry->offset = 0;
1638 		if (entry->cred != NULL) {
1639 			object->cred = entry->cred;
1640 			object->charge = entry->end - entry->start;
1641 			entry->cred = NULL;
1642 		}
1643 	} else if (entry->object.vm_object != NULL &&
1644 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1645 		   entry->cred != NULL) {
1646 		VM_OBJECT_WLOCK(entry->object.vm_object);
1647 		KASSERT(entry->object.vm_object->cred == NULL,
1648 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1649 		entry->object.vm_object->cred = entry->cred;
1650 		entry->object.vm_object->charge = entry->end - entry->start;
1651 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1652 		entry->cred = NULL;
1653 	}
1654 
1655 	new_entry = vm_map_entry_create(map);
1656 	*new_entry = *entry;
1657 
1658 	new_entry->end = start;
1659 	entry->offset += (start - entry->start);
1660 	entry->start = start;
1661 	if (new_entry->cred != NULL)
1662 		crhold(entry->cred);
1663 
1664 	vm_map_entry_link(map, entry->prev, new_entry);
1665 
1666 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1667 		vm_object_reference(new_entry->object.vm_object);
1668 		/*
1669 		 * The object->un_pager.vnp.writemappings for the
1670 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1671 		 * kept as is here.  The virtual pages are
1672 		 * re-distributed among the clipped entries, so the sum is
1673 		 * left the same.
1674 		 */
1675 	}
1676 }
1677 
1678 /*
1679  *	vm_map_clip_end:	[ internal use only ]
1680  *
1681  *	Asserts that the given entry ends at or before
1682  *	the specified address; if necessary,
1683  *	it splits the entry into two.
1684  */
1685 #define vm_map_clip_end(map, entry, endaddr) \
1686 { \
1687 	if ((endaddr) < (entry->end)) \
1688 		_vm_map_clip_end((map), (entry), (endaddr)); \
1689 }
1690 
1691 /*
1692  *	This routine is called only when it is known that
1693  *	the entry must be split.
1694  */
1695 static void
1696 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1697 {
1698 	vm_map_entry_t new_entry;
1699 
1700 	VM_MAP_ASSERT_LOCKED(map);
1701 
1702 	/*
1703 	 * If there is no object backing this entry, we might as well create
1704 	 * one now.  If we defer it, an object can get created after the map
1705 	 * is clipped, and individual objects will be created for the split-up
1706 	 * map.  This is a bit of a hack, but is also about the best place to
1707 	 * put this improvement.
1708 	 */
1709 	if (entry->object.vm_object == NULL && !map->system_map) {
1710 		vm_object_t object;
1711 		object = vm_object_allocate(OBJT_DEFAULT,
1712 				atop(entry->end - entry->start));
1713 		entry->object.vm_object = object;
1714 		entry->offset = 0;
1715 		if (entry->cred != NULL) {
1716 			object->cred = entry->cred;
1717 			object->charge = entry->end - entry->start;
1718 			entry->cred = NULL;
1719 		}
1720 	} else if (entry->object.vm_object != NULL &&
1721 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1722 		   entry->cred != NULL) {
1723 		VM_OBJECT_WLOCK(entry->object.vm_object);
1724 		KASSERT(entry->object.vm_object->cred == NULL,
1725 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1726 		entry->object.vm_object->cred = entry->cred;
1727 		entry->object.vm_object->charge = entry->end - entry->start;
1728 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1729 		entry->cred = NULL;
1730 	}
1731 
1732 	/*
1733 	 * Create a new entry and insert it AFTER the specified entry
1734 	 */
1735 	new_entry = vm_map_entry_create(map);
1736 	*new_entry = *entry;
1737 
1738 	new_entry->start = entry->end = end;
1739 	new_entry->offset += (end - entry->start);
1740 	if (new_entry->cred != NULL)
1741 		crhold(entry->cred);
1742 
1743 	vm_map_entry_link(map, entry, new_entry);
1744 
1745 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1746 		vm_object_reference(new_entry->object.vm_object);
1747 	}
1748 }
1749 
1750 /*
1751  *	vm_map_submap:		[ kernel use only ]
1752  *
1753  *	Mark the given range as handled by a subordinate map.
1754  *
1755  *	This range must have been created with vm_map_find,
1756  *	and no other operations may have been performed on this
1757  *	range prior to calling vm_map_submap.
1758  *
1759  *	Only a limited number of operations can be performed
1760  *	within this rage after calling vm_map_submap:
1761  *		vm_fault
1762  *	[Don't try vm_map_copy!]
1763  *
1764  *	To remove a submapping, one must first remove the
1765  *	range from the superior map, and then destroy the
1766  *	submap (if desired).  [Better yet, don't try it.]
1767  */
1768 int
1769 vm_map_submap(
1770 	vm_map_t map,
1771 	vm_offset_t start,
1772 	vm_offset_t end,
1773 	vm_map_t submap)
1774 {
1775 	vm_map_entry_t entry;
1776 	int result = KERN_INVALID_ARGUMENT;
1777 
1778 	vm_map_lock(map);
1779 
1780 	VM_MAP_RANGE_CHECK(map, start, end);
1781 
1782 	if (vm_map_lookup_entry(map, start, &entry)) {
1783 		vm_map_clip_start(map, entry, start);
1784 	} else
1785 		entry = entry->next;
1786 
1787 	vm_map_clip_end(map, entry, end);
1788 
1789 	if ((entry->start == start) && (entry->end == end) &&
1790 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1791 	    (entry->object.vm_object == NULL)) {
1792 		entry->object.sub_map = submap;
1793 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1794 		result = KERN_SUCCESS;
1795 	}
1796 	vm_map_unlock(map);
1797 
1798 	return (result);
1799 }
1800 
1801 /*
1802  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1803  */
1804 #define	MAX_INIT_PT	96
1805 
1806 /*
1807  *	vm_map_pmap_enter:
1808  *
1809  *	Preload the specified map's pmap with mappings to the specified
1810  *	object's memory-resident pages.  No further physical pages are
1811  *	allocated, and no further virtual pages are retrieved from secondary
1812  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1813  *	limited number of page mappings are created at the low-end of the
1814  *	specified address range.  (For this purpose, a superpage mapping
1815  *	counts as one page mapping.)  Otherwise, all resident pages within
1816  *	the specified address range are mapped.  Because these mappings are
1817  *	being created speculatively, cached pages are not reactivated and
1818  *	mapped.
1819  */
1820 static void
1821 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1822     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1823 {
1824 	vm_offset_t start;
1825 	vm_page_t p, p_start;
1826 	vm_pindex_t mask, psize, threshold, tmpidx;
1827 
1828 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1829 		return;
1830 	VM_OBJECT_RLOCK(object);
1831 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1832 		VM_OBJECT_RUNLOCK(object);
1833 		VM_OBJECT_WLOCK(object);
1834 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1835 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1836 			    size);
1837 			VM_OBJECT_WUNLOCK(object);
1838 			return;
1839 		}
1840 		VM_OBJECT_LOCK_DOWNGRADE(object);
1841 	}
1842 
1843 	psize = atop(size);
1844 	if (psize + pindex > object->size) {
1845 		if (object->size < pindex) {
1846 			VM_OBJECT_RUNLOCK(object);
1847 			return;
1848 		}
1849 		psize = object->size - pindex;
1850 	}
1851 
1852 	start = 0;
1853 	p_start = NULL;
1854 	threshold = MAX_INIT_PT;
1855 
1856 	p = vm_page_find_least(object, pindex);
1857 	/*
1858 	 * Assert: the variable p is either (1) the page with the
1859 	 * least pindex greater than or equal to the parameter pindex
1860 	 * or (2) NULL.
1861 	 */
1862 	for (;
1863 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1864 	     p = TAILQ_NEXT(p, listq)) {
1865 		/*
1866 		 * don't allow an madvise to blow away our really
1867 		 * free pages allocating pv entries.
1868 		 */
1869 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1870 		    vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1871 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1872 		    tmpidx >= threshold)) {
1873 			psize = tmpidx;
1874 			break;
1875 		}
1876 		if (p->valid == VM_PAGE_BITS_ALL) {
1877 			if (p_start == NULL) {
1878 				start = addr + ptoa(tmpidx);
1879 				p_start = p;
1880 			}
1881 			/* Jump ahead if a superpage mapping is possible. */
1882 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1883 			    (pagesizes[p->psind] - 1)) == 0) {
1884 				mask = atop(pagesizes[p->psind]) - 1;
1885 				if (tmpidx + mask < psize &&
1886 				    vm_page_ps_is_valid(p)) {
1887 					p += mask;
1888 					threshold += mask;
1889 				}
1890 			}
1891 		} else if (p_start != NULL) {
1892 			pmap_enter_object(map->pmap, start, addr +
1893 			    ptoa(tmpidx), p_start, prot);
1894 			p_start = NULL;
1895 		}
1896 	}
1897 	if (p_start != NULL)
1898 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1899 		    p_start, prot);
1900 	VM_OBJECT_RUNLOCK(object);
1901 }
1902 
1903 /*
1904  *	vm_map_protect:
1905  *
1906  *	Sets the protection of the specified address
1907  *	region in the target map.  If "set_max" is
1908  *	specified, the maximum protection is to be set;
1909  *	otherwise, only the current protection is affected.
1910  */
1911 int
1912 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1913 	       vm_prot_t new_prot, boolean_t set_max)
1914 {
1915 	vm_map_entry_t current, entry;
1916 	vm_object_t obj;
1917 	struct ucred *cred;
1918 	vm_prot_t old_prot;
1919 
1920 	if (start == end)
1921 		return (KERN_SUCCESS);
1922 
1923 	vm_map_lock(map);
1924 
1925 	VM_MAP_RANGE_CHECK(map, start, end);
1926 
1927 	if (vm_map_lookup_entry(map, start, &entry)) {
1928 		vm_map_clip_start(map, entry, start);
1929 	} else {
1930 		entry = entry->next;
1931 	}
1932 
1933 	/*
1934 	 * Make a first pass to check for protection violations.
1935 	 */
1936 	current = entry;
1937 	while ((current != &map->header) && (current->start < end)) {
1938 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1939 			vm_map_unlock(map);
1940 			return (KERN_INVALID_ARGUMENT);
1941 		}
1942 		if ((new_prot & current->max_protection) != new_prot) {
1943 			vm_map_unlock(map);
1944 			return (KERN_PROTECTION_FAILURE);
1945 		}
1946 		current = current->next;
1947 	}
1948 
1949 
1950 	/*
1951 	 * Do an accounting pass for private read-only mappings that
1952 	 * now will do cow due to allowed write (e.g. debugger sets
1953 	 * breakpoint on text segment)
1954 	 */
1955 	for (current = entry; (current != &map->header) &&
1956 	     (current->start < end); current = current->next) {
1957 
1958 		vm_map_clip_end(map, current, end);
1959 
1960 		if (set_max ||
1961 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1962 		    ENTRY_CHARGED(current)) {
1963 			continue;
1964 		}
1965 
1966 		cred = curthread->td_ucred;
1967 		obj = current->object.vm_object;
1968 
1969 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1970 			if (!swap_reserve(current->end - current->start)) {
1971 				vm_map_unlock(map);
1972 				return (KERN_RESOURCE_SHORTAGE);
1973 			}
1974 			crhold(cred);
1975 			current->cred = cred;
1976 			continue;
1977 		}
1978 
1979 		VM_OBJECT_WLOCK(obj);
1980 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1981 			VM_OBJECT_WUNLOCK(obj);
1982 			continue;
1983 		}
1984 
1985 		/*
1986 		 * Charge for the whole object allocation now, since
1987 		 * we cannot distinguish between non-charged and
1988 		 * charged clipped mapping of the same object later.
1989 		 */
1990 		KASSERT(obj->charge == 0,
1991 		    ("vm_map_protect: object %p overcharged (entry %p)",
1992 		    obj, current));
1993 		if (!swap_reserve(ptoa(obj->size))) {
1994 			VM_OBJECT_WUNLOCK(obj);
1995 			vm_map_unlock(map);
1996 			return (KERN_RESOURCE_SHORTAGE);
1997 		}
1998 
1999 		crhold(cred);
2000 		obj->cred = cred;
2001 		obj->charge = ptoa(obj->size);
2002 		VM_OBJECT_WUNLOCK(obj);
2003 	}
2004 
2005 	/*
2006 	 * Go back and fix up protections. [Note that clipping is not
2007 	 * necessary the second time.]
2008 	 */
2009 	current = entry;
2010 	while ((current != &map->header) && (current->start < end)) {
2011 		old_prot = current->protection;
2012 
2013 		if (set_max)
2014 			current->protection =
2015 			    (current->max_protection = new_prot) &
2016 			    old_prot;
2017 		else
2018 			current->protection = new_prot;
2019 
2020 		/*
2021 		 * For user wired map entries, the normal lazy evaluation of
2022 		 * write access upgrades through soft page faults is
2023 		 * undesirable.  Instead, immediately copy any pages that are
2024 		 * copy-on-write and enable write access in the physical map.
2025 		 */
2026 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2027 		    (current->protection & VM_PROT_WRITE) != 0 &&
2028 		    (old_prot & VM_PROT_WRITE) == 0)
2029 			vm_fault_copy_entry(map, map, current, current, NULL);
2030 
2031 		/*
2032 		 * When restricting access, update the physical map.  Worry
2033 		 * about copy-on-write here.
2034 		 */
2035 		if ((old_prot & ~current->protection) != 0) {
2036 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2037 							VM_PROT_ALL)
2038 			pmap_protect(map->pmap, current->start,
2039 			    current->end,
2040 			    current->protection & MASK(current));
2041 #undef	MASK
2042 		}
2043 		vm_map_simplify_entry(map, current);
2044 		current = current->next;
2045 	}
2046 	vm_map_unlock(map);
2047 	return (KERN_SUCCESS);
2048 }
2049 
2050 /*
2051  *	vm_map_madvise:
2052  *
2053  *	This routine traverses a processes map handling the madvise
2054  *	system call.  Advisories are classified as either those effecting
2055  *	the vm_map_entry structure, or those effecting the underlying
2056  *	objects.
2057  */
2058 int
2059 vm_map_madvise(
2060 	vm_map_t map,
2061 	vm_offset_t start,
2062 	vm_offset_t end,
2063 	int behav)
2064 {
2065 	vm_map_entry_t current, entry;
2066 	int modify_map = 0;
2067 
2068 	/*
2069 	 * Some madvise calls directly modify the vm_map_entry, in which case
2070 	 * we need to use an exclusive lock on the map and we need to perform
2071 	 * various clipping operations.  Otherwise we only need a read-lock
2072 	 * on the map.
2073 	 */
2074 	switch(behav) {
2075 	case MADV_NORMAL:
2076 	case MADV_SEQUENTIAL:
2077 	case MADV_RANDOM:
2078 	case MADV_NOSYNC:
2079 	case MADV_AUTOSYNC:
2080 	case MADV_NOCORE:
2081 	case MADV_CORE:
2082 		if (start == end)
2083 			return (KERN_SUCCESS);
2084 		modify_map = 1;
2085 		vm_map_lock(map);
2086 		break;
2087 	case MADV_WILLNEED:
2088 	case MADV_DONTNEED:
2089 	case MADV_FREE:
2090 		if (start == end)
2091 			return (KERN_SUCCESS);
2092 		vm_map_lock_read(map);
2093 		break;
2094 	default:
2095 		return (KERN_INVALID_ARGUMENT);
2096 	}
2097 
2098 	/*
2099 	 * Locate starting entry and clip if necessary.
2100 	 */
2101 	VM_MAP_RANGE_CHECK(map, start, end);
2102 
2103 	if (vm_map_lookup_entry(map, start, &entry)) {
2104 		if (modify_map)
2105 			vm_map_clip_start(map, entry, start);
2106 	} else {
2107 		entry = entry->next;
2108 	}
2109 
2110 	if (modify_map) {
2111 		/*
2112 		 * madvise behaviors that are implemented in the vm_map_entry.
2113 		 *
2114 		 * We clip the vm_map_entry so that behavioral changes are
2115 		 * limited to the specified address range.
2116 		 */
2117 		for (current = entry;
2118 		     (current != &map->header) && (current->start < end);
2119 		     current = current->next
2120 		) {
2121 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2122 				continue;
2123 
2124 			vm_map_clip_end(map, current, end);
2125 
2126 			switch (behav) {
2127 			case MADV_NORMAL:
2128 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2129 				break;
2130 			case MADV_SEQUENTIAL:
2131 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2132 				break;
2133 			case MADV_RANDOM:
2134 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2135 				break;
2136 			case MADV_NOSYNC:
2137 				current->eflags |= MAP_ENTRY_NOSYNC;
2138 				break;
2139 			case MADV_AUTOSYNC:
2140 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2141 				break;
2142 			case MADV_NOCORE:
2143 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2144 				break;
2145 			case MADV_CORE:
2146 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2147 				break;
2148 			default:
2149 				break;
2150 			}
2151 			vm_map_simplify_entry(map, current);
2152 		}
2153 		vm_map_unlock(map);
2154 	} else {
2155 		vm_pindex_t pstart, pend;
2156 
2157 		/*
2158 		 * madvise behaviors that are implemented in the underlying
2159 		 * vm_object.
2160 		 *
2161 		 * Since we don't clip the vm_map_entry, we have to clip
2162 		 * the vm_object pindex and count.
2163 		 */
2164 		for (current = entry;
2165 		     (current != &map->header) && (current->start < end);
2166 		     current = current->next
2167 		) {
2168 			vm_offset_t useEnd, useStart;
2169 
2170 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2171 				continue;
2172 
2173 			pstart = OFF_TO_IDX(current->offset);
2174 			pend = pstart + atop(current->end - current->start);
2175 			useStart = current->start;
2176 			useEnd = current->end;
2177 
2178 			if (current->start < start) {
2179 				pstart += atop(start - current->start);
2180 				useStart = start;
2181 			}
2182 			if (current->end > end) {
2183 				pend -= atop(current->end - end);
2184 				useEnd = end;
2185 			}
2186 
2187 			if (pstart >= pend)
2188 				continue;
2189 
2190 			/*
2191 			 * Perform the pmap_advise() before clearing
2192 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2193 			 * concurrent pmap operation, such as pmap_remove(),
2194 			 * could clear a reference in the pmap and set
2195 			 * PGA_REFERENCED on the page before the pmap_advise()
2196 			 * had completed.  Consequently, the page would appear
2197 			 * referenced based upon an old reference that
2198 			 * occurred before this pmap_advise() ran.
2199 			 */
2200 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2201 				pmap_advise(map->pmap, useStart, useEnd,
2202 				    behav);
2203 
2204 			vm_object_madvise(current->object.vm_object, pstart,
2205 			    pend, behav);
2206 
2207 			/*
2208 			 * Pre-populate paging structures in the
2209 			 * WILLNEED case.  For wired entries, the
2210 			 * paging structures are already populated.
2211 			 */
2212 			if (behav == MADV_WILLNEED &&
2213 			    current->wired_count == 0) {
2214 				vm_map_pmap_enter(map,
2215 				    useStart,
2216 				    current->protection,
2217 				    current->object.vm_object,
2218 				    pstart,
2219 				    ptoa(pend - pstart),
2220 				    MAP_PREFAULT_MADVISE
2221 				);
2222 			}
2223 		}
2224 		vm_map_unlock_read(map);
2225 	}
2226 	return (0);
2227 }
2228 
2229 
2230 /*
2231  *	vm_map_inherit:
2232  *
2233  *	Sets the inheritance of the specified address
2234  *	range in the target map.  Inheritance
2235  *	affects how the map will be shared with
2236  *	child maps at the time of vmspace_fork.
2237  */
2238 int
2239 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2240 	       vm_inherit_t new_inheritance)
2241 {
2242 	vm_map_entry_t entry;
2243 	vm_map_entry_t temp_entry;
2244 
2245 	switch (new_inheritance) {
2246 	case VM_INHERIT_NONE:
2247 	case VM_INHERIT_COPY:
2248 	case VM_INHERIT_SHARE:
2249 		break;
2250 	default:
2251 		return (KERN_INVALID_ARGUMENT);
2252 	}
2253 	if (start == end)
2254 		return (KERN_SUCCESS);
2255 	vm_map_lock(map);
2256 	VM_MAP_RANGE_CHECK(map, start, end);
2257 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2258 		entry = temp_entry;
2259 		vm_map_clip_start(map, entry, start);
2260 	} else
2261 		entry = temp_entry->next;
2262 	while ((entry != &map->header) && (entry->start < end)) {
2263 		vm_map_clip_end(map, entry, end);
2264 		entry->inheritance = new_inheritance;
2265 		vm_map_simplify_entry(map, entry);
2266 		entry = entry->next;
2267 	}
2268 	vm_map_unlock(map);
2269 	return (KERN_SUCCESS);
2270 }
2271 
2272 /*
2273  *	vm_map_unwire:
2274  *
2275  *	Implements both kernel and user unwiring.
2276  */
2277 int
2278 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2279     int flags)
2280 {
2281 	vm_map_entry_t entry, first_entry, tmp_entry;
2282 	vm_offset_t saved_start;
2283 	unsigned int last_timestamp;
2284 	int rv;
2285 	boolean_t need_wakeup, result, user_unwire;
2286 
2287 	if (start == end)
2288 		return (KERN_SUCCESS);
2289 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2290 	vm_map_lock(map);
2291 	VM_MAP_RANGE_CHECK(map, start, end);
2292 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2293 		if (flags & VM_MAP_WIRE_HOLESOK)
2294 			first_entry = first_entry->next;
2295 		else {
2296 			vm_map_unlock(map);
2297 			return (KERN_INVALID_ADDRESS);
2298 		}
2299 	}
2300 	last_timestamp = map->timestamp;
2301 	entry = first_entry;
2302 	while (entry != &map->header && entry->start < end) {
2303 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2304 			/*
2305 			 * We have not yet clipped the entry.
2306 			 */
2307 			saved_start = (start >= entry->start) ? start :
2308 			    entry->start;
2309 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2310 			if (vm_map_unlock_and_wait(map, 0)) {
2311 				/*
2312 				 * Allow interruption of user unwiring?
2313 				 */
2314 			}
2315 			vm_map_lock(map);
2316 			if (last_timestamp+1 != map->timestamp) {
2317 				/*
2318 				 * Look again for the entry because the map was
2319 				 * modified while it was unlocked.
2320 				 * Specifically, the entry may have been
2321 				 * clipped, merged, or deleted.
2322 				 */
2323 				if (!vm_map_lookup_entry(map, saved_start,
2324 				    &tmp_entry)) {
2325 					if (flags & VM_MAP_WIRE_HOLESOK)
2326 						tmp_entry = tmp_entry->next;
2327 					else {
2328 						if (saved_start == start) {
2329 							/*
2330 							 * First_entry has been deleted.
2331 							 */
2332 							vm_map_unlock(map);
2333 							return (KERN_INVALID_ADDRESS);
2334 						}
2335 						end = saved_start;
2336 						rv = KERN_INVALID_ADDRESS;
2337 						goto done;
2338 					}
2339 				}
2340 				if (entry == first_entry)
2341 					first_entry = tmp_entry;
2342 				else
2343 					first_entry = NULL;
2344 				entry = tmp_entry;
2345 			}
2346 			last_timestamp = map->timestamp;
2347 			continue;
2348 		}
2349 		vm_map_clip_start(map, entry, start);
2350 		vm_map_clip_end(map, entry, end);
2351 		/*
2352 		 * Mark the entry in case the map lock is released.  (See
2353 		 * above.)
2354 		 */
2355 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2356 		    entry->wiring_thread == NULL,
2357 		    ("owned map entry %p", entry));
2358 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2359 		entry->wiring_thread = curthread;
2360 		/*
2361 		 * Check the map for holes in the specified region.
2362 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2363 		 */
2364 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2365 		    (entry->end < end && (entry->next == &map->header ||
2366 		    entry->next->start > entry->end))) {
2367 			end = entry->end;
2368 			rv = KERN_INVALID_ADDRESS;
2369 			goto done;
2370 		}
2371 		/*
2372 		 * If system unwiring, require that the entry is system wired.
2373 		 */
2374 		if (!user_unwire &&
2375 		    vm_map_entry_system_wired_count(entry) == 0) {
2376 			end = entry->end;
2377 			rv = KERN_INVALID_ARGUMENT;
2378 			goto done;
2379 		}
2380 		entry = entry->next;
2381 	}
2382 	rv = KERN_SUCCESS;
2383 done:
2384 	need_wakeup = FALSE;
2385 	if (first_entry == NULL) {
2386 		result = vm_map_lookup_entry(map, start, &first_entry);
2387 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2388 			first_entry = first_entry->next;
2389 		else
2390 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2391 	}
2392 	for (entry = first_entry; entry != &map->header && entry->start < end;
2393 	    entry = entry->next) {
2394 		/*
2395 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2396 		 * space in the unwired region could have been mapped
2397 		 * while the map lock was dropped for draining
2398 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2399 		 * could be simultaneously wiring this new mapping
2400 		 * entry.  Detect these cases and skip any entries
2401 		 * marked as in transition by us.
2402 		 */
2403 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2404 		    entry->wiring_thread != curthread) {
2405 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2406 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2407 			continue;
2408 		}
2409 
2410 		if (rv == KERN_SUCCESS && (!user_unwire ||
2411 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2412 			if (user_unwire)
2413 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2414 			if (entry->wired_count == 1)
2415 				vm_map_entry_unwire(map, entry);
2416 			else
2417 				entry->wired_count--;
2418 		}
2419 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2420 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2421 		KASSERT(entry->wiring_thread == curthread,
2422 		    ("vm_map_unwire: alien wire %p", entry));
2423 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2424 		entry->wiring_thread = NULL;
2425 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2426 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2427 			need_wakeup = TRUE;
2428 		}
2429 		vm_map_simplify_entry(map, entry);
2430 	}
2431 	vm_map_unlock(map);
2432 	if (need_wakeup)
2433 		vm_map_wakeup(map);
2434 	return (rv);
2435 }
2436 
2437 /*
2438  *	vm_map_wire_entry_failure:
2439  *
2440  *	Handle a wiring failure on the given entry.
2441  *
2442  *	The map should be locked.
2443  */
2444 static void
2445 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2446     vm_offset_t failed_addr)
2447 {
2448 
2449 	VM_MAP_ASSERT_LOCKED(map);
2450 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2451 	    entry->wired_count == 1,
2452 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2453 	KASSERT(failed_addr < entry->end,
2454 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2455 
2456 	/*
2457 	 * If any pages at the start of this entry were successfully wired,
2458 	 * then unwire them.
2459 	 */
2460 	if (failed_addr > entry->start) {
2461 		pmap_unwire(map->pmap, entry->start, failed_addr);
2462 		vm_object_unwire(entry->object.vm_object, entry->offset,
2463 		    failed_addr - entry->start, PQ_ACTIVE);
2464 	}
2465 
2466 	/*
2467 	 * Assign an out-of-range value to represent the failure to wire this
2468 	 * entry.
2469 	 */
2470 	entry->wired_count = -1;
2471 }
2472 
2473 /*
2474  *	vm_map_wire:
2475  *
2476  *	Implements both kernel and user wiring.
2477  */
2478 int
2479 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2480     int flags)
2481 {
2482 	vm_map_entry_t entry, first_entry, tmp_entry;
2483 	vm_offset_t faddr, saved_end, saved_start;
2484 	unsigned int last_timestamp;
2485 	int rv;
2486 	boolean_t need_wakeup, result, user_wire;
2487 	vm_prot_t prot;
2488 
2489 	if (start == end)
2490 		return (KERN_SUCCESS);
2491 	prot = 0;
2492 	if (flags & VM_MAP_WIRE_WRITE)
2493 		prot |= VM_PROT_WRITE;
2494 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2495 	vm_map_lock(map);
2496 	VM_MAP_RANGE_CHECK(map, start, end);
2497 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2498 		if (flags & VM_MAP_WIRE_HOLESOK)
2499 			first_entry = first_entry->next;
2500 		else {
2501 			vm_map_unlock(map);
2502 			return (KERN_INVALID_ADDRESS);
2503 		}
2504 	}
2505 	last_timestamp = map->timestamp;
2506 	entry = first_entry;
2507 	while (entry != &map->header && entry->start < end) {
2508 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2509 			/*
2510 			 * We have not yet clipped the entry.
2511 			 */
2512 			saved_start = (start >= entry->start) ? start :
2513 			    entry->start;
2514 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2515 			if (vm_map_unlock_and_wait(map, 0)) {
2516 				/*
2517 				 * Allow interruption of user wiring?
2518 				 */
2519 			}
2520 			vm_map_lock(map);
2521 			if (last_timestamp + 1 != map->timestamp) {
2522 				/*
2523 				 * Look again for the entry because the map was
2524 				 * modified while it was unlocked.
2525 				 * Specifically, the entry may have been
2526 				 * clipped, merged, or deleted.
2527 				 */
2528 				if (!vm_map_lookup_entry(map, saved_start,
2529 				    &tmp_entry)) {
2530 					if (flags & VM_MAP_WIRE_HOLESOK)
2531 						tmp_entry = tmp_entry->next;
2532 					else {
2533 						if (saved_start == start) {
2534 							/*
2535 							 * first_entry has been deleted.
2536 							 */
2537 							vm_map_unlock(map);
2538 							return (KERN_INVALID_ADDRESS);
2539 						}
2540 						end = saved_start;
2541 						rv = KERN_INVALID_ADDRESS;
2542 						goto done;
2543 					}
2544 				}
2545 				if (entry == first_entry)
2546 					first_entry = tmp_entry;
2547 				else
2548 					first_entry = NULL;
2549 				entry = tmp_entry;
2550 			}
2551 			last_timestamp = map->timestamp;
2552 			continue;
2553 		}
2554 		vm_map_clip_start(map, entry, start);
2555 		vm_map_clip_end(map, entry, end);
2556 		/*
2557 		 * Mark the entry in case the map lock is released.  (See
2558 		 * above.)
2559 		 */
2560 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2561 		    entry->wiring_thread == NULL,
2562 		    ("owned map entry %p", entry));
2563 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2564 		entry->wiring_thread = curthread;
2565 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2566 		    || (entry->protection & prot) != prot) {
2567 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2568 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2569 				end = entry->end;
2570 				rv = KERN_INVALID_ADDRESS;
2571 				goto done;
2572 			}
2573 			goto next_entry;
2574 		}
2575 		if (entry->wired_count == 0) {
2576 			entry->wired_count++;
2577 			saved_start = entry->start;
2578 			saved_end = entry->end;
2579 
2580 			/*
2581 			 * Release the map lock, relying on the in-transition
2582 			 * mark.  Mark the map busy for fork.
2583 			 */
2584 			vm_map_busy(map);
2585 			vm_map_unlock(map);
2586 
2587 			faddr = saved_start;
2588 			do {
2589 				/*
2590 				 * Simulate a fault to get the page and enter
2591 				 * it into the physical map.
2592 				 */
2593 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2594 				    VM_FAULT_WIRE)) != KERN_SUCCESS)
2595 					break;
2596 			} while ((faddr += PAGE_SIZE) < saved_end);
2597 			vm_map_lock(map);
2598 			vm_map_unbusy(map);
2599 			if (last_timestamp + 1 != map->timestamp) {
2600 				/*
2601 				 * Look again for the entry because the map was
2602 				 * modified while it was unlocked.  The entry
2603 				 * may have been clipped, but NOT merged or
2604 				 * deleted.
2605 				 */
2606 				result = vm_map_lookup_entry(map, saved_start,
2607 				    &tmp_entry);
2608 				KASSERT(result, ("vm_map_wire: lookup failed"));
2609 				if (entry == first_entry)
2610 					first_entry = tmp_entry;
2611 				else
2612 					first_entry = NULL;
2613 				entry = tmp_entry;
2614 				while (entry->end < saved_end) {
2615 					/*
2616 					 * In case of failure, handle entries
2617 					 * that were not fully wired here;
2618 					 * fully wired entries are handled
2619 					 * later.
2620 					 */
2621 					if (rv != KERN_SUCCESS &&
2622 					    faddr < entry->end)
2623 						vm_map_wire_entry_failure(map,
2624 						    entry, faddr);
2625 					entry = entry->next;
2626 				}
2627 			}
2628 			last_timestamp = map->timestamp;
2629 			if (rv != KERN_SUCCESS) {
2630 				vm_map_wire_entry_failure(map, entry, faddr);
2631 				end = entry->end;
2632 				goto done;
2633 			}
2634 		} else if (!user_wire ||
2635 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2636 			entry->wired_count++;
2637 		}
2638 		/*
2639 		 * Check the map for holes in the specified region.
2640 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2641 		 */
2642 	next_entry:
2643 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2644 		    (entry->end < end && (entry->next == &map->header ||
2645 		    entry->next->start > entry->end))) {
2646 			end = entry->end;
2647 			rv = KERN_INVALID_ADDRESS;
2648 			goto done;
2649 		}
2650 		entry = entry->next;
2651 	}
2652 	rv = KERN_SUCCESS;
2653 done:
2654 	need_wakeup = FALSE;
2655 	if (first_entry == NULL) {
2656 		result = vm_map_lookup_entry(map, start, &first_entry);
2657 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2658 			first_entry = first_entry->next;
2659 		else
2660 			KASSERT(result, ("vm_map_wire: lookup failed"));
2661 	}
2662 	for (entry = first_entry; entry != &map->header && entry->start < end;
2663 	    entry = entry->next) {
2664 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2665 			goto next_entry_done;
2666 
2667 		/*
2668 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2669 		 * space in the unwired region could have been mapped
2670 		 * while the map lock was dropped for faulting in the
2671 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2672 		 * Moreover, another thread could be simultaneously
2673 		 * wiring this new mapping entry.  Detect these cases
2674 		 * and skip any entries marked as in transition by us.
2675 		 */
2676 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2677 		    entry->wiring_thread != curthread) {
2678 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2679 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2680 			continue;
2681 		}
2682 
2683 		if (rv == KERN_SUCCESS) {
2684 			if (user_wire)
2685 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2686 		} else if (entry->wired_count == -1) {
2687 			/*
2688 			 * Wiring failed on this entry.  Thus, unwiring is
2689 			 * unnecessary.
2690 			 */
2691 			entry->wired_count = 0;
2692 		} else if (!user_wire ||
2693 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2694 			/*
2695 			 * Undo the wiring.  Wiring succeeded on this entry
2696 			 * but failed on a later entry.
2697 			 */
2698 			if (entry->wired_count == 1)
2699 				vm_map_entry_unwire(map, entry);
2700 			else
2701 				entry->wired_count--;
2702 		}
2703 	next_entry_done:
2704 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2705 		    ("vm_map_wire: in-transition flag missing %p", entry));
2706 		KASSERT(entry->wiring_thread == curthread,
2707 		    ("vm_map_wire: alien wire %p", entry));
2708 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2709 		    MAP_ENTRY_WIRE_SKIPPED);
2710 		entry->wiring_thread = NULL;
2711 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2712 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2713 			need_wakeup = TRUE;
2714 		}
2715 		vm_map_simplify_entry(map, entry);
2716 	}
2717 	vm_map_unlock(map);
2718 	if (need_wakeup)
2719 		vm_map_wakeup(map);
2720 	return (rv);
2721 }
2722 
2723 /*
2724  * vm_map_sync
2725  *
2726  * Push any dirty cached pages in the address range to their pager.
2727  * If syncio is TRUE, dirty pages are written synchronously.
2728  * If invalidate is TRUE, any cached pages are freed as well.
2729  *
2730  * If the size of the region from start to end is zero, we are
2731  * supposed to flush all modified pages within the region containing
2732  * start.  Unfortunately, a region can be split or coalesced with
2733  * neighboring regions, making it difficult to determine what the
2734  * original region was.  Therefore, we approximate this requirement by
2735  * flushing the current region containing start.
2736  *
2737  * Returns an error if any part of the specified range is not mapped.
2738  */
2739 int
2740 vm_map_sync(
2741 	vm_map_t map,
2742 	vm_offset_t start,
2743 	vm_offset_t end,
2744 	boolean_t syncio,
2745 	boolean_t invalidate)
2746 {
2747 	vm_map_entry_t current;
2748 	vm_map_entry_t entry;
2749 	vm_size_t size;
2750 	vm_object_t object;
2751 	vm_ooffset_t offset;
2752 	unsigned int last_timestamp;
2753 	boolean_t failed;
2754 
2755 	vm_map_lock_read(map);
2756 	VM_MAP_RANGE_CHECK(map, start, end);
2757 	if (!vm_map_lookup_entry(map, start, &entry)) {
2758 		vm_map_unlock_read(map);
2759 		return (KERN_INVALID_ADDRESS);
2760 	} else if (start == end) {
2761 		start = entry->start;
2762 		end = entry->end;
2763 	}
2764 	/*
2765 	 * Make a first pass to check for user-wired memory and holes.
2766 	 */
2767 	for (current = entry; current != &map->header && current->start < end;
2768 	    current = current->next) {
2769 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2770 			vm_map_unlock_read(map);
2771 			return (KERN_INVALID_ARGUMENT);
2772 		}
2773 		if (end > current->end &&
2774 		    (current->next == &map->header ||
2775 			current->end != current->next->start)) {
2776 			vm_map_unlock_read(map);
2777 			return (KERN_INVALID_ADDRESS);
2778 		}
2779 	}
2780 
2781 	if (invalidate)
2782 		pmap_remove(map->pmap, start, end);
2783 	failed = FALSE;
2784 
2785 	/*
2786 	 * Make a second pass, cleaning/uncaching pages from the indicated
2787 	 * objects as we go.
2788 	 */
2789 	for (current = entry; current != &map->header && current->start < end;) {
2790 		offset = current->offset + (start - current->start);
2791 		size = (end <= current->end ? end : current->end) - start;
2792 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2793 			vm_map_t smap;
2794 			vm_map_entry_t tentry;
2795 			vm_size_t tsize;
2796 
2797 			smap = current->object.sub_map;
2798 			vm_map_lock_read(smap);
2799 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2800 			tsize = tentry->end - offset;
2801 			if (tsize < size)
2802 				size = tsize;
2803 			object = tentry->object.vm_object;
2804 			offset = tentry->offset + (offset - tentry->start);
2805 			vm_map_unlock_read(smap);
2806 		} else {
2807 			object = current->object.vm_object;
2808 		}
2809 		vm_object_reference(object);
2810 		last_timestamp = map->timestamp;
2811 		vm_map_unlock_read(map);
2812 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2813 			failed = TRUE;
2814 		start += size;
2815 		vm_object_deallocate(object);
2816 		vm_map_lock_read(map);
2817 		if (last_timestamp == map->timestamp ||
2818 		    !vm_map_lookup_entry(map, start, &current))
2819 			current = current->next;
2820 	}
2821 
2822 	vm_map_unlock_read(map);
2823 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2824 }
2825 
2826 /*
2827  *	vm_map_entry_unwire:	[ internal use only ]
2828  *
2829  *	Make the region specified by this entry pageable.
2830  *
2831  *	The map in question should be locked.
2832  *	[This is the reason for this routine's existence.]
2833  */
2834 static void
2835 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2836 {
2837 
2838 	VM_MAP_ASSERT_LOCKED(map);
2839 	KASSERT(entry->wired_count > 0,
2840 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
2841 	pmap_unwire(map->pmap, entry->start, entry->end);
2842 	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2843 	    entry->start, PQ_ACTIVE);
2844 	entry->wired_count = 0;
2845 }
2846 
2847 static void
2848 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2849 {
2850 
2851 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2852 		vm_object_deallocate(entry->object.vm_object);
2853 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2854 }
2855 
2856 /*
2857  *	vm_map_entry_delete:	[ internal use only ]
2858  *
2859  *	Deallocate the given entry from the target map.
2860  */
2861 static void
2862 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2863 {
2864 	vm_object_t object;
2865 	vm_pindex_t offidxstart, offidxend, count, size1;
2866 	vm_ooffset_t size;
2867 
2868 	vm_map_entry_unlink(map, entry);
2869 	object = entry->object.vm_object;
2870 	size = entry->end - entry->start;
2871 	map->size -= size;
2872 
2873 	if (entry->cred != NULL) {
2874 		swap_release_by_cred(size, entry->cred);
2875 		crfree(entry->cred);
2876 	}
2877 
2878 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2879 	    (object != NULL)) {
2880 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2881 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2882 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2883 		count = OFF_TO_IDX(size);
2884 		offidxstart = OFF_TO_IDX(entry->offset);
2885 		offidxend = offidxstart + count;
2886 		VM_OBJECT_WLOCK(object);
2887 		if (object->ref_count != 1 &&
2888 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2889 		    object == kernel_object || object == kmem_object)) {
2890 			vm_object_collapse(object);
2891 
2892 			/*
2893 			 * The option OBJPR_NOTMAPPED can be passed here
2894 			 * because vm_map_delete() already performed
2895 			 * pmap_remove() on the only mapping to this range
2896 			 * of pages.
2897 			 */
2898 			vm_object_page_remove(object, offidxstart, offidxend,
2899 			    OBJPR_NOTMAPPED);
2900 			if (object->type == OBJT_SWAP)
2901 				swap_pager_freespace(object, offidxstart, count);
2902 			if (offidxend >= object->size &&
2903 			    offidxstart < object->size) {
2904 				size1 = object->size;
2905 				object->size = offidxstart;
2906 				if (object->cred != NULL) {
2907 					size1 -= object->size;
2908 					KASSERT(object->charge >= ptoa(size1),
2909 					    ("vm_map_entry_delete: object->charge < 0"));
2910 					swap_release_by_cred(ptoa(size1), object->cred);
2911 					object->charge -= ptoa(size1);
2912 				}
2913 			}
2914 		}
2915 		VM_OBJECT_WUNLOCK(object);
2916 	} else
2917 		entry->object.vm_object = NULL;
2918 	if (map->system_map)
2919 		vm_map_entry_deallocate(entry, TRUE);
2920 	else {
2921 		entry->next = curthread->td_map_def_user;
2922 		curthread->td_map_def_user = entry;
2923 	}
2924 }
2925 
2926 /*
2927  *	vm_map_delete:	[ internal use only ]
2928  *
2929  *	Deallocates the given address range from the target
2930  *	map.
2931  */
2932 int
2933 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2934 {
2935 	vm_map_entry_t entry;
2936 	vm_map_entry_t first_entry;
2937 
2938 	VM_MAP_ASSERT_LOCKED(map);
2939 	if (start == end)
2940 		return (KERN_SUCCESS);
2941 
2942 	/*
2943 	 * Find the start of the region, and clip it
2944 	 */
2945 	if (!vm_map_lookup_entry(map, start, &first_entry))
2946 		entry = first_entry->next;
2947 	else {
2948 		entry = first_entry;
2949 		vm_map_clip_start(map, entry, start);
2950 	}
2951 
2952 	/*
2953 	 * Step through all entries in this region
2954 	 */
2955 	while ((entry != &map->header) && (entry->start < end)) {
2956 		vm_map_entry_t next;
2957 
2958 		/*
2959 		 * Wait for wiring or unwiring of an entry to complete.
2960 		 * Also wait for any system wirings to disappear on
2961 		 * user maps.
2962 		 */
2963 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2964 		    (vm_map_pmap(map) != kernel_pmap &&
2965 		    vm_map_entry_system_wired_count(entry) != 0)) {
2966 			unsigned int last_timestamp;
2967 			vm_offset_t saved_start;
2968 			vm_map_entry_t tmp_entry;
2969 
2970 			saved_start = entry->start;
2971 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2972 			last_timestamp = map->timestamp;
2973 			(void) vm_map_unlock_and_wait(map, 0);
2974 			vm_map_lock(map);
2975 			if (last_timestamp + 1 != map->timestamp) {
2976 				/*
2977 				 * Look again for the entry because the map was
2978 				 * modified while it was unlocked.
2979 				 * Specifically, the entry may have been
2980 				 * clipped, merged, or deleted.
2981 				 */
2982 				if (!vm_map_lookup_entry(map, saved_start,
2983 							 &tmp_entry))
2984 					entry = tmp_entry->next;
2985 				else {
2986 					entry = tmp_entry;
2987 					vm_map_clip_start(map, entry,
2988 							  saved_start);
2989 				}
2990 			}
2991 			continue;
2992 		}
2993 		vm_map_clip_end(map, entry, end);
2994 
2995 		next = entry->next;
2996 
2997 		/*
2998 		 * Unwire before removing addresses from the pmap; otherwise,
2999 		 * unwiring will put the entries back in the pmap.
3000 		 */
3001 		if (entry->wired_count != 0) {
3002 			vm_map_entry_unwire(map, entry);
3003 		}
3004 
3005 		pmap_remove(map->pmap, entry->start, entry->end);
3006 
3007 		/*
3008 		 * Delete the entry only after removing all pmap
3009 		 * entries pointing to its pages.  (Otherwise, its
3010 		 * page frames may be reallocated, and any modify bits
3011 		 * will be set in the wrong object!)
3012 		 */
3013 		vm_map_entry_delete(map, entry);
3014 		entry = next;
3015 	}
3016 	return (KERN_SUCCESS);
3017 }
3018 
3019 /*
3020  *	vm_map_remove:
3021  *
3022  *	Remove the given address range from the target map.
3023  *	This is the exported form of vm_map_delete.
3024  */
3025 int
3026 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3027 {
3028 	int result;
3029 
3030 	vm_map_lock(map);
3031 	VM_MAP_RANGE_CHECK(map, start, end);
3032 	result = vm_map_delete(map, start, end);
3033 	vm_map_unlock(map);
3034 	return (result);
3035 }
3036 
3037 /*
3038  *	vm_map_check_protection:
3039  *
3040  *	Assert that the target map allows the specified privilege on the
3041  *	entire address region given.  The entire region must be allocated.
3042  *
3043  *	WARNING!  This code does not and should not check whether the
3044  *	contents of the region is accessible.  For example a smaller file
3045  *	might be mapped into a larger address space.
3046  *
3047  *	NOTE!  This code is also called by munmap().
3048  *
3049  *	The map must be locked.  A read lock is sufficient.
3050  */
3051 boolean_t
3052 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3053 			vm_prot_t protection)
3054 {
3055 	vm_map_entry_t entry;
3056 	vm_map_entry_t tmp_entry;
3057 
3058 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3059 		return (FALSE);
3060 	entry = tmp_entry;
3061 
3062 	while (start < end) {
3063 		if (entry == &map->header)
3064 			return (FALSE);
3065 		/*
3066 		 * No holes allowed!
3067 		 */
3068 		if (start < entry->start)
3069 			return (FALSE);
3070 		/*
3071 		 * Check protection associated with entry.
3072 		 */
3073 		if ((entry->protection & protection) != protection)
3074 			return (FALSE);
3075 		/* go to next entry */
3076 		start = entry->end;
3077 		entry = entry->next;
3078 	}
3079 	return (TRUE);
3080 }
3081 
3082 /*
3083  *	vm_map_copy_entry:
3084  *
3085  *	Copies the contents of the source entry to the destination
3086  *	entry.  The entries *must* be aligned properly.
3087  */
3088 static void
3089 vm_map_copy_entry(
3090 	vm_map_t src_map,
3091 	vm_map_t dst_map,
3092 	vm_map_entry_t src_entry,
3093 	vm_map_entry_t dst_entry,
3094 	vm_ooffset_t *fork_charge)
3095 {
3096 	vm_object_t src_object;
3097 	vm_map_entry_t fake_entry;
3098 	vm_offset_t size;
3099 	struct ucred *cred;
3100 	int charged;
3101 
3102 	VM_MAP_ASSERT_LOCKED(dst_map);
3103 
3104 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3105 		return;
3106 
3107 	if (src_entry->wired_count == 0 ||
3108 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3109 		/*
3110 		 * If the source entry is marked needs_copy, it is already
3111 		 * write-protected.
3112 		 */
3113 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3114 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3115 			pmap_protect(src_map->pmap,
3116 			    src_entry->start,
3117 			    src_entry->end,
3118 			    src_entry->protection & ~VM_PROT_WRITE);
3119 		}
3120 
3121 		/*
3122 		 * Make a copy of the object.
3123 		 */
3124 		size = src_entry->end - src_entry->start;
3125 		if ((src_object = src_entry->object.vm_object) != NULL) {
3126 			VM_OBJECT_WLOCK(src_object);
3127 			charged = ENTRY_CHARGED(src_entry);
3128 			if ((src_object->handle == NULL) &&
3129 				(src_object->type == OBJT_DEFAULT ||
3130 				 src_object->type == OBJT_SWAP)) {
3131 				vm_object_collapse(src_object);
3132 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3133 					vm_object_split(src_entry);
3134 					src_object = src_entry->object.vm_object;
3135 				}
3136 			}
3137 			vm_object_reference_locked(src_object);
3138 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3139 			if (src_entry->cred != NULL &&
3140 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3141 				KASSERT(src_object->cred == NULL,
3142 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3143 				     src_object));
3144 				src_object->cred = src_entry->cred;
3145 				src_object->charge = size;
3146 			}
3147 			VM_OBJECT_WUNLOCK(src_object);
3148 			dst_entry->object.vm_object = src_object;
3149 			if (charged) {
3150 				cred = curthread->td_ucred;
3151 				crhold(cred);
3152 				dst_entry->cred = cred;
3153 				*fork_charge += size;
3154 				if (!(src_entry->eflags &
3155 				      MAP_ENTRY_NEEDS_COPY)) {
3156 					crhold(cred);
3157 					src_entry->cred = cred;
3158 					*fork_charge += size;
3159 				}
3160 			}
3161 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3162 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3163 			dst_entry->offset = src_entry->offset;
3164 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3165 				/*
3166 				 * MAP_ENTRY_VN_WRITECNT cannot
3167 				 * indicate write reference from
3168 				 * src_entry, since the entry is
3169 				 * marked as needs copy.  Allocate a
3170 				 * fake entry that is used to
3171 				 * decrement object->un_pager.vnp.writecount
3172 				 * at the appropriate time.  Attach
3173 				 * fake_entry to the deferred list.
3174 				 */
3175 				fake_entry = vm_map_entry_create(dst_map);
3176 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3177 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3178 				vm_object_reference(src_object);
3179 				fake_entry->object.vm_object = src_object;
3180 				fake_entry->start = src_entry->start;
3181 				fake_entry->end = src_entry->end;
3182 				fake_entry->next = curthread->td_map_def_user;
3183 				curthread->td_map_def_user = fake_entry;
3184 			}
3185 		} else {
3186 			dst_entry->object.vm_object = NULL;
3187 			dst_entry->offset = 0;
3188 			if (src_entry->cred != NULL) {
3189 				dst_entry->cred = curthread->td_ucred;
3190 				crhold(dst_entry->cred);
3191 				*fork_charge += size;
3192 			}
3193 		}
3194 
3195 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3196 		    dst_entry->end - dst_entry->start, src_entry->start);
3197 	} else {
3198 		/*
3199 		 * We don't want to make writeable wired pages copy-on-write.
3200 		 * Immediately copy these pages into the new map by simulating
3201 		 * page faults.  The new pages are pageable.
3202 		 */
3203 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3204 		    fork_charge);
3205 	}
3206 }
3207 
3208 /*
3209  * vmspace_map_entry_forked:
3210  * Update the newly-forked vmspace each time a map entry is inherited
3211  * or copied.  The values for vm_dsize and vm_tsize are approximate
3212  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3213  */
3214 static void
3215 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3216     vm_map_entry_t entry)
3217 {
3218 	vm_size_t entrysize;
3219 	vm_offset_t newend;
3220 
3221 	entrysize = entry->end - entry->start;
3222 	vm2->vm_map.size += entrysize;
3223 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3224 		vm2->vm_ssize += btoc(entrysize);
3225 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3226 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3227 		newend = MIN(entry->end,
3228 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3229 		vm2->vm_dsize += btoc(newend - entry->start);
3230 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3231 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3232 		newend = MIN(entry->end,
3233 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3234 		vm2->vm_tsize += btoc(newend - entry->start);
3235 	}
3236 }
3237 
3238 /*
3239  * vmspace_fork:
3240  * Create a new process vmspace structure and vm_map
3241  * based on those of an existing process.  The new map
3242  * is based on the old map, according to the inheritance
3243  * values on the regions in that map.
3244  *
3245  * XXX It might be worth coalescing the entries added to the new vmspace.
3246  *
3247  * The source map must not be locked.
3248  */
3249 struct vmspace *
3250 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3251 {
3252 	struct vmspace *vm2;
3253 	vm_map_t new_map, old_map;
3254 	vm_map_entry_t new_entry, old_entry;
3255 	vm_object_t object;
3256 	int locked;
3257 
3258 	old_map = &vm1->vm_map;
3259 	/* Copy immutable fields of vm1 to vm2. */
3260 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3261 	if (vm2 == NULL)
3262 		return (NULL);
3263 	vm2->vm_taddr = vm1->vm_taddr;
3264 	vm2->vm_daddr = vm1->vm_daddr;
3265 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3266 	vm_map_lock(old_map);
3267 	if (old_map->busy)
3268 		vm_map_wait_busy(old_map);
3269 	new_map = &vm2->vm_map;
3270 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3271 	KASSERT(locked, ("vmspace_fork: lock failed"));
3272 
3273 	old_entry = old_map->header.next;
3274 
3275 	while (old_entry != &old_map->header) {
3276 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3277 			panic("vm_map_fork: encountered a submap");
3278 
3279 		switch (old_entry->inheritance) {
3280 		case VM_INHERIT_NONE:
3281 			break;
3282 
3283 		case VM_INHERIT_SHARE:
3284 			/*
3285 			 * Clone the entry, creating the shared object if necessary.
3286 			 */
3287 			object = old_entry->object.vm_object;
3288 			if (object == NULL) {
3289 				object = vm_object_allocate(OBJT_DEFAULT,
3290 					atop(old_entry->end - old_entry->start));
3291 				old_entry->object.vm_object = object;
3292 				old_entry->offset = 0;
3293 				if (old_entry->cred != NULL) {
3294 					object->cred = old_entry->cred;
3295 					object->charge = old_entry->end -
3296 					    old_entry->start;
3297 					old_entry->cred = NULL;
3298 				}
3299 			}
3300 
3301 			/*
3302 			 * Add the reference before calling vm_object_shadow
3303 			 * to insure that a shadow object is created.
3304 			 */
3305 			vm_object_reference(object);
3306 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3307 				vm_object_shadow(&old_entry->object.vm_object,
3308 				    &old_entry->offset,
3309 				    old_entry->end - old_entry->start);
3310 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3311 				/* Transfer the second reference too. */
3312 				vm_object_reference(
3313 				    old_entry->object.vm_object);
3314 
3315 				/*
3316 				 * As in vm_map_simplify_entry(), the
3317 				 * vnode lock will not be acquired in
3318 				 * this call to vm_object_deallocate().
3319 				 */
3320 				vm_object_deallocate(object);
3321 				object = old_entry->object.vm_object;
3322 			}
3323 			VM_OBJECT_WLOCK(object);
3324 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3325 			if (old_entry->cred != NULL) {
3326 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3327 				object->cred = old_entry->cred;
3328 				object->charge = old_entry->end - old_entry->start;
3329 				old_entry->cred = NULL;
3330 			}
3331 
3332 			/*
3333 			 * Assert the correct state of the vnode
3334 			 * v_writecount while the object is locked, to
3335 			 * not relock it later for the assertion
3336 			 * correctness.
3337 			 */
3338 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3339 			    object->type == OBJT_VNODE) {
3340 				KASSERT(((struct vnode *)object->handle)->
3341 				    v_writecount > 0,
3342 				    ("vmspace_fork: v_writecount %p", object));
3343 				KASSERT(object->un_pager.vnp.writemappings > 0,
3344 				    ("vmspace_fork: vnp.writecount %p",
3345 				    object));
3346 			}
3347 			VM_OBJECT_WUNLOCK(object);
3348 
3349 			/*
3350 			 * Clone the entry, referencing the shared object.
3351 			 */
3352 			new_entry = vm_map_entry_create(new_map);
3353 			*new_entry = *old_entry;
3354 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3355 			    MAP_ENTRY_IN_TRANSITION);
3356 			new_entry->wiring_thread = NULL;
3357 			new_entry->wired_count = 0;
3358 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3359 				vnode_pager_update_writecount(object,
3360 				    new_entry->start, new_entry->end);
3361 			}
3362 
3363 			/*
3364 			 * Insert the entry into the new map -- we know we're
3365 			 * inserting at the end of the new map.
3366 			 */
3367 			vm_map_entry_link(new_map, new_map->header.prev,
3368 			    new_entry);
3369 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3370 
3371 			/*
3372 			 * Update the physical map
3373 			 */
3374 			pmap_copy(new_map->pmap, old_map->pmap,
3375 			    new_entry->start,
3376 			    (old_entry->end - old_entry->start),
3377 			    old_entry->start);
3378 			break;
3379 
3380 		case VM_INHERIT_COPY:
3381 			/*
3382 			 * Clone the entry and link into the map.
3383 			 */
3384 			new_entry = vm_map_entry_create(new_map);
3385 			*new_entry = *old_entry;
3386 			/*
3387 			 * Copied entry is COW over the old object.
3388 			 */
3389 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3390 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3391 			new_entry->wiring_thread = NULL;
3392 			new_entry->wired_count = 0;
3393 			new_entry->object.vm_object = NULL;
3394 			new_entry->cred = NULL;
3395 			vm_map_entry_link(new_map, new_map->header.prev,
3396 			    new_entry);
3397 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3398 			vm_map_copy_entry(old_map, new_map, old_entry,
3399 			    new_entry, fork_charge);
3400 			break;
3401 		}
3402 		old_entry = old_entry->next;
3403 	}
3404 	/*
3405 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3406 	 * map entries, which cannot be done until both old_map and
3407 	 * new_map locks are released.
3408 	 */
3409 	sx_xunlock(&old_map->lock);
3410 	sx_xunlock(&new_map->lock);
3411 	vm_map_process_deferred();
3412 
3413 	return (vm2);
3414 }
3415 
3416 int
3417 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3418     vm_prot_t prot, vm_prot_t max, int cow)
3419 {
3420 	vm_size_t growsize, init_ssize;
3421 	rlim_t lmemlim, vmemlim;
3422 	int rv;
3423 
3424 	growsize = sgrowsiz;
3425 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3426 	vm_map_lock(map);
3427 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3428 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3429 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3430 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3431 			rv = KERN_NO_SPACE;
3432 			goto out;
3433 		}
3434 	}
3435 	/* If we would blow our VMEM resource limit, no go */
3436 	if (map->size + init_ssize > vmemlim) {
3437 		rv = KERN_NO_SPACE;
3438 		goto out;
3439 	}
3440 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3441 	    max, cow);
3442 out:
3443 	vm_map_unlock(map);
3444 	return (rv);
3445 }
3446 
3447 static int
3448 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3449     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3450 {
3451 	vm_map_entry_t new_entry, prev_entry;
3452 	vm_offset_t bot, top;
3453 	vm_size_t init_ssize;
3454 	int orient, rv;
3455 
3456 	/*
3457 	 * The stack orientation is piggybacked with the cow argument.
3458 	 * Extract it into orient and mask the cow argument so that we
3459 	 * don't pass it around further.
3460 	 * NOTE: We explicitly allow bi-directional stacks.
3461 	 */
3462 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3463 	KASSERT(orient != 0, ("No stack grow direction"));
3464 
3465 	if (addrbos < vm_map_min(map) ||
3466 	    addrbos > vm_map_max(map) ||
3467 	    addrbos + max_ssize < addrbos)
3468 		return (KERN_NO_SPACE);
3469 
3470 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3471 
3472 	/* If addr is already mapped, no go */
3473 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3474 		return (KERN_NO_SPACE);
3475 
3476 	/*
3477 	 * If we can't accomodate max_ssize in the current mapping, no go.
3478 	 * However, we need to be aware that subsequent user mappings might
3479 	 * map into the space we have reserved for stack, and currently this
3480 	 * space is not protected.
3481 	 *
3482 	 * Hopefully we will at least detect this condition when we try to
3483 	 * grow the stack.
3484 	 */
3485 	if ((prev_entry->next != &map->header) &&
3486 	    (prev_entry->next->start < addrbos + max_ssize))
3487 		return (KERN_NO_SPACE);
3488 
3489 	/*
3490 	 * We initially map a stack of only init_ssize.  We will grow as
3491 	 * needed later.  Depending on the orientation of the stack (i.e.
3492 	 * the grow direction) we either map at the top of the range, the
3493 	 * bottom of the range or in the middle.
3494 	 *
3495 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3496 	 * and cow to be 0.  Possibly we should eliminate these as input
3497 	 * parameters, and just pass these values here in the insert call.
3498 	 */
3499 	if (orient == MAP_STACK_GROWS_DOWN)
3500 		bot = addrbos + max_ssize - init_ssize;
3501 	else if (orient == MAP_STACK_GROWS_UP)
3502 		bot = addrbos;
3503 	else
3504 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3505 	top = bot + init_ssize;
3506 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3507 
3508 	/* Now set the avail_ssize amount. */
3509 	if (rv == KERN_SUCCESS) {
3510 		new_entry = prev_entry->next;
3511 		if (new_entry->end != top || new_entry->start != bot)
3512 			panic("Bad entry start/end for new stack entry");
3513 
3514 		new_entry->avail_ssize = max_ssize - init_ssize;
3515 		KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3516 		    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3517 		    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3518 		KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3519 		    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3520 		    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3521 	}
3522 
3523 	return (rv);
3524 }
3525 
3526 static int stack_guard_page = 0;
3527 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3528     &stack_guard_page, 0,
3529     "Insert stack guard page ahead of the growable segments.");
3530 
3531 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3532  * desired address is already mapped, or if we successfully grow
3533  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3534  * stack range (this is strange, but preserves compatibility with
3535  * the grow function in vm_machdep.c).
3536  */
3537 int
3538 vm_map_growstack(struct proc *p, vm_offset_t addr)
3539 {
3540 	vm_map_entry_t next_entry, prev_entry;
3541 	vm_map_entry_t new_entry, stack_entry;
3542 	struct vmspace *vm = p->p_vmspace;
3543 	vm_map_t map = &vm->vm_map;
3544 	vm_offset_t end;
3545 	vm_size_t growsize;
3546 	size_t grow_amount, max_grow;
3547 	rlim_t lmemlim, stacklim, vmemlim;
3548 	int is_procstack, rv;
3549 	struct ucred *cred;
3550 #ifdef notyet
3551 	uint64_t limit;
3552 #endif
3553 #ifdef RACCT
3554 	int error;
3555 #endif
3556 
3557 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3558 	stacklim = lim_cur(curthread, RLIMIT_STACK);
3559 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3560 Retry:
3561 
3562 	vm_map_lock_read(map);
3563 
3564 	/* If addr is already in the entry range, no need to grow.*/
3565 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3566 		vm_map_unlock_read(map);
3567 		return (KERN_SUCCESS);
3568 	}
3569 
3570 	next_entry = prev_entry->next;
3571 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3572 		/*
3573 		 * This entry does not grow upwards. Since the address lies
3574 		 * beyond this entry, the next entry (if one exists) has to
3575 		 * be a downward growable entry. The entry list header is
3576 		 * never a growable entry, so it suffices to check the flags.
3577 		 */
3578 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3579 			vm_map_unlock_read(map);
3580 			return (KERN_SUCCESS);
3581 		}
3582 		stack_entry = next_entry;
3583 	} else {
3584 		/*
3585 		 * This entry grows upward. If the next entry does not at
3586 		 * least grow downwards, this is the entry we need to grow.
3587 		 * otherwise we have two possible choices and we have to
3588 		 * select one.
3589 		 */
3590 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3591 			/*
3592 			 * We have two choices; grow the entry closest to
3593 			 * the address to minimize the amount of growth.
3594 			 */
3595 			if (addr - prev_entry->end <= next_entry->start - addr)
3596 				stack_entry = prev_entry;
3597 			else
3598 				stack_entry = next_entry;
3599 		} else
3600 			stack_entry = prev_entry;
3601 	}
3602 
3603 	if (stack_entry == next_entry) {
3604 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3605 		KASSERT(addr < stack_entry->start, ("foo"));
3606 		end = (prev_entry != &map->header) ? prev_entry->end :
3607 		    stack_entry->start - stack_entry->avail_ssize;
3608 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3609 		max_grow = stack_entry->start - end;
3610 	} else {
3611 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3612 		KASSERT(addr >= stack_entry->end, ("foo"));
3613 		end = (next_entry != &map->header) ? next_entry->start :
3614 		    stack_entry->end + stack_entry->avail_ssize;
3615 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3616 		max_grow = end - stack_entry->end;
3617 	}
3618 
3619 	if (grow_amount > stack_entry->avail_ssize) {
3620 		vm_map_unlock_read(map);
3621 		return (KERN_NO_SPACE);
3622 	}
3623 
3624 	/*
3625 	 * If there is no longer enough space between the entries nogo, and
3626 	 * adjust the available space.  Note: this  should only happen if the
3627 	 * user has mapped into the stack area after the stack was created,
3628 	 * and is probably an error.
3629 	 *
3630 	 * This also effectively destroys any guard page the user might have
3631 	 * intended by limiting the stack size.
3632 	 */
3633 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3634 		if (vm_map_lock_upgrade(map))
3635 			goto Retry;
3636 
3637 		stack_entry->avail_ssize = max_grow;
3638 
3639 		vm_map_unlock(map);
3640 		return (KERN_NO_SPACE);
3641 	}
3642 
3643 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr &&
3644 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack) ? 1 : 0;
3645 
3646 	/*
3647 	 * If this is the main process stack, see if we're over the stack
3648 	 * limit.
3649 	 */
3650 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3651 		vm_map_unlock_read(map);
3652 		return (KERN_NO_SPACE);
3653 	}
3654 #ifdef RACCT
3655 	if (racct_enable) {
3656 		PROC_LOCK(p);
3657 		if (is_procstack && racct_set(p, RACCT_STACK,
3658 		    ctob(vm->vm_ssize) + grow_amount)) {
3659 			PROC_UNLOCK(p);
3660 			vm_map_unlock_read(map);
3661 			return (KERN_NO_SPACE);
3662 		}
3663 		PROC_UNLOCK(p);
3664 	}
3665 #endif
3666 
3667 	/* Round up the grow amount modulo sgrowsiz */
3668 	growsize = sgrowsiz;
3669 	grow_amount = roundup(grow_amount, growsize);
3670 	if (grow_amount > stack_entry->avail_ssize)
3671 		grow_amount = stack_entry->avail_ssize;
3672 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3673 		grow_amount = trunc_page((vm_size_t)stacklim) -
3674 		    ctob(vm->vm_ssize);
3675 	}
3676 #ifdef notyet
3677 	PROC_LOCK(p);
3678 	limit = racct_get_available(p, RACCT_STACK);
3679 	PROC_UNLOCK(p);
3680 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3681 		grow_amount = limit - ctob(vm->vm_ssize);
3682 #endif
3683 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3684 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3685 			vm_map_unlock_read(map);
3686 			rv = KERN_NO_SPACE;
3687 			goto out;
3688 		}
3689 #ifdef RACCT
3690 		if (racct_enable) {
3691 			PROC_LOCK(p);
3692 			if (racct_set(p, RACCT_MEMLOCK,
3693 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3694 				PROC_UNLOCK(p);
3695 				vm_map_unlock_read(map);
3696 				rv = KERN_NO_SPACE;
3697 				goto out;
3698 			}
3699 			PROC_UNLOCK(p);
3700 		}
3701 #endif
3702 	}
3703 	/* If we would blow our VMEM resource limit, no go */
3704 	if (map->size + grow_amount > vmemlim) {
3705 		vm_map_unlock_read(map);
3706 		rv = KERN_NO_SPACE;
3707 		goto out;
3708 	}
3709 #ifdef RACCT
3710 	if (racct_enable) {
3711 		PROC_LOCK(p);
3712 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3713 			PROC_UNLOCK(p);
3714 			vm_map_unlock_read(map);
3715 			rv = KERN_NO_SPACE;
3716 			goto out;
3717 		}
3718 		PROC_UNLOCK(p);
3719 	}
3720 #endif
3721 
3722 	if (vm_map_lock_upgrade(map))
3723 		goto Retry;
3724 
3725 	if (stack_entry == next_entry) {
3726 		/*
3727 		 * Growing downward.
3728 		 */
3729 		/* Get the preliminary new entry start value */
3730 		addr = stack_entry->start - grow_amount;
3731 
3732 		/*
3733 		 * If this puts us into the previous entry, cut back our
3734 		 * growth to the available space. Also, see the note above.
3735 		 */
3736 		if (addr < end) {
3737 			stack_entry->avail_ssize = max_grow;
3738 			addr = end;
3739 			if (stack_guard_page)
3740 				addr += PAGE_SIZE;
3741 		}
3742 
3743 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3744 		    next_entry->protection, next_entry->max_protection,
3745 		    MAP_STACK_GROWS_DOWN);
3746 
3747 		/* Adjust the available stack space by the amount we grew. */
3748 		if (rv == KERN_SUCCESS) {
3749 			new_entry = prev_entry->next;
3750 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3751 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3752 			KASSERT(new_entry->start == addr, ("foo"));
3753 			KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) !=
3754 			    0, ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3755 			grow_amount = new_entry->end - new_entry->start;
3756 			new_entry->avail_ssize = stack_entry->avail_ssize -
3757 			    grow_amount;
3758 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3759 		}
3760 	} else {
3761 		/*
3762 		 * Growing upward.
3763 		 */
3764 		addr = stack_entry->end + grow_amount;
3765 
3766 		/*
3767 		 * If this puts us into the next entry, cut back our growth
3768 		 * to the available space. Also, see the note above.
3769 		 */
3770 		if (addr > end) {
3771 			stack_entry->avail_ssize = end - stack_entry->end;
3772 			addr = end;
3773 			if (stack_guard_page)
3774 				addr -= PAGE_SIZE;
3775 		}
3776 
3777 		grow_amount = addr - stack_entry->end;
3778 		cred = stack_entry->cred;
3779 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3780 			cred = stack_entry->object.vm_object->cred;
3781 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3782 			rv = KERN_NO_SPACE;
3783 		/* Grow the underlying object if applicable. */
3784 		else if (stack_entry->object.vm_object == NULL ||
3785 			 vm_object_coalesce(stack_entry->object.vm_object,
3786 			 stack_entry->offset,
3787 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3788 			 (vm_size_t)grow_amount, cred != NULL)) {
3789 			map->size += (addr - stack_entry->end);
3790 			/* Update the current entry. */
3791 			stack_entry->end = addr;
3792 			stack_entry->avail_ssize -= grow_amount;
3793 			vm_map_entry_resize_free(map, stack_entry);
3794 			rv = KERN_SUCCESS;
3795 		} else
3796 			rv = KERN_FAILURE;
3797 	}
3798 
3799 	if (rv == KERN_SUCCESS && is_procstack)
3800 		vm->vm_ssize += btoc(grow_amount);
3801 
3802 	vm_map_unlock(map);
3803 
3804 	/*
3805 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3806 	 */
3807 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3808 		vm_map_wire(map,
3809 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3810 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3811 		    (p->p_flag & P_SYSTEM)
3812 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3813 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3814 	}
3815 
3816 out:
3817 #ifdef RACCT
3818 	if (racct_enable && rv != KERN_SUCCESS) {
3819 		PROC_LOCK(p);
3820 		error = racct_set(p, RACCT_VMEM, map->size);
3821 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3822 		if (!old_mlock) {
3823 			error = racct_set(p, RACCT_MEMLOCK,
3824 			    ptoa(pmap_wired_count(map->pmap)));
3825 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3826 		}
3827 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3828 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3829 		PROC_UNLOCK(p);
3830 	}
3831 #endif
3832 
3833 	return (rv);
3834 }
3835 
3836 /*
3837  * Unshare the specified VM space for exec.  If other processes are
3838  * mapped to it, then create a new one.  The new vmspace is null.
3839  */
3840 int
3841 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3842 {
3843 	struct vmspace *oldvmspace = p->p_vmspace;
3844 	struct vmspace *newvmspace;
3845 
3846 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3847 	    ("vmspace_exec recursed"));
3848 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3849 	if (newvmspace == NULL)
3850 		return (ENOMEM);
3851 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3852 	/*
3853 	 * This code is written like this for prototype purposes.  The
3854 	 * goal is to avoid running down the vmspace here, but let the
3855 	 * other process's that are still using the vmspace to finally
3856 	 * run it down.  Even though there is little or no chance of blocking
3857 	 * here, it is a good idea to keep this form for future mods.
3858 	 */
3859 	PROC_VMSPACE_LOCK(p);
3860 	p->p_vmspace = newvmspace;
3861 	PROC_VMSPACE_UNLOCK(p);
3862 	if (p == curthread->td_proc)
3863 		pmap_activate(curthread);
3864 	curthread->td_pflags |= TDP_EXECVMSPC;
3865 	return (0);
3866 }
3867 
3868 /*
3869  * Unshare the specified VM space for forcing COW.  This
3870  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3871  */
3872 int
3873 vmspace_unshare(struct proc *p)
3874 {
3875 	struct vmspace *oldvmspace = p->p_vmspace;
3876 	struct vmspace *newvmspace;
3877 	vm_ooffset_t fork_charge;
3878 
3879 	if (oldvmspace->vm_refcnt == 1)
3880 		return (0);
3881 	fork_charge = 0;
3882 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3883 	if (newvmspace == NULL)
3884 		return (ENOMEM);
3885 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3886 		vmspace_free(newvmspace);
3887 		return (ENOMEM);
3888 	}
3889 	PROC_VMSPACE_LOCK(p);
3890 	p->p_vmspace = newvmspace;
3891 	PROC_VMSPACE_UNLOCK(p);
3892 	if (p == curthread->td_proc)
3893 		pmap_activate(curthread);
3894 	vmspace_free(oldvmspace);
3895 	return (0);
3896 }
3897 
3898 /*
3899  *	vm_map_lookup:
3900  *
3901  *	Finds the VM object, offset, and
3902  *	protection for a given virtual address in the
3903  *	specified map, assuming a page fault of the
3904  *	type specified.
3905  *
3906  *	Leaves the map in question locked for read; return
3907  *	values are guaranteed until a vm_map_lookup_done
3908  *	call is performed.  Note that the map argument
3909  *	is in/out; the returned map must be used in
3910  *	the call to vm_map_lookup_done.
3911  *
3912  *	A handle (out_entry) is returned for use in
3913  *	vm_map_lookup_done, to make that fast.
3914  *
3915  *	If a lookup is requested with "write protection"
3916  *	specified, the map may be changed to perform virtual
3917  *	copying operations, although the data referenced will
3918  *	remain the same.
3919  */
3920 int
3921 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3922 	      vm_offset_t vaddr,
3923 	      vm_prot_t fault_typea,
3924 	      vm_map_entry_t *out_entry,	/* OUT */
3925 	      vm_object_t *object,		/* OUT */
3926 	      vm_pindex_t *pindex,		/* OUT */
3927 	      vm_prot_t *out_prot,		/* OUT */
3928 	      boolean_t *wired)			/* OUT */
3929 {
3930 	vm_map_entry_t entry;
3931 	vm_map_t map = *var_map;
3932 	vm_prot_t prot;
3933 	vm_prot_t fault_type = fault_typea;
3934 	vm_object_t eobject;
3935 	vm_size_t size;
3936 	struct ucred *cred;
3937 
3938 RetryLookup:;
3939 
3940 	vm_map_lock_read(map);
3941 
3942 	/*
3943 	 * Lookup the faulting address.
3944 	 */
3945 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3946 		vm_map_unlock_read(map);
3947 		return (KERN_INVALID_ADDRESS);
3948 	}
3949 
3950 	entry = *out_entry;
3951 
3952 	/*
3953 	 * Handle submaps.
3954 	 */
3955 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3956 		vm_map_t old_map = map;
3957 
3958 		*var_map = map = entry->object.sub_map;
3959 		vm_map_unlock_read(old_map);
3960 		goto RetryLookup;
3961 	}
3962 
3963 	/*
3964 	 * Check whether this task is allowed to have this page.
3965 	 */
3966 	prot = entry->protection;
3967 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3968 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3969 		vm_map_unlock_read(map);
3970 		return (KERN_PROTECTION_FAILURE);
3971 	}
3972 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3973 	    (entry->eflags & MAP_ENTRY_COW) &&
3974 	    (fault_type & VM_PROT_WRITE)) {
3975 		vm_map_unlock_read(map);
3976 		return (KERN_PROTECTION_FAILURE);
3977 	}
3978 	if ((fault_typea & VM_PROT_COPY) != 0 &&
3979 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3980 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3981 		vm_map_unlock_read(map);
3982 		return (KERN_PROTECTION_FAILURE);
3983 	}
3984 
3985 	/*
3986 	 * If this page is not pageable, we have to get it for all possible
3987 	 * accesses.
3988 	 */
3989 	*wired = (entry->wired_count != 0);
3990 	if (*wired)
3991 		fault_type = entry->protection;
3992 	size = entry->end - entry->start;
3993 	/*
3994 	 * If the entry was copy-on-write, we either ...
3995 	 */
3996 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3997 		/*
3998 		 * If we want to write the page, we may as well handle that
3999 		 * now since we've got the map locked.
4000 		 *
4001 		 * If we don't need to write the page, we just demote the
4002 		 * permissions allowed.
4003 		 */
4004 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4005 		    (fault_typea & VM_PROT_COPY) != 0) {
4006 			/*
4007 			 * Make a new object, and place it in the object
4008 			 * chain.  Note that no new references have appeared
4009 			 * -- one just moved from the map to the new
4010 			 * object.
4011 			 */
4012 			if (vm_map_lock_upgrade(map))
4013 				goto RetryLookup;
4014 
4015 			if (entry->cred == NULL) {
4016 				/*
4017 				 * The debugger owner is charged for
4018 				 * the memory.
4019 				 */
4020 				cred = curthread->td_ucred;
4021 				crhold(cred);
4022 				if (!swap_reserve_by_cred(size, cred)) {
4023 					crfree(cred);
4024 					vm_map_unlock(map);
4025 					return (KERN_RESOURCE_SHORTAGE);
4026 				}
4027 				entry->cred = cred;
4028 			}
4029 			vm_object_shadow(&entry->object.vm_object,
4030 			    &entry->offset, size);
4031 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4032 			eobject = entry->object.vm_object;
4033 			if (eobject->cred != NULL) {
4034 				/*
4035 				 * The object was not shadowed.
4036 				 */
4037 				swap_release_by_cred(size, entry->cred);
4038 				crfree(entry->cred);
4039 				entry->cred = NULL;
4040 			} else if (entry->cred != NULL) {
4041 				VM_OBJECT_WLOCK(eobject);
4042 				eobject->cred = entry->cred;
4043 				eobject->charge = size;
4044 				VM_OBJECT_WUNLOCK(eobject);
4045 				entry->cred = NULL;
4046 			}
4047 
4048 			vm_map_lock_downgrade(map);
4049 		} else {
4050 			/*
4051 			 * We're attempting to read a copy-on-write page --
4052 			 * don't allow writes.
4053 			 */
4054 			prot &= ~VM_PROT_WRITE;
4055 		}
4056 	}
4057 
4058 	/*
4059 	 * Create an object if necessary.
4060 	 */
4061 	if (entry->object.vm_object == NULL &&
4062 	    !map->system_map) {
4063 		if (vm_map_lock_upgrade(map))
4064 			goto RetryLookup;
4065 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4066 		    atop(size));
4067 		entry->offset = 0;
4068 		if (entry->cred != NULL) {
4069 			VM_OBJECT_WLOCK(entry->object.vm_object);
4070 			entry->object.vm_object->cred = entry->cred;
4071 			entry->object.vm_object->charge = size;
4072 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4073 			entry->cred = NULL;
4074 		}
4075 		vm_map_lock_downgrade(map);
4076 	}
4077 
4078 	/*
4079 	 * Return the object/offset from this entry.  If the entry was
4080 	 * copy-on-write or empty, it has been fixed up.
4081 	 */
4082 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4083 	*object = entry->object.vm_object;
4084 
4085 	*out_prot = prot;
4086 	return (KERN_SUCCESS);
4087 }
4088 
4089 /*
4090  *	vm_map_lookup_locked:
4091  *
4092  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4093  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4094  */
4095 int
4096 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4097 		     vm_offset_t vaddr,
4098 		     vm_prot_t fault_typea,
4099 		     vm_map_entry_t *out_entry,	/* OUT */
4100 		     vm_object_t *object,	/* OUT */
4101 		     vm_pindex_t *pindex,	/* OUT */
4102 		     vm_prot_t *out_prot,	/* OUT */
4103 		     boolean_t *wired)		/* OUT */
4104 {
4105 	vm_map_entry_t entry;
4106 	vm_map_t map = *var_map;
4107 	vm_prot_t prot;
4108 	vm_prot_t fault_type = fault_typea;
4109 
4110 	/*
4111 	 * Lookup the faulting address.
4112 	 */
4113 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4114 		return (KERN_INVALID_ADDRESS);
4115 
4116 	entry = *out_entry;
4117 
4118 	/*
4119 	 * Fail if the entry refers to a submap.
4120 	 */
4121 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4122 		return (KERN_FAILURE);
4123 
4124 	/*
4125 	 * Check whether this task is allowed to have this page.
4126 	 */
4127 	prot = entry->protection;
4128 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4129 	if ((fault_type & prot) != fault_type)
4130 		return (KERN_PROTECTION_FAILURE);
4131 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4132 	    (entry->eflags & MAP_ENTRY_COW) &&
4133 	    (fault_type & VM_PROT_WRITE))
4134 		return (KERN_PROTECTION_FAILURE);
4135 
4136 	/*
4137 	 * If this page is not pageable, we have to get it for all possible
4138 	 * accesses.
4139 	 */
4140 	*wired = (entry->wired_count != 0);
4141 	if (*wired)
4142 		fault_type = entry->protection;
4143 
4144 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4145 		/*
4146 		 * Fail if the entry was copy-on-write for a write fault.
4147 		 */
4148 		if (fault_type & VM_PROT_WRITE)
4149 			return (KERN_FAILURE);
4150 		/*
4151 		 * We're attempting to read a copy-on-write page --
4152 		 * don't allow writes.
4153 		 */
4154 		prot &= ~VM_PROT_WRITE;
4155 	}
4156 
4157 	/*
4158 	 * Fail if an object should be created.
4159 	 */
4160 	if (entry->object.vm_object == NULL && !map->system_map)
4161 		return (KERN_FAILURE);
4162 
4163 	/*
4164 	 * Return the object/offset from this entry.  If the entry was
4165 	 * copy-on-write or empty, it has been fixed up.
4166 	 */
4167 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4168 	*object = entry->object.vm_object;
4169 
4170 	*out_prot = prot;
4171 	return (KERN_SUCCESS);
4172 }
4173 
4174 /*
4175  *	vm_map_lookup_done:
4176  *
4177  *	Releases locks acquired by a vm_map_lookup
4178  *	(according to the handle returned by that lookup).
4179  */
4180 void
4181 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4182 {
4183 	/*
4184 	 * Unlock the main-level map
4185 	 */
4186 	vm_map_unlock_read(map);
4187 }
4188 
4189 #include "opt_ddb.h"
4190 #ifdef DDB
4191 #include <sys/kernel.h>
4192 
4193 #include <ddb/ddb.h>
4194 
4195 static void
4196 vm_map_print(vm_map_t map)
4197 {
4198 	vm_map_entry_t entry;
4199 
4200 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4201 	    (void *)map,
4202 	    (void *)map->pmap, map->nentries, map->timestamp);
4203 
4204 	db_indent += 2;
4205 	for (entry = map->header.next; entry != &map->header;
4206 	    entry = entry->next) {
4207 		db_iprintf("map entry %p: start=%p, end=%p\n",
4208 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4209 		{
4210 			static char *inheritance_name[4] =
4211 			{"share", "copy", "none", "donate_copy"};
4212 
4213 			db_iprintf(" prot=%x/%x/%s",
4214 			    entry->protection,
4215 			    entry->max_protection,
4216 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4217 			if (entry->wired_count != 0)
4218 				db_printf(", wired");
4219 		}
4220 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4221 			db_printf(", share=%p, offset=0x%jx\n",
4222 			    (void *)entry->object.sub_map,
4223 			    (uintmax_t)entry->offset);
4224 			if ((entry->prev == &map->header) ||
4225 			    (entry->prev->object.sub_map !=
4226 				entry->object.sub_map)) {
4227 				db_indent += 2;
4228 				vm_map_print((vm_map_t)entry->object.sub_map);
4229 				db_indent -= 2;
4230 			}
4231 		} else {
4232 			if (entry->cred != NULL)
4233 				db_printf(", ruid %d", entry->cred->cr_ruid);
4234 			db_printf(", object=%p, offset=0x%jx",
4235 			    (void *)entry->object.vm_object,
4236 			    (uintmax_t)entry->offset);
4237 			if (entry->object.vm_object && entry->object.vm_object->cred)
4238 				db_printf(", obj ruid %d charge %jx",
4239 				    entry->object.vm_object->cred->cr_ruid,
4240 				    (uintmax_t)entry->object.vm_object->charge);
4241 			if (entry->eflags & MAP_ENTRY_COW)
4242 				db_printf(", copy (%s)",
4243 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4244 			db_printf("\n");
4245 
4246 			if ((entry->prev == &map->header) ||
4247 			    (entry->prev->object.vm_object !=
4248 				entry->object.vm_object)) {
4249 				db_indent += 2;
4250 				vm_object_print((db_expr_t)(intptr_t)
4251 						entry->object.vm_object,
4252 						0, 0, (char *)0);
4253 				db_indent -= 2;
4254 			}
4255 		}
4256 	}
4257 	db_indent -= 2;
4258 }
4259 
4260 DB_SHOW_COMMAND(map, map)
4261 {
4262 
4263 	if (!have_addr) {
4264 		db_printf("usage: show map <addr>\n");
4265 		return;
4266 	}
4267 	vm_map_print((vm_map_t)addr);
4268 }
4269 
4270 DB_SHOW_COMMAND(procvm, procvm)
4271 {
4272 	struct proc *p;
4273 
4274 	if (have_addr) {
4275 		p = (struct proc *) addr;
4276 	} else {
4277 		p = curproc;
4278 	}
4279 
4280 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4281 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4282 	    (void *)vmspace_pmap(p->p_vmspace));
4283 
4284 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4285 }
4286 
4287 #endif /* DDB */
4288