1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/rwlock.h> 81 #include <sys/file.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/shm.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_pager.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t mapzone; 128 static uma_zone_t vmspace_zone; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static int vm_map_zinit(void *mem, int ize, int flags); 131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 132 vm_offset_t max); 133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 137 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 138 #ifdef INVARIANTS 139 static void vm_map_zdtor(void *mem, int size, void *arg); 140 static void vmspace_zdtor(void *mem, int size, void *arg); 141 #endif 142 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 143 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 144 int cow); 145 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 146 vm_offset_t failed_addr); 147 148 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 149 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 150 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 151 152 /* 153 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 154 * stable. 155 */ 156 #define PROC_VMSPACE_LOCK(p) do { } while (0) 157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 158 159 /* 160 * VM_MAP_RANGE_CHECK: [ internal use only ] 161 * 162 * Asserts that the starting and ending region 163 * addresses fall within the valid range of the map. 164 */ 165 #define VM_MAP_RANGE_CHECK(map, start, end) \ 166 { \ 167 if (start < vm_map_min(map)) \ 168 start = vm_map_min(map); \ 169 if (end > vm_map_max(map)) \ 170 end = vm_map_max(map); \ 171 if (start > end) \ 172 start = end; \ 173 } 174 175 /* 176 * vm_map_startup: 177 * 178 * Initialize the vm_map module. Must be called before 179 * any other vm_map routines. 180 * 181 * Map and entry structures are allocated from the general 182 * purpose memory pool with some exceptions: 183 * 184 * - The kernel map and kmem submap are allocated statically. 185 * - Kernel map entries are allocated out of a static pool. 186 * 187 * These restrictions are necessary since malloc() uses the 188 * maps and requires map entries. 189 */ 190 191 void 192 vm_map_startup(void) 193 { 194 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 195 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 196 #ifdef INVARIANTS 197 vm_map_zdtor, 198 #else 199 NULL, 200 #endif 201 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 202 uma_prealloc(mapzone, MAX_KMAP); 203 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 204 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 205 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 206 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 207 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 208 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 209 #ifdef INVARIANTS 210 vmspace_zdtor, 211 #else 212 NULL, 213 #endif 214 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 215 } 216 217 static int 218 vmspace_zinit(void *mem, int size, int flags) 219 { 220 struct vmspace *vm; 221 222 vm = (struct vmspace *)mem; 223 224 vm->vm_map.pmap = NULL; 225 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 226 PMAP_LOCK_INIT(vmspace_pmap(vm)); 227 return (0); 228 } 229 230 static int 231 vm_map_zinit(void *mem, int size, int flags) 232 { 233 vm_map_t map; 234 235 map = (vm_map_t)mem; 236 memset(map, 0, sizeof(*map)); 237 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 238 sx_init(&map->lock, "vm map (user)"); 239 return (0); 240 } 241 242 #ifdef INVARIANTS 243 static void 244 vmspace_zdtor(void *mem, int size, void *arg) 245 { 246 struct vmspace *vm; 247 248 vm = (struct vmspace *)mem; 249 250 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 251 } 252 static void 253 vm_map_zdtor(void *mem, int size, void *arg) 254 { 255 vm_map_t map; 256 257 map = (vm_map_t)mem; 258 KASSERT(map->nentries == 0, 259 ("map %p nentries == %d on free.", 260 map, map->nentries)); 261 KASSERT(map->size == 0, 262 ("map %p size == %lu on free.", 263 map, (unsigned long)map->size)); 264 } 265 #endif /* INVARIANTS */ 266 267 /* 268 * Allocate a vmspace structure, including a vm_map and pmap, 269 * and initialize those structures. The refcnt is set to 1. 270 * 271 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 272 */ 273 struct vmspace * 274 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 275 { 276 struct vmspace *vm; 277 278 vm = uma_zalloc(vmspace_zone, M_WAITOK); 279 280 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 281 282 if (pinit == NULL) 283 pinit = &pmap_pinit; 284 285 if (!pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 #ifdef RACCT 304 static void 305 vmspace_container_reset(struct proc *p) 306 { 307 308 PROC_LOCK(p); 309 racct_set(p, RACCT_DATA, 0); 310 racct_set(p, RACCT_STACK, 0); 311 racct_set(p, RACCT_RSS, 0); 312 racct_set(p, RACCT_MEMLOCK, 0); 313 racct_set(p, RACCT_VMEM, 0); 314 PROC_UNLOCK(p); 315 } 316 #endif 317 318 static inline void 319 vmspace_dofree(struct vmspace *vm) 320 { 321 322 CTR1(KTR_VM, "vmspace_free: %p", vm); 323 324 /* 325 * Make sure any SysV shm is freed, it might not have been in 326 * exit1(). 327 */ 328 shmexit(vm); 329 330 /* 331 * Lock the map, to wait out all other references to it. 332 * Delete all of the mappings and pages they hold, then call 333 * the pmap module to reclaim anything left. 334 */ 335 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 336 vm->vm_map.max_offset); 337 338 pmap_release(vmspace_pmap(vm)); 339 vm->vm_map.pmap = NULL; 340 uma_zfree(vmspace_zone, vm); 341 } 342 343 void 344 vmspace_free(struct vmspace *vm) 345 { 346 347 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 348 "vmspace_free() called with non-sleepable lock held"); 349 350 if (vm->vm_refcnt == 0) 351 panic("vmspace_free: attempt to free already freed vmspace"); 352 353 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 354 vmspace_dofree(vm); 355 } 356 357 void 358 vmspace_exitfree(struct proc *p) 359 { 360 struct vmspace *vm; 361 362 PROC_VMSPACE_LOCK(p); 363 vm = p->p_vmspace; 364 p->p_vmspace = NULL; 365 PROC_VMSPACE_UNLOCK(p); 366 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 367 vmspace_free(vm); 368 } 369 370 void 371 vmspace_exit(struct thread *td) 372 { 373 int refcnt; 374 struct vmspace *vm; 375 struct proc *p; 376 377 /* 378 * Release user portion of address space. 379 * This releases references to vnodes, 380 * which could cause I/O if the file has been unlinked. 381 * Need to do this early enough that we can still sleep. 382 * 383 * The last exiting process to reach this point releases as 384 * much of the environment as it can. vmspace_dofree() is the 385 * slower fallback in case another process had a temporary 386 * reference to the vmspace. 387 */ 388 389 p = td->td_proc; 390 vm = p->p_vmspace; 391 atomic_add_int(&vmspace0.vm_refcnt, 1); 392 do { 393 refcnt = vm->vm_refcnt; 394 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 395 /* Switch now since other proc might free vmspace */ 396 PROC_VMSPACE_LOCK(p); 397 p->p_vmspace = &vmspace0; 398 PROC_VMSPACE_UNLOCK(p); 399 pmap_activate(td); 400 } 401 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 402 if (refcnt == 1) { 403 if (p->p_vmspace != vm) { 404 /* vmspace not yet freed, switch back */ 405 PROC_VMSPACE_LOCK(p); 406 p->p_vmspace = vm; 407 PROC_VMSPACE_UNLOCK(p); 408 pmap_activate(td); 409 } 410 pmap_remove_pages(vmspace_pmap(vm)); 411 /* Switch now since this proc will free vmspace */ 412 PROC_VMSPACE_LOCK(p); 413 p->p_vmspace = &vmspace0; 414 PROC_VMSPACE_UNLOCK(p); 415 pmap_activate(td); 416 vmspace_dofree(vm); 417 } 418 #ifdef RACCT 419 if (racct_enable) 420 vmspace_container_reset(p); 421 #endif 422 } 423 424 /* Acquire reference to vmspace owned by another process. */ 425 426 struct vmspace * 427 vmspace_acquire_ref(struct proc *p) 428 { 429 struct vmspace *vm; 430 int refcnt; 431 432 PROC_VMSPACE_LOCK(p); 433 vm = p->p_vmspace; 434 if (vm == NULL) { 435 PROC_VMSPACE_UNLOCK(p); 436 return (NULL); 437 } 438 do { 439 refcnt = vm->vm_refcnt; 440 if (refcnt <= 0) { /* Avoid 0->1 transition */ 441 PROC_VMSPACE_UNLOCK(p); 442 return (NULL); 443 } 444 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 445 if (vm != p->p_vmspace) { 446 PROC_VMSPACE_UNLOCK(p); 447 vmspace_free(vm); 448 return (NULL); 449 } 450 PROC_VMSPACE_UNLOCK(p); 451 return (vm); 452 } 453 454 void 455 _vm_map_lock(vm_map_t map, const char *file, int line) 456 { 457 458 if (map->system_map) 459 mtx_lock_flags_(&map->system_mtx, 0, file, line); 460 else 461 sx_xlock_(&map->lock, file, line); 462 map->timestamp++; 463 } 464 465 static void 466 vm_map_process_deferred(void) 467 { 468 struct thread *td; 469 vm_map_entry_t entry, next; 470 vm_object_t object; 471 472 td = curthread; 473 entry = td->td_map_def_user; 474 td->td_map_def_user = NULL; 475 while (entry != NULL) { 476 next = entry->next; 477 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 478 /* 479 * Decrement the object's writemappings and 480 * possibly the vnode's v_writecount. 481 */ 482 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 483 ("Submap with writecount")); 484 object = entry->object.vm_object; 485 KASSERT(object != NULL, ("No object for writecount")); 486 vnode_pager_release_writecount(object, entry->start, 487 entry->end); 488 } 489 vm_map_entry_deallocate(entry, FALSE); 490 entry = next; 491 } 492 } 493 494 void 495 _vm_map_unlock(vm_map_t map, const char *file, int line) 496 { 497 498 if (map->system_map) 499 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 500 else { 501 sx_xunlock_(&map->lock, file, line); 502 vm_map_process_deferred(); 503 } 504 } 505 506 void 507 _vm_map_lock_read(vm_map_t map, const char *file, int line) 508 { 509 510 if (map->system_map) 511 mtx_lock_flags_(&map->system_mtx, 0, file, line); 512 else 513 sx_slock_(&map->lock, file, line); 514 } 515 516 void 517 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 518 { 519 520 if (map->system_map) 521 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 522 else { 523 sx_sunlock_(&map->lock, file, line); 524 vm_map_process_deferred(); 525 } 526 } 527 528 int 529 _vm_map_trylock(vm_map_t map, const char *file, int line) 530 { 531 int error; 532 533 error = map->system_map ? 534 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 535 !sx_try_xlock_(&map->lock, file, line); 536 if (error == 0) 537 map->timestamp++; 538 return (error == 0); 539 } 540 541 int 542 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 543 { 544 int error; 545 546 error = map->system_map ? 547 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 548 !sx_try_slock_(&map->lock, file, line); 549 return (error == 0); 550 } 551 552 /* 553 * _vm_map_lock_upgrade: [ internal use only ] 554 * 555 * Tries to upgrade a read (shared) lock on the specified map to a write 556 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 557 * non-zero value if the upgrade fails. If the upgrade fails, the map is 558 * returned without a read or write lock held. 559 * 560 * Requires that the map be read locked. 561 */ 562 int 563 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 564 { 565 unsigned int last_timestamp; 566 567 if (map->system_map) { 568 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 569 } else { 570 if (!sx_try_upgrade_(&map->lock, file, line)) { 571 last_timestamp = map->timestamp; 572 sx_sunlock_(&map->lock, file, line); 573 vm_map_process_deferred(); 574 /* 575 * If the map's timestamp does not change while the 576 * map is unlocked, then the upgrade succeeds. 577 */ 578 sx_xlock_(&map->lock, file, line); 579 if (last_timestamp != map->timestamp) { 580 sx_xunlock_(&map->lock, file, line); 581 return (1); 582 } 583 } 584 } 585 map->timestamp++; 586 return (0); 587 } 588 589 void 590 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 591 { 592 593 if (map->system_map) { 594 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 595 } else 596 sx_downgrade_(&map->lock, file, line); 597 } 598 599 /* 600 * vm_map_locked: 601 * 602 * Returns a non-zero value if the caller holds a write (exclusive) lock 603 * on the specified map and the value "0" otherwise. 604 */ 605 int 606 vm_map_locked(vm_map_t map) 607 { 608 609 if (map->system_map) 610 return (mtx_owned(&map->system_mtx)); 611 else 612 return (sx_xlocked(&map->lock)); 613 } 614 615 #ifdef INVARIANTS 616 static void 617 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 618 { 619 620 if (map->system_map) 621 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 622 else 623 sx_assert_(&map->lock, SA_XLOCKED, file, line); 624 } 625 626 #define VM_MAP_ASSERT_LOCKED(map) \ 627 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 628 #else 629 #define VM_MAP_ASSERT_LOCKED(map) 630 #endif 631 632 /* 633 * _vm_map_unlock_and_wait: 634 * 635 * Atomically releases the lock on the specified map and puts the calling 636 * thread to sleep. The calling thread will remain asleep until either 637 * vm_map_wakeup() is performed on the map or the specified timeout is 638 * exceeded. 639 * 640 * WARNING! This function does not perform deferred deallocations of 641 * objects and map entries. Therefore, the calling thread is expected to 642 * reacquire the map lock after reawakening and later perform an ordinary 643 * unlock operation, such as vm_map_unlock(), before completing its 644 * operation on the map. 645 */ 646 int 647 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 648 { 649 650 mtx_lock(&map_sleep_mtx); 651 if (map->system_map) 652 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 653 else 654 sx_xunlock_(&map->lock, file, line); 655 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 656 timo)); 657 } 658 659 /* 660 * vm_map_wakeup: 661 * 662 * Awaken any threads that have slept on the map using 663 * vm_map_unlock_and_wait(). 664 */ 665 void 666 vm_map_wakeup(vm_map_t map) 667 { 668 669 /* 670 * Acquire and release map_sleep_mtx to prevent a wakeup() 671 * from being performed (and lost) between the map unlock 672 * and the msleep() in _vm_map_unlock_and_wait(). 673 */ 674 mtx_lock(&map_sleep_mtx); 675 mtx_unlock(&map_sleep_mtx); 676 wakeup(&map->root); 677 } 678 679 void 680 vm_map_busy(vm_map_t map) 681 { 682 683 VM_MAP_ASSERT_LOCKED(map); 684 map->busy++; 685 } 686 687 void 688 vm_map_unbusy(vm_map_t map) 689 { 690 691 VM_MAP_ASSERT_LOCKED(map); 692 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 693 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 694 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 695 wakeup(&map->busy); 696 } 697 } 698 699 void 700 vm_map_wait_busy(vm_map_t map) 701 { 702 703 VM_MAP_ASSERT_LOCKED(map); 704 while (map->busy) { 705 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 706 if (map->system_map) 707 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 708 else 709 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 710 } 711 map->timestamp++; 712 } 713 714 long 715 vmspace_resident_count(struct vmspace *vmspace) 716 { 717 return pmap_resident_count(vmspace_pmap(vmspace)); 718 } 719 720 /* 721 * vm_map_create: 722 * 723 * Creates and returns a new empty VM map with 724 * the given physical map structure, and having 725 * the given lower and upper address bounds. 726 */ 727 vm_map_t 728 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 729 { 730 vm_map_t result; 731 732 result = uma_zalloc(mapzone, M_WAITOK); 733 CTR1(KTR_VM, "vm_map_create: %p", result); 734 _vm_map_init(result, pmap, min, max); 735 return (result); 736 } 737 738 /* 739 * Initialize an existing vm_map structure 740 * such as that in the vmspace structure. 741 */ 742 static void 743 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 744 { 745 746 map->header.next = map->header.prev = &map->header; 747 map->needs_wakeup = FALSE; 748 map->system_map = 0; 749 map->pmap = pmap; 750 map->min_offset = min; 751 map->max_offset = max; 752 map->flags = 0; 753 map->root = NULL; 754 map->timestamp = 0; 755 map->busy = 0; 756 } 757 758 void 759 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 760 { 761 762 _vm_map_init(map, pmap, min, max); 763 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 764 sx_init(&map->lock, "user map"); 765 } 766 767 /* 768 * vm_map_entry_dispose: [ internal use only ] 769 * 770 * Inverse of vm_map_entry_create. 771 */ 772 static void 773 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 774 { 775 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 776 } 777 778 /* 779 * vm_map_entry_create: [ internal use only ] 780 * 781 * Allocates a VM map entry for insertion. 782 * No entry fields are filled in. 783 */ 784 static vm_map_entry_t 785 vm_map_entry_create(vm_map_t map) 786 { 787 vm_map_entry_t new_entry; 788 789 if (map->system_map) 790 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 791 else 792 new_entry = uma_zalloc(mapentzone, M_WAITOK); 793 if (new_entry == NULL) 794 panic("vm_map_entry_create: kernel resources exhausted"); 795 return (new_entry); 796 } 797 798 /* 799 * vm_map_entry_set_behavior: 800 * 801 * Set the expected access behavior, either normal, random, or 802 * sequential. 803 */ 804 static inline void 805 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 806 { 807 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 808 (behavior & MAP_ENTRY_BEHAV_MASK); 809 } 810 811 /* 812 * vm_map_entry_set_max_free: 813 * 814 * Set the max_free field in a vm_map_entry. 815 */ 816 static inline void 817 vm_map_entry_set_max_free(vm_map_entry_t entry) 818 { 819 820 entry->max_free = entry->adj_free; 821 if (entry->left != NULL && entry->left->max_free > entry->max_free) 822 entry->max_free = entry->left->max_free; 823 if (entry->right != NULL && entry->right->max_free > entry->max_free) 824 entry->max_free = entry->right->max_free; 825 } 826 827 /* 828 * vm_map_entry_splay: 829 * 830 * The Sleator and Tarjan top-down splay algorithm with the 831 * following variation. Max_free must be computed bottom-up, so 832 * on the downward pass, maintain the left and right spines in 833 * reverse order. Then, make a second pass up each side to fix 834 * the pointers and compute max_free. The time bound is O(log n) 835 * amortized. 836 * 837 * The new root is the vm_map_entry containing "addr", or else an 838 * adjacent entry (lower or higher) if addr is not in the tree. 839 * 840 * The map must be locked, and leaves it so. 841 * 842 * Returns: the new root. 843 */ 844 static vm_map_entry_t 845 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 846 { 847 vm_map_entry_t llist, rlist; 848 vm_map_entry_t ltree, rtree; 849 vm_map_entry_t y; 850 851 /* Special case of empty tree. */ 852 if (root == NULL) 853 return (root); 854 855 /* 856 * Pass One: Splay down the tree until we find addr or a NULL 857 * pointer where addr would go. llist and rlist are the two 858 * sides in reverse order (bottom-up), with llist linked by 859 * the right pointer and rlist linked by the left pointer in 860 * the vm_map_entry. Wait until Pass Two to set max_free on 861 * the two spines. 862 */ 863 llist = NULL; 864 rlist = NULL; 865 for (;;) { 866 /* root is never NULL in here. */ 867 if (addr < root->start) { 868 y = root->left; 869 if (y == NULL) 870 break; 871 if (addr < y->start && y->left != NULL) { 872 /* Rotate right and put y on rlist. */ 873 root->left = y->right; 874 y->right = root; 875 vm_map_entry_set_max_free(root); 876 root = y->left; 877 y->left = rlist; 878 rlist = y; 879 } else { 880 /* Put root on rlist. */ 881 root->left = rlist; 882 rlist = root; 883 root = y; 884 } 885 } else if (addr >= root->end) { 886 y = root->right; 887 if (y == NULL) 888 break; 889 if (addr >= y->end && y->right != NULL) { 890 /* Rotate left and put y on llist. */ 891 root->right = y->left; 892 y->left = root; 893 vm_map_entry_set_max_free(root); 894 root = y->right; 895 y->right = llist; 896 llist = y; 897 } else { 898 /* Put root on llist. */ 899 root->right = llist; 900 llist = root; 901 root = y; 902 } 903 } else 904 break; 905 } 906 907 /* 908 * Pass Two: Walk back up the two spines, flip the pointers 909 * and set max_free. The subtrees of the root go at the 910 * bottom of llist and rlist. 911 */ 912 ltree = root->left; 913 while (llist != NULL) { 914 y = llist->right; 915 llist->right = ltree; 916 vm_map_entry_set_max_free(llist); 917 ltree = llist; 918 llist = y; 919 } 920 rtree = root->right; 921 while (rlist != NULL) { 922 y = rlist->left; 923 rlist->left = rtree; 924 vm_map_entry_set_max_free(rlist); 925 rtree = rlist; 926 rlist = y; 927 } 928 929 /* 930 * Final assembly: add ltree and rtree as subtrees of root. 931 */ 932 root->left = ltree; 933 root->right = rtree; 934 vm_map_entry_set_max_free(root); 935 936 return (root); 937 } 938 939 /* 940 * vm_map_entry_{un,}link: 941 * 942 * Insert/remove entries from maps. 943 */ 944 static void 945 vm_map_entry_link(vm_map_t map, 946 vm_map_entry_t after_where, 947 vm_map_entry_t entry) 948 { 949 950 CTR4(KTR_VM, 951 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 952 map->nentries, entry, after_where); 953 VM_MAP_ASSERT_LOCKED(map); 954 KASSERT(after_where == &map->header || 955 after_where->end <= entry->start, 956 ("vm_map_entry_link: prev end %jx new start %jx overlap", 957 (uintmax_t)after_where->end, (uintmax_t)entry->start)); 958 KASSERT(after_where->next == &map->header || 959 entry->end <= after_where->next->start, 960 ("vm_map_entry_link: new end %jx next start %jx overlap", 961 (uintmax_t)entry->end, (uintmax_t)after_where->next->start)); 962 963 map->nentries++; 964 entry->prev = after_where; 965 entry->next = after_where->next; 966 entry->next->prev = entry; 967 after_where->next = entry; 968 969 if (after_where != &map->header) { 970 if (after_where != map->root) 971 vm_map_entry_splay(after_where->start, map->root); 972 entry->right = after_where->right; 973 entry->left = after_where; 974 after_where->right = NULL; 975 after_where->adj_free = entry->start - after_where->end; 976 vm_map_entry_set_max_free(after_where); 977 } else { 978 entry->right = map->root; 979 entry->left = NULL; 980 } 981 entry->adj_free = (entry->next == &map->header ? map->max_offset : 982 entry->next->start) - entry->end; 983 vm_map_entry_set_max_free(entry); 984 map->root = entry; 985 } 986 987 static void 988 vm_map_entry_unlink(vm_map_t map, 989 vm_map_entry_t entry) 990 { 991 vm_map_entry_t next, prev, root; 992 993 VM_MAP_ASSERT_LOCKED(map); 994 if (entry != map->root) 995 vm_map_entry_splay(entry->start, map->root); 996 if (entry->left == NULL) 997 root = entry->right; 998 else { 999 root = vm_map_entry_splay(entry->start, entry->left); 1000 root->right = entry->right; 1001 root->adj_free = (entry->next == &map->header ? map->max_offset : 1002 entry->next->start) - root->end; 1003 vm_map_entry_set_max_free(root); 1004 } 1005 map->root = root; 1006 1007 prev = entry->prev; 1008 next = entry->next; 1009 next->prev = prev; 1010 prev->next = next; 1011 map->nentries--; 1012 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1013 map->nentries, entry); 1014 } 1015 1016 /* 1017 * vm_map_entry_resize_free: 1018 * 1019 * Recompute the amount of free space following a vm_map_entry 1020 * and propagate that value up the tree. Call this function after 1021 * resizing a map entry in-place, that is, without a call to 1022 * vm_map_entry_link() or _unlink(). 1023 * 1024 * The map must be locked, and leaves it so. 1025 */ 1026 static void 1027 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1028 { 1029 1030 /* 1031 * Using splay trees without parent pointers, propagating 1032 * max_free up the tree is done by moving the entry to the 1033 * root and making the change there. 1034 */ 1035 if (entry != map->root) 1036 map->root = vm_map_entry_splay(entry->start, map->root); 1037 1038 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1039 entry->next->start) - entry->end; 1040 vm_map_entry_set_max_free(entry); 1041 } 1042 1043 /* 1044 * vm_map_lookup_entry: [ internal use only ] 1045 * 1046 * Finds the map entry containing (or 1047 * immediately preceding) the specified address 1048 * in the given map; the entry is returned 1049 * in the "entry" parameter. The boolean 1050 * result indicates whether the address is 1051 * actually contained in the map. 1052 */ 1053 boolean_t 1054 vm_map_lookup_entry( 1055 vm_map_t map, 1056 vm_offset_t address, 1057 vm_map_entry_t *entry) /* OUT */ 1058 { 1059 vm_map_entry_t cur; 1060 boolean_t locked; 1061 1062 /* 1063 * If the map is empty, then the map entry immediately preceding 1064 * "address" is the map's header. 1065 */ 1066 cur = map->root; 1067 if (cur == NULL) 1068 *entry = &map->header; 1069 else if (address >= cur->start && cur->end > address) { 1070 *entry = cur; 1071 return (TRUE); 1072 } else if ((locked = vm_map_locked(map)) || 1073 sx_try_upgrade(&map->lock)) { 1074 /* 1075 * Splay requires a write lock on the map. However, it only 1076 * restructures the binary search tree; it does not otherwise 1077 * change the map. Thus, the map's timestamp need not change 1078 * on a temporary upgrade. 1079 */ 1080 map->root = cur = vm_map_entry_splay(address, cur); 1081 if (!locked) 1082 sx_downgrade(&map->lock); 1083 1084 /* 1085 * If "address" is contained within a map entry, the new root 1086 * is that map entry. Otherwise, the new root is a map entry 1087 * immediately before or after "address". 1088 */ 1089 if (address >= cur->start) { 1090 *entry = cur; 1091 if (cur->end > address) 1092 return (TRUE); 1093 } else 1094 *entry = cur->prev; 1095 } else 1096 /* 1097 * Since the map is only locked for read access, perform a 1098 * standard binary search tree lookup for "address". 1099 */ 1100 for (;;) { 1101 if (address < cur->start) { 1102 if (cur->left == NULL) { 1103 *entry = cur->prev; 1104 break; 1105 } 1106 cur = cur->left; 1107 } else if (cur->end > address) { 1108 *entry = cur; 1109 return (TRUE); 1110 } else { 1111 if (cur->right == NULL) { 1112 *entry = cur; 1113 break; 1114 } 1115 cur = cur->right; 1116 } 1117 } 1118 return (FALSE); 1119 } 1120 1121 /* 1122 * vm_map_insert: 1123 * 1124 * Inserts the given whole VM object into the target 1125 * map at the specified address range. The object's 1126 * size should match that of the address range. 1127 * 1128 * Requires that the map be locked, and leaves it so. 1129 * 1130 * If object is non-NULL, ref count must be bumped by caller 1131 * prior to making call to account for the new entry. 1132 */ 1133 int 1134 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1135 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1136 { 1137 vm_map_entry_t new_entry, prev_entry, temp_entry; 1138 vm_eflags_t protoeflags; 1139 struct ucred *cred; 1140 vm_inherit_t inheritance; 1141 1142 VM_MAP_ASSERT_LOCKED(map); 1143 KASSERT((object != kmem_object && object != kernel_object) || 1144 (cow & MAP_COPY_ON_WRITE) == 0, 1145 ("vm_map_insert: kmem or kernel object and COW")); 1146 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1147 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1148 1149 /* 1150 * Check that the start and end points are not bogus. 1151 */ 1152 if ((start < map->min_offset) || (end > map->max_offset) || 1153 (start >= end)) 1154 return (KERN_INVALID_ADDRESS); 1155 1156 /* 1157 * Find the entry prior to the proposed starting address; if it's part 1158 * of an existing entry, this range is bogus. 1159 */ 1160 if (vm_map_lookup_entry(map, start, &temp_entry)) 1161 return (KERN_NO_SPACE); 1162 1163 prev_entry = temp_entry; 1164 1165 /* 1166 * Assert that the next entry doesn't overlap the end point. 1167 */ 1168 if ((prev_entry->next != &map->header) && 1169 (prev_entry->next->start < end)) 1170 return (KERN_NO_SPACE); 1171 1172 protoeflags = 0; 1173 if (cow & MAP_COPY_ON_WRITE) 1174 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1175 if (cow & MAP_NOFAULT) 1176 protoeflags |= MAP_ENTRY_NOFAULT; 1177 if (cow & MAP_DISABLE_SYNCER) 1178 protoeflags |= MAP_ENTRY_NOSYNC; 1179 if (cow & MAP_DISABLE_COREDUMP) 1180 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1181 if (cow & MAP_STACK_GROWS_DOWN) 1182 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1183 if (cow & MAP_STACK_GROWS_UP) 1184 protoeflags |= MAP_ENTRY_GROWS_UP; 1185 if (cow & MAP_VN_WRITECOUNT) 1186 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1187 if (cow & MAP_INHERIT_SHARE) 1188 inheritance = VM_INHERIT_SHARE; 1189 else 1190 inheritance = VM_INHERIT_DEFAULT; 1191 1192 cred = NULL; 1193 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1194 goto charged; 1195 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1196 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1197 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1198 return (KERN_RESOURCE_SHORTAGE); 1199 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1200 object->cred == NULL, 1201 ("OVERCOMMIT: vm_map_insert o %p", object)); 1202 cred = curthread->td_ucred; 1203 } 1204 1205 charged: 1206 /* Expand the kernel pmap, if necessary. */ 1207 if (map == kernel_map && end > kernel_vm_end) 1208 pmap_growkernel(end); 1209 if (object != NULL) { 1210 /* 1211 * OBJ_ONEMAPPING must be cleared unless this mapping 1212 * is trivially proven to be the only mapping for any 1213 * of the object's pages. (Object granularity 1214 * reference counting is insufficient to recognize 1215 * aliases with precision.) 1216 */ 1217 VM_OBJECT_WLOCK(object); 1218 if (object->ref_count > 1 || object->shadow_count != 0) 1219 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1220 VM_OBJECT_WUNLOCK(object); 1221 } 1222 else if ((prev_entry != &map->header) && 1223 (prev_entry->eflags == protoeflags) && 1224 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 && 1225 (prev_entry->end == start) && 1226 (prev_entry->wired_count == 0) && 1227 (prev_entry->cred == cred || 1228 (prev_entry->object.vm_object != NULL && 1229 (prev_entry->object.vm_object->cred == cred))) && 1230 vm_object_coalesce(prev_entry->object.vm_object, 1231 prev_entry->offset, 1232 (vm_size_t)(prev_entry->end - prev_entry->start), 1233 (vm_size_t)(end - prev_entry->end), cred != NULL && 1234 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1235 /* 1236 * We were able to extend the object. Determine if we 1237 * can extend the previous map entry to include the 1238 * new range as well. 1239 */ 1240 if ((prev_entry->inheritance == inheritance) && 1241 (prev_entry->protection == prot) && 1242 (prev_entry->max_protection == max)) { 1243 map->size += (end - prev_entry->end); 1244 prev_entry->end = end; 1245 vm_map_entry_resize_free(map, prev_entry); 1246 vm_map_simplify_entry(map, prev_entry); 1247 return (KERN_SUCCESS); 1248 } 1249 1250 /* 1251 * If we can extend the object but cannot extend the 1252 * map entry, we have to create a new map entry. We 1253 * must bump the ref count on the extended object to 1254 * account for it. object may be NULL. 1255 */ 1256 object = prev_entry->object.vm_object; 1257 offset = prev_entry->offset + 1258 (prev_entry->end - prev_entry->start); 1259 vm_object_reference(object); 1260 if (cred != NULL && object != NULL && object->cred != NULL && 1261 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1262 /* Object already accounts for this uid. */ 1263 cred = NULL; 1264 } 1265 } 1266 if (cred != NULL) 1267 crhold(cred); 1268 1269 /* 1270 * Create a new entry 1271 */ 1272 new_entry = vm_map_entry_create(map); 1273 new_entry->start = start; 1274 new_entry->end = end; 1275 new_entry->cred = NULL; 1276 1277 new_entry->eflags = protoeflags; 1278 new_entry->object.vm_object = object; 1279 new_entry->offset = offset; 1280 new_entry->avail_ssize = 0; 1281 1282 new_entry->inheritance = inheritance; 1283 new_entry->protection = prot; 1284 new_entry->max_protection = max; 1285 new_entry->wired_count = 0; 1286 new_entry->wiring_thread = NULL; 1287 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1288 new_entry->next_read = OFF_TO_IDX(offset); 1289 1290 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1291 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1292 new_entry->cred = cred; 1293 1294 /* 1295 * Insert the new entry into the list 1296 */ 1297 vm_map_entry_link(map, prev_entry, new_entry); 1298 map->size += new_entry->end - new_entry->start; 1299 1300 /* 1301 * Try to coalesce the new entry with both the previous and next 1302 * entries in the list. Previously, we only attempted to coalesce 1303 * with the previous entry when object is NULL. Here, we handle the 1304 * other cases, which are less common. 1305 */ 1306 vm_map_simplify_entry(map, new_entry); 1307 1308 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1309 vm_map_pmap_enter(map, start, prot, 1310 object, OFF_TO_IDX(offset), end - start, 1311 cow & MAP_PREFAULT_PARTIAL); 1312 } 1313 1314 return (KERN_SUCCESS); 1315 } 1316 1317 /* 1318 * vm_map_findspace: 1319 * 1320 * Find the first fit (lowest VM address) for "length" free bytes 1321 * beginning at address >= start in the given map. 1322 * 1323 * In a vm_map_entry, "adj_free" is the amount of free space 1324 * adjacent (higher address) to this entry, and "max_free" is the 1325 * maximum amount of contiguous free space in its subtree. This 1326 * allows finding a free region in one path down the tree, so 1327 * O(log n) amortized with splay trees. 1328 * 1329 * The map must be locked, and leaves it so. 1330 * 1331 * Returns: 0 on success, and starting address in *addr, 1332 * 1 if insufficient space. 1333 */ 1334 int 1335 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1336 vm_offset_t *addr) /* OUT */ 1337 { 1338 vm_map_entry_t entry; 1339 vm_offset_t st; 1340 1341 /* 1342 * Request must fit within min/max VM address and must avoid 1343 * address wrap. 1344 */ 1345 if (start < map->min_offset) 1346 start = map->min_offset; 1347 if (start + length > map->max_offset || start + length < start) 1348 return (1); 1349 1350 /* Empty tree means wide open address space. */ 1351 if (map->root == NULL) { 1352 *addr = start; 1353 return (0); 1354 } 1355 1356 /* 1357 * After splay, if start comes before root node, then there 1358 * must be a gap from start to the root. 1359 */ 1360 map->root = vm_map_entry_splay(start, map->root); 1361 if (start + length <= map->root->start) { 1362 *addr = start; 1363 return (0); 1364 } 1365 1366 /* 1367 * Root is the last node that might begin its gap before 1368 * start, and this is the last comparison where address 1369 * wrap might be a problem. 1370 */ 1371 st = (start > map->root->end) ? start : map->root->end; 1372 if (length <= map->root->end + map->root->adj_free - st) { 1373 *addr = st; 1374 return (0); 1375 } 1376 1377 /* With max_free, can immediately tell if no solution. */ 1378 entry = map->root->right; 1379 if (entry == NULL || length > entry->max_free) 1380 return (1); 1381 1382 /* 1383 * Search the right subtree in the order: left subtree, root, 1384 * right subtree (first fit). The previous splay implies that 1385 * all regions in the right subtree have addresses > start. 1386 */ 1387 while (entry != NULL) { 1388 if (entry->left != NULL && entry->left->max_free >= length) 1389 entry = entry->left; 1390 else if (entry->adj_free >= length) { 1391 *addr = entry->end; 1392 return (0); 1393 } else 1394 entry = entry->right; 1395 } 1396 1397 /* Can't get here, so panic if we do. */ 1398 panic("vm_map_findspace: max_free corrupt"); 1399 } 1400 1401 int 1402 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1403 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1404 vm_prot_t max, int cow) 1405 { 1406 vm_offset_t end; 1407 int result; 1408 1409 end = start + length; 1410 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1411 object == NULL, 1412 ("vm_map_fixed: non-NULL backing object for stack")); 1413 vm_map_lock(map); 1414 VM_MAP_RANGE_CHECK(map, start, end); 1415 if ((cow & MAP_CHECK_EXCL) == 0) 1416 vm_map_delete(map, start, end); 1417 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1418 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1419 prot, max, cow); 1420 } else { 1421 result = vm_map_insert(map, object, offset, start, end, 1422 prot, max, cow); 1423 } 1424 vm_map_unlock(map); 1425 return (result); 1426 } 1427 1428 /* 1429 * vm_map_find finds an unallocated region in the target address 1430 * map with the given length. The search is defined to be 1431 * first-fit from the specified address; the region found is 1432 * returned in the same parameter. 1433 * 1434 * If object is non-NULL, ref count must be bumped by caller 1435 * prior to making call to account for the new entry. 1436 */ 1437 int 1438 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1439 vm_offset_t *addr, /* IN/OUT */ 1440 vm_size_t length, vm_offset_t max_addr, int find_space, 1441 vm_prot_t prot, vm_prot_t max, int cow) 1442 { 1443 vm_offset_t alignment, initial_addr, start; 1444 int result; 1445 1446 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1447 object == NULL, 1448 ("vm_map_find: non-NULL backing object for stack")); 1449 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1450 (object->flags & OBJ_COLORED) == 0)) 1451 find_space = VMFS_ANY_SPACE; 1452 if (find_space >> 8 != 0) { 1453 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1454 alignment = (vm_offset_t)1 << (find_space >> 8); 1455 } else 1456 alignment = 0; 1457 initial_addr = *addr; 1458 again: 1459 start = initial_addr; 1460 vm_map_lock(map); 1461 do { 1462 if (find_space != VMFS_NO_SPACE) { 1463 if (vm_map_findspace(map, start, length, addr) || 1464 (max_addr != 0 && *addr + length > max_addr)) { 1465 vm_map_unlock(map); 1466 if (find_space == VMFS_OPTIMAL_SPACE) { 1467 find_space = VMFS_ANY_SPACE; 1468 goto again; 1469 } 1470 return (KERN_NO_SPACE); 1471 } 1472 switch (find_space) { 1473 case VMFS_SUPER_SPACE: 1474 case VMFS_OPTIMAL_SPACE: 1475 pmap_align_superpage(object, offset, addr, 1476 length); 1477 break; 1478 case VMFS_ANY_SPACE: 1479 break; 1480 default: 1481 if ((*addr & (alignment - 1)) != 0) { 1482 *addr &= ~(alignment - 1); 1483 *addr += alignment; 1484 } 1485 break; 1486 } 1487 1488 start = *addr; 1489 } 1490 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1491 result = vm_map_stack_locked(map, start, length, 1492 sgrowsiz, prot, max, cow); 1493 } else { 1494 result = vm_map_insert(map, object, offset, start, 1495 start + length, prot, max, cow); 1496 } 1497 } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE && 1498 find_space != VMFS_ANY_SPACE); 1499 vm_map_unlock(map); 1500 return (result); 1501 } 1502 1503 /* 1504 * vm_map_simplify_entry: 1505 * 1506 * Simplify the given map entry by merging with either neighbor. This 1507 * routine also has the ability to merge with both neighbors. 1508 * 1509 * The map must be locked. 1510 * 1511 * This routine guarentees that the passed entry remains valid (though 1512 * possibly extended). When merging, this routine may delete one or 1513 * both neighbors. 1514 */ 1515 void 1516 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1517 { 1518 vm_map_entry_t next, prev; 1519 vm_size_t prevsize, esize; 1520 1521 if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | 1522 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0) 1523 return; 1524 1525 prev = entry->prev; 1526 if (prev != &map->header) { 1527 prevsize = prev->end - prev->start; 1528 if ( (prev->end == entry->start) && 1529 (prev->object.vm_object == entry->object.vm_object) && 1530 (!prev->object.vm_object || 1531 (prev->offset + prevsize == entry->offset)) && 1532 (prev->eflags == entry->eflags) && 1533 (prev->protection == entry->protection) && 1534 (prev->max_protection == entry->max_protection) && 1535 (prev->inheritance == entry->inheritance) && 1536 (prev->wired_count == entry->wired_count) && 1537 (prev->cred == entry->cred)) { 1538 vm_map_entry_unlink(map, prev); 1539 entry->start = prev->start; 1540 entry->offset = prev->offset; 1541 if (entry->prev != &map->header) 1542 vm_map_entry_resize_free(map, entry->prev); 1543 1544 /* 1545 * If the backing object is a vnode object, 1546 * vm_object_deallocate() calls vrele(). 1547 * However, vrele() does not lock the vnode 1548 * because the vnode has additional 1549 * references. Thus, the map lock can be kept 1550 * without causing a lock-order reversal with 1551 * the vnode lock. 1552 * 1553 * Since we count the number of virtual page 1554 * mappings in object->un_pager.vnp.writemappings, 1555 * the writemappings value should not be adjusted 1556 * when the entry is disposed of. 1557 */ 1558 if (prev->object.vm_object) 1559 vm_object_deallocate(prev->object.vm_object); 1560 if (prev->cred != NULL) 1561 crfree(prev->cred); 1562 vm_map_entry_dispose(map, prev); 1563 } 1564 } 1565 1566 next = entry->next; 1567 if (next != &map->header) { 1568 esize = entry->end - entry->start; 1569 if ((entry->end == next->start) && 1570 (next->object.vm_object == entry->object.vm_object) && 1571 (!entry->object.vm_object || 1572 (entry->offset + esize == next->offset)) && 1573 (next->eflags == entry->eflags) && 1574 (next->protection == entry->protection) && 1575 (next->max_protection == entry->max_protection) && 1576 (next->inheritance == entry->inheritance) && 1577 (next->wired_count == entry->wired_count) && 1578 (next->cred == entry->cred)) { 1579 vm_map_entry_unlink(map, next); 1580 entry->end = next->end; 1581 vm_map_entry_resize_free(map, entry); 1582 1583 /* 1584 * See comment above. 1585 */ 1586 if (next->object.vm_object) 1587 vm_object_deallocate(next->object.vm_object); 1588 if (next->cred != NULL) 1589 crfree(next->cred); 1590 vm_map_entry_dispose(map, next); 1591 } 1592 } 1593 } 1594 /* 1595 * vm_map_clip_start: [ internal use only ] 1596 * 1597 * Asserts that the given entry begins at or after 1598 * the specified address; if necessary, 1599 * it splits the entry into two. 1600 */ 1601 #define vm_map_clip_start(map, entry, startaddr) \ 1602 { \ 1603 if (startaddr > entry->start) \ 1604 _vm_map_clip_start(map, entry, startaddr); \ 1605 } 1606 1607 /* 1608 * This routine is called only when it is known that 1609 * the entry must be split. 1610 */ 1611 static void 1612 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1613 { 1614 vm_map_entry_t new_entry; 1615 1616 VM_MAP_ASSERT_LOCKED(map); 1617 1618 /* 1619 * Split off the front portion -- note that we must insert the new 1620 * entry BEFORE this one, so that this entry has the specified 1621 * starting address. 1622 */ 1623 vm_map_simplify_entry(map, entry); 1624 1625 /* 1626 * If there is no object backing this entry, we might as well create 1627 * one now. If we defer it, an object can get created after the map 1628 * is clipped, and individual objects will be created for the split-up 1629 * map. This is a bit of a hack, but is also about the best place to 1630 * put this improvement. 1631 */ 1632 if (entry->object.vm_object == NULL && !map->system_map) { 1633 vm_object_t object; 1634 object = vm_object_allocate(OBJT_DEFAULT, 1635 atop(entry->end - entry->start)); 1636 entry->object.vm_object = object; 1637 entry->offset = 0; 1638 if (entry->cred != NULL) { 1639 object->cred = entry->cred; 1640 object->charge = entry->end - entry->start; 1641 entry->cred = NULL; 1642 } 1643 } else if (entry->object.vm_object != NULL && 1644 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1645 entry->cred != NULL) { 1646 VM_OBJECT_WLOCK(entry->object.vm_object); 1647 KASSERT(entry->object.vm_object->cred == NULL, 1648 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1649 entry->object.vm_object->cred = entry->cred; 1650 entry->object.vm_object->charge = entry->end - entry->start; 1651 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1652 entry->cred = NULL; 1653 } 1654 1655 new_entry = vm_map_entry_create(map); 1656 *new_entry = *entry; 1657 1658 new_entry->end = start; 1659 entry->offset += (start - entry->start); 1660 entry->start = start; 1661 if (new_entry->cred != NULL) 1662 crhold(entry->cred); 1663 1664 vm_map_entry_link(map, entry->prev, new_entry); 1665 1666 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1667 vm_object_reference(new_entry->object.vm_object); 1668 /* 1669 * The object->un_pager.vnp.writemappings for the 1670 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1671 * kept as is here. The virtual pages are 1672 * re-distributed among the clipped entries, so the sum is 1673 * left the same. 1674 */ 1675 } 1676 } 1677 1678 /* 1679 * vm_map_clip_end: [ internal use only ] 1680 * 1681 * Asserts that the given entry ends at or before 1682 * the specified address; if necessary, 1683 * it splits the entry into two. 1684 */ 1685 #define vm_map_clip_end(map, entry, endaddr) \ 1686 { \ 1687 if ((endaddr) < (entry->end)) \ 1688 _vm_map_clip_end((map), (entry), (endaddr)); \ 1689 } 1690 1691 /* 1692 * This routine is called only when it is known that 1693 * the entry must be split. 1694 */ 1695 static void 1696 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1697 { 1698 vm_map_entry_t new_entry; 1699 1700 VM_MAP_ASSERT_LOCKED(map); 1701 1702 /* 1703 * If there is no object backing this entry, we might as well create 1704 * one now. If we defer it, an object can get created after the map 1705 * is clipped, and individual objects will be created for the split-up 1706 * map. This is a bit of a hack, but is also about the best place to 1707 * put this improvement. 1708 */ 1709 if (entry->object.vm_object == NULL && !map->system_map) { 1710 vm_object_t object; 1711 object = vm_object_allocate(OBJT_DEFAULT, 1712 atop(entry->end - entry->start)); 1713 entry->object.vm_object = object; 1714 entry->offset = 0; 1715 if (entry->cred != NULL) { 1716 object->cred = entry->cred; 1717 object->charge = entry->end - entry->start; 1718 entry->cred = NULL; 1719 } 1720 } else if (entry->object.vm_object != NULL && 1721 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1722 entry->cred != NULL) { 1723 VM_OBJECT_WLOCK(entry->object.vm_object); 1724 KASSERT(entry->object.vm_object->cred == NULL, 1725 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1726 entry->object.vm_object->cred = entry->cred; 1727 entry->object.vm_object->charge = entry->end - entry->start; 1728 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1729 entry->cred = NULL; 1730 } 1731 1732 /* 1733 * Create a new entry and insert it AFTER the specified entry 1734 */ 1735 new_entry = vm_map_entry_create(map); 1736 *new_entry = *entry; 1737 1738 new_entry->start = entry->end = end; 1739 new_entry->offset += (end - entry->start); 1740 if (new_entry->cred != NULL) 1741 crhold(entry->cred); 1742 1743 vm_map_entry_link(map, entry, new_entry); 1744 1745 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1746 vm_object_reference(new_entry->object.vm_object); 1747 } 1748 } 1749 1750 /* 1751 * vm_map_submap: [ kernel use only ] 1752 * 1753 * Mark the given range as handled by a subordinate map. 1754 * 1755 * This range must have been created with vm_map_find, 1756 * and no other operations may have been performed on this 1757 * range prior to calling vm_map_submap. 1758 * 1759 * Only a limited number of operations can be performed 1760 * within this rage after calling vm_map_submap: 1761 * vm_fault 1762 * [Don't try vm_map_copy!] 1763 * 1764 * To remove a submapping, one must first remove the 1765 * range from the superior map, and then destroy the 1766 * submap (if desired). [Better yet, don't try it.] 1767 */ 1768 int 1769 vm_map_submap( 1770 vm_map_t map, 1771 vm_offset_t start, 1772 vm_offset_t end, 1773 vm_map_t submap) 1774 { 1775 vm_map_entry_t entry; 1776 int result = KERN_INVALID_ARGUMENT; 1777 1778 vm_map_lock(map); 1779 1780 VM_MAP_RANGE_CHECK(map, start, end); 1781 1782 if (vm_map_lookup_entry(map, start, &entry)) { 1783 vm_map_clip_start(map, entry, start); 1784 } else 1785 entry = entry->next; 1786 1787 vm_map_clip_end(map, entry, end); 1788 1789 if ((entry->start == start) && (entry->end == end) && 1790 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1791 (entry->object.vm_object == NULL)) { 1792 entry->object.sub_map = submap; 1793 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1794 result = KERN_SUCCESS; 1795 } 1796 vm_map_unlock(map); 1797 1798 return (result); 1799 } 1800 1801 /* 1802 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 1803 */ 1804 #define MAX_INIT_PT 96 1805 1806 /* 1807 * vm_map_pmap_enter: 1808 * 1809 * Preload the specified map's pmap with mappings to the specified 1810 * object's memory-resident pages. No further physical pages are 1811 * allocated, and no further virtual pages are retrieved from secondary 1812 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 1813 * limited number of page mappings are created at the low-end of the 1814 * specified address range. (For this purpose, a superpage mapping 1815 * counts as one page mapping.) Otherwise, all resident pages within 1816 * the specified address range are mapped. Because these mappings are 1817 * being created speculatively, cached pages are not reactivated and 1818 * mapped. 1819 */ 1820 static void 1821 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1822 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1823 { 1824 vm_offset_t start; 1825 vm_page_t p, p_start; 1826 vm_pindex_t mask, psize, threshold, tmpidx; 1827 1828 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1829 return; 1830 VM_OBJECT_RLOCK(object); 1831 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1832 VM_OBJECT_RUNLOCK(object); 1833 VM_OBJECT_WLOCK(object); 1834 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1835 pmap_object_init_pt(map->pmap, addr, object, pindex, 1836 size); 1837 VM_OBJECT_WUNLOCK(object); 1838 return; 1839 } 1840 VM_OBJECT_LOCK_DOWNGRADE(object); 1841 } 1842 1843 psize = atop(size); 1844 if (psize + pindex > object->size) { 1845 if (object->size < pindex) { 1846 VM_OBJECT_RUNLOCK(object); 1847 return; 1848 } 1849 psize = object->size - pindex; 1850 } 1851 1852 start = 0; 1853 p_start = NULL; 1854 threshold = MAX_INIT_PT; 1855 1856 p = vm_page_find_least(object, pindex); 1857 /* 1858 * Assert: the variable p is either (1) the page with the 1859 * least pindex greater than or equal to the parameter pindex 1860 * or (2) NULL. 1861 */ 1862 for (; 1863 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1864 p = TAILQ_NEXT(p, listq)) { 1865 /* 1866 * don't allow an madvise to blow away our really 1867 * free pages allocating pv entries. 1868 */ 1869 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 1870 vm_cnt.v_free_count < vm_cnt.v_free_reserved) || 1871 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 1872 tmpidx >= threshold)) { 1873 psize = tmpidx; 1874 break; 1875 } 1876 if (p->valid == VM_PAGE_BITS_ALL) { 1877 if (p_start == NULL) { 1878 start = addr + ptoa(tmpidx); 1879 p_start = p; 1880 } 1881 /* Jump ahead if a superpage mapping is possible. */ 1882 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 1883 (pagesizes[p->psind] - 1)) == 0) { 1884 mask = atop(pagesizes[p->psind]) - 1; 1885 if (tmpidx + mask < psize && 1886 vm_page_ps_is_valid(p)) { 1887 p += mask; 1888 threshold += mask; 1889 } 1890 } 1891 } else if (p_start != NULL) { 1892 pmap_enter_object(map->pmap, start, addr + 1893 ptoa(tmpidx), p_start, prot); 1894 p_start = NULL; 1895 } 1896 } 1897 if (p_start != NULL) 1898 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1899 p_start, prot); 1900 VM_OBJECT_RUNLOCK(object); 1901 } 1902 1903 /* 1904 * vm_map_protect: 1905 * 1906 * Sets the protection of the specified address 1907 * region in the target map. If "set_max" is 1908 * specified, the maximum protection is to be set; 1909 * otherwise, only the current protection is affected. 1910 */ 1911 int 1912 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1913 vm_prot_t new_prot, boolean_t set_max) 1914 { 1915 vm_map_entry_t current, entry; 1916 vm_object_t obj; 1917 struct ucred *cred; 1918 vm_prot_t old_prot; 1919 1920 if (start == end) 1921 return (KERN_SUCCESS); 1922 1923 vm_map_lock(map); 1924 1925 VM_MAP_RANGE_CHECK(map, start, end); 1926 1927 if (vm_map_lookup_entry(map, start, &entry)) { 1928 vm_map_clip_start(map, entry, start); 1929 } else { 1930 entry = entry->next; 1931 } 1932 1933 /* 1934 * Make a first pass to check for protection violations. 1935 */ 1936 current = entry; 1937 while ((current != &map->header) && (current->start < end)) { 1938 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1939 vm_map_unlock(map); 1940 return (KERN_INVALID_ARGUMENT); 1941 } 1942 if ((new_prot & current->max_protection) != new_prot) { 1943 vm_map_unlock(map); 1944 return (KERN_PROTECTION_FAILURE); 1945 } 1946 current = current->next; 1947 } 1948 1949 1950 /* 1951 * Do an accounting pass for private read-only mappings that 1952 * now will do cow due to allowed write (e.g. debugger sets 1953 * breakpoint on text segment) 1954 */ 1955 for (current = entry; (current != &map->header) && 1956 (current->start < end); current = current->next) { 1957 1958 vm_map_clip_end(map, current, end); 1959 1960 if (set_max || 1961 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1962 ENTRY_CHARGED(current)) { 1963 continue; 1964 } 1965 1966 cred = curthread->td_ucred; 1967 obj = current->object.vm_object; 1968 1969 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1970 if (!swap_reserve(current->end - current->start)) { 1971 vm_map_unlock(map); 1972 return (KERN_RESOURCE_SHORTAGE); 1973 } 1974 crhold(cred); 1975 current->cred = cred; 1976 continue; 1977 } 1978 1979 VM_OBJECT_WLOCK(obj); 1980 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1981 VM_OBJECT_WUNLOCK(obj); 1982 continue; 1983 } 1984 1985 /* 1986 * Charge for the whole object allocation now, since 1987 * we cannot distinguish between non-charged and 1988 * charged clipped mapping of the same object later. 1989 */ 1990 KASSERT(obj->charge == 0, 1991 ("vm_map_protect: object %p overcharged (entry %p)", 1992 obj, current)); 1993 if (!swap_reserve(ptoa(obj->size))) { 1994 VM_OBJECT_WUNLOCK(obj); 1995 vm_map_unlock(map); 1996 return (KERN_RESOURCE_SHORTAGE); 1997 } 1998 1999 crhold(cred); 2000 obj->cred = cred; 2001 obj->charge = ptoa(obj->size); 2002 VM_OBJECT_WUNLOCK(obj); 2003 } 2004 2005 /* 2006 * Go back and fix up protections. [Note that clipping is not 2007 * necessary the second time.] 2008 */ 2009 current = entry; 2010 while ((current != &map->header) && (current->start < end)) { 2011 old_prot = current->protection; 2012 2013 if (set_max) 2014 current->protection = 2015 (current->max_protection = new_prot) & 2016 old_prot; 2017 else 2018 current->protection = new_prot; 2019 2020 /* 2021 * For user wired map entries, the normal lazy evaluation of 2022 * write access upgrades through soft page faults is 2023 * undesirable. Instead, immediately copy any pages that are 2024 * copy-on-write and enable write access in the physical map. 2025 */ 2026 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2027 (current->protection & VM_PROT_WRITE) != 0 && 2028 (old_prot & VM_PROT_WRITE) == 0) 2029 vm_fault_copy_entry(map, map, current, current, NULL); 2030 2031 /* 2032 * When restricting access, update the physical map. Worry 2033 * about copy-on-write here. 2034 */ 2035 if ((old_prot & ~current->protection) != 0) { 2036 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2037 VM_PROT_ALL) 2038 pmap_protect(map->pmap, current->start, 2039 current->end, 2040 current->protection & MASK(current)); 2041 #undef MASK 2042 } 2043 vm_map_simplify_entry(map, current); 2044 current = current->next; 2045 } 2046 vm_map_unlock(map); 2047 return (KERN_SUCCESS); 2048 } 2049 2050 /* 2051 * vm_map_madvise: 2052 * 2053 * This routine traverses a processes map handling the madvise 2054 * system call. Advisories are classified as either those effecting 2055 * the vm_map_entry structure, or those effecting the underlying 2056 * objects. 2057 */ 2058 int 2059 vm_map_madvise( 2060 vm_map_t map, 2061 vm_offset_t start, 2062 vm_offset_t end, 2063 int behav) 2064 { 2065 vm_map_entry_t current, entry; 2066 int modify_map = 0; 2067 2068 /* 2069 * Some madvise calls directly modify the vm_map_entry, in which case 2070 * we need to use an exclusive lock on the map and we need to perform 2071 * various clipping operations. Otherwise we only need a read-lock 2072 * on the map. 2073 */ 2074 switch(behav) { 2075 case MADV_NORMAL: 2076 case MADV_SEQUENTIAL: 2077 case MADV_RANDOM: 2078 case MADV_NOSYNC: 2079 case MADV_AUTOSYNC: 2080 case MADV_NOCORE: 2081 case MADV_CORE: 2082 if (start == end) 2083 return (KERN_SUCCESS); 2084 modify_map = 1; 2085 vm_map_lock(map); 2086 break; 2087 case MADV_WILLNEED: 2088 case MADV_DONTNEED: 2089 case MADV_FREE: 2090 if (start == end) 2091 return (KERN_SUCCESS); 2092 vm_map_lock_read(map); 2093 break; 2094 default: 2095 return (KERN_INVALID_ARGUMENT); 2096 } 2097 2098 /* 2099 * Locate starting entry and clip if necessary. 2100 */ 2101 VM_MAP_RANGE_CHECK(map, start, end); 2102 2103 if (vm_map_lookup_entry(map, start, &entry)) { 2104 if (modify_map) 2105 vm_map_clip_start(map, entry, start); 2106 } else { 2107 entry = entry->next; 2108 } 2109 2110 if (modify_map) { 2111 /* 2112 * madvise behaviors that are implemented in the vm_map_entry. 2113 * 2114 * We clip the vm_map_entry so that behavioral changes are 2115 * limited to the specified address range. 2116 */ 2117 for (current = entry; 2118 (current != &map->header) && (current->start < end); 2119 current = current->next 2120 ) { 2121 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2122 continue; 2123 2124 vm_map_clip_end(map, current, end); 2125 2126 switch (behav) { 2127 case MADV_NORMAL: 2128 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2129 break; 2130 case MADV_SEQUENTIAL: 2131 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2132 break; 2133 case MADV_RANDOM: 2134 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2135 break; 2136 case MADV_NOSYNC: 2137 current->eflags |= MAP_ENTRY_NOSYNC; 2138 break; 2139 case MADV_AUTOSYNC: 2140 current->eflags &= ~MAP_ENTRY_NOSYNC; 2141 break; 2142 case MADV_NOCORE: 2143 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2144 break; 2145 case MADV_CORE: 2146 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2147 break; 2148 default: 2149 break; 2150 } 2151 vm_map_simplify_entry(map, current); 2152 } 2153 vm_map_unlock(map); 2154 } else { 2155 vm_pindex_t pstart, pend; 2156 2157 /* 2158 * madvise behaviors that are implemented in the underlying 2159 * vm_object. 2160 * 2161 * Since we don't clip the vm_map_entry, we have to clip 2162 * the vm_object pindex and count. 2163 */ 2164 for (current = entry; 2165 (current != &map->header) && (current->start < end); 2166 current = current->next 2167 ) { 2168 vm_offset_t useEnd, useStart; 2169 2170 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2171 continue; 2172 2173 pstart = OFF_TO_IDX(current->offset); 2174 pend = pstart + atop(current->end - current->start); 2175 useStart = current->start; 2176 useEnd = current->end; 2177 2178 if (current->start < start) { 2179 pstart += atop(start - current->start); 2180 useStart = start; 2181 } 2182 if (current->end > end) { 2183 pend -= atop(current->end - end); 2184 useEnd = end; 2185 } 2186 2187 if (pstart >= pend) 2188 continue; 2189 2190 /* 2191 * Perform the pmap_advise() before clearing 2192 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2193 * concurrent pmap operation, such as pmap_remove(), 2194 * could clear a reference in the pmap and set 2195 * PGA_REFERENCED on the page before the pmap_advise() 2196 * had completed. Consequently, the page would appear 2197 * referenced based upon an old reference that 2198 * occurred before this pmap_advise() ran. 2199 */ 2200 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2201 pmap_advise(map->pmap, useStart, useEnd, 2202 behav); 2203 2204 vm_object_madvise(current->object.vm_object, pstart, 2205 pend, behav); 2206 2207 /* 2208 * Pre-populate paging structures in the 2209 * WILLNEED case. For wired entries, the 2210 * paging structures are already populated. 2211 */ 2212 if (behav == MADV_WILLNEED && 2213 current->wired_count == 0) { 2214 vm_map_pmap_enter(map, 2215 useStart, 2216 current->protection, 2217 current->object.vm_object, 2218 pstart, 2219 ptoa(pend - pstart), 2220 MAP_PREFAULT_MADVISE 2221 ); 2222 } 2223 } 2224 vm_map_unlock_read(map); 2225 } 2226 return (0); 2227 } 2228 2229 2230 /* 2231 * vm_map_inherit: 2232 * 2233 * Sets the inheritance of the specified address 2234 * range in the target map. Inheritance 2235 * affects how the map will be shared with 2236 * child maps at the time of vmspace_fork. 2237 */ 2238 int 2239 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2240 vm_inherit_t new_inheritance) 2241 { 2242 vm_map_entry_t entry; 2243 vm_map_entry_t temp_entry; 2244 2245 switch (new_inheritance) { 2246 case VM_INHERIT_NONE: 2247 case VM_INHERIT_COPY: 2248 case VM_INHERIT_SHARE: 2249 break; 2250 default: 2251 return (KERN_INVALID_ARGUMENT); 2252 } 2253 if (start == end) 2254 return (KERN_SUCCESS); 2255 vm_map_lock(map); 2256 VM_MAP_RANGE_CHECK(map, start, end); 2257 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2258 entry = temp_entry; 2259 vm_map_clip_start(map, entry, start); 2260 } else 2261 entry = temp_entry->next; 2262 while ((entry != &map->header) && (entry->start < end)) { 2263 vm_map_clip_end(map, entry, end); 2264 entry->inheritance = new_inheritance; 2265 vm_map_simplify_entry(map, entry); 2266 entry = entry->next; 2267 } 2268 vm_map_unlock(map); 2269 return (KERN_SUCCESS); 2270 } 2271 2272 /* 2273 * vm_map_unwire: 2274 * 2275 * Implements both kernel and user unwiring. 2276 */ 2277 int 2278 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2279 int flags) 2280 { 2281 vm_map_entry_t entry, first_entry, tmp_entry; 2282 vm_offset_t saved_start; 2283 unsigned int last_timestamp; 2284 int rv; 2285 boolean_t need_wakeup, result, user_unwire; 2286 2287 if (start == end) 2288 return (KERN_SUCCESS); 2289 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2290 vm_map_lock(map); 2291 VM_MAP_RANGE_CHECK(map, start, end); 2292 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2293 if (flags & VM_MAP_WIRE_HOLESOK) 2294 first_entry = first_entry->next; 2295 else { 2296 vm_map_unlock(map); 2297 return (KERN_INVALID_ADDRESS); 2298 } 2299 } 2300 last_timestamp = map->timestamp; 2301 entry = first_entry; 2302 while (entry != &map->header && entry->start < end) { 2303 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2304 /* 2305 * We have not yet clipped the entry. 2306 */ 2307 saved_start = (start >= entry->start) ? start : 2308 entry->start; 2309 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2310 if (vm_map_unlock_and_wait(map, 0)) { 2311 /* 2312 * Allow interruption of user unwiring? 2313 */ 2314 } 2315 vm_map_lock(map); 2316 if (last_timestamp+1 != map->timestamp) { 2317 /* 2318 * Look again for the entry because the map was 2319 * modified while it was unlocked. 2320 * Specifically, the entry may have been 2321 * clipped, merged, or deleted. 2322 */ 2323 if (!vm_map_lookup_entry(map, saved_start, 2324 &tmp_entry)) { 2325 if (flags & VM_MAP_WIRE_HOLESOK) 2326 tmp_entry = tmp_entry->next; 2327 else { 2328 if (saved_start == start) { 2329 /* 2330 * First_entry has been deleted. 2331 */ 2332 vm_map_unlock(map); 2333 return (KERN_INVALID_ADDRESS); 2334 } 2335 end = saved_start; 2336 rv = KERN_INVALID_ADDRESS; 2337 goto done; 2338 } 2339 } 2340 if (entry == first_entry) 2341 first_entry = tmp_entry; 2342 else 2343 first_entry = NULL; 2344 entry = tmp_entry; 2345 } 2346 last_timestamp = map->timestamp; 2347 continue; 2348 } 2349 vm_map_clip_start(map, entry, start); 2350 vm_map_clip_end(map, entry, end); 2351 /* 2352 * Mark the entry in case the map lock is released. (See 2353 * above.) 2354 */ 2355 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2356 entry->wiring_thread == NULL, 2357 ("owned map entry %p", entry)); 2358 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2359 entry->wiring_thread = curthread; 2360 /* 2361 * Check the map for holes in the specified region. 2362 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2363 */ 2364 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2365 (entry->end < end && (entry->next == &map->header || 2366 entry->next->start > entry->end))) { 2367 end = entry->end; 2368 rv = KERN_INVALID_ADDRESS; 2369 goto done; 2370 } 2371 /* 2372 * If system unwiring, require that the entry is system wired. 2373 */ 2374 if (!user_unwire && 2375 vm_map_entry_system_wired_count(entry) == 0) { 2376 end = entry->end; 2377 rv = KERN_INVALID_ARGUMENT; 2378 goto done; 2379 } 2380 entry = entry->next; 2381 } 2382 rv = KERN_SUCCESS; 2383 done: 2384 need_wakeup = FALSE; 2385 if (first_entry == NULL) { 2386 result = vm_map_lookup_entry(map, start, &first_entry); 2387 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2388 first_entry = first_entry->next; 2389 else 2390 KASSERT(result, ("vm_map_unwire: lookup failed")); 2391 } 2392 for (entry = first_entry; entry != &map->header && entry->start < end; 2393 entry = entry->next) { 2394 /* 2395 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2396 * space in the unwired region could have been mapped 2397 * while the map lock was dropped for draining 2398 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2399 * could be simultaneously wiring this new mapping 2400 * entry. Detect these cases and skip any entries 2401 * marked as in transition by us. 2402 */ 2403 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2404 entry->wiring_thread != curthread) { 2405 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2406 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2407 continue; 2408 } 2409 2410 if (rv == KERN_SUCCESS && (!user_unwire || 2411 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2412 if (user_unwire) 2413 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2414 if (entry->wired_count == 1) 2415 vm_map_entry_unwire(map, entry); 2416 else 2417 entry->wired_count--; 2418 } 2419 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2420 ("vm_map_unwire: in-transition flag missing %p", entry)); 2421 KASSERT(entry->wiring_thread == curthread, 2422 ("vm_map_unwire: alien wire %p", entry)); 2423 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2424 entry->wiring_thread = NULL; 2425 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2426 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2427 need_wakeup = TRUE; 2428 } 2429 vm_map_simplify_entry(map, entry); 2430 } 2431 vm_map_unlock(map); 2432 if (need_wakeup) 2433 vm_map_wakeup(map); 2434 return (rv); 2435 } 2436 2437 /* 2438 * vm_map_wire_entry_failure: 2439 * 2440 * Handle a wiring failure on the given entry. 2441 * 2442 * The map should be locked. 2443 */ 2444 static void 2445 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 2446 vm_offset_t failed_addr) 2447 { 2448 2449 VM_MAP_ASSERT_LOCKED(map); 2450 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 2451 entry->wired_count == 1, 2452 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 2453 KASSERT(failed_addr < entry->end, 2454 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 2455 2456 /* 2457 * If any pages at the start of this entry were successfully wired, 2458 * then unwire them. 2459 */ 2460 if (failed_addr > entry->start) { 2461 pmap_unwire(map->pmap, entry->start, failed_addr); 2462 vm_object_unwire(entry->object.vm_object, entry->offset, 2463 failed_addr - entry->start, PQ_ACTIVE); 2464 } 2465 2466 /* 2467 * Assign an out-of-range value to represent the failure to wire this 2468 * entry. 2469 */ 2470 entry->wired_count = -1; 2471 } 2472 2473 /* 2474 * vm_map_wire: 2475 * 2476 * Implements both kernel and user wiring. 2477 */ 2478 int 2479 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2480 int flags) 2481 { 2482 vm_map_entry_t entry, first_entry, tmp_entry; 2483 vm_offset_t faddr, saved_end, saved_start; 2484 unsigned int last_timestamp; 2485 int rv; 2486 boolean_t need_wakeup, result, user_wire; 2487 vm_prot_t prot; 2488 2489 if (start == end) 2490 return (KERN_SUCCESS); 2491 prot = 0; 2492 if (flags & VM_MAP_WIRE_WRITE) 2493 prot |= VM_PROT_WRITE; 2494 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2495 vm_map_lock(map); 2496 VM_MAP_RANGE_CHECK(map, start, end); 2497 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2498 if (flags & VM_MAP_WIRE_HOLESOK) 2499 first_entry = first_entry->next; 2500 else { 2501 vm_map_unlock(map); 2502 return (KERN_INVALID_ADDRESS); 2503 } 2504 } 2505 last_timestamp = map->timestamp; 2506 entry = first_entry; 2507 while (entry != &map->header && entry->start < end) { 2508 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2509 /* 2510 * We have not yet clipped the entry. 2511 */ 2512 saved_start = (start >= entry->start) ? start : 2513 entry->start; 2514 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2515 if (vm_map_unlock_and_wait(map, 0)) { 2516 /* 2517 * Allow interruption of user wiring? 2518 */ 2519 } 2520 vm_map_lock(map); 2521 if (last_timestamp + 1 != map->timestamp) { 2522 /* 2523 * Look again for the entry because the map was 2524 * modified while it was unlocked. 2525 * Specifically, the entry may have been 2526 * clipped, merged, or deleted. 2527 */ 2528 if (!vm_map_lookup_entry(map, saved_start, 2529 &tmp_entry)) { 2530 if (flags & VM_MAP_WIRE_HOLESOK) 2531 tmp_entry = tmp_entry->next; 2532 else { 2533 if (saved_start == start) { 2534 /* 2535 * first_entry has been deleted. 2536 */ 2537 vm_map_unlock(map); 2538 return (KERN_INVALID_ADDRESS); 2539 } 2540 end = saved_start; 2541 rv = KERN_INVALID_ADDRESS; 2542 goto done; 2543 } 2544 } 2545 if (entry == first_entry) 2546 first_entry = tmp_entry; 2547 else 2548 first_entry = NULL; 2549 entry = tmp_entry; 2550 } 2551 last_timestamp = map->timestamp; 2552 continue; 2553 } 2554 vm_map_clip_start(map, entry, start); 2555 vm_map_clip_end(map, entry, end); 2556 /* 2557 * Mark the entry in case the map lock is released. (See 2558 * above.) 2559 */ 2560 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2561 entry->wiring_thread == NULL, 2562 ("owned map entry %p", entry)); 2563 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2564 entry->wiring_thread = curthread; 2565 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2566 || (entry->protection & prot) != prot) { 2567 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2568 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2569 end = entry->end; 2570 rv = KERN_INVALID_ADDRESS; 2571 goto done; 2572 } 2573 goto next_entry; 2574 } 2575 if (entry->wired_count == 0) { 2576 entry->wired_count++; 2577 saved_start = entry->start; 2578 saved_end = entry->end; 2579 2580 /* 2581 * Release the map lock, relying on the in-transition 2582 * mark. Mark the map busy for fork. 2583 */ 2584 vm_map_busy(map); 2585 vm_map_unlock(map); 2586 2587 faddr = saved_start; 2588 do { 2589 /* 2590 * Simulate a fault to get the page and enter 2591 * it into the physical map. 2592 */ 2593 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 2594 VM_FAULT_WIRE)) != KERN_SUCCESS) 2595 break; 2596 } while ((faddr += PAGE_SIZE) < saved_end); 2597 vm_map_lock(map); 2598 vm_map_unbusy(map); 2599 if (last_timestamp + 1 != map->timestamp) { 2600 /* 2601 * Look again for the entry because the map was 2602 * modified while it was unlocked. The entry 2603 * may have been clipped, but NOT merged or 2604 * deleted. 2605 */ 2606 result = vm_map_lookup_entry(map, saved_start, 2607 &tmp_entry); 2608 KASSERT(result, ("vm_map_wire: lookup failed")); 2609 if (entry == first_entry) 2610 first_entry = tmp_entry; 2611 else 2612 first_entry = NULL; 2613 entry = tmp_entry; 2614 while (entry->end < saved_end) { 2615 /* 2616 * In case of failure, handle entries 2617 * that were not fully wired here; 2618 * fully wired entries are handled 2619 * later. 2620 */ 2621 if (rv != KERN_SUCCESS && 2622 faddr < entry->end) 2623 vm_map_wire_entry_failure(map, 2624 entry, faddr); 2625 entry = entry->next; 2626 } 2627 } 2628 last_timestamp = map->timestamp; 2629 if (rv != KERN_SUCCESS) { 2630 vm_map_wire_entry_failure(map, entry, faddr); 2631 end = entry->end; 2632 goto done; 2633 } 2634 } else if (!user_wire || 2635 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2636 entry->wired_count++; 2637 } 2638 /* 2639 * Check the map for holes in the specified region. 2640 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2641 */ 2642 next_entry: 2643 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2644 (entry->end < end && (entry->next == &map->header || 2645 entry->next->start > entry->end))) { 2646 end = entry->end; 2647 rv = KERN_INVALID_ADDRESS; 2648 goto done; 2649 } 2650 entry = entry->next; 2651 } 2652 rv = KERN_SUCCESS; 2653 done: 2654 need_wakeup = FALSE; 2655 if (first_entry == NULL) { 2656 result = vm_map_lookup_entry(map, start, &first_entry); 2657 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2658 first_entry = first_entry->next; 2659 else 2660 KASSERT(result, ("vm_map_wire: lookup failed")); 2661 } 2662 for (entry = first_entry; entry != &map->header && entry->start < end; 2663 entry = entry->next) { 2664 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2665 goto next_entry_done; 2666 2667 /* 2668 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2669 * space in the unwired region could have been mapped 2670 * while the map lock was dropped for faulting in the 2671 * pages or draining MAP_ENTRY_IN_TRANSITION. 2672 * Moreover, another thread could be simultaneously 2673 * wiring this new mapping entry. Detect these cases 2674 * and skip any entries marked as in transition by us. 2675 */ 2676 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2677 entry->wiring_thread != curthread) { 2678 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2679 ("vm_map_wire: !HOLESOK and new/changed entry")); 2680 continue; 2681 } 2682 2683 if (rv == KERN_SUCCESS) { 2684 if (user_wire) 2685 entry->eflags |= MAP_ENTRY_USER_WIRED; 2686 } else if (entry->wired_count == -1) { 2687 /* 2688 * Wiring failed on this entry. Thus, unwiring is 2689 * unnecessary. 2690 */ 2691 entry->wired_count = 0; 2692 } else if (!user_wire || 2693 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2694 /* 2695 * Undo the wiring. Wiring succeeded on this entry 2696 * but failed on a later entry. 2697 */ 2698 if (entry->wired_count == 1) 2699 vm_map_entry_unwire(map, entry); 2700 else 2701 entry->wired_count--; 2702 } 2703 next_entry_done: 2704 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2705 ("vm_map_wire: in-transition flag missing %p", entry)); 2706 KASSERT(entry->wiring_thread == curthread, 2707 ("vm_map_wire: alien wire %p", entry)); 2708 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2709 MAP_ENTRY_WIRE_SKIPPED); 2710 entry->wiring_thread = NULL; 2711 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2712 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2713 need_wakeup = TRUE; 2714 } 2715 vm_map_simplify_entry(map, entry); 2716 } 2717 vm_map_unlock(map); 2718 if (need_wakeup) 2719 vm_map_wakeup(map); 2720 return (rv); 2721 } 2722 2723 /* 2724 * vm_map_sync 2725 * 2726 * Push any dirty cached pages in the address range to their pager. 2727 * If syncio is TRUE, dirty pages are written synchronously. 2728 * If invalidate is TRUE, any cached pages are freed as well. 2729 * 2730 * If the size of the region from start to end is zero, we are 2731 * supposed to flush all modified pages within the region containing 2732 * start. Unfortunately, a region can be split or coalesced with 2733 * neighboring regions, making it difficult to determine what the 2734 * original region was. Therefore, we approximate this requirement by 2735 * flushing the current region containing start. 2736 * 2737 * Returns an error if any part of the specified range is not mapped. 2738 */ 2739 int 2740 vm_map_sync( 2741 vm_map_t map, 2742 vm_offset_t start, 2743 vm_offset_t end, 2744 boolean_t syncio, 2745 boolean_t invalidate) 2746 { 2747 vm_map_entry_t current; 2748 vm_map_entry_t entry; 2749 vm_size_t size; 2750 vm_object_t object; 2751 vm_ooffset_t offset; 2752 unsigned int last_timestamp; 2753 boolean_t failed; 2754 2755 vm_map_lock_read(map); 2756 VM_MAP_RANGE_CHECK(map, start, end); 2757 if (!vm_map_lookup_entry(map, start, &entry)) { 2758 vm_map_unlock_read(map); 2759 return (KERN_INVALID_ADDRESS); 2760 } else if (start == end) { 2761 start = entry->start; 2762 end = entry->end; 2763 } 2764 /* 2765 * Make a first pass to check for user-wired memory and holes. 2766 */ 2767 for (current = entry; current != &map->header && current->start < end; 2768 current = current->next) { 2769 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2770 vm_map_unlock_read(map); 2771 return (KERN_INVALID_ARGUMENT); 2772 } 2773 if (end > current->end && 2774 (current->next == &map->header || 2775 current->end != current->next->start)) { 2776 vm_map_unlock_read(map); 2777 return (KERN_INVALID_ADDRESS); 2778 } 2779 } 2780 2781 if (invalidate) 2782 pmap_remove(map->pmap, start, end); 2783 failed = FALSE; 2784 2785 /* 2786 * Make a second pass, cleaning/uncaching pages from the indicated 2787 * objects as we go. 2788 */ 2789 for (current = entry; current != &map->header && current->start < end;) { 2790 offset = current->offset + (start - current->start); 2791 size = (end <= current->end ? end : current->end) - start; 2792 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2793 vm_map_t smap; 2794 vm_map_entry_t tentry; 2795 vm_size_t tsize; 2796 2797 smap = current->object.sub_map; 2798 vm_map_lock_read(smap); 2799 (void) vm_map_lookup_entry(smap, offset, &tentry); 2800 tsize = tentry->end - offset; 2801 if (tsize < size) 2802 size = tsize; 2803 object = tentry->object.vm_object; 2804 offset = tentry->offset + (offset - tentry->start); 2805 vm_map_unlock_read(smap); 2806 } else { 2807 object = current->object.vm_object; 2808 } 2809 vm_object_reference(object); 2810 last_timestamp = map->timestamp; 2811 vm_map_unlock_read(map); 2812 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2813 failed = TRUE; 2814 start += size; 2815 vm_object_deallocate(object); 2816 vm_map_lock_read(map); 2817 if (last_timestamp == map->timestamp || 2818 !vm_map_lookup_entry(map, start, ¤t)) 2819 current = current->next; 2820 } 2821 2822 vm_map_unlock_read(map); 2823 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2824 } 2825 2826 /* 2827 * vm_map_entry_unwire: [ internal use only ] 2828 * 2829 * Make the region specified by this entry pageable. 2830 * 2831 * The map in question should be locked. 2832 * [This is the reason for this routine's existence.] 2833 */ 2834 static void 2835 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2836 { 2837 2838 VM_MAP_ASSERT_LOCKED(map); 2839 KASSERT(entry->wired_count > 0, 2840 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 2841 pmap_unwire(map->pmap, entry->start, entry->end); 2842 vm_object_unwire(entry->object.vm_object, entry->offset, entry->end - 2843 entry->start, PQ_ACTIVE); 2844 entry->wired_count = 0; 2845 } 2846 2847 static void 2848 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2849 { 2850 2851 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2852 vm_object_deallocate(entry->object.vm_object); 2853 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2854 } 2855 2856 /* 2857 * vm_map_entry_delete: [ internal use only ] 2858 * 2859 * Deallocate the given entry from the target map. 2860 */ 2861 static void 2862 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2863 { 2864 vm_object_t object; 2865 vm_pindex_t offidxstart, offidxend, count, size1; 2866 vm_ooffset_t size; 2867 2868 vm_map_entry_unlink(map, entry); 2869 object = entry->object.vm_object; 2870 size = entry->end - entry->start; 2871 map->size -= size; 2872 2873 if (entry->cred != NULL) { 2874 swap_release_by_cred(size, entry->cred); 2875 crfree(entry->cred); 2876 } 2877 2878 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2879 (object != NULL)) { 2880 KASSERT(entry->cred == NULL || object->cred == NULL || 2881 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2882 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2883 count = OFF_TO_IDX(size); 2884 offidxstart = OFF_TO_IDX(entry->offset); 2885 offidxend = offidxstart + count; 2886 VM_OBJECT_WLOCK(object); 2887 if (object->ref_count != 1 && 2888 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2889 object == kernel_object || object == kmem_object)) { 2890 vm_object_collapse(object); 2891 2892 /* 2893 * The option OBJPR_NOTMAPPED can be passed here 2894 * because vm_map_delete() already performed 2895 * pmap_remove() on the only mapping to this range 2896 * of pages. 2897 */ 2898 vm_object_page_remove(object, offidxstart, offidxend, 2899 OBJPR_NOTMAPPED); 2900 if (object->type == OBJT_SWAP) 2901 swap_pager_freespace(object, offidxstart, count); 2902 if (offidxend >= object->size && 2903 offidxstart < object->size) { 2904 size1 = object->size; 2905 object->size = offidxstart; 2906 if (object->cred != NULL) { 2907 size1 -= object->size; 2908 KASSERT(object->charge >= ptoa(size1), 2909 ("vm_map_entry_delete: object->charge < 0")); 2910 swap_release_by_cred(ptoa(size1), object->cred); 2911 object->charge -= ptoa(size1); 2912 } 2913 } 2914 } 2915 VM_OBJECT_WUNLOCK(object); 2916 } else 2917 entry->object.vm_object = NULL; 2918 if (map->system_map) 2919 vm_map_entry_deallocate(entry, TRUE); 2920 else { 2921 entry->next = curthread->td_map_def_user; 2922 curthread->td_map_def_user = entry; 2923 } 2924 } 2925 2926 /* 2927 * vm_map_delete: [ internal use only ] 2928 * 2929 * Deallocates the given address range from the target 2930 * map. 2931 */ 2932 int 2933 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2934 { 2935 vm_map_entry_t entry; 2936 vm_map_entry_t first_entry; 2937 2938 VM_MAP_ASSERT_LOCKED(map); 2939 if (start == end) 2940 return (KERN_SUCCESS); 2941 2942 /* 2943 * Find the start of the region, and clip it 2944 */ 2945 if (!vm_map_lookup_entry(map, start, &first_entry)) 2946 entry = first_entry->next; 2947 else { 2948 entry = first_entry; 2949 vm_map_clip_start(map, entry, start); 2950 } 2951 2952 /* 2953 * Step through all entries in this region 2954 */ 2955 while ((entry != &map->header) && (entry->start < end)) { 2956 vm_map_entry_t next; 2957 2958 /* 2959 * Wait for wiring or unwiring of an entry to complete. 2960 * Also wait for any system wirings to disappear on 2961 * user maps. 2962 */ 2963 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2964 (vm_map_pmap(map) != kernel_pmap && 2965 vm_map_entry_system_wired_count(entry) != 0)) { 2966 unsigned int last_timestamp; 2967 vm_offset_t saved_start; 2968 vm_map_entry_t tmp_entry; 2969 2970 saved_start = entry->start; 2971 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2972 last_timestamp = map->timestamp; 2973 (void) vm_map_unlock_and_wait(map, 0); 2974 vm_map_lock(map); 2975 if (last_timestamp + 1 != map->timestamp) { 2976 /* 2977 * Look again for the entry because the map was 2978 * modified while it was unlocked. 2979 * Specifically, the entry may have been 2980 * clipped, merged, or deleted. 2981 */ 2982 if (!vm_map_lookup_entry(map, saved_start, 2983 &tmp_entry)) 2984 entry = tmp_entry->next; 2985 else { 2986 entry = tmp_entry; 2987 vm_map_clip_start(map, entry, 2988 saved_start); 2989 } 2990 } 2991 continue; 2992 } 2993 vm_map_clip_end(map, entry, end); 2994 2995 next = entry->next; 2996 2997 /* 2998 * Unwire before removing addresses from the pmap; otherwise, 2999 * unwiring will put the entries back in the pmap. 3000 */ 3001 if (entry->wired_count != 0) { 3002 vm_map_entry_unwire(map, entry); 3003 } 3004 3005 pmap_remove(map->pmap, entry->start, entry->end); 3006 3007 /* 3008 * Delete the entry only after removing all pmap 3009 * entries pointing to its pages. (Otherwise, its 3010 * page frames may be reallocated, and any modify bits 3011 * will be set in the wrong object!) 3012 */ 3013 vm_map_entry_delete(map, entry); 3014 entry = next; 3015 } 3016 return (KERN_SUCCESS); 3017 } 3018 3019 /* 3020 * vm_map_remove: 3021 * 3022 * Remove the given address range from the target map. 3023 * This is the exported form of vm_map_delete. 3024 */ 3025 int 3026 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3027 { 3028 int result; 3029 3030 vm_map_lock(map); 3031 VM_MAP_RANGE_CHECK(map, start, end); 3032 result = vm_map_delete(map, start, end); 3033 vm_map_unlock(map); 3034 return (result); 3035 } 3036 3037 /* 3038 * vm_map_check_protection: 3039 * 3040 * Assert that the target map allows the specified privilege on the 3041 * entire address region given. The entire region must be allocated. 3042 * 3043 * WARNING! This code does not and should not check whether the 3044 * contents of the region is accessible. For example a smaller file 3045 * might be mapped into a larger address space. 3046 * 3047 * NOTE! This code is also called by munmap(). 3048 * 3049 * The map must be locked. A read lock is sufficient. 3050 */ 3051 boolean_t 3052 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3053 vm_prot_t protection) 3054 { 3055 vm_map_entry_t entry; 3056 vm_map_entry_t tmp_entry; 3057 3058 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3059 return (FALSE); 3060 entry = tmp_entry; 3061 3062 while (start < end) { 3063 if (entry == &map->header) 3064 return (FALSE); 3065 /* 3066 * No holes allowed! 3067 */ 3068 if (start < entry->start) 3069 return (FALSE); 3070 /* 3071 * Check protection associated with entry. 3072 */ 3073 if ((entry->protection & protection) != protection) 3074 return (FALSE); 3075 /* go to next entry */ 3076 start = entry->end; 3077 entry = entry->next; 3078 } 3079 return (TRUE); 3080 } 3081 3082 /* 3083 * vm_map_copy_entry: 3084 * 3085 * Copies the contents of the source entry to the destination 3086 * entry. The entries *must* be aligned properly. 3087 */ 3088 static void 3089 vm_map_copy_entry( 3090 vm_map_t src_map, 3091 vm_map_t dst_map, 3092 vm_map_entry_t src_entry, 3093 vm_map_entry_t dst_entry, 3094 vm_ooffset_t *fork_charge) 3095 { 3096 vm_object_t src_object; 3097 vm_map_entry_t fake_entry; 3098 vm_offset_t size; 3099 struct ucred *cred; 3100 int charged; 3101 3102 VM_MAP_ASSERT_LOCKED(dst_map); 3103 3104 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3105 return; 3106 3107 if (src_entry->wired_count == 0 || 3108 (src_entry->protection & VM_PROT_WRITE) == 0) { 3109 /* 3110 * If the source entry is marked needs_copy, it is already 3111 * write-protected. 3112 */ 3113 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3114 (src_entry->protection & VM_PROT_WRITE) != 0) { 3115 pmap_protect(src_map->pmap, 3116 src_entry->start, 3117 src_entry->end, 3118 src_entry->protection & ~VM_PROT_WRITE); 3119 } 3120 3121 /* 3122 * Make a copy of the object. 3123 */ 3124 size = src_entry->end - src_entry->start; 3125 if ((src_object = src_entry->object.vm_object) != NULL) { 3126 VM_OBJECT_WLOCK(src_object); 3127 charged = ENTRY_CHARGED(src_entry); 3128 if ((src_object->handle == NULL) && 3129 (src_object->type == OBJT_DEFAULT || 3130 src_object->type == OBJT_SWAP)) { 3131 vm_object_collapse(src_object); 3132 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3133 vm_object_split(src_entry); 3134 src_object = src_entry->object.vm_object; 3135 } 3136 } 3137 vm_object_reference_locked(src_object); 3138 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3139 if (src_entry->cred != NULL && 3140 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3141 KASSERT(src_object->cred == NULL, 3142 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3143 src_object)); 3144 src_object->cred = src_entry->cred; 3145 src_object->charge = size; 3146 } 3147 VM_OBJECT_WUNLOCK(src_object); 3148 dst_entry->object.vm_object = src_object; 3149 if (charged) { 3150 cred = curthread->td_ucred; 3151 crhold(cred); 3152 dst_entry->cred = cred; 3153 *fork_charge += size; 3154 if (!(src_entry->eflags & 3155 MAP_ENTRY_NEEDS_COPY)) { 3156 crhold(cred); 3157 src_entry->cred = cred; 3158 *fork_charge += size; 3159 } 3160 } 3161 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3162 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3163 dst_entry->offset = src_entry->offset; 3164 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3165 /* 3166 * MAP_ENTRY_VN_WRITECNT cannot 3167 * indicate write reference from 3168 * src_entry, since the entry is 3169 * marked as needs copy. Allocate a 3170 * fake entry that is used to 3171 * decrement object->un_pager.vnp.writecount 3172 * at the appropriate time. Attach 3173 * fake_entry to the deferred list. 3174 */ 3175 fake_entry = vm_map_entry_create(dst_map); 3176 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3177 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3178 vm_object_reference(src_object); 3179 fake_entry->object.vm_object = src_object; 3180 fake_entry->start = src_entry->start; 3181 fake_entry->end = src_entry->end; 3182 fake_entry->next = curthread->td_map_def_user; 3183 curthread->td_map_def_user = fake_entry; 3184 } 3185 } else { 3186 dst_entry->object.vm_object = NULL; 3187 dst_entry->offset = 0; 3188 if (src_entry->cred != NULL) { 3189 dst_entry->cred = curthread->td_ucred; 3190 crhold(dst_entry->cred); 3191 *fork_charge += size; 3192 } 3193 } 3194 3195 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3196 dst_entry->end - dst_entry->start, src_entry->start); 3197 } else { 3198 /* 3199 * We don't want to make writeable wired pages copy-on-write. 3200 * Immediately copy these pages into the new map by simulating 3201 * page faults. The new pages are pageable. 3202 */ 3203 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3204 fork_charge); 3205 } 3206 } 3207 3208 /* 3209 * vmspace_map_entry_forked: 3210 * Update the newly-forked vmspace each time a map entry is inherited 3211 * or copied. The values for vm_dsize and vm_tsize are approximate 3212 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3213 */ 3214 static void 3215 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3216 vm_map_entry_t entry) 3217 { 3218 vm_size_t entrysize; 3219 vm_offset_t newend; 3220 3221 entrysize = entry->end - entry->start; 3222 vm2->vm_map.size += entrysize; 3223 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3224 vm2->vm_ssize += btoc(entrysize); 3225 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3226 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3227 newend = MIN(entry->end, 3228 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3229 vm2->vm_dsize += btoc(newend - entry->start); 3230 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3231 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3232 newend = MIN(entry->end, 3233 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3234 vm2->vm_tsize += btoc(newend - entry->start); 3235 } 3236 } 3237 3238 /* 3239 * vmspace_fork: 3240 * Create a new process vmspace structure and vm_map 3241 * based on those of an existing process. The new map 3242 * is based on the old map, according to the inheritance 3243 * values on the regions in that map. 3244 * 3245 * XXX It might be worth coalescing the entries added to the new vmspace. 3246 * 3247 * The source map must not be locked. 3248 */ 3249 struct vmspace * 3250 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3251 { 3252 struct vmspace *vm2; 3253 vm_map_t new_map, old_map; 3254 vm_map_entry_t new_entry, old_entry; 3255 vm_object_t object; 3256 int locked; 3257 3258 old_map = &vm1->vm_map; 3259 /* Copy immutable fields of vm1 to vm2. */ 3260 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL); 3261 if (vm2 == NULL) 3262 return (NULL); 3263 vm2->vm_taddr = vm1->vm_taddr; 3264 vm2->vm_daddr = vm1->vm_daddr; 3265 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3266 vm_map_lock(old_map); 3267 if (old_map->busy) 3268 vm_map_wait_busy(old_map); 3269 new_map = &vm2->vm_map; 3270 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3271 KASSERT(locked, ("vmspace_fork: lock failed")); 3272 3273 old_entry = old_map->header.next; 3274 3275 while (old_entry != &old_map->header) { 3276 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3277 panic("vm_map_fork: encountered a submap"); 3278 3279 switch (old_entry->inheritance) { 3280 case VM_INHERIT_NONE: 3281 break; 3282 3283 case VM_INHERIT_SHARE: 3284 /* 3285 * Clone the entry, creating the shared object if necessary. 3286 */ 3287 object = old_entry->object.vm_object; 3288 if (object == NULL) { 3289 object = vm_object_allocate(OBJT_DEFAULT, 3290 atop(old_entry->end - old_entry->start)); 3291 old_entry->object.vm_object = object; 3292 old_entry->offset = 0; 3293 if (old_entry->cred != NULL) { 3294 object->cred = old_entry->cred; 3295 object->charge = old_entry->end - 3296 old_entry->start; 3297 old_entry->cred = NULL; 3298 } 3299 } 3300 3301 /* 3302 * Add the reference before calling vm_object_shadow 3303 * to insure that a shadow object is created. 3304 */ 3305 vm_object_reference(object); 3306 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3307 vm_object_shadow(&old_entry->object.vm_object, 3308 &old_entry->offset, 3309 old_entry->end - old_entry->start); 3310 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3311 /* Transfer the second reference too. */ 3312 vm_object_reference( 3313 old_entry->object.vm_object); 3314 3315 /* 3316 * As in vm_map_simplify_entry(), the 3317 * vnode lock will not be acquired in 3318 * this call to vm_object_deallocate(). 3319 */ 3320 vm_object_deallocate(object); 3321 object = old_entry->object.vm_object; 3322 } 3323 VM_OBJECT_WLOCK(object); 3324 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3325 if (old_entry->cred != NULL) { 3326 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3327 object->cred = old_entry->cred; 3328 object->charge = old_entry->end - old_entry->start; 3329 old_entry->cred = NULL; 3330 } 3331 3332 /* 3333 * Assert the correct state of the vnode 3334 * v_writecount while the object is locked, to 3335 * not relock it later for the assertion 3336 * correctness. 3337 */ 3338 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3339 object->type == OBJT_VNODE) { 3340 KASSERT(((struct vnode *)object->handle)-> 3341 v_writecount > 0, 3342 ("vmspace_fork: v_writecount %p", object)); 3343 KASSERT(object->un_pager.vnp.writemappings > 0, 3344 ("vmspace_fork: vnp.writecount %p", 3345 object)); 3346 } 3347 VM_OBJECT_WUNLOCK(object); 3348 3349 /* 3350 * Clone the entry, referencing the shared object. 3351 */ 3352 new_entry = vm_map_entry_create(new_map); 3353 *new_entry = *old_entry; 3354 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3355 MAP_ENTRY_IN_TRANSITION); 3356 new_entry->wiring_thread = NULL; 3357 new_entry->wired_count = 0; 3358 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3359 vnode_pager_update_writecount(object, 3360 new_entry->start, new_entry->end); 3361 } 3362 3363 /* 3364 * Insert the entry into the new map -- we know we're 3365 * inserting at the end of the new map. 3366 */ 3367 vm_map_entry_link(new_map, new_map->header.prev, 3368 new_entry); 3369 vmspace_map_entry_forked(vm1, vm2, new_entry); 3370 3371 /* 3372 * Update the physical map 3373 */ 3374 pmap_copy(new_map->pmap, old_map->pmap, 3375 new_entry->start, 3376 (old_entry->end - old_entry->start), 3377 old_entry->start); 3378 break; 3379 3380 case VM_INHERIT_COPY: 3381 /* 3382 * Clone the entry and link into the map. 3383 */ 3384 new_entry = vm_map_entry_create(new_map); 3385 *new_entry = *old_entry; 3386 /* 3387 * Copied entry is COW over the old object. 3388 */ 3389 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3390 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3391 new_entry->wiring_thread = NULL; 3392 new_entry->wired_count = 0; 3393 new_entry->object.vm_object = NULL; 3394 new_entry->cred = NULL; 3395 vm_map_entry_link(new_map, new_map->header.prev, 3396 new_entry); 3397 vmspace_map_entry_forked(vm1, vm2, new_entry); 3398 vm_map_copy_entry(old_map, new_map, old_entry, 3399 new_entry, fork_charge); 3400 break; 3401 } 3402 old_entry = old_entry->next; 3403 } 3404 /* 3405 * Use inlined vm_map_unlock() to postpone handling the deferred 3406 * map entries, which cannot be done until both old_map and 3407 * new_map locks are released. 3408 */ 3409 sx_xunlock(&old_map->lock); 3410 sx_xunlock(&new_map->lock); 3411 vm_map_process_deferred(); 3412 3413 return (vm2); 3414 } 3415 3416 int 3417 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3418 vm_prot_t prot, vm_prot_t max, int cow) 3419 { 3420 vm_size_t growsize, init_ssize; 3421 rlim_t lmemlim, vmemlim; 3422 int rv; 3423 3424 growsize = sgrowsiz; 3425 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3426 vm_map_lock(map); 3427 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 3428 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 3429 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3430 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) { 3431 rv = KERN_NO_SPACE; 3432 goto out; 3433 } 3434 } 3435 /* If we would blow our VMEM resource limit, no go */ 3436 if (map->size + init_ssize > vmemlim) { 3437 rv = KERN_NO_SPACE; 3438 goto out; 3439 } 3440 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 3441 max, cow); 3442 out: 3443 vm_map_unlock(map); 3444 return (rv); 3445 } 3446 3447 static int 3448 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3449 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 3450 { 3451 vm_map_entry_t new_entry, prev_entry; 3452 vm_offset_t bot, top; 3453 vm_size_t init_ssize; 3454 int orient, rv; 3455 3456 /* 3457 * The stack orientation is piggybacked with the cow argument. 3458 * Extract it into orient and mask the cow argument so that we 3459 * don't pass it around further. 3460 * NOTE: We explicitly allow bi-directional stacks. 3461 */ 3462 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3463 KASSERT(orient != 0, ("No stack grow direction")); 3464 3465 if (addrbos < vm_map_min(map) || 3466 addrbos > vm_map_max(map) || 3467 addrbos + max_ssize < addrbos) 3468 return (KERN_NO_SPACE); 3469 3470 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3471 3472 /* If addr is already mapped, no go */ 3473 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 3474 return (KERN_NO_SPACE); 3475 3476 /* 3477 * If we can't accomodate max_ssize in the current mapping, no go. 3478 * However, we need to be aware that subsequent user mappings might 3479 * map into the space we have reserved for stack, and currently this 3480 * space is not protected. 3481 * 3482 * Hopefully we will at least detect this condition when we try to 3483 * grow the stack. 3484 */ 3485 if ((prev_entry->next != &map->header) && 3486 (prev_entry->next->start < addrbos + max_ssize)) 3487 return (KERN_NO_SPACE); 3488 3489 /* 3490 * We initially map a stack of only init_ssize. We will grow as 3491 * needed later. Depending on the orientation of the stack (i.e. 3492 * the grow direction) we either map at the top of the range, the 3493 * bottom of the range or in the middle. 3494 * 3495 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3496 * and cow to be 0. Possibly we should eliminate these as input 3497 * parameters, and just pass these values here in the insert call. 3498 */ 3499 if (orient == MAP_STACK_GROWS_DOWN) 3500 bot = addrbos + max_ssize - init_ssize; 3501 else if (orient == MAP_STACK_GROWS_UP) 3502 bot = addrbos; 3503 else 3504 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3505 top = bot + init_ssize; 3506 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3507 3508 /* Now set the avail_ssize amount. */ 3509 if (rv == KERN_SUCCESS) { 3510 new_entry = prev_entry->next; 3511 if (new_entry->end != top || new_entry->start != bot) 3512 panic("Bad entry start/end for new stack entry"); 3513 3514 new_entry->avail_ssize = max_ssize - init_ssize; 3515 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 3516 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 3517 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 3518 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 3519 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 3520 ("new entry lacks MAP_ENTRY_GROWS_UP")); 3521 } 3522 3523 return (rv); 3524 } 3525 3526 static int stack_guard_page = 0; 3527 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 3528 &stack_guard_page, 0, 3529 "Insert stack guard page ahead of the growable segments."); 3530 3531 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3532 * desired address is already mapped, or if we successfully grow 3533 * the stack. Also returns KERN_SUCCESS if addr is outside the 3534 * stack range (this is strange, but preserves compatibility with 3535 * the grow function in vm_machdep.c). 3536 */ 3537 int 3538 vm_map_growstack(struct proc *p, vm_offset_t addr) 3539 { 3540 vm_map_entry_t next_entry, prev_entry; 3541 vm_map_entry_t new_entry, stack_entry; 3542 struct vmspace *vm = p->p_vmspace; 3543 vm_map_t map = &vm->vm_map; 3544 vm_offset_t end; 3545 vm_size_t growsize; 3546 size_t grow_amount, max_grow; 3547 rlim_t lmemlim, stacklim, vmemlim; 3548 int is_procstack, rv; 3549 struct ucred *cred; 3550 #ifdef notyet 3551 uint64_t limit; 3552 #endif 3553 #ifdef RACCT 3554 int error; 3555 #endif 3556 3557 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 3558 stacklim = lim_cur(curthread, RLIMIT_STACK); 3559 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 3560 Retry: 3561 3562 vm_map_lock_read(map); 3563 3564 /* If addr is already in the entry range, no need to grow.*/ 3565 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3566 vm_map_unlock_read(map); 3567 return (KERN_SUCCESS); 3568 } 3569 3570 next_entry = prev_entry->next; 3571 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3572 /* 3573 * This entry does not grow upwards. Since the address lies 3574 * beyond this entry, the next entry (if one exists) has to 3575 * be a downward growable entry. The entry list header is 3576 * never a growable entry, so it suffices to check the flags. 3577 */ 3578 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3579 vm_map_unlock_read(map); 3580 return (KERN_SUCCESS); 3581 } 3582 stack_entry = next_entry; 3583 } else { 3584 /* 3585 * This entry grows upward. If the next entry does not at 3586 * least grow downwards, this is the entry we need to grow. 3587 * otherwise we have two possible choices and we have to 3588 * select one. 3589 */ 3590 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3591 /* 3592 * We have two choices; grow the entry closest to 3593 * the address to minimize the amount of growth. 3594 */ 3595 if (addr - prev_entry->end <= next_entry->start - addr) 3596 stack_entry = prev_entry; 3597 else 3598 stack_entry = next_entry; 3599 } else 3600 stack_entry = prev_entry; 3601 } 3602 3603 if (stack_entry == next_entry) { 3604 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3605 KASSERT(addr < stack_entry->start, ("foo")); 3606 end = (prev_entry != &map->header) ? prev_entry->end : 3607 stack_entry->start - stack_entry->avail_ssize; 3608 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3609 max_grow = stack_entry->start - end; 3610 } else { 3611 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3612 KASSERT(addr >= stack_entry->end, ("foo")); 3613 end = (next_entry != &map->header) ? next_entry->start : 3614 stack_entry->end + stack_entry->avail_ssize; 3615 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3616 max_grow = end - stack_entry->end; 3617 } 3618 3619 if (grow_amount > stack_entry->avail_ssize) { 3620 vm_map_unlock_read(map); 3621 return (KERN_NO_SPACE); 3622 } 3623 3624 /* 3625 * If there is no longer enough space between the entries nogo, and 3626 * adjust the available space. Note: this should only happen if the 3627 * user has mapped into the stack area after the stack was created, 3628 * and is probably an error. 3629 * 3630 * This also effectively destroys any guard page the user might have 3631 * intended by limiting the stack size. 3632 */ 3633 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3634 if (vm_map_lock_upgrade(map)) 3635 goto Retry; 3636 3637 stack_entry->avail_ssize = max_grow; 3638 3639 vm_map_unlock(map); 3640 return (KERN_NO_SPACE); 3641 } 3642 3643 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr && 3644 addr < (vm_offset_t)p->p_sysent->sv_usrstack) ? 1 : 0; 3645 3646 /* 3647 * If this is the main process stack, see if we're over the stack 3648 * limit. 3649 */ 3650 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3651 vm_map_unlock_read(map); 3652 return (KERN_NO_SPACE); 3653 } 3654 #ifdef RACCT 3655 if (racct_enable) { 3656 PROC_LOCK(p); 3657 if (is_procstack && racct_set(p, RACCT_STACK, 3658 ctob(vm->vm_ssize) + grow_amount)) { 3659 PROC_UNLOCK(p); 3660 vm_map_unlock_read(map); 3661 return (KERN_NO_SPACE); 3662 } 3663 PROC_UNLOCK(p); 3664 } 3665 #endif 3666 3667 /* Round up the grow amount modulo sgrowsiz */ 3668 growsize = sgrowsiz; 3669 grow_amount = roundup(grow_amount, growsize); 3670 if (grow_amount > stack_entry->avail_ssize) 3671 grow_amount = stack_entry->avail_ssize; 3672 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3673 grow_amount = trunc_page((vm_size_t)stacklim) - 3674 ctob(vm->vm_ssize); 3675 } 3676 #ifdef notyet 3677 PROC_LOCK(p); 3678 limit = racct_get_available(p, RACCT_STACK); 3679 PROC_UNLOCK(p); 3680 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3681 grow_amount = limit - ctob(vm->vm_ssize); 3682 #endif 3683 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3684 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3685 vm_map_unlock_read(map); 3686 rv = KERN_NO_SPACE; 3687 goto out; 3688 } 3689 #ifdef RACCT 3690 if (racct_enable) { 3691 PROC_LOCK(p); 3692 if (racct_set(p, RACCT_MEMLOCK, 3693 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3694 PROC_UNLOCK(p); 3695 vm_map_unlock_read(map); 3696 rv = KERN_NO_SPACE; 3697 goto out; 3698 } 3699 PROC_UNLOCK(p); 3700 } 3701 #endif 3702 } 3703 /* If we would blow our VMEM resource limit, no go */ 3704 if (map->size + grow_amount > vmemlim) { 3705 vm_map_unlock_read(map); 3706 rv = KERN_NO_SPACE; 3707 goto out; 3708 } 3709 #ifdef RACCT 3710 if (racct_enable) { 3711 PROC_LOCK(p); 3712 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3713 PROC_UNLOCK(p); 3714 vm_map_unlock_read(map); 3715 rv = KERN_NO_SPACE; 3716 goto out; 3717 } 3718 PROC_UNLOCK(p); 3719 } 3720 #endif 3721 3722 if (vm_map_lock_upgrade(map)) 3723 goto Retry; 3724 3725 if (stack_entry == next_entry) { 3726 /* 3727 * Growing downward. 3728 */ 3729 /* Get the preliminary new entry start value */ 3730 addr = stack_entry->start - grow_amount; 3731 3732 /* 3733 * If this puts us into the previous entry, cut back our 3734 * growth to the available space. Also, see the note above. 3735 */ 3736 if (addr < end) { 3737 stack_entry->avail_ssize = max_grow; 3738 addr = end; 3739 if (stack_guard_page) 3740 addr += PAGE_SIZE; 3741 } 3742 3743 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3744 next_entry->protection, next_entry->max_protection, 3745 MAP_STACK_GROWS_DOWN); 3746 3747 /* Adjust the available stack space by the amount we grew. */ 3748 if (rv == KERN_SUCCESS) { 3749 new_entry = prev_entry->next; 3750 KASSERT(new_entry == stack_entry->prev, ("foo")); 3751 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3752 KASSERT(new_entry->start == addr, ("foo")); 3753 KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 3754 0, ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 3755 grow_amount = new_entry->end - new_entry->start; 3756 new_entry->avail_ssize = stack_entry->avail_ssize - 3757 grow_amount; 3758 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3759 } 3760 } else { 3761 /* 3762 * Growing upward. 3763 */ 3764 addr = stack_entry->end + grow_amount; 3765 3766 /* 3767 * If this puts us into the next entry, cut back our growth 3768 * to the available space. Also, see the note above. 3769 */ 3770 if (addr > end) { 3771 stack_entry->avail_ssize = end - stack_entry->end; 3772 addr = end; 3773 if (stack_guard_page) 3774 addr -= PAGE_SIZE; 3775 } 3776 3777 grow_amount = addr - stack_entry->end; 3778 cred = stack_entry->cred; 3779 if (cred == NULL && stack_entry->object.vm_object != NULL) 3780 cred = stack_entry->object.vm_object->cred; 3781 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3782 rv = KERN_NO_SPACE; 3783 /* Grow the underlying object if applicable. */ 3784 else if (stack_entry->object.vm_object == NULL || 3785 vm_object_coalesce(stack_entry->object.vm_object, 3786 stack_entry->offset, 3787 (vm_size_t)(stack_entry->end - stack_entry->start), 3788 (vm_size_t)grow_amount, cred != NULL)) { 3789 map->size += (addr - stack_entry->end); 3790 /* Update the current entry. */ 3791 stack_entry->end = addr; 3792 stack_entry->avail_ssize -= grow_amount; 3793 vm_map_entry_resize_free(map, stack_entry); 3794 rv = KERN_SUCCESS; 3795 } else 3796 rv = KERN_FAILURE; 3797 } 3798 3799 if (rv == KERN_SUCCESS && is_procstack) 3800 vm->vm_ssize += btoc(grow_amount); 3801 3802 vm_map_unlock(map); 3803 3804 /* 3805 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3806 */ 3807 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3808 vm_map_wire(map, 3809 (stack_entry == next_entry) ? addr : addr - grow_amount, 3810 (stack_entry == next_entry) ? stack_entry->start : addr, 3811 (p->p_flag & P_SYSTEM) 3812 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3813 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3814 } 3815 3816 out: 3817 #ifdef RACCT 3818 if (racct_enable && rv != KERN_SUCCESS) { 3819 PROC_LOCK(p); 3820 error = racct_set(p, RACCT_VMEM, map->size); 3821 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3822 if (!old_mlock) { 3823 error = racct_set(p, RACCT_MEMLOCK, 3824 ptoa(pmap_wired_count(map->pmap))); 3825 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3826 } 3827 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3828 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3829 PROC_UNLOCK(p); 3830 } 3831 #endif 3832 3833 return (rv); 3834 } 3835 3836 /* 3837 * Unshare the specified VM space for exec. If other processes are 3838 * mapped to it, then create a new one. The new vmspace is null. 3839 */ 3840 int 3841 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3842 { 3843 struct vmspace *oldvmspace = p->p_vmspace; 3844 struct vmspace *newvmspace; 3845 3846 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 3847 ("vmspace_exec recursed")); 3848 newvmspace = vmspace_alloc(minuser, maxuser, NULL); 3849 if (newvmspace == NULL) 3850 return (ENOMEM); 3851 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3852 /* 3853 * This code is written like this for prototype purposes. The 3854 * goal is to avoid running down the vmspace here, but let the 3855 * other process's that are still using the vmspace to finally 3856 * run it down. Even though there is little or no chance of blocking 3857 * here, it is a good idea to keep this form for future mods. 3858 */ 3859 PROC_VMSPACE_LOCK(p); 3860 p->p_vmspace = newvmspace; 3861 PROC_VMSPACE_UNLOCK(p); 3862 if (p == curthread->td_proc) 3863 pmap_activate(curthread); 3864 curthread->td_pflags |= TDP_EXECVMSPC; 3865 return (0); 3866 } 3867 3868 /* 3869 * Unshare the specified VM space for forcing COW. This 3870 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3871 */ 3872 int 3873 vmspace_unshare(struct proc *p) 3874 { 3875 struct vmspace *oldvmspace = p->p_vmspace; 3876 struct vmspace *newvmspace; 3877 vm_ooffset_t fork_charge; 3878 3879 if (oldvmspace->vm_refcnt == 1) 3880 return (0); 3881 fork_charge = 0; 3882 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3883 if (newvmspace == NULL) 3884 return (ENOMEM); 3885 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3886 vmspace_free(newvmspace); 3887 return (ENOMEM); 3888 } 3889 PROC_VMSPACE_LOCK(p); 3890 p->p_vmspace = newvmspace; 3891 PROC_VMSPACE_UNLOCK(p); 3892 if (p == curthread->td_proc) 3893 pmap_activate(curthread); 3894 vmspace_free(oldvmspace); 3895 return (0); 3896 } 3897 3898 /* 3899 * vm_map_lookup: 3900 * 3901 * Finds the VM object, offset, and 3902 * protection for a given virtual address in the 3903 * specified map, assuming a page fault of the 3904 * type specified. 3905 * 3906 * Leaves the map in question locked for read; return 3907 * values are guaranteed until a vm_map_lookup_done 3908 * call is performed. Note that the map argument 3909 * is in/out; the returned map must be used in 3910 * the call to vm_map_lookup_done. 3911 * 3912 * A handle (out_entry) is returned for use in 3913 * vm_map_lookup_done, to make that fast. 3914 * 3915 * If a lookup is requested with "write protection" 3916 * specified, the map may be changed to perform virtual 3917 * copying operations, although the data referenced will 3918 * remain the same. 3919 */ 3920 int 3921 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3922 vm_offset_t vaddr, 3923 vm_prot_t fault_typea, 3924 vm_map_entry_t *out_entry, /* OUT */ 3925 vm_object_t *object, /* OUT */ 3926 vm_pindex_t *pindex, /* OUT */ 3927 vm_prot_t *out_prot, /* OUT */ 3928 boolean_t *wired) /* OUT */ 3929 { 3930 vm_map_entry_t entry; 3931 vm_map_t map = *var_map; 3932 vm_prot_t prot; 3933 vm_prot_t fault_type = fault_typea; 3934 vm_object_t eobject; 3935 vm_size_t size; 3936 struct ucred *cred; 3937 3938 RetryLookup:; 3939 3940 vm_map_lock_read(map); 3941 3942 /* 3943 * Lookup the faulting address. 3944 */ 3945 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3946 vm_map_unlock_read(map); 3947 return (KERN_INVALID_ADDRESS); 3948 } 3949 3950 entry = *out_entry; 3951 3952 /* 3953 * Handle submaps. 3954 */ 3955 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3956 vm_map_t old_map = map; 3957 3958 *var_map = map = entry->object.sub_map; 3959 vm_map_unlock_read(old_map); 3960 goto RetryLookup; 3961 } 3962 3963 /* 3964 * Check whether this task is allowed to have this page. 3965 */ 3966 prot = entry->protection; 3967 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3968 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3969 vm_map_unlock_read(map); 3970 return (KERN_PROTECTION_FAILURE); 3971 } 3972 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3973 (entry->eflags & MAP_ENTRY_COW) && 3974 (fault_type & VM_PROT_WRITE)) { 3975 vm_map_unlock_read(map); 3976 return (KERN_PROTECTION_FAILURE); 3977 } 3978 if ((fault_typea & VM_PROT_COPY) != 0 && 3979 (entry->max_protection & VM_PROT_WRITE) == 0 && 3980 (entry->eflags & MAP_ENTRY_COW) == 0) { 3981 vm_map_unlock_read(map); 3982 return (KERN_PROTECTION_FAILURE); 3983 } 3984 3985 /* 3986 * If this page is not pageable, we have to get it for all possible 3987 * accesses. 3988 */ 3989 *wired = (entry->wired_count != 0); 3990 if (*wired) 3991 fault_type = entry->protection; 3992 size = entry->end - entry->start; 3993 /* 3994 * If the entry was copy-on-write, we either ... 3995 */ 3996 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3997 /* 3998 * If we want to write the page, we may as well handle that 3999 * now since we've got the map locked. 4000 * 4001 * If we don't need to write the page, we just demote the 4002 * permissions allowed. 4003 */ 4004 if ((fault_type & VM_PROT_WRITE) != 0 || 4005 (fault_typea & VM_PROT_COPY) != 0) { 4006 /* 4007 * Make a new object, and place it in the object 4008 * chain. Note that no new references have appeared 4009 * -- one just moved from the map to the new 4010 * object. 4011 */ 4012 if (vm_map_lock_upgrade(map)) 4013 goto RetryLookup; 4014 4015 if (entry->cred == NULL) { 4016 /* 4017 * The debugger owner is charged for 4018 * the memory. 4019 */ 4020 cred = curthread->td_ucred; 4021 crhold(cred); 4022 if (!swap_reserve_by_cred(size, cred)) { 4023 crfree(cred); 4024 vm_map_unlock(map); 4025 return (KERN_RESOURCE_SHORTAGE); 4026 } 4027 entry->cred = cred; 4028 } 4029 vm_object_shadow(&entry->object.vm_object, 4030 &entry->offset, size); 4031 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4032 eobject = entry->object.vm_object; 4033 if (eobject->cred != NULL) { 4034 /* 4035 * The object was not shadowed. 4036 */ 4037 swap_release_by_cred(size, entry->cred); 4038 crfree(entry->cred); 4039 entry->cred = NULL; 4040 } else if (entry->cred != NULL) { 4041 VM_OBJECT_WLOCK(eobject); 4042 eobject->cred = entry->cred; 4043 eobject->charge = size; 4044 VM_OBJECT_WUNLOCK(eobject); 4045 entry->cred = NULL; 4046 } 4047 4048 vm_map_lock_downgrade(map); 4049 } else { 4050 /* 4051 * We're attempting to read a copy-on-write page -- 4052 * don't allow writes. 4053 */ 4054 prot &= ~VM_PROT_WRITE; 4055 } 4056 } 4057 4058 /* 4059 * Create an object if necessary. 4060 */ 4061 if (entry->object.vm_object == NULL && 4062 !map->system_map) { 4063 if (vm_map_lock_upgrade(map)) 4064 goto RetryLookup; 4065 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4066 atop(size)); 4067 entry->offset = 0; 4068 if (entry->cred != NULL) { 4069 VM_OBJECT_WLOCK(entry->object.vm_object); 4070 entry->object.vm_object->cred = entry->cred; 4071 entry->object.vm_object->charge = size; 4072 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4073 entry->cred = NULL; 4074 } 4075 vm_map_lock_downgrade(map); 4076 } 4077 4078 /* 4079 * Return the object/offset from this entry. If the entry was 4080 * copy-on-write or empty, it has been fixed up. 4081 */ 4082 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4083 *object = entry->object.vm_object; 4084 4085 *out_prot = prot; 4086 return (KERN_SUCCESS); 4087 } 4088 4089 /* 4090 * vm_map_lookup_locked: 4091 * 4092 * Lookup the faulting address. A version of vm_map_lookup that returns 4093 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4094 */ 4095 int 4096 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4097 vm_offset_t vaddr, 4098 vm_prot_t fault_typea, 4099 vm_map_entry_t *out_entry, /* OUT */ 4100 vm_object_t *object, /* OUT */ 4101 vm_pindex_t *pindex, /* OUT */ 4102 vm_prot_t *out_prot, /* OUT */ 4103 boolean_t *wired) /* OUT */ 4104 { 4105 vm_map_entry_t entry; 4106 vm_map_t map = *var_map; 4107 vm_prot_t prot; 4108 vm_prot_t fault_type = fault_typea; 4109 4110 /* 4111 * Lookup the faulting address. 4112 */ 4113 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4114 return (KERN_INVALID_ADDRESS); 4115 4116 entry = *out_entry; 4117 4118 /* 4119 * Fail if the entry refers to a submap. 4120 */ 4121 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4122 return (KERN_FAILURE); 4123 4124 /* 4125 * Check whether this task is allowed to have this page. 4126 */ 4127 prot = entry->protection; 4128 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4129 if ((fault_type & prot) != fault_type) 4130 return (KERN_PROTECTION_FAILURE); 4131 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 4132 (entry->eflags & MAP_ENTRY_COW) && 4133 (fault_type & VM_PROT_WRITE)) 4134 return (KERN_PROTECTION_FAILURE); 4135 4136 /* 4137 * If this page is not pageable, we have to get it for all possible 4138 * accesses. 4139 */ 4140 *wired = (entry->wired_count != 0); 4141 if (*wired) 4142 fault_type = entry->protection; 4143 4144 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4145 /* 4146 * Fail if the entry was copy-on-write for a write fault. 4147 */ 4148 if (fault_type & VM_PROT_WRITE) 4149 return (KERN_FAILURE); 4150 /* 4151 * We're attempting to read a copy-on-write page -- 4152 * don't allow writes. 4153 */ 4154 prot &= ~VM_PROT_WRITE; 4155 } 4156 4157 /* 4158 * Fail if an object should be created. 4159 */ 4160 if (entry->object.vm_object == NULL && !map->system_map) 4161 return (KERN_FAILURE); 4162 4163 /* 4164 * Return the object/offset from this entry. If the entry was 4165 * copy-on-write or empty, it has been fixed up. 4166 */ 4167 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4168 *object = entry->object.vm_object; 4169 4170 *out_prot = prot; 4171 return (KERN_SUCCESS); 4172 } 4173 4174 /* 4175 * vm_map_lookup_done: 4176 * 4177 * Releases locks acquired by a vm_map_lookup 4178 * (according to the handle returned by that lookup). 4179 */ 4180 void 4181 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4182 { 4183 /* 4184 * Unlock the main-level map 4185 */ 4186 vm_map_unlock_read(map); 4187 } 4188 4189 #include "opt_ddb.h" 4190 #ifdef DDB 4191 #include <sys/kernel.h> 4192 4193 #include <ddb/ddb.h> 4194 4195 static void 4196 vm_map_print(vm_map_t map) 4197 { 4198 vm_map_entry_t entry; 4199 4200 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4201 (void *)map, 4202 (void *)map->pmap, map->nentries, map->timestamp); 4203 4204 db_indent += 2; 4205 for (entry = map->header.next; entry != &map->header; 4206 entry = entry->next) { 4207 db_iprintf("map entry %p: start=%p, end=%p\n", 4208 (void *)entry, (void *)entry->start, (void *)entry->end); 4209 { 4210 static char *inheritance_name[4] = 4211 {"share", "copy", "none", "donate_copy"}; 4212 4213 db_iprintf(" prot=%x/%x/%s", 4214 entry->protection, 4215 entry->max_protection, 4216 inheritance_name[(int)(unsigned char)entry->inheritance]); 4217 if (entry->wired_count != 0) 4218 db_printf(", wired"); 4219 } 4220 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4221 db_printf(", share=%p, offset=0x%jx\n", 4222 (void *)entry->object.sub_map, 4223 (uintmax_t)entry->offset); 4224 if ((entry->prev == &map->header) || 4225 (entry->prev->object.sub_map != 4226 entry->object.sub_map)) { 4227 db_indent += 2; 4228 vm_map_print((vm_map_t)entry->object.sub_map); 4229 db_indent -= 2; 4230 } 4231 } else { 4232 if (entry->cred != NULL) 4233 db_printf(", ruid %d", entry->cred->cr_ruid); 4234 db_printf(", object=%p, offset=0x%jx", 4235 (void *)entry->object.vm_object, 4236 (uintmax_t)entry->offset); 4237 if (entry->object.vm_object && entry->object.vm_object->cred) 4238 db_printf(", obj ruid %d charge %jx", 4239 entry->object.vm_object->cred->cr_ruid, 4240 (uintmax_t)entry->object.vm_object->charge); 4241 if (entry->eflags & MAP_ENTRY_COW) 4242 db_printf(", copy (%s)", 4243 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4244 db_printf("\n"); 4245 4246 if ((entry->prev == &map->header) || 4247 (entry->prev->object.vm_object != 4248 entry->object.vm_object)) { 4249 db_indent += 2; 4250 vm_object_print((db_expr_t)(intptr_t) 4251 entry->object.vm_object, 4252 0, 0, (char *)0); 4253 db_indent -= 2; 4254 } 4255 } 4256 } 4257 db_indent -= 2; 4258 } 4259 4260 DB_SHOW_COMMAND(map, map) 4261 { 4262 4263 if (!have_addr) { 4264 db_printf("usage: show map <addr>\n"); 4265 return; 4266 } 4267 vm_map_print((vm_map_t)addr); 4268 } 4269 4270 DB_SHOW_COMMAND(procvm, procvm) 4271 { 4272 struct proc *p; 4273 4274 if (have_addr) { 4275 p = (struct proc *) addr; 4276 } else { 4277 p = curproc; 4278 } 4279 4280 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4281 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4282 (void *)vmspace_pmap(p->p_vmspace)); 4283 4284 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4285 } 4286 4287 #endif /* DDB */ 4288