xref: /freebsd/sys/vm/vm_map.c (revision bc96366c864c07ef352edb92017357917c75b36c)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
137     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
138 #ifdef INVARIANTS
139 static void vm_map_zdtor(void *mem, int size, void *arg);
140 static void vmspace_zdtor(void *mem, int size, void *arg);
141 #endif
142 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
143     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
144     int cow);
145 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
146     vm_offset_t failed_addr);
147 
148 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
149     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151 
152 /*
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158 
159 /*
160  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
161  *
162  *	Asserts that the starting and ending region
163  *	addresses fall within the valid range of the map.
164  */
165 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
166 		{					\
167 		if (start < vm_map_min(map))		\
168 			start = vm_map_min(map);	\
169 		if (end > vm_map_max(map))		\
170 			end = vm_map_max(map);		\
171 		if (start > end)			\
172 			start = end;			\
173 		}
174 
175 /*
176  *	vm_map_startup:
177  *
178  *	Initialize the vm_map module.  Must be called before
179  *	any other vm_map routines.
180  *
181  *	Map and entry structures are allocated from the general
182  *	purpose memory pool with some exceptions:
183  *
184  *	- The kernel map and kmem submap are allocated statically.
185  *	- Kernel map entries are allocated out of a static pool.
186  *
187  *	These restrictions are necessary since malloc() uses the
188  *	maps and requires map entries.
189  */
190 
191 void
192 vm_map_startup(void)
193 {
194 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
195 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
196 #ifdef INVARIANTS
197 	    vm_map_zdtor,
198 #else
199 	    NULL,
200 #endif
201 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
202 	uma_prealloc(mapzone, MAX_KMAP);
203 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
204 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
205 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
206 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
207 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
208 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
209 #ifdef INVARIANTS
210 	    vmspace_zdtor,
211 #else
212 	    NULL,
213 #endif
214 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
215 }
216 
217 static int
218 vmspace_zinit(void *mem, int size, int flags)
219 {
220 	struct vmspace *vm;
221 
222 	vm = (struct vmspace *)mem;
223 
224 	vm->vm_map.pmap = NULL;
225 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
226 	PMAP_LOCK_INIT(vmspace_pmap(vm));
227 	return (0);
228 }
229 
230 static int
231 vm_map_zinit(void *mem, int size, int flags)
232 {
233 	vm_map_t map;
234 
235 	map = (vm_map_t)mem;
236 	memset(map, 0, sizeof(*map));
237 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
238 	sx_init(&map->lock, "vm map (user)");
239 	return (0);
240 }
241 
242 #ifdef INVARIANTS
243 static void
244 vmspace_zdtor(void *mem, int size, void *arg)
245 {
246 	struct vmspace *vm;
247 
248 	vm = (struct vmspace *)mem;
249 
250 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
251 }
252 static void
253 vm_map_zdtor(void *mem, int size, void *arg)
254 {
255 	vm_map_t map;
256 
257 	map = (vm_map_t)mem;
258 	KASSERT(map->nentries == 0,
259 	    ("map %p nentries == %d on free.",
260 	    map, map->nentries));
261 	KASSERT(map->size == 0,
262 	    ("map %p size == %lu on free.",
263 	    map, (unsigned long)map->size));
264 }
265 #endif	/* INVARIANTS */
266 
267 /*
268  * Allocate a vmspace structure, including a vm_map and pmap,
269  * and initialize those structures.  The refcnt is set to 1.
270  *
271  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
272  */
273 struct vmspace *
274 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
275 {
276 	struct vmspace *vm;
277 
278 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
279 
280 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
281 
282 	if (pinit == NULL)
283 		pinit = &pmap_pinit;
284 
285 	if (!pinit(vmspace_pmap(vm))) {
286 		uma_zfree(vmspace_zone, vm);
287 		return (NULL);
288 	}
289 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291 	vm->vm_refcnt = 1;
292 	vm->vm_shm = NULL;
293 	vm->vm_swrss = 0;
294 	vm->vm_tsize = 0;
295 	vm->vm_dsize = 0;
296 	vm->vm_ssize = 0;
297 	vm->vm_taddr = 0;
298 	vm->vm_daddr = 0;
299 	vm->vm_maxsaddr = 0;
300 	return (vm);
301 }
302 
303 static void
304 vmspace_container_reset(struct proc *p)
305 {
306 
307 #ifdef RACCT
308 	PROC_LOCK(p);
309 	racct_set(p, RACCT_DATA, 0);
310 	racct_set(p, RACCT_STACK, 0);
311 	racct_set(p, RACCT_RSS, 0);
312 	racct_set(p, RACCT_MEMLOCK, 0);
313 	racct_set(p, RACCT_VMEM, 0);
314 	PROC_UNLOCK(p);
315 #endif
316 }
317 
318 static inline void
319 vmspace_dofree(struct vmspace *vm)
320 {
321 
322 	CTR1(KTR_VM, "vmspace_free: %p", vm);
323 
324 	/*
325 	 * Make sure any SysV shm is freed, it might not have been in
326 	 * exit1().
327 	 */
328 	shmexit(vm);
329 
330 	/*
331 	 * Lock the map, to wait out all other references to it.
332 	 * Delete all of the mappings and pages they hold, then call
333 	 * the pmap module to reclaim anything left.
334 	 */
335 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
336 	    vm->vm_map.max_offset);
337 
338 	pmap_release(vmspace_pmap(vm));
339 	vm->vm_map.pmap = NULL;
340 	uma_zfree(vmspace_zone, vm);
341 }
342 
343 void
344 vmspace_free(struct vmspace *vm)
345 {
346 
347 	if (vm->vm_refcnt == 0)
348 		panic("vmspace_free: attempt to free already freed vmspace");
349 
350 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
351 		vmspace_dofree(vm);
352 }
353 
354 void
355 vmspace_exitfree(struct proc *p)
356 {
357 	struct vmspace *vm;
358 
359 	PROC_VMSPACE_LOCK(p);
360 	vm = p->p_vmspace;
361 	p->p_vmspace = NULL;
362 	PROC_VMSPACE_UNLOCK(p);
363 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
364 	vmspace_free(vm);
365 }
366 
367 void
368 vmspace_exit(struct thread *td)
369 {
370 	int refcnt;
371 	struct vmspace *vm;
372 	struct proc *p;
373 
374 	/*
375 	 * Release user portion of address space.
376 	 * This releases references to vnodes,
377 	 * which could cause I/O if the file has been unlinked.
378 	 * Need to do this early enough that we can still sleep.
379 	 *
380 	 * The last exiting process to reach this point releases as
381 	 * much of the environment as it can. vmspace_dofree() is the
382 	 * slower fallback in case another process had a temporary
383 	 * reference to the vmspace.
384 	 */
385 
386 	p = td->td_proc;
387 	vm = p->p_vmspace;
388 	atomic_add_int(&vmspace0.vm_refcnt, 1);
389 	do {
390 		refcnt = vm->vm_refcnt;
391 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
392 			/* Switch now since other proc might free vmspace */
393 			PROC_VMSPACE_LOCK(p);
394 			p->p_vmspace = &vmspace0;
395 			PROC_VMSPACE_UNLOCK(p);
396 			pmap_activate(td);
397 		}
398 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
399 	if (refcnt == 1) {
400 		if (p->p_vmspace != vm) {
401 			/* vmspace not yet freed, switch back */
402 			PROC_VMSPACE_LOCK(p);
403 			p->p_vmspace = vm;
404 			PROC_VMSPACE_UNLOCK(p);
405 			pmap_activate(td);
406 		}
407 		pmap_remove_pages(vmspace_pmap(vm));
408 		/* Switch now since this proc will free vmspace */
409 		PROC_VMSPACE_LOCK(p);
410 		p->p_vmspace = &vmspace0;
411 		PROC_VMSPACE_UNLOCK(p);
412 		pmap_activate(td);
413 		vmspace_dofree(vm);
414 	}
415 	vmspace_container_reset(p);
416 }
417 
418 /* Acquire reference to vmspace owned by another process. */
419 
420 struct vmspace *
421 vmspace_acquire_ref(struct proc *p)
422 {
423 	struct vmspace *vm;
424 	int refcnt;
425 
426 	PROC_VMSPACE_LOCK(p);
427 	vm = p->p_vmspace;
428 	if (vm == NULL) {
429 		PROC_VMSPACE_UNLOCK(p);
430 		return (NULL);
431 	}
432 	do {
433 		refcnt = vm->vm_refcnt;
434 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
435 			PROC_VMSPACE_UNLOCK(p);
436 			return (NULL);
437 		}
438 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
439 	if (vm != p->p_vmspace) {
440 		PROC_VMSPACE_UNLOCK(p);
441 		vmspace_free(vm);
442 		return (NULL);
443 	}
444 	PROC_VMSPACE_UNLOCK(p);
445 	return (vm);
446 }
447 
448 void
449 _vm_map_lock(vm_map_t map, const char *file, int line)
450 {
451 
452 	if (map->system_map)
453 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
454 	else
455 		sx_xlock_(&map->lock, file, line);
456 	map->timestamp++;
457 }
458 
459 static void
460 vm_map_process_deferred(void)
461 {
462 	struct thread *td;
463 	vm_map_entry_t entry, next;
464 	vm_object_t object;
465 
466 	td = curthread;
467 	entry = td->td_map_def_user;
468 	td->td_map_def_user = NULL;
469 	while (entry != NULL) {
470 		next = entry->next;
471 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
472 			/*
473 			 * Decrement the object's writemappings and
474 			 * possibly the vnode's v_writecount.
475 			 */
476 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
477 			    ("Submap with writecount"));
478 			object = entry->object.vm_object;
479 			KASSERT(object != NULL, ("No object for writecount"));
480 			vnode_pager_release_writecount(object, entry->start,
481 			    entry->end);
482 		}
483 		vm_map_entry_deallocate(entry, FALSE);
484 		entry = next;
485 	}
486 }
487 
488 void
489 _vm_map_unlock(vm_map_t map, const char *file, int line)
490 {
491 
492 	if (map->system_map)
493 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
494 	else {
495 		sx_xunlock_(&map->lock, file, line);
496 		vm_map_process_deferred();
497 	}
498 }
499 
500 void
501 _vm_map_lock_read(vm_map_t map, const char *file, int line)
502 {
503 
504 	if (map->system_map)
505 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
506 	else
507 		sx_slock_(&map->lock, file, line);
508 }
509 
510 void
511 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
512 {
513 
514 	if (map->system_map)
515 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
516 	else {
517 		sx_sunlock_(&map->lock, file, line);
518 		vm_map_process_deferred();
519 	}
520 }
521 
522 int
523 _vm_map_trylock(vm_map_t map, const char *file, int line)
524 {
525 	int error;
526 
527 	error = map->system_map ?
528 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
529 	    !sx_try_xlock_(&map->lock, file, line);
530 	if (error == 0)
531 		map->timestamp++;
532 	return (error == 0);
533 }
534 
535 int
536 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
537 {
538 	int error;
539 
540 	error = map->system_map ?
541 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
542 	    !sx_try_slock_(&map->lock, file, line);
543 	return (error == 0);
544 }
545 
546 /*
547  *	_vm_map_lock_upgrade:	[ internal use only ]
548  *
549  *	Tries to upgrade a read (shared) lock on the specified map to a write
550  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
551  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
552  *	returned without a read or write lock held.
553  *
554  *	Requires that the map be read locked.
555  */
556 int
557 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
558 {
559 	unsigned int last_timestamp;
560 
561 	if (map->system_map) {
562 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
563 	} else {
564 		if (!sx_try_upgrade_(&map->lock, file, line)) {
565 			last_timestamp = map->timestamp;
566 			sx_sunlock_(&map->lock, file, line);
567 			vm_map_process_deferred();
568 			/*
569 			 * If the map's timestamp does not change while the
570 			 * map is unlocked, then the upgrade succeeds.
571 			 */
572 			sx_xlock_(&map->lock, file, line);
573 			if (last_timestamp != map->timestamp) {
574 				sx_xunlock_(&map->lock, file, line);
575 				return (1);
576 			}
577 		}
578 	}
579 	map->timestamp++;
580 	return (0);
581 }
582 
583 void
584 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
585 {
586 
587 	if (map->system_map) {
588 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
589 	} else
590 		sx_downgrade_(&map->lock, file, line);
591 }
592 
593 /*
594  *	vm_map_locked:
595  *
596  *	Returns a non-zero value if the caller holds a write (exclusive) lock
597  *	on the specified map and the value "0" otherwise.
598  */
599 int
600 vm_map_locked(vm_map_t map)
601 {
602 
603 	if (map->system_map)
604 		return (mtx_owned(&map->system_mtx));
605 	else
606 		return (sx_xlocked(&map->lock));
607 }
608 
609 #ifdef INVARIANTS
610 static void
611 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
612 {
613 
614 	if (map->system_map)
615 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
616 	else
617 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
618 }
619 
620 #define	VM_MAP_ASSERT_LOCKED(map) \
621     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
622 #else
623 #define	VM_MAP_ASSERT_LOCKED(map)
624 #endif
625 
626 /*
627  *	_vm_map_unlock_and_wait:
628  *
629  *	Atomically releases the lock on the specified map and puts the calling
630  *	thread to sleep.  The calling thread will remain asleep until either
631  *	vm_map_wakeup() is performed on the map or the specified timeout is
632  *	exceeded.
633  *
634  *	WARNING!  This function does not perform deferred deallocations of
635  *	objects and map	entries.  Therefore, the calling thread is expected to
636  *	reacquire the map lock after reawakening and later perform an ordinary
637  *	unlock operation, such as vm_map_unlock(), before completing its
638  *	operation on the map.
639  */
640 int
641 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
642 {
643 
644 	mtx_lock(&map_sleep_mtx);
645 	if (map->system_map)
646 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
647 	else
648 		sx_xunlock_(&map->lock, file, line);
649 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
650 	    timo));
651 }
652 
653 /*
654  *	vm_map_wakeup:
655  *
656  *	Awaken any threads that have slept on the map using
657  *	vm_map_unlock_and_wait().
658  */
659 void
660 vm_map_wakeup(vm_map_t map)
661 {
662 
663 	/*
664 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
665 	 * from being performed (and lost) between the map unlock
666 	 * and the msleep() in _vm_map_unlock_and_wait().
667 	 */
668 	mtx_lock(&map_sleep_mtx);
669 	mtx_unlock(&map_sleep_mtx);
670 	wakeup(&map->root);
671 }
672 
673 void
674 vm_map_busy(vm_map_t map)
675 {
676 
677 	VM_MAP_ASSERT_LOCKED(map);
678 	map->busy++;
679 }
680 
681 void
682 vm_map_unbusy(vm_map_t map)
683 {
684 
685 	VM_MAP_ASSERT_LOCKED(map);
686 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
687 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
688 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
689 		wakeup(&map->busy);
690 	}
691 }
692 
693 void
694 vm_map_wait_busy(vm_map_t map)
695 {
696 
697 	VM_MAP_ASSERT_LOCKED(map);
698 	while (map->busy) {
699 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
700 		if (map->system_map)
701 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
702 		else
703 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
704 	}
705 	map->timestamp++;
706 }
707 
708 long
709 vmspace_resident_count(struct vmspace *vmspace)
710 {
711 	return pmap_resident_count(vmspace_pmap(vmspace));
712 }
713 
714 /*
715  *	vm_map_create:
716  *
717  *	Creates and returns a new empty VM map with
718  *	the given physical map structure, and having
719  *	the given lower and upper address bounds.
720  */
721 vm_map_t
722 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
723 {
724 	vm_map_t result;
725 
726 	result = uma_zalloc(mapzone, M_WAITOK);
727 	CTR1(KTR_VM, "vm_map_create: %p", result);
728 	_vm_map_init(result, pmap, min, max);
729 	return (result);
730 }
731 
732 /*
733  * Initialize an existing vm_map structure
734  * such as that in the vmspace structure.
735  */
736 static void
737 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
738 {
739 
740 	map->header.next = map->header.prev = &map->header;
741 	map->needs_wakeup = FALSE;
742 	map->system_map = 0;
743 	map->pmap = pmap;
744 	map->min_offset = min;
745 	map->max_offset = max;
746 	map->flags = 0;
747 	map->root = NULL;
748 	map->timestamp = 0;
749 	map->busy = 0;
750 }
751 
752 void
753 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
754 {
755 
756 	_vm_map_init(map, pmap, min, max);
757 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
758 	sx_init(&map->lock, "user map");
759 }
760 
761 /*
762  *	vm_map_entry_dispose:	[ internal use only ]
763  *
764  *	Inverse of vm_map_entry_create.
765  */
766 static void
767 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
768 {
769 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
770 }
771 
772 /*
773  *	vm_map_entry_create:	[ internal use only ]
774  *
775  *	Allocates a VM map entry for insertion.
776  *	No entry fields are filled in.
777  */
778 static vm_map_entry_t
779 vm_map_entry_create(vm_map_t map)
780 {
781 	vm_map_entry_t new_entry;
782 
783 	if (map->system_map)
784 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
785 	else
786 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
787 	if (new_entry == NULL)
788 		panic("vm_map_entry_create: kernel resources exhausted");
789 	return (new_entry);
790 }
791 
792 /*
793  *	vm_map_entry_set_behavior:
794  *
795  *	Set the expected access behavior, either normal, random, or
796  *	sequential.
797  */
798 static inline void
799 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
800 {
801 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
802 	    (behavior & MAP_ENTRY_BEHAV_MASK);
803 }
804 
805 /*
806  *	vm_map_entry_set_max_free:
807  *
808  *	Set the max_free field in a vm_map_entry.
809  */
810 static inline void
811 vm_map_entry_set_max_free(vm_map_entry_t entry)
812 {
813 
814 	entry->max_free = entry->adj_free;
815 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
816 		entry->max_free = entry->left->max_free;
817 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
818 		entry->max_free = entry->right->max_free;
819 }
820 
821 /*
822  *	vm_map_entry_splay:
823  *
824  *	The Sleator and Tarjan top-down splay algorithm with the
825  *	following variation.  Max_free must be computed bottom-up, so
826  *	on the downward pass, maintain the left and right spines in
827  *	reverse order.  Then, make a second pass up each side to fix
828  *	the pointers and compute max_free.  The time bound is O(log n)
829  *	amortized.
830  *
831  *	The new root is the vm_map_entry containing "addr", or else an
832  *	adjacent entry (lower or higher) if addr is not in the tree.
833  *
834  *	The map must be locked, and leaves it so.
835  *
836  *	Returns: the new root.
837  */
838 static vm_map_entry_t
839 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
840 {
841 	vm_map_entry_t llist, rlist;
842 	vm_map_entry_t ltree, rtree;
843 	vm_map_entry_t y;
844 
845 	/* Special case of empty tree. */
846 	if (root == NULL)
847 		return (root);
848 
849 	/*
850 	 * Pass One: Splay down the tree until we find addr or a NULL
851 	 * pointer where addr would go.  llist and rlist are the two
852 	 * sides in reverse order (bottom-up), with llist linked by
853 	 * the right pointer and rlist linked by the left pointer in
854 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
855 	 * the two spines.
856 	 */
857 	llist = NULL;
858 	rlist = NULL;
859 	for (;;) {
860 		/* root is never NULL in here. */
861 		if (addr < root->start) {
862 			y = root->left;
863 			if (y == NULL)
864 				break;
865 			if (addr < y->start && y->left != NULL) {
866 				/* Rotate right and put y on rlist. */
867 				root->left = y->right;
868 				y->right = root;
869 				vm_map_entry_set_max_free(root);
870 				root = y->left;
871 				y->left = rlist;
872 				rlist = y;
873 			} else {
874 				/* Put root on rlist. */
875 				root->left = rlist;
876 				rlist = root;
877 				root = y;
878 			}
879 		} else if (addr >= root->end) {
880 			y = root->right;
881 			if (y == NULL)
882 				break;
883 			if (addr >= y->end && y->right != NULL) {
884 				/* Rotate left and put y on llist. */
885 				root->right = y->left;
886 				y->left = root;
887 				vm_map_entry_set_max_free(root);
888 				root = y->right;
889 				y->right = llist;
890 				llist = y;
891 			} else {
892 				/* Put root on llist. */
893 				root->right = llist;
894 				llist = root;
895 				root = y;
896 			}
897 		} else
898 			break;
899 	}
900 
901 	/*
902 	 * Pass Two: Walk back up the two spines, flip the pointers
903 	 * and set max_free.  The subtrees of the root go at the
904 	 * bottom of llist and rlist.
905 	 */
906 	ltree = root->left;
907 	while (llist != NULL) {
908 		y = llist->right;
909 		llist->right = ltree;
910 		vm_map_entry_set_max_free(llist);
911 		ltree = llist;
912 		llist = y;
913 	}
914 	rtree = root->right;
915 	while (rlist != NULL) {
916 		y = rlist->left;
917 		rlist->left = rtree;
918 		vm_map_entry_set_max_free(rlist);
919 		rtree = rlist;
920 		rlist = y;
921 	}
922 
923 	/*
924 	 * Final assembly: add ltree and rtree as subtrees of root.
925 	 */
926 	root->left = ltree;
927 	root->right = rtree;
928 	vm_map_entry_set_max_free(root);
929 
930 	return (root);
931 }
932 
933 /*
934  *	vm_map_entry_{un,}link:
935  *
936  *	Insert/remove entries from maps.
937  */
938 static void
939 vm_map_entry_link(vm_map_t map,
940 		  vm_map_entry_t after_where,
941 		  vm_map_entry_t entry)
942 {
943 
944 	CTR4(KTR_VM,
945 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
946 	    map->nentries, entry, after_where);
947 	VM_MAP_ASSERT_LOCKED(map);
948 	KASSERT(after_where == &map->header ||
949 	    after_where->end <= entry->start,
950 	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
951 	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
952 	KASSERT(after_where->next == &map->header ||
953 	    entry->end <= after_where->next->start,
954 	    ("vm_map_entry_link: new end %jx next start %jx overlap",
955 	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
956 
957 	map->nentries++;
958 	entry->prev = after_where;
959 	entry->next = after_where->next;
960 	entry->next->prev = entry;
961 	after_where->next = entry;
962 
963 	if (after_where != &map->header) {
964 		if (after_where != map->root)
965 			vm_map_entry_splay(after_where->start, map->root);
966 		entry->right = after_where->right;
967 		entry->left = after_where;
968 		after_where->right = NULL;
969 		after_where->adj_free = entry->start - after_where->end;
970 		vm_map_entry_set_max_free(after_where);
971 	} else {
972 		entry->right = map->root;
973 		entry->left = NULL;
974 	}
975 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
976 	    entry->next->start) - entry->end;
977 	vm_map_entry_set_max_free(entry);
978 	map->root = entry;
979 }
980 
981 static void
982 vm_map_entry_unlink(vm_map_t map,
983 		    vm_map_entry_t entry)
984 {
985 	vm_map_entry_t next, prev, root;
986 
987 	VM_MAP_ASSERT_LOCKED(map);
988 	if (entry != map->root)
989 		vm_map_entry_splay(entry->start, map->root);
990 	if (entry->left == NULL)
991 		root = entry->right;
992 	else {
993 		root = vm_map_entry_splay(entry->start, entry->left);
994 		root->right = entry->right;
995 		root->adj_free = (entry->next == &map->header ? map->max_offset :
996 		    entry->next->start) - root->end;
997 		vm_map_entry_set_max_free(root);
998 	}
999 	map->root = root;
1000 
1001 	prev = entry->prev;
1002 	next = entry->next;
1003 	next->prev = prev;
1004 	prev->next = next;
1005 	map->nentries--;
1006 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1007 	    map->nentries, entry);
1008 }
1009 
1010 /*
1011  *	vm_map_entry_resize_free:
1012  *
1013  *	Recompute the amount of free space following a vm_map_entry
1014  *	and propagate that value up the tree.  Call this function after
1015  *	resizing a map entry in-place, that is, without a call to
1016  *	vm_map_entry_link() or _unlink().
1017  *
1018  *	The map must be locked, and leaves it so.
1019  */
1020 static void
1021 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1022 {
1023 
1024 	/*
1025 	 * Using splay trees without parent pointers, propagating
1026 	 * max_free up the tree is done by moving the entry to the
1027 	 * root and making the change there.
1028 	 */
1029 	if (entry != map->root)
1030 		map->root = vm_map_entry_splay(entry->start, map->root);
1031 
1032 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1033 	    entry->next->start) - entry->end;
1034 	vm_map_entry_set_max_free(entry);
1035 }
1036 
1037 /*
1038  *	vm_map_lookup_entry:	[ internal use only ]
1039  *
1040  *	Finds the map entry containing (or
1041  *	immediately preceding) the specified address
1042  *	in the given map; the entry is returned
1043  *	in the "entry" parameter.  The boolean
1044  *	result indicates whether the address is
1045  *	actually contained in the map.
1046  */
1047 boolean_t
1048 vm_map_lookup_entry(
1049 	vm_map_t map,
1050 	vm_offset_t address,
1051 	vm_map_entry_t *entry)	/* OUT */
1052 {
1053 	vm_map_entry_t cur;
1054 	boolean_t locked;
1055 
1056 	/*
1057 	 * If the map is empty, then the map entry immediately preceding
1058 	 * "address" is the map's header.
1059 	 */
1060 	cur = map->root;
1061 	if (cur == NULL)
1062 		*entry = &map->header;
1063 	else if (address >= cur->start && cur->end > address) {
1064 		*entry = cur;
1065 		return (TRUE);
1066 	} else if ((locked = vm_map_locked(map)) ||
1067 	    sx_try_upgrade(&map->lock)) {
1068 		/*
1069 		 * Splay requires a write lock on the map.  However, it only
1070 		 * restructures the binary search tree; it does not otherwise
1071 		 * change the map.  Thus, the map's timestamp need not change
1072 		 * on a temporary upgrade.
1073 		 */
1074 		map->root = cur = vm_map_entry_splay(address, cur);
1075 		if (!locked)
1076 			sx_downgrade(&map->lock);
1077 
1078 		/*
1079 		 * If "address" is contained within a map entry, the new root
1080 		 * is that map entry.  Otherwise, the new root is a map entry
1081 		 * immediately before or after "address".
1082 		 */
1083 		if (address >= cur->start) {
1084 			*entry = cur;
1085 			if (cur->end > address)
1086 				return (TRUE);
1087 		} else
1088 			*entry = cur->prev;
1089 	} else
1090 		/*
1091 		 * Since the map is only locked for read access, perform a
1092 		 * standard binary search tree lookup for "address".
1093 		 */
1094 		for (;;) {
1095 			if (address < cur->start) {
1096 				if (cur->left == NULL) {
1097 					*entry = cur->prev;
1098 					break;
1099 				}
1100 				cur = cur->left;
1101 			} else if (cur->end > address) {
1102 				*entry = cur;
1103 				return (TRUE);
1104 			} else {
1105 				if (cur->right == NULL) {
1106 					*entry = cur;
1107 					break;
1108 				}
1109 				cur = cur->right;
1110 			}
1111 		}
1112 	return (FALSE);
1113 }
1114 
1115 /*
1116  *	vm_map_insert:
1117  *
1118  *	Inserts the given whole VM object into the target
1119  *	map at the specified address range.  The object's
1120  *	size should match that of the address range.
1121  *
1122  *	Requires that the map be locked, and leaves it so.
1123  *
1124  *	If object is non-NULL, ref count must be bumped by caller
1125  *	prior to making call to account for the new entry.
1126  */
1127 int
1128 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1129     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1130 {
1131 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1132 	vm_eflags_t protoeflags;
1133 	struct ucred *cred;
1134 	vm_inherit_t inheritance;
1135 
1136 	VM_MAP_ASSERT_LOCKED(map);
1137 	KASSERT((object != kmem_object && object != kernel_object) ||
1138 	    (cow & MAP_COPY_ON_WRITE) == 0,
1139 	    ("vm_map_insert: kmem or kernel object and COW"));
1140 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1141 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1142 
1143 	/*
1144 	 * Check that the start and end points are not bogus.
1145 	 */
1146 	if ((start < map->min_offset) || (end > map->max_offset) ||
1147 	    (start >= end))
1148 		return (KERN_INVALID_ADDRESS);
1149 
1150 	/*
1151 	 * Find the entry prior to the proposed starting address; if it's part
1152 	 * of an existing entry, this range is bogus.
1153 	 */
1154 	if (vm_map_lookup_entry(map, start, &temp_entry))
1155 		return (KERN_NO_SPACE);
1156 
1157 	prev_entry = temp_entry;
1158 
1159 	/*
1160 	 * Assert that the next entry doesn't overlap the end point.
1161 	 */
1162 	if ((prev_entry->next != &map->header) &&
1163 	    (prev_entry->next->start < end))
1164 		return (KERN_NO_SPACE);
1165 
1166 	protoeflags = 0;
1167 	if (cow & MAP_COPY_ON_WRITE)
1168 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1169 	if (cow & MAP_NOFAULT)
1170 		protoeflags |= MAP_ENTRY_NOFAULT;
1171 	if (cow & MAP_DISABLE_SYNCER)
1172 		protoeflags |= MAP_ENTRY_NOSYNC;
1173 	if (cow & MAP_DISABLE_COREDUMP)
1174 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1175 	if (cow & MAP_STACK_GROWS_DOWN)
1176 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1177 	if (cow & MAP_STACK_GROWS_UP)
1178 		protoeflags |= MAP_ENTRY_GROWS_UP;
1179 	if (cow & MAP_VN_WRITECOUNT)
1180 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1181 	if (cow & MAP_INHERIT_SHARE)
1182 		inheritance = VM_INHERIT_SHARE;
1183 	else
1184 		inheritance = VM_INHERIT_DEFAULT;
1185 
1186 	cred = NULL;
1187 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1188 		goto charged;
1189 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1190 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1191 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1192 			return (KERN_RESOURCE_SHORTAGE);
1193 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1194 		    object->cred == NULL,
1195 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1196 		cred = curthread->td_ucred;
1197 	}
1198 
1199 charged:
1200 	/* Expand the kernel pmap, if necessary. */
1201 	if (map == kernel_map && end > kernel_vm_end)
1202 		pmap_growkernel(end);
1203 	if (object != NULL) {
1204 		/*
1205 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1206 		 * is trivially proven to be the only mapping for any
1207 		 * of the object's pages.  (Object granularity
1208 		 * reference counting is insufficient to recognize
1209 		 * aliases with precision.)
1210 		 */
1211 		VM_OBJECT_WLOCK(object);
1212 		if (object->ref_count > 1 || object->shadow_count != 0)
1213 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1214 		VM_OBJECT_WUNLOCK(object);
1215 	}
1216 	else if ((prev_entry != &map->header) &&
1217 		 (prev_entry->eflags == protoeflags) &&
1218 		 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1219 		 (prev_entry->end == start) &&
1220 		 (prev_entry->wired_count == 0) &&
1221 		 (prev_entry->cred == cred ||
1222 		  (prev_entry->object.vm_object != NULL &&
1223 		   (prev_entry->object.vm_object->cred == cred))) &&
1224 		   vm_object_coalesce(prev_entry->object.vm_object,
1225 		       prev_entry->offset,
1226 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1227 		       (vm_size_t)(end - prev_entry->end), cred != NULL &&
1228 		       (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1229 		/*
1230 		 * We were able to extend the object.  Determine if we
1231 		 * can extend the previous map entry to include the
1232 		 * new range as well.
1233 		 */
1234 		if ((prev_entry->inheritance == inheritance) &&
1235 		    (prev_entry->protection == prot) &&
1236 		    (prev_entry->max_protection == max)) {
1237 			map->size += (end - prev_entry->end);
1238 			prev_entry->end = end;
1239 			vm_map_entry_resize_free(map, prev_entry);
1240 			vm_map_simplify_entry(map, prev_entry);
1241 			return (KERN_SUCCESS);
1242 		}
1243 
1244 		/*
1245 		 * If we can extend the object but cannot extend the
1246 		 * map entry, we have to create a new map entry.  We
1247 		 * must bump the ref count on the extended object to
1248 		 * account for it.  object may be NULL.
1249 		 */
1250 		object = prev_entry->object.vm_object;
1251 		offset = prev_entry->offset +
1252 			(prev_entry->end - prev_entry->start);
1253 		vm_object_reference(object);
1254 		if (cred != NULL && object != NULL && object->cred != NULL &&
1255 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1256 			/* Object already accounts for this uid. */
1257 			cred = NULL;
1258 		}
1259 	}
1260 	if (cred != NULL)
1261 		crhold(cred);
1262 
1263 	/*
1264 	 * Create a new entry
1265 	 */
1266 	new_entry = vm_map_entry_create(map);
1267 	new_entry->start = start;
1268 	new_entry->end = end;
1269 	new_entry->cred = NULL;
1270 
1271 	new_entry->eflags = protoeflags;
1272 	new_entry->object.vm_object = object;
1273 	new_entry->offset = offset;
1274 	new_entry->avail_ssize = 0;
1275 
1276 	new_entry->inheritance = inheritance;
1277 	new_entry->protection = prot;
1278 	new_entry->max_protection = max;
1279 	new_entry->wired_count = 0;
1280 	new_entry->wiring_thread = NULL;
1281 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1282 	new_entry->next_read = OFF_TO_IDX(offset);
1283 
1284 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1285 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1286 	new_entry->cred = cred;
1287 
1288 	/*
1289 	 * Insert the new entry into the list
1290 	 */
1291 	vm_map_entry_link(map, prev_entry, new_entry);
1292 	map->size += new_entry->end - new_entry->start;
1293 
1294 	/*
1295 	 * Try to coalesce the new entry with both the previous and next
1296 	 * entries in the list.  Previously, we only attempted to coalesce
1297 	 * with the previous entry when object is NULL.  Here, we handle the
1298 	 * other cases, which are less common.
1299 	 */
1300 	vm_map_simplify_entry(map, new_entry);
1301 
1302 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1303 		vm_map_pmap_enter(map, start, prot,
1304 				    object, OFF_TO_IDX(offset), end - start,
1305 				    cow & MAP_PREFAULT_PARTIAL);
1306 	}
1307 
1308 	return (KERN_SUCCESS);
1309 }
1310 
1311 /*
1312  *	vm_map_findspace:
1313  *
1314  *	Find the first fit (lowest VM address) for "length" free bytes
1315  *	beginning at address >= start in the given map.
1316  *
1317  *	In a vm_map_entry, "adj_free" is the amount of free space
1318  *	adjacent (higher address) to this entry, and "max_free" is the
1319  *	maximum amount of contiguous free space in its subtree.  This
1320  *	allows finding a free region in one path down the tree, so
1321  *	O(log n) amortized with splay trees.
1322  *
1323  *	The map must be locked, and leaves it so.
1324  *
1325  *	Returns: 0 on success, and starting address in *addr,
1326  *		 1 if insufficient space.
1327  */
1328 int
1329 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1330     vm_offset_t *addr)	/* OUT */
1331 {
1332 	vm_map_entry_t entry;
1333 	vm_offset_t st;
1334 
1335 	/*
1336 	 * Request must fit within min/max VM address and must avoid
1337 	 * address wrap.
1338 	 */
1339 	if (start < map->min_offset)
1340 		start = map->min_offset;
1341 	if (start + length > map->max_offset || start + length < start)
1342 		return (1);
1343 
1344 	/* Empty tree means wide open address space. */
1345 	if (map->root == NULL) {
1346 		*addr = start;
1347 		return (0);
1348 	}
1349 
1350 	/*
1351 	 * After splay, if start comes before root node, then there
1352 	 * must be a gap from start to the root.
1353 	 */
1354 	map->root = vm_map_entry_splay(start, map->root);
1355 	if (start + length <= map->root->start) {
1356 		*addr = start;
1357 		return (0);
1358 	}
1359 
1360 	/*
1361 	 * Root is the last node that might begin its gap before
1362 	 * start, and this is the last comparison where address
1363 	 * wrap might be a problem.
1364 	 */
1365 	st = (start > map->root->end) ? start : map->root->end;
1366 	if (length <= map->root->end + map->root->adj_free - st) {
1367 		*addr = st;
1368 		return (0);
1369 	}
1370 
1371 	/* With max_free, can immediately tell if no solution. */
1372 	entry = map->root->right;
1373 	if (entry == NULL || length > entry->max_free)
1374 		return (1);
1375 
1376 	/*
1377 	 * Search the right subtree in the order: left subtree, root,
1378 	 * right subtree (first fit).  The previous splay implies that
1379 	 * all regions in the right subtree have addresses > start.
1380 	 */
1381 	while (entry != NULL) {
1382 		if (entry->left != NULL && entry->left->max_free >= length)
1383 			entry = entry->left;
1384 		else if (entry->adj_free >= length) {
1385 			*addr = entry->end;
1386 			return (0);
1387 		} else
1388 			entry = entry->right;
1389 	}
1390 
1391 	/* Can't get here, so panic if we do. */
1392 	panic("vm_map_findspace: max_free corrupt");
1393 }
1394 
1395 int
1396 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1397     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1398     vm_prot_t max, int cow)
1399 {
1400 	vm_offset_t end;
1401 	int result;
1402 
1403 	end = start + length;
1404 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1405 	    object == NULL,
1406 	    ("vm_map_fixed: non-NULL backing object for stack"));
1407 	vm_map_lock(map);
1408 	VM_MAP_RANGE_CHECK(map, start, end);
1409 	if ((cow & MAP_CHECK_EXCL) == 0)
1410 		vm_map_delete(map, start, end);
1411 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1412 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1413 		    prot, max, cow);
1414 	} else {
1415 		result = vm_map_insert(map, object, offset, start, end,
1416 		    prot, max, cow);
1417 	}
1418 	vm_map_unlock(map);
1419 	return (result);
1420 }
1421 
1422 /*
1423  *	vm_map_find finds an unallocated region in the target address
1424  *	map with the given length.  The search is defined to be
1425  *	first-fit from the specified address; the region found is
1426  *	returned in the same parameter.
1427  *
1428  *	If object is non-NULL, ref count must be bumped by caller
1429  *	prior to making call to account for the new entry.
1430  */
1431 int
1432 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1433 	    vm_offset_t *addr,	/* IN/OUT */
1434 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1435 	    vm_prot_t prot, vm_prot_t max, int cow)
1436 {
1437 	vm_offset_t alignment, initial_addr, start;
1438 	int result;
1439 
1440 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1441 	    object == NULL,
1442 	    ("vm_map_find: non-NULL backing object for stack"));
1443 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1444 	    (object->flags & OBJ_COLORED) == 0))
1445 		find_space = VMFS_ANY_SPACE;
1446 	if (find_space >> 8 != 0) {
1447 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1448 		alignment = (vm_offset_t)1 << (find_space >> 8);
1449 	} else
1450 		alignment = 0;
1451 	initial_addr = *addr;
1452 again:
1453 	start = initial_addr;
1454 	vm_map_lock(map);
1455 	do {
1456 		if (find_space != VMFS_NO_SPACE) {
1457 			if (vm_map_findspace(map, start, length, addr) ||
1458 			    (max_addr != 0 && *addr + length > max_addr)) {
1459 				vm_map_unlock(map);
1460 				if (find_space == VMFS_OPTIMAL_SPACE) {
1461 					find_space = VMFS_ANY_SPACE;
1462 					goto again;
1463 				}
1464 				return (KERN_NO_SPACE);
1465 			}
1466 			switch (find_space) {
1467 			case VMFS_SUPER_SPACE:
1468 			case VMFS_OPTIMAL_SPACE:
1469 				pmap_align_superpage(object, offset, addr,
1470 				    length);
1471 				break;
1472 			case VMFS_ANY_SPACE:
1473 				break;
1474 			default:
1475 				if ((*addr & (alignment - 1)) != 0) {
1476 					*addr &= ~(alignment - 1);
1477 					*addr += alignment;
1478 				}
1479 				break;
1480 			}
1481 
1482 			start = *addr;
1483 		}
1484 		if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1485 			result = vm_map_stack_locked(map, start, length,
1486 			    sgrowsiz, prot, max, cow);
1487 		} else {
1488 			result = vm_map_insert(map, object, offset, start,
1489 			    start + length, prot, max, cow);
1490 		}
1491 	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1492 	    find_space != VMFS_ANY_SPACE);
1493 	vm_map_unlock(map);
1494 	return (result);
1495 }
1496 
1497 /*
1498  *	vm_map_simplify_entry:
1499  *
1500  *	Simplify the given map entry by merging with either neighbor.  This
1501  *	routine also has the ability to merge with both neighbors.
1502  *
1503  *	The map must be locked.
1504  *
1505  *	This routine guarentees that the passed entry remains valid (though
1506  *	possibly extended).  When merging, this routine may delete one or
1507  *	both neighbors.
1508  */
1509 void
1510 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1511 {
1512 	vm_map_entry_t next, prev;
1513 	vm_size_t prevsize, esize;
1514 
1515 	if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1516 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1517 		return;
1518 
1519 	prev = entry->prev;
1520 	if (prev != &map->header) {
1521 		prevsize = prev->end - prev->start;
1522 		if ( (prev->end == entry->start) &&
1523 		     (prev->object.vm_object == entry->object.vm_object) &&
1524 		     (!prev->object.vm_object ||
1525 			(prev->offset + prevsize == entry->offset)) &&
1526 		     (prev->eflags == entry->eflags) &&
1527 		     (prev->protection == entry->protection) &&
1528 		     (prev->max_protection == entry->max_protection) &&
1529 		     (prev->inheritance == entry->inheritance) &&
1530 		     (prev->wired_count == entry->wired_count) &&
1531 		     (prev->cred == entry->cred)) {
1532 			vm_map_entry_unlink(map, prev);
1533 			entry->start = prev->start;
1534 			entry->offset = prev->offset;
1535 			if (entry->prev != &map->header)
1536 				vm_map_entry_resize_free(map, entry->prev);
1537 
1538 			/*
1539 			 * If the backing object is a vnode object,
1540 			 * vm_object_deallocate() calls vrele().
1541 			 * However, vrele() does not lock the vnode
1542 			 * because the vnode has additional
1543 			 * references.  Thus, the map lock can be kept
1544 			 * without causing a lock-order reversal with
1545 			 * the vnode lock.
1546 			 *
1547 			 * Since we count the number of virtual page
1548 			 * mappings in object->un_pager.vnp.writemappings,
1549 			 * the writemappings value should not be adjusted
1550 			 * when the entry is disposed of.
1551 			 */
1552 			if (prev->object.vm_object)
1553 				vm_object_deallocate(prev->object.vm_object);
1554 			if (prev->cred != NULL)
1555 				crfree(prev->cred);
1556 			vm_map_entry_dispose(map, prev);
1557 		}
1558 	}
1559 
1560 	next = entry->next;
1561 	if (next != &map->header) {
1562 		esize = entry->end - entry->start;
1563 		if ((entry->end == next->start) &&
1564 		    (next->object.vm_object == entry->object.vm_object) &&
1565 		     (!entry->object.vm_object ||
1566 			(entry->offset + esize == next->offset)) &&
1567 		    (next->eflags == entry->eflags) &&
1568 		    (next->protection == entry->protection) &&
1569 		    (next->max_protection == entry->max_protection) &&
1570 		    (next->inheritance == entry->inheritance) &&
1571 		    (next->wired_count == entry->wired_count) &&
1572 		    (next->cred == entry->cred)) {
1573 			vm_map_entry_unlink(map, next);
1574 			entry->end = next->end;
1575 			vm_map_entry_resize_free(map, entry);
1576 
1577 			/*
1578 			 * See comment above.
1579 			 */
1580 			if (next->object.vm_object)
1581 				vm_object_deallocate(next->object.vm_object);
1582 			if (next->cred != NULL)
1583 				crfree(next->cred);
1584 			vm_map_entry_dispose(map, next);
1585 		}
1586 	}
1587 }
1588 /*
1589  *	vm_map_clip_start:	[ internal use only ]
1590  *
1591  *	Asserts that the given entry begins at or after
1592  *	the specified address; if necessary,
1593  *	it splits the entry into two.
1594  */
1595 #define vm_map_clip_start(map, entry, startaddr) \
1596 { \
1597 	if (startaddr > entry->start) \
1598 		_vm_map_clip_start(map, entry, startaddr); \
1599 }
1600 
1601 /*
1602  *	This routine is called only when it is known that
1603  *	the entry must be split.
1604  */
1605 static void
1606 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1607 {
1608 	vm_map_entry_t new_entry;
1609 
1610 	VM_MAP_ASSERT_LOCKED(map);
1611 
1612 	/*
1613 	 * Split off the front portion -- note that we must insert the new
1614 	 * entry BEFORE this one, so that this entry has the specified
1615 	 * starting address.
1616 	 */
1617 	vm_map_simplify_entry(map, entry);
1618 
1619 	/*
1620 	 * If there is no object backing this entry, we might as well create
1621 	 * one now.  If we defer it, an object can get created after the map
1622 	 * is clipped, and individual objects will be created for the split-up
1623 	 * map.  This is a bit of a hack, but is also about the best place to
1624 	 * put this improvement.
1625 	 */
1626 	if (entry->object.vm_object == NULL && !map->system_map) {
1627 		vm_object_t object;
1628 		object = vm_object_allocate(OBJT_DEFAULT,
1629 				atop(entry->end - entry->start));
1630 		entry->object.vm_object = object;
1631 		entry->offset = 0;
1632 		if (entry->cred != NULL) {
1633 			object->cred = entry->cred;
1634 			object->charge = entry->end - entry->start;
1635 			entry->cred = NULL;
1636 		}
1637 	} else if (entry->object.vm_object != NULL &&
1638 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1639 		   entry->cred != NULL) {
1640 		VM_OBJECT_WLOCK(entry->object.vm_object);
1641 		KASSERT(entry->object.vm_object->cred == NULL,
1642 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1643 		entry->object.vm_object->cred = entry->cred;
1644 		entry->object.vm_object->charge = entry->end - entry->start;
1645 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1646 		entry->cred = NULL;
1647 	}
1648 
1649 	new_entry = vm_map_entry_create(map);
1650 	*new_entry = *entry;
1651 
1652 	new_entry->end = start;
1653 	entry->offset += (start - entry->start);
1654 	entry->start = start;
1655 	if (new_entry->cred != NULL)
1656 		crhold(entry->cred);
1657 
1658 	vm_map_entry_link(map, entry->prev, new_entry);
1659 
1660 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1661 		vm_object_reference(new_entry->object.vm_object);
1662 		/*
1663 		 * The object->un_pager.vnp.writemappings for the
1664 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1665 		 * kept as is here.  The virtual pages are
1666 		 * re-distributed among the clipped entries, so the sum is
1667 		 * left the same.
1668 		 */
1669 	}
1670 }
1671 
1672 /*
1673  *	vm_map_clip_end:	[ internal use only ]
1674  *
1675  *	Asserts that the given entry ends at or before
1676  *	the specified address; if necessary,
1677  *	it splits the entry into two.
1678  */
1679 #define vm_map_clip_end(map, entry, endaddr) \
1680 { \
1681 	if ((endaddr) < (entry->end)) \
1682 		_vm_map_clip_end((map), (entry), (endaddr)); \
1683 }
1684 
1685 /*
1686  *	This routine is called only when it is known that
1687  *	the entry must be split.
1688  */
1689 static void
1690 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1691 {
1692 	vm_map_entry_t new_entry;
1693 
1694 	VM_MAP_ASSERT_LOCKED(map);
1695 
1696 	/*
1697 	 * If there is no object backing this entry, we might as well create
1698 	 * one now.  If we defer it, an object can get created after the map
1699 	 * is clipped, and individual objects will be created for the split-up
1700 	 * map.  This is a bit of a hack, but is also about the best place to
1701 	 * put this improvement.
1702 	 */
1703 	if (entry->object.vm_object == NULL && !map->system_map) {
1704 		vm_object_t object;
1705 		object = vm_object_allocate(OBJT_DEFAULT,
1706 				atop(entry->end - entry->start));
1707 		entry->object.vm_object = object;
1708 		entry->offset = 0;
1709 		if (entry->cred != NULL) {
1710 			object->cred = entry->cred;
1711 			object->charge = entry->end - entry->start;
1712 			entry->cred = NULL;
1713 		}
1714 	} else if (entry->object.vm_object != NULL &&
1715 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1716 		   entry->cred != NULL) {
1717 		VM_OBJECT_WLOCK(entry->object.vm_object);
1718 		KASSERT(entry->object.vm_object->cred == NULL,
1719 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1720 		entry->object.vm_object->cred = entry->cred;
1721 		entry->object.vm_object->charge = entry->end - entry->start;
1722 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1723 		entry->cred = NULL;
1724 	}
1725 
1726 	/*
1727 	 * Create a new entry and insert it AFTER the specified entry
1728 	 */
1729 	new_entry = vm_map_entry_create(map);
1730 	*new_entry = *entry;
1731 
1732 	new_entry->start = entry->end = end;
1733 	new_entry->offset += (end - entry->start);
1734 	if (new_entry->cred != NULL)
1735 		crhold(entry->cred);
1736 
1737 	vm_map_entry_link(map, entry, new_entry);
1738 
1739 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1740 		vm_object_reference(new_entry->object.vm_object);
1741 	}
1742 }
1743 
1744 /*
1745  *	vm_map_submap:		[ kernel use only ]
1746  *
1747  *	Mark the given range as handled by a subordinate map.
1748  *
1749  *	This range must have been created with vm_map_find,
1750  *	and no other operations may have been performed on this
1751  *	range prior to calling vm_map_submap.
1752  *
1753  *	Only a limited number of operations can be performed
1754  *	within this rage after calling vm_map_submap:
1755  *		vm_fault
1756  *	[Don't try vm_map_copy!]
1757  *
1758  *	To remove a submapping, one must first remove the
1759  *	range from the superior map, and then destroy the
1760  *	submap (if desired).  [Better yet, don't try it.]
1761  */
1762 int
1763 vm_map_submap(
1764 	vm_map_t map,
1765 	vm_offset_t start,
1766 	vm_offset_t end,
1767 	vm_map_t submap)
1768 {
1769 	vm_map_entry_t entry;
1770 	int result = KERN_INVALID_ARGUMENT;
1771 
1772 	vm_map_lock(map);
1773 
1774 	VM_MAP_RANGE_CHECK(map, start, end);
1775 
1776 	if (vm_map_lookup_entry(map, start, &entry)) {
1777 		vm_map_clip_start(map, entry, start);
1778 	} else
1779 		entry = entry->next;
1780 
1781 	vm_map_clip_end(map, entry, end);
1782 
1783 	if ((entry->start == start) && (entry->end == end) &&
1784 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1785 	    (entry->object.vm_object == NULL)) {
1786 		entry->object.sub_map = submap;
1787 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1788 		result = KERN_SUCCESS;
1789 	}
1790 	vm_map_unlock(map);
1791 
1792 	return (result);
1793 }
1794 
1795 /*
1796  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1797  */
1798 #define	MAX_INIT_PT	96
1799 
1800 /*
1801  *	vm_map_pmap_enter:
1802  *
1803  *	Preload the specified map's pmap with mappings to the specified
1804  *	object's memory-resident pages.  No further physical pages are
1805  *	allocated, and no further virtual pages are retrieved from secondary
1806  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1807  *	limited number of page mappings are created at the low-end of the
1808  *	specified address range.  (For this purpose, a superpage mapping
1809  *	counts as one page mapping.)  Otherwise, all resident pages within
1810  *	the specified address range are mapped.  Because these mappings are
1811  *	being created speculatively, cached pages are not reactivated and
1812  *	mapped.
1813  */
1814 static void
1815 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1816     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1817 {
1818 	vm_offset_t start;
1819 	vm_page_t p, p_start;
1820 	vm_pindex_t mask, psize, threshold, tmpidx;
1821 
1822 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1823 		return;
1824 	VM_OBJECT_RLOCK(object);
1825 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1826 		VM_OBJECT_RUNLOCK(object);
1827 		VM_OBJECT_WLOCK(object);
1828 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1829 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1830 			    size);
1831 			VM_OBJECT_WUNLOCK(object);
1832 			return;
1833 		}
1834 		VM_OBJECT_LOCK_DOWNGRADE(object);
1835 	}
1836 
1837 	psize = atop(size);
1838 	if (psize + pindex > object->size) {
1839 		if (object->size < pindex) {
1840 			VM_OBJECT_RUNLOCK(object);
1841 			return;
1842 		}
1843 		psize = object->size - pindex;
1844 	}
1845 
1846 	start = 0;
1847 	p_start = NULL;
1848 	threshold = MAX_INIT_PT;
1849 
1850 	p = vm_page_find_least(object, pindex);
1851 	/*
1852 	 * Assert: the variable p is either (1) the page with the
1853 	 * least pindex greater than or equal to the parameter pindex
1854 	 * or (2) NULL.
1855 	 */
1856 	for (;
1857 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1858 	     p = TAILQ_NEXT(p, listq)) {
1859 		/*
1860 		 * don't allow an madvise to blow away our really
1861 		 * free pages allocating pv entries.
1862 		 */
1863 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1864 		    vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1865 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1866 		    tmpidx >= threshold)) {
1867 			psize = tmpidx;
1868 			break;
1869 		}
1870 		if (p->valid == VM_PAGE_BITS_ALL) {
1871 			if (p_start == NULL) {
1872 				start = addr + ptoa(tmpidx);
1873 				p_start = p;
1874 			}
1875 			/* Jump ahead if a superpage mapping is possible. */
1876 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1877 			    (pagesizes[p->psind] - 1)) == 0) {
1878 				mask = atop(pagesizes[p->psind]) - 1;
1879 				if (tmpidx + mask < psize &&
1880 				    vm_page_ps_is_valid(p)) {
1881 					p += mask;
1882 					threshold += mask;
1883 				}
1884 			}
1885 		} else if (p_start != NULL) {
1886 			pmap_enter_object(map->pmap, start, addr +
1887 			    ptoa(tmpidx), p_start, prot);
1888 			p_start = NULL;
1889 		}
1890 	}
1891 	if (p_start != NULL)
1892 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1893 		    p_start, prot);
1894 	VM_OBJECT_RUNLOCK(object);
1895 }
1896 
1897 /*
1898  *	vm_map_protect:
1899  *
1900  *	Sets the protection of the specified address
1901  *	region in the target map.  If "set_max" is
1902  *	specified, the maximum protection is to be set;
1903  *	otherwise, only the current protection is affected.
1904  */
1905 int
1906 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1907 	       vm_prot_t new_prot, boolean_t set_max)
1908 {
1909 	vm_map_entry_t current, entry;
1910 	vm_object_t obj;
1911 	struct ucred *cred;
1912 	vm_prot_t old_prot;
1913 
1914 	if (start == end)
1915 		return (KERN_SUCCESS);
1916 
1917 	vm_map_lock(map);
1918 
1919 	VM_MAP_RANGE_CHECK(map, start, end);
1920 
1921 	if (vm_map_lookup_entry(map, start, &entry)) {
1922 		vm_map_clip_start(map, entry, start);
1923 	} else {
1924 		entry = entry->next;
1925 	}
1926 
1927 	/*
1928 	 * Make a first pass to check for protection violations.
1929 	 */
1930 	current = entry;
1931 	while ((current != &map->header) && (current->start < end)) {
1932 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1933 			vm_map_unlock(map);
1934 			return (KERN_INVALID_ARGUMENT);
1935 		}
1936 		if ((new_prot & current->max_protection) != new_prot) {
1937 			vm_map_unlock(map);
1938 			return (KERN_PROTECTION_FAILURE);
1939 		}
1940 		current = current->next;
1941 	}
1942 
1943 
1944 	/*
1945 	 * Do an accounting pass for private read-only mappings that
1946 	 * now will do cow due to allowed write (e.g. debugger sets
1947 	 * breakpoint on text segment)
1948 	 */
1949 	for (current = entry; (current != &map->header) &&
1950 	     (current->start < end); current = current->next) {
1951 
1952 		vm_map_clip_end(map, current, end);
1953 
1954 		if (set_max ||
1955 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1956 		    ENTRY_CHARGED(current)) {
1957 			continue;
1958 		}
1959 
1960 		cred = curthread->td_ucred;
1961 		obj = current->object.vm_object;
1962 
1963 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1964 			if (!swap_reserve(current->end - current->start)) {
1965 				vm_map_unlock(map);
1966 				return (KERN_RESOURCE_SHORTAGE);
1967 			}
1968 			crhold(cred);
1969 			current->cred = cred;
1970 			continue;
1971 		}
1972 
1973 		VM_OBJECT_WLOCK(obj);
1974 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1975 			VM_OBJECT_WUNLOCK(obj);
1976 			continue;
1977 		}
1978 
1979 		/*
1980 		 * Charge for the whole object allocation now, since
1981 		 * we cannot distinguish between non-charged and
1982 		 * charged clipped mapping of the same object later.
1983 		 */
1984 		KASSERT(obj->charge == 0,
1985 		    ("vm_map_protect: object %p overcharged (entry %p)",
1986 		    obj, current));
1987 		if (!swap_reserve(ptoa(obj->size))) {
1988 			VM_OBJECT_WUNLOCK(obj);
1989 			vm_map_unlock(map);
1990 			return (KERN_RESOURCE_SHORTAGE);
1991 		}
1992 
1993 		crhold(cred);
1994 		obj->cred = cred;
1995 		obj->charge = ptoa(obj->size);
1996 		VM_OBJECT_WUNLOCK(obj);
1997 	}
1998 
1999 	/*
2000 	 * Go back and fix up protections. [Note that clipping is not
2001 	 * necessary the second time.]
2002 	 */
2003 	current = entry;
2004 	while ((current != &map->header) && (current->start < end)) {
2005 		old_prot = current->protection;
2006 
2007 		if (set_max)
2008 			current->protection =
2009 			    (current->max_protection = new_prot) &
2010 			    old_prot;
2011 		else
2012 			current->protection = new_prot;
2013 
2014 		/*
2015 		 * For user wired map entries, the normal lazy evaluation of
2016 		 * write access upgrades through soft page faults is
2017 		 * undesirable.  Instead, immediately copy any pages that are
2018 		 * copy-on-write and enable write access in the physical map.
2019 		 */
2020 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2021 		    (current->protection & VM_PROT_WRITE) != 0 &&
2022 		    (old_prot & VM_PROT_WRITE) == 0)
2023 			vm_fault_copy_entry(map, map, current, current, NULL);
2024 
2025 		/*
2026 		 * When restricting access, update the physical map.  Worry
2027 		 * about copy-on-write here.
2028 		 */
2029 		if ((old_prot & ~current->protection) != 0) {
2030 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2031 							VM_PROT_ALL)
2032 			pmap_protect(map->pmap, current->start,
2033 			    current->end,
2034 			    current->protection & MASK(current));
2035 #undef	MASK
2036 		}
2037 		vm_map_simplify_entry(map, current);
2038 		current = current->next;
2039 	}
2040 	vm_map_unlock(map);
2041 	return (KERN_SUCCESS);
2042 }
2043 
2044 /*
2045  *	vm_map_madvise:
2046  *
2047  *	This routine traverses a processes map handling the madvise
2048  *	system call.  Advisories are classified as either those effecting
2049  *	the vm_map_entry structure, or those effecting the underlying
2050  *	objects.
2051  */
2052 int
2053 vm_map_madvise(
2054 	vm_map_t map,
2055 	vm_offset_t start,
2056 	vm_offset_t end,
2057 	int behav)
2058 {
2059 	vm_map_entry_t current, entry;
2060 	int modify_map = 0;
2061 
2062 	/*
2063 	 * Some madvise calls directly modify the vm_map_entry, in which case
2064 	 * we need to use an exclusive lock on the map and we need to perform
2065 	 * various clipping operations.  Otherwise we only need a read-lock
2066 	 * on the map.
2067 	 */
2068 	switch(behav) {
2069 	case MADV_NORMAL:
2070 	case MADV_SEQUENTIAL:
2071 	case MADV_RANDOM:
2072 	case MADV_NOSYNC:
2073 	case MADV_AUTOSYNC:
2074 	case MADV_NOCORE:
2075 	case MADV_CORE:
2076 		if (start == end)
2077 			return (KERN_SUCCESS);
2078 		modify_map = 1;
2079 		vm_map_lock(map);
2080 		break;
2081 	case MADV_WILLNEED:
2082 	case MADV_DONTNEED:
2083 	case MADV_FREE:
2084 		if (start == end)
2085 			return (KERN_SUCCESS);
2086 		vm_map_lock_read(map);
2087 		break;
2088 	default:
2089 		return (KERN_INVALID_ARGUMENT);
2090 	}
2091 
2092 	/*
2093 	 * Locate starting entry and clip if necessary.
2094 	 */
2095 	VM_MAP_RANGE_CHECK(map, start, end);
2096 
2097 	if (vm_map_lookup_entry(map, start, &entry)) {
2098 		if (modify_map)
2099 			vm_map_clip_start(map, entry, start);
2100 	} else {
2101 		entry = entry->next;
2102 	}
2103 
2104 	if (modify_map) {
2105 		/*
2106 		 * madvise behaviors that are implemented in the vm_map_entry.
2107 		 *
2108 		 * We clip the vm_map_entry so that behavioral changes are
2109 		 * limited to the specified address range.
2110 		 */
2111 		for (current = entry;
2112 		     (current != &map->header) && (current->start < end);
2113 		     current = current->next
2114 		) {
2115 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2116 				continue;
2117 
2118 			vm_map_clip_end(map, current, end);
2119 
2120 			switch (behav) {
2121 			case MADV_NORMAL:
2122 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2123 				break;
2124 			case MADV_SEQUENTIAL:
2125 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2126 				break;
2127 			case MADV_RANDOM:
2128 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2129 				break;
2130 			case MADV_NOSYNC:
2131 				current->eflags |= MAP_ENTRY_NOSYNC;
2132 				break;
2133 			case MADV_AUTOSYNC:
2134 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2135 				break;
2136 			case MADV_NOCORE:
2137 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2138 				break;
2139 			case MADV_CORE:
2140 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2141 				break;
2142 			default:
2143 				break;
2144 			}
2145 			vm_map_simplify_entry(map, current);
2146 		}
2147 		vm_map_unlock(map);
2148 	} else {
2149 		vm_pindex_t pstart, pend;
2150 
2151 		/*
2152 		 * madvise behaviors that are implemented in the underlying
2153 		 * vm_object.
2154 		 *
2155 		 * Since we don't clip the vm_map_entry, we have to clip
2156 		 * the vm_object pindex and count.
2157 		 */
2158 		for (current = entry;
2159 		     (current != &map->header) && (current->start < end);
2160 		     current = current->next
2161 		) {
2162 			vm_offset_t useEnd, useStart;
2163 
2164 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2165 				continue;
2166 
2167 			pstart = OFF_TO_IDX(current->offset);
2168 			pend = pstart + atop(current->end - current->start);
2169 			useStart = current->start;
2170 			useEnd = current->end;
2171 
2172 			if (current->start < start) {
2173 				pstart += atop(start - current->start);
2174 				useStart = start;
2175 			}
2176 			if (current->end > end) {
2177 				pend -= atop(current->end - end);
2178 				useEnd = end;
2179 			}
2180 
2181 			if (pstart >= pend)
2182 				continue;
2183 
2184 			/*
2185 			 * Perform the pmap_advise() before clearing
2186 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2187 			 * concurrent pmap operation, such as pmap_remove(),
2188 			 * could clear a reference in the pmap and set
2189 			 * PGA_REFERENCED on the page before the pmap_advise()
2190 			 * had completed.  Consequently, the page would appear
2191 			 * referenced based upon an old reference that
2192 			 * occurred before this pmap_advise() ran.
2193 			 */
2194 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2195 				pmap_advise(map->pmap, useStart, useEnd,
2196 				    behav);
2197 
2198 			vm_object_madvise(current->object.vm_object, pstart,
2199 			    pend, behav);
2200 
2201 			/*
2202 			 * Pre-populate paging structures in the
2203 			 * WILLNEED case.  For wired entries, the
2204 			 * paging structures are already populated.
2205 			 */
2206 			if (behav == MADV_WILLNEED &&
2207 			    current->wired_count == 0) {
2208 				vm_map_pmap_enter(map,
2209 				    useStart,
2210 				    current->protection,
2211 				    current->object.vm_object,
2212 				    pstart,
2213 				    ptoa(pend - pstart),
2214 				    MAP_PREFAULT_MADVISE
2215 				);
2216 			}
2217 		}
2218 		vm_map_unlock_read(map);
2219 	}
2220 	return (0);
2221 }
2222 
2223 
2224 /*
2225  *	vm_map_inherit:
2226  *
2227  *	Sets the inheritance of the specified address
2228  *	range in the target map.  Inheritance
2229  *	affects how the map will be shared with
2230  *	child maps at the time of vmspace_fork.
2231  */
2232 int
2233 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2234 	       vm_inherit_t new_inheritance)
2235 {
2236 	vm_map_entry_t entry;
2237 	vm_map_entry_t temp_entry;
2238 
2239 	switch (new_inheritance) {
2240 	case VM_INHERIT_NONE:
2241 	case VM_INHERIT_COPY:
2242 	case VM_INHERIT_SHARE:
2243 		break;
2244 	default:
2245 		return (KERN_INVALID_ARGUMENT);
2246 	}
2247 	if (start == end)
2248 		return (KERN_SUCCESS);
2249 	vm_map_lock(map);
2250 	VM_MAP_RANGE_CHECK(map, start, end);
2251 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2252 		entry = temp_entry;
2253 		vm_map_clip_start(map, entry, start);
2254 	} else
2255 		entry = temp_entry->next;
2256 	while ((entry != &map->header) && (entry->start < end)) {
2257 		vm_map_clip_end(map, entry, end);
2258 		entry->inheritance = new_inheritance;
2259 		vm_map_simplify_entry(map, entry);
2260 		entry = entry->next;
2261 	}
2262 	vm_map_unlock(map);
2263 	return (KERN_SUCCESS);
2264 }
2265 
2266 /*
2267  *	vm_map_unwire:
2268  *
2269  *	Implements both kernel and user unwiring.
2270  */
2271 int
2272 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2273     int flags)
2274 {
2275 	vm_map_entry_t entry, first_entry, tmp_entry;
2276 	vm_offset_t saved_start;
2277 	unsigned int last_timestamp;
2278 	int rv;
2279 	boolean_t need_wakeup, result, user_unwire;
2280 
2281 	if (start == end)
2282 		return (KERN_SUCCESS);
2283 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2284 	vm_map_lock(map);
2285 	VM_MAP_RANGE_CHECK(map, start, end);
2286 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2287 		if (flags & VM_MAP_WIRE_HOLESOK)
2288 			first_entry = first_entry->next;
2289 		else {
2290 			vm_map_unlock(map);
2291 			return (KERN_INVALID_ADDRESS);
2292 		}
2293 	}
2294 	last_timestamp = map->timestamp;
2295 	entry = first_entry;
2296 	while (entry != &map->header && entry->start < end) {
2297 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2298 			/*
2299 			 * We have not yet clipped the entry.
2300 			 */
2301 			saved_start = (start >= entry->start) ? start :
2302 			    entry->start;
2303 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2304 			if (vm_map_unlock_and_wait(map, 0)) {
2305 				/*
2306 				 * Allow interruption of user unwiring?
2307 				 */
2308 			}
2309 			vm_map_lock(map);
2310 			if (last_timestamp+1 != map->timestamp) {
2311 				/*
2312 				 * Look again for the entry because the map was
2313 				 * modified while it was unlocked.
2314 				 * Specifically, the entry may have been
2315 				 * clipped, merged, or deleted.
2316 				 */
2317 				if (!vm_map_lookup_entry(map, saved_start,
2318 				    &tmp_entry)) {
2319 					if (flags & VM_MAP_WIRE_HOLESOK)
2320 						tmp_entry = tmp_entry->next;
2321 					else {
2322 						if (saved_start == start) {
2323 							/*
2324 							 * First_entry has been deleted.
2325 							 */
2326 							vm_map_unlock(map);
2327 							return (KERN_INVALID_ADDRESS);
2328 						}
2329 						end = saved_start;
2330 						rv = KERN_INVALID_ADDRESS;
2331 						goto done;
2332 					}
2333 				}
2334 				if (entry == first_entry)
2335 					first_entry = tmp_entry;
2336 				else
2337 					first_entry = NULL;
2338 				entry = tmp_entry;
2339 			}
2340 			last_timestamp = map->timestamp;
2341 			continue;
2342 		}
2343 		vm_map_clip_start(map, entry, start);
2344 		vm_map_clip_end(map, entry, end);
2345 		/*
2346 		 * Mark the entry in case the map lock is released.  (See
2347 		 * above.)
2348 		 */
2349 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2350 		    entry->wiring_thread == NULL,
2351 		    ("owned map entry %p", entry));
2352 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2353 		entry->wiring_thread = curthread;
2354 		/*
2355 		 * Check the map for holes in the specified region.
2356 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2357 		 */
2358 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2359 		    (entry->end < end && (entry->next == &map->header ||
2360 		    entry->next->start > entry->end))) {
2361 			end = entry->end;
2362 			rv = KERN_INVALID_ADDRESS;
2363 			goto done;
2364 		}
2365 		/*
2366 		 * If system unwiring, require that the entry is system wired.
2367 		 */
2368 		if (!user_unwire &&
2369 		    vm_map_entry_system_wired_count(entry) == 0) {
2370 			end = entry->end;
2371 			rv = KERN_INVALID_ARGUMENT;
2372 			goto done;
2373 		}
2374 		entry = entry->next;
2375 	}
2376 	rv = KERN_SUCCESS;
2377 done:
2378 	need_wakeup = FALSE;
2379 	if (first_entry == NULL) {
2380 		result = vm_map_lookup_entry(map, start, &first_entry);
2381 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2382 			first_entry = first_entry->next;
2383 		else
2384 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2385 	}
2386 	for (entry = first_entry; entry != &map->header && entry->start < end;
2387 	    entry = entry->next) {
2388 		/*
2389 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2390 		 * space in the unwired region could have been mapped
2391 		 * while the map lock was dropped for draining
2392 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2393 		 * could be simultaneously wiring this new mapping
2394 		 * entry.  Detect these cases and skip any entries
2395 		 * marked as in transition by us.
2396 		 */
2397 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2398 		    entry->wiring_thread != curthread) {
2399 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2400 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2401 			continue;
2402 		}
2403 
2404 		if (rv == KERN_SUCCESS && (!user_unwire ||
2405 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2406 			if (user_unwire)
2407 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2408 			if (entry->wired_count == 1)
2409 				vm_map_entry_unwire(map, entry);
2410 			else
2411 				entry->wired_count--;
2412 		}
2413 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2414 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2415 		KASSERT(entry->wiring_thread == curthread,
2416 		    ("vm_map_unwire: alien wire %p", entry));
2417 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2418 		entry->wiring_thread = NULL;
2419 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2420 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2421 			need_wakeup = TRUE;
2422 		}
2423 		vm_map_simplify_entry(map, entry);
2424 	}
2425 	vm_map_unlock(map);
2426 	if (need_wakeup)
2427 		vm_map_wakeup(map);
2428 	return (rv);
2429 }
2430 
2431 /*
2432  *	vm_map_wire_entry_failure:
2433  *
2434  *	Handle a wiring failure on the given entry.
2435  *
2436  *	The map should be locked.
2437  */
2438 static void
2439 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2440     vm_offset_t failed_addr)
2441 {
2442 
2443 	VM_MAP_ASSERT_LOCKED(map);
2444 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2445 	    entry->wired_count == 1,
2446 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2447 	KASSERT(failed_addr < entry->end,
2448 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2449 
2450 	/*
2451 	 * If any pages at the start of this entry were successfully wired,
2452 	 * then unwire them.
2453 	 */
2454 	if (failed_addr > entry->start) {
2455 		pmap_unwire(map->pmap, entry->start, failed_addr);
2456 		vm_object_unwire(entry->object.vm_object, entry->offset,
2457 		    failed_addr - entry->start, PQ_ACTIVE);
2458 	}
2459 
2460 	/*
2461 	 * Assign an out-of-range value to represent the failure to wire this
2462 	 * entry.
2463 	 */
2464 	entry->wired_count = -1;
2465 }
2466 
2467 /*
2468  *	vm_map_wire:
2469  *
2470  *	Implements both kernel and user wiring.
2471  */
2472 int
2473 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2474     int flags)
2475 {
2476 	vm_map_entry_t entry, first_entry, tmp_entry;
2477 	vm_offset_t faddr, saved_end, saved_start;
2478 	unsigned int last_timestamp;
2479 	int rv;
2480 	boolean_t need_wakeup, result, user_wire;
2481 	vm_prot_t prot;
2482 
2483 	if (start == end)
2484 		return (KERN_SUCCESS);
2485 	prot = 0;
2486 	if (flags & VM_MAP_WIRE_WRITE)
2487 		prot |= VM_PROT_WRITE;
2488 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2489 	vm_map_lock(map);
2490 	VM_MAP_RANGE_CHECK(map, start, end);
2491 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2492 		if (flags & VM_MAP_WIRE_HOLESOK)
2493 			first_entry = first_entry->next;
2494 		else {
2495 			vm_map_unlock(map);
2496 			return (KERN_INVALID_ADDRESS);
2497 		}
2498 	}
2499 	last_timestamp = map->timestamp;
2500 	entry = first_entry;
2501 	while (entry != &map->header && entry->start < end) {
2502 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2503 			/*
2504 			 * We have not yet clipped the entry.
2505 			 */
2506 			saved_start = (start >= entry->start) ? start :
2507 			    entry->start;
2508 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2509 			if (vm_map_unlock_and_wait(map, 0)) {
2510 				/*
2511 				 * Allow interruption of user wiring?
2512 				 */
2513 			}
2514 			vm_map_lock(map);
2515 			if (last_timestamp + 1 != map->timestamp) {
2516 				/*
2517 				 * Look again for the entry because the map was
2518 				 * modified while it was unlocked.
2519 				 * Specifically, the entry may have been
2520 				 * clipped, merged, or deleted.
2521 				 */
2522 				if (!vm_map_lookup_entry(map, saved_start,
2523 				    &tmp_entry)) {
2524 					if (flags & VM_MAP_WIRE_HOLESOK)
2525 						tmp_entry = tmp_entry->next;
2526 					else {
2527 						if (saved_start == start) {
2528 							/*
2529 							 * first_entry has been deleted.
2530 							 */
2531 							vm_map_unlock(map);
2532 							return (KERN_INVALID_ADDRESS);
2533 						}
2534 						end = saved_start;
2535 						rv = KERN_INVALID_ADDRESS;
2536 						goto done;
2537 					}
2538 				}
2539 				if (entry == first_entry)
2540 					first_entry = tmp_entry;
2541 				else
2542 					first_entry = NULL;
2543 				entry = tmp_entry;
2544 			}
2545 			last_timestamp = map->timestamp;
2546 			continue;
2547 		}
2548 		vm_map_clip_start(map, entry, start);
2549 		vm_map_clip_end(map, entry, end);
2550 		/*
2551 		 * Mark the entry in case the map lock is released.  (See
2552 		 * above.)
2553 		 */
2554 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2555 		    entry->wiring_thread == NULL,
2556 		    ("owned map entry %p", entry));
2557 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2558 		entry->wiring_thread = curthread;
2559 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2560 		    || (entry->protection & prot) != prot) {
2561 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2562 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2563 				end = entry->end;
2564 				rv = KERN_INVALID_ADDRESS;
2565 				goto done;
2566 			}
2567 			goto next_entry;
2568 		}
2569 		if (entry->wired_count == 0) {
2570 			entry->wired_count++;
2571 			saved_start = entry->start;
2572 			saved_end = entry->end;
2573 
2574 			/*
2575 			 * Release the map lock, relying on the in-transition
2576 			 * mark.  Mark the map busy for fork.
2577 			 */
2578 			vm_map_busy(map);
2579 			vm_map_unlock(map);
2580 
2581 			faddr = saved_start;
2582 			do {
2583 				/*
2584 				 * Simulate a fault to get the page and enter
2585 				 * it into the physical map.
2586 				 */
2587 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2588 				    VM_FAULT_CHANGE_WIRING)) != KERN_SUCCESS)
2589 					break;
2590 			} while ((faddr += PAGE_SIZE) < saved_end);
2591 			vm_map_lock(map);
2592 			vm_map_unbusy(map);
2593 			if (last_timestamp + 1 != map->timestamp) {
2594 				/*
2595 				 * Look again for the entry because the map was
2596 				 * modified while it was unlocked.  The entry
2597 				 * may have been clipped, but NOT merged or
2598 				 * deleted.
2599 				 */
2600 				result = vm_map_lookup_entry(map, saved_start,
2601 				    &tmp_entry);
2602 				KASSERT(result, ("vm_map_wire: lookup failed"));
2603 				if (entry == first_entry)
2604 					first_entry = tmp_entry;
2605 				else
2606 					first_entry = NULL;
2607 				entry = tmp_entry;
2608 				while (entry->end < saved_end) {
2609 					/*
2610 					 * In case of failure, handle entries
2611 					 * that were not fully wired here;
2612 					 * fully wired entries are handled
2613 					 * later.
2614 					 */
2615 					if (rv != KERN_SUCCESS &&
2616 					    faddr < entry->end)
2617 						vm_map_wire_entry_failure(map,
2618 						    entry, faddr);
2619 					entry = entry->next;
2620 				}
2621 			}
2622 			last_timestamp = map->timestamp;
2623 			if (rv != KERN_SUCCESS) {
2624 				vm_map_wire_entry_failure(map, entry, faddr);
2625 				end = entry->end;
2626 				goto done;
2627 			}
2628 		} else if (!user_wire ||
2629 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2630 			entry->wired_count++;
2631 		}
2632 		/*
2633 		 * Check the map for holes in the specified region.
2634 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2635 		 */
2636 	next_entry:
2637 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2638 		    (entry->end < end && (entry->next == &map->header ||
2639 		    entry->next->start > entry->end))) {
2640 			end = entry->end;
2641 			rv = KERN_INVALID_ADDRESS;
2642 			goto done;
2643 		}
2644 		entry = entry->next;
2645 	}
2646 	rv = KERN_SUCCESS;
2647 done:
2648 	need_wakeup = FALSE;
2649 	if (first_entry == NULL) {
2650 		result = vm_map_lookup_entry(map, start, &first_entry);
2651 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2652 			first_entry = first_entry->next;
2653 		else
2654 			KASSERT(result, ("vm_map_wire: lookup failed"));
2655 	}
2656 	for (entry = first_entry; entry != &map->header && entry->start < end;
2657 	    entry = entry->next) {
2658 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2659 			goto next_entry_done;
2660 
2661 		/*
2662 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2663 		 * space in the unwired region could have been mapped
2664 		 * while the map lock was dropped for faulting in the
2665 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2666 		 * Moreover, another thread could be simultaneously
2667 		 * wiring this new mapping entry.  Detect these cases
2668 		 * and skip any entries marked as in transition by us.
2669 		 */
2670 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2671 		    entry->wiring_thread != curthread) {
2672 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2673 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2674 			continue;
2675 		}
2676 
2677 		if (rv == KERN_SUCCESS) {
2678 			if (user_wire)
2679 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2680 		} else if (entry->wired_count == -1) {
2681 			/*
2682 			 * Wiring failed on this entry.  Thus, unwiring is
2683 			 * unnecessary.
2684 			 */
2685 			entry->wired_count = 0;
2686 		} else if (!user_wire ||
2687 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2688 			/*
2689 			 * Undo the wiring.  Wiring succeeded on this entry
2690 			 * but failed on a later entry.
2691 			 */
2692 			if (entry->wired_count == 1)
2693 				vm_map_entry_unwire(map, entry);
2694 			else
2695 				entry->wired_count--;
2696 		}
2697 	next_entry_done:
2698 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2699 		    ("vm_map_wire: in-transition flag missing %p", entry));
2700 		KASSERT(entry->wiring_thread == curthread,
2701 		    ("vm_map_wire: alien wire %p", entry));
2702 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2703 		    MAP_ENTRY_WIRE_SKIPPED);
2704 		entry->wiring_thread = NULL;
2705 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2706 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2707 			need_wakeup = TRUE;
2708 		}
2709 		vm_map_simplify_entry(map, entry);
2710 	}
2711 	vm_map_unlock(map);
2712 	if (need_wakeup)
2713 		vm_map_wakeup(map);
2714 	return (rv);
2715 }
2716 
2717 /*
2718  * vm_map_sync
2719  *
2720  * Push any dirty cached pages in the address range to their pager.
2721  * If syncio is TRUE, dirty pages are written synchronously.
2722  * If invalidate is TRUE, any cached pages are freed as well.
2723  *
2724  * If the size of the region from start to end is zero, we are
2725  * supposed to flush all modified pages within the region containing
2726  * start.  Unfortunately, a region can be split or coalesced with
2727  * neighboring regions, making it difficult to determine what the
2728  * original region was.  Therefore, we approximate this requirement by
2729  * flushing the current region containing start.
2730  *
2731  * Returns an error if any part of the specified range is not mapped.
2732  */
2733 int
2734 vm_map_sync(
2735 	vm_map_t map,
2736 	vm_offset_t start,
2737 	vm_offset_t end,
2738 	boolean_t syncio,
2739 	boolean_t invalidate)
2740 {
2741 	vm_map_entry_t current;
2742 	vm_map_entry_t entry;
2743 	vm_size_t size;
2744 	vm_object_t object;
2745 	vm_ooffset_t offset;
2746 	unsigned int last_timestamp;
2747 	boolean_t failed;
2748 
2749 	vm_map_lock_read(map);
2750 	VM_MAP_RANGE_CHECK(map, start, end);
2751 	if (!vm_map_lookup_entry(map, start, &entry)) {
2752 		vm_map_unlock_read(map);
2753 		return (KERN_INVALID_ADDRESS);
2754 	} else if (start == end) {
2755 		start = entry->start;
2756 		end = entry->end;
2757 	}
2758 	/*
2759 	 * Make a first pass to check for user-wired memory and holes.
2760 	 */
2761 	for (current = entry; current != &map->header && current->start < end;
2762 	    current = current->next) {
2763 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2764 			vm_map_unlock_read(map);
2765 			return (KERN_INVALID_ARGUMENT);
2766 		}
2767 		if (end > current->end &&
2768 		    (current->next == &map->header ||
2769 			current->end != current->next->start)) {
2770 			vm_map_unlock_read(map);
2771 			return (KERN_INVALID_ADDRESS);
2772 		}
2773 	}
2774 
2775 	if (invalidate)
2776 		pmap_remove(map->pmap, start, end);
2777 	failed = FALSE;
2778 
2779 	/*
2780 	 * Make a second pass, cleaning/uncaching pages from the indicated
2781 	 * objects as we go.
2782 	 */
2783 	for (current = entry; current != &map->header && current->start < end;) {
2784 		offset = current->offset + (start - current->start);
2785 		size = (end <= current->end ? end : current->end) - start;
2786 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2787 			vm_map_t smap;
2788 			vm_map_entry_t tentry;
2789 			vm_size_t tsize;
2790 
2791 			smap = current->object.sub_map;
2792 			vm_map_lock_read(smap);
2793 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2794 			tsize = tentry->end - offset;
2795 			if (tsize < size)
2796 				size = tsize;
2797 			object = tentry->object.vm_object;
2798 			offset = tentry->offset + (offset - tentry->start);
2799 			vm_map_unlock_read(smap);
2800 		} else {
2801 			object = current->object.vm_object;
2802 		}
2803 		vm_object_reference(object);
2804 		last_timestamp = map->timestamp;
2805 		vm_map_unlock_read(map);
2806 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2807 			failed = TRUE;
2808 		start += size;
2809 		vm_object_deallocate(object);
2810 		vm_map_lock_read(map);
2811 		if (last_timestamp == map->timestamp ||
2812 		    !vm_map_lookup_entry(map, start, &current))
2813 			current = current->next;
2814 	}
2815 
2816 	vm_map_unlock_read(map);
2817 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2818 }
2819 
2820 /*
2821  *	vm_map_entry_unwire:	[ internal use only ]
2822  *
2823  *	Make the region specified by this entry pageable.
2824  *
2825  *	The map in question should be locked.
2826  *	[This is the reason for this routine's existence.]
2827  */
2828 static void
2829 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2830 {
2831 
2832 	VM_MAP_ASSERT_LOCKED(map);
2833 	KASSERT(entry->wired_count > 0,
2834 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
2835 	pmap_unwire(map->pmap, entry->start, entry->end);
2836 	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2837 	    entry->start, PQ_ACTIVE);
2838 	entry->wired_count = 0;
2839 }
2840 
2841 static void
2842 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2843 {
2844 
2845 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2846 		vm_object_deallocate(entry->object.vm_object);
2847 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2848 }
2849 
2850 /*
2851  *	vm_map_entry_delete:	[ internal use only ]
2852  *
2853  *	Deallocate the given entry from the target map.
2854  */
2855 static void
2856 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2857 {
2858 	vm_object_t object;
2859 	vm_pindex_t offidxstart, offidxend, count, size1;
2860 	vm_ooffset_t size;
2861 
2862 	vm_map_entry_unlink(map, entry);
2863 	object = entry->object.vm_object;
2864 	size = entry->end - entry->start;
2865 	map->size -= size;
2866 
2867 	if (entry->cred != NULL) {
2868 		swap_release_by_cred(size, entry->cred);
2869 		crfree(entry->cred);
2870 	}
2871 
2872 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2873 	    (object != NULL)) {
2874 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2875 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2876 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2877 		count = OFF_TO_IDX(size);
2878 		offidxstart = OFF_TO_IDX(entry->offset);
2879 		offidxend = offidxstart + count;
2880 		VM_OBJECT_WLOCK(object);
2881 		if (object->ref_count != 1 &&
2882 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2883 		    object == kernel_object || object == kmem_object)) {
2884 			vm_object_collapse(object);
2885 
2886 			/*
2887 			 * The option OBJPR_NOTMAPPED can be passed here
2888 			 * because vm_map_delete() already performed
2889 			 * pmap_remove() on the only mapping to this range
2890 			 * of pages.
2891 			 */
2892 			vm_object_page_remove(object, offidxstart, offidxend,
2893 			    OBJPR_NOTMAPPED);
2894 			if (object->type == OBJT_SWAP)
2895 				swap_pager_freespace(object, offidxstart, count);
2896 			if (offidxend >= object->size &&
2897 			    offidxstart < object->size) {
2898 				size1 = object->size;
2899 				object->size = offidxstart;
2900 				if (object->cred != NULL) {
2901 					size1 -= object->size;
2902 					KASSERT(object->charge >= ptoa(size1),
2903 					    ("vm_map_entry_delete: object->charge < 0"));
2904 					swap_release_by_cred(ptoa(size1), object->cred);
2905 					object->charge -= ptoa(size1);
2906 				}
2907 			}
2908 		}
2909 		VM_OBJECT_WUNLOCK(object);
2910 	} else
2911 		entry->object.vm_object = NULL;
2912 	if (map->system_map)
2913 		vm_map_entry_deallocate(entry, TRUE);
2914 	else {
2915 		entry->next = curthread->td_map_def_user;
2916 		curthread->td_map_def_user = entry;
2917 	}
2918 }
2919 
2920 /*
2921  *	vm_map_delete:	[ internal use only ]
2922  *
2923  *	Deallocates the given address range from the target
2924  *	map.
2925  */
2926 int
2927 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2928 {
2929 	vm_map_entry_t entry;
2930 	vm_map_entry_t first_entry;
2931 
2932 	VM_MAP_ASSERT_LOCKED(map);
2933 	if (start == end)
2934 		return (KERN_SUCCESS);
2935 
2936 	/*
2937 	 * Find the start of the region, and clip it
2938 	 */
2939 	if (!vm_map_lookup_entry(map, start, &first_entry))
2940 		entry = first_entry->next;
2941 	else {
2942 		entry = first_entry;
2943 		vm_map_clip_start(map, entry, start);
2944 	}
2945 
2946 	/*
2947 	 * Step through all entries in this region
2948 	 */
2949 	while ((entry != &map->header) && (entry->start < end)) {
2950 		vm_map_entry_t next;
2951 
2952 		/*
2953 		 * Wait for wiring or unwiring of an entry to complete.
2954 		 * Also wait for any system wirings to disappear on
2955 		 * user maps.
2956 		 */
2957 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2958 		    (vm_map_pmap(map) != kernel_pmap &&
2959 		    vm_map_entry_system_wired_count(entry) != 0)) {
2960 			unsigned int last_timestamp;
2961 			vm_offset_t saved_start;
2962 			vm_map_entry_t tmp_entry;
2963 
2964 			saved_start = entry->start;
2965 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2966 			last_timestamp = map->timestamp;
2967 			(void) vm_map_unlock_and_wait(map, 0);
2968 			vm_map_lock(map);
2969 			if (last_timestamp + 1 != map->timestamp) {
2970 				/*
2971 				 * Look again for the entry because the map was
2972 				 * modified while it was unlocked.
2973 				 * Specifically, the entry may have been
2974 				 * clipped, merged, or deleted.
2975 				 */
2976 				if (!vm_map_lookup_entry(map, saved_start,
2977 							 &tmp_entry))
2978 					entry = tmp_entry->next;
2979 				else {
2980 					entry = tmp_entry;
2981 					vm_map_clip_start(map, entry,
2982 							  saved_start);
2983 				}
2984 			}
2985 			continue;
2986 		}
2987 		vm_map_clip_end(map, entry, end);
2988 
2989 		next = entry->next;
2990 
2991 		/*
2992 		 * Unwire before removing addresses from the pmap; otherwise,
2993 		 * unwiring will put the entries back in the pmap.
2994 		 */
2995 		if (entry->wired_count != 0) {
2996 			vm_map_entry_unwire(map, entry);
2997 		}
2998 
2999 		pmap_remove(map->pmap, entry->start, entry->end);
3000 
3001 		/*
3002 		 * Delete the entry only after removing all pmap
3003 		 * entries pointing to its pages.  (Otherwise, its
3004 		 * page frames may be reallocated, and any modify bits
3005 		 * will be set in the wrong object!)
3006 		 */
3007 		vm_map_entry_delete(map, entry);
3008 		entry = next;
3009 	}
3010 	return (KERN_SUCCESS);
3011 }
3012 
3013 /*
3014  *	vm_map_remove:
3015  *
3016  *	Remove the given address range from the target map.
3017  *	This is the exported form of vm_map_delete.
3018  */
3019 int
3020 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3021 {
3022 	int result;
3023 
3024 	vm_map_lock(map);
3025 	VM_MAP_RANGE_CHECK(map, start, end);
3026 	result = vm_map_delete(map, start, end);
3027 	vm_map_unlock(map);
3028 	return (result);
3029 }
3030 
3031 /*
3032  *	vm_map_check_protection:
3033  *
3034  *	Assert that the target map allows the specified privilege on the
3035  *	entire address region given.  The entire region must be allocated.
3036  *
3037  *	WARNING!  This code does not and should not check whether the
3038  *	contents of the region is accessible.  For example a smaller file
3039  *	might be mapped into a larger address space.
3040  *
3041  *	NOTE!  This code is also called by munmap().
3042  *
3043  *	The map must be locked.  A read lock is sufficient.
3044  */
3045 boolean_t
3046 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3047 			vm_prot_t protection)
3048 {
3049 	vm_map_entry_t entry;
3050 	vm_map_entry_t tmp_entry;
3051 
3052 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3053 		return (FALSE);
3054 	entry = tmp_entry;
3055 
3056 	while (start < end) {
3057 		if (entry == &map->header)
3058 			return (FALSE);
3059 		/*
3060 		 * No holes allowed!
3061 		 */
3062 		if (start < entry->start)
3063 			return (FALSE);
3064 		/*
3065 		 * Check protection associated with entry.
3066 		 */
3067 		if ((entry->protection & protection) != protection)
3068 			return (FALSE);
3069 		/* go to next entry */
3070 		start = entry->end;
3071 		entry = entry->next;
3072 	}
3073 	return (TRUE);
3074 }
3075 
3076 /*
3077  *	vm_map_copy_entry:
3078  *
3079  *	Copies the contents of the source entry to the destination
3080  *	entry.  The entries *must* be aligned properly.
3081  */
3082 static void
3083 vm_map_copy_entry(
3084 	vm_map_t src_map,
3085 	vm_map_t dst_map,
3086 	vm_map_entry_t src_entry,
3087 	vm_map_entry_t dst_entry,
3088 	vm_ooffset_t *fork_charge)
3089 {
3090 	vm_object_t src_object;
3091 	vm_map_entry_t fake_entry;
3092 	vm_offset_t size;
3093 	struct ucred *cred;
3094 	int charged;
3095 
3096 	VM_MAP_ASSERT_LOCKED(dst_map);
3097 
3098 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3099 		return;
3100 
3101 	if (src_entry->wired_count == 0 ||
3102 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3103 		/*
3104 		 * If the source entry is marked needs_copy, it is already
3105 		 * write-protected.
3106 		 */
3107 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3108 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3109 			pmap_protect(src_map->pmap,
3110 			    src_entry->start,
3111 			    src_entry->end,
3112 			    src_entry->protection & ~VM_PROT_WRITE);
3113 		}
3114 
3115 		/*
3116 		 * Make a copy of the object.
3117 		 */
3118 		size = src_entry->end - src_entry->start;
3119 		if ((src_object = src_entry->object.vm_object) != NULL) {
3120 			VM_OBJECT_WLOCK(src_object);
3121 			charged = ENTRY_CHARGED(src_entry);
3122 			if ((src_object->handle == NULL) &&
3123 				(src_object->type == OBJT_DEFAULT ||
3124 				 src_object->type == OBJT_SWAP)) {
3125 				vm_object_collapse(src_object);
3126 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3127 					vm_object_split(src_entry);
3128 					src_object = src_entry->object.vm_object;
3129 				}
3130 			}
3131 			vm_object_reference_locked(src_object);
3132 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3133 			if (src_entry->cred != NULL &&
3134 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3135 				KASSERT(src_object->cred == NULL,
3136 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3137 				     src_object));
3138 				src_object->cred = src_entry->cred;
3139 				src_object->charge = size;
3140 			}
3141 			VM_OBJECT_WUNLOCK(src_object);
3142 			dst_entry->object.vm_object = src_object;
3143 			if (charged) {
3144 				cred = curthread->td_ucred;
3145 				crhold(cred);
3146 				dst_entry->cred = cred;
3147 				*fork_charge += size;
3148 				if (!(src_entry->eflags &
3149 				      MAP_ENTRY_NEEDS_COPY)) {
3150 					crhold(cred);
3151 					src_entry->cred = cred;
3152 					*fork_charge += size;
3153 				}
3154 			}
3155 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3156 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3157 			dst_entry->offset = src_entry->offset;
3158 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3159 				/*
3160 				 * MAP_ENTRY_VN_WRITECNT cannot
3161 				 * indicate write reference from
3162 				 * src_entry, since the entry is
3163 				 * marked as needs copy.  Allocate a
3164 				 * fake entry that is used to
3165 				 * decrement object->un_pager.vnp.writecount
3166 				 * at the appropriate time.  Attach
3167 				 * fake_entry to the deferred list.
3168 				 */
3169 				fake_entry = vm_map_entry_create(dst_map);
3170 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3171 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3172 				vm_object_reference(src_object);
3173 				fake_entry->object.vm_object = src_object;
3174 				fake_entry->start = src_entry->start;
3175 				fake_entry->end = src_entry->end;
3176 				fake_entry->next = curthread->td_map_def_user;
3177 				curthread->td_map_def_user = fake_entry;
3178 			}
3179 		} else {
3180 			dst_entry->object.vm_object = NULL;
3181 			dst_entry->offset = 0;
3182 			if (src_entry->cred != NULL) {
3183 				dst_entry->cred = curthread->td_ucred;
3184 				crhold(dst_entry->cred);
3185 				*fork_charge += size;
3186 			}
3187 		}
3188 
3189 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3190 		    dst_entry->end - dst_entry->start, src_entry->start);
3191 	} else {
3192 		/*
3193 		 * We don't want to make writeable wired pages copy-on-write.
3194 		 * Immediately copy these pages into the new map by simulating
3195 		 * page faults.  The new pages are pageable.
3196 		 */
3197 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3198 		    fork_charge);
3199 	}
3200 }
3201 
3202 /*
3203  * vmspace_map_entry_forked:
3204  * Update the newly-forked vmspace each time a map entry is inherited
3205  * or copied.  The values for vm_dsize and vm_tsize are approximate
3206  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3207  */
3208 static void
3209 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3210     vm_map_entry_t entry)
3211 {
3212 	vm_size_t entrysize;
3213 	vm_offset_t newend;
3214 
3215 	entrysize = entry->end - entry->start;
3216 	vm2->vm_map.size += entrysize;
3217 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3218 		vm2->vm_ssize += btoc(entrysize);
3219 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3220 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3221 		newend = MIN(entry->end,
3222 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3223 		vm2->vm_dsize += btoc(newend - entry->start);
3224 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3225 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3226 		newend = MIN(entry->end,
3227 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3228 		vm2->vm_tsize += btoc(newend - entry->start);
3229 	}
3230 }
3231 
3232 /*
3233  * vmspace_fork:
3234  * Create a new process vmspace structure and vm_map
3235  * based on those of an existing process.  The new map
3236  * is based on the old map, according to the inheritance
3237  * values on the regions in that map.
3238  *
3239  * XXX It might be worth coalescing the entries added to the new vmspace.
3240  *
3241  * The source map must not be locked.
3242  */
3243 struct vmspace *
3244 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3245 {
3246 	struct vmspace *vm2;
3247 	vm_map_t new_map, old_map;
3248 	vm_map_entry_t new_entry, old_entry;
3249 	vm_object_t object;
3250 	int locked;
3251 
3252 	old_map = &vm1->vm_map;
3253 	/* Copy immutable fields of vm1 to vm2. */
3254 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3255 	if (vm2 == NULL)
3256 		return (NULL);
3257 	vm2->vm_taddr = vm1->vm_taddr;
3258 	vm2->vm_daddr = vm1->vm_daddr;
3259 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3260 	vm_map_lock(old_map);
3261 	if (old_map->busy)
3262 		vm_map_wait_busy(old_map);
3263 	new_map = &vm2->vm_map;
3264 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3265 	KASSERT(locked, ("vmspace_fork: lock failed"));
3266 
3267 	old_entry = old_map->header.next;
3268 
3269 	while (old_entry != &old_map->header) {
3270 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3271 			panic("vm_map_fork: encountered a submap");
3272 
3273 		switch (old_entry->inheritance) {
3274 		case VM_INHERIT_NONE:
3275 			break;
3276 
3277 		case VM_INHERIT_SHARE:
3278 			/*
3279 			 * Clone the entry, creating the shared object if necessary.
3280 			 */
3281 			object = old_entry->object.vm_object;
3282 			if (object == NULL) {
3283 				object = vm_object_allocate(OBJT_DEFAULT,
3284 					atop(old_entry->end - old_entry->start));
3285 				old_entry->object.vm_object = object;
3286 				old_entry->offset = 0;
3287 				if (old_entry->cred != NULL) {
3288 					object->cred = old_entry->cred;
3289 					object->charge = old_entry->end -
3290 					    old_entry->start;
3291 					old_entry->cred = NULL;
3292 				}
3293 			}
3294 
3295 			/*
3296 			 * Add the reference before calling vm_object_shadow
3297 			 * to insure that a shadow object is created.
3298 			 */
3299 			vm_object_reference(object);
3300 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3301 				vm_object_shadow(&old_entry->object.vm_object,
3302 				    &old_entry->offset,
3303 				    old_entry->end - old_entry->start);
3304 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3305 				/* Transfer the second reference too. */
3306 				vm_object_reference(
3307 				    old_entry->object.vm_object);
3308 
3309 				/*
3310 				 * As in vm_map_simplify_entry(), the
3311 				 * vnode lock will not be acquired in
3312 				 * this call to vm_object_deallocate().
3313 				 */
3314 				vm_object_deallocate(object);
3315 				object = old_entry->object.vm_object;
3316 			}
3317 			VM_OBJECT_WLOCK(object);
3318 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3319 			if (old_entry->cred != NULL) {
3320 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3321 				object->cred = old_entry->cred;
3322 				object->charge = old_entry->end - old_entry->start;
3323 				old_entry->cred = NULL;
3324 			}
3325 
3326 			/*
3327 			 * Assert the correct state of the vnode
3328 			 * v_writecount while the object is locked, to
3329 			 * not relock it later for the assertion
3330 			 * correctness.
3331 			 */
3332 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3333 			    object->type == OBJT_VNODE) {
3334 				KASSERT(((struct vnode *)object->handle)->
3335 				    v_writecount > 0,
3336 				    ("vmspace_fork: v_writecount %p", object));
3337 				KASSERT(object->un_pager.vnp.writemappings > 0,
3338 				    ("vmspace_fork: vnp.writecount %p",
3339 				    object));
3340 			}
3341 			VM_OBJECT_WUNLOCK(object);
3342 
3343 			/*
3344 			 * Clone the entry, referencing the shared object.
3345 			 */
3346 			new_entry = vm_map_entry_create(new_map);
3347 			*new_entry = *old_entry;
3348 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3349 			    MAP_ENTRY_IN_TRANSITION);
3350 			new_entry->wiring_thread = NULL;
3351 			new_entry->wired_count = 0;
3352 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3353 				vnode_pager_update_writecount(object,
3354 				    new_entry->start, new_entry->end);
3355 			}
3356 
3357 			/*
3358 			 * Insert the entry into the new map -- we know we're
3359 			 * inserting at the end of the new map.
3360 			 */
3361 			vm_map_entry_link(new_map, new_map->header.prev,
3362 			    new_entry);
3363 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3364 
3365 			/*
3366 			 * Update the physical map
3367 			 */
3368 			pmap_copy(new_map->pmap, old_map->pmap,
3369 			    new_entry->start,
3370 			    (old_entry->end - old_entry->start),
3371 			    old_entry->start);
3372 			break;
3373 
3374 		case VM_INHERIT_COPY:
3375 			/*
3376 			 * Clone the entry and link into the map.
3377 			 */
3378 			new_entry = vm_map_entry_create(new_map);
3379 			*new_entry = *old_entry;
3380 			/*
3381 			 * Copied entry is COW over the old object.
3382 			 */
3383 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3384 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3385 			new_entry->wiring_thread = NULL;
3386 			new_entry->wired_count = 0;
3387 			new_entry->object.vm_object = NULL;
3388 			new_entry->cred = NULL;
3389 			vm_map_entry_link(new_map, new_map->header.prev,
3390 			    new_entry);
3391 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3392 			vm_map_copy_entry(old_map, new_map, old_entry,
3393 			    new_entry, fork_charge);
3394 			break;
3395 		}
3396 		old_entry = old_entry->next;
3397 	}
3398 	/*
3399 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3400 	 * map entries, which cannot be done until both old_map and
3401 	 * new_map locks are released.
3402 	 */
3403 	sx_xunlock(&old_map->lock);
3404 	sx_xunlock(&new_map->lock);
3405 	vm_map_process_deferred();
3406 
3407 	return (vm2);
3408 }
3409 
3410 int
3411 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3412     vm_prot_t prot, vm_prot_t max, int cow)
3413 {
3414 	vm_size_t growsize, init_ssize;
3415 	rlim_t lmemlim, vmemlim;
3416 	int rv;
3417 
3418 	growsize = sgrowsiz;
3419 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3420 	vm_map_lock(map);
3421 	PROC_LOCK(curproc);
3422 	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3423 	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3424 	PROC_UNLOCK(curproc);
3425 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3426 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3427 			rv = KERN_NO_SPACE;
3428 			goto out;
3429 		}
3430 	}
3431 	/* If we would blow our VMEM resource limit, no go */
3432 	if (map->size + init_ssize > vmemlim) {
3433 		rv = KERN_NO_SPACE;
3434 		goto out;
3435 	}
3436 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3437 	    max, cow);
3438 out:
3439 	vm_map_unlock(map);
3440 	return (rv);
3441 }
3442 
3443 static int
3444 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3445     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3446 {
3447 	vm_map_entry_t new_entry, prev_entry;
3448 	vm_offset_t bot, top;
3449 	vm_size_t init_ssize;
3450 	int orient, rv;
3451 
3452 	/*
3453 	 * The stack orientation is piggybacked with the cow argument.
3454 	 * Extract it into orient and mask the cow argument so that we
3455 	 * don't pass it around further.
3456 	 * NOTE: We explicitly allow bi-directional stacks.
3457 	 */
3458 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3459 	KASSERT(orient != 0, ("No stack grow direction"));
3460 
3461 	if (addrbos < vm_map_min(map) ||
3462 	    addrbos > vm_map_max(map) ||
3463 	    addrbos + max_ssize < addrbos)
3464 		return (KERN_NO_SPACE);
3465 
3466 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3467 
3468 	/* If addr is already mapped, no go */
3469 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3470 		return (KERN_NO_SPACE);
3471 
3472 	/*
3473 	 * If we can't accomodate max_ssize in the current mapping, no go.
3474 	 * However, we need to be aware that subsequent user mappings might
3475 	 * map into the space we have reserved for stack, and currently this
3476 	 * space is not protected.
3477 	 *
3478 	 * Hopefully we will at least detect this condition when we try to
3479 	 * grow the stack.
3480 	 */
3481 	if ((prev_entry->next != &map->header) &&
3482 	    (prev_entry->next->start < addrbos + max_ssize))
3483 		return (KERN_NO_SPACE);
3484 
3485 	/*
3486 	 * We initially map a stack of only init_ssize.  We will grow as
3487 	 * needed later.  Depending on the orientation of the stack (i.e.
3488 	 * the grow direction) we either map at the top of the range, the
3489 	 * bottom of the range or in the middle.
3490 	 *
3491 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3492 	 * and cow to be 0.  Possibly we should eliminate these as input
3493 	 * parameters, and just pass these values here in the insert call.
3494 	 */
3495 	if (orient == MAP_STACK_GROWS_DOWN)
3496 		bot = addrbos + max_ssize - init_ssize;
3497 	else if (orient == MAP_STACK_GROWS_UP)
3498 		bot = addrbos;
3499 	else
3500 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3501 	top = bot + init_ssize;
3502 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3503 
3504 	/* Now set the avail_ssize amount. */
3505 	if (rv == KERN_SUCCESS) {
3506 		new_entry = prev_entry->next;
3507 		if (new_entry->end != top || new_entry->start != bot)
3508 			panic("Bad entry start/end for new stack entry");
3509 
3510 		new_entry->avail_ssize = max_ssize - init_ssize;
3511 		KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3512 		    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3513 		    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3514 		KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3515 		    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3516 		    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3517 	}
3518 
3519 	return (rv);
3520 }
3521 
3522 static int stack_guard_page = 0;
3523 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3524     &stack_guard_page, 0,
3525     "Insert stack guard page ahead of the growable segments.");
3526 
3527 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3528  * desired address is already mapped, or if we successfully grow
3529  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3530  * stack range (this is strange, but preserves compatibility with
3531  * the grow function in vm_machdep.c).
3532  */
3533 int
3534 vm_map_growstack(struct proc *p, vm_offset_t addr)
3535 {
3536 	vm_map_entry_t next_entry, prev_entry;
3537 	vm_map_entry_t new_entry, stack_entry;
3538 	struct vmspace *vm = p->p_vmspace;
3539 	vm_map_t map = &vm->vm_map;
3540 	vm_offset_t end;
3541 	vm_size_t growsize;
3542 	size_t grow_amount, max_grow;
3543 	rlim_t lmemlim, stacklim, vmemlim;
3544 	int is_procstack, rv;
3545 	struct ucred *cred;
3546 #ifdef notyet
3547 	uint64_t limit;
3548 #endif
3549 #ifdef RACCT
3550 	int error;
3551 #endif
3552 
3553 Retry:
3554 	PROC_LOCK(p);
3555 	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3556 	stacklim = lim_cur(p, RLIMIT_STACK);
3557 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3558 	PROC_UNLOCK(p);
3559 
3560 	vm_map_lock_read(map);
3561 
3562 	/* If addr is already in the entry range, no need to grow.*/
3563 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3564 		vm_map_unlock_read(map);
3565 		return (KERN_SUCCESS);
3566 	}
3567 
3568 	next_entry = prev_entry->next;
3569 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3570 		/*
3571 		 * This entry does not grow upwards. Since the address lies
3572 		 * beyond this entry, the next entry (if one exists) has to
3573 		 * be a downward growable entry. The entry list header is
3574 		 * never a growable entry, so it suffices to check the flags.
3575 		 */
3576 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3577 			vm_map_unlock_read(map);
3578 			return (KERN_SUCCESS);
3579 		}
3580 		stack_entry = next_entry;
3581 	} else {
3582 		/*
3583 		 * This entry grows upward. If the next entry does not at
3584 		 * least grow downwards, this is the entry we need to grow.
3585 		 * otherwise we have two possible choices and we have to
3586 		 * select one.
3587 		 */
3588 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3589 			/*
3590 			 * We have two choices; grow the entry closest to
3591 			 * the address to minimize the amount of growth.
3592 			 */
3593 			if (addr - prev_entry->end <= next_entry->start - addr)
3594 				stack_entry = prev_entry;
3595 			else
3596 				stack_entry = next_entry;
3597 		} else
3598 			stack_entry = prev_entry;
3599 	}
3600 
3601 	if (stack_entry == next_entry) {
3602 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3603 		KASSERT(addr < stack_entry->start, ("foo"));
3604 		end = (prev_entry != &map->header) ? prev_entry->end :
3605 		    stack_entry->start - stack_entry->avail_ssize;
3606 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3607 		max_grow = stack_entry->start - end;
3608 	} else {
3609 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3610 		KASSERT(addr >= stack_entry->end, ("foo"));
3611 		end = (next_entry != &map->header) ? next_entry->start :
3612 		    stack_entry->end + stack_entry->avail_ssize;
3613 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3614 		max_grow = end - stack_entry->end;
3615 	}
3616 
3617 	if (grow_amount > stack_entry->avail_ssize) {
3618 		vm_map_unlock_read(map);
3619 		return (KERN_NO_SPACE);
3620 	}
3621 
3622 	/*
3623 	 * If there is no longer enough space between the entries nogo, and
3624 	 * adjust the available space.  Note: this  should only happen if the
3625 	 * user has mapped into the stack area after the stack was created,
3626 	 * and is probably an error.
3627 	 *
3628 	 * This also effectively destroys any guard page the user might have
3629 	 * intended by limiting the stack size.
3630 	 */
3631 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3632 		if (vm_map_lock_upgrade(map))
3633 			goto Retry;
3634 
3635 		stack_entry->avail_ssize = max_grow;
3636 
3637 		vm_map_unlock(map);
3638 		return (KERN_NO_SPACE);
3639 	}
3640 
3641 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3642 
3643 	/*
3644 	 * If this is the main process stack, see if we're over the stack
3645 	 * limit.
3646 	 */
3647 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3648 		vm_map_unlock_read(map);
3649 		return (KERN_NO_SPACE);
3650 	}
3651 #ifdef RACCT
3652 	PROC_LOCK(p);
3653 	if (is_procstack &&
3654 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3655 		PROC_UNLOCK(p);
3656 		vm_map_unlock_read(map);
3657 		return (KERN_NO_SPACE);
3658 	}
3659 	PROC_UNLOCK(p);
3660 #endif
3661 
3662 	/* Round up the grow amount modulo sgrowsiz */
3663 	growsize = sgrowsiz;
3664 	grow_amount = roundup(grow_amount, growsize);
3665 	if (grow_amount > stack_entry->avail_ssize)
3666 		grow_amount = stack_entry->avail_ssize;
3667 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3668 		grow_amount = trunc_page((vm_size_t)stacklim) -
3669 		    ctob(vm->vm_ssize);
3670 	}
3671 #ifdef notyet
3672 	PROC_LOCK(p);
3673 	limit = racct_get_available(p, RACCT_STACK);
3674 	PROC_UNLOCK(p);
3675 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3676 		grow_amount = limit - ctob(vm->vm_ssize);
3677 #endif
3678 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3679 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3680 			vm_map_unlock_read(map);
3681 			rv = KERN_NO_SPACE;
3682 			goto out;
3683 		}
3684 #ifdef RACCT
3685 		PROC_LOCK(p);
3686 		if (racct_set(p, RACCT_MEMLOCK,
3687 		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3688 			PROC_UNLOCK(p);
3689 			vm_map_unlock_read(map);
3690 			rv = KERN_NO_SPACE;
3691 			goto out;
3692 		}
3693 		PROC_UNLOCK(p);
3694 #endif
3695 	}
3696 	/* If we would blow our VMEM resource limit, no go */
3697 	if (map->size + grow_amount > vmemlim) {
3698 		vm_map_unlock_read(map);
3699 		rv = KERN_NO_SPACE;
3700 		goto out;
3701 	}
3702 #ifdef RACCT
3703 	PROC_LOCK(p);
3704 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3705 		PROC_UNLOCK(p);
3706 		vm_map_unlock_read(map);
3707 		rv = KERN_NO_SPACE;
3708 		goto out;
3709 	}
3710 	PROC_UNLOCK(p);
3711 #endif
3712 
3713 	if (vm_map_lock_upgrade(map))
3714 		goto Retry;
3715 
3716 	if (stack_entry == next_entry) {
3717 		/*
3718 		 * Growing downward.
3719 		 */
3720 		/* Get the preliminary new entry start value */
3721 		addr = stack_entry->start - grow_amount;
3722 
3723 		/*
3724 		 * If this puts us into the previous entry, cut back our
3725 		 * growth to the available space. Also, see the note above.
3726 		 */
3727 		if (addr < end) {
3728 			stack_entry->avail_ssize = max_grow;
3729 			addr = end;
3730 			if (stack_guard_page)
3731 				addr += PAGE_SIZE;
3732 		}
3733 
3734 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3735 		    next_entry->protection, next_entry->max_protection,
3736 		    MAP_STACK_GROWS_DOWN);
3737 
3738 		/* Adjust the available stack space by the amount we grew. */
3739 		if (rv == KERN_SUCCESS) {
3740 			new_entry = prev_entry->next;
3741 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3742 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3743 			KASSERT(new_entry->start == addr, ("foo"));
3744 			KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) !=
3745 			    0, ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3746 			grow_amount = new_entry->end - new_entry->start;
3747 			new_entry->avail_ssize = stack_entry->avail_ssize -
3748 			    grow_amount;
3749 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3750 		}
3751 	} else {
3752 		/*
3753 		 * Growing upward.
3754 		 */
3755 		addr = stack_entry->end + grow_amount;
3756 
3757 		/*
3758 		 * If this puts us into the next entry, cut back our growth
3759 		 * to the available space. Also, see the note above.
3760 		 */
3761 		if (addr > end) {
3762 			stack_entry->avail_ssize = end - stack_entry->end;
3763 			addr = end;
3764 			if (stack_guard_page)
3765 				addr -= PAGE_SIZE;
3766 		}
3767 
3768 		grow_amount = addr - stack_entry->end;
3769 		cred = stack_entry->cred;
3770 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3771 			cred = stack_entry->object.vm_object->cred;
3772 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3773 			rv = KERN_NO_SPACE;
3774 		/* Grow the underlying object if applicable. */
3775 		else if (stack_entry->object.vm_object == NULL ||
3776 			 vm_object_coalesce(stack_entry->object.vm_object,
3777 			 stack_entry->offset,
3778 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3779 			 (vm_size_t)grow_amount, cred != NULL)) {
3780 			map->size += (addr - stack_entry->end);
3781 			/* Update the current entry. */
3782 			stack_entry->end = addr;
3783 			stack_entry->avail_ssize -= grow_amount;
3784 			vm_map_entry_resize_free(map, stack_entry);
3785 			rv = KERN_SUCCESS;
3786 		} else
3787 			rv = KERN_FAILURE;
3788 	}
3789 
3790 	if (rv == KERN_SUCCESS && is_procstack)
3791 		vm->vm_ssize += btoc(grow_amount);
3792 
3793 	vm_map_unlock(map);
3794 
3795 	/*
3796 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3797 	 */
3798 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3799 		vm_map_wire(map,
3800 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3801 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3802 		    (p->p_flag & P_SYSTEM)
3803 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3804 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3805 	}
3806 
3807 out:
3808 #ifdef RACCT
3809 	if (rv != KERN_SUCCESS) {
3810 		PROC_LOCK(p);
3811 		error = racct_set(p, RACCT_VMEM, map->size);
3812 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3813 		if (!old_mlock) {
3814 			error = racct_set(p, RACCT_MEMLOCK,
3815 			    ptoa(pmap_wired_count(map->pmap)));
3816 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3817 		}
3818 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3819 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3820 		PROC_UNLOCK(p);
3821 	}
3822 #endif
3823 
3824 	return (rv);
3825 }
3826 
3827 /*
3828  * Unshare the specified VM space for exec.  If other processes are
3829  * mapped to it, then create a new one.  The new vmspace is null.
3830  */
3831 int
3832 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3833 {
3834 	struct vmspace *oldvmspace = p->p_vmspace;
3835 	struct vmspace *newvmspace;
3836 
3837 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3838 	    ("vmspace_exec recursed"));
3839 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3840 	if (newvmspace == NULL)
3841 		return (ENOMEM);
3842 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3843 	/*
3844 	 * This code is written like this for prototype purposes.  The
3845 	 * goal is to avoid running down the vmspace here, but let the
3846 	 * other process's that are still using the vmspace to finally
3847 	 * run it down.  Even though there is little or no chance of blocking
3848 	 * here, it is a good idea to keep this form for future mods.
3849 	 */
3850 	PROC_VMSPACE_LOCK(p);
3851 	p->p_vmspace = newvmspace;
3852 	PROC_VMSPACE_UNLOCK(p);
3853 	if (p == curthread->td_proc)
3854 		pmap_activate(curthread);
3855 	curthread->td_pflags |= TDP_EXECVMSPC;
3856 	return (0);
3857 }
3858 
3859 /*
3860  * Unshare the specified VM space for forcing COW.  This
3861  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3862  */
3863 int
3864 vmspace_unshare(struct proc *p)
3865 {
3866 	struct vmspace *oldvmspace = p->p_vmspace;
3867 	struct vmspace *newvmspace;
3868 	vm_ooffset_t fork_charge;
3869 
3870 	if (oldvmspace->vm_refcnt == 1)
3871 		return (0);
3872 	fork_charge = 0;
3873 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3874 	if (newvmspace == NULL)
3875 		return (ENOMEM);
3876 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3877 		vmspace_free(newvmspace);
3878 		return (ENOMEM);
3879 	}
3880 	PROC_VMSPACE_LOCK(p);
3881 	p->p_vmspace = newvmspace;
3882 	PROC_VMSPACE_UNLOCK(p);
3883 	if (p == curthread->td_proc)
3884 		pmap_activate(curthread);
3885 	vmspace_free(oldvmspace);
3886 	return (0);
3887 }
3888 
3889 /*
3890  *	vm_map_lookup:
3891  *
3892  *	Finds the VM object, offset, and
3893  *	protection for a given virtual address in the
3894  *	specified map, assuming a page fault of the
3895  *	type specified.
3896  *
3897  *	Leaves the map in question locked for read; return
3898  *	values are guaranteed until a vm_map_lookup_done
3899  *	call is performed.  Note that the map argument
3900  *	is in/out; the returned map must be used in
3901  *	the call to vm_map_lookup_done.
3902  *
3903  *	A handle (out_entry) is returned for use in
3904  *	vm_map_lookup_done, to make that fast.
3905  *
3906  *	If a lookup is requested with "write protection"
3907  *	specified, the map may be changed to perform virtual
3908  *	copying operations, although the data referenced will
3909  *	remain the same.
3910  */
3911 int
3912 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3913 	      vm_offset_t vaddr,
3914 	      vm_prot_t fault_typea,
3915 	      vm_map_entry_t *out_entry,	/* OUT */
3916 	      vm_object_t *object,		/* OUT */
3917 	      vm_pindex_t *pindex,		/* OUT */
3918 	      vm_prot_t *out_prot,		/* OUT */
3919 	      boolean_t *wired)			/* OUT */
3920 {
3921 	vm_map_entry_t entry;
3922 	vm_map_t map = *var_map;
3923 	vm_prot_t prot;
3924 	vm_prot_t fault_type = fault_typea;
3925 	vm_object_t eobject;
3926 	vm_size_t size;
3927 	struct ucred *cred;
3928 
3929 RetryLookup:;
3930 
3931 	vm_map_lock_read(map);
3932 
3933 	/*
3934 	 * Lookup the faulting address.
3935 	 */
3936 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3937 		vm_map_unlock_read(map);
3938 		return (KERN_INVALID_ADDRESS);
3939 	}
3940 
3941 	entry = *out_entry;
3942 
3943 	/*
3944 	 * Handle submaps.
3945 	 */
3946 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3947 		vm_map_t old_map = map;
3948 
3949 		*var_map = map = entry->object.sub_map;
3950 		vm_map_unlock_read(old_map);
3951 		goto RetryLookup;
3952 	}
3953 
3954 	/*
3955 	 * Check whether this task is allowed to have this page.
3956 	 */
3957 	prot = entry->protection;
3958 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3959 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3960 		vm_map_unlock_read(map);
3961 		return (KERN_PROTECTION_FAILURE);
3962 	}
3963 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3964 	    (entry->eflags & MAP_ENTRY_COW) &&
3965 	    (fault_type & VM_PROT_WRITE)) {
3966 		vm_map_unlock_read(map);
3967 		return (KERN_PROTECTION_FAILURE);
3968 	}
3969 	if ((fault_typea & VM_PROT_COPY) != 0 &&
3970 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3971 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3972 		vm_map_unlock_read(map);
3973 		return (KERN_PROTECTION_FAILURE);
3974 	}
3975 
3976 	/*
3977 	 * If this page is not pageable, we have to get it for all possible
3978 	 * accesses.
3979 	 */
3980 	*wired = (entry->wired_count != 0);
3981 	if (*wired)
3982 		fault_type = entry->protection;
3983 	size = entry->end - entry->start;
3984 	/*
3985 	 * If the entry was copy-on-write, we either ...
3986 	 */
3987 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3988 		/*
3989 		 * If we want to write the page, we may as well handle that
3990 		 * now since we've got the map locked.
3991 		 *
3992 		 * If we don't need to write the page, we just demote the
3993 		 * permissions allowed.
3994 		 */
3995 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3996 		    (fault_typea & VM_PROT_COPY) != 0) {
3997 			/*
3998 			 * Make a new object, and place it in the object
3999 			 * chain.  Note that no new references have appeared
4000 			 * -- one just moved from the map to the new
4001 			 * object.
4002 			 */
4003 			if (vm_map_lock_upgrade(map))
4004 				goto RetryLookup;
4005 
4006 			if (entry->cred == NULL) {
4007 				/*
4008 				 * The debugger owner is charged for
4009 				 * the memory.
4010 				 */
4011 				cred = curthread->td_ucred;
4012 				crhold(cred);
4013 				if (!swap_reserve_by_cred(size, cred)) {
4014 					crfree(cred);
4015 					vm_map_unlock(map);
4016 					return (KERN_RESOURCE_SHORTAGE);
4017 				}
4018 				entry->cred = cred;
4019 			}
4020 			vm_object_shadow(&entry->object.vm_object,
4021 			    &entry->offset, size);
4022 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4023 			eobject = entry->object.vm_object;
4024 			if (eobject->cred != NULL) {
4025 				/*
4026 				 * The object was not shadowed.
4027 				 */
4028 				swap_release_by_cred(size, entry->cred);
4029 				crfree(entry->cred);
4030 				entry->cred = NULL;
4031 			} else if (entry->cred != NULL) {
4032 				VM_OBJECT_WLOCK(eobject);
4033 				eobject->cred = entry->cred;
4034 				eobject->charge = size;
4035 				VM_OBJECT_WUNLOCK(eobject);
4036 				entry->cred = NULL;
4037 			}
4038 
4039 			vm_map_lock_downgrade(map);
4040 		} else {
4041 			/*
4042 			 * We're attempting to read a copy-on-write page --
4043 			 * don't allow writes.
4044 			 */
4045 			prot &= ~VM_PROT_WRITE;
4046 		}
4047 	}
4048 
4049 	/*
4050 	 * Create an object if necessary.
4051 	 */
4052 	if (entry->object.vm_object == NULL &&
4053 	    !map->system_map) {
4054 		if (vm_map_lock_upgrade(map))
4055 			goto RetryLookup;
4056 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4057 		    atop(size));
4058 		entry->offset = 0;
4059 		if (entry->cred != NULL) {
4060 			VM_OBJECT_WLOCK(entry->object.vm_object);
4061 			entry->object.vm_object->cred = entry->cred;
4062 			entry->object.vm_object->charge = size;
4063 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4064 			entry->cred = NULL;
4065 		}
4066 		vm_map_lock_downgrade(map);
4067 	}
4068 
4069 	/*
4070 	 * Return the object/offset from this entry.  If the entry was
4071 	 * copy-on-write or empty, it has been fixed up.
4072 	 */
4073 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4074 	*object = entry->object.vm_object;
4075 
4076 	*out_prot = prot;
4077 	return (KERN_SUCCESS);
4078 }
4079 
4080 /*
4081  *	vm_map_lookup_locked:
4082  *
4083  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4084  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4085  */
4086 int
4087 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4088 		     vm_offset_t vaddr,
4089 		     vm_prot_t fault_typea,
4090 		     vm_map_entry_t *out_entry,	/* OUT */
4091 		     vm_object_t *object,	/* OUT */
4092 		     vm_pindex_t *pindex,	/* OUT */
4093 		     vm_prot_t *out_prot,	/* OUT */
4094 		     boolean_t *wired)		/* OUT */
4095 {
4096 	vm_map_entry_t entry;
4097 	vm_map_t map = *var_map;
4098 	vm_prot_t prot;
4099 	vm_prot_t fault_type = fault_typea;
4100 
4101 	/*
4102 	 * Lookup the faulting address.
4103 	 */
4104 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4105 		return (KERN_INVALID_ADDRESS);
4106 
4107 	entry = *out_entry;
4108 
4109 	/*
4110 	 * Fail if the entry refers to a submap.
4111 	 */
4112 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4113 		return (KERN_FAILURE);
4114 
4115 	/*
4116 	 * Check whether this task is allowed to have this page.
4117 	 */
4118 	prot = entry->protection;
4119 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4120 	if ((fault_type & prot) != fault_type)
4121 		return (KERN_PROTECTION_FAILURE);
4122 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4123 	    (entry->eflags & MAP_ENTRY_COW) &&
4124 	    (fault_type & VM_PROT_WRITE))
4125 		return (KERN_PROTECTION_FAILURE);
4126 
4127 	/*
4128 	 * If this page is not pageable, we have to get it for all possible
4129 	 * accesses.
4130 	 */
4131 	*wired = (entry->wired_count != 0);
4132 	if (*wired)
4133 		fault_type = entry->protection;
4134 
4135 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4136 		/*
4137 		 * Fail if the entry was copy-on-write for a write fault.
4138 		 */
4139 		if (fault_type & VM_PROT_WRITE)
4140 			return (KERN_FAILURE);
4141 		/*
4142 		 * We're attempting to read a copy-on-write page --
4143 		 * don't allow writes.
4144 		 */
4145 		prot &= ~VM_PROT_WRITE;
4146 	}
4147 
4148 	/*
4149 	 * Fail if an object should be created.
4150 	 */
4151 	if (entry->object.vm_object == NULL && !map->system_map)
4152 		return (KERN_FAILURE);
4153 
4154 	/*
4155 	 * Return the object/offset from this entry.  If the entry was
4156 	 * copy-on-write or empty, it has been fixed up.
4157 	 */
4158 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4159 	*object = entry->object.vm_object;
4160 
4161 	*out_prot = prot;
4162 	return (KERN_SUCCESS);
4163 }
4164 
4165 /*
4166  *	vm_map_lookup_done:
4167  *
4168  *	Releases locks acquired by a vm_map_lookup
4169  *	(according to the handle returned by that lookup).
4170  */
4171 void
4172 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4173 {
4174 	/*
4175 	 * Unlock the main-level map
4176 	 */
4177 	vm_map_unlock_read(map);
4178 }
4179 
4180 #include "opt_ddb.h"
4181 #ifdef DDB
4182 #include <sys/kernel.h>
4183 
4184 #include <ddb/ddb.h>
4185 
4186 static void
4187 vm_map_print(vm_map_t map)
4188 {
4189 	vm_map_entry_t entry;
4190 
4191 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4192 	    (void *)map,
4193 	    (void *)map->pmap, map->nentries, map->timestamp);
4194 
4195 	db_indent += 2;
4196 	for (entry = map->header.next; entry != &map->header;
4197 	    entry = entry->next) {
4198 		db_iprintf("map entry %p: start=%p, end=%p\n",
4199 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4200 		{
4201 			static char *inheritance_name[4] =
4202 			{"share", "copy", "none", "donate_copy"};
4203 
4204 			db_iprintf(" prot=%x/%x/%s",
4205 			    entry->protection,
4206 			    entry->max_protection,
4207 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4208 			if (entry->wired_count != 0)
4209 				db_printf(", wired");
4210 		}
4211 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4212 			db_printf(", share=%p, offset=0x%jx\n",
4213 			    (void *)entry->object.sub_map,
4214 			    (uintmax_t)entry->offset);
4215 			if ((entry->prev == &map->header) ||
4216 			    (entry->prev->object.sub_map !=
4217 				entry->object.sub_map)) {
4218 				db_indent += 2;
4219 				vm_map_print((vm_map_t)entry->object.sub_map);
4220 				db_indent -= 2;
4221 			}
4222 		} else {
4223 			if (entry->cred != NULL)
4224 				db_printf(", ruid %d", entry->cred->cr_ruid);
4225 			db_printf(", object=%p, offset=0x%jx",
4226 			    (void *)entry->object.vm_object,
4227 			    (uintmax_t)entry->offset);
4228 			if (entry->object.vm_object && entry->object.vm_object->cred)
4229 				db_printf(", obj ruid %d charge %jx",
4230 				    entry->object.vm_object->cred->cr_ruid,
4231 				    (uintmax_t)entry->object.vm_object->charge);
4232 			if (entry->eflags & MAP_ENTRY_COW)
4233 				db_printf(", copy (%s)",
4234 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4235 			db_printf("\n");
4236 
4237 			if ((entry->prev == &map->header) ||
4238 			    (entry->prev->object.vm_object !=
4239 				entry->object.vm_object)) {
4240 				db_indent += 2;
4241 				vm_object_print((db_expr_t)(intptr_t)
4242 						entry->object.vm_object,
4243 						0, 0, (char *)0);
4244 				db_indent -= 2;
4245 			}
4246 		}
4247 	}
4248 	db_indent -= 2;
4249 }
4250 
4251 DB_SHOW_COMMAND(map, map)
4252 {
4253 
4254 	if (!have_addr) {
4255 		db_printf("usage: show map <addr>\n");
4256 		return;
4257 	}
4258 	vm_map_print((vm_map_t)addr);
4259 }
4260 
4261 DB_SHOW_COMMAND(procvm, procvm)
4262 {
4263 	struct proc *p;
4264 
4265 	if (have_addr) {
4266 		p = (struct proc *) addr;
4267 	} else {
4268 		p = curproc;
4269 	}
4270 
4271 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4272 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4273 	    (void *)vmspace_pmap(p->p_vmspace));
4274 
4275 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4276 }
4277 
4278 #endif /* DDB */
4279