1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/elf.h> 73 #include <sys/kernel.h> 74 #include <sys/ktr.h> 75 #include <sys/lock.h> 76 #include <sys/mutex.h> 77 #include <sys/proc.h> 78 #include <sys/vmmeter.h> 79 #include <sys/mman.h> 80 #include <sys/vnode.h> 81 #include <sys/racct.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/file.h> 85 #include <sys/sysctl.h> 86 #include <sys/sysent.h> 87 #include <sys/shm.h> 88 89 #include <vm/vm.h> 90 #include <vm/vm_param.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/vm_object.h> 96 #include <vm/vm_pager.h> 97 #include <vm/vm_kern.h> 98 #include <vm/vm_extern.h> 99 #include <vm/vnode_pager.h> 100 #include <vm/swap_pager.h> 101 #include <vm/uma.h> 102 103 /* 104 * Virtual memory maps provide for the mapping, protection, 105 * and sharing of virtual memory objects. In addition, 106 * this module provides for an efficient virtual copy of 107 * memory from one map to another. 108 * 109 * Synchronization is required prior to most operations. 110 * 111 * Maps consist of an ordered doubly-linked list of simple 112 * entries; a self-adjusting binary search tree of these 113 * entries is used to speed up lookups. 114 * 115 * Since portions of maps are specified by start/end addresses, 116 * which may not align with existing map entries, all 117 * routines merely "clip" entries to these start/end values. 118 * [That is, an entry is split into two, bordering at a 119 * start or end value.] Note that these clippings may not 120 * always be necessary (as the two resulting entries are then 121 * not changed); however, the clipping is done for convenience. 122 * 123 * As mentioned above, virtual copy operations are performed 124 * by copying VM object references from one map to 125 * another, and then marking both regions as copy-on-write. 126 */ 127 128 static struct mtx map_sleep_mtx; 129 static uma_zone_t mapentzone; 130 static uma_zone_t kmapentzone; 131 static uma_zone_t vmspace_zone; 132 static int vmspace_zinit(void *mem, int size, int flags); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 139 vm_map_entry_t gap_entry); 140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 141 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 142 #ifdef INVARIANTS 143 static void vmspace_zdtor(void *mem, int size, void *arg); 144 #endif 145 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 146 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 147 int cow); 148 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 149 vm_offset_t failed_addr); 150 151 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 152 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 153 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 154 155 /* 156 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 157 * stable. 158 */ 159 #define PROC_VMSPACE_LOCK(p) do { } while (0) 160 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 161 162 /* 163 * VM_MAP_RANGE_CHECK: [ internal use only ] 164 * 165 * Asserts that the starting and ending region 166 * addresses fall within the valid range of the map. 167 */ 168 #define VM_MAP_RANGE_CHECK(map, start, end) \ 169 { \ 170 if (start < vm_map_min(map)) \ 171 start = vm_map_min(map); \ 172 if (end > vm_map_max(map)) \ 173 end = vm_map_max(map); \ 174 if (start > end) \ 175 start = end; \ 176 } 177 178 #ifndef UMA_MD_SMALL_ALLOC 179 180 /* 181 * Allocate a new slab for kernel map entries. The kernel map may be locked or 182 * unlocked, depending on whether the request is coming from the kernel map or a 183 * submap. This function allocates a virtual address range directly from the 184 * kernel map instead of the kmem_* layer to avoid recursion on the kernel map 185 * lock and also to avoid triggering allocator recursion in the vmem boundary 186 * tag allocator. 187 */ 188 static void * 189 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 190 int wait) 191 { 192 vm_offset_t addr; 193 int error, locked; 194 195 *pflag = UMA_SLAB_PRIV; 196 197 if (!(locked = vm_map_locked(kernel_map))) 198 vm_map_lock(kernel_map); 199 addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes); 200 if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map)) 201 panic("%s: kernel map is exhausted", __func__); 202 error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes, 203 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 204 if (error != KERN_SUCCESS) 205 panic("%s: vm_map_insert() failed: %d", __func__, error); 206 if (!locked) 207 vm_map_unlock(kernel_map); 208 error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT | 209 M_USE_RESERVE | (wait & M_ZERO)); 210 if (error == KERN_SUCCESS) { 211 return ((void *)addr); 212 } else { 213 if (!locked) 214 vm_map_lock(kernel_map); 215 vm_map_delete(kernel_map, addr, bytes); 216 if (!locked) 217 vm_map_unlock(kernel_map); 218 return (NULL); 219 } 220 } 221 222 static void 223 kmapent_free(void *item, vm_size_t size, uint8_t pflag) 224 { 225 vm_offset_t addr; 226 int error __diagused; 227 228 if ((pflag & UMA_SLAB_PRIV) == 0) 229 /* XXX leaked */ 230 return; 231 232 addr = (vm_offset_t)item; 233 kmem_unback(kernel_object, addr, size); 234 error = vm_map_remove(kernel_map, addr, addr + size); 235 KASSERT(error == KERN_SUCCESS, 236 ("%s: vm_map_remove failed: %d", __func__, error)); 237 } 238 239 /* 240 * The worst-case upper bound on the number of kernel map entries that may be 241 * created before the zone must be replenished in _vm_map_unlock(). 242 */ 243 #define KMAPENT_RESERVE 1 244 245 #endif /* !UMD_MD_SMALL_ALLOC */ 246 247 /* 248 * vm_map_startup: 249 * 250 * Initialize the vm_map module. Must be called before any other vm_map 251 * routines. 252 * 253 * User map and entry structures are allocated from the general purpose 254 * memory pool. Kernel maps are statically defined. Kernel map entries 255 * require special handling to avoid recursion; see the comments above 256 * kmapent_alloc() and in vm_map_entry_create(). 257 */ 258 void 259 vm_map_startup(void) 260 { 261 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 262 263 /* 264 * Disable the use of per-CPU buckets: map entry allocation is 265 * serialized by the kernel map lock. 266 */ 267 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 268 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 269 UMA_ZONE_VM | UMA_ZONE_NOBUCKET); 270 #ifndef UMA_MD_SMALL_ALLOC 271 /* Reserve an extra map entry for use when replenishing the reserve. */ 272 uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1); 273 uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1); 274 uma_zone_set_allocf(kmapentzone, kmapent_alloc); 275 uma_zone_set_freef(kmapentzone, kmapent_free); 276 #endif 277 278 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 279 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 280 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 281 #ifdef INVARIANTS 282 vmspace_zdtor, 283 #else 284 NULL, 285 #endif 286 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 287 } 288 289 static int 290 vmspace_zinit(void *mem, int size, int flags) 291 { 292 struct vmspace *vm; 293 vm_map_t map; 294 295 vm = (struct vmspace *)mem; 296 map = &vm->vm_map; 297 298 memset(map, 0, sizeof(*map)); 299 mtx_init(&map->system_mtx, "vm map (system)", NULL, 300 MTX_DEF | MTX_DUPOK); 301 sx_init(&map->lock, "vm map (user)"); 302 PMAP_LOCK_INIT(vmspace_pmap(vm)); 303 return (0); 304 } 305 306 #ifdef INVARIANTS 307 static void 308 vmspace_zdtor(void *mem, int size, void *arg) 309 { 310 struct vmspace *vm; 311 312 vm = (struct vmspace *)mem; 313 KASSERT(vm->vm_map.nentries == 0, 314 ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries)); 315 KASSERT(vm->vm_map.size == 0, 316 ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size)); 317 } 318 #endif /* INVARIANTS */ 319 320 /* 321 * Allocate a vmspace structure, including a vm_map and pmap, 322 * and initialize those structures. The refcnt is set to 1. 323 */ 324 struct vmspace * 325 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 326 { 327 struct vmspace *vm; 328 329 vm = uma_zalloc(vmspace_zone, M_WAITOK); 330 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 331 if (!pinit(vmspace_pmap(vm))) { 332 uma_zfree(vmspace_zone, vm); 333 return (NULL); 334 } 335 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 336 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 337 refcount_init(&vm->vm_refcnt, 1); 338 vm->vm_shm = NULL; 339 vm->vm_swrss = 0; 340 vm->vm_tsize = 0; 341 vm->vm_dsize = 0; 342 vm->vm_ssize = 0; 343 vm->vm_taddr = 0; 344 vm->vm_daddr = 0; 345 vm->vm_maxsaddr = 0; 346 return (vm); 347 } 348 349 #ifdef RACCT 350 static void 351 vmspace_container_reset(struct proc *p) 352 { 353 354 PROC_LOCK(p); 355 racct_set(p, RACCT_DATA, 0); 356 racct_set(p, RACCT_STACK, 0); 357 racct_set(p, RACCT_RSS, 0); 358 racct_set(p, RACCT_MEMLOCK, 0); 359 racct_set(p, RACCT_VMEM, 0); 360 PROC_UNLOCK(p); 361 } 362 #endif 363 364 static inline void 365 vmspace_dofree(struct vmspace *vm) 366 { 367 368 CTR1(KTR_VM, "vmspace_free: %p", vm); 369 370 /* 371 * Make sure any SysV shm is freed, it might not have been in 372 * exit1(). 373 */ 374 shmexit(vm); 375 376 /* 377 * Lock the map, to wait out all other references to it. 378 * Delete all of the mappings and pages they hold, then call 379 * the pmap module to reclaim anything left. 380 */ 381 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 382 vm_map_max(&vm->vm_map)); 383 384 pmap_release(vmspace_pmap(vm)); 385 vm->vm_map.pmap = NULL; 386 uma_zfree(vmspace_zone, vm); 387 } 388 389 void 390 vmspace_free(struct vmspace *vm) 391 { 392 393 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 394 "vmspace_free() called"); 395 396 if (refcount_release(&vm->vm_refcnt)) 397 vmspace_dofree(vm); 398 } 399 400 void 401 vmspace_exitfree(struct proc *p) 402 { 403 struct vmspace *vm; 404 405 PROC_VMSPACE_LOCK(p); 406 vm = p->p_vmspace; 407 p->p_vmspace = NULL; 408 PROC_VMSPACE_UNLOCK(p); 409 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 410 vmspace_free(vm); 411 } 412 413 void 414 vmspace_exit(struct thread *td) 415 { 416 struct vmspace *vm; 417 struct proc *p; 418 bool released; 419 420 p = td->td_proc; 421 vm = p->p_vmspace; 422 423 /* 424 * Prepare to release the vmspace reference. The thread that releases 425 * the last reference is responsible for tearing down the vmspace. 426 * However, threads not releasing the final reference must switch to the 427 * kernel's vmspace0 before the decrement so that the subsequent pmap 428 * deactivation does not modify a freed vmspace. 429 */ 430 refcount_acquire(&vmspace0.vm_refcnt); 431 if (!(released = refcount_release_if_last(&vm->vm_refcnt))) { 432 if (p->p_vmspace != &vmspace0) { 433 PROC_VMSPACE_LOCK(p); 434 p->p_vmspace = &vmspace0; 435 PROC_VMSPACE_UNLOCK(p); 436 pmap_activate(td); 437 } 438 released = refcount_release(&vm->vm_refcnt); 439 } 440 if (released) { 441 /* 442 * pmap_remove_pages() expects the pmap to be active, so switch 443 * back first if necessary. 444 */ 445 if (p->p_vmspace != vm) { 446 PROC_VMSPACE_LOCK(p); 447 p->p_vmspace = vm; 448 PROC_VMSPACE_UNLOCK(p); 449 pmap_activate(td); 450 } 451 pmap_remove_pages(vmspace_pmap(vm)); 452 PROC_VMSPACE_LOCK(p); 453 p->p_vmspace = &vmspace0; 454 PROC_VMSPACE_UNLOCK(p); 455 pmap_activate(td); 456 vmspace_dofree(vm); 457 } 458 #ifdef RACCT 459 if (racct_enable) 460 vmspace_container_reset(p); 461 #endif 462 } 463 464 /* Acquire reference to vmspace owned by another process. */ 465 466 struct vmspace * 467 vmspace_acquire_ref(struct proc *p) 468 { 469 struct vmspace *vm; 470 471 PROC_VMSPACE_LOCK(p); 472 vm = p->p_vmspace; 473 if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) { 474 PROC_VMSPACE_UNLOCK(p); 475 return (NULL); 476 } 477 if (vm != p->p_vmspace) { 478 PROC_VMSPACE_UNLOCK(p); 479 vmspace_free(vm); 480 return (NULL); 481 } 482 PROC_VMSPACE_UNLOCK(p); 483 return (vm); 484 } 485 486 /* 487 * Switch between vmspaces in an AIO kernel process. 488 * 489 * The new vmspace is either the vmspace of a user process obtained 490 * from an active AIO request or the initial vmspace of the AIO kernel 491 * process (when it is idling). Because user processes will block to 492 * drain any active AIO requests before proceeding in exit() or 493 * execve(), the reference count for vmspaces from AIO requests can 494 * never be 0. Similarly, AIO kernel processes hold an extra 495 * reference on their initial vmspace for the life of the process. As 496 * a result, the 'newvm' vmspace always has a non-zero reference 497 * count. This permits an additional reference on 'newvm' to be 498 * acquired via a simple atomic increment rather than the loop in 499 * vmspace_acquire_ref() above. 500 */ 501 void 502 vmspace_switch_aio(struct vmspace *newvm) 503 { 504 struct vmspace *oldvm; 505 506 /* XXX: Need some way to assert that this is an aio daemon. */ 507 508 KASSERT(refcount_load(&newvm->vm_refcnt) > 0, 509 ("vmspace_switch_aio: newvm unreferenced")); 510 511 oldvm = curproc->p_vmspace; 512 if (oldvm == newvm) 513 return; 514 515 /* 516 * Point to the new address space and refer to it. 517 */ 518 curproc->p_vmspace = newvm; 519 refcount_acquire(&newvm->vm_refcnt); 520 521 /* Activate the new mapping. */ 522 pmap_activate(curthread); 523 524 vmspace_free(oldvm); 525 } 526 527 void 528 _vm_map_lock(vm_map_t map, const char *file, int line) 529 { 530 531 if (map->system_map) 532 mtx_lock_flags_(&map->system_mtx, 0, file, line); 533 else 534 sx_xlock_(&map->lock, file, line); 535 map->timestamp++; 536 } 537 538 void 539 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 540 { 541 vm_object_t object; 542 struct vnode *vp; 543 bool vp_held; 544 545 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 546 return; 547 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 548 ("Submap with execs")); 549 object = entry->object.vm_object; 550 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 551 if ((object->flags & OBJ_ANON) != 0) 552 object = object->handle; 553 else 554 KASSERT(object->backing_object == NULL, 555 ("non-anon object %p shadows", object)); 556 KASSERT(object != NULL, ("No content object for text, entry %p obj %p", 557 entry, entry->object.vm_object)); 558 559 /* 560 * Mostly, we do not lock the backing object. It is 561 * referenced by the entry we are processing, so it cannot go 562 * away. 563 */ 564 vm_pager_getvp(object, &vp, &vp_held); 565 if (vp != NULL) { 566 if (add) { 567 VOP_SET_TEXT_CHECKED(vp); 568 } else { 569 vn_lock(vp, LK_SHARED | LK_RETRY); 570 VOP_UNSET_TEXT_CHECKED(vp); 571 VOP_UNLOCK(vp); 572 } 573 if (vp_held) 574 vdrop(vp); 575 } 576 } 577 578 /* 579 * Use a different name for this vm_map_entry field when it's use 580 * is not consistent with its use as part of an ordered search tree. 581 */ 582 #define defer_next right 583 584 static void 585 vm_map_process_deferred(void) 586 { 587 struct thread *td; 588 vm_map_entry_t entry, next; 589 vm_object_t object; 590 591 td = curthread; 592 entry = td->td_map_def_user; 593 td->td_map_def_user = NULL; 594 while (entry != NULL) { 595 next = entry->defer_next; 596 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT | 597 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT | 598 MAP_ENTRY_VN_EXEC)); 599 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) { 600 /* 601 * Decrement the object's writemappings and 602 * possibly the vnode's v_writecount. 603 */ 604 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 605 ("Submap with writecount")); 606 object = entry->object.vm_object; 607 KASSERT(object != NULL, ("No object for writecount")); 608 vm_pager_release_writecount(object, entry->start, 609 entry->end); 610 } 611 vm_map_entry_set_vnode_text(entry, false); 612 vm_map_entry_deallocate(entry, FALSE); 613 entry = next; 614 } 615 } 616 617 #ifdef INVARIANTS 618 static void 619 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 620 { 621 622 if (map->system_map) 623 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 624 else 625 sx_assert_(&map->lock, SA_XLOCKED, file, line); 626 } 627 628 #define VM_MAP_ASSERT_LOCKED(map) \ 629 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 630 631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL }; 632 #ifdef DIAGNOSTIC 633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK; 634 #else 635 static int enable_vmmap_check = VMMAP_CHECK_NONE; 636 #endif 637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 638 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 639 640 static void _vm_map_assert_consistent(vm_map_t map, int check); 641 642 #define VM_MAP_ASSERT_CONSISTENT(map) \ 643 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL) 644 #ifdef DIAGNOSTIC 645 #define VM_MAP_UNLOCK_CONSISTENT(map) do { \ 646 if (map->nupdates > map->nentries) { \ 647 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \ 648 map->nupdates = 0; \ 649 } \ 650 } while (0) 651 #else 652 #define VM_MAP_UNLOCK_CONSISTENT(map) 653 #endif 654 #else 655 #define VM_MAP_ASSERT_LOCKED(map) 656 #define VM_MAP_ASSERT_CONSISTENT(map) 657 #define VM_MAP_UNLOCK_CONSISTENT(map) 658 #endif /* INVARIANTS */ 659 660 void 661 _vm_map_unlock(vm_map_t map, const char *file, int line) 662 { 663 664 VM_MAP_UNLOCK_CONSISTENT(map); 665 if (map->system_map) { 666 #ifndef UMA_MD_SMALL_ALLOC 667 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) { 668 uma_prealloc(kmapentzone, 1); 669 map->flags &= ~MAP_REPLENISH; 670 } 671 #endif 672 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 673 } else { 674 sx_xunlock_(&map->lock, file, line); 675 vm_map_process_deferred(); 676 } 677 } 678 679 void 680 _vm_map_lock_read(vm_map_t map, const char *file, int line) 681 { 682 683 if (map->system_map) 684 mtx_lock_flags_(&map->system_mtx, 0, file, line); 685 else 686 sx_slock_(&map->lock, file, line); 687 } 688 689 void 690 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 691 { 692 693 if (map->system_map) { 694 KASSERT((map->flags & MAP_REPLENISH) == 0, 695 ("%s: MAP_REPLENISH leaked", __func__)); 696 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 697 } else { 698 sx_sunlock_(&map->lock, file, line); 699 vm_map_process_deferred(); 700 } 701 } 702 703 int 704 _vm_map_trylock(vm_map_t map, const char *file, int line) 705 { 706 int error; 707 708 error = map->system_map ? 709 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 710 !sx_try_xlock_(&map->lock, file, line); 711 if (error == 0) 712 map->timestamp++; 713 return (error == 0); 714 } 715 716 int 717 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 718 { 719 int error; 720 721 error = map->system_map ? 722 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 723 !sx_try_slock_(&map->lock, file, line); 724 return (error == 0); 725 } 726 727 /* 728 * _vm_map_lock_upgrade: [ internal use only ] 729 * 730 * Tries to upgrade a read (shared) lock on the specified map to a write 731 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 732 * non-zero value if the upgrade fails. If the upgrade fails, the map is 733 * returned without a read or write lock held. 734 * 735 * Requires that the map be read locked. 736 */ 737 int 738 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 739 { 740 unsigned int last_timestamp; 741 742 if (map->system_map) { 743 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 744 } else { 745 if (!sx_try_upgrade_(&map->lock, file, line)) { 746 last_timestamp = map->timestamp; 747 sx_sunlock_(&map->lock, file, line); 748 vm_map_process_deferred(); 749 /* 750 * If the map's timestamp does not change while the 751 * map is unlocked, then the upgrade succeeds. 752 */ 753 sx_xlock_(&map->lock, file, line); 754 if (last_timestamp != map->timestamp) { 755 sx_xunlock_(&map->lock, file, line); 756 return (1); 757 } 758 } 759 } 760 map->timestamp++; 761 return (0); 762 } 763 764 void 765 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 766 { 767 768 if (map->system_map) { 769 KASSERT((map->flags & MAP_REPLENISH) == 0, 770 ("%s: MAP_REPLENISH leaked", __func__)); 771 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 772 } else { 773 VM_MAP_UNLOCK_CONSISTENT(map); 774 sx_downgrade_(&map->lock, file, line); 775 } 776 } 777 778 /* 779 * vm_map_locked: 780 * 781 * Returns a non-zero value if the caller holds a write (exclusive) lock 782 * on the specified map and the value "0" otherwise. 783 */ 784 int 785 vm_map_locked(vm_map_t map) 786 { 787 788 if (map->system_map) 789 return (mtx_owned(&map->system_mtx)); 790 else 791 return (sx_xlocked(&map->lock)); 792 } 793 794 /* 795 * _vm_map_unlock_and_wait: 796 * 797 * Atomically releases the lock on the specified map and puts the calling 798 * thread to sleep. The calling thread will remain asleep until either 799 * vm_map_wakeup() is performed on the map or the specified timeout is 800 * exceeded. 801 * 802 * WARNING! This function does not perform deferred deallocations of 803 * objects and map entries. Therefore, the calling thread is expected to 804 * reacquire the map lock after reawakening and later perform an ordinary 805 * unlock operation, such as vm_map_unlock(), before completing its 806 * operation on the map. 807 */ 808 int 809 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 810 { 811 812 VM_MAP_UNLOCK_CONSISTENT(map); 813 mtx_lock(&map_sleep_mtx); 814 if (map->system_map) { 815 KASSERT((map->flags & MAP_REPLENISH) == 0, 816 ("%s: MAP_REPLENISH leaked", __func__)); 817 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 818 } else { 819 sx_xunlock_(&map->lock, file, line); 820 } 821 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 822 timo)); 823 } 824 825 /* 826 * vm_map_wakeup: 827 * 828 * Awaken any threads that have slept on the map using 829 * vm_map_unlock_and_wait(). 830 */ 831 void 832 vm_map_wakeup(vm_map_t map) 833 { 834 835 /* 836 * Acquire and release map_sleep_mtx to prevent a wakeup() 837 * from being performed (and lost) between the map unlock 838 * and the msleep() in _vm_map_unlock_and_wait(). 839 */ 840 mtx_lock(&map_sleep_mtx); 841 mtx_unlock(&map_sleep_mtx); 842 wakeup(&map->root); 843 } 844 845 void 846 vm_map_busy(vm_map_t map) 847 { 848 849 VM_MAP_ASSERT_LOCKED(map); 850 map->busy++; 851 } 852 853 void 854 vm_map_unbusy(vm_map_t map) 855 { 856 857 VM_MAP_ASSERT_LOCKED(map); 858 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 859 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 860 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 861 wakeup(&map->busy); 862 } 863 } 864 865 void 866 vm_map_wait_busy(vm_map_t map) 867 { 868 869 VM_MAP_ASSERT_LOCKED(map); 870 while (map->busy) { 871 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 872 if (map->system_map) 873 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 874 else 875 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 876 } 877 map->timestamp++; 878 } 879 880 long 881 vmspace_resident_count(struct vmspace *vmspace) 882 { 883 return pmap_resident_count(vmspace_pmap(vmspace)); 884 } 885 886 /* 887 * Initialize an existing vm_map structure 888 * such as that in the vmspace structure. 889 */ 890 static void 891 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 892 { 893 894 map->header.eflags = MAP_ENTRY_HEADER; 895 map->needs_wakeup = FALSE; 896 map->system_map = 0; 897 map->pmap = pmap; 898 map->header.end = min; 899 map->header.start = max; 900 map->flags = 0; 901 map->header.left = map->header.right = &map->header; 902 map->root = NULL; 903 map->timestamp = 0; 904 map->busy = 0; 905 map->anon_loc = 0; 906 #ifdef DIAGNOSTIC 907 map->nupdates = 0; 908 #endif 909 } 910 911 void 912 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 913 { 914 915 _vm_map_init(map, pmap, min, max); 916 mtx_init(&map->system_mtx, "vm map (system)", NULL, 917 MTX_DEF | MTX_DUPOK); 918 sx_init(&map->lock, "vm map (user)"); 919 } 920 921 /* 922 * vm_map_entry_dispose: [ internal use only ] 923 * 924 * Inverse of vm_map_entry_create. 925 */ 926 static void 927 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 928 { 929 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 930 } 931 932 /* 933 * vm_map_entry_create: [ internal use only ] 934 * 935 * Allocates a VM map entry for insertion. 936 * No entry fields are filled in. 937 */ 938 static vm_map_entry_t 939 vm_map_entry_create(vm_map_t map) 940 { 941 vm_map_entry_t new_entry; 942 943 #ifndef UMA_MD_SMALL_ALLOC 944 if (map == kernel_map) { 945 VM_MAP_ASSERT_LOCKED(map); 946 947 /* 948 * A new slab of kernel map entries cannot be allocated at this 949 * point because the kernel map has not yet been updated to 950 * reflect the caller's request. Therefore, we allocate a new 951 * map entry, dipping into the reserve if necessary, and set a 952 * flag indicating that the reserve must be replenished before 953 * the map is unlocked. 954 */ 955 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM); 956 if (new_entry == NULL) { 957 new_entry = uma_zalloc(kmapentzone, 958 M_NOWAIT | M_NOVM | M_USE_RESERVE); 959 kernel_map->flags |= MAP_REPLENISH; 960 } 961 } else 962 #endif 963 if (map->system_map) { 964 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 965 } else { 966 new_entry = uma_zalloc(mapentzone, M_WAITOK); 967 } 968 KASSERT(new_entry != NULL, 969 ("vm_map_entry_create: kernel resources exhausted")); 970 return (new_entry); 971 } 972 973 /* 974 * vm_map_entry_set_behavior: 975 * 976 * Set the expected access behavior, either normal, random, or 977 * sequential. 978 */ 979 static inline void 980 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 981 { 982 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 983 (behavior & MAP_ENTRY_BEHAV_MASK); 984 } 985 986 /* 987 * vm_map_entry_max_free_{left,right}: 988 * 989 * Compute the size of the largest free gap between two entries, 990 * one the root of a tree and the other the ancestor of that root 991 * that is the least or greatest ancestor found on the search path. 992 */ 993 static inline vm_size_t 994 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 995 { 996 997 return (root->left != left_ancestor ? 998 root->left->max_free : root->start - left_ancestor->end); 999 } 1000 1001 static inline vm_size_t 1002 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 1003 { 1004 1005 return (root->right != right_ancestor ? 1006 root->right->max_free : right_ancestor->start - root->end); 1007 } 1008 1009 /* 1010 * vm_map_entry_{pred,succ}: 1011 * 1012 * Find the {predecessor, successor} of the entry by taking one step 1013 * in the appropriate direction and backtracking as much as necessary. 1014 * vm_map_entry_succ is defined in vm_map.h. 1015 */ 1016 static inline vm_map_entry_t 1017 vm_map_entry_pred(vm_map_entry_t entry) 1018 { 1019 vm_map_entry_t prior; 1020 1021 prior = entry->left; 1022 if (prior->right->start < entry->start) { 1023 do 1024 prior = prior->right; 1025 while (prior->right != entry); 1026 } 1027 return (prior); 1028 } 1029 1030 static inline vm_size_t 1031 vm_size_max(vm_size_t a, vm_size_t b) 1032 { 1033 1034 return (a > b ? a : b); 1035 } 1036 1037 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \ 1038 vm_map_entry_t z; \ 1039 vm_size_t max_free; \ 1040 \ 1041 /* \ 1042 * Infer root->right->max_free == root->max_free when \ 1043 * y->max_free < root->max_free || root->max_free == 0. \ 1044 * Otherwise, look right to find it. \ 1045 */ \ 1046 y = root->left; \ 1047 max_free = root->max_free; \ 1048 KASSERT(max_free == vm_size_max( \ 1049 vm_map_entry_max_free_left(root, llist), \ 1050 vm_map_entry_max_free_right(root, rlist)), \ 1051 ("%s: max_free invariant fails", __func__)); \ 1052 if (max_free - 1 < vm_map_entry_max_free_left(root, llist)) \ 1053 max_free = vm_map_entry_max_free_right(root, rlist); \ 1054 if (y != llist && (test)) { \ 1055 /* Rotate right and make y root. */ \ 1056 z = y->right; \ 1057 if (z != root) { \ 1058 root->left = z; \ 1059 y->right = root; \ 1060 if (max_free < y->max_free) \ 1061 root->max_free = max_free = \ 1062 vm_size_max(max_free, z->max_free); \ 1063 } else if (max_free < y->max_free) \ 1064 root->max_free = max_free = \ 1065 vm_size_max(max_free, root->start - y->end);\ 1066 root = y; \ 1067 y = root->left; \ 1068 } \ 1069 /* Copy right->max_free. Put root on rlist. */ \ 1070 root->max_free = max_free; \ 1071 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1072 ("%s: max_free not copied from right", __func__)); \ 1073 root->left = rlist; \ 1074 rlist = root; \ 1075 root = y != llist ? y : NULL; \ 1076 } while (0) 1077 1078 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \ 1079 vm_map_entry_t z; \ 1080 vm_size_t max_free; \ 1081 \ 1082 /* \ 1083 * Infer root->left->max_free == root->max_free when \ 1084 * y->max_free < root->max_free || root->max_free == 0. \ 1085 * Otherwise, look left to find it. \ 1086 */ \ 1087 y = root->right; \ 1088 max_free = root->max_free; \ 1089 KASSERT(max_free == vm_size_max( \ 1090 vm_map_entry_max_free_left(root, llist), \ 1091 vm_map_entry_max_free_right(root, rlist)), \ 1092 ("%s: max_free invariant fails", __func__)); \ 1093 if (max_free - 1 < vm_map_entry_max_free_right(root, rlist)) \ 1094 max_free = vm_map_entry_max_free_left(root, llist); \ 1095 if (y != rlist && (test)) { \ 1096 /* Rotate left and make y root. */ \ 1097 z = y->left; \ 1098 if (z != root) { \ 1099 root->right = z; \ 1100 y->left = root; \ 1101 if (max_free < y->max_free) \ 1102 root->max_free = max_free = \ 1103 vm_size_max(max_free, z->max_free); \ 1104 } else if (max_free < y->max_free) \ 1105 root->max_free = max_free = \ 1106 vm_size_max(max_free, y->start - root->end);\ 1107 root = y; \ 1108 y = root->right; \ 1109 } \ 1110 /* Copy left->max_free. Put root on llist. */ \ 1111 root->max_free = max_free; \ 1112 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1113 ("%s: max_free not copied from left", __func__)); \ 1114 root->right = llist; \ 1115 llist = root; \ 1116 root = y != rlist ? y : NULL; \ 1117 } while (0) 1118 1119 /* 1120 * Walk down the tree until we find addr or a gap where addr would go, breaking 1121 * off left and right subtrees of nodes less than, or greater than addr. Treat 1122 * subtrees with root->max_free < length as empty trees. llist and rlist are 1123 * the two sides in reverse order (bottom-up), with llist linked by the right 1124 * pointer and rlist linked by the left pointer in the vm_map_entry, and both 1125 * lists terminated by &map->header. This function, and the subsequent call to 1126 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address 1127 * values in &map->header. 1128 */ 1129 static __always_inline vm_map_entry_t 1130 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1131 vm_map_entry_t *llist, vm_map_entry_t *rlist) 1132 { 1133 vm_map_entry_t left, right, root, y; 1134 1135 left = right = &map->header; 1136 root = map->root; 1137 while (root != NULL && root->max_free >= length) { 1138 KASSERT(left->end <= root->start && 1139 root->end <= right->start, 1140 ("%s: root not within tree bounds", __func__)); 1141 if (addr < root->start) { 1142 SPLAY_LEFT_STEP(root, y, left, right, 1143 y->max_free >= length && addr < y->start); 1144 } else if (addr >= root->end) { 1145 SPLAY_RIGHT_STEP(root, y, left, right, 1146 y->max_free >= length && addr >= y->end); 1147 } else 1148 break; 1149 } 1150 *llist = left; 1151 *rlist = right; 1152 return (root); 1153 } 1154 1155 static __always_inline void 1156 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist) 1157 { 1158 vm_map_entry_t hi, right, y; 1159 1160 right = *rlist; 1161 hi = root->right == right ? NULL : root->right; 1162 if (hi == NULL) 1163 return; 1164 do 1165 SPLAY_LEFT_STEP(hi, y, root, right, true); 1166 while (hi != NULL); 1167 *rlist = right; 1168 } 1169 1170 static __always_inline void 1171 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist) 1172 { 1173 vm_map_entry_t left, lo, y; 1174 1175 left = *llist; 1176 lo = root->left == left ? NULL : root->left; 1177 if (lo == NULL) 1178 return; 1179 do 1180 SPLAY_RIGHT_STEP(lo, y, left, root, true); 1181 while (lo != NULL); 1182 *llist = left; 1183 } 1184 1185 static inline void 1186 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1187 { 1188 vm_map_entry_t tmp; 1189 1190 tmp = *b; 1191 *b = *a; 1192 *a = tmp; 1193 } 1194 1195 /* 1196 * Walk back up the two spines, flip the pointers and set max_free. The 1197 * subtrees of the root go at the bottom of llist and rlist. 1198 */ 1199 static vm_size_t 1200 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root, 1201 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist) 1202 { 1203 do { 1204 /* 1205 * The max_free values of the children of llist are in 1206 * llist->max_free and max_free. Update with the 1207 * max value. 1208 */ 1209 llist->max_free = max_free = 1210 vm_size_max(llist->max_free, max_free); 1211 vm_map_entry_swap(&llist->right, &tail); 1212 vm_map_entry_swap(&tail, &llist); 1213 } while (llist != header); 1214 root->left = tail; 1215 return (max_free); 1216 } 1217 1218 /* 1219 * When llist is known to be the predecessor of root. 1220 */ 1221 static inline vm_size_t 1222 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root, 1223 vm_map_entry_t llist) 1224 { 1225 vm_size_t max_free; 1226 1227 max_free = root->start - llist->end; 1228 if (llist != header) { 1229 max_free = vm_map_splay_merge_left_walk(header, root, 1230 root, max_free, llist); 1231 } else { 1232 root->left = header; 1233 header->right = root; 1234 } 1235 return (max_free); 1236 } 1237 1238 /* 1239 * When llist may or may not be the predecessor of root. 1240 */ 1241 static inline vm_size_t 1242 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root, 1243 vm_map_entry_t llist) 1244 { 1245 vm_size_t max_free; 1246 1247 max_free = vm_map_entry_max_free_left(root, llist); 1248 if (llist != header) { 1249 max_free = vm_map_splay_merge_left_walk(header, root, 1250 root->left == llist ? root : root->left, 1251 max_free, llist); 1252 } 1253 return (max_free); 1254 } 1255 1256 static vm_size_t 1257 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root, 1258 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist) 1259 { 1260 do { 1261 /* 1262 * The max_free values of the children of rlist are in 1263 * rlist->max_free and max_free. Update with the 1264 * max value. 1265 */ 1266 rlist->max_free = max_free = 1267 vm_size_max(rlist->max_free, max_free); 1268 vm_map_entry_swap(&rlist->left, &tail); 1269 vm_map_entry_swap(&tail, &rlist); 1270 } while (rlist != header); 1271 root->right = tail; 1272 return (max_free); 1273 } 1274 1275 /* 1276 * When rlist is known to be the succecessor of root. 1277 */ 1278 static inline vm_size_t 1279 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root, 1280 vm_map_entry_t rlist) 1281 { 1282 vm_size_t max_free; 1283 1284 max_free = rlist->start - root->end; 1285 if (rlist != header) { 1286 max_free = vm_map_splay_merge_right_walk(header, root, 1287 root, max_free, rlist); 1288 } else { 1289 root->right = header; 1290 header->left = root; 1291 } 1292 return (max_free); 1293 } 1294 1295 /* 1296 * When rlist may or may not be the succecessor of root. 1297 */ 1298 static inline vm_size_t 1299 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root, 1300 vm_map_entry_t rlist) 1301 { 1302 vm_size_t max_free; 1303 1304 max_free = vm_map_entry_max_free_right(root, rlist); 1305 if (rlist != header) { 1306 max_free = vm_map_splay_merge_right_walk(header, root, 1307 root->right == rlist ? root : root->right, 1308 max_free, rlist); 1309 } 1310 return (max_free); 1311 } 1312 1313 /* 1314 * vm_map_splay: 1315 * 1316 * The Sleator and Tarjan top-down splay algorithm with the 1317 * following variation. Max_free must be computed bottom-up, so 1318 * on the downward pass, maintain the left and right spines in 1319 * reverse order. Then, make a second pass up each side to fix 1320 * the pointers and compute max_free. The time bound is O(log n) 1321 * amortized. 1322 * 1323 * The tree is threaded, which means that there are no null pointers. 1324 * When a node has no left child, its left pointer points to its 1325 * predecessor, which the last ancestor on the search path from the root 1326 * where the search branched right. Likewise, when a node has no right 1327 * child, its right pointer points to its successor. The map header node 1328 * is the predecessor of the first map entry, and the successor of the 1329 * last. 1330 * 1331 * The new root is the vm_map_entry containing "addr", or else an 1332 * adjacent entry (lower if possible) if addr is not in the tree. 1333 * 1334 * The map must be locked, and leaves it so. 1335 * 1336 * Returns: the new root. 1337 */ 1338 static vm_map_entry_t 1339 vm_map_splay(vm_map_t map, vm_offset_t addr) 1340 { 1341 vm_map_entry_t header, llist, rlist, root; 1342 vm_size_t max_free_left, max_free_right; 1343 1344 header = &map->header; 1345 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1346 if (root != NULL) { 1347 max_free_left = vm_map_splay_merge_left(header, root, llist); 1348 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1349 } else if (llist != header) { 1350 /* 1351 * Recover the greatest node in the left 1352 * subtree and make it the root. 1353 */ 1354 root = llist; 1355 llist = root->right; 1356 max_free_left = vm_map_splay_merge_left(header, root, llist); 1357 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1358 } else if (rlist != header) { 1359 /* 1360 * Recover the least node in the right 1361 * subtree and make it the root. 1362 */ 1363 root = rlist; 1364 rlist = root->left; 1365 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1366 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1367 } else { 1368 /* There is no root. */ 1369 return (NULL); 1370 } 1371 root->max_free = vm_size_max(max_free_left, max_free_right); 1372 map->root = root; 1373 VM_MAP_ASSERT_CONSISTENT(map); 1374 return (root); 1375 } 1376 1377 /* 1378 * vm_map_entry_{un,}link: 1379 * 1380 * Insert/remove entries from maps. On linking, if new entry clips 1381 * existing entry, trim existing entry to avoid overlap, and manage 1382 * offsets. On unlinking, merge disappearing entry with neighbor, if 1383 * called for, and manage offsets. Callers should not modify fields in 1384 * entries already mapped. 1385 */ 1386 static void 1387 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1388 { 1389 vm_map_entry_t header, llist, rlist, root; 1390 vm_size_t max_free_left, max_free_right; 1391 1392 CTR3(KTR_VM, 1393 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1394 map->nentries, entry); 1395 VM_MAP_ASSERT_LOCKED(map); 1396 map->nentries++; 1397 header = &map->header; 1398 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1399 if (root == NULL) { 1400 /* 1401 * The new entry does not overlap any existing entry in the 1402 * map, so it becomes the new root of the map tree. 1403 */ 1404 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1405 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1406 } else if (entry->start == root->start) { 1407 /* 1408 * The new entry is a clone of root, with only the end field 1409 * changed. The root entry will be shrunk to abut the new 1410 * entry, and will be the right child of the new root entry in 1411 * the modified map. 1412 */ 1413 KASSERT(entry->end < root->end, 1414 ("%s: clip_start not within entry", __func__)); 1415 vm_map_splay_findprev(root, &llist); 1416 root->offset += entry->end - root->start; 1417 root->start = entry->end; 1418 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1419 max_free_right = root->max_free = vm_size_max( 1420 vm_map_splay_merge_pred(entry, root, entry), 1421 vm_map_splay_merge_right(header, root, rlist)); 1422 } else { 1423 /* 1424 * The new entry is a clone of root, with only the start field 1425 * changed. The root entry will be shrunk to abut the new 1426 * entry, and will be the left child of the new root entry in 1427 * the modified map. 1428 */ 1429 KASSERT(entry->end == root->end, 1430 ("%s: clip_start not within entry", __func__)); 1431 vm_map_splay_findnext(root, &rlist); 1432 entry->offset += entry->start - root->start; 1433 root->end = entry->start; 1434 max_free_left = root->max_free = vm_size_max( 1435 vm_map_splay_merge_left(header, root, llist), 1436 vm_map_splay_merge_succ(entry, root, entry)); 1437 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1438 } 1439 entry->max_free = vm_size_max(max_free_left, max_free_right); 1440 map->root = entry; 1441 VM_MAP_ASSERT_CONSISTENT(map); 1442 } 1443 1444 enum unlink_merge_type { 1445 UNLINK_MERGE_NONE, 1446 UNLINK_MERGE_NEXT 1447 }; 1448 1449 static void 1450 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1451 enum unlink_merge_type op) 1452 { 1453 vm_map_entry_t header, llist, rlist, root; 1454 vm_size_t max_free_left, max_free_right; 1455 1456 VM_MAP_ASSERT_LOCKED(map); 1457 header = &map->header; 1458 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1459 KASSERT(root != NULL, 1460 ("vm_map_entry_unlink: unlink object not mapped")); 1461 1462 vm_map_splay_findprev(root, &llist); 1463 vm_map_splay_findnext(root, &rlist); 1464 if (op == UNLINK_MERGE_NEXT) { 1465 rlist->start = root->start; 1466 rlist->offset = root->offset; 1467 } 1468 if (llist != header) { 1469 root = llist; 1470 llist = root->right; 1471 max_free_left = vm_map_splay_merge_left(header, root, llist); 1472 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1473 } else if (rlist != header) { 1474 root = rlist; 1475 rlist = root->left; 1476 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1477 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1478 } else { 1479 header->left = header->right = header; 1480 root = NULL; 1481 } 1482 if (root != NULL) 1483 root->max_free = vm_size_max(max_free_left, max_free_right); 1484 map->root = root; 1485 VM_MAP_ASSERT_CONSISTENT(map); 1486 map->nentries--; 1487 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1488 map->nentries, entry); 1489 } 1490 1491 /* 1492 * vm_map_entry_resize: 1493 * 1494 * Resize a vm_map_entry, recompute the amount of free space that 1495 * follows it and propagate that value up the tree. 1496 * 1497 * The map must be locked, and leaves it so. 1498 */ 1499 static void 1500 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1501 { 1502 vm_map_entry_t header, llist, rlist, root; 1503 1504 VM_MAP_ASSERT_LOCKED(map); 1505 header = &map->header; 1506 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1507 KASSERT(root != NULL, ("%s: resize object not mapped", __func__)); 1508 vm_map_splay_findnext(root, &rlist); 1509 entry->end += grow_amount; 1510 root->max_free = vm_size_max( 1511 vm_map_splay_merge_left(header, root, llist), 1512 vm_map_splay_merge_succ(header, root, rlist)); 1513 map->root = root; 1514 VM_MAP_ASSERT_CONSISTENT(map); 1515 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1516 __func__, map, map->nentries, entry); 1517 } 1518 1519 /* 1520 * vm_map_lookup_entry: [ internal use only ] 1521 * 1522 * Finds the map entry containing (or 1523 * immediately preceding) the specified address 1524 * in the given map; the entry is returned 1525 * in the "entry" parameter. The boolean 1526 * result indicates whether the address is 1527 * actually contained in the map. 1528 */ 1529 boolean_t 1530 vm_map_lookup_entry( 1531 vm_map_t map, 1532 vm_offset_t address, 1533 vm_map_entry_t *entry) /* OUT */ 1534 { 1535 vm_map_entry_t cur, header, lbound, ubound; 1536 boolean_t locked; 1537 1538 /* 1539 * If the map is empty, then the map entry immediately preceding 1540 * "address" is the map's header. 1541 */ 1542 header = &map->header; 1543 cur = map->root; 1544 if (cur == NULL) { 1545 *entry = header; 1546 return (FALSE); 1547 } 1548 if (address >= cur->start && cur->end > address) { 1549 *entry = cur; 1550 return (TRUE); 1551 } 1552 if ((locked = vm_map_locked(map)) || 1553 sx_try_upgrade(&map->lock)) { 1554 /* 1555 * Splay requires a write lock on the map. However, it only 1556 * restructures the binary search tree; it does not otherwise 1557 * change the map. Thus, the map's timestamp need not change 1558 * on a temporary upgrade. 1559 */ 1560 cur = vm_map_splay(map, address); 1561 if (!locked) { 1562 VM_MAP_UNLOCK_CONSISTENT(map); 1563 sx_downgrade(&map->lock); 1564 } 1565 1566 /* 1567 * If "address" is contained within a map entry, the new root 1568 * is that map entry. Otherwise, the new root is a map entry 1569 * immediately before or after "address". 1570 */ 1571 if (address < cur->start) { 1572 *entry = header; 1573 return (FALSE); 1574 } 1575 *entry = cur; 1576 return (address < cur->end); 1577 } 1578 /* 1579 * Since the map is only locked for read access, perform a 1580 * standard binary search tree lookup for "address". 1581 */ 1582 lbound = ubound = header; 1583 for (;;) { 1584 if (address < cur->start) { 1585 ubound = cur; 1586 cur = cur->left; 1587 if (cur == lbound) 1588 break; 1589 } else if (cur->end <= address) { 1590 lbound = cur; 1591 cur = cur->right; 1592 if (cur == ubound) 1593 break; 1594 } else { 1595 *entry = cur; 1596 return (TRUE); 1597 } 1598 } 1599 *entry = lbound; 1600 return (FALSE); 1601 } 1602 1603 /* 1604 * vm_map_insert1() is identical to vm_map_insert() except that it 1605 * returns the newly inserted map entry in '*res'. In case the new 1606 * entry is coalesced with a neighbor or an existing entry was 1607 * resized, that entry is returned. In any case, the returned entry 1608 * covers the specified address range. 1609 */ 1610 static int 1611 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1612 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow, 1613 vm_map_entry_t *res) 1614 { 1615 vm_map_entry_t new_entry, next_entry, prev_entry; 1616 struct ucred *cred; 1617 vm_eflags_t protoeflags; 1618 vm_inherit_t inheritance; 1619 u_long bdry; 1620 u_int bidx; 1621 1622 VM_MAP_ASSERT_LOCKED(map); 1623 KASSERT(object != kernel_object || 1624 (cow & MAP_COPY_ON_WRITE) == 0, 1625 ("vm_map_insert: kernel object and COW")); 1626 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 || 1627 (cow & MAP_SPLIT_BOUNDARY_MASK) != 0, 1628 ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x", 1629 object, cow)); 1630 KASSERT((prot & ~max) == 0, 1631 ("prot %#x is not subset of max_prot %#x", prot, max)); 1632 1633 /* 1634 * Check that the start and end points are not bogus. 1635 */ 1636 if (start == end || !vm_map_range_valid(map, start, end)) 1637 return (KERN_INVALID_ADDRESS); 1638 1639 if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE | 1640 VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE)) 1641 return (KERN_PROTECTION_FAILURE); 1642 1643 /* 1644 * Find the entry prior to the proposed starting address; if it's part 1645 * of an existing entry, this range is bogus. 1646 */ 1647 if (vm_map_lookup_entry(map, start, &prev_entry)) 1648 return (KERN_NO_SPACE); 1649 1650 /* 1651 * Assert that the next entry doesn't overlap the end point. 1652 */ 1653 next_entry = vm_map_entry_succ(prev_entry); 1654 if (next_entry->start < end) 1655 return (KERN_NO_SPACE); 1656 1657 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1658 max != VM_PROT_NONE)) 1659 return (KERN_INVALID_ARGUMENT); 1660 1661 protoeflags = 0; 1662 if (cow & MAP_COPY_ON_WRITE) 1663 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1664 if (cow & MAP_NOFAULT) 1665 protoeflags |= MAP_ENTRY_NOFAULT; 1666 if (cow & MAP_DISABLE_SYNCER) 1667 protoeflags |= MAP_ENTRY_NOSYNC; 1668 if (cow & MAP_DISABLE_COREDUMP) 1669 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1670 if (cow & MAP_STACK_GROWS_DOWN) 1671 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1672 if (cow & MAP_STACK_GROWS_UP) 1673 protoeflags |= MAP_ENTRY_GROWS_UP; 1674 if (cow & MAP_WRITECOUNT) 1675 protoeflags |= MAP_ENTRY_WRITECNT; 1676 if (cow & MAP_VN_EXEC) 1677 protoeflags |= MAP_ENTRY_VN_EXEC; 1678 if ((cow & MAP_CREATE_GUARD) != 0) 1679 protoeflags |= MAP_ENTRY_GUARD; 1680 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1681 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1682 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1683 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1684 if (cow & MAP_INHERIT_SHARE) 1685 inheritance = VM_INHERIT_SHARE; 1686 else 1687 inheritance = VM_INHERIT_DEFAULT; 1688 if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) { 1689 /* This magically ignores index 0, for usual page size. */ 1690 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >> 1691 MAP_SPLIT_BOUNDARY_SHIFT; 1692 if (bidx >= MAXPAGESIZES) 1693 return (KERN_INVALID_ARGUMENT); 1694 bdry = pagesizes[bidx] - 1; 1695 if ((start & bdry) != 0 || (end & bdry) != 0) 1696 return (KERN_INVALID_ARGUMENT); 1697 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 1698 } 1699 1700 cred = NULL; 1701 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1702 goto charged; 1703 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1704 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1705 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1706 return (KERN_RESOURCE_SHORTAGE); 1707 KASSERT(object == NULL || 1708 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1709 object->cred == NULL, 1710 ("overcommit: vm_map_insert o %p", object)); 1711 cred = curthread->td_ucred; 1712 } 1713 1714 charged: 1715 /* Expand the kernel pmap, if necessary. */ 1716 if (map == kernel_map && end > kernel_vm_end) 1717 pmap_growkernel(end); 1718 if (object != NULL) { 1719 /* 1720 * OBJ_ONEMAPPING must be cleared unless this mapping 1721 * is trivially proven to be the only mapping for any 1722 * of the object's pages. (Object granularity 1723 * reference counting is insufficient to recognize 1724 * aliases with precision.) 1725 */ 1726 if ((object->flags & OBJ_ANON) != 0) { 1727 VM_OBJECT_WLOCK(object); 1728 if (object->ref_count > 1 || object->shadow_count != 0) 1729 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1730 VM_OBJECT_WUNLOCK(object); 1731 } 1732 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1733 protoeflags && 1734 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1735 MAP_VN_EXEC)) == 0 && 1736 prev_entry->end == start && (prev_entry->cred == cred || 1737 (prev_entry->object.vm_object != NULL && 1738 prev_entry->object.vm_object->cred == cred)) && 1739 vm_object_coalesce(prev_entry->object.vm_object, 1740 prev_entry->offset, 1741 (vm_size_t)(prev_entry->end - prev_entry->start), 1742 (vm_size_t)(end - prev_entry->end), cred != NULL && 1743 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1744 /* 1745 * We were able to extend the object. Determine if we 1746 * can extend the previous map entry to include the 1747 * new range as well. 1748 */ 1749 if (prev_entry->inheritance == inheritance && 1750 prev_entry->protection == prot && 1751 prev_entry->max_protection == max && 1752 prev_entry->wired_count == 0) { 1753 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1754 0, ("prev_entry %p has incoherent wiring", 1755 prev_entry)); 1756 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1757 map->size += end - prev_entry->end; 1758 vm_map_entry_resize(map, prev_entry, 1759 end - prev_entry->end); 1760 *res = vm_map_try_merge_entries(map, prev_entry, 1761 next_entry); 1762 return (KERN_SUCCESS); 1763 } 1764 1765 /* 1766 * If we can extend the object but cannot extend the 1767 * map entry, we have to create a new map entry. We 1768 * must bump the ref count on the extended object to 1769 * account for it. object may be NULL. 1770 */ 1771 object = prev_entry->object.vm_object; 1772 offset = prev_entry->offset + 1773 (prev_entry->end - prev_entry->start); 1774 vm_object_reference(object); 1775 if (cred != NULL && object != NULL && object->cred != NULL && 1776 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1777 /* Object already accounts for this uid. */ 1778 cred = NULL; 1779 } 1780 } 1781 if (cred != NULL) 1782 crhold(cred); 1783 1784 /* 1785 * Create a new entry 1786 */ 1787 new_entry = vm_map_entry_create(map); 1788 new_entry->start = start; 1789 new_entry->end = end; 1790 new_entry->cred = NULL; 1791 1792 new_entry->eflags = protoeflags; 1793 new_entry->object.vm_object = object; 1794 new_entry->offset = offset; 1795 1796 new_entry->inheritance = inheritance; 1797 new_entry->protection = prot; 1798 new_entry->max_protection = max; 1799 new_entry->wired_count = 0; 1800 new_entry->wiring_thread = NULL; 1801 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1802 new_entry->next_read = start; 1803 1804 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1805 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1806 new_entry->cred = cred; 1807 1808 /* 1809 * Insert the new entry into the list 1810 */ 1811 vm_map_entry_link(map, new_entry); 1812 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1813 map->size += new_entry->end - new_entry->start; 1814 1815 /* 1816 * Try to coalesce the new entry with both the previous and next 1817 * entries in the list. Previously, we only attempted to coalesce 1818 * with the previous entry when object is NULL. Here, we handle the 1819 * other cases, which are less common. 1820 */ 1821 vm_map_try_merge_entries(map, prev_entry, new_entry); 1822 *res = vm_map_try_merge_entries(map, new_entry, next_entry); 1823 1824 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1825 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1826 end - start, cow & MAP_PREFAULT_PARTIAL); 1827 } 1828 1829 return (KERN_SUCCESS); 1830 } 1831 1832 /* 1833 * vm_map_insert: 1834 * 1835 * Inserts the given VM object into the target map at the 1836 * specified address range. 1837 * 1838 * Requires that the map be locked, and leaves it so. 1839 * 1840 * If object is non-NULL, ref count must be bumped by caller 1841 * prior to making call to account for the new entry. 1842 */ 1843 int 1844 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1845 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1846 { 1847 vm_map_entry_t res; 1848 1849 return (vm_map_insert1(map, object, offset, start, end, prot, max, 1850 cow, &res)); 1851 } 1852 1853 /* 1854 * vm_map_findspace: 1855 * 1856 * Find the first fit (lowest VM address) for "length" free bytes 1857 * beginning at address >= start in the given map. 1858 * 1859 * In a vm_map_entry, "max_free" is the maximum amount of 1860 * contiguous free space between an entry in its subtree and a 1861 * neighbor of that entry. This allows finding a free region in 1862 * one path down the tree, so O(log n) amortized with splay 1863 * trees. 1864 * 1865 * The map must be locked, and leaves it so. 1866 * 1867 * Returns: starting address if sufficient space, 1868 * vm_map_max(map)-length+1 if insufficient space. 1869 */ 1870 vm_offset_t 1871 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1872 { 1873 vm_map_entry_t header, llist, rlist, root, y; 1874 vm_size_t left_length, max_free_left, max_free_right; 1875 vm_offset_t gap_end; 1876 1877 VM_MAP_ASSERT_LOCKED(map); 1878 1879 /* 1880 * Request must fit within min/max VM address and must avoid 1881 * address wrap. 1882 */ 1883 start = MAX(start, vm_map_min(map)); 1884 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1885 return (vm_map_max(map) - length + 1); 1886 1887 /* Empty tree means wide open address space. */ 1888 if (map->root == NULL) 1889 return (start); 1890 1891 /* 1892 * After splay_split, if start is within an entry, push it to the start 1893 * of the following gap. If rlist is at the end of the gap containing 1894 * start, save the end of that gap in gap_end to see if the gap is big 1895 * enough; otherwise set gap_end to start skip gap-checking and move 1896 * directly to a search of the right subtree. 1897 */ 1898 header = &map->header; 1899 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1900 gap_end = rlist->start; 1901 if (root != NULL) { 1902 start = root->end; 1903 if (root->right != rlist) 1904 gap_end = start; 1905 max_free_left = vm_map_splay_merge_left(header, root, llist); 1906 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1907 } else if (rlist != header) { 1908 root = rlist; 1909 rlist = root->left; 1910 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1911 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1912 } else { 1913 root = llist; 1914 llist = root->right; 1915 max_free_left = vm_map_splay_merge_left(header, root, llist); 1916 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1917 } 1918 root->max_free = vm_size_max(max_free_left, max_free_right); 1919 map->root = root; 1920 VM_MAP_ASSERT_CONSISTENT(map); 1921 if (length <= gap_end - start) 1922 return (start); 1923 1924 /* With max_free, can immediately tell if no solution. */ 1925 if (root->right == header || length > root->right->max_free) 1926 return (vm_map_max(map) - length + 1); 1927 1928 /* 1929 * Splay for the least large-enough gap in the right subtree. 1930 */ 1931 llist = rlist = header; 1932 for (left_length = 0;; 1933 left_length = vm_map_entry_max_free_left(root, llist)) { 1934 if (length <= left_length) 1935 SPLAY_LEFT_STEP(root, y, llist, rlist, 1936 length <= vm_map_entry_max_free_left(y, llist)); 1937 else 1938 SPLAY_RIGHT_STEP(root, y, llist, rlist, 1939 length > vm_map_entry_max_free_left(y, root)); 1940 if (root == NULL) 1941 break; 1942 } 1943 root = llist; 1944 llist = root->right; 1945 max_free_left = vm_map_splay_merge_left(header, root, llist); 1946 if (rlist == header) { 1947 root->max_free = vm_size_max(max_free_left, 1948 vm_map_splay_merge_succ(header, root, rlist)); 1949 } else { 1950 y = rlist; 1951 rlist = y->left; 1952 y->max_free = vm_size_max( 1953 vm_map_splay_merge_pred(root, y, root), 1954 vm_map_splay_merge_right(header, y, rlist)); 1955 root->max_free = vm_size_max(max_free_left, y->max_free); 1956 } 1957 map->root = root; 1958 VM_MAP_ASSERT_CONSISTENT(map); 1959 return (root->end); 1960 } 1961 1962 int 1963 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1964 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1965 vm_prot_t max, int cow) 1966 { 1967 vm_offset_t end; 1968 int result; 1969 1970 end = start + length; 1971 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1972 object == NULL, 1973 ("vm_map_fixed: non-NULL backing object for stack")); 1974 vm_map_lock(map); 1975 VM_MAP_RANGE_CHECK(map, start, end); 1976 if ((cow & MAP_CHECK_EXCL) == 0) { 1977 result = vm_map_delete(map, start, end); 1978 if (result != KERN_SUCCESS) 1979 goto out; 1980 } 1981 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1982 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1983 prot, max, cow); 1984 } else { 1985 result = vm_map_insert(map, object, offset, start, end, 1986 prot, max, cow); 1987 } 1988 out: 1989 vm_map_unlock(map); 1990 return (result); 1991 } 1992 1993 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1994 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1995 1996 static int cluster_anon = 1; 1997 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1998 &cluster_anon, 0, 1999 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 2000 2001 static bool 2002 clustering_anon_allowed(vm_offset_t addr, int cow) 2003 { 2004 2005 switch (cluster_anon) { 2006 case 0: 2007 return (false); 2008 case 1: 2009 return (addr == 0 || (cow & MAP_NO_HINT) != 0); 2010 case 2: 2011 default: 2012 return (true); 2013 } 2014 } 2015 2016 static long aslr_restarts; 2017 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 2018 &aslr_restarts, 0, 2019 "Number of aslr failures"); 2020 2021 /* 2022 * Searches for the specified amount of free space in the given map with the 2023 * specified alignment. Performs an address-ordered, first-fit search from 2024 * the given address "*addr", with an optional upper bound "max_addr". If the 2025 * parameter "alignment" is zero, then the alignment is computed from the 2026 * given (object, offset) pair so as to enable the greatest possible use of 2027 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 2028 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 2029 * 2030 * The map must be locked. Initially, there must be at least "length" bytes 2031 * of free space at the given address. 2032 */ 2033 static int 2034 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2035 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 2036 vm_offset_t alignment) 2037 { 2038 vm_offset_t aligned_addr, free_addr; 2039 2040 VM_MAP_ASSERT_LOCKED(map); 2041 free_addr = *addr; 2042 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 2043 ("caller failed to provide space %#jx at address %p", 2044 (uintmax_t)length, (void *)free_addr)); 2045 for (;;) { 2046 /* 2047 * At the start of every iteration, the free space at address 2048 * "*addr" is at least "length" bytes. 2049 */ 2050 if (alignment == 0) 2051 pmap_align_superpage(object, offset, addr, length); 2052 else 2053 *addr = roundup2(*addr, alignment); 2054 aligned_addr = *addr; 2055 if (aligned_addr == free_addr) { 2056 /* 2057 * Alignment did not change "*addr", so "*addr" must 2058 * still provide sufficient free space. 2059 */ 2060 return (KERN_SUCCESS); 2061 } 2062 2063 /* 2064 * Test for address wrap on "*addr". A wrapped "*addr" could 2065 * be a valid address, in which case vm_map_findspace() cannot 2066 * be relied upon to fail. 2067 */ 2068 if (aligned_addr < free_addr) 2069 return (KERN_NO_SPACE); 2070 *addr = vm_map_findspace(map, aligned_addr, length); 2071 if (*addr + length > vm_map_max(map) || 2072 (max_addr != 0 && *addr + length > max_addr)) 2073 return (KERN_NO_SPACE); 2074 free_addr = *addr; 2075 if (free_addr == aligned_addr) { 2076 /* 2077 * If a successful call to vm_map_findspace() did not 2078 * change "*addr", then "*addr" must still be aligned 2079 * and provide sufficient free space. 2080 */ 2081 return (KERN_SUCCESS); 2082 } 2083 } 2084 } 2085 2086 int 2087 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length, 2088 vm_offset_t max_addr, vm_offset_t alignment) 2089 { 2090 /* XXXKIB ASLR eh ? */ 2091 *addr = vm_map_findspace(map, *addr, length); 2092 if (*addr + length > vm_map_max(map) || 2093 (max_addr != 0 && *addr + length > max_addr)) 2094 return (KERN_NO_SPACE); 2095 return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr, 2096 alignment)); 2097 } 2098 2099 /* 2100 * vm_map_find finds an unallocated region in the target address 2101 * map with the given length. The search is defined to be 2102 * first-fit from the specified address; the region found is 2103 * returned in the same parameter. 2104 * 2105 * If object is non-NULL, ref count must be bumped by caller 2106 * prior to making call to account for the new entry. 2107 */ 2108 int 2109 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2110 vm_offset_t *addr, /* IN/OUT */ 2111 vm_size_t length, vm_offset_t max_addr, int find_space, 2112 vm_prot_t prot, vm_prot_t max, int cow) 2113 { 2114 vm_offset_t alignment, curr_min_addr, min_addr; 2115 int gap, pidx, rv, try; 2116 bool cluster, en_aslr, update_anon; 2117 2118 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 2119 object == NULL, 2120 ("vm_map_find: non-NULL backing object for stack")); 2121 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 2122 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 2123 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 2124 (object->flags & OBJ_COLORED) == 0)) 2125 find_space = VMFS_ANY_SPACE; 2126 if (find_space >> 8 != 0) { 2127 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 2128 alignment = (vm_offset_t)1 << (find_space >> 8); 2129 } else 2130 alignment = 0; 2131 en_aslr = (map->flags & MAP_ASLR) != 0; 2132 update_anon = cluster = clustering_anon_allowed(*addr, cow) && 2133 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 2134 find_space != VMFS_NO_SPACE && object == NULL && 2135 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 2136 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 2137 curr_min_addr = min_addr = *addr; 2138 if (en_aslr && min_addr == 0 && !cluster && 2139 find_space != VMFS_NO_SPACE && 2140 (map->flags & MAP_ASLR_IGNSTART) != 0) 2141 curr_min_addr = min_addr = vm_map_min(map); 2142 try = 0; 2143 vm_map_lock(map); 2144 if (cluster) { 2145 curr_min_addr = map->anon_loc; 2146 if (curr_min_addr == 0) 2147 cluster = false; 2148 } 2149 if (find_space != VMFS_NO_SPACE) { 2150 KASSERT(find_space == VMFS_ANY_SPACE || 2151 find_space == VMFS_OPTIMAL_SPACE || 2152 find_space == VMFS_SUPER_SPACE || 2153 alignment != 0, ("unexpected VMFS flag")); 2154 again: 2155 /* 2156 * When creating an anonymous mapping, try clustering 2157 * with an existing anonymous mapping first. 2158 * 2159 * We make up to two attempts to find address space 2160 * for a given find_space value. The first attempt may 2161 * apply randomization or may cluster with an existing 2162 * anonymous mapping. If this first attempt fails, 2163 * perform a first-fit search of the available address 2164 * space. 2165 * 2166 * If all tries failed, and find_space is 2167 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 2168 * Again enable clustering and randomization. 2169 */ 2170 try++; 2171 MPASS(try <= 2); 2172 2173 if (try == 2) { 2174 /* 2175 * Second try: we failed either to find a 2176 * suitable region for randomizing the 2177 * allocation, or to cluster with an existing 2178 * mapping. Retry with free run. 2179 */ 2180 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 2181 vm_map_min(map) : min_addr; 2182 atomic_add_long(&aslr_restarts, 1); 2183 } 2184 2185 if (try == 1 && en_aslr && !cluster) { 2186 /* 2187 * Find space for allocation, including 2188 * gap needed for later randomization. 2189 */ 2190 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 2191 (find_space == VMFS_SUPER_SPACE || find_space == 2192 VMFS_OPTIMAL_SPACE) ? 1 : 0; 2193 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 2194 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 2195 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 2196 *addr = vm_map_findspace(map, curr_min_addr, 2197 length + gap * pagesizes[pidx]); 2198 if (*addr + length + gap * pagesizes[pidx] > 2199 vm_map_max(map)) 2200 goto again; 2201 /* And randomize the start address. */ 2202 *addr += (arc4random() % gap) * pagesizes[pidx]; 2203 if (max_addr != 0 && *addr + length > max_addr) 2204 goto again; 2205 } else { 2206 *addr = vm_map_findspace(map, curr_min_addr, length); 2207 if (*addr + length > vm_map_max(map) || 2208 (max_addr != 0 && *addr + length > max_addr)) { 2209 if (cluster) { 2210 cluster = false; 2211 MPASS(try == 1); 2212 goto again; 2213 } 2214 rv = KERN_NO_SPACE; 2215 goto done; 2216 } 2217 } 2218 2219 if (find_space != VMFS_ANY_SPACE && 2220 (rv = vm_map_alignspace(map, object, offset, addr, length, 2221 max_addr, alignment)) != KERN_SUCCESS) { 2222 if (find_space == VMFS_OPTIMAL_SPACE) { 2223 find_space = VMFS_ANY_SPACE; 2224 curr_min_addr = min_addr; 2225 cluster = update_anon; 2226 try = 0; 2227 goto again; 2228 } 2229 goto done; 2230 } 2231 } else if ((cow & MAP_REMAP) != 0) { 2232 if (!vm_map_range_valid(map, *addr, *addr + length)) { 2233 rv = KERN_INVALID_ADDRESS; 2234 goto done; 2235 } 2236 rv = vm_map_delete(map, *addr, *addr + length); 2237 if (rv != KERN_SUCCESS) 2238 goto done; 2239 } 2240 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 2241 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 2242 max, cow); 2243 } else { 2244 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 2245 prot, max, cow); 2246 } 2247 if (rv == KERN_SUCCESS && update_anon) 2248 map->anon_loc = *addr + length; 2249 done: 2250 vm_map_unlock(map); 2251 return (rv); 2252 } 2253 2254 /* 2255 * vm_map_find_min() is a variant of vm_map_find() that takes an 2256 * additional parameter (min_addr) and treats the given address 2257 * (*addr) differently. Specifically, it treats *addr as a hint 2258 * and not as the minimum address where the mapping is created. 2259 * 2260 * This function works in two phases. First, it tries to 2261 * allocate above the hint. If that fails and the hint is 2262 * greater than min_addr, it performs a second pass, replacing 2263 * the hint with min_addr as the minimum address for the 2264 * allocation. 2265 */ 2266 int 2267 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2268 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 2269 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2270 int cow) 2271 { 2272 vm_offset_t hint; 2273 int rv; 2274 2275 hint = *addr; 2276 if (hint == 0) { 2277 cow |= MAP_NO_HINT; 2278 *addr = hint = min_addr; 2279 } 2280 for (;;) { 2281 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2282 find_space, prot, max, cow); 2283 if (rv == KERN_SUCCESS || min_addr >= hint) 2284 return (rv); 2285 *addr = hint = min_addr; 2286 } 2287 } 2288 2289 /* 2290 * A map entry with any of the following flags set must not be merged with 2291 * another entry. 2292 */ 2293 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 2294 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC) 2295 2296 static bool 2297 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2298 { 2299 2300 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2301 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2302 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2303 prev, entry)); 2304 return (prev->end == entry->start && 2305 prev->object.vm_object == entry->object.vm_object && 2306 (prev->object.vm_object == NULL || 2307 prev->offset + (prev->end - prev->start) == entry->offset) && 2308 prev->eflags == entry->eflags && 2309 prev->protection == entry->protection && 2310 prev->max_protection == entry->max_protection && 2311 prev->inheritance == entry->inheritance && 2312 prev->wired_count == entry->wired_count && 2313 prev->cred == entry->cred); 2314 } 2315 2316 static void 2317 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2318 { 2319 2320 /* 2321 * If the backing object is a vnode object, vm_object_deallocate() 2322 * calls vrele(). However, vrele() does not lock the vnode because 2323 * the vnode has additional references. Thus, the map lock can be 2324 * kept without causing a lock-order reversal with the vnode lock. 2325 * 2326 * Since we count the number of virtual page mappings in 2327 * object->un_pager.vnp.writemappings, the writemappings value 2328 * should not be adjusted when the entry is disposed of. 2329 */ 2330 if (entry->object.vm_object != NULL) 2331 vm_object_deallocate(entry->object.vm_object); 2332 if (entry->cred != NULL) 2333 crfree(entry->cred); 2334 vm_map_entry_dispose(map, entry); 2335 } 2336 2337 /* 2338 * vm_map_try_merge_entries: 2339 * 2340 * Compare two map entries that represent consecutive ranges. If 2341 * the entries can be merged, expand the range of the second to 2342 * cover the range of the first and delete the first. Then return 2343 * the map entry that includes the first range. 2344 * 2345 * The map must be locked. 2346 */ 2347 vm_map_entry_t 2348 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry, 2349 vm_map_entry_t entry) 2350 { 2351 2352 VM_MAP_ASSERT_LOCKED(map); 2353 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 && 2354 vm_map_mergeable_neighbors(prev_entry, entry)) { 2355 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT); 2356 vm_map_merged_neighbor_dispose(map, prev_entry); 2357 return (entry); 2358 } 2359 return (prev_entry); 2360 } 2361 2362 /* 2363 * vm_map_entry_back: 2364 * 2365 * Allocate an object to back a map entry. 2366 */ 2367 static inline void 2368 vm_map_entry_back(vm_map_entry_t entry) 2369 { 2370 vm_object_t object; 2371 2372 KASSERT(entry->object.vm_object == NULL, 2373 ("map entry %p has backing object", entry)); 2374 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2375 ("map entry %p is a submap", entry)); 2376 object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL, 2377 entry->cred, entry->end - entry->start); 2378 entry->object.vm_object = object; 2379 entry->offset = 0; 2380 entry->cred = NULL; 2381 } 2382 2383 /* 2384 * vm_map_entry_charge_object 2385 * 2386 * If there is no object backing this entry, create one. Otherwise, if 2387 * the entry has cred, give it to the backing object. 2388 */ 2389 static inline void 2390 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2391 { 2392 2393 VM_MAP_ASSERT_LOCKED(map); 2394 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2395 ("map entry %p is a submap", entry)); 2396 if (entry->object.vm_object == NULL && !map->system_map && 2397 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2398 vm_map_entry_back(entry); 2399 else if (entry->object.vm_object != NULL && 2400 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2401 entry->cred != NULL) { 2402 VM_OBJECT_WLOCK(entry->object.vm_object); 2403 KASSERT(entry->object.vm_object->cred == NULL, 2404 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2405 entry->object.vm_object->cred = entry->cred; 2406 entry->object.vm_object->charge = entry->end - entry->start; 2407 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2408 entry->cred = NULL; 2409 } 2410 } 2411 2412 /* 2413 * vm_map_entry_clone 2414 * 2415 * Create a duplicate map entry for clipping. 2416 */ 2417 static vm_map_entry_t 2418 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry) 2419 { 2420 vm_map_entry_t new_entry; 2421 2422 VM_MAP_ASSERT_LOCKED(map); 2423 2424 /* 2425 * Create a backing object now, if none exists, so that more individual 2426 * objects won't be created after the map entry is split. 2427 */ 2428 vm_map_entry_charge_object(map, entry); 2429 2430 /* Clone the entry. */ 2431 new_entry = vm_map_entry_create(map); 2432 *new_entry = *entry; 2433 if (new_entry->cred != NULL) 2434 crhold(entry->cred); 2435 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2436 vm_object_reference(new_entry->object.vm_object); 2437 vm_map_entry_set_vnode_text(new_entry, true); 2438 /* 2439 * The object->un_pager.vnp.writemappings for the object of 2440 * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The 2441 * virtual pages are re-distributed among the clipped entries, 2442 * so the sum is left the same. 2443 */ 2444 } 2445 return (new_entry); 2446 } 2447 2448 /* 2449 * vm_map_clip_start: [ internal use only ] 2450 * 2451 * Asserts that the given entry begins at or after 2452 * the specified address; if necessary, 2453 * it splits the entry into two. 2454 */ 2455 static int 2456 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr) 2457 { 2458 vm_map_entry_t new_entry; 2459 int bdry_idx; 2460 2461 if (!map->system_map) 2462 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2463 "%s: map %p entry %p start 0x%jx", __func__, map, entry, 2464 (uintmax_t)startaddr); 2465 2466 if (startaddr <= entry->start) 2467 return (KERN_SUCCESS); 2468 2469 VM_MAP_ASSERT_LOCKED(map); 2470 KASSERT(entry->end > startaddr && entry->start < startaddr, 2471 ("%s: invalid clip of entry %p", __func__, entry)); 2472 2473 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 2474 if (bdry_idx != 0) { 2475 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0) 2476 return (KERN_INVALID_ARGUMENT); 2477 } 2478 2479 new_entry = vm_map_entry_clone(map, entry); 2480 2481 /* 2482 * Split off the front portion. Insert the new entry BEFORE this one, 2483 * so that this entry has the specified starting address. 2484 */ 2485 new_entry->end = startaddr; 2486 vm_map_entry_link(map, new_entry); 2487 return (KERN_SUCCESS); 2488 } 2489 2490 /* 2491 * vm_map_lookup_clip_start: 2492 * 2493 * Find the entry at or just after 'start', and clip it if 'start' is in 2494 * the interior of the entry. Return entry after 'start', and in 2495 * prev_entry set the entry before 'start'. 2496 */ 2497 static int 2498 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start, 2499 vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry) 2500 { 2501 vm_map_entry_t entry; 2502 int rv; 2503 2504 if (!map->system_map) 2505 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2506 "%s: map %p start 0x%jx prev %p", __func__, map, 2507 (uintmax_t)start, prev_entry); 2508 2509 if (vm_map_lookup_entry(map, start, prev_entry)) { 2510 entry = *prev_entry; 2511 rv = vm_map_clip_start(map, entry, start); 2512 if (rv != KERN_SUCCESS) 2513 return (rv); 2514 *prev_entry = vm_map_entry_pred(entry); 2515 } else 2516 entry = vm_map_entry_succ(*prev_entry); 2517 *res_entry = entry; 2518 return (KERN_SUCCESS); 2519 } 2520 2521 /* 2522 * vm_map_clip_end: [ internal use only ] 2523 * 2524 * Asserts that the given entry ends at or before 2525 * the specified address; if necessary, 2526 * it splits the entry into two. 2527 */ 2528 static int 2529 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr) 2530 { 2531 vm_map_entry_t new_entry; 2532 int bdry_idx; 2533 2534 if (!map->system_map) 2535 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2536 "%s: map %p entry %p end 0x%jx", __func__, map, entry, 2537 (uintmax_t)endaddr); 2538 2539 if (endaddr >= entry->end) 2540 return (KERN_SUCCESS); 2541 2542 VM_MAP_ASSERT_LOCKED(map); 2543 KASSERT(entry->start < endaddr && entry->end > endaddr, 2544 ("%s: invalid clip of entry %p", __func__, entry)); 2545 2546 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 2547 if (bdry_idx != 0) { 2548 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0) 2549 return (KERN_INVALID_ARGUMENT); 2550 } 2551 2552 new_entry = vm_map_entry_clone(map, entry); 2553 2554 /* 2555 * Split off the back portion. Insert the new entry AFTER this one, 2556 * so that this entry has the specified ending address. 2557 */ 2558 new_entry->start = endaddr; 2559 vm_map_entry_link(map, new_entry); 2560 2561 return (KERN_SUCCESS); 2562 } 2563 2564 /* 2565 * vm_map_submap: [ kernel use only ] 2566 * 2567 * Mark the given range as handled by a subordinate map. 2568 * 2569 * This range must have been created with vm_map_find, 2570 * and no other operations may have been performed on this 2571 * range prior to calling vm_map_submap. 2572 * 2573 * Only a limited number of operations can be performed 2574 * within this rage after calling vm_map_submap: 2575 * vm_fault 2576 * [Don't try vm_map_copy!] 2577 * 2578 * To remove a submapping, one must first remove the 2579 * range from the superior map, and then destroy the 2580 * submap (if desired). [Better yet, don't try it.] 2581 */ 2582 int 2583 vm_map_submap( 2584 vm_map_t map, 2585 vm_offset_t start, 2586 vm_offset_t end, 2587 vm_map_t submap) 2588 { 2589 vm_map_entry_t entry; 2590 int result; 2591 2592 result = KERN_INVALID_ARGUMENT; 2593 2594 vm_map_lock(submap); 2595 submap->flags |= MAP_IS_SUB_MAP; 2596 vm_map_unlock(submap); 2597 2598 vm_map_lock(map); 2599 VM_MAP_RANGE_CHECK(map, start, end); 2600 if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end && 2601 (entry->eflags & MAP_ENTRY_COW) == 0 && 2602 entry->object.vm_object == NULL) { 2603 result = vm_map_clip_start(map, entry, start); 2604 if (result != KERN_SUCCESS) 2605 goto unlock; 2606 result = vm_map_clip_end(map, entry, end); 2607 if (result != KERN_SUCCESS) 2608 goto unlock; 2609 entry->object.sub_map = submap; 2610 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2611 result = KERN_SUCCESS; 2612 } 2613 unlock: 2614 vm_map_unlock(map); 2615 2616 if (result != KERN_SUCCESS) { 2617 vm_map_lock(submap); 2618 submap->flags &= ~MAP_IS_SUB_MAP; 2619 vm_map_unlock(submap); 2620 } 2621 return (result); 2622 } 2623 2624 /* 2625 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2626 */ 2627 #define MAX_INIT_PT 96 2628 2629 /* 2630 * vm_map_pmap_enter: 2631 * 2632 * Preload the specified map's pmap with mappings to the specified 2633 * object's memory-resident pages. No further physical pages are 2634 * allocated, and no further virtual pages are retrieved from secondary 2635 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2636 * limited number of page mappings are created at the low-end of the 2637 * specified address range. (For this purpose, a superpage mapping 2638 * counts as one page mapping.) Otherwise, all resident pages within 2639 * the specified address range are mapped. 2640 */ 2641 static void 2642 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2643 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2644 { 2645 vm_offset_t start; 2646 vm_page_t p, p_start; 2647 vm_pindex_t mask, psize, threshold, tmpidx; 2648 2649 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2650 return; 2651 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2652 VM_OBJECT_WLOCK(object); 2653 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2654 pmap_object_init_pt(map->pmap, addr, object, pindex, 2655 size); 2656 VM_OBJECT_WUNLOCK(object); 2657 return; 2658 } 2659 VM_OBJECT_LOCK_DOWNGRADE(object); 2660 } else 2661 VM_OBJECT_RLOCK(object); 2662 2663 psize = atop(size); 2664 if (psize + pindex > object->size) { 2665 if (pindex >= object->size) { 2666 VM_OBJECT_RUNLOCK(object); 2667 return; 2668 } 2669 psize = object->size - pindex; 2670 } 2671 2672 start = 0; 2673 p_start = NULL; 2674 threshold = MAX_INIT_PT; 2675 2676 p = vm_page_find_least(object, pindex); 2677 /* 2678 * Assert: the variable p is either (1) the page with the 2679 * least pindex greater than or equal to the parameter pindex 2680 * or (2) NULL. 2681 */ 2682 for (; 2683 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2684 p = TAILQ_NEXT(p, listq)) { 2685 /* 2686 * don't allow an madvise to blow away our really 2687 * free pages allocating pv entries. 2688 */ 2689 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2690 vm_page_count_severe()) || 2691 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2692 tmpidx >= threshold)) { 2693 psize = tmpidx; 2694 break; 2695 } 2696 if (vm_page_all_valid(p)) { 2697 if (p_start == NULL) { 2698 start = addr + ptoa(tmpidx); 2699 p_start = p; 2700 } 2701 /* Jump ahead if a superpage mapping is possible. */ 2702 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2703 (pagesizes[p->psind] - 1)) == 0) { 2704 mask = atop(pagesizes[p->psind]) - 1; 2705 if (tmpidx + mask < psize && 2706 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2707 p += mask; 2708 threshold += mask; 2709 } 2710 } 2711 } else if (p_start != NULL) { 2712 pmap_enter_object(map->pmap, start, addr + 2713 ptoa(tmpidx), p_start, prot); 2714 p_start = NULL; 2715 } 2716 } 2717 if (p_start != NULL) 2718 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2719 p_start, prot); 2720 VM_OBJECT_RUNLOCK(object); 2721 } 2722 2723 /* 2724 * vm_map_protect: 2725 * 2726 * Sets the protection and/or the maximum protection of the 2727 * specified address region in the target map. 2728 */ 2729 int 2730 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2731 vm_prot_t new_prot, vm_prot_t new_maxprot, int flags) 2732 { 2733 vm_map_entry_t entry, first_entry, in_tran, prev_entry; 2734 vm_object_t obj; 2735 struct ucred *cred; 2736 vm_prot_t old_prot; 2737 int rv; 2738 2739 if (start == end) 2740 return (KERN_SUCCESS); 2741 2742 if ((flags & (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT)) == 2743 (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT) && 2744 (new_prot & new_maxprot) != new_prot) 2745 return (KERN_OUT_OF_BOUNDS); 2746 2747 again: 2748 in_tran = NULL; 2749 vm_map_lock(map); 2750 2751 if ((map->flags & MAP_WXORX) != 0 && 2752 (flags & VM_MAP_PROTECT_SET_PROT) != 0 && 2753 (new_prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE | 2754 VM_PROT_EXECUTE)) { 2755 vm_map_unlock(map); 2756 return (KERN_PROTECTION_FAILURE); 2757 } 2758 2759 /* 2760 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2761 * need to fault pages into the map and will drop the map lock while 2762 * doing so, and the VM object may end up in an inconsistent state if we 2763 * update the protection on the map entry in between faults. 2764 */ 2765 vm_map_wait_busy(map); 2766 2767 VM_MAP_RANGE_CHECK(map, start, end); 2768 2769 if (!vm_map_lookup_entry(map, start, &first_entry)) 2770 first_entry = vm_map_entry_succ(first_entry); 2771 2772 /* 2773 * Make a first pass to check for protection violations. 2774 */ 2775 for (entry = first_entry; entry->start < end; 2776 entry = vm_map_entry_succ(entry)) { 2777 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 2778 continue; 2779 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 2780 vm_map_unlock(map); 2781 return (KERN_INVALID_ARGUMENT); 2782 } 2783 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0) 2784 new_prot = entry->protection; 2785 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) == 0) 2786 new_maxprot = entry->max_protection; 2787 if ((new_prot & entry->max_protection) != new_prot || 2788 (new_maxprot & entry->max_protection) != new_maxprot) { 2789 vm_map_unlock(map); 2790 return (KERN_PROTECTION_FAILURE); 2791 } 2792 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2793 in_tran = entry; 2794 } 2795 2796 /* 2797 * Postpone the operation until all in-transition map entries have 2798 * stabilized. An in-transition entry might already have its pages 2799 * wired and wired_count incremented, but not yet have its 2800 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call 2801 * vm_fault_copy_entry() in the final loop below. 2802 */ 2803 if (in_tran != NULL) { 2804 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2805 vm_map_unlock_and_wait(map, 0); 2806 goto again; 2807 } 2808 2809 /* 2810 * Before changing the protections, try to reserve swap space for any 2811 * private (i.e., copy-on-write) mappings that are transitioning from 2812 * read-only to read/write access. If a reservation fails, break out 2813 * of this loop early and let the next loop simplify the entries, since 2814 * some may now be mergeable. 2815 */ 2816 rv = vm_map_clip_start(map, first_entry, start); 2817 if (rv != KERN_SUCCESS) { 2818 vm_map_unlock(map); 2819 return (rv); 2820 } 2821 for (entry = first_entry; entry->start < end; 2822 entry = vm_map_entry_succ(entry)) { 2823 rv = vm_map_clip_end(map, entry, end); 2824 if (rv != KERN_SUCCESS) { 2825 vm_map_unlock(map); 2826 return (rv); 2827 } 2828 2829 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 || 2830 ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 || 2831 ENTRY_CHARGED(entry) || 2832 (entry->eflags & MAP_ENTRY_GUARD) != 0) 2833 continue; 2834 2835 cred = curthread->td_ucred; 2836 obj = entry->object.vm_object; 2837 2838 if (obj == NULL || 2839 (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) { 2840 if (!swap_reserve(entry->end - entry->start)) { 2841 rv = KERN_RESOURCE_SHORTAGE; 2842 end = entry->end; 2843 break; 2844 } 2845 crhold(cred); 2846 entry->cred = cred; 2847 continue; 2848 } 2849 2850 VM_OBJECT_WLOCK(obj); 2851 if ((obj->flags & OBJ_SWAP) == 0) { 2852 VM_OBJECT_WUNLOCK(obj); 2853 continue; 2854 } 2855 2856 /* 2857 * Charge for the whole object allocation now, since 2858 * we cannot distinguish between non-charged and 2859 * charged clipped mapping of the same object later. 2860 */ 2861 KASSERT(obj->charge == 0, 2862 ("vm_map_protect: object %p overcharged (entry %p)", 2863 obj, entry)); 2864 if (!swap_reserve(ptoa(obj->size))) { 2865 VM_OBJECT_WUNLOCK(obj); 2866 rv = KERN_RESOURCE_SHORTAGE; 2867 end = entry->end; 2868 break; 2869 } 2870 2871 crhold(cred); 2872 obj->cred = cred; 2873 obj->charge = ptoa(obj->size); 2874 VM_OBJECT_WUNLOCK(obj); 2875 } 2876 2877 /* 2878 * If enough swap space was available, go back and fix up protections. 2879 * Otherwise, just simplify entries, since some may have been modified. 2880 * [Note that clipping is not necessary the second time.] 2881 */ 2882 for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry; 2883 entry->start < end; 2884 vm_map_try_merge_entries(map, prev_entry, entry), 2885 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2886 if (rv != KERN_SUCCESS || 2887 (entry->eflags & MAP_ENTRY_GUARD) != 0) 2888 continue; 2889 2890 old_prot = entry->protection; 2891 2892 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) { 2893 entry->max_protection = new_maxprot; 2894 entry->protection = new_maxprot & old_prot; 2895 } 2896 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) 2897 entry->protection = new_prot; 2898 2899 /* 2900 * For user wired map entries, the normal lazy evaluation of 2901 * write access upgrades through soft page faults is 2902 * undesirable. Instead, immediately copy any pages that are 2903 * copy-on-write and enable write access in the physical map. 2904 */ 2905 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2906 (entry->protection & VM_PROT_WRITE) != 0 && 2907 (old_prot & VM_PROT_WRITE) == 0) 2908 vm_fault_copy_entry(map, map, entry, entry, NULL); 2909 2910 /* 2911 * When restricting access, update the physical map. Worry 2912 * about copy-on-write here. 2913 */ 2914 if ((old_prot & ~entry->protection) != 0) { 2915 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2916 VM_PROT_ALL) 2917 pmap_protect(map->pmap, entry->start, 2918 entry->end, 2919 entry->protection & MASK(entry)); 2920 #undef MASK 2921 } 2922 } 2923 vm_map_try_merge_entries(map, prev_entry, entry); 2924 vm_map_unlock(map); 2925 return (rv); 2926 } 2927 2928 /* 2929 * vm_map_madvise: 2930 * 2931 * This routine traverses a processes map handling the madvise 2932 * system call. Advisories are classified as either those effecting 2933 * the vm_map_entry structure, or those effecting the underlying 2934 * objects. 2935 */ 2936 int 2937 vm_map_madvise( 2938 vm_map_t map, 2939 vm_offset_t start, 2940 vm_offset_t end, 2941 int behav) 2942 { 2943 vm_map_entry_t entry, prev_entry; 2944 int rv; 2945 bool modify_map; 2946 2947 /* 2948 * Some madvise calls directly modify the vm_map_entry, in which case 2949 * we need to use an exclusive lock on the map and we need to perform 2950 * various clipping operations. Otherwise we only need a read-lock 2951 * on the map. 2952 */ 2953 switch(behav) { 2954 case MADV_NORMAL: 2955 case MADV_SEQUENTIAL: 2956 case MADV_RANDOM: 2957 case MADV_NOSYNC: 2958 case MADV_AUTOSYNC: 2959 case MADV_NOCORE: 2960 case MADV_CORE: 2961 if (start == end) 2962 return (0); 2963 modify_map = true; 2964 vm_map_lock(map); 2965 break; 2966 case MADV_WILLNEED: 2967 case MADV_DONTNEED: 2968 case MADV_FREE: 2969 if (start == end) 2970 return (0); 2971 modify_map = false; 2972 vm_map_lock_read(map); 2973 break; 2974 default: 2975 return (EINVAL); 2976 } 2977 2978 /* 2979 * Locate starting entry and clip if necessary. 2980 */ 2981 VM_MAP_RANGE_CHECK(map, start, end); 2982 2983 if (modify_map) { 2984 /* 2985 * madvise behaviors that are implemented in the vm_map_entry. 2986 * 2987 * We clip the vm_map_entry so that behavioral changes are 2988 * limited to the specified address range. 2989 */ 2990 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry); 2991 if (rv != KERN_SUCCESS) { 2992 vm_map_unlock(map); 2993 return (vm_mmap_to_errno(rv)); 2994 } 2995 2996 for (; entry->start < end; prev_entry = entry, 2997 entry = vm_map_entry_succ(entry)) { 2998 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 2999 continue; 3000 3001 rv = vm_map_clip_end(map, entry, end); 3002 if (rv != KERN_SUCCESS) { 3003 vm_map_unlock(map); 3004 return (vm_mmap_to_errno(rv)); 3005 } 3006 3007 switch (behav) { 3008 case MADV_NORMAL: 3009 vm_map_entry_set_behavior(entry, 3010 MAP_ENTRY_BEHAV_NORMAL); 3011 break; 3012 case MADV_SEQUENTIAL: 3013 vm_map_entry_set_behavior(entry, 3014 MAP_ENTRY_BEHAV_SEQUENTIAL); 3015 break; 3016 case MADV_RANDOM: 3017 vm_map_entry_set_behavior(entry, 3018 MAP_ENTRY_BEHAV_RANDOM); 3019 break; 3020 case MADV_NOSYNC: 3021 entry->eflags |= MAP_ENTRY_NOSYNC; 3022 break; 3023 case MADV_AUTOSYNC: 3024 entry->eflags &= ~MAP_ENTRY_NOSYNC; 3025 break; 3026 case MADV_NOCORE: 3027 entry->eflags |= MAP_ENTRY_NOCOREDUMP; 3028 break; 3029 case MADV_CORE: 3030 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP; 3031 break; 3032 default: 3033 break; 3034 } 3035 vm_map_try_merge_entries(map, prev_entry, entry); 3036 } 3037 vm_map_try_merge_entries(map, prev_entry, entry); 3038 vm_map_unlock(map); 3039 } else { 3040 vm_pindex_t pstart, pend; 3041 3042 /* 3043 * madvise behaviors that are implemented in the underlying 3044 * vm_object. 3045 * 3046 * Since we don't clip the vm_map_entry, we have to clip 3047 * the vm_object pindex and count. 3048 */ 3049 if (!vm_map_lookup_entry(map, start, &entry)) 3050 entry = vm_map_entry_succ(entry); 3051 for (; entry->start < end; 3052 entry = vm_map_entry_succ(entry)) { 3053 vm_offset_t useEnd, useStart; 3054 3055 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 3056 continue; 3057 3058 /* 3059 * MADV_FREE would otherwise rewind time to 3060 * the creation of the shadow object. Because 3061 * we hold the VM map read-locked, neither the 3062 * entry's object nor the presence of a 3063 * backing object can change. 3064 */ 3065 if (behav == MADV_FREE && 3066 entry->object.vm_object != NULL && 3067 entry->object.vm_object->backing_object != NULL) 3068 continue; 3069 3070 pstart = OFF_TO_IDX(entry->offset); 3071 pend = pstart + atop(entry->end - entry->start); 3072 useStart = entry->start; 3073 useEnd = entry->end; 3074 3075 if (entry->start < start) { 3076 pstart += atop(start - entry->start); 3077 useStart = start; 3078 } 3079 if (entry->end > end) { 3080 pend -= atop(entry->end - end); 3081 useEnd = end; 3082 } 3083 3084 if (pstart >= pend) 3085 continue; 3086 3087 /* 3088 * Perform the pmap_advise() before clearing 3089 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 3090 * concurrent pmap operation, such as pmap_remove(), 3091 * could clear a reference in the pmap and set 3092 * PGA_REFERENCED on the page before the pmap_advise() 3093 * had completed. Consequently, the page would appear 3094 * referenced based upon an old reference that 3095 * occurred before this pmap_advise() ran. 3096 */ 3097 if (behav == MADV_DONTNEED || behav == MADV_FREE) 3098 pmap_advise(map->pmap, useStart, useEnd, 3099 behav); 3100 3101 vm_object_madvise(entry->object.vm_object, pstart, 3102 pend, behav); 3103 3104 /* 3105 * Pre-populate paging structures in the 3106 * WILLNEED case. For wired entries, the 3107 * paging structures are already populated. 3108 */ 3109 if (behav == MADV_WILLNEED && 3110 entry->wired_count == 0) { 3111 vm_map_pmap_enter(map, 3112 useStart, 3113 entry->protection, 3114 entry->object.vm_object, 3115 pstart, 3116 ptoa(pend - pstart), 3117 MAP_PREFAULT_MADVISE 3118 ); 3119 } 3120 } 3121 vm_map_unlock_read(map); 3122 } 3123 return (0); 3124 } 3125 3126 /* 3127 * vm_map_inherit: 3128 * 3129 * Sets the inheritance of the specified address 3130 * range in the target map. Inheritance 3131 * affects how the map will be shared with 3132 * child maps at the time of vmspace_fork. 3133 */ 3134 int 3135 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 3136 vm_inherit_t new_inheritance) 3137 { 3138 vm_map_entry_t entry, lentry, prev_entry, start_entry; 3139 int rv; 3140 3141 switch (new_inheritance) { 3142 case VM_INHERIT_NONE: 3143 case VM_INHERIT_COPY: 3144 case VM_INHERIT_SHARE: 3145 case VM_INHERIT_ZERO: 3146 break; 3147 default: 3148 return (KERN_INVALID_ARGUMENT); 3149 } 3150 if (start == end) 3151 return (KERN_SUCCESS); 3152 vm_map_lock(map); 3153 VM_MAP_RANGE_CHECK(map, start, end); 3154 rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry); 3155 if (rv != KERN_SUCCESS) 3156 goto unlock; 3157 if (vm_map_lookup_entry(map, end - 1, &lentry)) { 3158 rv = vm_map_clip_end(map, lentry, end); 3159 if (rv != KERN_SUCCESS) 3160 goto unlock; 3161 } 3162 if (new_inheritance == VM_INHERIT_COPY) { 3163 for (entry = start_entry; entry->start < end; 3164 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3165 if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) 3166 != 0) { 3167 rv = KERN_INVALID_ARGUMENT; 3168 goto unlock; 3169 } 3170 } 3171 } 3172 for (entry = start_entry; entry->start < end; prev_entry = entry, 3173 entry = vm_map_entry_succ(entry)) { 3174 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx", 3175 entry, (uintmax_t)entry->end, (uintmax_t)end)); 3176 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 3177 new_inheritance != VM_INHERIT_ZERO) 3178 entry->inheritance = new_inheritance; 3179 vm_map_try_merge_entries(map, prev_entry, entry); 3180 } 3181 vm_map_try_merge_entries(map, prev_entry, entry); 3182 unlock: 3183 vm_map_unlock(map); 3184 return (rv); 3185 } 3186 3187 /* 3188 * vm_map_entry_in_transition: 3189 * 3190 * Release the map lock, and sleep until the entry is no longer in 3191 * transition. Awake and acquire the map lock. If the map changed while 3192 * another held the lock, lookup a possibly-changed entry at or after the 3193 * 'start' position of the old entry. 3194 */ 3195 static vm_map_entry_t 3196 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, 3197 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) 3198 { 3199 vm_map_entry_t entry; 3200 vm_offset_t start; 3201 u_int last_timestamp; 3202 3203 VM_MAP_ASSERT_LOCKED(map); 3204 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3205 ("not in-tranition map entry %p", in_entry)); 3206 /* 3207 * We have not yet clipped the entry. 3208 */ 3209 start = MAX(in_start, in_entry->start); 3210 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3211 last_timestamp = map->timestamp; 3212 if (vm_map_unlock_and_wait(map, 0)) { 3213 /* 3214 * Allow interruption of user wiring/unwiring? 3215 */ 3216 } 3217 vm_map_lock(map); 3218 if (last_timestamp + 1 == map->timestamp) 3219 return (in_entry); 3220 3221 /* 3222 * Look again for the entry because the map was modified while it was 3223 * unlocked. Specifically, the entry may have been clipped, merged, or 3224 * deleted. 3225 */ 3226 if (!vm_map_lookup_entry(map, start, &entry)) { 3227 if (!holes_ok) { 3228 *io_end = start; 3229 return (NULL); 3230 } 3231 entry = vm_map_entry_succ(entry); 3232 } 3233 return (entry); 3234 } 3235 3236 /* 3237 * vm_map_unwire: 3238 * 3239 * Implements both kernel and user unwiring. 3240 */ 3241 int 3242 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 3243 int flags) 3244 { 3245 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3246 int rv; 3247 bool holes_ok, need_wakeup, user_unwire; 3248 3249 if (start == end) 3250 return (KERN_SUCCESS); 3251 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3252 user_unwire = (flags & VM_MAP_WIRE_USER) != 0; 3253 vm_map_lock(map); 3254 VM_MAP_RANGE_CHECK(map, start, end); 3255 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3256 if (holes_ok) 3257 first_entry = vm_map_entry_succ(first_entry); 3258 else { 3259 vm_map_unlock(map); 3260 return (KERN_INVALID_ADDRESS); 3261 } 3262 } 3263 rv = KERN_SUCCESS; 3264 for (entry = first_entry; entry->start < end; entry = next_entry) { 3265 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3266 /* 3267 * We have not yet clipped the entry. 3268 */ 3269 next_entry = vm_map_entry_in_transition(map, start, 3270 &end, holes_ok, entry); 3271 if (next_entry == NULL) { 3272 if (entry == first_entry) { 3273 vm_map_unlock(map); 3274 return (KERN_INVALID_ADDRESS); 3275 } 3276 rv = KERN_INVALID_ADDRESS; 3277 break; 3278 } 3279 first_entry = (entry == first_entry) ? 3280 next_entry : NULL; 3281 continue; 3282 } 3283 rv = vm_map_clip_start(map, entry, start); 3284 if (rv != KERN_SUCCESS) 3285 break; 3286 rv = vm_map_clip_end(map, entry, end); 3287 if (rv != KERN_SUCCESS) 3288 break; 3289 3290 /* 3291 * Mark the entry in case the map lock is released. (See 3292 * above.) 3293 */ 3294 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3295 entry->wiring_thread == NULL, 3296 ("owned map entry %p", entry)); 3297 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3298 entry->wiring_thread = curthread; 3299 next_entry = vm_map_entry_succ(entry); 3300 /* 3301 * Check the map for holes in the specified region. 3302 * If holes_ok, skip this check. 3303 */ 3304 if (!holes_ok && 3305 entry->end < end && next_entry->start > entry->end) { 3306 end = entry->end; 3307 rv = KERN_INVALID_ADDRESS; 3308 break; 3309 } 3310 /* 3311 * If system unwiring, require that the entry is system wired. 3312 */ 3313 if (!user_unwire && 3314 vm_map_entry_system_wired_count(entry) == 0) { 3315 end = entry->end; 3316 rv = KERN_INVALID_ARGUMENT; 3317 break; 3318 } 3319 } 3320 need_wakeup = false; 3321 if (first_entry == NULL && 3322 !vm_map_lookup_entry(map, start, &first_entry)) { 3323 KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); 3324 prev_entry = first_entry; 3325 entry = vm_map_entry_succ(first_entry); 3326 } else { 3327 prev_entry = vm_map_entry_pred(first_entry); 3328 entry = first_entry; 3329 } 3330 for (; entry->start < end; 3331 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3332 /* 3333 * If holes_ok was specified, an empty 3334 * space in the unwired region could have been mapped 3335 * while the map lock was dropped for draining 3336 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 3337 * could be simultaneously wiring this new mapping 3338 * entry. Detect these cases and skip any entries 3339 * marked as in transition by us. 3340 */ 3341 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3342 entry->wiring_thread != curthread) { 3343 KASSERT(holes_ok, 3344 ("vm_map_unwire: !HOLESOK and new/changed entry")); 3345 continue; 3346 } 3347 3348 if (rv == KERN_SUCCESS && (!user_unwire || 3349 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 3350 if (entry->wired_count == 1) 3351 vm_map_entry_unwire(map, entry); 3352 else 3353 entry->wired_count--; 3354 if (user_unwire) 3355 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3356 } 3357 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3358 ("vm_map_unwire: in-transition flag missing %p", entry)); 3359 KASSERT(entry->wiring_thread == curthread, 3360 ("vm_map_unwire: alien wire %p", entry)); 3361 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 3362 entry->wiring_thread = NULL; 3363 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3364 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3365 need_wakeup = true; 3366 } 3367 vm_map_try_merge_entries(map, prev_entry, entry); 3368 } 3369 vm_map_try_merge_entries(map, prev_entry, entry); 3370 vm_map_unlock(map); 3371 if (need_wakeup) 3372 vm_map_wakeup(map); 3373 return (rv); 3374 } 3375 3376 static void 3377 vm_map_wire_user_count_sub(u_long npages) 3378 { 3379 3380 atomic_subtract_long(&vm_user_wire_count, npages); 3381 } 3382 3383 static bool 3384 vm_map_wire_user_count_add(u_long npages) 3385 { 3386 u_long wired; 3387 3388 wired = vm_user_wire_count; 3389 do { 3390 if (npages + wired > vm_page_max_user_wired) 3391 return (false); 3392 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3393 npages + wired)); 3394 3395 return (true); 3396 } 3397 3398 /* 3399 * vm_map_wire_entry_failure: 3400 * 3401 * Handle a wiring failure on the given entry. 3402 * 3403 * The map should be locked. 3404 */ 3405 static void 3406 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3407 vm_offset_t failed_addr) 3408 { 3409 3410 VM_MAP_ASSERT_LOCKED(map); 3411 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3412 entry->wired_count == 1, 3413 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3414 KASSERT(failed_addr < entry->end, 3415 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3416 3417 /* 3418 * If any pages at the start of this entry were successfully wired, 3419 * then unwire them. 3420 */ 3421 if (failed_addr > entry->start) { 3422 pmap_unwire(map->pmap, entry->start, failed_addr); 3423 vm_object_unwire(entry->object.vm_object, entry->offset, 3424 failed_addr - entry->start, PQ_ACTIVE); 3425 } 3426 3427 /* 3428 * Assign an out-of-range value to represent the failure to wire this 3429 * entry. 3430 */ 3431 entry->wired_count = -1; 3432 } 3433 3434 int 3435 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3436 { 3437 int rv; 3438 3439 vm_map_lock(map); 3440 rv = vm_map_wire_locked(map, start, end, flags); 3441 vm_map_unlock(map); 3442 return (rv); 3443 } 3444 3445 /* 3446 * vm_map_wire_locked: 3447 * 3448 * Implements both kernel and user wiring. Returns with the map locked, 3449 * the map lock may be dropped. 3450 */ 3451 int 3452 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3453 { 3454 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3455 vm_offset_t faddr, saved_end, saved_start; 3456 u_long incr, npages; 3457 u_int bidx, last_timestamp; 3458 int rv; 3459 bool holes_ok, need_wakeup, user_wire; 3460 vm_prot_t prot; 3461 3462 VM_MAP_ASSERT_LOCKED(map); 3463 3464 if (start == end) 3465 return (KERN_SUCCESS); 3466 prot = 0; 3467 if (flags & VM_MAP_WIRE_WRITE) 3468 prot |= VM_PROT_WRITE; 3469 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3470 user_wire = (flags & VM_MAP_WIRE_USER) != 0; 3471 VM_MAP_RANGE_CHECK(map, start, end); 3472 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3473 if (holes_ok) 3474 first_entry = vm_map_entry_succ(first_entry); 3475 else 3476 return (KERN_INVALID_ADDRESS); 3477 } 3478 for (entry = first_entry; entry->start < end; entry = next_entry) { 3479 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3480 /* 3481 * We have not yet clipped the entry. 3482 */ 3483 next_entry = vm_map_entry_in_transition(map, start, 3484 &end, holes_ok, entry); 3485 if (next_entry == NULL) { 3486 if (entry == first_entry) 3487 return (KERN_INVALID_ADDRESS); 3488 rv = KERN_INVALID_ADDRESS; 3489 goto done; 3490 } 3491 first_entry = (entry == first_entry) ? 3492 next_entry : NULL; 3493 continue; 3494 } 3495 rv = vm_map_clip_start(map, entry, start); 3496 if (rv != KERN_SUCCESS) 3497 goto done; 3498 rv = vm_map_clip_end(map, entry, end); 3499 if (rv != KERN_SUCCESS) 3500 goto done; 3501 3502 /* 3503 * Mark the entry in case the map lock is released. (See 3504 * above.) 3505 */ 3506 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3507 entry->wiring_thread == NULL, 3508 ("owned map entry %p", entry)); 3509 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3510 entry->wiring_thread = curthread; 3511 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3512 || (entry->protection & prot) != prot) { 3513 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3514 if (!holes_ok) { 3515 end = entry->end; 3516 rv = KERN_INVALID_ADDRESS; 3517 goto done; 3518 } 3519 } else if (entry->wired_count == 0) { 3520 entry->wired_count++; 3521 3522 npages = atop(entry->end - entry->start); 3523 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3524 vm_map_wire_entry_failure(map, entry, 3525 entry->start); 3526 end = entry->end; 3527 rv = KERN_RESOURCE_SHORTAGE; 3528 goto done; 3529 } 3530 3531 /* 3532 * Release the map lock, relying on the in-transition 3533 * mark. Mark the map busy for fork. 3534 */ 3535 saved_start = entry->start; 3536 saved_end = entry->end; 3537 last_timestamp = map->timestamp; 3538 bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 3539 incr = pagesizes[bidx]; 3540 vm_map_busy(map); 3541 vm_map_unlock(map); 3542 3543 for (faddr = saved_start; faddr < saved_end; 3544 faddr += incr) { 3545 /* 3546 * Simulate a fault to get the page and enter 3547 * it into the physical map. 3548 */ 3549 rv = vm_fault(map, faddr, VM_PROT_NONE, 3550 VM_FAULT_WIRE, NULL); 3551 if (rv != KERN_SUCCESS) 3552 break; 3553 } 3554 vm_map_lock(map); 3555 vm_map_unbusy(map); 3556 if (last_timestamp + 1 != map->timestamp) { 3557 /* 3558 * Look again for the entry because the map was 3559 * modified while it was unlocked. The entry 3560 * may have been clipped, but NOT merged or 3561 * deleted. 3562 */ 3563 if (!vm_map_lookup_entry(map, saved_start, 3564 &next_entry)) 3565 KASSERT(false, 3566 ("vm_map_wire: lookup failed")); 3567 first_entry = (entry == first_entry) ? 3568 next_entry : NULL; 3569 for (entry = next_entry; entry->end < saved_end; 3570 entry = vm_map_entry_succ(entry)) { 3571 /* 3572 * In case of failure, handle entries 3573 * that were not fully wired here; 3574 * fully wired entries are handled 3575 * later. 3576 */ 3577 if (rv != KERN_SUCCESS && 3578 faddr < entry->end) 3579 vm_map_wire_entry_failure(map, 3580 entry, faddr); 3581 } 3582 } 3583 if (rv != KERN_SUCCESS) { 3584 vm_map_wire_entry_failure(map, entry, faddr); 3585 if (user_wire) 3586 vm_map_wire_user_count_sub(npages); 3587 end = entry->end; 3588 goto done; 3589 } 3590 } else if (!user_wire || 3591 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3592 entry->wired_count++; 3593 } 3594 /* 3595 * Check the map for holes in the specified region. 3596 * If holes_ok was specified, skip this check. 3597 */ 3598 next_entry = vm_map_entry_succ(entry); 3599 if (!holes_ok && 3600 entry->end < end && next_entry->start > entry->end) { 3601 end = entry->end; 3602 rv = KERN_INVALID_ADDRESS; 3603 goto done; 3604 } 3605 } 3606 rv = KERN_SUCCESS; 3607 done: 3608 need_wakeup = false; 3609 if (first_entry == NULL && 3610 !vm_map_lookup_entry(map, start, &first_entry)) { 3611 KASSERT(holes_ok, ("vm_map_wire: lookup failed")); 3612 prev_entry = first_entry; 3613 entry = vm_map_entry_succ(first_entry); 3614 } else { 3615 prev_entry = vm_map_entry_pred(first_entry); 3616 entry = first_entry; 3617 } 3618 for (; entry->start < end; 3619 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3620 /* 3621 * If holes_ok was specified, an empty 3622 * space in the unwired region could have been mapped 3623 * while the map lock was dropped for faulting in the 3624 * pages or draining MAP_ENTRY_IN_TRANSITION. 3625 * Moreover, another thread could be simultaneously 3626 * wiring this new mapping entry. Detect these cases 3627 * and skip any entries marked as in transition not by us. 3628 * 3629 * Another way to get an entry not marked with 3630 * MAP_ENTRY_IN_TRANSITION is after failed clipping, 3631 * which set rv to KERN_INVALID_ARGUMENT. 3632 */ 3633 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3634 entry->wiring_thread != curthread) { 3635 KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT, 3636 ("vm_map_wire: !HOLESOK and new/changed entry")); 3637 continue; 3638 } 3639 3640 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { 3641 /* do nothing */ 3642 } else if (rv == KERN_SUCCESS) { 3643 if (user_wire) 3644 entry->eflags |= MAP_ENTRY_USER_WIRED; 3645 } else if (entry->wired_count == -1) { 3646 /* 3647 * Wiring failed on this entry. Thus, unwiring is 3648 * unnecessary. 3649 */ 3650 entry->wired_count = 0; 3651 } else if (!user_wire || 3652 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3653 /* 3654 * Undo the wiring. Wiring succeeded on this entry 3655 * but failed on a later entry. 3656 */ 3657 if (entry->wired_count == 1) { 3658 vm_map_entry_unwire(map, entry); 3659 if (user_wire) 3660 vm_map_wire_user_count_sub( 3661 atop(entry->end - entry->start)); 3662 } else 3663 entry->wired_count--; 3664 } 3665 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3666 ("vm_map_wire: in-transition flag missing %p", entry)); 3667 KASSERT(entry->wiring_thread == curthread, 3668 ("vm_map_wire: alien wire %p", entry)); 3669 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3670 MAP_ENTRY_WIRE_SKIPPED); 3671 entry->wiring_thread = NULL; 3672 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3673 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3674 need_wakeup = true; 3675 } 3676 vm_map_try_merge_entries(map, prev_entry, entry); 3677 } 3678 vm_map_try_merge_entries(map, prev_entry, entry); 3679 if (need_wakeup) 3680 vm_map_wakeup(map); 3681 return (rv); 3682 } 3683 3684 /* 3685 * vm_map_sync 3686 * 3687 * Push any dirty cached pages in the address range to their pager. 3688 * If syncio is TRUE, dirty pages are written synchronously. 3689 * If invalidate is TRUE, any cached pages are freed as well. 3690 * 3691 * If the size of the region from start to end is zero, we are 3692 * supposed to flush all modified pages within the region containing 3693 * start. Unfortunately, a region can be split or coalesced with 3694 * neighboring regions, making it difficult to determine what the 3695 * original region was. Therefore, we approximate this requirement by 3696 * flushing the current region containing start. 3697 * 3698 * Returns an error if any part of the specified range is not mapped. 3699 */ 3700 int 3701 vm_map_sync( 3702 vm_map_t map, 3703 vm_offset_t start, 3704 vm_offset_t end, 3705 boolean_t syncio, 3706 boolean_t invalidate) 3707 { 3708 vm_map_entry_t entry, first_entry, next_entry; 3709 vm_size_t size; 3710 vm_object_t object; 3711 vm_ooffset_t offset; 3712 unsigned int last_timestamp; 3713 int bdry_idx; 3714 boolean_t failed; 3715 3716 vm_map_lock_read(map); 3717 VM_MAP_RANGE_CHECK(map, start, end); 3718 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3719 vm_map_unlock_read(map); 3720 return (KERN_INVALID_ADDRESS); 3721 } else if (start == end) { 3722 start = first_entry->start; 3723 end = first_entry->end; 3724 } 3725 3726 /* 3727 * Make a first pass to check for user-wired memory, holes, 3728 * and partial invalidation of largepage mappings. 3729 */ 3730 for (entry = first_entry; entry->start < end; entry = next_entry) { 3731 if (invalidate) { 3732 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) { 3733 vm_map_unlock_read(map); 3734 return (KERN_INVALID_ARGUMENT); 3735 } 3736 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 3737 if (bdry_idx != 0 && 3738 ((start & (pagesizes[bdry_idx] - 1)) != 0 || 3739 (end & (pagesizes[bdry_idx] - 1)) != 0)) { 3740 vm_map_unlock_read(map); 3741 return (KERN_INVALID_ARGUMENT); 3742 } 3743 } 3744 next_entry = vm_map_entry_succ(entry); 3745 if (end > entry->end && 3746 entry->end != next_entry->start) { 3747 vm_map_unlock_read(map); 3748 return (KERN_INVALID_ADDRESS); 3749 } 3750 } 3751 3752 if (invalidate) 3753 pmap_remove(map->pmap, start, end); 3754 failed = FALSE; 3755 3756 /* 3757 * Make a second pass, cleaning/uncaching pages from the indicated 3758 * objects as we go. 3759 */ 3760 for (entry = first_entry; entry->start < end;) { 3761 offset = entry->offset + (start - entry->start); 3762 size = (end <= entry->end ? end : entry->end) - start; 3763 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 3764 vm_map_t smap; 3765 vm_map_entry_t tentry; 3766 vm_size_t tsize; 3767 3768 smap = entry->object.sub_map; 3769 vm_map_lock_read(smap); 3770 (void) vm_map_lookup_entry(smap, offset, &tentry); 3771 tsize = tentry->end - offset; 3772 if (tsize < size) 3773 size = tsize; 3774 object = tentry->object.vm_object; 3775 offset = tentry->offset + (offset - tentry->start); 3776 vm_map_unlock_read(smap); 3777 } else { 3778 object = entry->object.vm_object; 3779 } 3780 vm_object_reference(object); 3781 last_timestamp = map->timestamp; 3782 vm_map_unlock_read(map); 3783 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3784 failed = TRUE; 3785 start += size; 3786 vm_object_deallocate(object); 3787 vm_map_lock_read(map); 3788 if (last_timestamp == map->timestamp || 3789 !vm_map_lookup_entry(map, start, &entry)) 3790 entry = vm_map_entry_succ(entry); 3791 } 3792 3793 vm_map_unlock_read(map); 3794 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3795 } 3796 3797 /* 3798 * vm_map_entry_unwire: [ internal use only ] 3799 * 3800 * Make the region specified by this entry pageable. 3801 * 3802 * The map in question should be locked. 3803 * [This is the reason for this routine's existence.] 3804 */ 3805 static void 3806 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3807 { 3808 vm_size_t size; 3809 3810 VM_MAP_ASSERT_LOCKED(map); 3811 KASSERT(entry->wired_count > 0, 3812 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3813 3814 size = entry->end - entry->start; 3815 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3816 vm_map_wire_user_count_sub(atop(size)); 3817 pmap_unwire(map->pmap, entry->start, entry->end); 3818 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3819 PQ_ACTIVE); 3820 entry->wired_count = 0; 3821 } 3822 3823 static void 3824 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3825 { 3826 3827 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3828 vm_object_deallocate(entry->object.vm_object); 3829 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3830 } 3831 3832 /* 3833 * vm_map_entry_delete: [ internal use only ] 3834 * 3835 * Deallocate the given entry from the target map. 3836 */ 3837 static void 3838 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3839 { 3840 vm_object_t object; 3841 vm_pindex_t offidxstart, offidxend, size1; 3842 vm_size_t size; 3843 3844 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3845 object = entry->object.vm_object; 3846 3847 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3848 MPASS(entry->cred == NULL); 3849 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3850 MPASS(object == NULL); 3851 vm_map_entry_deallocate(entry, map->system_map); 3852 return; 3853 } 3854 3855 size = entry->end - entry->start; 3856 map->size -= size; 3857 3858 if (entry->cred != NULL) { 3859 swap_release_by_cred(size, entry->cred); 3860 crfree(entry->cred); 3861 } 3862 3863 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) { 3864 entry->object.vm_object = NULL; 3865 } else if ((object->flags & OBJ_ANON) != 0 || 3866 object == kernel_object) { 3867 KASSERT(entry->cred == NULL || object->cred == NULL || 3868 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3869 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3870 offidxstart = OFF_TO_IDX(entry->offset); 3871 offidxend = offidxstart + atop(size); 3872 VM_OBJECT_WLOCK(object); 3873 if (object->ref_count != 1 && 3874 ((object->flags & OBJ_ONEMAPPING) != 0 || 3875 object == kernel_object)) { 3876 vm_object_collapse(object); 3877 3878 /* 3879 * The option OBJPR_NOTMAPPED can be passed here 3880 * because vm_map_delete() already performed 3881 * pmap_remove() on the only mapping to this range 3882 * of pages. 3883 */ 3884 vm_object_page_remove(object, offidxstart, offidxend, 3885 OBJPR_NOTMAPPED); 3886 if (offidxend >= object->size && 3887 offidxstart < object->size) { 3888 size1 = object->size; 3889 object->size = offidxstart; 3890 if (object->cred != NULL) { 3891 size1 -= object->size; 3892 KASSERT(object->charge >= ptoa(size1), 3893 ("object %p charge < 0", object)); 3894 swap_release_by_cred(ptoa(size1), 3895 object->cred); 3896 object->charge -= ptoa(size1); 3897 } 3898 } 3899 } 3900 VM_OBJECT_WUNLOCK(object); 3901 } 3902 if (map->system_map) 3903 vm_map_entry_deallocate(entry, TRUE); 3904 else { 3905 entry->defer_next = curthread->td_map_def_user; 3906 curthread->td_map_def_user = entry; 3907 } 3908 } 3909 3910 /* 3911 * vm_map_delete: [ internal use only ] 3912 * 3913 * Deallocates the given address range from the target 3914 * map. 3915 */ 3916 int 3917 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3918 { 3919 vm_map_entry_t entry, next_entry, scratch_entry; 3920 int rv; 3921 3922 VM_MAP_ASSERT_LOCKED(map); 3923 3924 if (start == end) 3925 return (KERN_SUCCESS); 3926 3927 /* 3928 * Find the start of the region, and clip it. 3929 * Step through all entries in this region. 3930 */ 3931 rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry); 3932 if (rv != KERN_SUCCESS) 3933 return (rv); 3934 for (; entry->start < end; entry = next_entry) { 3935 /* 3936 * Wait for wiring or unwiring of an entry to complete. 3937 * Also wait for any system wirings to disappear on 3938 * user maps. 3939 */ 3940 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3941 (vm_map_pmap(map) != kernel_pmap && 3942 vm_map_entry_system_wired_count(entry) != 0)) { 3943 unsigned int last_timestamp; 3944 vm_offset_t saved_start; 3945 3946 saved_start = entry->start; 3947 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3948 last_timestamp = map->timestamp; 3949 (void) vm_map_unlock_and_wait(map, 0); 3950 vm_map_lock(map); 3951 if (last_timestamp + 1 != map->timestamp) { 3952 /* 3953 * Look again for the entry because the map was 3954 * modified while it was unlocked. 3955 * Specifically, the entry may have been 3956 * clipped, merged, or deleted. 3957 */ 3958 rv = vm_map_lookup_clip_start(map, saved_start, 3959 &next_entry, &scratch_entry); 3960 if (rv != KERN_SUCCESS) 3961 break; 3962 } else 3963 next_entry = entry; 3964 continue; 3965 } 3966 3967 /* XXXKIB or delete to the upper superpage boundary ? */ 3968 rv = vm_map_clip_end(map, entry, end); 3969 if (rv != KERN_SUCCESS) 3970 break; 3971 next_entry = vm_map_entry_succ(entry); 3972 3973 /* 3974 * Unwire before removing addresses from the pmap; otherwise, 3975 * unwiring will put the entries back in the pmap. 3976 */ 3977 if (entry->wired_count != 0) 3978 vm_map_entry_unwire(map, entry); 3979 3980 /* 3981 * Remove mappings for the pages, but only if the 3982 * mappings could exist. For instance, it does not 3983 * make sense to call pmap_remove() for guard entries. 3984 */ 3985 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3986 entry->object.vm_object != NULL) 3987 pmap_map_delete(map->pmap, entry->start, entry->end); 3988 3989 if (entry->end == map->anon_loc) 3990 map->anon_loc = entry->start; 3991 3992 /* 3993 * Delete the entry only after removing all pmap 3994 * entries pointing to its pages. (Otherwise, its 3995 * page frames may be reallocated, and any modify bits 3996 * will be set in the wrong object!) 3997 */ 3998 vm_map_entry_delete(map, entry); 3999 } 4000 return (rv); 4001 } 4002 4003 /* 4004 * vm_map_remove: 4005 * 4006 * Remove the given address range from the target map. 4007 * This is the exported form of vm_map_delete. 4008 */ 4009 int 4010 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 4011 { 4012 int result; 4013 4014 vm_map_lock(map); 4015 VM_MAP_RANGE_CHECK(map, start, end); 4016 result = vm_map_delete(map, start, end); 4017 vm_map_unlock(map); 4018 return (result); 4019 } 4020 4021 /* 4022 * vm_map_check_protection: 4023 * 4024 * Assert that the target map allows the specified privilege on the 4025 * entire address region given. The entire region must be allocated. 4026 * 4027 * WARNING! This code does not and should not check whether the 4028 * contents of the region is accessible. For example a smaller file 4029 * might be mapped into a larger address space. 4030 * 4031 * NOTE! This code is also called by munmap(). 4032 * 4033 * The map must be locked. A read lock is sufficient. 4034 */ 4035 boolean_t 4036 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 4037 vm_prot_t protection) 4038 { 4039 vm_map_entry_t entry; 4040 vm_map_entry_t tmp_entry; 4041 4042 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 4043 return (FALSE); 4044 entry = tmp_entry; 4045 4046 while (start < end) { 4047 /* 4048 * No holes allowed! 4049 */ 4050 if (start < entry->start) 4051 return (FALSE); 4052 /* 4053 * Check protection associated with entry. 4054 */ 4055 if ((entry->protection & protection) != protection) 4056 return (FALSE); 4057 /* go to next entry */ 4058 start = entry->end; 4059 entry = vm_map_entry_succ(entry); 4060 } 4061 return (TRUE); 4062 } 4063 4064 /* 4065 * 4066 * vm_map_copy_swap_object: 4067 * 4068 * Copies a swap-backed object from an existing map entry to a 4069 * new one. Carries forward the swap charge. May change the 4070 * src object on return. 4071 */ 4072 static void 4073 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry, 4074 vm_offset_t size, vm_ooffset_t *fork_charge) 4075 { 4076 vm_object_t src_object; 4077 struct ucred *cred; 4078 int charged; 4079 4080 src_object = src_entry->object.vm_object; 4081 charged = ENTRY_CHARGED(src_entry); 4082 if ((src_object->flags & OBJ_ANON) != 0) { 4083 VM_OBJECT_WLOCK(src_object); 4084 vm_object_collapse(src_object); 4085 if ((src_object->flags & OBJ_ONEMAPPING) != 0) { 4086 vm_object_split(src_entry); 4087 src_object = src_entry->object.vm_object; 4088 } 4089 vm_object_reference_locked(src_object); 4090 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 4091 VM_OBJECT_WUNLOCK(src_object); 4092 } else 4093 vm_object_reference(src_object); 4094 if (src_entry->cred != NULL && 4095 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4096 KASSERT(src_object->cred == NULL, 4097 ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p", 4098 src_object)); 4099 src_object->cred = src_entry->cred; 4100 src_object->charge = size; 4101 } 4102 dst_entry->object.vm_object = src_object; 4103 if (charged) { 4104 cred = curthread->td_ucred; 4105 crhold(cred); 4106 dst_entry->cred = cred; 4107 *fork_charge += size; 4108 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4109 crhold(cred); 4110 src_entry->cred = cred; 4111 *fork_charge += size; 4112 } 4113 } 4114 } 4115 4116 /* 4117 * vm_map_copy_entry: 4118 * 4119 * Copies the contents of the source entry to the destination 4120 * entry. The entries *must* be aligned properly. 4121 */ 4122 static void 4123 vm_map_copy_entry( 4124 vm_map_t src_map, 4125 vm_map_t dst_map, 4126 vm_map_entry_t src_entry, 4127 vm_map_entry_t dst_entry, 4128 vm_ooffset_t *fork_charge) 4129 { 4130 vm_object_t src_object; 4131 vm_map_entry_t fake_entry; 4132 vm_offset_t size; 4133 4134 VM_MAP_ASSERT_LOCKED(dst_map); 4135 4136 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 4137 return; 4138 4139 if (src_entry->wired_count == 0 || 4140 (src_entry->protection & VM_PROT_WRITE) == 0) { 4141 /* 4142 * If the source entry is marked needs_copy, it is already 4143 * write-protected. 4144 */ 4145 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 4146 (src_entry->protection & VM_PROT_WRITE) != 0) { 4147 pmap_protect(src_map->pmap, 4148 src_entry->start, 4149 src_entry->end, 4150 src_entry->protection & ~VM_PROT_WRITE); 4151 } 4152 4153 /* 4154 * Make a copy of the object. 4155 */ 4156 size = src_entry->end - src_entry->start; 4157 if ((src_object = src_entry->object.vm_object) != NULL) { 4158 if ((src_object->flags & OBJ_SWAP) != 0) { 4159 vm_map_copy_swap_object(src_entry, dst_entry, 4160 size, fork_charge); 4161 /* May have split/collapsed, reload obj. */ 4162 src_object = src_entry->object.vm_object; 4163 } else { 4164 vm_object_reference(src_object); 4165 dst_entry->object.vm_object = src_object; 4166 } 4167 src_entry->eflags |= MAP_ENTRY_COW | 4168 MAP_ENTRY_NEEDS_COPY; 4169 dst_entry->eflags |= MAP_ENTRY_COW | 4170 MAP_ENTRY_NEEDS_COPY; 4171 dst_entry->offset = src_entry->offset; 4172 if (src_entry->eflags & MAP_ENTRY_WRITECNT) { 4173 /* 4174 * MAP_ENTRY_WRITECNT cannot 4175 * indicate write reference from 4176 * src_entry, since the entry is 4177 * marked as needs copy. Allocate a 4178 * fake entry that is used to 4179 * decrement object->un_pager writecount 4180 * at the appropriate time. Attach 4181 * fake_entry to the deferred list. 4182 */ 4183 fake_entry = vm_map_entry_create(dst_map); 4184 fake_entry->eflags = MAP_ENTRY_WRITECNT; 4185 src_entry->eflags &= ~MAP_ENTRY_WRITECNT; 4186 vm_object_reference(src_object); 4187 fake_entry->object.vm_object = src_object; 4188 fake_entry->start = src_entry->start; 4189 fake_entry->end = src_entry->end; 4190 fake_entry->defer_next = 4191 curthread->td_map_def_user; 4192 curthread->td_map_def_user = fake_entry; 4193 } 4194 4195 pmap_copy(dst_map->pmap, src_map->pmap, 4196 dst_entry->start, dst_entry->end - dst_entry->start, 4197 src_entry->start); 4198 } else { 4199 dst_entry->object.vm_object = NULL; 4200 if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0) 4201 dst_entry->offset = 0; 4202 if (src_entry->cred != NULL) { 4203 dst_entry->cred = curthread->td_ucred; 4204 crhold(dst_entry->cred); 4205 *fork_charge += size; 4206 } 4207 } 4208 } else { 4209 /* 4210 * We don't want to make writeable wired pages copy-on-write. 4211 * Immediately copy these pages into the new map by simulating 4212 * page faults. The new pages are pageable. 4213 */ 4214 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 4215 fork_charge); 4216 } 4217 } 4218 4219 /* 4220 * vmspace_map_entry_forked: 4221 * Update the newly-forked vmspace each time a map entry is inherited 4222 * or copied. The values for vm_dsize and vm_tsize are approximate 4223 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 4224 */ 4225 static void 4226 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 4227 vm_map_entry_t entry) 4228 { 4229 vm_size_t entrysize; 4230 vm_offset_t newend; 4231 4232 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 4233 return; 4234 entrysize = entry->end - entry->start; 4235 vm2->vm_map.size += entrysize; 4236 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 4237 vm2->vm_ssize += btoc(entrysize); 4238 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 4239 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 4240 newend = MIN(entry->end, 4241 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 4242 vm2->vm_dsize += btoc(newend - entry->start); 4243 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 4244 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 4245 newend = MIN(entry->end, 4246 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 4247 vm2->vm_tsize += btoc(newend - entry->start); 4248 } 4249 } 4250 4251 /* 4252 * vmspace_fork: 4253 * Create a new process vmspace structure and vm_map 4254 * based on those of an existing process. The new map 4255 * is based on the old map, according to the inheritance 4256 * values on the regions in that map. 4257 * 4258 * XXX It might be worth coalescing the entries added to the new vmspace. 4259 * 4260 * The source map must not be locked. 4261 */ 4262 struct vmspace * 4263 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 4264 { 4265 struct vmspace *vm2; 4266 vm_map_t new_map, old_map; 4267 vm_map_entry_t new_entry, old_entry; 4268 vm_object_t object; 4269 int error, locked __diagused; 4270 vm_inherit_t inh; 4271 4272 old_map = &vm1->vm_map; 4273 /* Copy immutable fields of vm1 to vm2. */ 4274 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 4275 pmap_pinit); 4276 if (vm2 == NULL) 4277 return (NULL); 4278 4279 vm2->vm_taddr = vm1->vm_taddr; 4280 vm2->vm_daddr = vm1->vm_daddr; 4281 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 4282 vm2->vm_stacktop = vm1->vm_stacktop; 4283 vm2->vm_shp_base = vm1->vm_shp_base; 4284 vm_map_lock(old_map); 4285 if (old_map->busy) 4286 vm_map_wait_busy(old_map); 4287 new_map = &vm2->vm_map; 4288 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 4289 KASSERT(locked, ("vmspace_fork: lock failed")); 4290 4291 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 4292 if (error != 0) { 4293 sx_xunlock(&old_map->lock); 4294 sx_xunlock(&new_map->lock); 4295 vm_map_process_deferred(); 4296 vmspace_free(vm2); 4297 return (NULL); 4298 } 4299 4300 new_map->anon_loc = old_map->anon_loc; 4301 new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART | 4302 MAP_ASLR_STACK | MAP_WXORX); 4303 4304 VM_MAP_ENTRY_FOREACH(old_entry, old_map) { 4305 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 4306 panic("vm_map_fork: encountered a submap"); 4307 4308 inh = old_entry->inheritance; 4309 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 4310 inh != VM_INHERIT_NONE) 4311 inh = VM_INHERIT_COPY; 4312 4313 switch (inh) { 4314 case VM_INHERIT_NONE: 4315 break; 4316 4317 case VM_INHERIT_SHARE: 4318 /* 4319 * Clone the entry, creating the shared object if 4320 * necessary. 4321 */ 4322 object = old_entry->object.vm_object; 4323 if (object == NULL) { 4324 vm_map_entry_back(old_entry); 4325 object = old_entry->object.vm_object; 4326 } 4327 4328 /* 4329 * Add the reference before calling vm_object_shadow 4330 * to insure that a shadow object is created. 4331 */ 4332 vm_object_reference(object); 4333 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4334 vm_object_shadow(&old_entry->object.vm_object, 4335 &old_entry->offset, 4336 old_entry->end - old_entry->start, 4337 old_entry->cred, 4338 /* Transfer the second reference too. */ 4339 true); 4340 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4341 old_entry->cred = NULL; 4342 4343 /* 4344 * As in vm_map_merged_neighbor_dispose(), 4345 * the vnode lock will not be acquired in 4346 * this call to vm_object_deallocate(). 4347 */ 4348 vm_object_deallocate(object); 4349 object = old_entry->object.vm_object; 4350 } else { 4351 VM_OBJECT_WLOCK(object); 4352 vm_object_clear_flag(object, OBJ_ONEMAPPING); 4353 if (old_entry->cred != NULL) { 4354 KASSERT(object->cred == NULL, 4355 ("vmspace_fork both cred")); 4356 object->cred = old_entry->cred; 4357 object->charge = old_entry->end - 4358 old_entry->start; 4359 old_entry->cred = NULL; 4360 } 4361 4362 /* 4363 * Assert the correct state of the vnode 4364 * v_writecount while the object is locked, to 4365 * not relock it later for the assertion 4366 * correctness. 4367 */ 4368 if (old_entry->eflags & MAP_ENTRY_WRITECNT && 4369 object->type == OBJT_VNODE) { 4370 KASSERT(((struct vnode *)object-> 4371 handle)->v_writecount > 0, 4372 ("vmspace_fork: v_writecount %p", 4373 object)); 4374 KASSERT(object->un_pager.vnp. 4375 writemappings > 0, 4376 ("vmspace_fork: vnp.writecount %p", 4377 object)); 4378 } 4379 VM_OBJECT_WUNLOCK(object); 4380 } 4381 4382 /* 4383 * Clone the entry, referencing the shared object. 4384 */ 4385 new_entry = vm_map_entry_create(new_map); 4386 *new_entry = *old_entry; 4387 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4388 MAP_ENTRY_IN_TRANSITION); 4389 new_entry->wiring_thread = NULL; 4390 new_entry->wired_count = 0; 4391 if (new_entry->eflags & MAP_ENTRY_WRITECNT) { 4392 vm_pager_update_writecount(object, 4393 new_entry->start, new_entry->end); 4394 } 4395 vm_map_entry_set_vnode_text(new_entry, true); 4396 4397 /* 4398 * Insert the entry into the new map -- we know we're 4399 * inserting at the end of the new map. 4400 */ 4401 vm_map_entry_link(new_map, new_entry); 4402 vmspace_map_entry_forked(vm1, vm2, new_entry); 4403 4404 /* 4405 * Update the physical map 4406 */ 4407 pmap_copy(new_map->pmap, old_map->pmap, 4408 new_entry->start, 4409 (old_entry->end - old_entry->start), 4410 old_entry->start); 4411 break; 4412 4413 case VM_INHERIT_COPY: 4414 /* 4415 * Clone the entry and link into the map. 4416 */ 4417 new_entry = vm_map_entry_create(new_map); 4418 *new_entry = *old_entry; 4419 /* 4420 * Copied entry is COW over the old object. 4421 */ 4422 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4423 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT); 4424 new_entry->wiring_thread = NULL; 4425 new_entry->wired_count = 0; 4426 new_entry->object.vm_object = NULL; 4427 new_entry->cred = NULL; 4428 vm_map_entry_link(new_map, new_entry); 4429 vmspace_map_entry_forked(vm1, vm2, new_entry); 4430 vm_map_copy_entry(old_map, new_map, old_entry, 4431 new_entry, fork_charge); 4432 vm_map_entry_set_vnode_text(new_entry, true); 4433 break; 4434 4435 case VM_INHERIT_ZERO: 4436 /* 4437 * Create a new anonymous mapping entry modelled from 4438 * the old one. 4439 */ 4440 new_entry = vm_map_entry_create(new_map); 4441 memset(new_entry, 0, sizeof(*new_entry)); 4442 4443 new_entry->start = old_entry->start; 4444 new_entry->end = old_entry->end; 4445 new_entry->eflags = old_entry->eflags & 4446 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4447 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC | 4448 MAP_ENTRY_SPLIT_BOUNDARY_MASK); 4449 new_entry->protection = old_entry->protection; 4450 new_entry->max_protection = old_entry->max_protection; 4451 new_entry->inheritance = VM_INHERIT_ZERO; 4452 4453 vm_map_entry_link(new_map, new_entry); 4454 vmspace_map_entry_forked(vm1, vm2, new_entry); 4455 4456 new_entry->cred = curthread->td_ucred; 4457 crhold(new_entry->cred); 4458 *fork_charge += (new_entry->end - new_entry->start); 4459 4460 break; 4461 } 4462 } 4463 /* 4464 * Use inlined vm_map_unlock() to postpone handling the deferred 4465 * map entries, which cannot be done until both old_map and 4466 * new_map locks are released. 4467 */ 4468 sx_xunlock(&old_map->lock); 4469 sx_xunlock(&new_map->lock); 4470 vm_map_process_deferred(); 4471 4472 return (vm2); 4473 } 4474 4475 /* 4476 * Create a process's stack for exec_new_vmspace(). This function is never 4477 * asked to wire the newly created stack. 4478 */ 4479 int 4480 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4481 vm_prot_t prot, vm_prot_t max, int cow) 4482 { 4483 vm_size_t growsize, init_ssize; 4484 rlim_t vmemlim; 4485 int rv; 4486 4487 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4488 growsize = sgrowsiz; 4489 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4490 vm_map_lock(map); 4491 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4492 /* If we would blow our VMEM resource limit, no go */ 4493 if (map->size + init_ssize > vmemlim) { 4494 rv = KERN_NO_SPACE; 4495 goto out; 4496 } 4497 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4498 max, cow); 4499 out: 4500 vm_map_unlock(map); 4501 return (rv); 4502 } 4503 4504 static int stack_guard_page = 1; 4505 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4506 &stack_guard_page, 0, 4507 "Specifies the number of guard pages for a stack that grows"); 4508 4509 static int 4510 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4511 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4512 { 4513 vm_map_entry_t gap_entry, new_entry, prev_entry; 4514 vm_offset_t bot, gap_bot, gap_top, top; 4515 vm_size_t init_ssize, sgp; 4516 int orient, rv; 4517 4518 /* 4519 * The stack orientation is piggybacked with the cow argument. 4520 * Extract it into orient and mask the cow argument so that we 4521 * don't pass it around further. 4522 */ 4523 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4524 KASSERT(orient != 0, ("No stack grow direction")); 4525 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4526 ("bi-dir stack")); 4527 4528 if (max_ssize == 0 || 4529 !vm_map_range_valid(map, addrbos, addrbos + max_ssize)) 4530 return (KERN_INVALID_ADDRESS); 4531 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4532 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4533 (vm_size_t)stack_guard_page * PAGE_SIZE; 4534 if (sgp >= max_ssize) 4535 return (KERN_INVALID_ARGUMENT); 4536 4537 init_ssize = growsize; 4538 if (max_ssize < init_ssize + sgp) 4539 init_ssize = max_ssize - sgp; 4540 4541 /* If addr is already mapped, no go */ 4542 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4543 return (KERN_NO_SPACE); 4544 4545 /* 4546 * If we can't accommodate max_ssize in the current mapping, no go. 4547 */ 4548 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize) 4549 return (KERN_NO_SPACE); 4550 4551 /* 4552 * We initially map a stack of only init_ssize. We will grow as 4553 * needed later. Depending on the orientation of the stack (i.e. 4554 * the grow direction) we either map at the top of the range, the 4555 * bottom of the range or in the middle. 4556 * 4557 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4558 * and cow to be 0. Possibly we should eliminate these as input 4559 * parameters, and just pass these values here in the insert call. 4560 */ 4561 if (orient == MAP_STACK_GROWS_DOWN) { 4562 bot = addrbos + max_ssize - init_ssize; 4563 top = bot + init_ssize; 4564 gap_bot = addrbos; 4565 gap_top = bot; 4566 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4567 bot = addrbos; 4568 top = bot + init_ssize; 4569 gap_bot = top; 4570 gap_top = addrbos + max_ssize; 4571 } 4572 rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow, 4573 &new_entry); 4574 if (rv != KERN_SUCCESS) 4575 return (rv); 4576 KASSERT(new_entry->end == top || new_entry->start == bot, 4577 ("Bad entry start/end for new stack entry")); 4578 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4579 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4580 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4581 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4582 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4583 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4584 if (gap_bot == gap_top) 4585 return (KERN_SUCCESS); 4586 rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4587 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4588 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP), &gap_entry); 4589 if (rv == KERN_SUCCESS) { 4590 KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0, 4591 ("entry %p not gap %#x", gap_entry, gap_entry->eflags)); 4592 KASSERT((gap_entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4593 MAP_ENTRY_STACK_GAP_UP)) != 0, 4594 ("entry %p not stack gap %#x", gap_entry, 4595 gap_entry->eflags)); 4596 4597 /* 4598 * Gap can never successfully handle a fault, so 4599 * read-ahead logic is never used for it. Re-use 4600 * next_read of the gap entry to store 4601 * stack_guard_page for vm_map_growstack(). 4602 * Similarly, since a gap cannot have a backing object, 4603 * store the original stack protections in the 4604 * object offset. 4605 */ 4606 gap_entry->next_read = sgp; 4607 gap_entry->offset = prot; 4608 } else { 4609 (void)vm_map_delete(map, bot, top); 4610 } 4611 return (rv); 4612 } 4613 4614 /* 4615 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4616 * successfully grow the stack. 4617 */ 4618 static int 4619 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4620 { 4621 vm_map_entry_t stack_entry; 4622 struct proc *p; 4623 struct vmspace *vm; 4624 struct ucred *cred; 4625 vm_offset_t gap_end, gap_start, grow_start; 4626 vm_size_t grow_amount, guard, max_grow; 4627 vm_prot_t prot; 4628 rlim_t lmemlim, stacklim, vmemlim; 4629 int rv, rv1 __diagused; 4630 bool gap_deleted, grow_down, is_procstack; 4631 #ifdef notyet 4632 uint64_t limit; 4633 #endif 4634 #ifdef RACCT 4635 int error __diagused; 4636 #endif 4637 4638 p = curproc; 4639 vm = p->p_vmspace; 4640 4641 /* 4642 * Disallow stack growth when the access is performed by a 4643 * debugger or AIO daemon. The reason is that the wrong 4644 * resource limits are applied. 4645 */ 4646 if (p != initproc && (map != &p->p_vmspace->vm_map || 4647 p->p_textvp == NULL)) 4648 return (KERN_FAILURE); 4649 4650 MPASS(!map->system_map); 4651 4652 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4653 stacklim = lim_cur(curthread, RLIMIT_STACK); 4654 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4655 retry: 4656 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4657 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4658 return (KERN_FAILURE); 4659 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4660 return (KERN_SUCCESS); 4661 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4662 stack_entry = vm_map_entry_succ(gap_entry); 4663 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4664 stack_entry->start != gap_entry->end) 4665 return (KERN_FAILURE); 4666 grow_amount = round_page(stack_entry->start - addr); 4667 grow_down = true; 4668 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4669 stack_entry = vm_map_entry_pred(gap_entry); 4670 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4671 stack_entry->end != gap_entry->start) 4672 return (KERN_FAILURE); 4673 grow_amount = round_page(addr + 1 - stack_entry->end); 4674 grow_down = false; 4675 } else { 4676 return (KERN_FAILURE); 4677 } 4678 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4679 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4680 gap_entry->next_read; 4681 max_grow = gap_entry->end - gap_entry->start; 4682 if (guard > max_grow) 4683 return (KERN_NO_SPACE); 4684 max_grow -= guard; 4685 if (grow_amount > max_grow) 4686 return (KERN_NO_SPACE); 4687 4688 /* 4689 * If this is the main process stack, see if we're over the stack 4690 * limit. 4691 */ 4692 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4693 addr < (vm_offset_t)vm->vm_stacktop; 4694 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4695 return (KERN_NO_SPACE); 4696 4697 #ifdef RACCT 4698 if (racct_enable) { 4699 PROC_LOCK(p); 4700 if (is_procstack && racct_set(p, RACCT_STACK, 4701 ctob(vm->vm_ssize) + grow_amount)) { 4702 PROC_UNLOCK(p); 4703 return (KERN_NO_SPACE); 4704 } 4705 PROC_UNLOCK(p); 4706 } 4707 #endif 4708 4709 grow_amount = roundup(grow_amount, sgrowsiz); 4710 if (grow_amount > max_grow) 4711 grow_amount = max_grow; 4712 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4713 grow_amount = trunc_page((vm_size_t)stacklim) - 4714 ctob(vm->vm_ssize); 4715 } 4716 4717 #ifdef notyet 4718 PROC_LOCK(p); 4719 limit = racct_get_available(p, RACCT_STACK); 4720 PROC_UNLOCK(p); 4721 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4722 grow_amount = limit - ctob(vm->vm_ssize); 4723 #endif 4724 4725 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4726 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4727 rv = KERN_NO_SPACE; 4728 goto out; 4729 } 4730 #ifdef RACCT 4731 if (racct_enable) { 4732 PROC_LOCK(p); 4733 if (racct_set(p, RACCT_MEMLOCK, 4734 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4735 PROC_UNLOCK(p); 4736 rv = KERN_NO_SPACE; 4737 goto out; 4738 } 4739 PROC_UNLOCK(p); 4740 } 4741 #endif 4742 } 4743 4744 /* If we would blow our VMEM resource limit, no go */ 4745 if (map->size + grow_amount > vmemlim) { 4746 rv = KERN_NO_SPACE; 4747 goto out; 4748 } 4749 #ifdef RACCT 4750 if (racct_enable) { 4751 PROC_LOCK(p); 4752 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4753 PROC_UNLOCK(p); 4754 rv = KERN_NO_SPACE; 4755 goto out; 4756 } 4757 PROC_UNLOCK(p); 4758 } 4759 #endif 4760 4761 if (vm_map_lock_upgrade(map)) { 4762 gap_entry = NULL; 4763 vm_map_lock_read(map); 4764 goto retry; 4765 } 4766 4767 if (grow_down) { 4768 /* 4769 * The gap_entry "offset" field is overloaded. See 4770 * vm_map_stack_locked(). 4771 */ 4772 prot = gap_entry->offset; 4773 4774 grow_start = gap_entry->end - grow_amount; 4775 if (gap_entry->start + grow_amount == gap_entry->end) { 4776 gap_start = gap_entry->start; 4777 gap_end = gap_entry->end; 4778 vm_map_entry_delete(map, gap_entry); 4779 gap_deleted = true; 4780 } else { 4781 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4782 vm_map_entry_resize(map, gap_entry, -grow_amount); 4783 gap_deleted = false; 4784 } 4785 rv = vm_map_insert(map, NULL, 0, grow_start, 4786 grow_start + grow_amount, prot, prot, MAP_STACK_GROWS_DOWN); 4787 if (rv != KERN_SUCCESS) { 4788 if (gap_deleted) { 4789 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4790 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4791 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4792 MPASS(rv1 == KERN_SUCCESS); 4793 } else 4794 vm_map_entry_resize(map, gap_entry, 4795 grow_amount); 4796 } 4797 } else { 4798 grow_start = stack_entry->end; 4799 cred = stack_entry->cred; 4800 if (cred == NULL && stack_entry->object.vm_object != NULL) 4801 cred = stack_entry->object.vm_object->cred; 4802 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4803 rv = KERN_NO_SPACE; 4804 /* Grow the underlying object if applicable. */ 4805 else if (stack_entry->object.vm_object == NULL || 4806 vm_object_coalesce(stack_entry->object.vm_object, 4807 stack_entry->offset, 4808 (vm_size_t)(stack_entry->end - stack_entry->start), 4809 grow_amount, cred != NULL)) { 4810 if (gap_entry->start + grow_amount == gap_entry->end) { 4811 vm_map_entry_delete(map, gap_entry); 4812 vm_map_entry_resize(map, stack_entry, 4813 grow_amount); 4814 } else { 4815 gap_entry->start += grow_amount; 4816 stack_entry->end += grow_amount; 4817 } 4818 map->size += grow_amount; 4819 rv = KERN_SUCCESS; 4820 } else 4821 rv = KERN_FAILURE; 4822 } 4823 if (rv == KERN_SUCCESS && is_procstack) 4824 vm->vm_ssize += btoc(grow_amount); 4825 4826 /* 4827 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4828 */ 4829 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4830 rv = vm_map_wire_locked(map, grow_start, 4831 grow_start + grow_amount, 4832 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4833 } 4834 vm_map_lock_downgrade(map); 4835 4836 out: 4837 #ifdef RACCT 4838 if (racct_enable && rv != KERN_SUCCESS) { 4839 PROC_LOCK(p); 4840 error = racct_set(p, RACCT_VMEM, map->size); 4841 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4842 if (!old_mlock) { 4843 error = racct_set(p, RACCT_MEMLOCK, 4844 ptoa(pmap_wired_count(map->pmap))); 4845 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4846 } 4847 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4848 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4849 PROC_UNLOCK(p); 4850 } 4851 #endif 4852 4853 return (rv); 4854 } 4855 4856 /* 4857 * Unshare the specified VM space for exec. If other processes are 4858 * mapped to it, then create a new one. The new vmspace is null. 4859 */ 4860 int 4861 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4862 { 4863 struct vmspace *oldvmspace = p->p_vmspace; 4864 struct vmspace *newvmspace; 4865 4866 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4867 ("vmspace_exec recursed")); 4868 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4869 if (newvmspace == NULL) 4870 return (ENOMEM); 4871 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4872 /* 4873 * This code is written like this for prototype purposes. The 4874 * goal is to avoid running down the vmspace here, but let the 4875 * other process's that are still using the vmspace to finally 4876 * run it down. Even though there is little or no chance of blocking 4877 * here, it is a good idea to keep this form for future mods. 4878 */ 4879 PROC_VMSPACE_LOCK(p); 4880 p->p_vmspace = newvmspace; 4881 PROC_VMSPACE_UNLOCK(p); 4882 if (p == curthread->td_proc) 4883 pmap_activate(curthread); 4884 curthread->td_pflags |= TDP_EXECVMSPC; 4885 return (0); 4886 } 4887 4888 /* 4889 * Unshare the specified VM space for forcing COW. This 4890 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4891 */ 4892 int 4893 vmspace_unshare(struct proc *p) 4894 { 4895 struct vmspace *oldvmspace = p->p_vmspace; 4896 struct vmspace *newvmspace; 4897 vm_ooffset_t fork_charge; 4898 4899 /* 4900 * The caller is responsible for ensuring that the reference count 4901 * cannot concurrently transition 1 -> 2. 4902 */ 4903 if (refcount_load(&oldvmspace->vm_refcnt) == 1) 4904 return (0); 4905 fork_charge = 0; 4906 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4907 if (newvmspace == NULL) 4908 return (ENOMEM); 4909 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4910 vmspace_free(newvmspace); 4911 return (ENOMEM); 4912 } 4913 PROC_VMSPACE_LOCK(p); 4914 p->p_vmspace = newvmspace; 4915 PROC_VMSPACE_UNLOCK(p); 4916 if (p == curthread->td_proc) 4917 pmap_activate(curthread); 4918 vmspace_free(oldvmspace); 4919 return (0); 4920 } 4921 4922 /* 4923 * vm_map_lookup: 4924 * 4925 * Finds the VM object, offset, and 4926 * protection for a given virtual address in the 4927 * specified map, assuming a page fault of the 4928 * type specified. 4929 * 4930 * Leaves the map in question locked for read; return 4931 * values are guaranteed until a vm_map_lookup_done 4932 * call is performed. Note that the map argument 4933 * is in/out; the returned map must be used in 4934 * the call to vm_map_lookup_done. 4935 * 4936 * A handle (out_entry) is returned for use in 4937 * vm_map_lookup_done, to make that fast. 4938 * 4939 * If a lookup is requested with "write protection" 4940 * specified, the map may be changed to perform virtual 4941 * copying operations, although the data referenced will 4942 * remain the same. 4943 */ 4944 int 4945 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4946 vm_offset_t vaddr, 4947 vm_prot_t fault_typea, 4948 vm_map_entry_t *out_entry, /* OUT */ 4949 vm_object_t *object, /* OUT */ 4950 vm_pindex_t *pindex, /* OUT */ 4951 vm_prot_t *out_prot, /* OUT */ 4952 boolean_t *wired) /* OUT */ 4953 { 4954 vm_map_entry_t entry; 4955 vm_map_t map = *var_map; 4956 vm_prot_t prot; 4957 vm_prot_t fault_type; 4958 vm_object_t eobject; 4959 vm_size_t size; 4960 struct ucred *cred; 4961 4962 RetryLookup: 4963 4964 vm_map_lock_read(map); 4965 4966 RetryLookupLocked: 4967 /* 4968 * Lookup the faulting address. 4969 */ 4970 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4971 vm_map_unlock_read(map); 4972 return (KERN_INVALID_ADDRESS); 4973 } 4974 4975 entry = *out_entry; 4976 4977 /* 4978 * Handle submaps. 4979 */ 4980 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4981 vm_map_t old_map = map; 4982 4983 *var_map = map = entry->object.sub_map; 4984 vm_map_unlock_read(old_map); 4985 goto RetryLookup; 4986 } 4987 4988 /* 4989 * Check whether this task is allowed to have this page. 4990 */ 4991 prot = entry->protection; 4992 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4993 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4994 if (prot == VM_PROT_NONE && map != kernel_map && 4995 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4996 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4997 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4998 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4999 goto RetryLookupLocked; 5000 } 5001 fault_type = fault_typea & VM_PROT_ALL; 5002 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 5003 vm_map_unlock_read(map); 5004 return (KERN_PROTECTION_FAILURE); 5005 } 5006 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 5007 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 5008 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 5009 ("entry %p flags %x", entry, entry->eflags)); 5010 if ((fault_typea & VM_PROT_COPY) != 0 && 5011 (entry->max_protection & VM_PROT_WRITE) == 0 && 5012 (entry->eflags & MAP_ENTRY_COW) == 0) { 5013 vm_map_unlock_read(map); 5014 return (KERN_PROTECTION_FAILURE); 5015 } 5016 5017 /* 5018 * If this page is not pageable, we have to get it for all possible 5019 * accesses. 5020 */ 5021 *wired = (entry->wired_count != 0); 5022 if (*wired) 5023 fault_type = entry->protection; 5024 size = entry->end - entry->start; 5025 5026 /* 5027 * If the entry was copy-on-write, we either ... 5028 */ 5029 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5030 /* 5031 * If we want to write the page, we may as well handle that 5032 * now since we've got the map locked. 5033 * 5034 * If we don't need to write the page, we just demote the 5035 * permissions allowed. 5036 */ 5037 if ((fault_type & VM_PROT_WRITE) != 0 || 5038 (fault_typea & VM_PROT_COPY) != 0) { 5039 /* 5040 * Make a new object, and place it in the object 5041 * chain. Note that no new references have appeared 5042 * -- one just moved from the map to the new 5043 * object. 5044 */ 5045 if (vm_map_lock_upgrade(map)) 5046 goto RetryLookup; 5047 5048 if (entry->cred == NULL) { 5049 /* 5050 * The debugger owner is charged for 5051 * the memory. 5052 */ 5053 cred = curthread->td_ucred; 5054 crhold(cred); 5055 if (!swap_reserve_by_cred(size, cred)) { 5056 crfree(cred); 5057 vm_map_unlock(map); 5058 return (KERN_RESOURCE_SHORTAGE); 5059 } 5060 entry->cred = cred; 5061 } 5062 eobject = entry->object.vm_object; 5063 vm_object_shadow(&entry->object.vm_object, 5064 &entry->offset, size, entry->cred, false); 5065 if (eobject == entry->object.vm_object) { 5066 /* 5067 * The object was not shadowed. 5068 */ 5069 swap_release_by_cred(size, entry->cred); 5070 crfree(entry->cred); 5071 } 5072 entry->cred = NULL; 5073 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 5074 5075 vm_map_lock_downgrade(map); 5076 } else { 5077 /* 5078 * We're attempting to read a copy-on-write page -- 5079 * don't allow writes. 5080 */ 5081 prot &= ~VM_PROT_WRITE; 5082 } 5083 } 5084 5085 /* 5086 * Create an object if necessary. 5087 */ 5088 if (entry->object.vm_object == NULL && !map->system_map) { 5089 if (vm_map_lock_upgrade(map)) 5090 goto RetryLookup; 5091 entry->object.vm_object = vm_object_allocate_anon(atop(size), 5092 NULL, entry->cred, size); 5093 entry->offset = 0; 5094 entry->cred = NULL; 5095 vm_map_lock_downgrade(map); 5096 } 5097 5098 /* 5099 * Return the object/offset from this entry. If the entry was 5100 * copy-on-write or empty, it has been fixed up. 5101 */ 5102 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5103 *object = entry->object.vm_object; 5104 5105 *out_prot = prot; 5106 return (KERN_SUCCESS); 5107 } 5108 5109 /* 5110 * vm_map_lookup_locked: 5111 * 5112 * Lookup the faulting address. A version of vm_map_lookup that returns 5113 * KERN_FAILURE instead of blocking on map lock or memory allocation. 5114 */ 5115 int 5116 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 5117 vm_offset_t vaddr, 5118 vm_prot_t fault_typea, 5119 vm_map_entry_t *out_entry, /* OUT */ 5120 vm_object_t *object, /* OUT */ 5121 vm_pindex_t *pindex, /* OUT */ 5122 vm_prot_t *out_prot, /* OUT */ 5123 boolean_t *wired) /* OUT */ 5124 { 5125 vm_map_entry_t entry; 5126 vm_map_t map = *var_map; 5127 vm_prot_t prot; 5128 vm_prot_t fault_type = fault_typea; 5129 5130 /* 5131 * Lookup the faulting address. 5132 */ 5133 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 5134 return (KERN_INVALID_ADDRESS); 5135 5136 entry = *out_entry; 5137 5138 /* 5139 * Fail if the entry refers to a submap. 5140 */ 5141 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 5142 return (KERN_FAILURE); 5143 5144 /* 5145 * Check whether this task is allowed to have this page. 5146 */ 5147 prot = entry->protection; 5148 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 5149 if ((fault_type & prot) != fault_type) 5150 return (KERN_PROTECTION_FAILURE); 5151 5152 /* 5153 * If this page is not pageable, we have to get it for all possible 5154 * accesses. 5155 */ 5156 *wired = (entry->wired_count != 0); 5157 if (*wired) 5158 fault_type = entry->protection; 5159 5160 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5161 /* 5162 * Fail if the entry was copy-on-write for a write fault. 5163 */ 5164 if (fault_type & VM_PROT_WRITE) 5165 return (KERN_FAILURE); 5166 /* 5167 * We're attempting to read a copy-on-write page -- 5168 * don't allow writes. 5169 */ 5170 prot &= ~VM_PROT_WRITE; 5171 } 5172 5173 /* 5174 * Fail if an object should be created. 5175 */ 5176 if (entry->object.vm_object == NULL && !map->system_map) 5177 return (KERN_FAILURE); 5178 5179 /* 5180 * Return the object/offset from this entry. If the entry was 5181 * copy-on-write or empty, it has been fixed up. 5182 */ 5183 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5184 *object = entry->object.vm_object; 5185 5186 *out_prot = prot; 5187 return (KERN_SUCCESS); 5188 } 5189 5190 /* 5191 * vm_map_lookup_done: 5192 * 5193 * Releases locks acquired by a vm_map_lookup 5194 * (according to the handle returned by that lookup). 5195 */ 5196 void 5197 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 5198 { 5199 /* 5200 * Unlock the main-level map 5201 */ 5202 vm_map_unlock_read(map); 5203 } 5204 5205 vm_offset_t 5206 vm_map_max_KBI(const struct vm_map *map) 5207 { 5208 5209 return (vm_map_max(map)); 5210 } 5211 5212 vm_offset_t 5213 vm_map_min_KBI(const struct vm_map *map) 5214 { 5215 5216 return (vm_map_min(map)); 5217 } 5218 5219 pmap_t 5220 vm_map_pmap_KBI(vm_map_t map) 5221 { 5222 5223 return (map->pmap); 5224 } 5225 5226 bool 5227 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end) 5228 { 5229 5230 return (vm_map_range_valid(map, start, end)); 5231 } 5232 5233 #ifdef INVARIANTS 5234 static void 5235 _vm_map_assert_consistent(vm_map_t map, int check) 5236 { 5237 vm_map_entry_t entry, prev; 5238 vm_map_entry_t cur, header, lbound, ubound; 5239 vm_size_t max_left, max_right; 5240 5241 #ifdef DIAGNOSTIC 5242 ++map->nupdates; 5243 #endif 5244 if (enable_vmmap_check != check) 5245 return; 5246 5247 header = prev = &map->header; 5248 VM_MAP_ENTRY_FOREACH(entry, map) { 5249 KASSERT(prev->end <= entry->start, 5250 ("map %p prev->end = %jx, start = %jx", map, 5251 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5252 KASSERT(entry->start < entry->end, 5253 ("map %p start = %jx, end = %jx", map, 5254 (uintmax_t)entry->start, (uintmax_t)entry->end)); 5255 KASSERT(entry->left == header || 5256 entry->left->start < entry->start, 5257 ("map %p left->start = %jx, start = %jx", map, 5258 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 5259 KASSERT(entry->right == header || 5260 entry->start < entry->right->start, 5261 ("map %p start = %jx, right->start = %jx", map, 5262 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 5263 cur = map->root; 5264 lbound = ubound = header; 5265 for (;;) { 5266 if (entry->start < cur->start) { 5267 ubound = cur; 5268 cur = cur->left; 5269 KASSERT(cur != lbound, 5270 ("map %p cannot find %jx", 5271 map, (uintmax_t)entry->start)); 5272 } else if (cur->end <= entry->start) { 5273 lbound = cur; 5274 cur = cur->right; 5275 KASSERT(cur != ubound, 5276 ("map %p cannot find %jx", 5277 map, (uintmax_t)entry->start)); 5278 } else { 5279 KASSERT(cur == entry, 5280 ("map %p cannot find %jx", 5281 map, (uintmax_t)entry->start)); 5282 break; 5283 } 5284 } 5285 max_left = vm_map_entry_max_free_left(entry, lbound); 5286 max_right = vm_map_entry_max_free_right(entry, ubound); 5287 KASSERT(entry->max_free == vm_size_max(max_left, max_right), 5288 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 5289 (uintmax_t)entry->max_free, 5290 (uintmax_t)max_left, (uintmax_t)max_right)); 5291 prev = entry; 5292 } 5293 KASSERT(prev->end <= entry->start, 5294 ("map %p prev->end = %jx, start = %jx", map, 5295 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5296 } 5297 #endif 5298 5299 #include "opt_ddb.h" 5300 #ifdef DDB 5301 #include <sys/kernel.h> 5302 5303 #include <ddb/ddb.h> 5304 5305 static void 5306 vm_map_print(vm_map_t map) 5307 { 5308 vm_map_entry_t entry, prev; 5309 5310 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 5311 (void *)map, 5312 (void *)map->pmap, map->nentries, map->timestamp); 5313 5314 db_indent += 2; 5315 prev = &map->header; 5316 VM_MAP_ENTRY_FOREACH(entry, map) { 5317 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 5318 (void *)entry, (void *)entry->start, (void *)entry->end, 5319 entry->eflags); 5320 { 5321 static const char * const inheritance_name[4] = 5322 {"share", "copy", "none", "donate_copy"}; 5323 5324 db_iprintf(" prot=%x/%x/%s", 5325 entry->protection, 5326 entry->max_protection, 5327 inheritance_name[(int)(unsigned char) 5328 entry->inheritance]); 5329 if (entry->wired_count != 0) 5330 db_printf(", wired"); 5331 } 5332 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5333 db_printf(", share=%p, offset=0x%jx\n", 5334 (void *)entry->object.sub_map, 5335 (uintmax_t)entry->offset); 5336 if (prev == &map->header || 5337 prev->object.sub_map != 5338 entry->object.sub_map) { 5339 db_indent += 2; 5340 vm_map_print((vm_map_t)entry->object.sub_map); 5341 db_indent -= 2; 5342 } 5343 } else { 5344 if (entry->cred != NULL) 5345 db_printf(", ruid %d", entry->cred->cr_ruid); 5346 db_printf(", object=%p, offset=0x%jx", 5347 (void *)entry->object.vm_object, 5348 (uintmax_t)entry->offset); 5349 if (entry->object.vm_object && entry->object.vm_object->cred) 5350 db_printf(", obj ruid %d charge %jx", 5351 entry->object.vm_object->cred->cr_ruid, 5352 (uintmax_t)entry->object.vm_object->charge); 5353 if (entry->eflags & MAP_ENTRY_COW) 5354 db_printf(", copy (%s)", 5355 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 5356 db_printf("\n"); 5357 5358 if (prev == &map->header || 5359 prev->object.vm_object != 5360 entry->object.vm_object) { 5361 db_indent += 2; 5362 vm_object_print((db_expr_t)(intptr_t) 5363 entry->object.vm_object, 5364 0, 0, (char *)0); 5365 db_indent -= 2; 5366 } 5367 } 5368 prev = entry; 5369 } 5370 db_indent -= 2; 5371 } 5372 5373 DB_SHOW_COMMAND(map, map) 5374 { 5375 5376 if (!have_addr) { 5377 db_printf("usage: show map <addr>\n"); 5378 return; 5379 } 5380 vm_map_print((vm_map_t)addr); 5381 } 5382 5383 DB_SHOW_COMMAND(procvm, procvm) 5384 { 5385 struct proc *p; 5386 5387 if (have_addr) { 5388 p = db_lookup_proc(addr); 5389 } else { 5390 p = curproc; 5391 } 5392 5393 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 5394 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 5395 (void *)vmspace_pmap(p->p_vmspace)); 5396 5397 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 5398 } 5399 5400 #endif /* DDB */ 5401