1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/racct.h> 81 #include <sys/resourcevar.h> 82 #include <sys/rwlock.h> 83 #include <sys/file.h> 84 #include <sys/sysctl.h> 85 #include <sys/sysent.h> 86 #include <sys/shm.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_object.h> 94 #include <vm/vm_pager.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vnode_pager.h> 98 #include <vm/swap_pager.h> 99 #include <vm/uma.h> 100 101 /* 102 * Virtual memory maps provide for the mapping, protection, 103 * and sharing of virtual memory objects. In addition, 104 * this module provides for an efficient virtual copy of 105 * memory from one map to another. 106 * 107 * Synchronization is required prior to most operations. 108 * 109 * Maps consist of an ordered doubly-linked list of simple 110 * entries; a self-adjusting binary search tree of these 111 * entries is used to speed up lookups. 112 * 113 * Since portions of maps are specified by start/end addresses, 114 * which may not align with existing map entries, all 115 * routines merely "clip" entries to these start/end values. 116 * [That is, an entry is split into two, bordering at a 117 * start or end value.] Note that these clippings may not 118 * always be necessary (as the two resulting entries are then 119 * not changed); however, the clipping is done for convenience. 120 * 121 * As mentioned above, virtual copy operations are performed 122 * by copying VM object references from one map to 123 * another, and then marking both regions as copy-on-write. 124 */ 125 126 static struct mtx map_sleep_mtx; 127 static uma_zone_t mapentzone; 128 static uma_zone_t kmapentzone; 129 static uma_zone_t mapzone; 130 static uma_zone_t vmspace_zone; 131 static int vmspace_zinit(void *mem, int size, int flags); 132 static int vm_map_zinit(void *mem, int ize, int flags); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static int vm_map_alignspace(vm_map_t map, vm_object_t object, 136 vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length, 137 vm_offset_t max_addr, vm_offset_t alignment); 138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 142 vm_map_entry_t gap_entry); 143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 144 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 145 #ifdef INVARIANTS 146 static void vm_map_zdtor(void *mem, int size, void *arg); 147 static void vmspace_zdtor(void *mem, int size, void *arg); 148 #endif 149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 150 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 151 int cow); 152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 153 vm_offset_t failed_addr); 154 155 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 156 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 157 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 158 159 /* 160 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 161 * stable. 162 */ 163 #define PROC_VMSPACE_LOCK(p) do { } while (0) 164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 165 166 /* 167 * VM_MAP_RANGE_CHECK: [ internal use only ] 168 * 169 * Asserts that the starting and ending region 170 * addresses fall within the valid range of the map. 171 */ 172 #define VM_MAP_RANGE_CHECK(map, start, end) \ 173 { \ 174 if (start < vm_map_min(map)) \ 175 start = vm_map_min(map); \ 176 if (end > vm_map_max(map)) \ 177 end = vm_map_max(map); \ 178 if (start > end) \ 179 start = end; \ 180 } 181 182 /* 183 * vm_map_startup: 184 * 185 * Initialize the vm_map module. Must be called before 186 * any other vm_map routines. 187 * 188 * Map and entry structures are allocated from the general 189 * purpose memory pool with some exceptions: 190 * 191 * - The kernel map and kmem submap are allocated statically. 192 * - Kernel map entries are allocated out of a static pool. 193 * 194 * These restrictions are necessary since malloc() uses the 195 * maps and requires map entries. 196 */ 197 198 void 199 vm_map_startup(void) 200 { 201 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 202 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 203 #ifdef INVARIANTS 204 vm_map_zdtor, 205 #else 206 NULL, 207 #endif 208 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 209 uma_prealloc(mapzone, MAX_KMAP); 210 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 211 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 212 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 213 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 214 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 215 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 216 #ifdef INVARIANTS 217 vmspace_zdtor, 218 #else 219 NULL, 220 #endif 221 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 222 } 223 224 static int 225 vmspace_zinit(void *mem, int size, int flags) 226 { 227 struct vmspace *vm; 228 229 vm = (struct vmspace *)mem; 230 231 vm->vm_map.pmap = NULL; 232 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 233 PMAP_LOCK_INIT(vmspace_pmap(vm)); 234 return (0); 235 } 236 237 static int 238 vm_map_zinit(void *mem, int size, int flags) 239 { 240 vm_map_t map; 241 242 map = (vm_map_t)mem; 243 memset(map, 0, sizeof(*map)); 244 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 245 sx_init(&map->lock, "vm map (user)"); 246 return (0); 247 } 248 249 #ifdef INVARIANTS 250 static void 251 vmspace_zdtor(void *mem, int size, void *arg) 252 { 253 struct vmspace *vm; 254 255 vm = (struct vmspace *)mem; 256 257 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 258 } 259 static void 260 vm_map_zdtor(void *mem, int size, void *arg) 261 { 262 vm_map_t map; 263 264 map = (vm_map_t)mem; 265 KASSERT(map->nentries == 0, 266 ("map %p nentries == %d on free.", 267 map, map->nentries)); 268 KASSERT(map->size == 0, 269 ("map %p size == %lu on free.", 270 map, (unsigned long)map->size)); 271 } 272 #endif /* INVARIANTS */ 273 274 /* 275 * Allocate a vmspace structure, including a vm_map and pmap, 276 * and initialize those structures. The refcnt is set to 1. 277 * 278 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 279 */ 280 struct vmspace * 281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 282 { 283 struct vmspace *vm; 284 285 vm = uma_zalloc(vmspace_zone, M_WAITOK); 286 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 287 if (!pinit(vmspace_pmap(vm))) { 288 uma_zfree(vmspace_zone, vm); 289 return (NULL); 290 } 291 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 292 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 293 vm->vm_refcnt = 1; 294 vm->vm_shm = NULL; 295 vm->vm_swrss = 0; 296 vm->vm_tsize = 0; 297 vm->vm_dsize = 0; 298 vm->vm_ssize = 0; 299 vm->vm_taddr = 0; 300 vm->vm_daddr = 0; 301 vm->vm_maxsaddr = 0; 302 return (vm); 303 } 304 305 #ifdef RACCT 306 static void 307 vmspace_container_reset(struct proc *p) 308 { 309 310 PROC_LOCK(p); 311 racct_set(p, RACCT_DATA, 0); 312 racct_set(p, RACCT_STACK, 0); 313 racct_set(p, RACCT_RSS, 0); 314 racct_set(p, RACCT_MEMLOCK, 0); 315 racct_set(p, RACCT_VMEM, 0); 316 PROC_UNLOCK(p); 317 } 318 #endif 319 320 static inline void 321 vmspace_dofree(struct vmspace *vm) 322 { 323 324 CTR1(KTR_VM, "vmspace_free: %p", vm); 325 326 /* 327 * Make sure any SysV shm is freed, it might not have been in 328 * exit1(). 329 */ 330 shmexit(vm); 331 332 /* 333 * Lock the map, to wait out all other references to it. 334 * Delete all of the mappings and pages they hold, then call 335 * the pmap module to reclaim anything left. 336 */ 337 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 338 vm_map_max(&vm->vm_map)); 339 340 pmap_release(vmspace_pmap(vm)); 341 vm->vm_map.pmap = NULL; 342 uma_zfree(vmspace_zone, vm); 343 } 344 345 void 346 vmspace_free(struct vmspace *vm) 347 { 348 349 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 350 "vmspace_free() called"); 351 352 if (vm->vm_refcnt == 0) 353 panic("vmspace_free: attempt to free already freed vmspace"); 354 355 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 356 vmspace_dofree(vm); 357 } 358 359 void 360 vmspace_exitfree(struct proc *p) 361 { 362 struct vmspace *vm; 363 364 PROC_VMSPACE_LOCK(p); 365 vm = p->p_vmspace; 366 p->p_vmspace = NULL; 367 PROC_VMSPACE_UNLOCK(p); 368 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 369 vmspace_free(vm); 370 } 371 372 void 373 vmspace_exit(struct thread *td) 374 { 375 int refcnt; 376 struct vmspace *vm; 377 struct proc *p; 378 379 /* 380 * Release user portion of address space. 381 * This releases references to vnodes, 382 * which could cause I/O if the file has been unlinked. 383 * Need to do this early enough that we can still sleep. 384 * 385 * The last exiting process to reach this point releases as 386 * much of the environment as it can. vmspace_dofree() is the 387 * slower fallback in case another process had a temporary 388 * reference to the vmspace. 389 */ 390 391 p = td->td_proc; 392 vm = p->p_vmspace; 393 atomic_add_int(&vmspace0.vm_refcnt, 1); 394 refcnt = vm->vm_refcnt; 395 do { 396 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 397 /* Switch now since other proc might free vmspace */ 398 PROC_VMSPACE_LOCK(p); 399 p->p_vmspace = &vmspace0; 400 PROC_VMSPACE_UNLOCK(p); 401 pmap_activate(td); 402 } 403 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1)); 404 if (refcnt == 1) { 405 if (p->p_vmspace != vm) { 406 /* vmspace not yet freed, switch back */ 407 PROC_VMSPACE_LOCK(p); 408 p->p_vmspace = vm; 409 PROC_VMSPACE_UNLOCK(p); 410 pmap_activate(td); 411 } 412 pmap_remove_pages(vmspace_pmap(vm)); 413 /* Switch now since this proc will free vmspace */ 414 PROC_VMSPACE_LOCK(p); 415 p->p_vmspace = &vmspace0; 416 PROC_VMSPACE_UNLOCK(p); 417 pmap_activate(td); 418 vmspace_dofree(vm); 419 } 420 #ifdef RACCT 421 if (racct_enable) 422 vmspace_container_reset(p); 423 #endif 424 } 425 426 /* Acquire reference to vmspace owned by another process. */ 427 428 struct vmspace * 429 vmspace_acquire_ref(struct proc *p) 430 { 431 struct vmspace *vm; 432 int refcnt; 433 434 PROC_VMSPACE_LOCK(p); 435 vm = p->p_vmspace; 436 if (vm == NULL) { 437 PROC_VMSPACE_UNLOCK(p); 438 return (NULL); 439 } 440 refcnt = vm->vm_refcnt; 441 do { 442 if (refcnt <= 0) { /* Avoid 0->1 transition */ 443 PROC_VMSPACE_UNLOCK(p); 444 return (NULL); 445 } 446 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1)); 447 if (vm != p->p_vmspace) { 448 PROC_VMSPACE_UNLOCK(p); 449 vmspace_free(vm); 450 return (NULL); 451 } 452 PROC_VMSPACE_UNLOCK(p); 453 return (vm); 454 } 455 456 /* 457 * Switch between vmspaces in an AIO kernel process. 458 * 459 * The AIO kernel processes switch to and from a user process's 460 * vmspace while performing an I/O operation on behalf of a user 461 * process. The new vmspace is either the vmspace of a user process 462 * obtained from an active AIO request or the initial vmspace of the 463 * AIO kernel process (when it is idling). Because user processes 464 * will block to drain any active AIO requests before proceeding in 465 * exit() or execve(), the vmspace reference count for these vmspaces 466 * can never be 0. This allows for a much simpler implementation than 467 * the loop in vmspace_acquire_ref() above. Similarly, AIO kernel 468 * processes hold an extra reference on their initial vmspace for the 469 * life of the process so that this guarantee is true for any vmspace 470 * passed as 'newvm'. 471 */ 472 void 473 vmspace_switch_aio(struct vmspace *newvm) 474 { 475 struct vmspace *oldvm; 476 477 /* XXX: Need some way to assert that this is an aio daemon. */ 478 479 KASSERT(newvm->vm_refcnt > 0, 480 ("vmspace_switch_aio: newvm unreferenced")); 481 482 oldvm = curproc->p_vmspace; 483 if (oldvm == newvm) 484 return; 485 486 /* 487 * Point to the new address space and refer to it. 488 */ 489 curproc->p_vmspace = newvm; 490 atomic_add_int(&newvm->vm_refcnt, 1); 491 492 /* Activate the new mapping. */ 493 pmap_activate(curthread); 494 495 /* Remove the daemon's reference to the old address space. */ 496 KASSERT(oldvm->vm_refcnt > 1, 497 ("vmspace_switch_aio: oldvm dropping last reference")); 498 vmspace_free(oldvm); 499 } 500 501 void 502 _vm_map_lock(vm_map_t map, const char *file, int line) 503 { 504 505 if (map->system_map) 506 mtx_lock_flags_(&map->system_mtx, 0, file, line); 507 else 508 sx_xlock_(&map->lock, file, line); 509 map->timestamp++; 510 } 511 512 static void 513 vm_map_process_deferred(void) 514 { 515 struct thread *td; 516 vm_map_entry_t entry, next; 517 vm_object_t object; 518 519 td = curthread; 520 entry = td->td_map_def_user; 521 td->td_map_def_user = NULL; 522 while (entry != NULL) { 523 next = entry->next; 524 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 525 /* 526 * Decrement the object's writemappings and 527 * possibly the vnode's v_writecount. 528 */ 529 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 530 ("Submap with writecount")); 531 object = entry->object.vm_object; 532 KASSERT(object != NULL, ("No object for writecount")); 533 vnode_pager_release_writecount(object, entry->start, 534 entry->end); 535 } 536 vm_map_entry_deallocate(entry, FALSE); 537 entry = next; 538 } 539 } 540 541 void 542 _vm_map_unlock(vm_map_t map, const char *file, int line) 543 { 544 545 if (map->system_map) 546 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 547 else { 548 sx_xunlock_(&map->lock, file, line); 549 vm_map_process_deferred(); 550 } 551 } 552 553 void 554 _vm_map_lock_read(vm_map_t map, const char *file, int line) 555 { 556 557 if (map->system_map) 558 mtx_lock_flags_(&map->system_mtx, 0, file, line); 559 else 560 sx_slock_(&map->lock, file, line); 561 } 562 563 void 564 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 565 { 566 567 if (map->system_map) 568 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 569 else { 570 sx_sunlock_(&map->lock, file, line); 571 vm_map_process_deferred(); 572 } 573 } 574 575 int 576 _vm_map_trylock(vm_map_t map, const char *file, int line) 577 { 578 int error; 579 580 error = map->system_map ? 581 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 582 !sx_try_xlock_(&map->lock, file, line); 583 if (error == 0) 584 map->timestamp++; 585 return (error == 0); 586 } 587 588 int 589 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 590 { 591 int error; 592 593 error = map->system_map ? 594 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 595 !sx_try_slock_(&map->lock, file, line); 596 return (error == 0); 597 } 598 599 /* 600 * _vm_map_lock_upgrade: [ internal use only ] 601 * 602 * Tries to upgrade a read (shared) lock on the specified map to a write 603 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 604 * non-zero value if the upgrade fails. If the upgrade fails, the map is 605 * returned without a read or write lock held. 606 * 607 * Requires that the map be read locked. 608 */ 609 int 610 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 611 { 612 unsigned int last_timestamp; 613 614 if (map->system_map) { 615 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 616 } else { 617 if (!sx_try_upgrade_(&map->lock, file, line)) { 618 last_timestamp = map->timestamp; 619 sx_sunlock_(&map->lock, file, line); 620 vm_map_process_deferred(); 621 /* 622 * If the map's timestamp does not change while the 623 * map is unlocked, then the upgrade succeeds. 624 */ 625 sx_xlock_(&map->lock, file, line); 626 if (last_timestamp != map->timestamp) { 627 sx_xunlock_(&map->lock, file, line); 628 return (1); 629 } 630 } 631 } 632 map->timestamp++; 633 return (0); 634 } 635 636 void 637 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 638 { 639 640 if (map->system_map) { 641 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 642 } else 643 sx_downgrade_(&map->lock, file, line); 644 } 645 646 /* 647 * vm_map_locked: 648 * 649 * Returns a non-zero value if the caller holds a write (exclusive) lock 650 * on the specified map and the value "0" otherwise. 651 */ 652 int 653 vm_map_locked(vm_map_t map) 654 { 655 656 if (map->system_map) 657 return (mtx_owned(&map->system_mtx)); 658 else 659 return (sx_xlocked(&map->lock)); 660 } 661 662 #ifdef INVARIANTS 663 static void 664 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 665 { 666 667 if (map->system_map) 668 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 669 else 670 sx_assert_(&map->lock, SA_XLOCKED, file, line); 671 } 672 673 #define VM_MAP_ASSERT_LOCKED(map) \ 674 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 675 #else 676 #define VM_MAP_ASSERT_LOCKED(map) 677 #endif 678 679 /* 680 * _vm_map_unlock_and_wait: 681 * 682 * Atomically releases the lock on the specified map and puts the calling 683 * thread to sleep. The calling thread will remain asleep until either 684 * vm_map_wakeup() is performed on the map or the specified timeout is 685 * exceeded. 686 * 687 * WARNING! This function does not perform deferred deallocations of 688 * objects and map entries. Therefore, the calling thread is expected to 689 * reacquire the map lock after reawakening and later perform an ordinary 690 * unlock operation, such as vm_map_unlock(), before completing its 691 * operation on the map. 692 */ 693 int 694 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 695 { 696 697 mtx_lock(&map_sleep_mtx); 698 if (map->system_map) 699 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 700 else 701 sx_xunlock_(&map->lock, file, line); 702 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 703 timo)); 704 } 705 706 /* 707 * vm_map_wakeup: 708 * 709 * Awaken any threads that have slept on the map using 710 * vm_map_unlock_and_wait(). 711 */ 712 void 713 vm_map_wakeup(vm_map_t map) 714 { 715 716 /* 717 * Acquire and release map_sleep_mtx to prevent a wakeup() 718 * from being performed (and lost) between the map unlock 719 * and the msleep() in _vm_map_unlock_and_wait(). 720 */ 721 mtx_lock(&map_sleep_mtx); 722 mtx_unlock(&map_sleep_mtx); 723 wakeup(&map->root); 724 } 725 726 void 727 vm_map_busy(vm_map_t map) 728 { 729 730 VM_MAP_ASSERT_LOCKED(map); 731 map->busy++; 732 } 733 734 void 735 vm_map_unbusy(vm_map_t map) 736 { 737 738 VM_MAP_ASSERT_LOCKED(map); 739 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 740 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 741 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 742 wakeup(&map->busy); 743 } 744 } 745 746 void 747 vm_map_wait_busy(vm_map_t map) 748 { 749 750 VM_MAP_ASSERT_LOCKED(map); 751 while (map->busy) { 752 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 753 if (map->system_map) 754 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 755 else 756 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 757 } 758 map->timestamp++; 759 } 760 761 long 762 vmspace_resident_count(struct vmspace *vmspace) 763 { 764 return pmap_resident_count(vmspace_pmap(vmspace)); 765 } 766 767 /* 768 * vm_map_create: 769 * 770 * Creates and returns a new empty VM map with 771 * the given physical map structure, and having 772 * the given lower and upper address bounds. 773 */ 774 vm_map_t 775 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 776 { 777 vm_map_t result; 778 779 result = uma_zalloc(mapzone, M_WAITOK); 780 CTR1(KTR_VM, "vm_map_create: %p", result); 781 _vm_map_init(result, pmap, min, max); 782 return (result); 783 } 784 785 /* 786 * Initialize an existing vm_map structure 787 * such as that in the vmspace structure. 788 */ 789 static void 790 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 791 { 792 793 map->header.next = map->header.prev = &map->header; 794 map->header.eflags = MAP_ENTRY_HEADER; 795 map->needs_wakeup = FALSE; 796 map->system_map = 0; 797 map->pmap = pmap; 798 map->header.end = min; 799 map->header.start = max; 800 map->flags = 0; 801 map->root = NULL; 802 map->timestamp = 0; 803 map->busy = 0; 804 map->anon_loc = 0; 805 } 806 807 void 808 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 809 { 810 811 _vm_map_init(map, pmap, min, max); 812 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 813 sx_init(&map->lock, "user map"); 814 } 815 816 /* 817 * vm_map_entry_dispose: [ internal use only ] 818 * 819 * Inverse of vm_map_entry_create. 820 */ 821 static void 822 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 823 { 824 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 825 } 826 827 /* 828 * vm_map_entry_create: [ internal use only ] 829 * 830 * Allocates a VM map entry for insertion. 831 * No entry fields are filled in. 832 */ 833 static vm_map_entry_t 834 vm_map_entry_create(vm_map_t map) 835 { 836 vm_map_entry_t new_entry; 837 838 if (map->system_map) 839 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 840 else 841 new_entry = uma_zalloc(mapentzone, M_WAITOK); 842 if (new_entry == NULL) 843 panic("vm_map_entry_create: kernel resources exhausted"); 844 return (new_entry); 845 } 846 847 /* 848 * vm_map_entry_set_behavior: 849 * 850 * Set the expected access behavior, either normal, random, or 851 * sequential. 852 */ 853 static inline void 854 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 855 { 856 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 857 (behavior & MAP_ENTRY_BEHAV_MASK); 858 } 859 860 /* 861 * vm_map_entry_set_max_free: 862 * 863 * Set the max_free field in a vm_map_entry. 864 */ 865 static inline void 866 vm_map_entry_set_max_free(vm_map_entry_t entry) 867 { 868 869 entry->max_free = entry->adj_free; 870 if (entry->left != NULL && entry->left->max_free > entry->max_free) 871 entry->max_free = entry->left->max_free; 872 if (entry->right != NULL && entry->right->max_free > entry->max_free) 873 entry->max_free = entry->right->max_free; 874 } 875 876 /* 877 * vm_map_entry_splay: 878 * 879 * The Sleator and Tarjan top-down splay algorithm with the 880 * following variation. Max_free must be computed bottom-up, so 881 * on the downward pass, maintain the left and right spines in 882 * reverse order. Then, make a second pass up each side to fix 883 * the pointers and compute max_free. The time bound is O(log n) 884 * amortized. 885 * 886 * The new root is the vm_map_entry containing "addr", or else an 887 * adjacent entry (lower or higher) if addr is not in the tree. 888 * 889 * The map must be locked, and leaves it so. 890 * 891 * Returns: the new root. 892 */ 893 static vm_map_entry_t 894 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 895 { 896 vm_map_entry_t llist, rlist; 897 vm_map_entry_t ltree, rtree; 898 vm_map_entry_t y; 899 900 /* Special case of empty tree. */ 901 if (root == NULL) 902 return (root); 903 904 /* 905 * Pass One: Splay down the tree until we find addr or a NULL 906 * pointer where addr would go. llist and rlist are the two 907 * sides in reverse order (bottom-up), with llist linked by 908 * the right pointer and rlist linked by the left pointer in 909 * the vm_map_entry. Wait until Pass Two to set max_free on 910 * the two spines. 911 */ 912 llist = NULL; 913 rlist = NULL; 914 for (;;) { 915 /* root is never NULL in here. */ 916 if (addr < root->start) { 917 y = root->left; 918 if (y == NULL) 919 break; 920 if (addr < y->start && y->left != NULL) { 921 /* Rotate right and put y on rlist. */ 922 root->left = y->right; 923 y->right = root; 924 vm_map_entry_set_max_free(root); 925 root = y->left; 926 y->left = rlist; 927 rlist = y; 928 } else { 929 /* Put root on rlist. */ 930 root->left = rlist; 931 rlist = root; 932 root = y; 933 } 934 } else if (addr >= root->end) { 935 y = root->right; 936 if (y == NULL) 937 break; 938 if (addr >= y->end && y->right != NULL) { 939 /* Rotate left and put y on llist. */ 940 root->right = y->left; 941 y->left = root; 942 vm_map_entry_set_max_free(root); 943 root = y->right; 944 y->right = llist; 945 llist = y; 946 } else { 947 /* Put root on llist. */ 948 root->right = llist; 949 llist = root; 950 root = y; 951 } 952 } else 953 break; 954 } 955 956 /* 957 * Pass Two: Walk back up the two spines, flip the pointers 958 * and set max_free. The subtrees of the root go at the 959 * bottom of llist and rlist. 960 */ 961 ltree = root->left; 962 while (llist != NULL) { 963 y = llist->right; 964 llist->right = ltree; 965 vm_map_entry_set_max_free(llist); 966 ltree = llist; 967 llist = y; 968 } 969 rtree = root->right; 970 while (rlist != NULL) { 971 y = rlist->left; 972 rlist->left = rtree; 973 vm_map_entry_set_max_free(rlist); 974 rtree = rlist; 975 rlist = y; 976 } 977 978 /* 979 * Final assembly: add ltree and rtree as subtrees of root. 980 */ 981 root->left = ltree; 982 root->right = rtree; 983 vm_map_entry_set_max_free(root); 984 985 return (root); 986 } 987 988 /* 989 * vm_map_entry_{un,}link: 990 * 991 * Insert/remove entries from maps. 992 */ 993 static void 994 vm_map_entry_link(vm_map_t map, 995 vm_map_entry_t after_where, 996 vm_map_entry_t entry) 997 { 998 999 CTR4(KTR_VM, 1000 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 1001 map->nentries, entry, after_where); 1002 VM_MAP_ASSERT_LOCKED(map); 1003 KASSERT(after_where->end <= entry->start, 1004 ("vm_map_entry_link: prev end %jx new start %jx overlap", 1005 (uintmax_t)after_where->end, (uintmax_t)entry->start)); 1006 KASSERT(entry->end <= after_where->next->start, 1007 ("vm_map_entry_link: new end %jx next start %jx overlap", 1008 (uintmax_t)entry->end, (uintmax_t)after_where->next->start)); 1009 1010 map->nentries++; 1011 entry->prev = after_where; 1012 entry->next = after_where->next; 1013 entry->next->prev = entry; 1014 after_where->next = entry; 1015 1016 if (after_where != &map->header) { 1017 if (after_where != map->root) 1018 vm_map_entry_splay(after_where->start, map->root); 1019 entry->right = after_where->right; 1020 entry->left = after_where; 1021 after_where->right = NULL; 1022 after_where->adj_free = entry->start - after_where->end; 1023 vm_map_entry_set_max_free(after_where); 1024 } else { 1025 entry->right = map->root; 1026 entry->left = NULL; 1027 } 1028 entry->adj_free = entry->next->start - entry->end; 1029 vm_map_entry_set_max_free(entry); 1030 map->root = entry; 1031 } 1032 1033 static void 1034 vm_map_entry_unlink(vm_map_t map, 1035 vm_map_entry_t entry) 1036 { 1037 vm_map_entry_t next, prev, root; 1038 1039 VM_MAP_ASSERT_LOCKED(map); 1040 if (entry != map->root) 1041 vm_map_entry_splay(entry->start, map->root); 1042 if (entry->left == NULL) 1043 root = entry->right; 1044 else { 1045 root = vm_map_entry_splay(entry->start, entry->left); 1046 root->right = entry->right; 1047 root->adj_free = entry->next->start - root->end; 1048 vm_map_entry_set_max_free(root); 1049 } 1050 map->root = root; 1051 1052 prev = entry->prev; 1053 next = entry->next; 1054 next->prev = prev; 1055 prev->next = next; 1056 map->nentries--; 1057 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1058 map->nentries, entry); 1059 } 1060 1061 /* 1062 * vm_map_entry_resize_free: 1063 * 1064 * Recompute the amount of free space following a vm_map_entry 1065 * and propagate that value up the tree. Call this function after 1066 * resizing a map entry in-place, that is, without a call to 1067 * vm_map_entry_link() or _unlink(). 1068 * 1069 * The map must be locked, and leaves it so. 1070 */ 1071 static void 1072 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1073 { 1074 1075 /* 1076 * Using splay trees without parent pointers, propagating 1077 * max_free up the tree is done by moving the entry to the 1078 * root and making the change there. 1079 */ 1080 if (entry != map->root) 1081 map->root = vm_map_entry_splay(entry->start, map->root); 1082 1083 entry->adj_free = entry->next->start - entry->end; 1084 vm_map_entry_set_max_free(entry); 1085 } 1086 1087 /* 1088 * vm_map_lookup_entry: [ internal use only ] 1089 * 1090 * Finds the map entry containing (or 1091 * immediately preceding) the specified address 1092 * in the given map; the entry is returned 1093 * in the "entry" parameter. The boolean 1094 * result indicates whether the address is 1095 * actually contained in the map. 1096 */ 1097 boolean_t 1098 vm_map_lookup_entry( 1099 vm_map_t map, 1100 vm_offset_t address, 1101 vm_map_entry_t *entry) /* OUT */ 1102 { 1103 vm_map_entry_t cur; 1104 boolean_t locked; 1105 1106 /* 1107 * If the map is empty, then the map entry immediately preceding 1108 * "address" is the map's header. 1109 */ 1110 cur = map->root; 1111 if (cur == NULL) 1112 *entry = &map->header; 1113 else if (address >= cur->start && cur->end > address) { 1114 *entry = cur; 1115 return (TRUE); 1116 } else if ((locked = vm_map_locked(map)) || 1117 sx_try_upgrade(&map->lock)) { 1118 /* 1119 * Splay requires a write lock on the map. However, it only 1120 * restructures the binary search tree; it does not otherwise 1121 * change the map. Thus, the map's timestamp need not change 1122 * on a temporary upgrade. 1123 */ 1124 map->root = cur = vm_map_entry_splay(address, cur); 1125 if (!locked) 1126 sx_downgrade(&map->lock); 1127 1128 /* 1129 * If "address" is contained within a map entry, the new root 1130 * is that map entry. Otherwise, the new root is a map entry 1131 * immediately before or after "address". 1132 */ 1133 if (address >= cur->start) { 1134 *entry = cur; 1135 if (cur->end > address) 1136 return (TRUE); 1137 } else 1138 *entry = cur->prev; 1139 } else 1140 /* 1141 * Since the map is only locked for read access, perform a 1142 * standard binary search tree lookup for "address". 1143 */ 1144 for (;;) { 1145 if (address < cur->start) { 1146 if (cur->left == NULL) { 1147 *entry = cur->prev; 1148 break; 1149 } 1150 cur = cur->left; 1151 } else if (cur->end > address) { 1152 *entry = cur; 1153 return (TRUE); 1154 } else { 1155 if (cur->right == NULL) { 1156 *entry = cur; 1157 break; 1158 } 1159 cur = cur->right; 1160 } 1161 } 1162 return (FALSE); 1163 } 1164 1165 /* 1166 * vm_map_insert: 1167 * 1168 * Inserts the given whole VM object into the target 1169 * map at the specified address range. The object's 1170 * size should match that of the address range. 1171 * 1172 * Requires that the map be locked, and leaves it so. 1173 * 1174 * If object is non-NULL, ref count must be bumped by caller 1175 * prior to making call to account for the new entry. 1176 */ 1177 int 1178 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1179 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1180 { 1181 vm_map_entry_t new_entry, prev_entry, temp_entry; 1182 struct ucred *cred; 1183 vm_eflags_t protoeflags; 1184 vm_inherit_t inheritance; 1185 1186 VM_MAP_ASSERT_LOCKED(map); 1187 KASSERT(object != kernel_object || 1188 (cow & MAP_COPY_ON_WRITE) == 0, 1189 ("vm_map_insert: kernel object and COW")); 1190 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1191 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1192 KASSERT((prot & ~max) == 0, 1193 ("prot %#x is not subset of max_prot %#x", prot, max)); 1194 1195 /* 1196 * Check that the start and end points are not bogus. 1197 */ 1198 if (start < vm_map_min(map) || end > vm_map_max(map) || 1199 start >= end) 1200 return (KERN_INVALID_ADDRESS); 1201 1202 /* 1203 * Find the entry prior to the proposed starting address; if it's part 1204 * of an existing entry, this range is bogus. 1205 */ 1206 if (vm_map_lookup_entry(map, start, &temp_entry)) 1207 return (KERN_NO_SPACE); 1208 1209 prev_entry = temp_entry; 1210 1211 /* 1212 * Assert that the next entry doesn't overlap the end point. 1213 */ 1214 if (prev_entry->next->start < end) 1215 return (KERN_NO_SPACE); 1216 1217 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1218 max != VM_PROT_NONE)) 1219 return (KERN_INVALID_ARGUMENT); 1220 1221 protoeflags = 0; 1222 if (cow & MAP_COPY_ON_WRITE) 1223 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1224 if (cow & MAP_NOFAULT) 1225 protoeflags |= MAP_ENTRY_NOFAULT; 1226 if (cow & MAP_DISABLE_SYNCER) 1227 protoeflags |= MAP_ENTRY_NOSYNC; 1228 if (cow & MAP_DISABLE_COREDUMP) 1229 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1230 if (cow & MAP_STACK_GROWS_DOWN) 1231 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1232 if (cow & MAP_STACK_GROWS_UP) 1233 protoeflags |= MAP_ENTRY_GROWS_UP; 1234 if (cow & MAP_VN_WRITECOUNT) 1235 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1236 if ((cow & MAP_CREATE_GUARD) != 0) 1237 protoeflags |= MAP_ENTRY_GUARD; 1238 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1239 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1240 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1241 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1242 if (cow & MAP_INHERIT_SHARE) 1243 inheritance = VM_INHERIT_SHARE; 1244 else 1245 inheritance = VM_INHERIT_DEFAULT; 1246 1247 cred = NULL; 1248 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1249 goto charged; 1250 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1251 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1252 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1253 return (KERN_RESOURCE_SHORTAGE); 1254 KASSERT(object == NULL || 1255 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1256 object->cred == NULL, 1257 ("overcommit: vm_map_insert o %p", object)); 1258 cred = curthread->td_ucred; 1259 } 1260 1261 charged: 1262 /* Expand the kernel pmap, if necessary. */ 1263 if (map == kernel_map && end > kernel_vm_end) 1264 pmap_growkernel(end); 1265 if (object != NULL) { 1266 /* 1267 * OBJ_ONEMAPPING must be cleared unless this mapping 1268 * is trivially proven to be the only mapping for any 1269 * of the object's pages. (Object granularity 1270 * reference counting is insufficient to recognize 1271 * aliases with precision.) 1272 */ 1273 VM_OBJECT_WLOCK(object); 1274 if (object->ref_count > 1 || object->shadow_count != 0) 1275 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1276 VM_OBJECT_WUNLOCK(object); 1277 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1278 protoeflags && 1279 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 && 1280 prev_entry->end == start && (prev_entry->cred == cred || 1281 (prev_entry->object.vm_object != NULL && 1282 prev_entry->object.vm_object->cred == cred)) && 1283 vm_object_coalesce(prev_entry->object.vm_object, 1284 prev_entry->offset, 1285 (vm_size_t)(prev_entry->end - prev_entry->start), 1286 (vm_size_t)(end - prev_entry->end), cred != NULL && 1287 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1288 /* 1289 * We were able to extend the object. Determine if we 1290 * can extend the previous map entry to include the 1291 * new range as well. 1292 */ 1293 if (prev_entry->inheritance == inheritance && 1294 prev_entry->protection == prot && 1295 prev_entry->max_protection == max && 1296 prev_entry->wired_count == 0) { 1297 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1298 0, ("prev_entry %p has incoherent wiring", 1299 prev_entry)); 1300 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1301 map->size += end - prev_entry->end; 1302 prev_entry->end = end; 1303 vm_map_entry_resize_free(map, prev_entry); 1304 vm_map_simplify_entry(map, prev_entry); 1305 return (KERN_SUCCESS); 1306 } 1307 1308 /* 1309 * If we can extend the object but cannot extend the 1310 * map entry, we have to create a new map entry. We 1311 * must bump the ref count on the extended object to 1312 * account for it. object may be NULL. 1313 */ 1314 object = prev_entry->object.vm_object; 1315 offset = prev_entry->offset + 1316 (prev_entry->end - prev_entry->start); 1317 vm_object_reference(object); 1318 if (cred != NULL && object != NULL && object->cred != NULL && 1319 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1320 /* Object already accounts for this uid. */ 1321 cred = NULL; 1322 } 1323 } 1324 if (cred != NULL) 1325 crhold(cred); 1326 1327 /* 1328 * Create a new entry 1329 */ 1330 new_entry = vm_map_entry_create(map); 1331 new_entry->start = start; 1332 new_entry->end = end; 1333 new_entry->cred = NULL; 1334 1335 new_entry->eflags = protoeflags; 1336 new_entry->object.vm_object = object; 1337 new_entry->offset = offset; 1338 1339 new_entry->inheritance = inheritance; 1340 new_entry->protection = prot; 1341 new_entry->max_protection = max; 1342 new_entry->wired_count = 0; 1343 new_entry->wiring_thread = NULL; 1344 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1345 new_entry->next_read = start; 1346 1347 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1348 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1349 new_entry->cred = cred; 1350 1351 /* 1352 * Insert the new entry into the list 1353 */ 1354 vm_map_entry_link(map, prev_entry, new_entry); 1355 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1356 map->size += new_entry->end - new_entry->start; 1357 1358 /* 1359 * Try to coalesce the new entry with both the previous and next 1360 * entries in the list. Previously, we only attempted to coalesce 1361 * with the previous entry when object is NULL. Here, we handle the 1362 * other cases, which are less common. 1363 */ 1364 vm_map_simplify_entry(map, new_entry); 1365 1366 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1367 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1368 end - start, cow & MAP_PREFAULT_PARTIAL); 1369 } 1370 1371 return (KERN_SUCCESS); 1372 } 1373 1374 /* 1375 * vm_map_findspace: 1376 * 1377 * Find the first fit (lowest VM address) for "length" free bytes 1378 * beginning at address >= start in the given map. 1379 * 1380 * In a vm_map_entry, "adj_free" is the amount of free space 1381 * adjacent (higher address) to this entry, and "max_free" is the 1382 * maximum amount of contiguous free space in its subtree. This 1383 * allows finding a free region in one path down the tree, so 1384 * O(log n) amortized with splay trees. 1385 * 1386 * The map must be locked, and leaves it so. 1387 * 1388 * Returns: 0 on success, and starting address in *addr, 1389 * 1 if insufficient space. 1390 */ 1391 int 1392 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1393 vm_offset_t *addr) /* OUT */ 1394 { 1395 vm_map_entry_t entry; 1396 vm_offset_t st; 1397 1398 /* 1399 * Request must fit within min/max VM address and must avoid 1400 * address wrap. 1401 */ 1402 start = MAX(start, vm_map_min(map)); 1403 if (start + length > vm_map_max(map) || start + length < start) 1404 return (1); 1405 1406 /* Empty tree means wide open address space. */ 1407 if (map->root == NULL) { 1408 *addr = start; 1409 return (0); 1410 } 1411 1412 /* 1413 * After splay, if start comes before root node, then there 1414 * must be a gap from start to the root. 1415 */ 1416 map->root = vm_map_entry_splay(start, map->root); 1417 if (start + length <= map->root->start) { 1418 *addr = start; 1419 return (0); 1420 } 1421 1422 /* 1423 * Root is the last node that might begin its gap before 1424 * start, and this is the last comparison where address 1425 * wrap might be a problem. 1426 */ 1427 st = (start > map->root->end) ? start : map->root->end; 1428 if (length <= map->root->end + map->root->adj_free - st) { 1429 *addr = st; 1430 return (0); 1431 } 1432 1433 /* With max_free, can immediately tell if no solution. */ 1434 entry = map->root->right; 1435 if (entry == NULL || length > entry->max_free) 1436 return (1); 1437 1438 /* 1439 * Search the right subtree in the order: left subtree, root, 1440 * right subtree (first fit). The previous splay implies that 1441 * all regions in the right subtree have addresses > start. 1442 */ 1443 while (entry != NULL) { 1444 if (entry->left != NULL && entry->left->max_free >= length) 1445 entry = entry->left; 1446 else if (entry->adj_free >= length) { 1447 *addr = entry->end; 1448 return (0); 1449 } else 1450 entry = entry->right; 1451 } 1452 1453 /* Can't get here, so panic if we do. */ 1454 panic("vm_map_findspace: max_free corrupt"); 1455 } 1456 1457 int 1458 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1459 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1460 vm_prot_t max, int cow) 1461 { 1462 vm_offset_t end; 1463 int result; 1464 1465 end = start + length; 1466 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1467 object == NULL, 1468 ("vm_map_fixed: non-NULL backing object for stack")); 1469 vm_map_lock(map); 1470 VM_MAP_RANGE_CHECK(map, start, end); 1471 if ((cow & MAP_CHECK_EXCL) == 0) 1472 vm_map_delete(map, start, end); 1473 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1474 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1475 prot, max, cow); 1476 } else { 1477 result = vm_map_insert(map, object, offset, start, end, 1478 prot, max, cow); 1479 } 1480 vm_map_unlock(map); 1481 return (result); 1482 } 1483 1484 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1485 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1486 1487 static int cluster_anon = 1; 1488 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1489 &cluster_anon, 0, 1490 "Cluster anonymous mappings"); 1491 1492 static long aslr_restarts; 1493 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 1494 &aslr_restarts, 0, 1495 "Number of aslr failures"); 1496 1497 #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) 1498 1499 /* 1500 * Searches for the specified amount of free space in the given map with the 1501 * specified alignment. Performs an address-ordered, first-fit search from 1502 * the given address "*addr", with an optional upper bound "max_addr". If the 1503 * parameter "alignment" is zero, then the alignment is computed from the 1504 * given (object, offset) pair so as to enable the greatest possible use of 1505 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1506 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1507 * 1508 * The map must be locked. Initially, there must be at least "length" bytes 1509 * of free space at the given address. 1510 */ 1511 static int 1512 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1513 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1514 vm_offset_t alignment) 1515 { 1516 vm_offset_t aligned_addr, free_addr; 1517 1518 VM_MAP_ASSERT_LOCKED(map); 1519 free_addr = *addr; 1520 KASSERT(!vm_map_findspace(map, free_addr, length, addr) && 1521 free_addr == *addr, ("caller provided insufficient free space")); 1522 for (;;) { 1523 /* 1524 * At the start of every iteration, the free space at address 1525 * "*addr" is at least "length" bytes. 1526 */ 1527 if (alignment == 0) 1528 pmap_align_superpage(object, offset, addr, length); 1529 else if ((*addr & (alignment - 1)) != 0) { 1530 *addr &= ~(alignment - 1); 1531 *addr += alignment; 1532 } 1533 aligned_addr = *addr; 1534 if (aligned_addr == free_addr) { 1535 /* 1536 * Alignment did not change "*addr", so "*addr" must 1537 * still provide sufficient free space. 1538 */ 1539 return (KERN_SUCCESS); 1540 } 1541 1542 /* 1543 * Test for address wrap on "*addr". A wrapped "*addr" could 1544 * be a valid address, in which case vm_map_findspace() cannot 1545 * be relied upon to fail. 1546 */ 1547 if (aligned_addr < free_addr || 1548 vm_map_findspace(map, aligned_addr, length, addr) || 1549 (max_addr != 0 && *addr + length > max_addr)) 1550 return (KERN_NO_SPACE); 1551 free_addr = *addr; 1552 if (free_addr == aligned_addr) { 1553 /* 1554 * If a successful call to vm_map_findspace() did not 1555 * change "*addr", then "*addr" must still be aligned 1556 * and provide sufficient free space. 1557 */ 1558 return (KERN_SUCCESS); 1559 } 1560 } 1561 } 1562 1563 /* 1564 * vm_map_find finds an unallocated region in the target address 1565 * map with the given length. The search is defined to be 1566 * first-fit from the specified address; the region found is 1567 * returned in the same parameter. 1568 * 1569 * If object is non-NULL, ref count must be bumped by caller 1570 * prior to making call to account for the new entry. 1571 */ 1572 int 1573 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1574 vm_offset_t *addr, /* IN/OUT */ 1575 vm_size_t length, vm_offset_t max_addr, int find_space, 1576 vm_prot_t prot, vm_prot_t max, int cow) 1577 { 1578 vm_offset_t alignment, curr_min_addr, min_addr; 1579 int gap, pidx, rv, try; 1580 bool cluster, en_aslr, update_anon; 1581 1582 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1583 object == NULL, 1584 ("vm_map_find: non-NULL backing object for stack")); 1585 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 1586 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 1587 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1588 (object->flags & OBJ_COLORED) == 0)) 1589 find_space = VMFS_ANY_SPACE; 1590 if (find_space >> 8 != 0) { 1591 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1592 alignment = (vm_offset_t)1 << (find_space >> 8); 1593 } else 1594 alignment = 0; 1595 en_aslr = (map->flags & MAP_ASLR) != 0; 1596 update_anon = cluster = cluster_anon != 0 && 1597 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 1598 find_space != VMFS_NO_SPACE && object == NULL && 1599 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 1600 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 1601 curr_min_addr = min_addr = *addr; 1602 if (en_aslr && min_addr == 0 && !cluster && 1603 find_space != VMFS_NO_SPACE && 1604 (map->flags & MAP_ASLR_IGNSTART) != 0) 1605 curr_min_addr = min_addr = vm_map_min(map); 1606 try = 0; 1607 vm_map_lock(map); 1608 if (cluster) { 1609 curr_min_addr = map->anon_loc; 1610 if (curr_min_addr == 0) 1611 cluster = false; 1612 } 1613 if (find_space != VMFS_NO_SPACE) { 1614 KASSERT(find_space == VMFS_ANY_SPACE || 1615 find_space == VMFS_OPTIMAL_SPACE || 1616 find_space == VMFS_SUPER_SPACE || 1617 alignment != 0, ("unexpected VMFS flag")); 1618 again: 1619 /* 1620 * When creating an anonymous mapping, try clustering 1621 * with an existing anonymous mapping first. 1622 * 1623 * We make up to two attempts to find address space 1624 * for a given find_space value. The first attempt may 1625 * apply randomization or may cluster with an existing 1626 * anonymous mapping. If this first attempt fails, 1627 * perform a first-fit search of the available address 1628 * space. 1629 * 1630 * If all tries failed, and find_space is 1631 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 1632 * Again enable clustering and randomization. 1633 */ 1634 try++; 1635 MPASS(try <= 2); 1636 1637 if (try == 2) { 1638 /* 1639 * Second try: we failed either to find a 1640 * suitable region for randomizing the 1641 * allocation, or to cluster with an existing 1642 * mapping. Retry with free run. 1643 */ 1644 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 1645 vm_map_min(map) : min_addr; 1646 atomic_add_long(&aslr_restarts, 1); 1647 } 1648 1649 if (try == 1 && en_aslr && !cluster) { 1650 /* 1651 * Find space for allocation, including 1652 * gap needed for later randomization. 1653 */ 1654 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 1655 (find_space == VMFS_SUPER_SPACE || find_space == 1656 VMFS_OPTIMAL_SPACE) ? 1 : 0; 1657 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 1658 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 1659 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 1660 if (vm_map_findspace(map, curr_min_addr, length + 1661 gap * pagesizes[pidx], addr) || 1662 (max_addr != 0 && *addr + length > max_addr)) 1663 goto again; 1664 /* And randomize the start address. */ 1665 *addr += (arc4random() % gap) * pagesizes[pidx]; 1666 } else if (vm_map_findspace(map, curr_min_addr, length, addr) || 1667 (max_addr != 0 && *addr + length > max_addr)) { 1668 if (cluster) { 1669 cluster = false; 1670 MPASS(try == 1); 1671 goto again; 1672 } 1673 rv = KERN_NO_SPACE; 1674 goto done; 1675 } 1676 1677 if (find_space != VMFS_ANY_SPACE && 1678 (rv = vm_map_alignspace(map, object, offset, addr, length, 1679 max_addr, alignment)) != KERN_SUCCESS) { 1680 if (find_space == VMFS_OPTIMAL_SPACE) { 1681 find_space = VMFS_ANY_SPACE; 1682 curr_min_addr = min_addr; 1683 cluster = update_anon; 1684 try = 0; 1685 goto again; 1686 } 1687 goto done; 1688 } 1689 } else if ((cow & MAP_REMAP) != 0) { 1690 if (*addr < vm_map_min(map) || 1691 *addr + length > vm_map_max(map) || 1692 *addr + length <= length) { 1693 rv = KERN_INVALID_ADDRESS; 1694 goto done; 1695 } 1696 vm_map_delete(map, *addr, *addr + length); 1697 } 1698 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1699 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 1700 max, cow); 1701 } else { 1702 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 1703 prot, max, cow); 1704 } 1705 if (rv == KERN_SUCCESS && update_anon) 1706 map->anon_loc = *addr + length; 1707 done: 1708 vm_map_unlock(map); 1709 return (rv); 1710 } 1711 1712 /* 1713 * vm_map_find_min() is a variant of vm_map_find() that takes an 1714 * additional parameter (min_addr) and treats the given address 1715 * (*addr) differently. Specifically, it treats *addr as a hint 1716 * and not as the minimum address where the mapping is created. 1717 * 1718 * This function works in two phases. First, it tries to 1719 * allocate above the hint. If that fails and the hint is 1720 * greater than min_addr, it performs a second pass, replacing 1721 * the hint with min_addr as the minimum address for the 1722 * allocation. 1723 */ 1724 int 1725 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1726 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 1727 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 1728 int cow) 1729 { 1730 vm_offset_t hint; 1731 int rv; 1732 1733 hint = *addr; 1734 for (;;) { 1735 rv = vm_map_find(map, object, offset, addr, length, max_addr, 1736 find_space, prot, max, cow); 1737 if (rv == KERN_SUCCESS || min_addr >= hint) 1738 return (rv); 1739 *addr = hint = min_addr; 1740 } 1741 } 1742 1743 /* 1744 * A map entry with any of the following flags set must not be merged with 1745 * another entry. 1746 */ 1747 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 1748 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP) 1749 1750 static bool 1751 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 1752 { 1753 1754 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 1755 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 1756 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 1757 prev, entry)); 1758 return (prev->end == entry->start && 1759 prev->object.vm_object == entry->object.vm_object && 1760 (prev->object.vm_object == NULL || 1761 prev->offset + (prev->end - prev->start) == entry->offset) && 1762 prev->eflags == entry->eflags && 1763 prev->protection == entry->protection && 1764 prev->max_protection == entry->max_protection && 1765 prev->inheritance == entry->inheritance && 1766 prev->wired_count == entry->wired_count && 1767 prev->cred == entry->cred); 1768 } 1769 1770 static void 1771 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 1772 { 1773 1774 /* 1775 * If the backing object is a vnode object, vm_object_deallocate() 1776 * calls vrele(). However, vrele() does not lock the vnode because 1777 * the vnode has additional references. Thus, the map lock can be 1778 * kept without causing a lock-order reversal with the vnode lock. 1779 * 1780 * Since we count the number of virtual page mappings in 1781 * object->un_pager.vnp.writemappings, the writemappings value 1782 * should not be adjusted when the entry is disposed of. 1783 */ 1784 if (entry->object.vm_object != NULL) 1785 vm_object_deallocate(entry->object.vm_object); 1786 if (entry->cred != NULL) 1787 crfree(entry->cred); 1788 vm_map_entry_dispose(map, entry); 1789 } 1790 1791 /* 1792 * vm_map_simplify_entry: 1793 * 1794 * Simplify the given map entry by merging with either neighbor. This 1795 * routine also has the ability to merge with both neighbors. 1796 * 1797 * The map must be locked. 1798 * 1799 * This routine guarantees that the passed entry remains valid (though 1800 * possibly extended). When merging, this routine may delete one or 1801 * both neighbors. 1802 */ 1803 void 1804 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1805 { 1806 vm_map_entry_t next, prev; 1807 1808 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0) 1809 return; 1810 prev = entry->prev; 1811 if (vm_map_mergeable_neighbors(prev, entry)) { 1812 vm_map_entry_unlink(map, prev); 1813 entry->start = prev->start; 1814 entry->offset = prev->offset; 1815 if (entry->prev != &map->header) 1816 vm_map_entry_resize_free(map, entry->prev); 1817 vm_map_merged_neighbor_dispose(map, prev); 1818 } 1819 next = entry->next; 1820 if (vm_map_mergeable_neighbors(entry, next)) { 1821 vm_map_entry_unlink(map, next); 1822 entry->end = next->end; 1823 vm_map_entry_resize_free(map, entry); 1824 vm_map_merged_neighbor_dispose(map, next); 1825 } 1826 } 1827 1828 /* 1829 * vm_map_clip_start: [ internal use only ] 1830 * 1831 * Asserts that the given entry begins at or after 1832 * the specified address; if necessary, 1833 * it splits the entry into two. 1834 */ 1835 #define vm_map_clip_start(map, entry, startaddr) \ 1836 { \ 1837 if (startaddr > entry->start) \ 1838 _vm_map_clip_start(map, entry, startaddr); \ 1839 } 1840 1841 /* 1842 * This routine is called only when it is known that 1843 * the entry must be split. 1844 */ 1845 static void 1846 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1847 { 1848 vm_map_entry_t new_entry; 1849 1850 VM_MAP_ASSERT_LOCKED(map); 1851 KASSERT(entry->end > start && entry->start < start, 1852 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 1853 1854 /* 1855 * Split off the front portion -- note that we must insert the new 1856 * entry BEFORE this one, so that this entry has the specified 1857 * starting address. 1858 */ 1859 vm_map_simplify_entry(map, entry); 1860 1861 /* 1862 * If there is no object backing this entry, we might as well create 1863 * one now. If we defer it, an object can get created after the map 1864 * is clipped, and individual objects will be created for the split-up 1865 * map. This is a bit of a hack, but is also about the best place to 1866 * put this improvement. 1867 */ 1868 if (entry->object.vm_object == NULL && !map->system_map && 1869 (entry->eflags & MAP_ENTRY_GUARD) == 0) { 1870 vm_object_t object; 1871 object = vm_object_allocate(OBJT_DEFAULT, 1872 atop(entry->end - entry->start)); 1873 entry->object.vm_object = object; 1874 entry->offset = 0; 1875 if (entry->cred != NULL) { 1876 object->cred = entry->cred; 1877 object->charge = entry->end - entry->start; 1878 entry->cred = NULL; 1879 } 1880 } else if (entry->object.vm_object != NULL && 1881 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1882 entry->cred != NULL) { 1883 VM_OBJECT_WLOCK(entry->object.vm_object); 1884 KASSERT(entry->object.vm_object->cred == NULL, 1885 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1886 entry->object.vm_object->cred = entry->cred; 1887 entry->object.vm_object->charge = entry->end - entry->start; 1888 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1889 entry->cred = NULL; 1890 } 1891 1892 new_entry = vm_map_entry_create(map); 1893 *new_entry = *entry; 1894 1895 new_entry->end = start; 1896 entry->offset += (start - entry->start); 1897 entry->start = start; 1898 if (new_entry->cred != NULL) 1899 crhold(entry->cred); 1900 1901 vm_map_entry_link(map, entry->prev, new_entry); 1902 1903 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1904 vm_object_reference(new_entry->object.vm_object); 1905 /* 1906 * The object->un_pager.vnp.writemappings for the 1907 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1908 * kept as is here. The virtual pages are 1909 * re-distributed among the clipped entries, so the sum is 1910 * left the same. 1911 */ 1912 } 1913 } 1914 1915 /* 1916 * vm_map_clip_end: [ internal use only ] 1917 * 1918 * Asserts that the given entry ends at or before 1919 * the specified address; if necessary, 1920 * it splits the entry into two. 1921 */ 1922 #define vm_map_clip_end(map, entry, endaddr) \ 1923 { \ 1924 if ((endaddr) < (entry->end)) \ 1925 _vm_map_clip_end((map), (entry), (endaddr)); \ 1926 } 1927 1928 /* 1929 * This routine is called only when it is known that 1930 * the entry must be split. 1931 */ 1932 static void 1933 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1934 { 1935 vm_map_entry_t new_entry; 1936 1937 VM_MAP_ASSERT_LOCKED(map); 1938 KASSERT(entry->start < end && entry->end > end, 1939 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 1940 1941 /* 1942 * If there is no object backing this entry, we might as well create 1943 * one now. If we defer it, an object can get created after the map 1944 * is clipped, and individual objects will be created for the split-up 1945 * map. This is a bit of a hack, but is also about the best place to 1946 * put this improvement. 1947 */ 1948 if (entry->object.vm_object == NULL && !map->system_map && 1949 (entry->eflags & MAP_ENTRY_GUARD) == 0) { 1950 vm_object_t object; 1951 object = vm_object_allocate(OBJT_DEFAULT, 1952 atop(entry->end - entry->start)); 1953 entry->object.vm_object = object; 1954 entry->offset = 0; 1955 if (entry->cred != NULL) { 1956 object->cred = entry->cred; 1957 object->charge = entry->end - entry->start; 1958 entry->cred = NULL; 1959 } 1960 } else if (entry->object.vm_object != NULL && 1961 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1962 entry->cred != NULL) { 1963 VM_OBJECT_WLOCK(entry->object.vm_object); 1964 KASSERT(entry->object.vm_object->cred == NULL, 1965 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1966 entry->object.vm_object->cred = entry->cred; 1967 entry->object.vm_object->charge = entry->end - entry->start; 1968 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1969 entry->cred = NULL; 1970 } 1971 1972 /* 1973 * Create a new entry and insert it AFTER the specified entry 1974 */ 1975 new_entry = vm_map_entry_create(map); 1976 *new_entry = *entry; 1977 1978 new_entry->start = entry->end = end; 1979 new_entry->offset += (end - entry->start); 1980 if (new_entry->cred != NULL) 1981 crhold(entry->cred); 1982 1983 vm_map_entry_link(map, entry, new_entry); 1984 1985 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1986 vm_object_reference(new_entry->object.vm_object); 1987 } 1988 } 1989 1990 /* 1991 * vm_map_submap: [ kernel use only ] 1992 * 1993 * Mark the given range as handled by a subordinate map. 1994 * 1995 * This range must have been created with vm_map_find, 1996 * and no other operations may have been performed on this 1997 * range prior to calling vm_map_submap. 1998 * 1999 * Only a limited number of operations can be performed 2000 * within this rage after calling vm_map_submap: 2001 * vm_fault 2002 * [Don't try vm_map_copy!] 2003 * 2004 * To remove a submapping, one must first remove the 2005 * range from the superior map, and then destroy the 2006 * submap (if desired). [Better yet, don't try it.] 2007 */ 2008 int 2009 vm_map_submap( 2010 vm_map_t map, 2011 vm_offset_t start, 2012 vm_offset_t end, 2013 vm_map_t submap) 2014 { 2015 vm_map_entry_t entry; 2016 int result; 2017 2018 result = KERN_INVALID_ARGUMENT; 2019 2020 vm_map_lock(submap); 2021 submap->flags |= MAP_IS_SUB_MAP; 2022 vm_map_unlock(submap); 2023 2024 vm_map_lock(map); 2025 2026 VM_MAP_RANGE_CHECK(map, start, end); 2027 2028 if (vm_map_lookup_entry(map, start, &entry)) { 2029 vm_map_clip_start(map, entry, start); 2030 } else 2031 entry = entry->next; 2032 2033 vm_map_clip_end(map, entry, end); 2034 2035 if ((entry->start == start) && (entry->end == end) && 2036 ((entry->eflags & MAP_ENTRY_COW) == 0) && 2037 (entry->object.vm_object == NULL)) { 2038 entry->object.sub_map = submap; 2039 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2040 result = KERN_SUCCESS; 2041 } 2042 vm_map_unlock(map); 2043 2044 if (result != KERN_SUCCESS) { 2045 vm_map_lock(submap); 2046 submap->flags &= ~MAP_IS_SUB_MAP; 2047 vm_map_unlock(submap); 2048 } 2049 return (result); 2050 } 2051 2052 /* 2053 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2054 */ 2055 #define MAX_INIT_PT 96 2056 2057 /* 2058 * vm_map_pmap_enter: 2059 * 2060 * Preload the specified map's pmap with mappings to the specified 2061 * object's memory-resident pages. No further physical pages are 2062 * allocated, and no further virtual pages are retrieved from secondary 2063 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2064 * limited number of page mappings are created at the low-end of the 2065 * specified address range. (For this purpose, a superpage mapping 2066 * counts as one page mapping.) Otherwise, all resident pages within 2067 * the specified address range are mapped. 2068 */ 2069 static void 2070 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2071 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2072 { 2073 vm_offset_t start; 2074 vm_page_t p, p_start; 2075 vm_pindex_t mask, psize, threshold, tmpidx; 2076 2077 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2078 return; 2079 VM_OBJECT_RLOCK(object); 2080 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2081 VM_OBJECT_RUNLOCK(object); 2082 VM_OBJECT_WLOCK(object); 2083 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2084 pmap_object_init_pt(map->pmap, addr, object, pindex, 2085 size); 2086 VM_OBJECT_WUNLOCK(object); 2087 return; 2088 } 2089 VM_OBJECT_LOCK_DOWNGRADE(object); 2090 } 2091 2092 psize = atop(size); 2093 if (psize + pindex > object->size) { 2094 if (object->size < pindex) { 2095 VM_OBJECT_RUNLOCK(object); 2096 return; 2097 } 2098 psize = object->size - pindex; 2099 } 2100 2101 start = 0; 2102 p_start = NULL; 2103 threshold = MAX_INIT_PT; 2104 2105 p = vm_page_find_least(object, pindex); 2106 /* 2107 * Assert: the variable p is either (1) the page with the 2108 * least pindex greater than or equal to the parameter pindex 2109 * or (2) NULL. 2110 */ 2111 for (; 2112 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2113 p = TAILQ_NEXT(p, listq)) { 2114 /* 2115 * don't allow an madvise to blow away our really 2116 * free pages allocating pv entries. 2117 */ 2118 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2119 vm_page_count_severe()) || 2120 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2121 tmpidx >= threshold)) { 2122 psize = tmpidx; 2123 break; 2124 } 2125 if (p->valid == VM_PAGE_BITS_ALL) { 2126 if (p_start == NULL) { 2127 start = addr + ptoa(tmpidx); 2128 p_start = p; 2129 } 2130 /* Jump ahead if a superpage mapping is possible. */ 2131 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2132 (pagesizes[p->psind] - 1)) == 0) { 2133 mask = atop(pagesizes[p->psind]) - 1; 2134 if (tmpidx + mask < psize && 2135 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2136 p += mask; 2137 threshold += mask; 2138 } 2139 } 2140 } else if (p_start != NULL) { 2141 pmap_enter_object(map->pmap, start, addr + 2142 ptoa(tmpidx), p_start, prot); 2143 p_start = NULL; 2144 } 2145 } 2146 if (p_start != NULL) 2147 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2148 p_start, prot); 2149 VM_OBJECT_RUNLOCK(object); 2150 } 2151 2152 /* 2153 * vm_map_protect: 2154 * 2155 * Sets the protection of the specified address 2156 * region in the target map. If "set_max" is 2157 * specified, the maximum protection is to be set; 2158 * otherwise, only the current protection is affected. 2159 */ 2160 int 2161 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2162 vm_prot_t new_prot, boolean_t set_max) 2163 { 2164 vm_map_entry_t current, entry; 2165 vm_object_t obj; 2166 struct ucred *cred; 2167 vm_prot_t old_prot; 2168 2169 if (start == end) 2170 return (KERN_SUCCESS); 2171 2172 vm_map_lock(map); 2173 2174 /* 2175 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2176 * need to fault pages into the map and will drop the map lock while 2177 * doing so, and the VM object may end up in an inconsistent state if we 2178 * update the protection on the map entry in between faults. 2179 */ 2180 vm_map_wait_busy(map); 2181 2182 VM_MAP_RANGE_CHECK(map, start, end); 2183 2184 if (vm_map_lookup_entry(map, start, &entry)) { 2185 vm_map_clip_start(map, entry, start); 2186 } else { 2187 entry = entry->next; 2188 } 2189 2190 /* 2191 * Make a first pass to check for protection violations. 2192 */ 2193 for (current = entry; current->start < end; current = current->next) { 2194 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2195 continue; 2196 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2197 vm_map_unlock(map); 2198 return (KERN_INVALID_ARGUMENT); 2199 } 2200 if ((new_prot & current->max_protection) != new_prot) { 2201 vm_map_unlock(map); 2202 return (KERN_PROTECTION_FAILURE); 2203 } 2204 } 2205 2206 /* 2207 * Do an accounting pass for private read-only mappings that 2208 * now will do cow due to allowed write (e.g. debugger sets 2209 * breakpoint on text segment) 2210 */ 2211 for (current = entry; current->start < end; current = current->next) { 2212 2213 vm_map_clip_end(map, current, end); 2214 2215 if (set_max || 2216 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 2217 ENTRY_CHARGED(current) || 2218 (current->eflags & MAP_ENTRY_GUARD) != 0) { 2219 continue; 2220 } 2221 2222 cred = curthread->td_ucred; 2223 obj = current->object.vm_object; 2224 2225 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 2226 if (!swap_reserve(current->end - current->start)) { 2227 vm_map_unlock(map); 2228 return (KERN_RESOURCE_SHORTAGE); 2229 } 2230 crhold(cred); 2231 current->cred = cred; 2232 continue; 2233 } 2234 2235 VM_OBJECT_WLOCK(obj); 2236 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2237 VM_OBJECT_WUNLOCK(obj); 2238 continue; 2239 } 2240 2241 /* 2242 * Charge for the whole object allocation now, since 2243 * we cannot distinguish between non-charged and 2244 * charged clipped mapping of the same object later. 2245 */ 2246 KASSERT(obj->charge == 0, 2247 ("vm_map_protect: object %p overcharged (entry %p)", 2248 obj, current)); 2249 if (!swap_reserve(ptoa(obj->size))) { 2250 VM_OBJECT_WUNLOCK(obj); 2251 vm_map_unlock(map); 2252 return (KERN_RESOURCE_SHORTAGE); 2253 } 2254 2255 crhold(cred); 2256 obj->cred = cred; 2257 obj->charge = ptoa(obj->size); 2258 VM_OBJECT_WUNLOCK(obj); 2259 } 2260 2261 /* 2262 * Go back and fix up protections. [Note that clipping is not 2263 * necessary the second time.] 2264 */ 2265 for (current = entry; current->start < end; current = current->next) { 2266 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2267 continue; 2268 2269 old_prot = current->protection; 2270 2271 if (set_max) 2272 current->protection = 2273 (current->max_protection = new_prot) & 2274 old_prot; 2275 else 2276 current->protection = new_prot; 2277 2278 /* 2279 * For user wired map entries, the normal lazy evaluation of 2280 * write access upgrades through soft page faults is 2281 * undesirable. Instead, immediately copy any pages that are 2282 * copy-on-write and enable write access in the physical map. 2283 */ 2284 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2285 (current->protection & VM_PROT_WRITE) != 0 && 2286 (old_prot & VM_PROT_WRITE) == 0) 2287 vm_fault_copy_entry(map, map, current, current, NULL); 2288 2289 /* 2290 * When restricting access, update the physical map. Worry 2291 * about copy-on-write here. 2292 */ 2293 if ((old_prot & ~current->protection) != 0) { 2294 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2295 VM_PROT_ALL) 2296 pmap_protect(map->pmap, current->start, 2297 current->end, 2298 current->protection & MASK(current)); 2299 #undef MASK 2300 } 2301 vm_map_simplify_entry(map, current); 2302 } 2303 vm_map_unlock(map); 2304 return (KERN_SUCCESS); 2305 } 2306 2307 /* 2308 * vm_map_madvise: 2309 * 2310 * This routine traverses a processes map handling the madvise 2311 * system call. Advisories are classified as either those effecting 2312 * the vm_map_entry structure, or those effecting the underlying 2313 * objects. 2314 */ 2315 int 2316 vm_map_madvise( 2317 vm_map_t map, 2318 vm_offset_t start, 2319 vm_offset_t end, 2320 int behav) 2321 { 2322 vm_map_entry_t current, entry; 2323 bool modify_map; 2324 2325 /* 2326 * Some madvise calls directly modify the vm_map_entry, in which case 2327 * we need to use an exclusive lock on the map and we need to perform 2328 * various clipping operations. Otherwise we only need a read-lock 2329 * on the map. 2330 */ 2331 switch(behav) { 2332 case MADV_NORMAL: 2333 case MADV_SEQUENTIAL: 2334 case MADV_RANDOM: 2335 case MADV_NOSYNC: 2336 case MADV_AUTOSYNC: 2337 case MADV_NOCORE: 2338 case MADV_CORE: 2339 if (start == end) 2340 return (0); 2341 modify_map = true; 2342 vm_map_lock(map); 2343 break; 2344 case MADV_WILLNEED: 2345 case MADV_DONTNEED: 2346 case MADV_FREE: 2347 if (start == end) 2348 return (0); 2349 modify_map = false; 2350 vm_map_lock_read(map); 2351 break; 2352 default: 2353 return (EINVAL); 2354 } 2355 2356 /* 2357 * Locate starting entry and clip if necessary. 2358 */ 2359 VM_MAP_RANGE_CHECK(map, start, end); 2360 2361 if (vm_map_lookup_entry(map, start, &entry)) { 2362 if (modify_map) 2363 vm_map_clip_start(map, entry, start); 2364 } else { 2365 entry = entry->next; 2366 } 2367 2368 if (modify_map) { 2369 /* 2370 * madvise behaviors that are implemented in the vm_map_entry. 2371 * 2372 * We clip the vm_map_entry so that behavioral changes are 2373 * limited to the specified address range. 2374 */ 2375 for (current = entry; current->start < end; 2376 current = current->next) { 2377 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2378 continue; 2379 2380 vm_map_clip_end(map, current, end); 2381 2382 switch (behav) { 2383 case MADV_NORMAL: 2384 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2385 break; 2386 case MADV_SEQUENTIAL: 2387 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2388 break; 2389 case MADV_RANDOM: 2390 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2391 break; 2392 case MADV_NOSYNC: 2393 current->eflags |= MAP_ENTRY_NOSYNC; 2394 break; 2395 case MADV_AUTOSYNC: 2396 current->eflags &= ~MAP_ENTRY_NOSYNC; 2397 break; 2398 case MADV_NOCORE: 2399 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2400 break; 2401 case MADV_CORE: 2402 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2403 break; 2404 default: 2405 break; 2406 } 2407 vm_map_simplify_entry(map, current); 2408 } 2409 vm_map_unlock(map); 2410 } else { 2411 vm_pindex_t pstart, pend; 2412 2413 /* 2414 * madvise behaviors that are implemented in the underlying 2415 * vm_object. 2416 * 2417 * Since we don't clip the vm_map_entry, we have to clip 2418 * the vm_object pindex and count. 2419 */ 2420 for (current = entry; current->start < end; 2421 current = current->next) { 2422 vm_offset_t useEnd, useStart; 2423 2424 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2425 continue; 2426 2427 pstart = OFF_TO_IDX(current->offset); 2428 pend = pstart + atop(current->end - current->start); 2429 useStart = current->start; 2430 useEnd = current->end; 2431 2432 if (current->start < start) { 2433 pstart += atop(start - current->start); 2434 useStart = start; 2435 } 2436 if (current->end > end) { 2437 pend -= atop(current->end - end); 2438 useEnd = end; 2439 } 2440 2441 if (pstart >= pend) 2442 continue; 2443 2444 /* 2445 * Perform the pmap_advise() before clearing 2446 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2447 * concurrent pmap operation, such as pmap_remove(), 2448 * could clear a reference in the pmap and set 2449 * PGA_REFERENCED on the page before the pmap_advise() 2450 * had completed. Consequently, the page would appear 2451 * referenced based upon an old reference that 2452 * occurred before this pmap_advise() ran. 2453 */ 2454 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2455 pmap_advise(map->pmap, useStart, useEnd, 2456 behav); 2457 2458 vm_object_madvise(current->object.vm_object, pstart, 2459 pend, behav); 2460 2461 /* 2462 * Pre-populate paging structures in the 2463 * WILLNEED case. For wired entries, the 2464 * paging structures are already populated. 2465 */ 2466 if (behav == MADV_WILLNEED && 2467 current->wired_count == 0) { 2468 vm_map_pmap_enter(map, 2469 useStart, 2470 current->protection, 2471 current->object.vm_object, 2472 pstart, 2473 ptoa(pend - pstart), 2474 MAP_PREFAULT_MADVISE 2475 ); 2476 } 2477 } 2478 vm_map_unlock_read(map); 2479 } 2480 return (0); 2481 } 2482 2483 2484 /* 2485 * vm_map_inherit: 2486 * 2487 * Sets the inheritance of the specified address 2488 * range in the target map. Inheritance 2489 * affects how the map will be shared with 2490 * child maps at the time of vmspace_fork. 2491 */ 2492 int 2493 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2494 vm_inherit_t new_inheritance) 2495 { 2496 vm_map_entry_t entry; 2497 vm_map_entry_t temp_entry; 2498 2499 switch (new_inheritance) { 2500 case VM_INHERIT_NONE: 2501 case VM_INHERIT_COPY: 2502 case VM_INHERIT_SHARE: 2503 case VM_INHERIT_ZERO: 2504 break; 2505 default: 2506 return (KERN_INVALID_ARGUMENT); 2507 } 2508 if (start == end) 2509 return (KERN_SUCCESS); 2510 vm_map_lock(map); 2511 VM_MAP_RANGE_CHECK(map, start, end); 2512 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2513 entry = temp_entry; 2514 vm_map_clip_start(map, entry, start); 2515 } else 2516 entry = temp_entry->next; 2517 while (entry->start < end) { 2518 vm_map_clip_end(map, entry, end); 2519 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 2520 new_inheritance != VM_INHERIT_ZERO) 2521 entry->inheritance = new_inheritance; 2522 vm_map_simplify_entry(map, entry); 2523 entry = entry->next; 2524 } 2525 vm_map_unlock(map); 2526 return (KERN_SUCCESS); 2527 } 2528 2529 /* 2530 * vm_map_unwire: 2531 * 2532 * Implements both kernel and user unwiring. 2533 */ 2534 int 2535 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2536 int flags) 2537 { 2538 vm_map_entry_t entry, first_entry, tmp_entry; 2539 vm_offset_t saved_start; 2540 unsigned int last_timestamp; 2541 int rv; 2542 boolean_t need_wakeup, result, user_unwire; 2543 2544 if (start == end) 2545 return (KERN_SUCCESS); 2546 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2547 vm_map_lock(map); 2548 VM_MAP_RANGE_CHECK(map, start, end); 2549 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2550 if (flags & VM_MAP_WIRE_HOLESOK) 2551 first_entry = first_entry->next; 2552 else { 2553 vm_map_unlock(map); 2554 return (KERN_INVALID_ADDRESS); 2555 } 2556 } 2557 last_timestamp = map->timestamp; 2558 entry = first_entry; 2559 while (entry->start < end) { 2560 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2561 /* 2562 * We have not yet clipped the entry. 2563 */ 2564 saved_start = (start >= entry->start) ? start : 2565 entry->start; 2566 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2567 if (vm_map_unlock_and_wait(map, 0)) { 2568 /* 2569 * Allow interruption of user unwiring? 2570 */ 2571 } 2572 vm_map_lock(map); 2573 if (last_timestamp+1 != map->timestamp) { 2574 /* 2575 * Look again for the entry because the map was 2576 * modified while it was unlocked. 2577 * Specifically, the entry may have been 2578 * clipped, merged, or deleted. 2579 */ 2580 if (!vm_map_lookup_entry(map, saved_start, 2581 &tmp_entry)) { 2582 if (flags & VM_MAP_WIRE_HOLESOK) 2583 tmp_entry = tmp_entry->next; 2584 else { 2585 if (saved_start == start) { 2586 /* 2587 * First_entry has been deleted. 2588 */ 2589 vm_map_unlock(map); 2590 return (KERN_INVALID_ADDRESS); 2591 } 2592 end = saved_start; 2593 rv = KERN_INVALID_ADDRESS; 2594 goto done; 2595 } 2596 } 2597 if (entry == first_entry) 2598 first_entry = tmp_entry; 2599 else 2600 first_entry = NULL; 2601 entry = tmp_entry; 2602 } 2603 last_timestamp = map->timestamp; 2604 continue; 2605 } 2606 vm_map_clip_start(map, entry, start); 2607 vm_map_clip_end(map, entry, end); 2608 /* 2609 * Mark the entry in case the map lock is released. (See 2610 * above.) 2611 */ 2612 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2613 entry->wiring_thread == NULL, 2614 ("owned map entry %p", entry)); 2615 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2616 entry->wiring_thread = curthread; 2617 /* 2618 * Check the map for holes in the specified region. 2619 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2620 */ 2621 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2622 (entry->end < end && entry->next->start > entry->end)) { 2623 end = entry->end; 2624 rv = KERN_INVALID_ADDRESS; 2625 goto done; 2626 } 2627 /* 2628 * If system unwiring, require that the entry is system wired. 2629 */ 2630 if (!user_unwire && 2631 vm_map_entry_system_wired_count(entry) == 0) { 2632 end = entry->end; 2633 rv = KERN_INVALID_ARGUMENT; 2634 goto done; 2635 } 2636 entry = entry->next; 2637 } 2638 rv = KERN_SUCCESS; 2639 done: 2640 need_wakeup = FALSE; 2641 if (first_entry == NULL) { 2642 result = vm_map_lookup_entry(map, start, &first_entry); 2643 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2644 first_entry = first_entry->next; 2645 else 2646 KASSERT(result, ("vm_map_unwire: lookup failed")); 2647 } 2648 for (entry = first_entry; entry->start < end; entry = entry->next) { 2649 /* 2650 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2651 * space in the unwired region could have been mapped 2652 * while the map lock was dropped for draining 2653 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2654 * could be simultaneously wiring this new mapping 2655 * entry. Detect these cases and skip any entries 2656 * marked as in transition by us. 2657 */ 2658 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2659 entry->wiring_thread != curthread) { 2660 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2661 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2662 continue; 2663 } 2664 2665 if (rv == KERN_SUCCESS && (!user_unwire || 2666 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2667 if (user_unwire) 2668 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2669 if (entry->wired_count == 1) 2670 vm_map_entry_unwire(map, entry); 2671 else 2672 entry->wired_count--; 2673 } 2674 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2675 ("vm_map_unwire: in-transition flag missing %p", entry)); 2676 KASSERT(entry->wiring_thread == curthread, 2677 ("vm_map_unwire: alien wire %p", entry)); 2678 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2679 entry->wiring_thread = NULL; 2680 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2681 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2682 need_wakeup = TRUE; 2683 } 2684 vm_map_simplify_entry(map, entry); 2685 } 2686 vm_map_unlock(map); 2687 if (need_wakeup) 2688 vm_map_wakeup(map); 2689 return (rv); 2690 } 2691 2692 /* 2693 * vm_map_wire_entry_failure: 2694 * 2695 * Handle a wiring failure on the given entry. 2696 * 2697 * The map should be locked. 2698 */ 2699 static void 2700 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 2701 vm_offset_t failed_addr) 2702 { 2703 2704 VM_MAP_ASSERT_LOCKED(map); 2705 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 2706 entry->wired_count == 1, 2707 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 2708 KASSERT(failed_addr < entry->end, 2709 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 2710 2711 /* 2712 * If any pages at the start of this entry were successfully wired, 2713 * then unwire them. 2714 */ 2715 if (failed_addr > entry->start) { 2716 pmap_unwire(map->pmap, entry->start, failed_addr); 2717 vm_object_unwire(entry->object.vm_object, entry->offset, 2718 failed_addr - entry->start, PQ_ACTIVE); 2719 } 2720 2721 /* 2722 * Assign an out-of-range value to represent the failure to wire this 2723 * entry. 2724 */ 2725 entry->wired_count = -1; 2726 } 2727 2728 /* 2729 * vm_map_wire: 2730 * 2731 * Implements both kernel and user wiring. 2732 */ 2733 int 2734 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2735 int flags) 2736 { 2737 vm_map_entry_t entry, first_entry, tmp_entry; 2738 vm_offset_t faddr, saved_end, saved_start; 2739 unsigned int last_timestamp; 2740 int rv; 2741 boolean_t need_wakeup, result, user_wire; 2742 vm_prot_t prot; 2743 2744 if (start == end) 2745 return (KERN_SUCCESS); 2746 prot = 0; 2747 if (flags & VM_MAP_WIRE_WRITE) 2748 prot |= VM_PROT_WRITE; 2749 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2750 vm_map_lock(map); 2751 VM_MAP_RANGE_CHECK(map, start, end); 2752 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2753 if (flags & VM_MAP_WIRE_HOLESOK) 2754 first_entry = first_entry->next; 2755 else { 2756 vm_map_unlock(map); 2757 return (KERN_INVALID_ADDRESS); 2758 } 2759 } 2760 last_timestamp = map->timestamp; 2761 entry = first_entry; 2762 while (entry->start < end) { 2763 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2764 /* 2765 * We have not yet clipped the entry. 2766 */ 2767 saved_start = (start >= entry->start) ? start : 2768 entry->start; 2769 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2770 if (vm_map_unlock_and_wait(map, 0)) { 2771 /* 2772 * Allow interruption of user wiring? 2773 */ 2774 } 2775 vm_map_lock(map); 2776 if (last_timestamp + 1 != map->timestamp) { 2777 /* 2778 * Look again for the entry because the map was 2779 * modified while it was unlocked. 2780 * Specifically, the entry may have been 2781 * clipped, merged, or deleted. 2782 */ 2783 if (!vm_map_lookup_entry(map, saved_start, 2784 &tmp_entry)) { 2785 if (flags & VM_MAP_WIRE_HOLESOK) 2786 tmp_entry = tmp_entry->next; 2787 else { 2788 if (saved_start == start) { 2789 /* 2790 * first_entry has been deleted. 2791 */ 2792 vm_map_unlock(map); 2793 return (KERN_INVALID_ADDRESS); 2794 } 2795 end = saved_start; 2796 rv = KERN_INVALID_ADDRESS; 2797 goto done; 2798 } 2799 } 2800 if (entry == first_entry) 2801 first_entry = tmp_entry; 2802 else 2803 first_entry = NULL; 2804 entry = tmp_entry; 2805 } 2806 last_timestamp = map->timestamp; 2807 continue; 2808 } 2809 vm_map_clip_start(map, entry, start); 2810 vm_map_clip_end(map, entry, end); 2811 /* 2812 * Mark the entry in case the map lock is released. (See 2813 * above.) 2814 */ 2815 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2816 entry->wiring_thread == NULL, 2817 ("owned map entry %p", entry)); 2818 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2819 entry->wiring_thread = curthread; 2820 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2821 || (entry->protection & prot) != prot) { 2822 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2823 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2824 end = entry->end; 2825 rv = KERN_INVALID_ADDRESS; 2826 goto done; 2827 } 2828 goto next_entry; 2829 } 2830 if (entry->wired_count == 0) { 2831 entry->wired_count++; 2832 saved_start = entry->start; 2833 saved_end = entry->end; 2834 2835 /* 2836 * Release the map lock, relying on the in-transition 2837 * mark. Mark the map busy for fork. 2838 */ 2839 vm_map_busy(map); 2840 vm_map_unlock(map); 2841 2842 faddr = saved_start; 2843 do { 2844 /* 2845 * Simulate a fault to get the page and enter 2846 * it into the physical map. 2847 */ 2848 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 2849 VM_FAULT_WIRE)) != KERN_SUCCESS) 2850 break; 2851 } while ((faddr += PAGE_SIZE) < saved_end); 2852 vm_map_lock(map); 2853 vm_map_unbusy(map); 2854 if (last_timestamp + 1 != map->timestamp) { 2855 /* 2856 * Look again for the entry because the map was 2857 * modified while it was unlocked. The entry 2858 * may have been clipped, but NOT merged or 2859 * deleted. 2860 */ 2861 result = vm_map_lookup_entry(map, saved_start, 2862 &tmp_entry); 2863 KASSERT(result, ("vm_map_wire: lookup failed")); 2864 if (entry == first_entry) 2865 first_entry = tmp_entry; 2866 else 2867 first_entry = NULL; 2868 entry = tmp_entry; 2869 while (entry->end < saved_end) { 2870 /* 2871 * In case of failure, handle entries 2872 * that were not fully wired here; 2873 * fully wired entries are handled 2874 * later. 2875 */ 2876 if (rv != KERN_SUCCESS && 2877 faddr < entry->end) 2878 vm_map_wire_entry_failure(map, 2879 entry, faddr); 2880 entry = entry->next; 2881 } 2882 } 2883 last_timestamp = map->timestamp; 2884 if (rv != KERN_SUCCESS) { 2885 vm_map_wire_entry_failure(map, entry, faddr); 2886 end = entry->end; 2887 goto done; 2888 } 2889 } else if (!user_wire || 2890 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2891 entry->wired_count++; 2892 } 2893 /* 2894 * Check the map for holes in the specified region. 2895 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2896 */ 2897 next_entry: 2898 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 && 2899 entry->end < end && entry->next->start > entry->end) { 2900 end = entry->end; 2901 rv = KERN_INVALID_ADDRESS; 2902 goto done; 2903 } 2904 entry = entry->next; 2905 } 2906 rv = KERN_SUCCESS; 2907 done: 2908 need_wakeup = FALSE; 2909 if (first_entry == NULL) { 2910 result = vm_map_lookup_entry(map, start, &first_entry); 2911 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2912 first_entry = first_entry->next; 2913 else 2914 KASSERT(result, ("vm_map_wire: lookup failed")); 2915 } 2916 for (entry = first_entry; entry->start < end; entry = entry->next) { 2917 /* 2918 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2919 * space in the unwired region could have been mapped 2920 * while the map lock was dropped for faulting in the 2921 * pages or draining MAP_ENTRY_IN_TRANSITION. 2922 * Moreover, another thread could be simultaneously 2923 * wiring this new mapping entry. Detect these cases 2924 * and skip any entries marked as in transition not by us. 2925 */ 2926 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2927 entry->wiring_thread != curthread) { 2928 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2929 ("vm_map_wire: !HOLESOK and new/changed entry")); 2930 continue; 2931 } 2932 2933 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2934 goto next_entry_done; 2935 2936 if (rv == KERN_SUCCESS) { 2937 if (user_wire) 2938 entry->eflags |= MAP_ENTRY_USER_WIRED; 2939 } else if (entry->wired_count == -1) { 2940 /* 2941 * Wiring failed on this entry. Thus, unwiring is 2942 * unnecessary. 2943 */ 2944 entry->wired_count = 0; 2945 } else if (!user_wire || 2946 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2947 /* 2948 * Undo the wiring. Wiring succeeded on this entry 2949 * but failed on a later entry. 2950 */ 2951 if (entry->wired_count == 1) 2952 vm_map_entry_unwire(map, entry); 2953 else 2954 entry->wired_count--; 2955 } 2956 next_entry_done: 2957 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2958 ("vm_map_wire: in-transition flag missing %p", entry)); 2959 KASSERT(entry->wiring_thread == curthread, 2960 ("vm_map_wire: alien wire %p", entry)); 2961 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2962 MAP_ENTRY_WIRE_SKIPPED); 2963 entry->wiring_thread = NULL; 2964 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2965 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2966 need_wakeup = TRUE; 2967 } 2968 vm_map_simplify_entry(map, entry); 2969 } 2970 vm_map_unlock(map); 2971 if (need_wakeup) 2972 vm_map_wakeup(map); 2973 return (rv); 2974 } 2975 2976 /* 2977 * vm_map_sync 2978 * 2979 * Push any dirty cached pages in the address range to their pager. 2980 * If syncio is TRUE, dirty pages are written synchronously. 2981 * If invalidate is TRUE, any cached pages are freed as well. 2982 * 2983 * If the size of the region from start to end is zero, we are 2984 * supposed to flush all modified pages within the region containing 2985 * start. Unfortunately, a region can be split or coalesced with 2986 * neighboring regions, making it difficult to determine what the 2987 * original region was. Therefore, we approximate this requirement by 2988 * flushing the current region containing start. 2989 * 2990 * Returns an error if any part of the specified range is not mapped. 2991 */ 2992 int 2993 vm_map_sync( 2994 vm_map_t map, 2995 vm_offset_t start, 2996 vm_offset_t end, 2997 boolean_t syncio, 2998 boolean_t invalidate) 2999 { 3000 vm_map_entry_t current; 3001 vm_map_entry_t entry; 3002 vm_size_t size; 3003 vm_object_t object; 3004 vm_ooffset_t offset; 3005 unsigned int last_timestamp; 3006 boolean_t failed; 3007 3008 vm_map_lock_read(map); 3009 VM_MAP_RANGE_CHECK(map, start, end); 3010 if (!vm_map_lookup_entry(map, start, &entry)) { 3011 vm_map_unlock_read(map); 3012 return (KERN_INVALID_ADDRESS); 3013 } else if (start == end) { 3014 start = entry->start; 3015 end = entry->end; 3016 } 3017 /* 3018 * Make a first pass to check for user-wired memory and holes. 3019 */ 3020 for (current = entry; current->start < end; current = current->next) { 3021 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 3022 vm_map_unlock_read(map); 3023 return (KERN_INVALID_ARGUMENT); 3024 } 3025 if (end > current->end && 3026 current->end != current->next->start) { 3027 vm_map_unlock_read(map); 3028 return (KERN_INVALID_ADDRESS); 3029 } 3030 } 3031 3032 if (invalidate) 3033 pmap_remove(map->pmap, start, end); 3034 failed = FALSE; 3035 3036 /* 3037 * Make a second pass, cleaning/uncaching pages from the indicated 3038 * objects as we go. 3039 */ 3040 for (current = entry; current->start < end;) { 3041 offset = current->offset + (start - current->start); 3042 size = (end <= current->end ? end : current->end) - start; 3043 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 3044 vm_map_t smap; 3045 vm_map_entry_t tentry; 3046 vm_size_t tsize; 3047 3048 smap = current->object.sub_map; 3049 vm_map_lock_read(smap); 3050 (void) vm_map_lookup_entry(smap, offset, &tentry); 3051 tsize = tentry->end - offset; 3052 if (tsize < size) 3053 size = tsize; 3054 object = tentry->object.vm_object; 3055 offset = tentry->offset + (offset - tentry->start); 3056 vm_map_unlock_read(smap); 3057 } else { 3058 object = current->object.vm_object; 3059 } 3060 vm_object_reference(object); 3061 last_timestamp = map->timestamp; 3062 vm_map_unlock_read(map); 3063 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3064 failed = TRUE; 3065 start += size; 3066 vm_object_deallocate(object); 3067 vm_map_lock_read(map); 3068 if (last_timestamp == map->timestamp || 3069 !vm_map_lookup_entry(map, start, ¤t)) 3070 current = current->next; 3071 } 3072 3073 vm_map_unlock_read(map); 3074 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3075 } 3076 3077 /* 3078 * vm_map_entry_unwire: [ internal use only ] 3079 * 3080 * Make the region specified by this entry pageable. 3081 * 3082 * The map in question should be locked. 3083 * [This is the reason for this routine's existence.] 3084 */ 3085 static void 3086 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3087 { 3088 3089 VM_MAP_ASSERT_LOCKED(map); 3090 KASSERT(entry->wired_count > 0, 3091 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3092 pmap_unwire(map->pmap, entry->start, entry->end); 3093 vm_object_unwire(entry->object.vm_object, entry->offset, entry->end - 3094 entry->start, PQ_ACTIVE); 3095 entry->wired_count = 0; 3096 } 3097 3098 static void 3099 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3100 { 3101 3102 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3103 vm_object_deallocate(entry->object.vm_object); 3104 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3105 } 3106 3107 /* 3108 * vm_map_entry_delete: [ internal use only ] 3109 * 3110 * Deallocate the given entry from the target map. 3111 */ 3112 static void 3113 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3114 { 3115 vm_object_t object; 3116 vm_pindex_t offidxstart, offidxend, count, size1; 3117 vm_size_t size; 3118 3119 vm_map_entry_unlink(map, entry); 3120 object = entry->object.vm_object; 3121 3122 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3123 MPASS(entry->cred == NULL); 3124 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3125 MPASS(object == NULL); 3126 vm_map_entry_deallocate(entry, map->system_map); 3127 return; 3128 } 3129 3130 size = entry->end - entry->start; 3131 map->size -= size; 3132 3133 if (entry->cred != NULL) { 3134 swap_release_by_cred(size, entry->cred); 3135 crfree(entry->cred); 3136 } 3137 3138 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 3139 (object != NULL)) { 3140 KASSERT(entry->cred == NULL || object->cred == NULL || 3141 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3142 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3143 count = atop(size); 3144 offidxstart = OFF_TO_IDX(entry->offset); 3145 offidxend = offidxstart + count; 3146 VM_OBJECT_WLOCK(object); 3147 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT | 3148 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 3149 object == kernel_object)) { 3150 vm_object_collapse(object); 3151 3152 /* 3153 * The option OBJPR_NOTMAPPED can be passed here 3154 * because vm_map_delete() already performed 3155 * pmap_remove() on the only mapping to this range 3156 * of pages. 3157 */ 3158 vm_object_page_remove(object, offidxstart, offidxend, 3159 OBJPR_NOTMAPPED); 3160 if (object->type == OBJT_SWAP) 3161 swap_pager_freespace(object, offidxstart, 3162 count); 3163 if (offidxend >= object->size && 3164 offidxstart < object->size) { 3165 size1 = object->size; 3166 object->size = offidxstart; 3167 if (object->cred != NULL) { 3168 size1 -= object->size; 3169 KASSERT(object->charge >= ptoa(size1), 3170 ("object %p charge < 0", object)); 3171 swap_release_by_cred(ptoa(size1), 3172 object->cred); 3173 object->charge -= ptoa(size1); 3174 } 3175 } 3176 } 3177 VM_OBJECT_WUNLOCK(object); 3178 } else 3179 entry->object.vm_object = NULL; 3180 if (map->system_map) 3181 vm_map_entry_deallocate(entry, TRUE); 3182 else { 3183 entry->next = curthread->td_map_def_user; 3184 curthread->td_map_def_user = entry; 3185 } 3186 } 3187 3188 /* 3189 * vm_map_delete: [ internal use only ] 3190 * 3191 * Deallocates the given address range from the target 3192 * map. 3193 */ 3194 int 3195 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3196 { 3197 vm_map_entry_t entry; 3198 vm_map_entry_t first_entry; 3199 3200 VM_MAP_ASSERT_LOCKED(map); 3201 if (start == end) 3202 return (KERN_SUCCESS); 3203 3204 /* 3205 * Find the start of the region, and clip it 3206 */ 3207 if (!vm_map_lookup_entry(map, start, &first_entry)) 3208 entry = first_entry->next; 3209 else { 3210 entry = first_entry; 3211 vm_map_clip_start(map, entry, start); 3212 } 3213 3214 /* 3215 * Step through all entries in this region 3216 */ 3217 while (entry->start < end) { 3218 vm_map_entry_t next; 3219 3220 /* 3221 * Wait for wiring or unwiring of an entry to complete. 3222 * Also wait for any system wirings to disappear on 3223 * user maps. 3224 */ 3225 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3226 (vm_map_pmap(map) != kernel_pmap && 3227 vm_map_entry_system_wired_count(entry) != 0)) { 3228 unsigned int last_timestamp; 3229 vm_offset_t saved_start; 3230 vm_map_entry_t tmp_entry; 3231 3232 saved_start = entry->start; 3233 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3234 last_timestamp = map->timestamp; 3235 (void) vm_map_unlock_and_wait(map, 0); 3236 vm_map_lock(map); 3237 if (last_timestamp + 1 != map->timestamp) { 3238 /* 3239 * Look again for the entry because the map was 3240 * modified while it was unlocked. 3241 * Specifically, the entry may have been 3242 * clipped, merged, or deleted. 3243 */ 3244 if (!vm_map_lookup_entry(map, saved_start, 3245 &tmp_entry)) 3246 entry = tmp_entry->next; 3247 else { 3248 entry = tmp_entry; 3249 vm_map_clip_start(map, entry, 3250 saved_start); 3251 } 3252 } 3253 continue; 3254 } 3255 vm_map_clip_end(map, entry, end); 3256 3257 next = entry->next; 3258 3259 /* 3260 * Unwire before removing addresses from the pmap; otherwise, 3261 * unwiring will put the entries back in the pmap. 3262 */ 3263 if (entry->wired_count != 0) 3264 vm_map_entry_unwire(map, entry); 3265 3266 /* 3267 * Remove mappings for the pages, but only if the 3268 * mappings could exist. For instance, it does not 3269 * make sense to call pmap_remove() for guard entries. 3270 */ 3271 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3272 entry->object.vm_object != NULL) 3273 pmap_remove(map->pmap, entry->start, entry->end); 3274 3275 if (entry->end == map->anon_loc) 3276 map->anon_loc = entry->start; 3277 3278 /* 3279 * Delete the entry only after removing all pmap 3280 * entries pointing to its pages. (Otherwise, its 3281 * page frames may be reallocated, and any modify bits 3282 * will be set in the wrong object!) 3283 */ 3284 vm_map_entry_delete(map, entry); 3285 entry = next; 3286 } 3287 return (KERN_SUCCESS); 3288 } 3289 3290 /* 3291 * vm_map_remove: 3292 * 3293 * Remove the given address range from the target map. 3294 * This is the exported form of vm_map_delete. 3295 */ 3296 int 3297 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3298 { 3299 int result; 3300 3301 vm_map_lock(map); 3302 VM_MAP_RANGE_CHECK(map, start, end); 3303 result = vm_map_delete(map, start, end); 3304 vm_map_unlock(map); 3305 return (result); 3306 } 3307 3308 /* 3309 * vm_map_check_protection: 3310 * 3311 * Assert that the target map allows the specified privilege on the 3312 * entire address region given. The entire region must be allocated. 3313 * 3314 * WARNING! This code does not and should not check whether the 3315 * contents of the region is accessible. For example a smaller file 3316 * might be mapped into a larger address space. 3317 * 3318 * NOTE! This code is also called by munmap(). 3319 * 3320 * The map must be locked. A read lock is sufficient. 3321 */ 3322 boolean_t 3323 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3324 vm_prot_t protection) 3325 { 3326 vm_map_entry_t entry; 3327 vm_map_entry_t tmp_entry; 3328 3329 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3330 return (FALSE); 3331 entry = tmp_entry; 3332 3333 while (start < end) { 3334 /* 3335 * No holes allowed! 3336 */ 3337 if (start < entry->start) 3338 return (FALSE); 3339 /* 3340 * Check protection associated with entry. 3341 */ 3342 if ((entry->protection & protection) != protection) 3343 return (FALSE); 3344 /* go to next entry */ 3345 start = entry->end; 3346 entry = entry->next; 3347 } 3348 return (TRUE); 3349 } 3350 3351 /* 3352 * vm_map_copy_entry: 3353 * 3354 * Copies the contents of the source entry to the destination 3355 * entry. The entries *must* be aligned properly. 3356 */ 3357 static void 3358 vm_map_copy_entry( 3359 vm_map_t src_map, 3360 vm_map_t dst_map, 3361 vm_map_entry_t src_entry, 3362 vm_map_entry_t dst_entry, 3363 vm_ooffset_t *fork_charge) 3364 { 3365 vm_object_t src_object; 3366 vm_map_entry_t fake_entry; 3367 vm_offset_t size; 3368 struct ucred *cred; 3369 int charged; 3370 3371 VM_MAP_ASSERT_LOCKED(dst_map); 3372 3373 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3374 return; 3375 3376 if (src_entry->wired_count == 0 || 3377 (src_entry->protection & VM_PROT_WRITE) == 0) { 3378 /* 3379 * If the source entry is marked needs_copy, it is already 3380 * write-protected. 3381 */ 3382 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3383 (src_entry->protection & VM_PROT_WRITE) != 0) { 3384 pmap_protect(src_map->pmap, 3385 src_entry->start, 3386 src_entry->end, 3387 src_entry->protection & ~VM_PROT_WRITE); 3388 } 3389 3390 /* 3391 * Make a copy of the object. 3392 */ 3393 size = src_entry->end - src_entry->start; 3394 if ((src_object = src_entry->object.vm_object) != NULL) { 3395 VM_OBJECT_WLOCK(src_object); 3396 charged = ENTRY_CHARGED(src_entry); 3397 if (src_object->handle == NULL && 3398 (src_object->type == OBJT_DEFAULT || 3399 src_object->type == OBJT_SWAP)) { 3400 vm_object_collapse(src_object); 3401 if ((src_object->flags & (OBJ_NOSPLIT | 3402 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3403 vm_object_split(src_entry); 3404 src_object = 3405 src_entry->object.vm_object; 3406 } 3407 } 3408 vm_object_reference_locked(src_object); 3409 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3410 if (src_entry->cred != NULL && 3411 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3412 KASSERT(src_object->cred == NULL, 3413 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3414 src_object)); 3415 src_object->cred = src_entry->cred; 3416 src_object->charge = size; 3417 } 3418 VM_OBJECT_WUNLOCK(src_object); 3419 dst_entry->object.vm_object = src_object; 3420 if (charged) { 3421 cred = curthread->td_ucred; 3422 crhold(cred); 3423 dst_entry->cred = cred; 3424 *fork_charge += size; 3425 if (!(src_entry->eflags & 3426 MAP_ENTRY_NEEDS_COPY)) { 3427 crhold(cred); 3428 src_entry->cred = cred; 3429 *fork_charge += size; 3430 } 3431 } 3432 src_entry->eflags |= MAP_ENTRY_COW | 3433 MAP_ENTRY_NEEDS_COPY; 3434 dst_entry->eflags |= MAP_ENTRY_COW | 3435 MAP_ENTRY_NEEDS_COPY; 3436 dst_entry->offset = src_entry->offset; 3437 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3438 /* 3439 * MAP_ENTRY_VN_WRITECNT cannot 3440 * indicate write reference from 3441 * src_entry, since the entry is 3442 * marked as needs copy. Allocate a 3443 * fake entry that is used to 3444 * decrement object->un_pager.vnp.writecount 3445 * at the appropriate time. Attach 3446 * fake_entry to the deferred list. 3447 */ 3448 fake_entry = vm_map_entry_create(dst_map); 3449 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3450 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3451 vm_object_reference(src_object); 3452 fake_entry->object.vm_object = src_object; 3453 fake_entry->start = src_entry->start; 3454 fake_entry->end = src_entry->end; 3455 fake_entry->next = curthread->td_map_def_user; 3456 curthread->td_map_def_user = fake_entry; 3457 } 3458 3459 pmap_copy(dst_map->pmap, src_map->pmap, 3460 dst_entry->start, dst_entry->end - dst_entry->start, 3461 src_entry->start); 3462 } else { 3463 dst_entry->object.vm_object = NULL; 3464 dst_entry->offset = 0; 3465 if (src_entry->cred != NULL) { 3466 dst_entry->cred = curthread->td_ucred; 3467 crhold(dst_entry->cred); 3468 *fork_charge += size; 3469 } 3470 } 3471 } else { 3472 /* 3473 * We don't want to make writeable wired pages copy-on-write. 3474 * Immediately copy these pages into the new map by simulating 3475 * page faults. The new pages are pageable. 3476 */ 3477 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3478 fork_charge); 3479 } 3480 } 3481 3482 /* 3483 * vmspace_map_entry_forked: 3484 * Update the newly-forked vmspace each time a map entry is inherited 3485 * or copied. The values for vm_dsize and vm_tsize are approximate 3486 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3487 */ 3488 static void 3489 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3490 vm_map_entry_t entry) 3491 { 3492 vm_size_t entrysize; 3493 vm_offset_t newend; 3494 3495 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 3496 return; 3497 entrysize = entry->end - entry->start; 3498 vm2->vm_map.size += entrysize; 3499 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3500 vm2->vm_ssize += btoc(entrysize); 3501 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3502 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3503 newend = MIN(entry->end, 3504 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3505 vm2->vm_dsize += btoc(newend - entry->start); 3506 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3507 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3508 newend = MIN(entry->end, 3509 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3510 vm2->vm_tsize += btoc(newend - entry->start); 3511 } 3512 } 3513 3514 /* 3515 * vmspace_fork: 3516 * Create a new process vmspace structure and vm_map 3517 * based on those of an existing process. The new map 3518 * is based on the old map, according to the inheritance 3519 * values on the regions in that map. 3520 * 3521 * XXX It might be worth coalescing the entries added to the new vmspace. 3522 * 3523 * The source map must not be locked. 3524 */ 3525 struct vmspace * 3526 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3527 { 3528 struct vmspace *vm2; 3529 vm_map_t new_map, old_map; 3530 vm_map_entry_t new_entry, old_entry; 3531 vm_object_t object; 3532 int locked; 3533 vm_inherit_t inh; 3534 3535 old_map = &vm1->vm_map; 3536 /* Copy immutable fields of vm1 to vm2. */ 3537 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 3538 pmap_pinit); 3539 if (vm2 == NULL) 3540 return (NULL); 3541 vm2->vm_taddr = vm1->vm_taddr; 3542 vm2->vm_daddr = vm1->vm_daddr; 3543 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3544 vm_map_lock(old_map); 3545 if (old_map->busy) 3546 vm_map_wait_busy(old_map); 3547 new_map = &vm2->vm_map; 3548 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3549 KASSERT(locked, ("vmspace_fork: lock failed")); 3550 3551 new_map->anon_loc = old_map->anon_loc; 3552 old_entry = old_map->header.next; 3553 3554 while (old_entry != &old_map->header) { 3555 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3556 panic("vm_map_fork: encountered a submap"); 3557 3558 inh = old_entry->inheritance; 3559 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 3560 inh != VM_INHERIT_NONE) 3561 inh = VM_INHERIT_COPY; 3562 3563 switch (inh) { 3564 case VM_INHERIT_NONE: 3565 break; 3566 3567 case VM_INHERIT_SHARE: 3568 /* 3569 * Clone the entry, creating the shared object if necessary. 3570 */ 3571 object = old_entry->object.vm_object; 3572 if (object == NULL) { 3573 object = vm_object_allocate(OBJT_DEFAULT, 3574 atop(old_entry->end - old_entry->start)); 3575 old_entry->object.vm_object = object; 3576 old_entry->offset = 0; 3577 if (old_entry->cred != NULL) { 3578 object->cred = old_entry->cred; 3579 object->charge = old_entry->end - 3580 old_entry->start; 3581 old_entry->cred = NULL; 3582 } 3583 } 3584 3585 /* 3586 * Add the reference before calling vm_object_shadow 3587 * to insure that a shadow object is created. 3588 */ 3589 vm_object_reference(object); 3590 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3591 vm_object_shadow(&old_entry->object.vm_object, 3592 &old_entry->offset, 3593 old_entry->end - old_entry->start); 3594 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3595 /* Transfer the second reference too. */ 3596 vm_object_reference( 3597 old_entry->object.vm_object); 3598 3599 /* 3600 * As in vm_map_simplify_entry(), the 3601 * vnode lock will not be acquired in 3602 * this call to vm_object_deallocate(). 3603 */ 3604 vm_object_deallocate(object); 3605 object = old_entry->object.vm_object; 3606 } 3607 VM_OBJECT_WLOCK(object); 3608 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3609 if (old_entry->cred != NULL) { 3610 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3611 object->cred = old_entry->cred; 3612 object->charge = old_entry->end - old_entry->start; 3613 old_entry->cred = NULL; 3614 } 3615 3616 /* 3617 * Assert the correct state of the vnode 3618 * v_writecount while the object is locked, to 3619 * not relock it later for the assertion 3620 * correctness. 3621 */ 3622 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3623 object->type == OBJT_VNODE) { 3624 KASSERT(((struct vnode *)object->handle)-> 3625 v_writecount > 0, 3626 ("vmspace_fork: v_writecount %p", object)); 3627 KASSERT(object->un_pager.vnp.writemappings > 0, 3628 ("vmspace_fork: vnp.writecount %p", 3629 object)); 3630 } 3631 VM_OBJECT_WUNLOCK(object); 3632 3633 /* 3634 * Clone the entry, referencing the shared object. 3635 */ 3636 new_entry = vm_map_entry_create(new_map); 3637 *new_entry = *old_entry; 3638 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3639 MAP_ENTRY_IN_TRANSITION); 3640 new_entry->wiring_thread = NULL; 3641 new_entry->wired_count = 0; 3642 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3643 vnode_pager_update_writecount(object, 3644 new_entry->start, new_entry->end); 3645 } 3646 3647 /* 3648 * Insert the entry into the new map -- we know we're 3649 * inserting at the end of the new map. 3650 */ 3651 vm_map_entry_link(new_map, new_map->header.prev, 3652 new_entry); 3653 vmspace_map_entry_forked(vm1, vm2, new_entry); 3654 3655 /* 3656 * Update the physical map 3657 */ 3658 pmap_copy(new_map->pmap, old_map->pmap, 3659 new_entry->start, 3660 (old_entry->end - old_entry->start), 3661 old_entry->start); 3662 break; 3663 3664 case VM_INHERIT_COPY: 3665 /* 3666 * Clone the entry and link into the map. 3667 */ 3668 new_entry = vm_map_entry_create(new_map); 3669 *new_entry = *old_entry; 3670 /* 3671 * Copied entry is COW over the old object. 3672 */ 3673 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3674 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3675 new_entry->wiring_thread = NULL; 3676 new_entry->wired_count = 0; 3677 new_entry->object.vm_object = NULL; 3678 new_entry->cred = NULL; 3679 vm_map_entry_link(new_map, new_map->header.prev, 3680 new_entry); 3681 vmspace_map_entry_forked(vm1, vm2, new_entry); 3682 vm_map_copy_entry(old_map, new_map, old_entry, 3683 new_entry, fork_charge); 3684 break; 3685 3686 case VM_INHERIT_ZERO: 3687 /* 3688 * Create a new anonymous mapping entry modelled from 3689 * the old one. 3690 */ 3691 new_entry = vm_map_entry_create(new_map); 3692 memset(new_entry, 0, sizeof(*new_entry)); 3693 3694 new_entry->start = old_entry->start; 3695 new_entry->end = old_entry->end; 3696 new_entry->eflags = old_entry->eflags & 3697 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 3698 MAP_ENTRY_VN_WRITECNT); 3699 new_entry->protection = old_entry->protection; 3700 new_entry->max_protection = old_entry->max_protection; 3701 new_entry->inheritance = VM_INHERIT_ZERO; 3702 3703 vm_map_entry_link(new_map, new_map->header.prev, 3704 new_entry); 3705 vmspace_map_entry_forked(vm1, vm2, new_entry); 3706 3707 new_entry->cred = curthread->td_ucred; 3708 crhold(new_entry->cred); 3709 *fork_charge += (new_entry->end - new_entry->start); 3710 3711 break; 3712 } 3713 old_entry = old_entry->next; 3714 } 3715 /* 3716 * Use inlined vm_map_unlock() to postpone handling the deferred 3717 * map entries, which cannot be done until both old_map and 3718 * new_map locks are released. 3719 */ 3720 sx_xunlock(&old_map->lock); 3721 sx_xunlock(&new_map->lock); 3722 vm_map_process_deferred(); 3723 3724 return (vm2); 3725 } 3726 3727 /* 3728 * Create a process's stack for exec_new_vmspace(). This function is never 3729 * asked to wire the newly created stack. 3730 */ 3731 int 3732 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3733 vm_prot_t prot, vm_prot_t max, int cow) 3734 { 3735 vm_size_t growsize, init_ssize; 3736 rlim_t vmemlim; 3737 int rv; 3738 3739 MPASS((map->flags & MAP_WIREFUTURE) == 0); 3740 growsize = sgrowsiz; 3741 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3742 vm_map_lock(map); 3743 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 3744 /* If we would blow our VMEM resource limit, no go */ 3745 if (map->size + init_ssize > vmemlim) { 3746 rv = KERN_NO_SPACE; 3747 goto out; 3748 } 3749 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 3750 max, cow); 3751 out: 3752 vm_map_unlock(map); 3753 return (rv); 3754 } 3755 3756 static int stack_guard_page = 1; 3757 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 3758 &stack_guard_page, 0, 3759 "Specifies the number of guard pages for a stack that grows"); 3760 3761 static int 3762 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3763 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 3764 { 3765 vm_map_entry_t new_entry, prev_entry; 3766 vm_offset_t bot, gap_bot, gap_top, top; 3767 vm_size_t init_ssize, sgp; 3768 int orient, rv; 3769 3770 /* 3771 * The stack orientation is piggybacked with the cow argument. 3772 * Extract it into orient and mask the cow argument so that we 3773 * don't pass it around further. 3774 */ 3775 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 3776 KASSERT(orient != 0, ("No stack grow direction")); 3777 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 3778 ("bi-dir stack")); 3779 3780 if (addrbos < vm_map_min(map) || 3781 addrbos + max_ssize > vm_map_max(map) || 3782 addrbos + max_ssize <= addrbos) 3783 return (KERN_INVALID_ADDRESS); 3784 sgp = (vm_size_t)stack_guard_page * PAGE_SIZE; 3785 if (sgp >= max_ssize) 3786 return (KERN_INVALID_ARGUMENT); 3787 3788 init_ssize = growsize; 3789 if (max_ssize < init_ssize + sgp) 3790 init_ssize = max_ssize - sgp; 3791 3792 /* If addr is already mapped, no go */ 3793 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 3794 return (KERN_NO_SPACE); 3795 3796 /* 3797 * If we can't accommodate max_ssize in the current mapping, no go. 3798 */ 3799 if (prev_entry->next->start < addrbos + max_ssize) 3800 return (KERN_NO_SPACE); 3801 3802 /* 3803 * We initially map a stack of only init_ssize. We will grow as 3804 * needed later. Depending on the orientation of the stack (i.e. 3805 * the grow direction) we either map at the top of the range, the 3806 * bottom of the range or in the middle. 3807 * 3808 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3809 * and cow to be 0. Possibly we should eliminate these as input 3810 * parameters, and just pass these values here in the insert call. 3811 */ 3812 if (orient == MAP_STACK_GROWS_DOWN) { 3813 bot = addrbos + max_ssize - init_ssize; 3814 top = bot + init_ssize; 3815 gap_bot = addrbos; 3816 gap_top = bot; 3817 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 3818 bot = addrbos; 3819 top = bot + init_ssize; 3820 gap_bot = top; 3821 gap_top = addrbos + max_ssize; 3822 } 3823 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3824 if (rv != KERN_SUCCESS) 3825 return (rv); 3826 new_entry = prev_entry->next; 3827 KASSERT(new_entry->end == top || new_entry->start == bot, 3828 ("Bad entry start/end for new stack entry")); 3829 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 3830 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 3831 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 3832 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 3833 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 3834 ("new entry lacks MAP_ENTRY_GROWS_UP")); 3835 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 3836 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 3837 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 3838 if (rv != KERN_SUCCESS) 3839 (void)vm_map_delete(map, bot, top); 3840 return (rv); 3841 } 3842 3843 /* 3844 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 3845 * successfully grow the stack. 3846 */ 3847 static int 3848 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 3849 { 3850 vm_map_entry_t stack_entry; 3851 struct proc *p; 3852 struct vmspace *vm; 3853 struct ucred *cred; 3854 vm_offset_t gap_end, gap_start, grow_start; 3855 size_t grow_amount, guard, max_grow; 3856 rlim_t lmemlim, stacklim, vmemlim; 3857 int rv, rv1; 3858 bool gap_deleted, grow_down, is_procstack; 3859 #ifdef notyet 3860 uint64_t limit; 3861 #endif 3862 #ifdef RACCT 3863 int error; 3864 #endif 3865 3866 p = curproc; 3867 vm = p->p_vmspace; 3868 3869 /* 3870 * Disallow stack growth when the access is performed by a 3871 * debugger or AIO daemon. The reason is that the wrong 3872 * resource limits are applied. 3873 */ 3874 if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL) 3875 return (KERN_FAILURE); 3876 3877 MPASS(!map->system_map); 3878 3879 guard = stack_guard_page * PAGE_SIZE; 3880 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 3881 stacklim = lim_cur(curthread, RLIMIT_STACK); 3882 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 3883 retry: 3884 /* If addr is not in a hole for a stack grow area, no need to grow. */ 3885 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 3886 return (KERN_FAILURE); 3887 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 3888 return (KERN_SUCCESS); 3889 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 3890 stack_entry = gap_entry->next; 3891 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 3892 stack_entry->start != gap_entry->end) 3893 return (KERN_FAILURE); 3894 grow_amount = round_page(stack_entry->start - addr); 3895 grow_down = true; 3896 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 3897 stack_entry = gap_entry->prev; 3898 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 3899 stack_entry->end != gap_entry->start) 3900 return (KERN_FAILURE); 3901 grow_amount = round_page(addr + 1 - stack_entry->end); 3902 grow_down = false; 3903 } else { 3904 return (KERN_FAILURE); 3905 } 3906 max_grow = gap_entry->end - gap_entry->start; 3907 if (guard > max_grow) 3908 return (KERN_NO_SPACE); 3909 max_grow -= guard; 3910 if (grow_amount > max_grow) 3911 return (KERN_NO_SPACE); 3912 3913 /* 3914 * If this is the main process stack, see if we're over the stack 3915 * limit. 3916 */ 3917 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 3918 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 3919 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 3920 return (KERN_NO_SPACE); 3921 3922 #ifdef RACCT 3923 if (racct_enable) { 3924 PROC_LOCK(p); 3925 if (is_procstack && racct_set(p, RACCT_STACK, 3926 ctob(vm->vm_ssize) + grow_amount)) { 3927 PROC_UNLOCK(p); 3928 return (KERN_NO_SPACE); 3929 } 3930 PROC_UNLOCK(p); 3931 } 3932 #endif 3933 3934 grow_amount = roundup(grow_amount, sgrowsiz); 3935 if (grow_amount > max_grow) 3936 grow_amount = max_grow; 3937 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3938 grow_amount = trunc_page((vm_size_t)stacklim) - 3939 ctob(vm->vm_ssize); 3940 } 3941 3942 #ifdef notyet 3943 PROC_LOCK(p); 3944 limit = racct_get_available(p, RACCT_STACK); 3945 PROC_UNLOCK(p); 3946 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3947 grow_amount = limit - ctob(vm->vm_ssize); 3948 #endif 3949 3950 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 3951 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3952 rv = KERN_NO_SPACE; 3953 goto out; 3954 } 3955 #ifdef RACCT 3956 if (racct_enable) { 3957 PROC_LOCK(p); 3958 if (racct_set(p, RACCT_MEMLOCK, 3959 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3960 PROC_UNLOCK(p); 3961 rv = KERN_NO_SPACE; 3962 goto out; 3963 } 3964 PROC_UNLOCK(p); 3965 } 3966 #endif 3967 } 3968 3969 /* If we would blow our VMEM resource limit, no go */ 3970 if (map->size + grow_amount > vmemlim) { 3971 rv = KERN_NO_SPACE; 3972 goto out; 3973 } 3974 #ifdef RACCT 3975 if (racct_enable) { 3976 PROC_LOCK(p); 3977 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3978 PROC_UNLOCK(p); 3979 rv = KERN_NO_SPACE; 3980 goto out; 3981 } 3982 PROC_UNLOCK(p); 3983 } 3984 #endif 3985 3986 if (vm_map_lock_upgrade(map)) { 3987 gap_entry = NULL; 3988 vm_map_lock_read(map); 3989 goto retry; 3990 } 3991 3992 if (grow_down) { 3993 grow_start = gap_entry->end - grow_amount; 3994 if (gap_entry->start + grow_amount == gap_entry->end) { 3995 gap_start = gap_entry->start; 3996 gap_end = gap_entry->end; 3997 vm_map_entry_delete(map, gap_entry); 3998 gap_deleted = true; 3999 } else { 4000 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4001 gap_entry->end -= grow_amount; 4002 vm_map_entry_resize_free(map, gap_entry); 4003 gap_deleted = false; 4004 } 4005 rv = vm_map_insert(map, NULL, 0, grow_start, 4006 grow_start + grow_amount, 4007 stack_entry->protection, stack_entry->max_protection, 4008 MAP_STACK_GROWS_DOWN); 4009 if (rv != KERN_SUCCESS) { 4010 if (gap_deleted) { 4011 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4012 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4013 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4014 MPASS(rv1 == KERN_SUCCESS); 4015 } else { 4016 gap_entry->end += grow_amount; 4017 vm_map_entry_resize_free(map, gap_entry); 4018 } 4019 } 4020 } else { 4021 grow_start = stack_entry->end; 4022 cred = stack_entry->cred; 4023 if (cred == NULL && stack_entry->object.vm_object != NULL) 4024 cred = stack_entry->object.vm_object->cred; 4025 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4026 rv = KERN_NO_SPACE; 4027 /* Grow the underlying object if applicable. */ 4028 else if (stack_entry->object.vm_object == NULL || 4029 vm_object_coalesce(stack_entry->object.vm_object, 4030 stack_entry->offset, 4031 (vm_size_t)(stack_entry->end - stack_entry->start), 4032 (vm_size_t)grow_amount, cred != NULL)) { 4033 if (gap_entry->start + grow_amount == gap_entry->end) 4034 vm_map_entry_delete(map, gap_entry); 4035 else 4036 gap_entry->start += grow_amount; 4037 stack_entry->end += grow_amount; 4038 map->size += grow_amount; 4039 vm_map_entry_resize_free(map, stack_entry); 4040 rv = KERN_SUCCESS; 4041 } else 4042 rv = KERN_FAILURE; 4043 } 4044 if (rv == KERN_SUCCESS && is_procstack) 4045 vm->vm_ssize += btoc(grow_amount); 4046 4047 /* 4048 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4049 */ 4050 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4051 vm_map_unlock(map); 4052 vm_map_wire(map, grow_start, grow_start + grow_amount, 4053 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4054 vm_map_lock_read(map); 4055 } else 4056 vm_map_lock_downgrade(map); 4057 4058 out: 4059 #ifdef RACCT 4060 if (racct_enable && rv != KERN_SUCCESS) { 4061 PROC_LOCK(p); 4062 error = racct_set(p, RACCT_VMEM, map->size); 4063 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4064 if (!old_mlock) { 4065 error = racct_set(p, RACCT_MEMLOCK, 4066 ptoa(pmap_wired_count(map->pmap))); 4067 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4068 } 4069 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4070 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4071 PROC_UNLOCK(p); 4072 } 4073 #endif 4074 4075 return (rv); 4076 } 4077 4078 /* 4079 * Unshare the specified VM space for exec. If other processes are 4080 * mapped to it, then create a new one. The new vmspace is null. 4081 */ 4082 int 4083 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4084 { 4085 struct vmspace *oldvmspace = p->p_vmspace; 4086 struct vmspace *newvmspace; 4087 4088 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4089 ("vmspace_exec recursed")); 4090 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4091 if (newvmspace == NULL) 4092 return (ENOMEM); 4093 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4094 /* 4095 * This code is written like this for prototype purposes. The 4096 * goal is to avoid running down the vmspace here, but let the 4097 * other process's that are still using the vmspace to finally 4098 * run it down. Even though there is little or no chance of blocking 4099 * here, it is a good idea to keep this form for future mods. 4100 */ 4101 PROC_VMSPACE_LOCK(p); 4102 p->p_vmspace = newvmspace; 4103 PROC_VMSPACE_UNLOCK(p); 4104 if (p == curthread->td_proc) 4105 pmap_activate(curthread); 4106 curthread->td_pflags |= TDP_EXECVMSPC; 4107 return (0); 4108 } 4109 4110 /* 4111 * Unshare the specified VM space for forcing COW. This 4112 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4113 */ 4114 int 4115 vmspace_unshare(struct proc *p) 4116 { 4117 struct vmspace *oldvmspace = p->p_vmspace; 4118 struct vmspace *newvmspace; 4119 vm_ooffset_t fork_charge; 4120 4121 if (oldvmspace->vm_refcnt == 1) 4122 return (0); 4123 fork_charge = 0; 4124 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4125 if (newvmspace == NULL) 4126 return (ENOMEM); 4127 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4128 vmspace_free(newvmspace); 4129 return (ENOMEM); 4130 } 4131 PROC_VMSPACE_LOCK(p); 4132 p->p_vmspace = newvmspace; 4133 PROC_VMSPACE_UNLOCK(p); 4134 if (p == curthread->td_proc) 4135 pmap_activate(curthread); 4136 vmspace_free(oldvmspace); 4137 return (0); 4138 } 4139 4140 /* 4141 * vm_map_lookup: 4142 * 4143 * Finds the VM object, offset, and 4144 * protection for a given virtual address in the 4145 * specified map, assuming a page fault of the 4146 * type specified. 4147 * 4148 * Leaves the map in question locked for read; return 4149 * values are guaranteed until a vm_map_lookup_done 4150 * call is performed. Note that the map argument 4151 * is in/out; the returned map must be used in 4152 * the call to vm_map_lookup_done. 4153 * 4154 * A handle (out_entry) is returned for use in 4155 * vm_map_lookup_done, to make that fast. 4156 * 4157 * If a lookup is requested with "write protection" 4158 * specified, the map may be changed to perform virtual 4159 * copying operations, although the data referenced will 4160 * remain the same. 4161 */ 4162 int 4163 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4164 vm_offset_t vaddr, 4165 vm_prot_t fault_typea, 4166 vm_map_entry_t *out_entry, /* OUT */ 4167 vm_object_t *object, /* OUT */ 4168 vm_pindex_t *pindex, /* OUT */ 4169 vm_prot_t *out_prot, /* OUT */ 4170 boolean_t *wired) /* OUT */ 4171 { 4172 vm_map_entry_t entry; 4173 vm_map_t map = *var_map; 4174 vm_prot_t prot; 4175 vm_prot_t fault_type = fault_typea; 4176 vm_object_t eobject; 4177 vm_size_t size; 4178 struct ucred *cred; 4179 4180 RetryLookup: 4181 4182 vm_map_lock_read(map); 4183 4184 RetryLookupLocked: 4185 /* 4186 * Lookup the faulting address. 4187 */ 4188 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4189 vm_map_unlock_read(map); 4190 return (KERN_INVALID_ADDRESS); 4191 } 4192 4193 entry = *out_entry; 4194 4195 /* 4196 * Handle submaps. 4197 */ 4198 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4199 vm_map_t old_map = map; 4200 4201 *var_map = map = entry->object.sub_map; 4202 vm_map_unlock_read(old_map); 4203 goto RetryLookup; 4204 } 4205 4206 /* 4207 * Check whether this task is allowed to have this page. 4208 */ 4209 prot = entry->protection; 4210 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4211 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4212 if (prot == VM_PROT_NONE && map != kernel_map && 4213 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4214 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4215 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4216 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4217 goto RetryLookupLocked; 4218 } 4219 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4220 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4221 vm_map_unlock_read(map); 4222 return (KERN_PROTECTION_FAILURE); 4223 } 4224 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4225 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4226 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4227 ("entry %p flags %x", entry, entry->eflags)); 4228 if ((fault_typea & VM_PROT_COPY) != 0 && 4229 (entry->max_protection & VM_PROT_WRITE) == 0 && 4230 (entry->eflags & MAP_ENTRY_COW) == 0) { 4231 vm_map_unlock_read(map); 4232 return (KERN_PROTECTION_FAILURE); 4233 } 4234 4235 /* 4236 * If this page is not pageable, we have to get it for all possible 4237 * accesses. 4238 */ 4239 *wired = (entry->wired_count != 0); 4240 if (*wired) 4241 fault_type = entry->protection; 4242 size = entry->end - entry->start; 4243 /* 4244 * If the entry was copy-on-write, we either ... 4245 */ 4246 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4247 /* 4248 * If we want to write the page, we may as well handle that 4249 * now since we've got the map locked. 4250 * 4251 * If we don't need to write the page, we just demote the 4252 * permissions allowed. 4253 */ 4254 if ((fault_type & VM_PROT_WRITE) != 0 || 4255 (fault_typea & VM_PROT_COPY) != 0) { 4256 /* 4257 * Make a new object, and place it in the object 4258 * chain. Note that no new references have appeared 4259 * -- one just moved from the map to the new 4260 * object. 4261 */ 4262 if (vm_map_lock_upgrade(map)) 4263 goto RetryLookup; 4264 4265 if (entry->cred == NULL) { 4266 /* 4267 * The debugger owner is charged for 4268 * the memory. 4269 */ 4270 cred = curthread->td_ucred; 4271 crhold(cred); 4272 if (!swap_reserve_by_cred(size, cred)) { 4273 crfree(cred); 4274 vm_map_unlock(map); 4275 return (KERN_RESOURCE_SHORTAGE); 4276 } 4277 entry->cred = cred; 4278 } 4279 vm_object_shadow(&entry->object.vm_object, 4280 &entry->offset, size); 4281 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4282 eobject = entry->object.vm_object; 4283 if (eobject->cred != NULL) { 4284 /* 4285 * The object was not shadowed. 4286 */ 4287 swap_release_by_cred(size, entry->cred); 4288 crfree(entry->cred); 4289 entry->cred = NULL; 4290 } else if (entry->cred != NULL) { 4291 VM_OBJECT_WLOCK(eobject); 4292 eobject->cred = entry->cred; 4293 eobject->charge = size; 4294 VM_OBJECT_WUNLOCK(eobject); 4295 entry->cred = NULL; 4296 } 4297 4298 vm_map_lock_downgrade(map); 4299 } else { 4300 /* 4301 * We're attempting to read a copy-on-write page -- 4302 * don't allow writes. 4303 */ 4304 prot &= ~VM_PROT_WRITE; 4305 } 4306 } 4307 4308 /* 4309 * Create an object if necessary. 4310 */ 4311 if (entry->object.vm_object == NULL && 4312 !map->system_map) { 4313 if (vm_map_lock_upgrade(map)) 4314 goto RetryLookup; 4315 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4316 atop(size)); 4317 entry->offset = 0; 4318 if (entry->cred != NULL) { 4319 VM_OBJECT_WLOCK(entry->object.vm_object); 4320 entry->object.vm_object->cred = entry->cred; 4321 entry->object.vm_object->charge = size; 4322 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4323 entry->cred = NULL; 4324 } 4325 vm_map_lock_downgrade(map); 4326 } 4327 4328 /* 4329 * Return the object/offset from this entry. If the entry was 4330 * copy-on-write or empty, it has been fixed up. 4331 */ 4332 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4333 *object = entry->object.vm_object; 4334 4335 *out_prot = prot; 4336 return (KERN_SUCCESS); 4337 } 4338 4339 /* 4340 * vm_map_lookup_locked: 4341 * 4342 * Lookup the faulting address. A version of vm_map_lookup that returns 4343 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4344 */ 4345 int 4346 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4347 vm_offset_t vaddr, 4348 vm_prot_t fault_typea, 4349 vm_map_entry_t *out_entry, /* OUT */ 4350 vm_object_t *object, /* OUT */ 4351 vm_pindex_t *pindex, /* OUT */ 4352 vm_prot_t *out_prot, /* OUT */ 4353 boolean_t *wired) /* OUT */ 4354 { 4355 vm_map_entry_t entry; 4356 vm_map_t map = *var_map; 4357 vm_prot_t prot; 4358 vm_prot_t fault_type = fault_typea; 4359 4360 /* 4361 * Lookup the faulting address. 4362 */ 4363 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4364 return (KERN_INVALID_ADDRESS); 4365 4366 entry = *out_entry; 4367 4368 /* 4369 * Fail if the entry refers to a submap. 4370 */ 4371 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4372 return (KERN_FAILURE); 4373 4374 /* 4375 * Check whether this task is allowed to have this page. 4376 */ 4377 prot = entry->protection; 4378 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4379 if ((fault_type & prot) != fault_type) 4380 return (KERN_PROTECTION_FAILURE); 4381 4382 /* 4383 * If this page is not pageable, we have to get it for all possible 4384 * accesses. 4385 */ 4386 *wired = (entry->wired_count != 0); 4387 if (*wired) 4388 fault_type = entry->protection; 4389 4390 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4391 /* 4392 * Fail if the entry was copy-on-write for a write fault. 4393 */ 4394 if (fault_type & VM_PROT_WRITE) 4395 return (KERN_FAILURE); 4396 /* 4397 * We're attempting to read a copy-on-write page -- 4398 * don't allow writes. 4399 */ 4400 prot &= ~VM_PROT_WRITE; 4401 } 4402 4403 /* 4404 * Fail if an object should be created. 4405 */ 4406 if (entry->object.vm_object == NULL && !map->system_map) 4407 return (KERN_FAILURE); 4408 4409 /* 4410 * Return the object/offset from this entry. If the entry was 4411 * copy-on-write or empty, it has been fixed up. 4412 */ 4413 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4414 *object = entry->object.vm_object; 4415 4416 *out_prot = prot; 4417 return (KERN_SUCCESS); 4418 } 4419 4420 /* 4421 * vm_map_lookup_done: 4422 * 4423 * Releases locks acquired by a vm_map_lookup 4424 * (according to the handle returned by that lookup). 4425 */ 4426 void 4427 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4428 { 4429 /* 4430 * Unlock the main-level map 4431 */ 4432 vm_map_unlock_read(map); 4433 } 4434 4435 vm_offset_t 4436 vm_map_max_KBI(const struct vm_map *map) 4437 { 4438 4439 return (vm_map_max(map)); 4440 } 4441 4442 vm_offset_t 4443 vm_map_min_KBI(const struct vm_map *map) 4444 { 4445 4446 return (vm_map_min(map)); 4447 } 4448 4449 pmap_t 4450 vm_map_pmap_KBI(vm_map_t map) 4451 { 4452 4453 return (map->pmap); 4454 } 4455 4456 #include "opt_ddb.h" 4457 #ifdef DDB 4458 #include <sys/kernel.h> 4459 4460 #include <ddb/ddb.h> 4461 4462 static void 4463 vm_map_print(vm_map_t map) 4464 { 4465 vm_map_entry_t entry; 4466 4467 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4468 (void *)map, 4469 (void *)map->pmap, map->nentries, map->timestamp); 4470 4471 db_indent += 2; 4472 for (entry = map->header.next; entry != &map->header; 4473 entry = entry->next) { 4474 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 4475 (void *)entry, (void *)entry->start, (void *)entry->end, 4476 entry->eflags); 4477 { 4478 static char *inheritance_name[4] = 4479 {"share", "copy", "none", "donate_copy"}; 4480 4481 db_iprintf(" prot=%x/%x/%s", 4482 entry->protection, 4483 entry->max_protection, 4484 inheritance_name[(int)(unsigned char)entry->inheritance]); 4485 if (entry->wired_count != 0) 4486 db_printf(", wired"); 4487 } 4488 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4489 db_printf(", share=%p, offset=0x%jx\n", 4490 (void *)entry->object.sub_map, 4491 (uintmax_t)entry->offset); 4492 if ((entry->prev == &map->header) || 4493 (entry->prev->object.sub_map != 4494 entry->object.sub_map)) { 4495 db_indent += 2; 4496 vm_map_print((vm_map_t)entry->object.sub_map); 4497 db_indent -= 2; 4498 } 4499 } else { 4500 if (entry->cred != NULL) 4501 db_printf(", ruid %d", entry->cred->cr_ruid); 4502 db_printf(", object=%p, offset=0x%jx", 4503 (void *)entry->object.vm_object, 4504 (uintmax_t)entry->offset); 4505 if (entry->object.vm_object && entry->object.vm_object->cred) 4506 db_printf(", obj ruid %d charge %jx", 4507 entry->object.vm_object->cred->cr_ruid, 4508 (uintmax_t)entry->object.vm_object->charge); 4509 if (entry->eflags & MAP_ENTRY_COW) 4510 db_printf(", copy (%s)", 4511 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4512 db_printf("\n"); 4513 4514 if ((entry->prev == &map->header) || 4515 (entry->prev->object.vm_object != 4516 entry->object.vm_object)) { 4517 db_indent += 2; 4518 vm_object_print((db_expr_t)(intptr_t) 4519 entry->object.vm_object, 4520 0, 0, (char *)0); 4521 db_indent -= 2; 4522 } 4523 } 4524 } 4525 db_indent -= 2; 4526 } 4527 4528 DB_SHOW_COMMAND(map, map) 4529 { 4530 4531 if (!have_addr) { 4532 db_printf("usage: show map <addr>\n"); 4533 return; 4534 } 4535 vm_map_print((vm_map_t)addr); 4536 } 4537 4538 DB_SHOW_COMMAND(procvm, procvm) 4539 { 4540 struct proc *p; 4541 4542 if (have_addr) { 4543 p = db_lookup_proc(addr); 4544 } else { 4545 p = curproc; 4546 } 4547 4548 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4549 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4550 (void *)vmspace_pmap(p->p_vmspace)); 4551 4552 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4553 } 4554 4555 #endif /* DDB */ 4556